Merge tag 'regulator-fix-v4.16-suspend' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / x86 / platform / uv / tlb_uv.c
1 /*
2  *      SGI UltraViolet TLB flush routines.
3  *
4  *      (c) 2008-2014 Cliff Wickman <cpw@sgi.com>, SGI.
5  *
6  *      This code is released under the GNU General Public License version 2 or
7  *      later.
8  */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/debugfs.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15
16 #include <asm/mmu_context.h>
17 #include <asm/uv/uv.h>
18 #include <asm/uv/uv_mmrs.h>
19 #include <asm/uv/uv_hub.h>
20 #include <asm/uv/uv_bau.h>
21 #include <asm/apic.h>
22 #include <asm/tsc.h>
23 #include <asm/irq_vectors.h>
24 #include <asm/timer.h>
25
26 static struct bau_operations ops __ro_after_init;
27
28 /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
29 static const int timeout_base_ns[] = {
30                 20,
31                 160,
32                 1280,
33                 10240,
34                 81920,
35                 655360,
36                 5242880,
37                 167772160
38 };
39
40 static int timeout_us;
41 static bool nobau = true;
42 static int nobau_perm;
43
44 /* tunables: */
45 static int max_concurr          = MAX_BAU_CONCURRENT;
46 static int max_concurr_const    = MAX_BAU_CONCURRENT;
47 static int plugged_delay        = PLUGGED_DELAY;
48 static int plugsb4reset         = PLUGSB4RESET;
49 static int giveup_limit         = GIVEUP_LIMIT;
50 static int timeoutsb4reset      = TIMEOUTSB4RESET;
51 static int ipi_reset_limit      = IPI_RESET_LIMIT;
52 static int complete_threshold   = COMPLETE_THRESHOLD;
53 static int congested_respns_us  = CONGESTED_RESPONSE_US;
54 static int congested_reps       = CONGESTED_REPS;
55 static int disabled_period      = DISABLED_PERIOD;
56
57 static struct tunables tunables[] = {
58         {&max_concurr,           MAX_BAU_CONCURRENT}, /* must be [0] */
59         {&plugged_delay,         PLUGGED_DELAY},
60         {&plugsb4reset,          PLUGSB4RESET},
61         {&timeoutsb4reset,       TIMEOUTSB4RESET},
62         {&ipi_reset_limit,       IPI_RESET_LIMIT},
63         {&complete_threshold,    COMPLETE_THRESHOLD},
64         {&congested_respns_us,   CONGESTED_RESPONSE_US},
65         {&congested_reps,        CONGESTED_REPS},
66         {&disabled_period,       DISABLED_PERIOD},
67         {&giveup_limit,          GIVEUP_LIMIT}
68 };
69
70 static struct dentry *tunables_dir;
71 static struct dentry *tunables_file;
72
73 /* these correspond to the statistics printed by ptc_seq_show() */
74 static char *stat_description[] = {
75         "sent:     number of shootdown messages sent",
76         "stime:    time spent sending messages",
77         "numuvhubs: number of hubs targeted with shootdown",
78         "numuvhubs16: number times 16 or more hubs targeted",
79         "numuvhubs8: number times 8 or more hubs targeted",
80         "numuvhubs4: number times 4 or more hubs targeted",
81         "numuvhubs2: number times 2 or more hubs targeted",
82         "numuvhubs1: number times 1 hub targeted",
83         "numcpus:  number of cpus targeted with shootdown",
84         "dto:      number of destination timeouts",
85         "retries:  destination timeout retries sent",
86         "rok:   :  destination timeouts successfully retried",
87         "resetp:   ipi-style resource resets for plugs",
88         "resett:   ipi-style resource resets for timeouts",
89         "giveup:   fall-backs to ipi-style shootdowns",
90         "sto:      number of source timeouts",
91         "bz:       number of stay-busy's",
92         "throt:    number times spun in throttle",
93         "swack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
