[PATCH] kprobes: prevent possible race conditions x86_64 changes
[sfrench/cifs-2.6.git] / arch / x86_64 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/x86_64/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation ( includes contributions from
23  *              Rusty Russell).
24  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25  *              interface to access function arguments.
26  * 2004-Oct     Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27  *              <prasanna@in.ibm.com> adapted for x86_64
28  * 2005-Mar     Roland McGrath <roland@redhat.com>
29  *              Fixed to handle %rip-relative addressing mode correctly.
30  * 2005-May     Rusty Lynch <rusty.lynch@intel.com>
31  *              Added function return probes functionality
32  */
33
34 #include <linux/config.h>
35 #include <linux/kprobes.h>
36 #include <linux/ptrace.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/preempt.h>
41
42 #include <asm/cacheflush.h>
43 #include <asm/pgtable.h>
44 #include <asm/kdebug.h>
45
46 static DECLARE_MUTEX(kprobe_mutex);
47
48 static struct kprobe *current_kprobe;
49 static unsigned long kprobe_status, kprobe_old_rflags, kprobe_saved_rflags;
50 static struct kprobe *kprobe_prev;
51 static unsigned long kprobe_status_prev, kprobe_old_rflags_prev, kprobe_saved_rflags_prev;
52 static struct pt_regs jprobe_saved_regs;
53 static long *jprobe_saved_rsp;
54 void jprobe_return_end(void);
55
56 /* copy of the kernel stack at the probe fire time */
57 static kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE];
58
59 /*
60  * returns non-zero if opcode modifies the interrupt flag.
61  */
62 static inline int is_IF_modifier(kprobe_opcode_t *insn)
63 {
64         switch (*insn) {
65         case 0xfa:              /* cli */
66         case 0xfb:              /* sti */
67         case 0xcf:              /* iret/iretd */
68         case 0x9d:              /* popf/popfd */
69                 return 1;
70         }
71
72         if (*insn  >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
73                 return 1;
74         return 0;
75 }
76
77 int __kprobes arch_prepare_kprobe(struct kprobe *p)
78 {
79         /* insn: must be on special executable page on x86_64. */
80         up(&kprobe_mutex);
81         p->ainsn.insn = get_insn_slot();
82         down(&kprobe_mutex);
83         if (!p->ainsn.insn) {
84                 return -ENOMEM;
85         }
86         return 0;
87 }
88
89 /*
90  * Determine if the instruction uses the %rip-relative addressing mode.
91  * If it does, return the address of the 32-bit displacement word.
92  * If not, return null.
93  */
94 static inline s32 *is_riprel(u8 *insn)
95 {
96 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf)                \
97         (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
98           (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
99           (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
100           (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
101          << (row % 64))
102         static const u64 onebyte_has_modrm[256 / 64] = {
103                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
104                 /*      -------------------------------         */
105                 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
106                 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
107                 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
108                 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
109                 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
110                 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
111                 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
112                 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
113                 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
114                 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
115                 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
116                 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
117                 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
118                 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
119                 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
120                 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1)  /* f0 */
121                 /*      -------------------------------         */
122                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
123         };
124         static const u64 twobyte_has_modrm[256 / 64] = {
125                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
126                 /*      -------------------------------         */
127                 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
128                 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
129                 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
130                 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
131                 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
132                 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
133                 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
134                 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
135                 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
136                 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
137                 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
138                 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
139                 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
140                 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
141                 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
142                 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0)  /* ff */
143                 /*      -------------------------------         */
144                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
145         };
146 #undef  W
147         int need_modrm;
148
149         /* Skip legacy instruction prefixes.  */
150         while (1) {
151                 switch (*insn) {
152                 case 0x66:
153                 case 0x67:
154                 case 0x2e:
155                 case 0x3e:
156                 case 0x26:
157                 case 0x64:
158                 case 0x65:
159                 case 0x36:
160                 case 0xf0:
161                 case 0xf3:
162                 case 0xf2:
163                         ++insn;
164                         continue;
165                 }
166                 break;
167         }
168
169         /* Skip REX instruction prefix.  */
170         if ((*insn & 0xf0) == 0x40)
171                 ++insn;
172
173         if (*insn == 0x0f) {    /* Two-byte opcode.  */
174                 ++insn;
175                 need_modrm = test_bit(*insn, twobyte_has_modrm);
176         } else {                /* One-byte opcode.  */
177                 need_modrm = test_bit(*insn, onebyte_has_modrm);
178         }
179
180         if (need_modrm) {
181                 u8 modrm = *++insn;
182                 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
183                         /* Displacement follows ModRM byte.  */
184                         return (s32 *) ++insn;
185                 }
186         }
187
188         /* No %rip-relative addressing mode here.  */
189         return NULL;
190 }
191
192 void __kprobes arch_copy_kprobe(struct kprobe *p)
193 {
194         s32 *ripdisp;
195         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
196         ripdisp = is_riprel(p->ainsn.insn);
197         if (ripdisp) {
198                 /*
199                  * The copied instruction uses the %rip-relative
200                  * addressing mode.  Adjust the displacement for the
201                  * difference between the original location of this
202                  * instruction and the location of the copy that will
203                  * actually be run.  The tricky bit here is making sure
204                  * that the sign extension happens correctly in this
205                  * calculation, since we need a signed 32-bit result to
206                  * be sign-extended to 64 bits when it's added to the
207                  * %rip value and yield the same 64-bit result that the
208                  * sign-extension of the original signed 32-bit
209                  * displacement would have given.
