2 * Budget Fair Queueing (BFQ) I/O scheduler.
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
52 * applications: interactive and soft real-time. This feature enables
53 * BFQ to provide applications in these classes with a very low
54 * latency. Finally, BFQ also features additional heuristics for
55 * preserving both a low latency and a high throughput on NCQ-capable,
56 * rotational or flash-based devices, and to get the job done quickly
57 * for applications consisting in many I/O-bound processes.
59 * NOTE: if the main or only goal, with a given device, is to achieve
60 * the maximum-possible throughput at all times, then do switch off
61 * all low-latency heuristics for that device, by setting low_latency
64 * BFQ is described in [1], where also a reference to the initial, more
65 * theoretical paper on BFQ can be found. The interested reader can find
66 * in the latter paper full details on the main algorithm, as well as
67 * formulas of the guarantees and formal proofs of all the properties.
68 * With respect to the version of BFQ presented in these papers, this
69 * implementation adds a few more heuristics, such as the one that
70 * guarantees a low latency to soft real-time applications, and a
71 * hierarchical extension based on H-WF2Q+.
73 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
74 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
75 * with O(log N) complexity derives from the one introduced with EEVDF
78 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
79 * Scheduler", Proceedings of the First Workshop on Mobile System
80 * Technologies (MST-2015), May 2015.
81 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
83 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
84 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
87 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
89 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
90 * First: A Flexible and Accurate Mechanism for Proportional Share
91 * Resource Allocation", technical report.
93 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
95 #include <linux/module.h>
96 #include <linux/slab.h>
97 #include <linux/blkdev.h>
98 #include <linux/cgroup.h>
99 #include <linux/elevator.h>
100 #include <linux/ktime.h>
101 #include <linux/rbtree.h>
102 #include <linux/ioprio.h>
103 #include <linux/sbitmap.h>
104 #include <linux/delay.h>
108 #include "blk-mq-tag.h"
109 #include "blk-mq-sched.h"
110 #include "bfq-iosched.h"
113 #define BFQ_BFQQ_FNS(name) \
114 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
116 __set_bit(BFQQF_##name, &(bfqq)->flags); \
118 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
120 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
122 int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
124 return test_bit(BFQQF_##name, &(bfqq)->flags); \
127 BFQ_BFQQ_FNS(just_created);
129 BFQ_BFQQ_FNS(wait_request);
130 BFQ_BFQQ_FNS(non_blocking_wait_rq);
131 BFQ_BFQQ_FNS(fifo_expire);
132 BFQ_BFQQ_FNS(has_short_ttime);
134 BFQ_BFQQ_FNS(IO_bound);
135 BFQ_BFQQ_FNS(in_large_burst);
137 BFQ_BFQQ_FNS(split_coop);
138 BFQ_BFQQ_FNS(softrt_update);
139 #undef BFQ_BFQQ_FNS \
141 /* Expiration time of sync (0) and async (1) requests, in ns. */
142 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
144 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
145 static const int bfq_back_max = 16 * 1024;
147 /* Penalty of a backwards seek, in number of sectors. */
148 static const int bfq_back_penalty = 2;
150 /* Idling period duration, in ns. */
151 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
153 /* Minimum number of assigned budgets for which stats are safe to compute. */
154 static const int bfq_stats_min_budgets = 194;
156 /* Default maximum budget values, in sectors and number of requests. */
157 static const int bfq_default_max_budget = 16 * 1024;
160 * Async to sync throughput distribution is controlled as follows:
161 * when an async request is served, the entity is charged the number
162 * of sectors of the request, multiplied by the factor below
164 static const int bfq_async_charge_factor = 10;
166 /* Default timeout values, in jiffies, approximating CFQ defaults. */
167 const int bfq_timeout = HZ / 8;
170 * Time limit for merging (see comments in bfq_setup_cooperator). Set
171 * to the slowest value that, in our tests, proved to be effective in
172 * removing false positives, while not causing true positives to miss
175 * As can be deduced from the low time limit below, queue merging, if
176 * successful, happens at the very beggining of the I/O of the involved
177 * cooperating processes, as a consequence of the arrival of the very
178 * first requests from each cooperator. After that, there is very
179 * little chance to find cooperators.
181 static const unsigned long bfq_merge_time_limit = HZ/10;
183 static struct kmem_cache *bfq_pool;
185 /* Below this threshold (in ns), we consider thinktime immediate. */
186 #define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
188 /* hw_tag detection: parallel requests threshold and min samples needed. */
189 #define BFQ_HW_QUEUE_THRESHOLD 4
190 #define BFQ_HW_QUEUE_SAMPLES 32
192 #define BFQQ_SEEK_THR (sector_t)(8 * 100)
193 #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
194 #define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
195 #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
197 /* Min number of samples required to perform peak-rate update */
198 #define BFQ_RATE_MIN_SAMPLES 32
199 /* Min observation time interval required to perform a peak-rate update (ns) */
200 #define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
201 /* Target observation time interval for a peak-rate update (ns) */
202 #define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
204 /* Shift used for peak rate fixed precision calculations. */
205 #define BFQ_RATE_SHIFT 16
208 * By default, BFQ computes the duration of the weight raising for
209 * interactive applications automatically, using the following formula:
210 * duration = (R / r) * T, where r is the peak rate of the device, and
211 * R and T are two reference parameters.
212 * In particular, R is the peak rate of the reference device (see
213 * below), and T is a reference time: given the systems that are
214 * likely to be installed on the reference device according to its
215 * speed class, T is about the maximum time needed, under BFQ and
216 * while reading two files in parallel, to load typical large
217 * applications on these systems (see the comments on
218 * max_service_from_wr below, for more details on how T is obtained).
219 * In practice, the slower/faster the device at hand is, the more/less
220 * it takes to load applications with respect to the reference device.
221 * Accordingly, the longer/shorter BFQ grants weight raising to
222 * interactive applications.
224 * BFQ uses four different reference pairs (R, T), depending on:
225 * . whether the device is rotational or non-rotational;
226 * . whether the device is slow, such as old or portable HDDs, as well as
227 * SD cards, or fast, such as newer HDDs and SSDs.
229 * The device's speed class is dynamically (re)detected in
230 * bfq_update_peak_rate() every time the estimated peak rate is updated.
232 * In the following definitions, R_slow[0]/R_fast[0] and
233 * T_slow[0]/T_fast[0] are the reference values for a slow/fast
234 * rotational device, whereas R_slow[1]/R_fast[1] and
235 * T_slow[1]/T_fast[1] are the reference values for a slow/fast
236 * non-rotational device. Finally, device_speed_thresh are the
237 * thresholds used to switch between speed classes. The reference
238 * rates are not the actual peak rates of the devices used as a
239 * reference, but slightly lower values. The reason for using these
240 * slightly lower values is that the peak-rate estimator tends to
241 * yield slightly lower values than the actual peak rate (it can yield
242 * the actual peak rate only if there is only one process doing I/O,
243 * and the process does sequential I/O).
245 * Both the reference peak rates and the thresholds are measured in
246 * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
248 static int R_slow[2] = {1000, 10700};
249 static int R_fast[2] = {14000, 33000};
251 * To improve readability, a conversion function is used to initialize the
252 * following arrays, which entails that they can be initialized only in a
255 static int T_slow[2];
256 static int T_fast[2];
257 static int device_speed_thresh[2];
260 * BFQ uses the above-detailed, time-based weight-raising mechanism to
261 * privilege interactive tasks. This mechanism is vulnerable to the
262 * following false positives: I/O-bound applications that will go on
263 * doing I/O for much longer than the duration of weight
264 * raising. These applications have basically no benefit from being
265 * weight-raised at the beginning of their I/O. On the opposite end,
266 * while being weight-raised, these applications
267 * a) unjustly steal throughput to applications that may actually need
269 * b) make BFQ uselessly perform device idling; device idling results
270 * in loss of device throughput with most flash-based storage, and may
271 * increase latencies when used purposelessly.
273 * BFQ tries to reduce these problems, by adopting the following
274 * countermeasure. To introduce this countermeasure, we need first to
275 * finish explaining how the duration of weight-raising for
276 * interactive tasks is computed.
278 * For a bfq_queue deemed as interactive, the duration of weight
279 * raising is dynamically adjusted, as a function of the estimated
280 * peak rate of the device, so as to be equal to the time needed to
281 * execute the 'largest' interactive task we benchmarked so far. By
282 * largest task, we mean the task for which each involved process has
283 * to do more I/O than for any of the other tasks we benchmarked. This
284 * reference interactive task is the start-up of LibreOffice Writer,
285 * and in this task each process/bfq_queue needs to have at most ~110K
286 * sectors transferred.
288 * This last piece of information enables BFQ to reduce the actual
289 * duration of weight-raising for at least one class of I/O-bound
290 * applications: those doing sequential or quasi-sequential I/O. An
291 * example is file copy. In fact, once started, the main I/O-bound
292 * processes of these applications usually consume the above 110K
293 * sectors in much less time than the processes of an application that
294 * is starting, because these I/O-bound processes will greedily devote
295 * almost all their CPU cycles only to their target,
296 * throughput-friendly I/O operations. This is even more true if BFQ
297 * happens to be underestimating the device peak rate, and thus
298 * overestimating the duration of weight raising. But, according to
299 * our measurements, once transferred 110K sectors, these processes
300 * have no right to be weight-raised any longer.
302 * Basing on the last consideration, BFQ ends weight-raising for a
303 * bfq_queue if the latter happens to have received an amount of
304 * service at least equal to the following constant. The constant is
305 * set to slightly more than 110K, to have a minimum safety margin.
307 * This early ending of weight-raising reduces the amount of time
308 * during which interactive false positives cause the two problems
309 * described at the beginning of these comments.
311 static const unsigned long max_service_from_wr = 120000;
313 #define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
314 #define RQ_BFQQ(rq) ((rq)->elv.priv[1])
316 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
318 return bic->bfqq[is_sync];
321 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
323 bic->bfqq[is_sync] = bfqq;
326 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
328 return bic->icq.q->elevator->elevator_data;
332 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
333 * @icq: the iocontext queue.
335 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
337 /* bic->icq is the first member, %NULL will convert to %NULL */
338 return container_of(icq, struct bfq_io_cq, icq);
342 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
343 * @bfqd: the lookup key.
344 * @ioc: the io_context of the process doing I/O.
345 * @q: the request queue.
347 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
348 struct io_context *ioc,
349 struct request_queue *q)
353 struct bfq_io_cq *icq;
355 spin_lock_irqsave(q->queue_lock, flags);
356 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
357 spin_unlock_irqrestore(q->queue_lock, flags);
366 * Scheduler run of queue, if there are requests pending and no one in the
367 * driver that will restart queueing.
369 void bfq_schedule_dispatch(struct bfq_data *bfqd)
371 if (bfqd->queued != 0) {
372 bfq_log(bfqd, "schedule dispatch");
373 blk_mq_run_hw_queues(bfqd->queue, true);
377 #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
378 #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
380 #define bfq_sample_valid(samples) ((samples) > 80)
383 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
384 * We choose the request that is closesr to the head right now. Distance
385 * behind the head is penalized and only allowed to a certain extent.
387 static struct request *bfq_choose_req(struct bfq_data *bfqd,
392 sector_t s1, s2, d1 = 0, d2 = 0;
393 unsigned long back_max;
394 #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
395 #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
396 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
398 if (!rq1 || rq1 == rq2)
403 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
405 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
407 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
409 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
412 s1 = blk_rq_pos(rq1);
413 s2 = blk_rq_pos(rq2);
416 * By definition, 1KiB is 2 sectors.