94         "recv:     shootdown messages received",
95         "rtime:    time spent processing messages",
96         "all:      shootdown all-tlb messages",
97         "one:      shootdown one-tlb messages",
98         "mult:     interrupts that found multiple messages",
99         "none:     interrupts that found no messages",
100         "retry:    number of retry messages processed",
101         "canc:     number messages canceled by retries",
102         "nocan:    number retries that found nothing to cancel",
103         "reset:    number of ipi-style reset requests processed",
104         "rcan:     number messages canceled by reset requests",
105         "disable:  number times use of the BAU was disabled",
106         "enable:   number times use of the BAU was re-enabled"
107 };
108
109 static int __init setup_bau(char *arg)
110 {
111         int result;
112
113         if (!arg)
114                 return -EINVAL;
115
116         result = strtobool(arg, &nobau);
117         if (result)
118                 return result;
119
120         /* we need to flip the logic here, so that bau=y sets nobau to false */
121         nobau = !nobau;
122
123         if (!nobau)
124                 pr_info("UV BAU Enabled\n");
125         else
126                 pr_info("UV BAU Disabled\n");
127
128         return 0;
129 }
130 early_param("bau", setup_bau);
131
132 /* base pnode in this partition */
133 static int uv_base_pnode __read_mostly;
134
135 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
136 static DEFINE_PER_CPU(struct bau_control, bau_control);
137 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
138
139 static void
140 set_bau_on(void)
141 {
142         int cpu;
143         struct bau_control *bcp;
144
145         if (nobau_perm) {
146                 pr_info("BAU not initialized; cannot be turned on\n");
147                 return;
148         }
149         nobau = false;
150         for_each_present_cpu(cpu) {
151                 bcp = &per_cpu(bau_control, cpu);
152                 bcp->nobau = false;
153         }
154         pr_info("BAU turned on\n");
155         return;
156 }
157
158 static void
159 set_bau_off(void)
160 {
161         int cpu;
162         struct bau_control *bcp;
163
164         nobau = true;
165         for_each_present_cpu(cpu) {
166                 bcp = &per_cpu(bau_control, cpu);
167                 bcp->nobau = true;
168         }
169         pr_info("BAU turned off\n");
170         return;
171 }
172
173 /*
174  * Determine the first node on a uvhub. 'Nodes' are used for kernel
175  * memory allocation.
176  */
177 static int __init uvhub_to_first_node(int uvhub)
178 {
179         int node, b;
180
181         for_each_online_node(node) {
182                 b = uv_node_to_blade_id(node);
183                 if (uvhub == b)
184                         return node;
185         }
186         return -1;
187 }
188
189 /*
190  * Determine the apicid of the first cpu on a uvhub.
191  */
192 static int __init uvhub_to_first_apicid(int uvhub)
193 {
194         int cpu;
195
196         for_each_present_cpu(cpu)
197                 if (uvhub == uv_cpu_to_blade_id(cpu))
198                         return per_cpu(x86_cpu_to_apicid, cpu);
199         return -1;
200 }
201
202 /*
203  * Free a software acknowledge hardware resource by clearing its Pending
204  * bit. This will return a reply to the sender.
205  * If the message has timed out, a reply has already been sent by the
206  * hardware but the resource has not been released. In that case our
207  * clear of the Timeout bit (as well) will free the resource. No reply will
208  * be sent (the hardware will only do one reply per message).
