Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[sfrench/cifs-2.6.git] / arch / x86 / xen / time.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xen time implementation.
4  *
5  * This is implemented in terms of a clocksource driver which uses
6  * the hypervisor clock as a nanosecond timebase, and a clockevent
7  * driver which uses the hypervisor's timer mechanism.
8  *
9  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
10  */
11 #include <linux/kernel.h>
12 #include <linux/interrupt.h>
13 #include <linux/clocksource.h>
14 #include <linux/clockchips.h>
15 #include <linux/gfp.h>
16 #include <linux/slab.h>
17 #include <linux/pvclock_gtod.h>
18 #include <linux/timekeeper_internal.h>
19
20 #include <asm/pvclock.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23
24 #include <xen/events.h>
25 #include <xen/features.h>
26 #include <xen/interface/xen.h>
27 #include <xen/interface/vcpu.h>
28
29 #include "xen-ops.h"
30
31 /* Xen may fire a timer up to this many ns early */
32 #define TIMER_SLOP      100000
33
34 static u64 xen_sched_clock_offset __read_mostly;
35
36 /* Get the TSC speed from Xen */
37 static unsigned long xen_tsc_khz(void)
38 {
39         struct pvclock_vcpu_time_info *info =
40                 &HYPERVISOR_shared_info->vcpu_info[0].time;
41
42         return pvclock_tsc_khz(info);
43 }
44
45 static u64 xen_clocksource_read(void)
46 {
47         struct pvclock_vcpu_time_info *src;
48         u64 ret;
49
50         preempt_disable_notrace();
51         src = &__this_cpu_read(xen_vcpu)->time;
52         ret = pvclock_clocksource_read(src);
53         preempt_enable_notrace();
54         return ret;
55 }
56
57 static u64 xen_clocksource_get_cycles(struct clocksource *cs)
58 {
59         return xen_clocksource_read();
60 }
61
62 static u64 xen_sched_clock(void)
63 {
64         return xen_clocksource_read() - xen_sched_clock_offset;
65 }
66
67 static void xen_read_wallclock(struct timespec64 *ts)
68 {
69         struct shared_info *s = HYPERVISOR_shared_info;
70         struct pvclock_wall_clock *wall_clock = &(s->wc);
71         struct pvclock_vcpu_time_info *vcpu_time;
72
73         vcpu_time = &get_cpu_var(xen_vcpu)->time;
74         pvclock_read_wallclock(wall_clock, vcpu_time, ts);
75         put_cpu_var(xen_vcpu);
76 }
77
78 static void xen_get_wallclock(struct timespec64 *now)
79 {
80         xen_read_wallclock(now);
81 }
82
83 static int xen_set_wallclock(const struct timespec64 *now)
84 {
85         return -ENODEV;
86 }
87
88 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
89                                    unsigned long was_set, void *priv)
90 {
91         /* Protected by the calling core code serialization */
92         static struct timespec64 next_sync;
93
94         struct xen_platform_op op;
95         struct timespec64 now;
96         struct timekeeper *tk = priv;
97         static bool settime64_supported = true;
98         int ret;
99
100         now.tv_sec = tk->xtime_sec;
101         now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
102
103         /*
104          * We only take the expensive HV call when the clock was set
105          * or when the 11 minutes RTC synchronization time elapsed.
106          */
107         if (!was_set && timespec64_compare(&now, &next_sync) < 0)
108                 return NOTIFY_OK;
109
110 again:
111         if (settime64_supported) {
112                 op.cmd = XENPF_settime64;
113                 op.u.settime64.mbz = 0;
114                 op.u.settime64.secs = now.tv_sec;
115                 op.u.settime64.nsecs = now.tv_nsec;
116                 op.u.settime64.system_time = xen_clocksource_read();
117         } else {
118                 op.cmd = XENPF_settime32;
119                 op.u.settime32.secs = now.tv_sec;
120                 op.u.settime32.nsecs = now.tv_nsec;
121                 op.u.settime32.system_time = xen_clocksource_read();
122         }
123
124         ret = HYPERVISOR_platform_op(&op);
125
126         if (ret == -ENOSYS && settime64_supported) {
127                 settime64_supported = false;
128                 goto again;
129         }
130         if (ret < 0)
131                 return NOTIFY_BAD;
132
133         /*
134          * Move the next drift compensation time 11 minutes
135          * ahead. That's emulating the sync_cmos_clock() update for
136          * the hardware RTC.