210                  */
211                 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
212                 BUG_ON((s64) (s32) disp != disp); /* Sanity check.  */
213                 *ripdisp = disp;
214         }
215         p->opcode = *p->addr;
216 }
217
218 void __kprobes arch_arm_kprobe(struct kprobe *p)
219 {
220         *p->addr = BREAKPOINT_INSTRUCTION;
221         flush_icache_range((unsigned long) p->addr,
222                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
223 }
224
225 void __kprobes arch_disarm_kprobe(struct kprobe *p)
226 {
227         *p->addr = p->opcode;
228         flush_icache_range((unsigned long) p->addr,
229                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
230 }
231
232 void __kprobes arch_remove_kprobe(struct kprobe *p)
233 {
234         up(&kprobe_mutex);
235         free_insn_slot(p->ainsn.insn);
236         down(&kprobe_mutex);
237 }
238
239 static inline void save_previous_kprobe(void)
240 {
241         kprobe_prev = current_kprobe;
242         kprobe_status_prev = kprobe_status;
243         kprobe_old_rflags_prev = kprobe_old_rflags;
244         kprobe_saved_rflags_prev = kprobe_saved_rflags;
245 }
246
247 static inline void restore_previous_kprobe(void)
248 {
249         current_kprobe = kprobe_prev;
250         kprobe_status = kprobe_status_prev;
251         kprobe_old_rflags = kprobe_old_rflags_prev;
252         kprobe_saved_rflags = kprobe_saved_rflags_prev;
253 }
254
255 static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs)
256 {
257         current_kprobe = p;
258         kprobe_saved_rflags = kprobe_old_rflags
259                 = (regs->eflags & (TF_MASK | IF_MASK));
260         if (is_IF_modifier(p->ainsn.insn))
261                 kprobe_saved_rflags &= ~IF_MASK;
262 }
263
264 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
265 {
266         regs->eflags |= TF_MASK;
267         regs->eflags &= ~IF_MASK;
268         /*single step inline if the instruction is an int3*/
269         if (p->opcode == BREAKPOINT_INSTRUCTION)
270                 regs->rip = (unsigned long)p->addr;
271         else
272                 regs->rip = (unsigned long)p->ainsn.insn;
273 }
274
275 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
276                                       struct pt_regs *regs)
277 {
278         unsigned long *sara = (unsigned long *)regs->rsp;
279         struct kretprobe_instance *ri;
280
281         if ((ri = get_free_rp_inst(rp)) != NULL) {
282                 ri->rp = rp;
283                 ri->task = current;
284                 ri->ret_addr = (kprobe_opcode_t *) *sara;
285
286                 /* Replace the return addr with trampoline addr */
287                 *sara = (unsigned long) &kretprobe_trampoline;
288
289                 add_rp_inst(ri);
290         } else {
291                 rp->nmissed++;
292         }
293 }
294
295 /*
296  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
297  * remain disabled thorough out this function.
298  */
299 int __kprobes kprobe_handler(struct pt_regs *regs)
300 {
301         struct kprobe *p;
302         int ret = 0;
303         kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
304
305         /* We're in an interrupt, but this is clear and BUG()-safe. */
306         preempt_disable();
307
308         /* Check we're not actually recursing */
309         if (kprobe_running()) {
310                 /* We *are* holding lock here, so this is safe.