209  */
210 static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
211                                                 int do_acknowledge)
212 {
213         unsigned long dw;
214         struct bau_pq_entry *msg;
215
216         msg = mdp->msg;
217         if (!msg->canceled && do_acknowledge) {
218                 dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
219                 ops.write_l_sw_ack(dw);
220         }
221         msg->replied_to = 1;
222         msg->swack_vec = 0;
223 }
224
225 /*
226  * Process the receipt of a RETRY message
227  */
228 static void bau_process_retry_msg(struct msg_desc *mdp,
229                                         struct bau_control *bcp)
230 {
231         int i;
232         int cancel_count = 0;
233         unsigned long msg_res;
234         unsigned long mmr = 0;
235         struct bau_pq_entry *msg = mdp->msg;
236         struct bau_pq_entry *msg2;
237         struct ptc_stats *stat = bcp->statp;
238
239         stat->d_retries++;
240         /*
241          * cancel any message from msg+1 to the retry itself
242          */
243         for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
244                 if (msg2 > mdp->queue_last)
245                         msg2 = mdp->queue_first;
246                 if (msg2 == msg)
247                         break;
248
249                 /* same conditions for cancellation as do_reset */
250                 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
251                     (msg2->swack_vec) && ((msg2->swack_vec &
252                         msg->swack_vec) == 0) &&
253                     (msg2->sending_cpu == msg->sending_cpu) &&
254                     (msg2->msg_type != MSG_NOOP)) {
255                         mmr = ops.read_l_sw_ack();
256                         msg_res = msg2->swack_vec;
257                         /*
258                          * This is a message retry; clear the resources held
259                          * by the previous message only if they timed out.
260                          * If it has not timed out we have an unexpected
261                          * situation to report.
262                          */
263                         if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
264                                 unsigned long mr;
265                                 /*
266                                  * Is the resource timed out?
267                                  * Make everyone ignore the cancelled message.
268                                  */
269                                 msg2->canceled = 1;
270                                 stat->d_canceled++;
271                                 cancel_count++;
272                                 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
273                                 ops.write_l_sw_ack(mr);
274                         }
275                 }
276         }
277         if (!cancel_count)
278                 stat->d_nocanceled++;
279 }
280
281 /*
282  * Do all the things a cpu should do for a TLB shootdown message.
283  * Other cpu's may come here at the same time for this message.
284  */
285 static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
286                                                 int do_acknowledge)
287 {
288         short socket_ack_count = 0;
289         short *sp;
290         struct atomic_short *asp;
291         struct ptc_stats *stat = bcp->statp;
292         struct bau_pq_entry *msg = mdp->msg;
293         struct bau_control *smaster = bcp->socket_master;
294
295         /*
296          * This must be a normal message, or retry of a normal message
297          */
298         if (msg->address == TLB_FLUSH_ALL) {
299                 local_flush_tlb();
300                 stat->d_alltlb++;
301         } else {
302                 __flush_tlb_single(msg->address);
303                 stat->d_onetlb++;
304         }
305         stat->d_requestee++;
306
307         /*
308          * One cpu on each uvhub has the additional job on a RETRY
309          * of releasing the resource held by the message that is
310          * being retried.  That message is identified by sending
311          * cpu number.
312          */
313         if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
314                 bau_process_retry_msg(mdp, bcp);
315
316         /*
317          * This is a swack message, so we have to reply to it.
318          * Count each responding cpu on the socket. This avoids
319          * pinging the count's cache line back and forth between
320          * the sockets.
321          */
322         sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
323         asp = (struct atomic_short *)sp;
324         socket_ack_count = atom_asr(1, asp);
325         if (socket_ack_count == bcp->cpus_in_socket) {
326                 int msg_ack_count;
327                 /*
328                  * Both sockets dump their completed count total into
329                  * the message's count.
330                  */
331                 *sp = 0;
332                 asp = (struct atomic_short *)&msg->acknowledge_count;
333                 msg_ack_count = atom_asr(socket_ack_count, asp);
334
335                 if (msg_ack_count == bcp->cpus_in_uvhub) {
336                         /*
337                          * All cpus in uvhub saw it; reply
338                          * (unless we are in the UV2 workaround)
339                          */
340                         reply_to_message(mdp, bcp, do_acknowledge);
341                 }
342         }
343
344         return;
345 }
346
347 /*
348  * Determine the first cpu on a pnode.