137          */
138         next_sync = now;
139         next_sync.tv_sec += 11 * 60;
140
141         return NOTIFY_OK;
142 }
143
144 static struct notifier_block xen_pvclock_gtod_notifier = {
145         .notifier_call = xen_pvclock_gtod_notify,
146 };
147
148 static struct clocksource xen_clocksource __read_mostly = {
149         .name = "xen",
150         .rating = 400,
151         .read = xen_clocksource_get_cycles,
152         .mask = ~0,
153         .flags = CLOCK_SOURCE_IS_CONTINUOUS,
154 };
155
156 /*
157    Xen clockevent implementation
158
159    Xen has two clockevent implementations:
160
161    The old timer_op one works with all released versions of Xen prior
162    to version 3.0.4.  This version of the hypervisor provides a
163    single-shot timer with nanosecond resolution.  However, sharing the
164    same event channel is a 100Hz tick which is delivered while the
165    vcpu is running.  We don't care about or use this tick, but it will
166    cause the core time code to think the timer fired too soon, and
167    will end up resetting it each time.  It could be filtered, but
168    doing so has complications when the ktime clocksource is not yet
169    the xen clocksource (ie, at boot time).
170
171    The new vcpu_op-based timer interface allows the tick timer period
172    to be changed or turned off.  The tick timer is not useful as a
173    periodic timer because events are only delivered to running vcpus.
174    The one-shot timer can report when a timeout is in the past, so
175    set_next_event is capable of returning -ETIME when appropriate.
176    This interface is used when available.
177 */
178
179
180 /*
181   Get a hypervisor absolute time.  In theory we could maintain an
182   offset between the kernel's time and the hypervisor's time, and
183   apply that to a kernel's absolute timeout.  Unfortunately the
184   hypervisor and kernel times can drift even if the kernel is using
185   the Xen clocksource, because ntp can warp the kernel's clocksource.
186 */
187 static s64 get_abs_timeout(unsigned long delta)
188 {
189         return xen_clocksource_read() + delta;
190 }
191
192 static int xen_timerop_shutdown(struct clock_event_device *evt)
193 {
194         /* cancel timeout */
195         HYPERVISOR_set_timer_op(0);
196
197         return 0;
198 }
199
200 static int xen_timerop_set_next_event(unsigned long delta,
201                                       struct clock_event_device *evt)
202 {
203         WARN_ON(!clockevent_state_oneshot(evt));
204
205         if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
206                 BUG();
207
208         /* We may have missed the deadline, but there's no real way of
209            knowing for sure.  If the event was in the past, then we'll
210            get an immediate interrupt. */
211
212         return 0;
213 }
214
215 static const struct clock_event_device xen_timerop_clockevent = {
216         .name                   = "xen",
217         .features               = CLOCK_EVT_FEAT_ONESHOT,
218
219         .max_delta_ns           = 0xffffffff,
220         .max_delta_ticks        = 0xffffffff,
221         .min_delta_ns           = TIMER_SLOP,
222         .min_delta_ticks        = TIMER_SLOP,
223
224         .mult                   = 1,
225         .shift                  = 0,
226         .rating                 = 500,
227
228         .set_state_shutdown     = xen_timerop_shutdown,
229         .set_next_event         = xen_timerop_set_next_event,
230 };
231
232 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
233 {
234         int cpu = smp_processor_id();
235
236         if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
237                                NULL) ||
238             HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
239                                NULL))
240                 BUG();
241
242         return 0;
243 }
244
245 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
246 {
247         int cpu = smp_processor_id();
248
249         if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
250                                NULL))
251                 BUG();
252
253         return 0;
254 }
255
256 static int xen_vcpuop_set_next_event(unsigned long delta,
257                                      struct clock_event_device *evt)
258 {
259         int cpu = smp_processor_id();
260         struct vcpu_set_singleshot_timer single;
261         int ret;
262
263         WARN_ON(!clockevent_state_oneshot(evt));
264
265         single.timeout_abs_ns = get_abs_timeout(delta);
266         /* Get an event anyway, even if the timeout is already expired */
267         single.flags = 0;
268
269         ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
270                                  &single);