418 back_max = bfqd->bfq_back_max * 2;
421 * Strict one way elevator _except_ in the case where we allow
422 * short backward seeks which are biased as twice the cost of a
423 * similar forward seek.
427 else if (s1 + back_max >= last)
428 d1 = (last - s1) * bfqd->bfq_back_penalty;
430 wrap |= BFQ_RQ1_WRAP;
434 else if (s2 + back_max >= last)
435 d2 = (last - s2) * bfqd->bfq_back_penalty;
437 wrap |= BFQ_RQ2_WRAP;
439 /* Found required data */
442 * By doing switch() on the bit mask "wrap" we avoid having to
443 * check two variables for all permutations: --> faster!
446 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
461 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
464 * Since both rqs are wrapped,
465 * start with the one that's further behind head
466 * (--> only *one* back seek required),
467 * since back seek takes more time than forward.
477 * See the comments on bfq_limit_depth for the purpose of
478 * the depths set in the function.
480 static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
482 bfqd->sb_shift = bt->sb.shift;
485 * In-word depths if no bfq_queue is being weight-raised:
486 * leaving 25% of tags only for sync reads.
488 * In next formulas, right-shift the value
489 * (1U<<bfqd->sb_shift), instead of computing directly
490 * (1U<<(bfqd->sb_shift - something)), to be robust against
491 * any possible value of bfqd->sb_shift, without having to
494 /* no more than 50% of tags for async I/O */
495 bfqd->word_depths[0][0] = max((1U<<bfqd->sb_shift)>>1, 1U);
497 * no more than 75% of tags for sync writes (25% extra tags
498 * w.r.t. async I/O, to prevent async I/O from starving sync
501 bfqd->word_depths[0][1] = max(((1U<<bfqd->sb_shift) * 3)>>2, 1U);
504 * In-word depths in case some bfq_queue is being weight-
505 * raised: leaving ~63% of tags for sync reads. This is the
506 * highest percentage for which, in our tests, application
507 * start-up times didn't suffer from any regression due to tag
510 /* no more than ~18% of tags for async I/O */
511 bfqd->word_depths[1][0] = max(((1U<<bfqd->sb_shift) * 3)>>4, 1U);
512 /* no more than ~37% of tags for sync writes (~20% extra tags) */
513 bfqd->word_depths[1][1] = max(((1U<<bfqd->sb_shift) * 6)>>4, 1U);
517 * Async I/O can easily starve sync I/O (both sync reads and sync
518 * writes), by consuming all tags. Similarly, storms of sync writes,
519 * such as those that sync(2) may trigger, can starve sync reads.
520 * Limit depths of async I/O and sync writes so as to counter both
523 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
525 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
526 struct bfq_data *bfqd = data->q->elevator->elevator_data;
527 struct sbitmap_queue *bt;
529 if (op_is_sync(op) && !op_is_write(op))
532 if (data->flags & BLK_MQ_REQ_RESERVED) {
533 if (unlikely(!tags->nr_reserved_tags)) {
537 bt = &tags->breserved_tags;
539 bt = &tags->bitmap_tags;
541 if (unlikely(bfqd->sb_shift != bt->sb.shift))
542 bfq_update_depths(bfqd, bt);
544 data->shallow_depth =
545 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
547 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
548 __func__, bfqd->wr_busy_queues, op_is_sync(op),
549 data->shallow_depth);
552 static struct bfq_queue *
553 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
554 sector_t sector, struct rb_node **ret_parent,
555 struct rb_node ***rb_link)
557 struct rb_node **p, *parent;
558 struct bfq_queue *bfqq = NULL;
566 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
569 * Sort strictly based on sector. Smallest to the left,
570 * largest to the right.
572 if (sector > blk_rq_pos(bfqq->next_rq))
574 else if (sector < blk_rq_pos(bfqq->next_rq))
582 *ret_parent = parent;
586 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
587 (unsigned long long)sector,
588 bfqq ? bfqq->pid : 0);
593 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
595 return bfqq->service_from_backlogged > 0 &&
596 time_is_before_jiffies(bfqq->first_IO_time +
597 bfq_merge_time_limit);
600 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
602 struct rb_node **p, *parent;
603 struct bfq_queue *__bfqq;
605 if (bfqq->pos_root) {
606 rb_erase(&bfqq->pos_node, bfqq->pos_root);
607 bfqq->pos_root = NULL;
611 * bfqq cannot be merged any longer (see comments in
612 * bfq_setup_cooperator): no point in adding bfqq into the
615 if (bfq_too_late_for_merging(bfqq))
618 if (bfq_class_idle(bfqq))
623 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
624 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
625 blk_rq_pos(bfqq->next_rq), &parent, &p);
627 rb_link_node(&bfqq->pos_node, parent, p);
628 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
630 bfqq->pos_root = NULL;
634 * Tell whether there are active queues or groups with differentiated weights.
636 static bool bfq_differentiated_weights(struct bfq_data *bfqd)
639 * For weights to differ, at least one of the trees must contain
640 * at least two nodes.
642 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
643 (bfqd->queue_weights_tree.rb_node->rb_left ||
644 bfqd->queue_weights_tree.rb_node->rb_right)
645 #ifdef CONFIG_BFQ_GROUP_IOSCHED
647 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
648 (bfqd->group_weights_tree.rb_node->rb_left ||
649 bfqd->group_weights_tree.rb_node->rb_right)
655 * The following function returns true if every queue must receive the
656 * same share of the throughput (this condition is used when deciding
657 * whether idling may be disabled, see the comments in the function
658 * bfq_bfqq_may_idle()).
660 * Such a scenario occurs when:
661 * 1) all active queues have the same weight,
662 * 2) all active groups at the same level in the groups tree have the same
664 * 3) all active groups at the same level in the groups tree have the same
665 * number of children.
667 * Unfortunately, keeping the necessary state for evaluating exactly the
668 * above symmetry conditions would be quite complex and time-consuming.
669 * Therefore this function evaluates, instead, the following stronger
670 * sub-conditions, for which it is much easier to maintain the needed
672 * 1) all active queues have the same weight,
673 * 2) all active groups have the same weight,
674 * 3) all active groups have at most one active child each.
675 * In particular, the last two conditions are always true if hierarchical
676 * support and the cgroups interface are not enabled, thus no state needs
677 * to be maintained in this case.
679 static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
681 return !bfq_differentiated_weights(bfqd);
685 * If the weight-counter tree passed as input contains no counter for
686 * the weight of the input entity, then add that counter; otherwise just
687 * increment the existing counter.
689 * Note that weight-counter trees contain few nodes in mostly symmetric
690 * scenarios. For example, if all queues have the same weight, then the
691 * weight-counter tree for the queues may contain at most one node.
692 * This holds even if low_latency is on, because weight-raised queues
693 * are not inserted in the tree.
694 * In most scenarios, the rate at which nodes are created/destroyed
697 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
698 struct rb_root *root)
700 struct rb_node **new = &(root->rb_node), *parent = NULL;
703 * Do not insert if the entity is already associated with a
704 * counter, which happens if:
705 * 1) the entity is associated with a queue,
706 * 2) a request arrival has caused the queue to become both
707 * non-weight-raised, and hence change its weight, and
708 * backlogged; in this respect, each of the two events
709 * causes an invocation of this function,
710 * 3) this is the invocation of this function caused by the
711 * second event. This second invocation is actually useless,
712 * and we handle this fact by exiting immediately. More
713 * efficient or clearer solutions might possibly be adopted.
715 if (entity->weight_counter)
719 struct bfq_weight_counter *__counter = container_of(*new,
720 struct bfq_weight_counter,
724 if (entity->weight == __counter->weight) {
725 entity->weight_counter = __counter;
728 if (entity->weight < __counter->weight)
729 new = &((*new)->rb_left);
731 new = &((*new)->rb_right);
734 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
738 * In the unlucky event of an allocation failure, we just
739 * exit. This will cause the weight of entity to not be
740 * considered in bfq_differentiated_weights, which, in its
741 * turn, causes the scenario to be deemed wrongly symmetric in
742 * case entity's weight would have been the only weight making
743 * the scenario asymmetric. On the bright side, no unbalance
744 * will however occur when entity becomes inactive again (the
745 * invocation of this function is triggered by an activation
746 * of entity). In fact, bfq_weights_tree_remove does nothing
747 * if !entity->weight_counter.
749 if (unlikely(!entity->weight_counter))
752 entity->weight_counter->weight = entity->weight;
753 rb_link_node(&entity->weight_counter->weights_node, parent, new);
754 rb_insert_color(&entity->weight_counter->weights_node, root);
757 entity->weight_counter->num_active++;
761 * Decrement the weight counter associated with the entity, and, if the
762 * counter reaches 0, remove the counter from the tree.
763 * See the comments to the function bfq_weights_tree_add() for considerations
766 void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
767 struct rb_root *root)
769 if (!entity->weight_counter)
772 entity->weight_counter->num_active--;
773 if (entity->weight_counter->num_active > 0)
774 goto reset_entity_pointer;
776 rb_erase(&entity->weight_counter->weights_node, root);
777 kfree(entity->weight_counter);
779 reset_entity_pointer:
780 entity->weight_counter = NULL;
784 * Return expired entry, or NULL to just start from scratch in rbtree.
786 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
787 struct request *last)
791 if (bfq_bfqq_fifo_expire(bfqq))
794 bfq_mark_bfqq_fifo_expire(bfqq);
796 rq = rq_entry_fifo(bfqq->fifo.next);
798 if (rq == last || ktime_get_ns() < rq->fifo_time)
801 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
805 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
806 struct bfq_queue *bfqq,
807 struct request *last)
809 struct rb_node *rbnext = rb_next(&last->rb_node);
810 struct rb_node *rbprev = rb_prev(&last->rb_node);
811 struct request *next, *prev = NULL;
813 /* Follow expired path, else get first next available. */
814 next = bfq_check_fifo(bfqq, last);
819 prev = rb_entry_rq(rbprev);
822 next = rb_entry_rq(rbnext);
824 rbnext = rb_first(&bfqq->sort_list);
825 if (rbnext && rbnext != &last->rb_node)
826 next = rb_entry_rq(rbnext);
829 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
832 /* see the definition of bfq_async_charge_factor for details */
833 static unsigned long bfq_serv_to_charge(struct request *rq,
834 struct bfq_queue *bfqq)
836 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
837 return blk_rq_sectors(rq);
840 * If there are no weight-raised queues, then amplify service
841 * by just the async charge factor; otherwise amplify service
842 * by twice the async charge factor, to further reduce latency
843 * for weight-raised queues.
845 if (bfqq->bfqd->wr_busy_queues == 0)
846 return blk_rq_sectors(rq) * bfq_async_charge_factor;
848 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
852 * bfq_updated_next_req - update the queue after a new next_rq selection.
853 * @bfqd: the device data the queue belongs to.
854 * @bfqq: the queue to update.
856 * If the first request of a queue changes we make sure that the queue
857 * has enough budget to serve at least its first request (if the
858 * request has grown). We do this because if the queue has not enough
859 * budget for its first request, it has to go through two dispatch
860 * rounds to actually get it dispatched.