311                    Disarm the probe we just hit, and ignore it. */
312                 p = get_kprobe(addr);
313                 if (p) {
314                         if (kprobe_status == KPROBE_HIT_SS) {
315                                 regs->eflags &= ~TF_MASK;
316                                 regs->eflags |= kprobe_saved_rflags;
317                                 unlock_kprobes();
318                                 goto no_kprobe;
319                         } else if (kprobe_status == KPROBE_HIT_SSDONE) {
320                                 /* TODO: Provide re-entrancy from
321                                  * post_kprobes_handler() and avoid exception
322                                  * stack corruption while single-stepping on
323                                  * the instruction of the new probe.
324                                  */
325                                 arch_disarm_kprobe(p);
326                                 regs->rip = (unsigned long)p->addr;
327                                 ret = 1;
328                         } else {
329                                 /* We have reentered the kprobe_handler(), since
330                                  * another probe was hit while within the
331                                  * handler. We here save the original kprobe
332                                  * variables and just single step on instruction
333                                  * of the new probe without calling any user
334                                  * handlers.
335                                  */
336                                 save_previous_kprobe();
337                                 set_current_kprobe(p, regs);
338                                 p->nmissed++;
339                                 prepare_singlestep(p, regs);
340                                 kprobe_status = KPROBE_REENTER;
341                                 return 1;
342                         }
343                 } else {
344                         p = current_kprobe;
345                         if (p->break_handler && p->break_handler(p, regs)) {
346                                 goto ss_probe;
347                         }
348                 }
349                 /* If it's not ours, can't be delete race, (we hold lock). */
350                 goto no_kprobe;
351         }
352
353         lock_kprobes();
354         p = get_kprobe(addr);
355         if (!p) {
356                 unlock_kprobes();
357                 if (*addr != BREAKPOINT_INSTRUCTION) {
358                         /*
359                          * The breakpoint instruction was removed right
360                          * after we hit it.  Another cpu has removed
361                          * either a probepoint or a debugger breakpoint
362                          * at this address.  In either case, no further
363                          * handling of this interrupt is appropriate.
364                          */
365                         ret = 1;
366                 }
367                 /* Not one of ours: let kernel handle it */
368                 goto no_kprobe;
369         }
370
371         kprobe_status = KPROBE_HIT_ACTIVE;
372         set_current_kprobe(p, regs);
373
374         if (p->pre_handler && p->pre_handler(p, regs))
375                 /* handler has already set things up, so skip ss setup */
376                 return 1;
377
378 ss_probe:
379         prepare_singlestep(p, regs);
380         kprobe_status = KPROBE_HIT_SS;
381         return 1;
382
383 no_kprobe:
384         preempt_enable_no_resched();
385         return ret;
386 }
387
388 /*
389  * For function-return probes, init_kprobes() establishes a probepoint
390  * here. When a retprobed function returns, this probe is hit and
391  * trampoline_probe_handler() runs, calling the kretprobe's handler.
392  */
393  void kretprobe_trampoline_holder(void)
394  {
395         asm volatile (  ".global kretprobe_trampoline\n"
396                         "kretprobe_trampoline: \n"
397                         "nop\n");
398  }
399
400 /*
401  * Called when we hit the probe point at kretprobe_trampoline
402  */
403 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
404 {
405         struct kretprobe_instance *ri = NULL;
406         struct hlist_head *head;
407         struct hlist_node *node, *tmp;
408         unsigned long orig_ret_address = 0;
409         unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
410
411         head = kretprobe_inst_table_head(current);
412
413         /*
414          * It is possible to have multiple instances associated with a given
415          * task either because an multiple functions in the call path
416          * have a return probe installed on them, and/or more then one return
417          * return probe was registered for a target function.