349  */
350 static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
351 {
352         int cpu;
353         struct hub_and_pnode *hpp;
354
355         for_each_present_cpu(cpu) {
356                 hpp = &smaster->thp[cpu];
357                 if (pnode == hpp->pnode)
358                         return cpu;
359         }
360         return -1;
361 }
362
363 /*
364  * Last resort when we get a large number of destination timeouts is
365  * to clear resources held by a given cpu.
366  * Do this with IPI so that all messages in the BAU message queue
367  * can be identified by their nonzero swack_vec field.
368  *
369  * This is entered for a single cpu on the uvhub.
370  * The sender want's this uvhub to free a specific message's
371  * swack resources.
372  */
373 static void do_reset(void *ptr)
374 {
375         int i;
376         struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
377         struct reset_args *rap = (struct reset_args *)ptr;
378         struct bau_pq_entry *msg;
379         struct ptc_stats *stat = bcp->statp;
380
381         stat->d_resets++;
382         /*
383          * We're looking for the given sender, and
384          * will free its swack resource.
385          * If all cpu's finally responded after the timeout, its
386          * message 'replied_to' was set.
387          */
388         for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
389                 unsigned long msg_res;
390                 /* do_reset: same conditions for cancellation as
391                    bau_process_retry_msg() */
392                 if ((msg->replied_to == 0) &&
393                     (msg->canceled == 0) &&
394                     (msg->sending_cpu == rap->sender) &&
395                     (msg->swack_vec) &&
396                     (msg->msg_type != MSG_NOOP)) {
397                         unsigned long mmr;
398                         unsigned long mr;
399                         /*
400                          * make everyone else ignore this message
401                          */
402                         msg->canceled = 1;
403                         /*
404                          * only reset the resource if it is still pending
405                          */
406                         mmr = ops.read_l_sw_ack();
407                         msg_res = msg->swack_vec;
408                         mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
409                         if (mmr & msg_res) {
410                                 stat->d_rcanceled++;
411                                 ops.write_l_sw_ack(mr);
412                         }
413                 }
414         }
415         return;
416 }
417
418 /*
419  * Use IPI to get all target uvhubs to release resources held by
420  * a given sending cpu number.
421  */
422 static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
423 {
424         int pnode;
425         int apnode;
426         int maskbits;
427         int sender = bcp->cpu;
428         cpumask_t *mask = bcp->uvhub_master->cpumask;
429         struct bau_control *smaster = bcp->socket_master;
430         struct reset_args reset_args;
431
432         reset_args.sender = sender;
433         cpumask_clear(mask);
434         /* find a single cpu for each uvhub in this distribution mask */
435         maskbits = sizeof(struct pnmask) * BITSPERBYTE;
436         /* each bit is a pnode relative to the partition base pnode */
437         for (pnode = 0; pnode < maskbits; pnode++) {
438                 int cpu;
439                 if (!bau_uvhub_isset(pnode, distribution))
440                         continue;
441                 apnode = pnode + bcp->partition_base_pnode;
442                 cpu = pnode_to_first_cpu(apnode, smaster);
443                 cpumask_set_cpu(cpu, mask);
444         }
445
446         /* IPI all cpus; preemption is already disabled */
447         smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
448         return;
449 }
450
451 /*
452  * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative
453  * number, not an absolute. It converts a duration in cycles to a duration in
454  * ns.
455  */
456 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
457 {
458         struct cyc2ns_data data;
459         unsigned long long ns;
460
461         cyc2ns_read_begin(&data);
462         ns = mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
463         cyc2ns_read_end();
464
465         return ns;
466 }
467
468 /*
469  * The reverse of the above; converts a duration in ns to a duration in cycles.