862 static void bfq_updated_next_req(struct bfq_data *bfqd,
863 struct bfq_queue *bfqq)
865 struct bfq_entity *entity = &bfqq->entity;
866 struct request *next_rq = bfqq->next_rq;
867 unsigned long new_budget;
872 if (bfqq == bfqd->in_service_queue)
874 * In order not to break guarantees, budgets cannot be
875 * changed after an entity has been selected.
879 new_budget = max_t(unsigned long, bfqq->max_budget,
880 bfq_serv_to_charge(next_rq, bfqq));
881 if (entity->budget != new_budget) {
882 entity->budget = new_budget;
883 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
885 bfq_requeue_bfqq(bfqd, bfqq, false);
889 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
893 if (bfqd->bfq_wr_max_time > 0)
894 return bfqd->bfq_wr_max_time;
897 do_div(dur, bfqd->peak_rate);
900 * Limit duration between 3 and 13 seconds. Tests show that
901 * higher values than 13 seconds often yield the opposite of
902 * the desired result, i.e., worsen responsiveness by letting
903 * non-interactive and non-soft-real-time applications
904 * preserve weight raising for a too long time interval.
906 * On the other end, lower values than 3 seconds make it
907 * difficult for most interactive tasks to complete their jobs
908 * before weight-raising finishes.
910 if (dur > msecs_to_jiffies(13000))
911 dur = msecs_to_jiffies(13000);
912 else if (dur < msecs_to_jiffies(3000))
913 dur = msecs_to_jiffies(3000);
918 /* switch back from soft real-time to interactive weight raising */
919 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
920 struct bfq_data *bfqd)
922 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
923 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
924 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
928 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
929 struct bfq_io_cq *bic, bool bfq_already_existing)
931 unsigned int old_wr_coeff = bfqq->wr_coeff;
932 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
934 if (bic->saved_has_short_ttime)
935 bfq_mark_bfqq_has_short_ttime(bfqq);
937 bfq_clear_bfqq_has_short_ttime(bfqq);
939 if (bic->saved_IO_bound)
940 bfq_mark_bfqq_IO_bound(bfqq);
942 bfq_clear_bfqq_IO_bound(bfqq);
944 bfqq->ttime = bic->saved_ttime;
945 bfqq->wr_coeff = bic->saved_wr_coeff;
946 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
947 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
948 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
950 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
951 time_is_before_jiffies(bfqq->last_wr_start_finish +
952 bfqq->wr_cur_max_time))) {
953 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
954 !bfq_bfqq_in_large_burst(bfqq) &&
955 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
956 bfq_wr_duration(bfqd))) {
957 switch_back_to_interactive_wr(bfqq, bfqd);
960 bfq_log_bfqq(bfqq->bfqd, bfqq,
961 "resume state: switching off wr");
965 /* make sure weight will be updated, however we got here */
966 bfqq->entity.prio_changed = 1;
971 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
972 bfqd->wr_busy_queues++;
973 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
974 bfqd->wr_busy_queues--;
977 static int bfqq_process_refs(struct bfq_queue *bfqq)
979 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
982 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
983 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
985 struct bfq_queue *item;
986 struct hlist_node *n;
988 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
989 hlist_del_init(&item->burst_list_node);
990 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
991 bfqd->burst_size = 1;
992 bfqd->burst_parent_entity = bfqq->entity.parent;
995 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
996 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
998 /* Increment burst size to take into account also bfqq */
1001 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1002 struct bfq_queue *pos, *bfqq_item;
1003 struct hlist_node *n;
1006 * Enough queues have been activated shortly after each
1007 * other to consider this burst as large.
1009 bfqd->large_burst = true;
1012 * We can now mark all queues in the burst list as
1013 * belonging to a large burst.
1015 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1017 bfq_mark_bfqq_in_large_burst(bfqq_item);
1018 bfq_mark_bfqq_in_large_burst(bfqq);
1021 * From now on, and until the current burst finishes, any
1022 * new queue being activated shortly after the last queue
1023 * was inserted in the burst can be immediately marked as
1024 * belonging to a large burst. So the burst list is not
1025 * needed any more. Remove it.
1027 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1029 hlist_del_init(&pos->burst_list_node);
1031 * Burst not yet large: add bfqq to the burst list. Do
1032 * not increment the ref counter for bfqq, because bfqq
1033 * is removed from the burst list before freeing bfqq
1036 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1040 * If many queues belonging to the same group happen to be created
1041 * shortly after each other, then the processes associated with these
1042 * queues have typically a common goal. In particular, bursts of queue
1043 * creations are usually caused by services or applications that spawn
1044 * many parallel threads/processes. Examples are systemd during boot,
1045 * or git grep. To help these processes get their job done as soon as
1046 * possible, it is usually better to not grant either weight-raising
1047 * or device idling to their queues.
1049 * In this comment we describe, firstly, the reasons why this fact
1050 * holds, and, secondly, the next function, which implements the main
1051 * steps needed to properly mark these queues so that they can then be
1052 * treated in a different way.
1054 * The above services or applications benefit mostly from a high
1055 * throughput: the quicker the requests of the activated queues are
1056 * cumulatively served, the sooner the target job of these queues gets
1057 * completed. As a consequence, weight-raising any of these queues,
1058 * which also implies idling the device for it, is almost always
1059 * counterproductive. In most cases it just lowers throughput.
1061 * On the other hand, a burst of queue creations may be caused also by
1062 * the start of an application that does not consist of a lot of
1063 * parallel I/O-bound threads. In fact, with a complex application,
1064 * several short processes may need to be executed to start-up the
1065 * application. In this respect, to start an application as quickly as
1066 * possible, the best thing to do is in any case to privilege the I/O
1067 * related to the application with respect to all other
1068 * I/O. Therefore, the best strategy to start as quickly as possible
1069 * an application that causes a burst of queue creations is to
1070 * weight-raise all the queues created during the burst. This is the
1071 * exact opposite of the best strategy for the other type of bursts.
1073 * In the end, to take the best action for each of the two cases, the
1074 * two types of bursts need to be distinguished. Fortunately, this
1075 * seems relatively easy, by looking at the sizes of the bursts. In
1076 * particular, we found a threshold such that only bursts with a
1077 * larger size than that threshold are apparently caused by
1078 * services or commands such as systemd or git grep. For brevity,
1079 * hereafter we call just 'large' these bursts. BFQ *does not*
1080 * weight-raise queues whose creation occurs in a large burst. In
1081 * addition, for each of these queues BFQ performs or does not perform
1082 * idling depending on which choice boosts the throughput more. The
1083 * exact choice depends on the device and request pattern at
1086 * Unfortunately, false positives may occur while an interactive task
1087 * is starting (e.g., an application is being started). The
1088 * consequence is that the queues associated with the task do not
1089 * enjoy weight raising as expected. Fortunately these false positives
1090 * are very rare. They typically occur if some service happens to
1091 * start doing I/O exactly when the interactive task starts.
1093 * Turning back to the next function, it implements all the steps
1094 * needed to detect the occurrence of a large burst and to properly
1095 * mark all the queues belonging to it (so that they can then be
1096 * treated in a different way). This goal is achieved by maintaining a
1097 * "burst list" that holds, temporarily, the queues that belong to the
1098 * burst in progress. The list is then used to mark these queues as
1099 * belonging to a large burst if the burst does become large. The main
1100 * steps are the following.
1102 * . when the very first queue is created, the queue is inserted into the
1103 * list (as it could be the first queue in a possible burst)
1105 * . if the current burst has not yet become large, and a queue Q that does
1106 * not yet belong to the burst is activated shortly after the last time
1107 * at which a new queue entered the burst list, then the function appends
1108 * Q to the burst list
1110 * . if, as a consequence of the previous step, the burst size reaches
1111 * the large-burst threshold, then
1113 * . all the queues in the burst list are marked as belonging to a
1116 * . the burst list is deleted; in fact, the burst list already served
1117 * its purpose (keeping temporarily track of the queues in a burst,
1118 * so as to be able to mark them as belonging to a large burst in the
1119 * previous sub-step), and now is not needed any more
1121 * . the device enters a large-burst mode
1123 * . if a queue Q that does not belong to the burst is created while
1124 * the device is in large-burst mode and shortly after the last time
1125 * at which a queue either entered the burst list or was marked as
1126 * belonging to the current large burst, then Q is immediately marked
1127 * as belonging to a large burst.
1129 * . if a queue Q that does not belong to the burst is created a while
1130 * later, i.e., not shortly after, than the last time at which a queue
1131 * either entered the burst list or was marked as belonging to the
1132 * current large burst, then the current burst is deemed as finished and:
1134 * . the large-burst mode is reset if set
1136 * . the burst list is emptied
1138 * . Q is inserted in the burst list, as Q may be the first queue
1139 * in a possible new burst (then the burst list contains just Q
1142 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1145 * If bfqq is already in the burst list or is part of a large
1146 * burst, or finally has just been split, then there is
1147 * nothing else to do.
1149 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1150 bfq_bfqq_in_large_burst(bfqq) ||
1151 time_is_after_eq_jiffies(bfqq->split_time +
1152 msecs_to_jiffies(10)))
1156 * If bfqq's creation happens late enough, or bfqq belongs to
1157 * a different group than the burst group, then the current
1158 * burst is finished, and related data structures must be
1161 * In this respect, consider the special case where bfqq is
1162 * the very first queue created after BFQ is selected for this
1163 * device. In this case, last_ins_in_burst and
1164 * burst_parent_entity are not yet significant when we get
1165 * here. But it is easy to verify that, whether or not the
1166 * following condition is true, bfqq will end up being
1167 * inserted into the burst list. In particular the list will
1168 * happen to contain only bfqq. And this is exactly what has
1169 * to happen, as bfqq may be the first queue of the first
1172 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1173 bfqd->bfq_burst_interval) ||
1174 bfqq->entity.parent != bfqd->burst_parent_entity) {
1175 bfqd->large_burst = false;
1176 bfq_reset_burst_list(bfqd, bfqq);
1181 * If we get here, then bfqq is being activated shortly after the
1182 * last queue. So, if the current burst is also large, we can mark
1183 * bfqq as belonging to this large burst immediately.
1185 if (bfqd->large_burst) {
1186 bfq_mark_bfqq_in_large_burst(bfqq);
1191 * If we get here, then a large-burst state has not yet been
1192 * reached, but bfqq is being activated shortly after the last
1193 * queue. Then we add bfqq to the burst.
1195 bfq_add_to_burst(bfqd, bfqq);
1198 * At this point, bfqq either has been added to the current
1199 * burst or has caused the current burst to terminate and a
1200 * possible new burst to start. In particular, in the second
1201 * case, bfqq has become the first queue in the possible new
1202 * burst. In both cases last_ins_in_burst needs to be moved
1205 bfqd->last_ins_in_burst = jiffies;
1208 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1210 struct bfq_entity *entity = &bfqq->entity;
1212 return entity->budget - entity->service;
1216 * If enough samples have been computed, return the current max budget
1217 * stored in bfqd, which is dynamically updated according to the
1218 * estimated disk peak rate; otherwise return the default max budget
1220 static int bfq_max_budget(struct bfq_data *bfqd)
1222 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1223 return bfq_default_max_budget;
1225 return bfqd->bfq_max_budget;
1229 * Return min budget, which is a fraction of the current or default
1230 * max budget (trying with 1/32)
1232 static int bfq_min_budget(struct bfq_data *bfqd)
1234 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1235 return bfq_default_max_budget / 32;
1237 return bfqd->bfq_max_budget / 32;
1241 * The next function, invoked after the input queue bfqq switches from
1242 * idle to busy, updates the budget of bfqq. The function also tells
1243 * whether the in-service queue should be expired, by returning
1244 * true. The purpose of expiring the in-service queue is to give bfqq
1245 * the chance to possibly preempt the in-service queue, and the reason
1246 * for preempting the in-service queue is to achieve one of the two
1249 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1250 * expired because it has remained idle. In particular, bfqq may have
1251 * expired for one of the following two reasons:
1253 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1254 * and did not make it to issue a new request before its last
1255 * request was served;
1257 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1258 * a new request before the expiration of the idling-time.