271         BUG_ON(ret != 0);
272
273         return ret;
274 }
275
276 static const struct clock_event_device xen_vcpuop_clockevent = {
277         .name = "xen",
278         .features = CLOCK_EVT_FEAT_ONESHOT,
279
280         .max_delta_ns = 0xffffffff,
281         .max_delta_ticks = 0xffffffff,
282         .min_delta_ns = TIMER_SLOP,
283         .min_delta_ticks = TIMER_SLOP,
284
285         .mult = 1,
286         .shift = 0,
287         .rating = 500,
288
289         .set_state_shutdown = xen_vcpuop_shutdown,
290         .set_state_oneshot = xen_vcpuop_set_oneshot,
291         .set_next_event = xen_vcpuop_set_next_event,
292 };
293
294 static const struct clock_event_device *xen_clockevent =
295         &xen_timerop_clockevent;
296
297 struct xen_clock_event_device {
298         struct clock_event_device evt;
299         char name[16];
300 };
301 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
302
303 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
304 {
305         struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
306         irqreturn_t ret;
307
308         ret = IRQ_NONE;
309         if (evt->event_handler) {
310                 evt->event_handler(evt);
311                 ret = IRQ_HANDLED;
312         }
313
314         return ret;
315 }
316
317 void xen_teardown_timer(int cpu)
318 {
319         struct clock_event_device *evt;
320         evt = &per_cpu(xen_clock_events, cpu).evt;
321
322         if (evt->irq >= 0) {
323                 unbind_from_irqhandler(evt->irq, NULL);
324                 evt->irq = -1;
325         }
326 }
327
328 void xen_setup_timer(int cpu)
329 {
330         struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
331         struct clock_event_device *evt = &xevt->evt;
332         int irq;
333
334         WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
335         if (evt->irq >= 0)
336                 xen_teardown_timer(cpu);
337
338         printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
339
340         snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
341
342         irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
343                                       IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
344                                       IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
345                                       xevt->name, NULL);
346         (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
347
348         memcpy(evt, xen_clockevent, sizeof(*evt));
349
350         evt->cpumask = cpumask_of(cpu);
351         evt->irq = irq;
352 }
353
354
355 void xen_setup_cpu_clockevents(void)
356 {
357         clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
358 }
359
360 void xen_timer_resume(void)
361 {
362         int cpu;
363
364         if (xen_clockevent != &xen_vcpuop_clockevent)
365                 return;
366
367         for_each_online_cpu(cpu) {
368                 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
369                                        xen_vcpu_nr(cpu), NULL))
370                         BUG();
371         }
372 }
373
374 static const struct pv_time_ops xen_time_ops __initconst = {
375         .sched_clock = xen_sched_clock,
376         .steal_clock = xen_steal_clock,
377 };
378
379 static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
380 static u64 xen_clock_value_saved;
381
382 void xen_save_time_memory_area(void)
383 {
384         struct vcpu_register_time_memory_area t;
385         int ret;
386
387         xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
388
389         if (!xen_clock)
390                 return;
391
392         t.addr.v = NULL;
393
394         ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
395         if (ret != 0)
396                 pr_notice("Cannot save secondary vcpu_time_info (err %d)",
397                           ret);
398         else
399                 clear_page(xen_clock);
400 }
401
402 void xen_restore_time_memory_area(void)
403 {
404         struct vcpu_register_time_memory_area t;
405         int ret;
406
407         if (!xen_clock)
408                 goto out;
409
410         t.addr.v = &xen_clock->pvti;
411
412         ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
413
414         /*
415          * We don't disable VCLOCK_PVCLOCK entirely if it fails to register the
416          * secondary time info with Xen or if we migrated to a host without the
417          * necessary flags. On both of these cases what happens is either
418          * process seeing a zeroed out pvti or seeing no PVCLOCK_TSC_STABLE_BIT
419          * bit set. Userspace checks the latter and if 0, it discards the data
420          * in pvti and fallbacks to a system call for a reliable timestamp.