418          *
419          * We can handle this because:
420          *     - instances are always inserted at the head of the list
421          *     - when multiple return probes are registered for the same
422          *       function, the first instance's ret_addr will point to the
423          *       real return address, and all the rest will point to
424          *       kretprobe_trampoline
425          */
426         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
427                 if (ri->task != current)
428                         /* another task is sharing our hash bucket */
429                         continue;
430
431                 if (ri->rp && ri->rp->handler)
432                         ri->rp->handler(ri, regs);
433
434                 orig_ret_address = (unsigned long)ri->ret_addr;
435                 recycle_rp_inst(ri);
436
437                 if (orig_ret_address != trampoline_address)
438                         /*
439                          * This is the real return address. Any other
440                          * instances associated with this task are for
441                          * other calls deeper on the call stack
442                          */
443                         break;
444         }
445
446         BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
447         regs->rip = orig_ret_address;
448
449         unlock_kprobes();
450         preempt_enable_no_resched();
451
452         /*
453          * By returning a non-zero value, we are telling
454          * kprobe_handler() that we have handled unlocking
455          * and re-enabling preemption.
456          */
457         return 1;
458 }
459
460 /*
461  * Called after single-stepping.  p->addr is the address of the
462  * instruction whose first byte has been replaced by the "int 3"
463  * instruction.  To avoid the SMP problems that can occur when we
464  * temporarily put back the original opcode to single-step, we
465  * single-stepped a copy of the instruction.  The address of this
466  * copy is p->ainsn.insn.
467  *
468  * This function prepares to return from the post-single-step
469  * interrupt.  We have to fix up the stack as follows:
470  *
471  * 0) Except in the case of absolute or indirect jump or call instructions,
472  * the new rip is relative to the copied instruction.  We need to make
473  * it relative to the original instruction.
474  *
475  * 1) If the single-stepped instruction was pushfl, then the TF and IF
476  * flags are set in the just-pushed eflags, and may need to be cleared.
477  *
478  * 2) If the single-stepped instruction was a call, the return address
479  * that is atop the stack is the address following the copied instruction.
480  * We need to make it the address following the original instruction.
481  */
482 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
483 {
484         unsigned long *tos = (unsigned long *)regs->rsp;
485         unsigned long next_rip = 0;
486         unsigned long copy_rip = (unsigned long)p->ainsn.insn;
487         unsigned long orig_rip = (unsigned long)p->addr;
488         kprobe_opcode_t *insn = p->ainsn.insn;
489
490         /*skip the REX prefix*/
491         if (*insn >= 0x40 && *insn <= 0x4f)
492                 insn++;
493
494         switch (*insn) {
495         case 0x9c:              /* pushfl */
496                 *tos &= ~(TF_MASK | IF_MASK);
497                 *tos |= kprobe_old_rflags;
498                 break;
499         case 0xc3:              /* ret/lret */
500         case 0xcb:
501         case 0xc2:
502         case 0xca:
503                 regs->eflags &= ~TF_MASK;
504                 /* rip is already adjusted, no more changes required*/
505                 return;
506         case 0xe8:              /* call relative - Fix return addr */
507                 *tos = orig_rip + (*tos - copy_rip);
508                 break;
509         case 0xff:
510                 if ((*insn & 0x30) == 0x10) {
511                         /* call absolute, indirect */
512                         /* Fix return addr; rip is correct. */
513                         next_rip = regs->rip;
514                         *tos = orig_rip + (*tos - copy_rip);
515                 } else if (((*insn & 0x31) == 0x20) ||  /* jmp near, absolute indirect */
516                            ((*insn & 0x31) == 0x21)) {  /* jmp far, absolute indirect */
517                         /* rip is correct. */
518                         next_rip = regs->rip;
519                 }
520                 break;
521         case 0xea:              /* jmp absolute -- rip is correct */
522                 next_rip = regs->rip;
523                 break;
524         default:
525                 break;
526         }
527
528         regs->eflags &= ~TF_MASK;
529         if (next_rip) {
530                 regs->rip = next_rip;
531         } else {
532                 regs->rip = orig_rip + (regs->rip - copy_rip);
533         }
534 }
535
536 /*
537  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
538  * remain disabled thoroughout this function.  And we hold kprobe lock.
539  */
540 int __kprobes post_kprobe_handler(struct pt_regs *regs)
541 {
542         if (!kprobe_running())
543                 return 0;
544
545         if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) {
546                 kprobe_status = KPROBE_HIT_SSDONE;
547                 current_kprobe->post_handler(current_kprobe, regs, 0);
548         }
549
550         resume_execution(current_kprobe, regs);
551         regs->eflags |= kprobe_saved_rflags;
552
553         /* Restore the original saved kprobes variables and continue. */
554         if (kprobe_status == KPROBE_REENTER) {
555                 restore_previous_kprobe();
556                 goto out;
557         } else {
558                 unlock_kprobes();
559         }
560 out:
561         preempt_enable_no_resched();
562
563         /*
564          * if somebody else is singlestepping across a probe point, eflags
565          * will have TF set, in which case, continue the remaining processing
566          * of do_debug, as if this is not a probe hit.