1260 * Even if bfqq has expired for one of the above reasons, the process
1261 * associated with the queue may be however issuing requests greedily,
1262 * and thus be sensitive to the bandwidth it receives (bfqq may have
1263 * remained idle for other reasons: CPU high load, bfqq not enjoying
1264 * idling, I/O throttling somewhere in the path from the process to
1265 * the I/O scheduler, ...). But if, after every expiration for one of
1266 * the above two reasons, bfqq has to wait for the service of at least
1267 * one full budget of another queue before being served again, then
1268 * bfqq is likely to get a much lower bandwidth or resource time than
1269 * its reserved ones. To address this issue, two countermeasures need
1272 * First, the budget and the timestamps of bfqq need to be updated in
1273 * a special way on bfqq reactivation: they need to be updated as if
1274 * bfqq did not remain idle and did not expire. In fact, if they are
1275 * computed as if bfqq expired and remained idle until reactivation,
1276 * then the process associated with bfqq is treated as if, instead of
1277 * being greedy, it stopped issuing requests when bfqq remained idle,
1278 * and restarts issuing requests only on this reactivation. In other
1279 * words, the scheduler does not help the process recover the "service
1280 * hole" between bfqq expiration and reactivation. As a consequence,
1281 * the process receives a lower bandwidth than its reserved one. In
1282 * contrast, to recover this hole, the budget must be updated as if
1283 * bfqq was not expired at all before this reactivation, i.e., it must
1284 * be set to the value of the remaining budget when bfqq was
1285 * expired. Along the same line, timestamps need to be assigned the
1286 * value they had the last time bfqq was selected for service, i.e.,
1287 * before last expiration. Thus timestamps need to be back-shifted
1288 * with respect to their normal computation (see [1] for more details
1289 * on this tricky aspect).
1291 * Secondly, to allow the process to recover the hole, the in-service
1292 * queue must be expired too, to give bfqq the chance to preempt it
1293 * immediately. In fact, if bfqq has to wait for a full budget of the
1294 * in-service queue to be completed, then it may become impossible to
1295 * let the process recover the hole, even if the back-shifted
1296 * timestamps of bfqq are lower than those of the in-service queue. If
1297 * this happens for most or all of the holes, then the process may not
1298 * receive its reserved bandwidth. In this respect, it is worth noting
1299 * that, being the service of outstanding requests unpreemptible, a
1300 * little fraction of the holes may however be unrecoverable, thereby
1301 * causing a little loss of bandwidth.
1303 * The last important point is detecting whether bfqq does need this
1304 * bandwidth recovery. In this respect, the next function deems the
1305 * process associated with bfqq greedy, and thus allows it to recover
1306 * the hole, if: 1) the process is waiting for the arrival of a new
1307 * request (which implies that bfqq expired for one of the above two
1308 * reasons), and 2) such a request has arrived soon. The first
1309 * condition is controlled through the flag non_blocking_wait_rq,
1310 * while the second through the flag arrived_in_time. If both
1311 * conditions hold, then the function computes the budget in the
1312 * above-described special way, and signals that the in-service queue
1313 * should be expired. Timestamp back-shifting is done later in
1314 * __bfq_activate_entity.
1316 * 2. Reduce latency. Even if timestamps are not backshifted to let
1317 * the process associated with bfqq recover a service hole, bfqq may
1318 * however happen to have, after being (re)activated, a lower finish
1319 * timestamp than the in-service queue. That is, the next budget of
1320 * bfqq may have to be completed before the one of the in-service
1321 * queue. If this is the case, then preempting the in-service queue
1322 * allows this goal to be achieved, apart from the unpreemptible,
1323 * outstanding requests mentioned above.
1325 * Unfortunately, regardless of which of the above two goals one wants
1326 * to achieve, service trees need first to be updated to know whether
1327 * the in-service queue must be preempted. To have service trees
1328 * correctly updated, the in-service queue must be expired and
1329 * rescheduled, and bfqq must be scheduled too. This is one of the
1330 * most costly operations (in future versions, the scheduling
1331 * mechanism may be re-designed in such a way to make it possible to
1332 * know whether preemption is needed without needing to update service
1333 * trees). In addition, queue preemptions almost always cause random
1334 * I/O, and thus loss of throughput. Because of these facts, the next
1335 * function adopts the following simple scheme to avoid both costly
1336 * operations and too frequent preemptions: it requests the expiration
1337 * of the in-service queue (unconditionally) only for queues that need
1338 * to recover a hole, or that either are weight-raised or deserve to
1341 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1342 struct bfq_queue *bfqq,
1343 bool arrived_in_time,
1344 bool wr_or_deserves_wr)
1346 struct bfq_entity *entity = &bfqq->entity;
1348 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1350 * We do not clear the flag non_blocking_wait_rq here, as
1351 * the latter is used in bfq_activate_bfqq to signal
1352 * that timestamps need to be back-shifted (and is
1353 * cleared right after).
1357 * In next assignment we rely on that either
1358 * entity->service or entity->budget are not updated
1359 * on expiration if bfqq is empty (see
1360 * __bfq_bfqq_recalc_budget). Thus both quantities
1361 * remain unchanged after such an expiration, and the
1362 * following statement therefore assigns to
1363 * entity->budget the remaining budget on such an
1364 * expiration. For clarity, entity->service is not
1365 * updated on expiration in any case, and, in normal
1366 * operation, is reset only when bfqq is selected for
1367 * service (see bfq_get_next_queue).
1369 entity->budget = min_t(unsigned long,
1370 bfq_bfqq_budget_left(bfqq),
1376 entity->budget = max_t(unsigned long, bfqq->max_budget,
1377 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1378 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1379 return wr_or_deserves_wr;
1383 * Return the farthest future time instant according to jiffies
1386 static unsigned long bfq_greatest_from_now(void)
1388 return jiffies + MAX_JIFFY_OFFSET;
1392 * Return the farthest past time instant according to jiffies
1395 static unsigned long bfq_smallest_from_now(void)
1397 return jiffies - MAX_JIFFY_OFFSET;
1400 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1401 struct bfq_queue *bfqq,
1402 unsigned int old_wr_coeff,
1403 bool wr_or_deserves_wr,
1408 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1409 /* start a weight-raising period */
1411 bfqq->service_from_wr = 0;
1412 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1413 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1416 * No interactive weight raising in progress
1417 * here: assign minus infinity to
1418 * wr_start_at_switch_to_srt, to make sure
1419 * that, at the end of the soft-real-time
1420 * weight raising periods that is starting
1421 * now, no interactive weight-raising period
1422 * may be wrongly considered as still in
1423 * progress (and thus actually started by
1426 bfqq->wr_start_at_switch_to_srt =
1427 bfq_smallest_from_now();
1428 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1429 BFQ_SOFTRT_WEIGHT_FACTOR;
1430 bfqq->wr_cur_max_time =
1431 bfqd->bfq_wr_rt_max_time;
1435 * If needed, further reduce budget to make sure it is
1436 * close to bfqq's backlog, so as to reduce the
1437 * scheduling-error component due to a too large
1438 * budget. Do not care about throughput consequences,
1439 * but only about latency. Finally, do not assign a
1440 * too small budget either, to avoid increasing
1441 * latency by causing too frequent expirations.
1443 bfqq->entity.budget = min_t(unsigned long,
1444 bfqq->entity.budget,
1445 2 * bfq_min_budget(bfqd));
1446 } else if (old_wr_coeff > 1) {
1447 if (interactive) { /* update wr coeff and duration */
1448 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1449 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1450 } else if (in_burst)
1454 * The application is now or still meeting the
1455 * requirements for being deemed soft rt. We
1456 * can then correctly and safely (re)charge
1457 * the weight-raising duration for the
1458 * application with the weight-raising
1459 * duration for soft rt applications.
1461 * In particular, doing this recharge now, i.e.,
1462 * before the weight-raising period for the
1463 * application finishes, reduces the probability
1464 * of the following negative scenario:
1465 * 1) the weight of a soft rt application is
1466 * raised at startup (as for any newly
1467 * created application),
1468 * 2) since the application is not interactive,
1469 * at a certain time weight-raising is
1470 * stopped for the application,
1471 * 3) at that time the application happens to
1472 * still have pending requests, and hence
1473 * is destined to not have a chance to be
1474 * deemed soft rt before these requests are
1475 * completed (see the comments to the
1476 * function bfq_bfqq_softrt_next_start()
1477 * for details on soft rt detection),
1478 * 4) these pending requests experience a high
1479 * latency because the application is not
1480 * weight-raised while they are pending.
1482 if (bfqq->wr_cur_max_time !=
1483 bfqd->bfq_wr_rt_max_time) {
1484 bfqq->wr_start_at_switch_to_srt =
1485 bfqq->last_wr_start_finish;
1487 bfqq->wr_cur_max_time =
1488 bfqd->bfq_wr_rt_max_time;
1489 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1490 BFQ_SOFTRT_WEIGHT_FACTOR;
1492 bfqq->last_wr_start_finish = jiffies;
1497 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1498 struct bfq_queue *bfqq)
1500 return bfqq->dispatched == 0 &&
1501 time_is_before_jiffies(
1502 bfqq->budget_timeout +
1503 bfqd->bfq_wr_min_idle_time);
1506 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1507 struct bfq_queue *bfqq,
1512 bool soft_rt, in_burst, wr_or_deserves_wr,
1513 bfqq_wants_to_preempt,
1514 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1516 * See the comments on
1517 * bfq_bfqq_update_budg_for_activation for
1518 * details on the usage of the next variable.
1520 arrived_in_time = ktime_get_ns() <=
1521 bfqq->ttime.last_end_request +
1522 bfqd->bfq_slice_idle * 3;
1526 * bfqq deserves to be weight-raised if:
1528 * - it does not belong to a large burst,
1529 * - it has been idle for enough time or is soft real-time,
1530 * - is linked to a bfq_io_cq (it is not shared in any sense).
1532 in_burst = bfq_bfqq_in_large_burst(bfqq);
1533 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1535 time_is_before_jiffies(bfqq->soft_rt_next_start);
1536 *interactive = !in_burst && idle_for_long_time;
1537 wr_or_deserves_wr = bfqd->low_latency &&
1538 (bfqq->wr_coeff > 1 ||
1539 (bfq_bfqq_sync(bfqq) &&
1540 bfqq->bic && (*interactive || soft_rt)));
1543 * Using the last flag, update budget and check whether bfqq
1544 * may want to preempt the in-service queue.