421          */
422         if (ret != 0)
423                 pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
424                           ret);
425
426 out:
427         /* Need pvclock_resume() before using xen_clocksource_read(). */
428         pvclock_resume();
429         xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
430 }
431
432 static void xen_setup_vsyscall_time_info(void)
433 {
434         struct vcpu_register_time_memory_area t;
435         struct pvclock_vsyscall_time_info *ti;
436         int ret;
437
438         ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
439         if (!ti)
440                 return;
441
442         t.addr.v = &ti->pvti;
443
444         ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
445         if (ret) {
446                 pr_notice("xen: VCLOCK_PVCLOCK not supported (err %d)\n", ret);
447                 free_page((unsigned long)ti);
448                 return;
449         }
450
451         /*
452          * If primary time info had this bit set, secondary should too since
453          * it's the same data on both just different memory regions. But we
454          * still check it in case hypervisor is buggy.
455          */
456         if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
457                 t.addr.v = NULL;
458                 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
459                                          0, &t);
460                 if (!ret)
461                         free_page((unsigned long)ti);
462
463                 pr_notice("xen: VCLOCK_PVCLOCK not supported (tsc unstable)\n");
464                 return;
465         }
466
467         xen_clock = ti;
468         pvclock_set_pvti_cpu0_va(xen_clock);
469
470         xen_clocksource.archdata.vclock_mode = VCLOCK_PVCLOCK;
471 }
472
473 static void __init xen_time_init(void)
474 {
475         struct pvclock_vcpu_time_info *pvti;
476         int cpu = smp_processor_id();
477         struct timespec64 tp;
478
479         /* As Dom0 is never moved, no penalty on using TSC there */
480         if (xen_initial_domain())
481                 xen_clocksource.rating = 275;
482
483         clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
484
485         if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
486                                NULL) == 0) {
487                 /* Successfully turned off 100Hz tick, so we have the
488                    vcpuop-based timer interface */
489                 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
490                 xen_clockevent = &xen_vcpuop_clockevent;
491         }
492
493         /* Set initial system time with full resolution */
494         xen_read_wallclock(&tp);
495         do_settimeofday64(&tp);
496
497         setup_force_cpu_cap(X86_FEATURE_TSC);
498
499         /*
500          * We check ahead on the primary time info if this
501          * bit is supported hence speeding up Xen clocksource.
502          */
503         pvti = &__this_cpu_read(xen_vcpu)->time;
504         if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
505                 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
506                 xen_setup_vsyscall_time_info();
507         }
508
509         xen_setup_runstate_info(cpu);
510         xen_setup_timer(cpu);
511         xen_setup_cpu_clockevents();
512
513         xen_time_setup_guest();
514
515         if (xen_initial_domain())
516                 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
517 }
518
519 void __init xen_init_time_ops(void)
520 {
521         xen_sched_clock_offset = xen_clocksource_read();
522         pv_ops.time = xen_time_ops;
523
524         x86_init.timers.timer_init = xen_time_init;
525         x86_init.timers.setup_percpu_clockev = x86_init_noop;
526         x86_cpuinit.setup_percpu_clockev = x86_init_noop;
527
528         x86_platform.calibrate_tsc = xen_tsc_khz;
529         x86_platform.get_wallclock = xen_get_wallclock;
530         /* Dom0 uses the native method to set the hardware RTC. */
531         if (!xen_initial_domain())
532                 x86_platform.set_wallclock = xen_set_wallclock;
533 }
534
535 #ifdef CONFIG_XEN_PVHVM
536 static void xen_hvm_setup_cpu_clockevents(void)
537 {
538         int cpu = smp_processor_id();
539         xen_setup_runstate_info(cpu);
540         /*
541          * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
542          * doing it xen_hvm_cpu_notify (which gets called by smp_init during
543          * early bootup and also during CPU hotplug events).
544          */
545         xen_setup_cpu_clockevents();
546 }
547
548 void __init xen_hvm_init_time_ops(void)
549 {
550         /*
551          * vector callback is needed otherwise we cannot receive interrupts
552          * on cpu > 0 and at this point we don't know how many cpus are
553          * available.
554          */
555         if (!xen_have_vector_callback)
556                 return;
557
558         if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
559                 pr_info("Xen doesn't support pvclock on HVM, disable pv timer");
560                 return;
561         }
562
563         xen_sched_clock_offset = xen_clocksource_read();
564         pv_ops.time = xen_time_ops;
565         x86_init.timers.setup_percpu_clockev = xen_time_init;
566         x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
567
568         x86_platform.calibrate_tsc = xen_tsc_khz;
569         x86_platform.get_wallclock = xen_get_wallclock;
570         x86_platform.set_wallclock = xen_set_wallclock;
571 }
572 #endif