567          */
568         if (regs->eflags & TF_MASK)
569                 return 0;
570
571         return 1;
572 }
573
574 /* Interrupts disabled, kprobe_lock held. */
575 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
576 {
577         if (current_kprobe->fault_handler
578             && current_kprobe->fault_handler(current_kprobe, regs, trapnr))
579                 return 1;
580
581         if (kprobe_status & KPROBE_HIT_SS) {
582                 resume_execution(current_kprobe, regs);
583                 regs->eflags |= kprobe_old_rflags;
584
585                 unlock_kprobes();
586                 preempt_enable_no_resched();
587         }
588         return 0;
589 }
590
591 /*
592  * Wrapper routine for handling exceptions.
593  */
594 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
595                                        unsigned long val, void *data)
596 {
597         struct die_args *args = (struct die_args *)data;
598         switch (val) {
599         case DIE_INT3:
600                 if (kprobe_handler(args->regs))
601                         return NOTIFY_STOP;
602                 break;
603         case DIE_DEBUG:
604                 if (post_kprobe_handler(args->regs))
605                         return NOTIFY_STOP;
606                 break;
607         case DIE_GPF:
608                 if (kprobe_running() &&
609                     kprobe_fault_handler(args->regs, args->trapnr))
610                         return NOTIFY_STOP;
611                 break;
612         case DIE_PAGE_FAULT:
613                 if (kprobe_running() &&
614                     kprobe_fault_handler(args->regs, args->trapnr))
615                         return NOTIFY_STOP;
616                 break;
617         default:
618                 break;
619         }
620         return NOTIFY_DONE;
621 }
622
623 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
624 {
625         struct jprobe *jp = container_of(p, struct jprobe, kp);
626         unsigned long addr;
627
628         jprobe_saved_regs = *regs;
629         jprobe_saved_rsp = (long *) regs->rsp;
630         addr = (unsigned long)jprobe_saved_rsp;
631         /*
632          * As Linus pointed out, gcc assumes that the callee
633          * owns the argument space and could overwrite it, e.g.
634          * tailcall optimization. So, to be absolutely safe
635          * we also save and restore enough stack bytes to cover
636          * the argument area.
637          */
638         memcpy(jprobes_stack, (kprobe_opcode_t *) addr, MIN_STACK_SIZE(addr));
639         regs->eflags &= ~IF_MASK;
640         regs->rip = (unsigned long)(jp->entry);
641         return 1;
642 }
643
644 void __kprobes jprobe_return(void)
645 {
646         preempt_enable_no_resched();
647         asm volatile ("       xchg   %%rbx,%%rsp     \n"
648                       "       int3                      \n"
649                       "       .globl jprobe_return_end  \n"
650                       "       jprobe_return_end:        \n"
651                       "       nop                       \n"::"b"
652                       (jprobe_saved_rsp):"memory");
653 }
654
655 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
656 {
657         u8 *addr = (u8 *) (regs->rip - 1);
658         unsigned long stack_addr = (unsigned long)jprobe_saved_rsp;
659         struct jprobe *jp = container_of(p, struct jprobe, kp);
660
661         if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
662                 if ((long *)regs->rsp != jprobe_saved_rsp) {
663                         struct pt_regs *saved_regs =
664                             container_of(jprobe_saved_rsp, struct pt_regs, rsp);
665                         printk("current rsp %p does not match saved rsp %p\n",
666                                (long *)regs->rsp, jprobe_saved_rsp);
667                         printk("Saved registers for jprobe %p\n", jp);
668                         show_registers(saved_regs);
669                         printk("Current registers\n");
670                         show_registers(regs);
671                         BUG();
672                 }
673                 *regs = jprobe_saved_regs;
674                 memcpy((kprobe_opcode_t *) stack_addr, jprobes_stack,
675                        MIN_STACK_SIZE(stack_addr));
676                 return 1;
677         }
678         return 0;
679 }
680
681 static struct kprobe trampoline_p = {
682         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
683         .pre_handler = trampoline_probe_handler
684 };
685
686 int __init arch_init_kprobes(void)
687 {
688         return register_kprobe(&trampoline_p);
689 }