1546 bfqq_wants_to_preempt =
1547 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1552 * If bfqq happened to be activated in a burst, but has been
1553 * idle for much more than an interactive queue, then we
1554 * assume that, in the overall I/O initiated in the burst, the
1555 * I/O associated with bfqq is finished. So bfqq does not need
1556 * to be treated as a queue belonging to a burst
1557 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1558 * if set, and remove bfqq from the burst list if it's
1559 * there. We do not decrement burst_size, because the fact
1560 * that bfqq does not need to belong to the burst list any
1561 * more does not invalidate the fact that bfqq was created in
1564 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1565 idle_for_long_time &&
1566 time_is_before_jiffies(
1567 bfqq->budget_timeout +
1568 msecs_to_jiffies(10000))) {
1569 hlist_del_init(&bfqq->burst_list_node);
1570 bfq_clear_bfqq_in_large_burst(bfqq);
1573 bfq_clear_bfqq_just_created(bfqq);
1576 if (!bfq_bfqq_IO_bound(bfqq)) {
1577 if (arrived_in_time) {
1578 bfqq->requests_within_timer++;
1579 if (bfqq->requests_within_timer >=
1580 bfqd->bfq_requests_within_timer)
1581 bfq_mark_bfqq_IO_bound(bfqq);
1583 bfqq->requests_within_timer = 0;
1586 if (bfqd->low_latency) {
1587 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1590 jiffies - bfqd->bfq_wr_min_idle_time - 1;
1592 if (time_is_before_jiffies(bfqq->split_time +
1593 bfqd->bfq_wr_min_idle_time)) {
1594 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1601 if (old_wr_coeff != bfqq->wr_coeff)
1602 bfqq->entity.prio_changed = 1;
1606 bfqq->last_idle_bklogged = jiffies;
1607 bfqq->service_from_backlogged = 0;
1608 bfq_clear_bfqq_softrt_update(bfqq);
1610 bfq_add_bfqq_busy(bfqd, bfqq);
1613 * Expire in-service queue only if preemption may be needed
1614 * for guarantees. In this respect, the function
1615 * next_queue_may_preempt just checks a simple, necessary
1616 * condition, and not a sufficient condition based on
1617 * timestamps. In fact, for the latter condition to be
1618 * evaluated, timestamps would need first to be updated, and
1619 * this operation is quite costly (see the comments on the
1620 * function bfq_bfqq_update_budg_for_activation).
1622 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1623 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1624 next_queue_may_preempt(bfqd))
1625 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1626 false, BFQQE_PREEMPTED);
1629 static void bfq_add_request(struct request *rq)
1631 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1632 struct bfq_data *bfqd = bfqq->bfqd;
1633 struct request *next_rq, *prev;
1634 unsigned int old_wr_coeff = bfqq->wr_coeff;
1635 bool interactive = false;
1637 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1638 bfqq->queued[rq_is_sync(rq)]++;
1641 elv_rb_add(&bfqq->sort_list, rq);
1644 * Check if this request is a better next-serve candidate.
1646 prev = bfqq->next_rq;
1647 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1648 bfqq->next_rq = next_rq;
1651 * Adjust priority tree position, if next_rq changes.
1653 if (prev != bfqq->next_rq)
1654 bfq_pos_tree_add_move(bfqd, bfqq);
1656 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1657 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1660 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1661 time_is_before_jiffies(
1662 bfqq->last_wr_start_finish +
1663 bfqd->bfq_wr_min_inter_arr_async)) {
1664 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1665 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1667 bfqd->wr_busy_queues++;
1668 bfqq->entity.prio_changed = 1;
1670 if (prev != bfqq->next_rq)
1671 bfq_updated_next_req(bfqd, bfqq);
1675 * Assign jiffies to last_wr_start_finish in the following
1678 * . if bfqq is not going to be weight-raised, because, for
1679 * non weight-raised queues, last_wr_start_finish stores the
1680 * arrival time of the last request; as of now, this piece
1681 * of information is used only for deciding whether to
1682 * weight-raise async queues
1684 * . if bfqq is not weight-raised, because, if bfqq is now
1685 * switching to weight-raised, then last_wr_start_finish
1686 * stores the time when weight-raising starts
1688 * . if bfqq is interactive, because, regardless of whether
1689 * bfqq is currently weight-raised, the weight-raising
1690 * period must start or restart (this case is considered
1691 * separately because it is not detected by the above
1692 * conditions, if bfqq is already weight-raised)
1694 * last_wr_start_finish has to be updated also if bfqq is soft
1695 * real-time, because the weight-raising period is constantly
1696 * restarted on idle-to-busy transitions for these queues, but
1697 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1700 if (bfqd->low_latency &&
1701 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1702 bfqq->last_wr_start_finish = jiffies;
1705 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1707 struct request_queue *q)
1709 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1713 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1718 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1721 return abs(blk_rq_pos(rq) - last_pos);
1726 #if 0 /* Still not clear if we can do without next two functions */
1727 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1729 struct bfq_data *bfqd = q->elevator->elevator_data;
1731 bfqd->rq_in_driver++;
1734 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1736 struct bfq_data *bfqd = q->elevator->elevator_data;
1738 bfqd->rq_in_driver--;
1742 static void bfq_remove_request(struct request_queue *q,
1745 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1746 struct bfq_data *bfqd = bfqq->bfqd;
1747 const int sync = rq_is_sync(rq);
1749 if (bfqq->next_rq == rq) {
1750 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1751 bfq_updated_next_req(bfqd, bfqq);
1754 if (rq->queuelist.prev != &rq->queuelist)
1755 list_del_init(&rq->queuelist);
1756 bfqq->queued[sync]--;
1758 elv_rb_del(&bfqq->sort_list, rq);
1760 elv_rqhash_del(q, rq);
1761 if (q->last_merge == rq)
1762 q->last_merge = NULL;
1764 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1765 bfqq->next_rq = NULL;
1767 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1768 bfq_del_bfqq_busy(bfqd, bfqq, false);
1770 * bfqq emptied. In normal operation, when
1771 * bfqq is empty, bfqq->entity.service and
1772 * bfqq->entity.budget must contain,
1773 * respectively, the service received and the
1774 * budget used last time bfqq emptied. These
1775 * facts do not hold in this case, as at least
1776 * this last removal occurred while bfqq is
1777 * not in service. To avoid inconsistencies,
1778 * reset both bfqq->entity.service and
1779 * bfqq->entity.budget, if bfqq has still a
1780 * process that may issue I/O requests to it.
1782 bfqq->entity.budget = bfqq->entity.service = 0;
1786 * Remove queue from request-position tree as it is empty.
1788 if (bfqq->pos_root) {
1789 rb_erase(&bfqq->pos_node, bfqq->pos_root);
1790 bfqq->pos_root = NULL;
1793 bfq_pos_tree_add_move(bfqd, bfqq);
1796 if (rq->cmd_flags & REQ_META)
1797 bfqq->meta_pending--;
1801 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1803 struct request_queue *q = hctx->queue;
1804 struct bfq_data *bfqd = q->elevator->elevator_data;
1805 struct request *free = NULL;
1807 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1808 * store its return value for later use, to avoid nesting
1809 * queue_lock inside the bfqd->lock. We assume that the bic
1810 * returned by bfq_bic_lookup does not go away before
1811 * bfqd->lock is taken.
1813 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1816 spin_lock_irq(&bfqd->lock);
1819 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1821 bfqd->bio_bfqq = NULL;
1822 bfqd->bio_bic = bic;
1824 ret = blk_mq_sched_try_merge(q, bio, &free);
1827 blk_mq_free_request(free);
1828 spin_unlock_irq(&bfqd->lock);
1833 static int bfq_request_merge(struct request_queue *q, struct request **req,
1836 struct bfq_data *bfqd = q->elevator->elevator_data;
1837 struct request *__rq;
1839 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
1840 if (__rq && elv_bio_merge_ok(__rq, bio)) {
1842 return ELEVATOR_FRONT_MERGE;
1845 return ELEVATOR_NO_MERGE;
1848 static void bfq_request_merged(struct request_queue *q, struct request *req,
1849 enum elv_merge type)
1851 if (type == ELEVATOR_FRONT_MERGE &&
1852 rb_prev(&req->rb_node) &&
1854 blk_rq_pos(container_of(rb_prev(&req->rb_node),
1855 struct request, rb_node))) {
1856 struct bfq_queue *bfqq = RQ_BFQQ(req);
1857 struct bfq_data *bfqd = bfqq->bfqd;
1858 struct request *prev, *next_rq;
1860 /* Reposition request in its sort_list */
1861 elv_rb_del(&bfqq->sort_list, req);
1862 elv_rb_add(&bfqq->sort_list, req);
1864 /* Choose next request to be served for bfqq */
1865 prev = bfqq->next_rq;
1866 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1867 bfqd->last_position);
1868 bfqq->next_rq = next_rq;
1870 * If next_rq changes, update both the queue's budget to
1871 * fit the new request and the queue's position in its
1874 if (prev != bfqq->next_rq) {
1875 bfq_updated_next_req(bfqd, bfqq);
1876 bfq_pos_tree_add_move(bfqd, bfqq);
1881 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1882 struct request *next)
1884 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
1886 if (!RB_EMPTY_NODE(&rq->rb_node))
1888 spin_lock_irq(&bfqq->bfqd->lock);
1891 * If next and rq belong to the same bfq_queue and next is older
1892 * than rq, then reposition rq in the fifo (by substituting next
1893 * with rq). Otherwise, if next and rq belong to different
1894 * bfq_queues, never reposition rq: in fact, we would have to
1895 * reposition it with respect to next's position in its own fifo,
1896 * which would most certainly be too expensive with respect to
1899 if (bfqq == next_bfqq &&
1900 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1901 next->fifo_time < rq->fifo_time) {
1902 list_del_init(&rq->queuelist);
1903 list_replace_init(&next->queuelist, &rq->queuelist);
1904 rq->fifo_time = next->fifo_time;
1907 if (bfqq->next_rq == next)
1910 bfq_remove_request(q, next);
1911 bfqg_stats_update_io_remove(bfqq_group(bfqq), next->cmd_flags);
1913 spin_unlock_irq(&bfqq->bfqd->lock);
1915 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
1918 /* Must be called with bfqq != NULL */
1919 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1921 if (bfq_bfqq_busy(bfqq))
1922 bfqq->bfqd->wr_busy_queues--;
1924 bfqq->wr_cur_max_time = 0;
1925 bfqq->last_wr_start_finish = jiffies;
1927 * Trigger a weight change on the next invocation of
1928 * __bfq_entity_update_weight_prio.
1930 bfqq->entity.prio_changed = 1;
1933 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1934 struct bfq_group *bfqg)
1938 for (i = 0; i < 2; i++)
1939 for (j = 0; j < IOPRIO_BE_NR; j++)
1940 if (bfqg->async_bfqq[i][j])
1941 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1942 if (bfqg->async_idle_bfqq)
1943 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1946 static void bfq_end_wr(struct bfq_data *bfqd)
1948 struct bfq_queue *bfqq;
1950 spin_lock_irq(&bfqd->lock);
1952 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1953 bfq_bfqq_end_wr(bfqq);
1954 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1955 bfq_bfqq_end_wr(bfqq);
1956 bfq_end_wr_async(bfqd);
1958 spin_unlock_irq(&bfqd->lock);
1961 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1964 return blk_rq_pos(io_struct);
1966 return ((struct bio *)io_struct)->bi_iter.bi_sector;
1969 static int bfq_rq_close_to_sector(void *io_struct, bool request,
1972 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1976 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1977 struct bfq_queue *bfqq,
1980 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1981 struct rb_node *parent, *node;
1982 struct bfq_queue *__bfqq;
1984 if (RB_EMPTY_ROOT(root))
1988 * First, if we find a request starting at the end of the last
1989 * request, choose it.
1991 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
1996 * If the exact sector wasn't found, the parent of the NULL leaf
1997 * will contain the closest sector (rq_pos_tree sorted by
1998 * next_request position).
2000 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2001 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2004 if (blk_rq_pos(__bfqq->next_rq) < sector)
2005 node = rb_next(&__bfqq->pos_node);
2007 node = rb_prev(&__bfqq->pos_node);
2011 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2012 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2018 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2019 struct bfq_queue *cur_bfqq,
2022 struct bfq_queue *bfqq;
2025 * We shall notice if some of the queues are cooperating,
2026 * e.g., working closely on the same area of the device. In
2027 * that case, we can group them together and: 1) don't waste
2028 * time idling, and 2) serve the union of their requests in
2029 * the best possible order for throughput.
2031 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2032 if (!bfqq || bfqq == cur_bfqq)
2038 static struct bfq_queue *
2039 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2041 int process_refs, new_process_refs;
2042 struct bfq_queue *__bfqq;
2045 * If there are no process references on the new_bfqq, then it is
2046 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2047 * may have dropped their last reference (not just their last process
2050 if (!bfqq_process_refs(new_bfqq))
2053 /* Avoid a circular list and skip interim queue merges. */
2054 while ((__bfqq = new_bfqq->new_bfqq)) {
2060 process_refs = bfqq_process_refs(bfqq);
2061 new_process_refs = bfqq_process_refs(new_bfqq);
2063 * If the process for the bfqq has gone away, there is no
2064 * sense in merging the queues.
2066 if (process_refs == 0 || new_process_refs == 0)
2069 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2073 * Merging is just a redirection: the requests of the process
2074 * owning one of the two queues are redirected to the other queue.
2075 * The latter queue, in its turn, is set as shared if this is the
2076 * first time that the requests of some process are redirected to
2079 * We redirect bfqq to new_bfqq and not the opposite, because
2080 * we are in the context of the process owning bfqq, thus we
2081 * have the io_cq of this process. So we can immediately
2082 * configure this io_cq to redirect the requests of the
2083 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2084 * not available any more (new_bfqq->bic == NULL).
2086 * Anyway, even in case new_bfqq coincides with the in-service
2087 * queue, redirecting requests the in-service queue is the
2088 * best option, as we feed the in-service queue with new
2089 * requests close to the last request served and, by doing so,
2090 * are likely to increase the throughput.
2092 bfqq->new_bfqq = new_bfqq;
2093 new_bfqq->ref += process_refs;
2097 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2098 struct bfq_queue *new_bfqq)
2100 if (bfq_too_late_for_merging(new_bfqq))
2103 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2104 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2108 * If either of the queues has already been detected as seeky,
2109 * then merging it with the other queue is unlikely to lead to
2112 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2116 * Interleaved I/O is known to be done by (some) applications
2117 * only for reads, so it does not make sense to merge async
2120 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2127 * Attempt to schedule a merge of bfqq with the currently in-service
2128 * queue or with a close queue among the scheduled queues. Return
2129 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2130 * structure otherwise.
2132 * The OOM queue is not allowed to participate to cooperation: in fact, since
2133 * the requests temporarily redirected to the OOM queue could be redirected
2134 * again to dedicated queues at any time, the state needed to correctly
2135 * handle merging with the OOM queue would be quite complex and expensive
2136 * to maintain. Besides, in such a critical condition as an out of memory,
2137 * the benefits of queue merging may be little relevant, or even negligible.
2139 * WARNING: queue merging may impair fairness among non-weight raised
2140 * queues, for at least two reasons: 1) the original weight of a
2141 * merged queue may change during the merged state, 2) even being the
2142 * weight the same, a merged queue may be bloated with many more
2143 * requests than the ones produced by its originally-associated
2146 static struct bfq_queue *
2147 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2148 void *io_struct, bool request)
2150 struct bfq_queue *in_service_bfqq, *new_bfqq;
2153 * Prevent bfqq from being merged if it has been created too
2154 * long ago. The idea is that true cooperating processes, and
2155 * thus their associated bfq_queues, are supposed to be
2156 * created shortly after each other. This is the case, e.g.,
2157 * for KVM/QEMU and dump I/O threads. Basing on this
2158 * assumption, the following filtering greatly reduces the
2159 * probability that two non-cooperating processes, which just
2160 * happen to do close I/O for some short time interval, have
2161 * their queues merged by mistake.
2163 if (bfq_too_late_for_merging(bfqq))
2167 return bfqq->new_bfqq;
2169 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2172 /* If there is only one backlogged queue, don't search. */
2173 if (bfqd->busy_queues == 1)
2176 in_service_bfqq = bfqd->in_service_queue;
2178 if (in_service_bfqq && in_service_bfqq != bfqq &&
2179 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2180 bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
2181 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2182 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2183 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2188 * Check whether there is a cooperator among currently scheduled
2189 * queues. The only thing we need is that the bio/request is not
2190 * NULL, as we need it to establish whether a cooperator exists.
2192 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2193 bfq_io_struct_pos(io_struct, request));
2195 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2196 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2197 return bfq_setup_merge(bfqq, new_bfqq);
2202 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2204 struct bfq_io_cq *bic = bfqq->bic;
2207 * If !bfqq->bic, the queue is already shared or its requests
2208 * have already been redirected to a shared queue; both idle window
2209 * and weight raising state have already been saved. Do nothing.
2214 bic->saved_ttime = bfqq->ttime;
2215 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2216 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2217 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2218 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2219 if (unlikely(bfq_bfqq_just_created(bfqq) &&
2220 !bfq_bfqq_in_large_burst(bfqq) &&
2221 bfqq->bfqd->low_latency)) {
2223 * bfqq being merged right after being created: bfqq
2224 * would have deserved interactive weight raising, but
2225 * did not make it to be set in a weight-raised state,
2226 * because of this early merge. Store directly the
2227 * weight-raising state that would have been assigned
2228 * to bfqq, so that to avoid that bfqq unjustly fails
2229 * to enjoy weight raising if split soon.
2231 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2232 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2233 bic->saved_last_wr_start_finish = jiffies;
2235 bic->saved_wr_coeff = bfqq->wr_coeff;
2236 bic->saved_wr_start_at_switch_to_srt =
2237 bfqq->wr_start_at_switch_to_srt;
2238 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2239 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2244 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2245 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2247 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2248 (unsigned long)new_bfqq->pid);
2249 /* Save weight raising and idle window of the merged queues */
2250 bfq_bfqq_save_state(bfqq);
2251 bfq_bfqq_save_state(new_bfqq);
2252 if (bfq_bfqq_IO_bound(bfqq))
2253 bfq_mark_bfqq_IO_bound(new_bfqq);
2254 bfq_clear_bfqq_IO_bound(bfqq);
2257 * If bfqq is weight-raised, then let new_bfqq inherit
2258 * weight-raising. To reduce false positives, neglect the case
2259 * where bfqq has just been created, but has not yet made it
2260 * to be weight-raised (which may happen because EQM may merge
2261 * bfqq even before bfq_add_request is executed for the first
2262 * time for bfqq). Handling this case would however be very
2263 * easy, thanks to the flag just_created.
2265 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2266 new_bfqq->wr_coeff = bfqq->wr_coeff;
2267 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2268 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2269 new_bfqq->wr_start_at_switch_to_srt =
2270 bfqq->wr_start_at_switch_to_srt;
2271 if (bfq_bfqq_busy(new_bfqq))
2272 bfqd->wr_busy_queues++;
2273 new_bfqq->entity.prio_changed = 1;
2276 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2278 bfqq->entity.prio_changed = 1;
2279 if (bfq_bfqq_busy(bfqq))
2280 bfqd->wr_busy_queues--;
2283 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2284 bfqd->wr_busy_queues);
2287 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2289 bic_set_bfqq(bic, new_bfqq, 1);
2290 bfq_mark_bfqq_coop(new_bfqq);
2292 * new_bfqq now belongs to at least two bics (it is a shared queue):
2293 * set new_bfqq->bic to NULL. bfqq either:
2294 * - does not belong to any bic any more, and hence bfqq->bic must
2295 * be set to NULL, or
2296 * - is a queue whose owning bics have already been redirected to a
2297 * different queue, hence the queue is destined to not belong to
2298 * any bic soon and bfqq->bic is already NULL (therefore the next
2299 * assignment causes no harm).
2301 new_bfqq->bic = NULL;
2303 /* release process reference to bfqq */
2304 bfq_put_queue(bfqq);
2307 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2310 struct bfq_data *bfqd = q->elevator->elevator_data;
2311 bool is_sync = op_is_sync(bio->bi_opf);
2312 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2315 * Disallow merge of a sync bio into an async request.
2317 if (is_sync && !rq_is_sync(rq))
2321 * Lookup the bfqq that this bio will be queued with. Allow
2322 * merge only if rq is queued there.
2328 * We take advantage of this function to perform an early merge
2329 * of the queues of possible cooperating processes.
2331 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2334 * bic still points to bfqq, then it has not yet been
2335 * redirected to some other bfq_queue, and a queue
2336 * merge beween bfqq and new_bfqq can be safely
2337 * fulfillled, i.e., bic can be redirected to new_bfqq
2338 * and bfqq can be put.
2340 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2343 * If we get here, bio will be queued into new_queue,
2344 * so use new_bfqq to decide whether bio and rq can be
2350 * Change also bqfd->bio_bfqq, as
2351 * bfqd->bio_bic now points to new_bfqq, and
2352 * this function may be invoked again (and then may
2353 * use again bqfd->bio_bfqq).
2355 bfqd->bio_bfqq = bfqq;
2358 return bfqq == RQ_BFQQ(rq);
2362 * Set the maximum time for the in-service queue to consume its
2363 * budget. This prevents seeky processes from lowering the throughput.
2364 * In practice, a time-slice service scheme is used with seeky
2367 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2368 struct bfq_queue *bfqq)
2370 unsigned int timeout_coeff;
2372 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2375 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2377 bfqd->last_budget_start = ktime_get();
2379 bfqq->budget_timeout = jiffies +
2380 bfqd->bfq_timeout * timeout_coeff;
2383 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2384 struct bfq_queue *bfqq)
2387 bfq_clear_bfqq_fifo_expire(bfqq);
2389 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2391 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2392 bfqq->wr_coeff > 1 &&
2393 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2394 time_is_before_jiffies(bfqq->budget_timeout)) {
2396 * For soft real-time queues, move the start
2397 * of the weight-raising period forward by the
2398 * time the queue has not received any
2399 * service. Otherwise, a relatively long
2400 * service delay is likely to cause the
2401 * weight-raising period of the queue to end,
2402 * because of the short duration of the
2403 * weight-raising period of a soft real-time
2404 * queue. It is worth noting that this move
2405 * is not so dangerous for the other queues,
2406 * because soft real-time queues are not
2409 * To not add a further variable, we use the
2410 * overloaded field budget_timeout to
2411 * determine for how long the queue has not
2412 * received service, i.e., how much time has
2413 * elapsed since the queue expired. However,
2414 * this is a little imprecise, because
2415 * budget_timeout is set to jiffies if bfqq
2416 * not only expires, but also remains with no
2419 if (time_after(bfqq->budget_timeout,
2420 bfqq->last_wr_start_finish))
2421 bfqq->last_wr_start_finish +=
2422 jiffies - bfqq->budget_timeout;
2424 bfqq->last_wr_start_finish = jiffies;
2427 bfq_set_budget_timeout(bfqd, bfqq);
2428 bfq_log_bfqq(bfqd, bfqq,
2429 "set_in_service_queue, cur-budget = %d",
2430 bfqq->entity.budget);
2433 bfqd->in_service_queue = bfqq;
2437 * Get and set a new queue for service.
2439 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2441 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2443 __bfq_set_in_service_queue(bfqd, bfqq);
2447 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2449 struct bfq_queue *bfqq = bfqd->in_service_queue;
2452 bfq_mark_bfqq_wait_request(bfqq);
2455 * We don't want to idle for seeks, but we do want to allow
2456 * fair distribution of slice time for a process doing back-to-back
2457 * seeks. So allow a little bit of time for him to submit a new rq.
2459 sl = bfqd->bfq_slice_idle;
2461 * Unless the queue is being weight-raised or the scenario is
2462 * asymmetric, grant only minimum idle time if the queue
2463 * is seeky. A long idling is preserved for a weight-raised
2464 * queue, or, more in general, in an asymmetric scenario,
2465 * because a long idling is needed for guaranteeing to a queue
2466 * its reserved share of the throughput (in particular, it is
2467 * needed if the queue has a higher weight than some other
2470 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2471 bfq_symmetric_scenario(bfqd))
2472 sl = min_t(u64, sl, BFQ_MIN_TT);
2474 bfqd->last_idling_start = ktime_get();
2475 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2477 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2481 * In autotuning mode, max_budget is dynamically recomputed as the
2482 * amount of sectors transferred in timeout at the estimated peak
2483 * rate. This enables BFQ to utilize a full timeslice with a full
2484 * budget, even if the in-service queue is served at peak rate. And
2485 * this maximises throughput with sequential workloads.
2487 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2489 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2490 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2494 * Update parameters related to throughput and responsiveness, as a
2495 * function of the estimated peak rate. See comments on
2496 * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
2498 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2500 int dev_type = blk_queue_nonrot(bfqd->queue);
2502 if (bfqd->bfq_user_max_budget == 0)
2503 bfqd->bfq_max_budget =
2504 bfq_calc_max_budget(bfqd);
2506 if (bfqd->device_speed == BFQ_BFQD_FAST &&
2507 bfqd->peak_rate < device_speed_thresh[dev_type]) {
2508 bfqd->device_speed = BFQ_BFQD_SLOW;
2509 bfqd->RT_prod = R_slow[dev_type] *
2511 } else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
2512 bfqd->peak_rate > device_speed_thresh[dev_type]) {
2513 bfqd->device_speed = BFQ_BFQD_FAST;
2514 bfqd->RT_prod = R_fast[dev_type] *
2519 "dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
2520 dev_type == 0 ? "ROT" : "NONROT",
2521 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
2522 bfqd->device_speed == BFQ_BFQD_FAST ?
2523 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
2524 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
2525 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
2529 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2532 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2533 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2534 bfqd->peak_rate_samples = 1;
2535 bfqd->sequential_samples = 0;
2536 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2538 } else /* no new rq dispatched, just reset the number of samples */
2539 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2542 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2543 bfqd->peak_rate_samples, bfqd->sequential_samples,
2544 bfqd->tot_sectors_dispatched);
2547 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2549 u32 rate, weight, divisor;
2552 * For the convergence property to hold (see comments on
2553 * bfq_update_peak_rate()) and for the assessment to be
2554 * reliable, a minimum number of samples must be present, and
2555 * a minimum amount of time must have elapsed. If not so, do
2556 * not compute new rate. Just reset parameters, to get ready
2557 * for a new evaluation attempt.
2559 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2560 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2561 goto reset_computation;
2564 * If a new request completion has occurred after last
2565 * dispatch, then, to approximate the rate at which requests
2566 * have been served by the device, it is more precise to
2567 * extend the observation interval to the last completion.
2569 bfqd->delta_from_first =
2570 max_t(u64, bfqd->delta_from_first,
2571 bfqd->last_completion - bfqd->first_dispatch);
2574 * Rate computed in sects/usec, and not sects/nsec, for
2577 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2578 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2581 * Peak rate not updated if:
2582 * - the percentage of sequential dispatches is below 3/4 of the
2583 * total, and rate is below the current estimated peak rate
2584 * - rate is unreasonably high (> 20M sectors/sec)
2586 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2587 rate <= bfqd->peak_rate) ||
2588 rate > 20<<BFQ_RATE_SHIFT)
2589 goto reset_computation;
2592 * We have to update the peak rate, at last! To this purpose,
2593 * we use a low-pass filter. We compute the smoothing constant
2594 * of the filter as a function of the 'weight' of the new
2597 * As can be seen in next formulas, we define this weight as a
2598 * quantity proportional to how sequential the workload is,
2599 * and to how long the observation time interval is.
2601 * The weight runs from 0 to 8. The maximum value of the
2602 * weight, 8, yields the minimum value for the smoothing
2603 * constant. At this minimum value for the smoothing constant,
2604 * the measured rate contributes for half of the next value of
2605 * the estimated peak rate.
2607 * So, the first step is to compute the weight as a function
2608 * of how sequential the workload is. Note that the weight
2609 * cannot reach 9, because bfqd->sequential_samples cannot
2610 * become equal to bfqd->peak_rate_samples, which, in its
2611 * turn, holds true because bfqd->sequential_samples is not
2612 * incremented for the first sample.
2614 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2617 * Second step: further refine the weight as a function of the
2618 * duration of the observation interval.
2620 weight = min_t(u32, 8,
2621 div_u64(weight * bfqd->delta_from_first,
2622 BFQ_RATE_REF_INTERVAL));
2625 * Divisor ranging from 10, for minimum weight, to 2, for
2628 divisor = 10 - weight;
2631 * Finally, update peak rate:
2633 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2635 bfqd->peak_rate *= divisor-1;
2636 bfqd->peak_rate /= divisor;
2637 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2639 bfqd->peak_rate += rate;
2640 update_thr_responsiveness_params(bfqd);
2643 bfq_reset_rate_computation(bfqd, rq);
2647 * Update the read/write peak rate (the main quantity used for
2648 * auto-tuning, see update_thr_responsiveness_params()).
2650 * It is not trivial to estimate the peak rate (correctly): because of
2651 * the presence of sw and hw queues between the scheduler and the
2652 * device components that finally serve I/O requests, it is hard to
2653 * say exactly when a given dispatched request is served inside the
2654 * device, and for how long. As a consequence, it is hard to know
2655 * precisely at what rate a given set of requests is actually served
2658 * On the opposite end, the dispatch time of any request is trivially
2659 * available, and, from this piece of information, the "dispatch rate"
2660 * of requests can be immediately computed. So, the idea in the next
2661 * function is to use what is known, namely request dispatch times
2662 * (plus, when useful, request completion times), to estimate what is
2663 * unknown, namely in-device request service rate.
2665 * The main issue is that, because of the above facts, the rate at
2666 * which a certain set of requests is dispatched over a certain time
2667 * interval can vary greatly with respect to the rate at which the
2668 * same requests are then served. But, since the size of any
2669 * intermediate queue is limited, and the service scheme is lossless
2670 * (no request is silently dropped), the following obvious convergence
2671 * property holds: the number of requests dispatched MUST become
2672 * closer and closer to the number of requests completed as the
2673 * observation interval grows. This is the key property used in
2674 * the next function to estimate the peak service rate as a function
2675 * of the observed dispatch rate. The function assumes to be invoked
2676 * on every request dispatch.
2678 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2680 u64 now_ns = ktime_get_ns();
2682 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2683 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2684 bfqd->peak_rate_samples);
2685 bfq_reset_rate_computation(bfqd, rq);
2686 goto update_last_values; /* will add one sample */
2690 * Device idle for very long: the observation interval lasting
2691 * up to this dispatch cannot be a valid observation interval
2692 * for computing a new peak rate (similarly to the late-
2693 * completion event in bfq_completed_request()). Go to
2694 * update_rate_and_reset to have the following three steps
2696 * - close the observation interval at the last (previous)
2697 * request dispatch or completion
2698 * - compute rate, if possible, for that observation interval
2699 * - start a new observation interval with this dispatch
2701 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2702 bfqd->rq_in_driver == 0)
2703 goto update_rate_and_reset;
2705 /* Update sampling information */
2706 bfqd->peak_rate_samples++;
2708 if ((bfqd->rq_in_driver > 0 ||
2709 now_ns - bfqd->last_completion < BFQ_MIN_TT)
2710 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2711 bfqd->sequential_samples++;
2713 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2715 /* Reset max observed rq size every 32 dispatches */
2716 if (likely(bfqd->peak_rate_samples % 32))
2717 bfqd->last_rq_max_size =
2718 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2720 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2722 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2724 /* Target observation interval not yet reached, go on sampling */
2725 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2726 goto update_last_values;
2728 update_rate_and_reset:
2729 bfq_update_rate_reset(bfqd, rq);
2731 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2732 bfqd->last_dispatch = now_ns;
2736 * Remove request from internal lists.
2738 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2740 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2743 * For consistency, the next instruction should have been
2744 * executed after removing the request from the queue and
2745 * dispatching it. We execute instead this instruction before
2746 * bfq_remove_request() (and hence introduce a temporary
2747 * inconsistency), for efficiency. In fact, should this
2748 * dispatch occur for a non in-service bfqq, this anticipated
2749 * increment prevents two counters related to bfqq->dispatched
2750 * from risking to be, first, uselessly decremented, and then
2751 * incremented again when the (new) value of bfqq->dispatched
2752 * happens to be taken into account.
2755 bfq_update_peak_rate(q->elevator->elevator_data, rq);
2757 bfq_remove_request(q, rq);
2760 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2763 * If this bfqq is shared between multiple processes, check
2764 * to make sure that those processes are still issuing I/Os
2765 * within the mean seek distance. If not, it may be time to
2766 * break the queues apart again.
2768 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2769 bfq_mark_bfqq_split_coop(bfqq);
2771 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2772 if (bfqq->dispatched == 0)
2774 * Overloading budget_timeout field to store
2775 * the time at which the queue remains with no
2776 * backlog and no outstanding request; used by
2777 * the weight-raising mechanism.
2779 bfqq->budget_timeout = jiffies;
2781 bfq_del_bfqq_busy(bfqd, bfqq, true);
2783 bfq_requeue_bfqq(bfqd, bfqq, true);
2785 * Resort priority tree of potential close cooperators.
2787 bfq_pos_tree_add_move(bfqd, bfqq);
2791 * All in-service entities must have been properly deactivated
2792 * or requeued before executing the next function, which
2793 * resets all in-service entites as no more in service.
2795 __bfq_bfqd_reset_in_service(bfqd);
2799 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2800 * @bfqd: device data.
2801 * @bfqq: queue to update.
2802 * @reason: reason for expiration.
2804 * Handle the feedback on @bfqq budget at queue expiration.
2805 * See the body for detailed comments.
2807 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2808 struct bfq_queue *bfqq,
2809 enum bfqq_expiration reason)
2811 struct request *next_rq;
2812 int budget, min_budget;
2814 min_budget = bfq_min_budget(bfqd);
2816 if (bfqq->wr_coeff == 1)
2817 budget = bfqq->max_budget;
2819 * Use a constant, low budget for weight-raised queues,
2820 * to help achieve a low latency. Keep it slightly higher
2821 * than the minimum possible budget, to cause a little
2822 * bit fewer expirations.
2824 budget = 2 * min_budget;
2826 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2827 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2828 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2829 budget, bfq_min_budget(bfqd));
2830 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2831 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2833 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
2836 * Caveat: in all the following cases we trade latency
2839 case BFQQE_TOO_IDLE:
2841 * This is the only case where we may reduce
2842 * the budget: if there is no request of the
2843 * process still waiting for completion, then
2844 * we assume (tentatively) that the timer has
2845 * expired because the batch of requests of
2846 * the process could have been served with a
2847 * smaller budget. Hence, betting that
2848 * process will behave in the same way when it
2849 * becomes backlogged again, we reduce its
2850 * next budget. As long as we guess right,
2851 * this budget cut reduces the latency
2852 * experienced by the process.
2854 * However, if there are still outstanding
2855 * requests, then the process may have not yet
2856 * issued its next request just because it is
2857 * still waiting for the completion of some of
2858 * the still outstanding ones. So in this
2859 * subcase we do not reduce its budget, on the
2860 * contrary we increase it to possibly boost
2861 * the throughput, as discussed in the
2862 * comments to the BUDGET_TIMEOUT case.
2864 if (bfqq->dispatched > 0) /* still outstanding reqs */
2865 budget = min(budget * 2, bfqd->bfq_max_budget);
2867 if (budget > 5 * min_budget)
2868 budget -= 4 * min_budget;
2870 budget = min_budget;
2873 case BFQQE_BUDGET_TIMEOUT:
2875 * We double the budget here because it gives
2876 * the chance to boost the throughput if this
2877 * is not a seeky process (and has bumped into
2878 * this timeout because of, e.g., ZBR).
2880 budget = min(budget * 2, bfqd->bfq_max_budget);
2882 case BFQQE_BUDGET_EXHAUSTED:
2884 * The process still has backlog, and did not
2885 * let either the budget timeout or the disk
2886 * idling timeout expire. Hence it is not
2887 * seeky, has a short thinktime and may be
2888 * happy with a higher budget too. So
2889 * definitely increase the budget of this good
2890 * candidate to boost the disk throughput.
2892 budget = min(budget * 4, bfqd->bfq_max_budget);
2894 case BFQQE_NO_MORE_REQUESTS:
2896 * For queues that expire for this reason, it
2897 * is particularly important to keep the
2898 * budget close to the actual service they
2899 * need. Doing so reduces the timestamp
2900 * misalignment problem described in the
2901 * comments in the body of
2902 * __bfq_activate_entity. In fact, suppose
2903 * that a queue systematically expires for
2904 * BFQQE_NO_MORE_REQUESTS and presents a
2905 * new request in time to enjoy timestamp
2906 * back-shifting. The larger the budget of the
2907 * queue is with respect to the service the
2908 * queue actually requests in each service
2909 * slot, the more times the queue can be
2910 * reactivated with the same virtual finish
2911 * time. It follows that, even if this finish
2912 * time is pushed to the system virtual time
2913 * to reduce the consequent timestamp
2914 * misalignment, the queue unjustly enjoys for
2915 * many re-activations a lower finish time
2916 * than all newly activated queues.
2918 * The service needed by bfqq is measured
2919 * quite precisely by bfqq->entity.service.
2920 * Since bfqq does not enjoy device idling,
2921 * bfqq->entity.service is equal to the number
2922 * of sectors that the process associated with
2923 * bfqq requested to read/write before waiting
2924 * for request completions, or blocking for
2927 budget = max_t(int, bfqq->entity.service, min_budget);
2932 } else if (!bfq_bfqq_sync(bfqq)) {
2934 * Async queues get always the maximum possible
2935 * budget, as for them we do not care about latency
2936 * (in addition, their ability to dispatch is limited
2937 * by the charging factor).
2939 budget = bfqd->bfq_max_budget;
2942 bfqq->max_budget = budget;
2944 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2945 !bfqd->bfq_user_max_budget)
2946 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2949 * If there is still backlog, then assign a new budget, making
2950 * sure that it is large enough for the next request. Since
2951 * the finish time of bfqq must be kept in sync with the
2952 * budget, be sure to call __bfq_bfqq_expire() *after* this
2955 * If there is no backlog, then no need to update the budget;
2956 * it will be updated on the arrival of a new request.
2958 next_rq = bfqq->next_rq;
2960 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2961 bfq_serv_to_charge(next_rq, bfqq));
2963 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2964 next_rq ? blk_rq_sectors(next_rq) : 0,
2965 bfqq->entity.budget);
2969 * Return true if the process associated with bfqq is "slow". The slow
2970 * flag is used, in addition to the budget timeout, to reduce the
2971 * amount of service provided to seeky processes, and thus reduce
2972 * their chances to lower the throughput. More details in the comments
2973 * on the function bfq_bfqq_expire().
2975 * An important observation is in order: as discussed in the comments
2976 * on the function bfq_update_peak_rate(), with devices with internal
2977 * queues, it is hard if ever possible to know when and for how long
2978 * an I/O request is processed by the device (apart from the trivial
2979 * I/O pattern where a new request is dispatched only after the
2980 * previous one has been completed). This makes it hard to evaluate
2981 * the real rate at which the I/O requests of each bfq_queue are
2982 * served. In fact, for an I/O scheduler like BFQ, serving a
2983 * bfq_queue means just dispatching its requests during its service
2984 * slot (i.e., until the budget of the queue is exhausted, or the
2985 * queue remains idle, or, finally, a timeout fires). But, during the
2986 * service slot of a bfq_queue, around 100 ms at most, the device may
2987 * be even still processing requests of bfq_queues served in previous
2988 * service slots. On the opposite end, the requests of the in-service
2989 * bfq_queue may be completed after the service slot of the queue
2992 * Anyway, unless more sophisticated solutions are used
2993 * (where possible), the sum of the sizes of the requests dispatched
2994 * during the service slot of a bfq_queue is probably the only
2995 * approximation available for the service received by the bfq_queue
2996 * during its service slot. And this sum is the quantity used in this
2997 * function to evaluate the I/O speed of a process.
2999 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3000 bool compensate, enum bfqq_expiration reason,
3001 unsigned long *delta_ms)
3003 ktime_t delta_ktime;
3005 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3007 if (!bfq_bfqq_sync(bfqq))
3011 delta_ktime = bfqd->last_idling_start;
3013 delta_ktime = ktime_get();
3014 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3015 delta_usecs = ktime_to_us(delta_ktime);
3017 /* don't use too short time intervals */
3018 if (delta_usecs < 1000) {
3019 if (blk_queue_nonrot(bfqd->queue))
3021 * give same worst-case guarantees as idling
3024 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3025 else /* charge at least one seek */
3026 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3031 *delta_ms = delta_usecs / USEC_PER_MSEC;
3034 * Use only long (> 20ms) intervals to filter out excessive
3035 * spikes in service rate estimation.
3037 if (delta_usecs > 20000) {
3039 * Caveat for rotational devices: processes doing I/O
3040 * in the slower disk zones tend to be slow(er) even
3041 * if not seeky. In this respect, the estimated peak
3042 * rate is likely to be an average over the disk
3043 * surface. Accordingly, to not be too harsh with
3044 * unlucky processes, a process is deemed slow only if
3045 * its rate has been lower than half of the estimated
3048 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3051 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3057 * To be deemed as soft real-time, an application must meet two
3058 * requirements. First, the application must not require an average
3059 * bandwidth higher than the approximate bandwidth required to playback or
3060 * record a compressed high-definition video.
3061 * The next function is invoked on the completion of the last request of a
3062 * batch, to compute the next-start time instant, soft_rt_next_start, such
3063 * that, if the next request of the application does not arrive before
3064 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3066 * The second requirement is that the request pattern of the application is
3067 * isochronous, i.e., that, after issuing a request or a batch of requests,
3068 * the application stops issuing new requests until all its pending requests
3069 * have been completed. After that, the application may issue a new batch,
3071 * For this reason the next function is invoked to compute
3072 * soft_rt_next_start only for applications that meet this requirement,
3073 * whereas soft_rt_next_start is set to infinity for applications that do
3076 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3077 * happen to meet, occasionally or systematically, both the above
3078 * bandwidth and isochrony requirements. This may happen at least in
3079 * the following circumstances. First, if the CPU load is high. The
3080 * application may stop issuing requests while the CPUs are busy
3081 * serving other processes, then restart, then stop again for a while,
3082 * and so on. The other circumstances are related to the storage
3083 * device: the storage device is highly loaded or reaches a low-enough
3084 * throughput with the I/O of the application (e.g., because the I/O
3085 * is random and/or the device is slow). In all these cases, the
3086 * I/O of the application may be simply slowed down enough to meet
3087 * the bandwidth and isochrony requirements. To reduce the probability
3088 * that greedy applications are deemed as soft real-time in these
3089 * corner cases, a further rule is used in the computation of
3090 * soft_rt_next_start: the return value of this function is forced to
3091 * be higher than the maximum between the following two quantities.
3093 * (a) Current time plus: (1) the maximum time for which the arrival
3094 * of a request is waited for when a sync queue becomes idle,
3095 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3096 * postpone for a moment the reason for adding a few extra
3097 * jiffies; we get back to it after next item (b). Lower-bounding
3098 * the return value of this function with the current time plus
3099 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3100 * because the latter issue their next request as soon as possible
3101 * after the last one has been completed. In contrast, a soft
3102 * real-time application spends some time processing data, after a
3103 * batch of its requests has been completed.
3105 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3106 * above, greedy applications may happen to meet both the
3107 * bandwidth and isochrony requirements under heavy CPU or
3108 * storage-device load. In more detail, in these scenarios, these
3109 * applications happen, only for limited time periods, to do I/O
3110 * slowly enough to meet all the requirements described so far,
3111 * including the filtering in above item (a). These slow-speed
3112 * time intervals are usually interspersed between other time
3113 * intervals during which these applications do I/O at a very high
3114 * speed. Fortunately, exactly because of the high speed of the
3115 * I/O in the high-speed intervals, the values returned by this
3116 * function happen to be so high, near the end of any such
3117 * high-speed interval, to be likely to fall *after* the end of
3118 * the low-speed time interval that follows. These high values are
3119 * stored in bfqq->soft_rt_next_start after each invocation of
3120 * this function. As a consequence, if the last value of
3121 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3122 * next value that this function may return, then, from the very
3123 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3124 * likely to be constantly kept so high that any I/O request
3125 * issued during the low-speed interval is considered as arriving
3126 * to soon for the application to be deemed as soft
3127 * real-time. Then, in the high-speed interval that follows, the
3128 * application will not be deemed as soft real-time, just because
3129 * it will do I/O at a high speed. And so on.
3131 * Getting back to the filtering in item (a), in the following two
3132 * cases this filtering might be easily passed by a greedy
3133 * application, if the reference quantity was just
3134 * bfqd->bfq_slice_idle:
3135 * 1) HZ is so low that the duration of a jiffy is comparable to or
3136 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3137 * devices with HZ=100. The time granularity may be so coarse
3138 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3139 * is rather lower than the exact value.
3140 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3141 * for a while, then suddenly 'jump' by several units to recover the lost
3142 * increments. This seems to happen, e.g., inside virtual machines.
3143 * To address this issue, in t