470  */
471 static inline unsigned long long ns_2_cycles(unsigned long long ns)
472 {
473         struct cyc2ns_data data;
474         unsigned long long cyc;
475
476         cyc2ns_read_begin(&data);
477         cyc = (ns << data.cyc2ns_shift) / data.cyc2ns_mul;
478         cyc2ns_read_end();
479
480         return cyc;
481 }
482
483 static inline unsigned long cycles_2_us(unsigned long long cyc)
484 {
485         return cycles_2_ns(cyc) / NSEC_PER_USEC;
486 }
487
488 static inline cycles_t sec_2_cycles(unsigned long sec)
489 {
490         return ns_2_cycles(sec * NSEC_PER_SEC);
491 }
492
493 static inline unsigned long long usec_2_cycles(unsigned long usec)
494 {
495         return ns_2_cycles(usec * NSEC_PER_USEC);
496 }
497
498 /*
499  * wait for all cpus on this hub to finish their sends and go quiet
500  * leaves uvhub_quiesce set so that no new broadcasts are started by
501  * bau_flush_send_and_wait()
502  */
503 static inline void quiesce_local_uvhub(struct bau_control *hmaster)
504 {
505         atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
506 }
507
508 /*
509  * mark this quiet-requestor as done
510  */
511 static inline void end_uvhub_quiesce(struct bau_control *hmaster)
512 {
513         atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
514 }
515
516 static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
517 {
518         unsigned long descriptor_status;
519
520         descriptor_status = uv_read_local_mmr(mmr_offset);
521         descriptor_status >>= right_shift;
522         descriptor_status &= UV_ACT_STATUS_MASK;
523         return descriptor_status;
524 }
525
526 /*
527  * Wait for completion of a broadcast software ack message
528  * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
529  */
530 static int uv1_wait_completion(struct bau_desc *bau_desc,
531                                 struct bau_control *bcp, long try)
532 {
533         unsigned long descriptor_status;
534         cycles_t ttm;
535         u64 mmr_offset = bcp->status_mmr;
536         int right_shift = bcp->status_index;
537         struct ptc_stats *stat = bcp->statp;
538
539         descriptor_status = uv1_read_status(mmr_offset, right_shift);
540         /* spin on the status MMR, waiting for it to go idle */
541         while ((descriptor_status != DS_IDLE)) {
542                 /*
543                  * Our software ack messages may be blocked because
544                  * there are no swack resources available.  As long
545                  * as none of them has timed out hardware will NACK
546                  * our message and its state will stay IDLE.
547                  */
548                 if (descriptor_status == DS_SOURCE_TIMEOUT) {
549                         stat->s_stimeout++;
550                         return FLUSH_GIVEUP;
551                 } else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
552                         stat->s_dtimeout++;
553                         ttm = get_cycles();
554
555                         /*
556                          * Our retries may be blocked by all destination
557                          * swack resources being consumed, and a timeout
558                          * pending.  In that case hardware returns the
559                          * ERROR that looks like a destination timeout.
560                          */
561                         if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
562                                 bcp->conseccompletes = 0;
563                                 return FLUSH_RETRY_PLUGGED;
564                         }
565
566                         bcp->conseccompletes = 0;
567                         return FLUSH_RETRY_TIMEOUT;
568                 } else {
569                         /*
570                          * descriptor_status is still BUSY
571                          */
572                         cpu_relax();
573                 }
574                 descriptor_status = uv1_read_status(mmr_offset, right_shift);
575         }
576         bcp->conseccompletes++;
577         return FLUSH_COMPLETE;
578 }
579
580 /*
581  * UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register.
582  * But not currently used.
583  */
584 static unsigned long uv2_3_read_status(unsigned long offset, int rshft, int desc)
585 {
586         return ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1;
587 }
588
589 /*
590  * Entered when a bau descriptor has gone into a permanent busy wait because
591  * of a hardware bug.
592  * Workaround the bug.
593  */
594 static int handle_uv2_busy(struct bau_control *bcp)
595 {
596         struct ptc_stats *stat = bcp->statp;
597
598         stat->s_uv2_wars++;
599         bcp->busy = 1;
600         return FLUSH_GIVEUP;
601 }
602
603 static int uv2_3_wait_completion(struct bau_desc *bau_desc,
604                                 struct bau_control *bcp, long try)
605 {
606         unsigned long descriptor_stat;
607         cycles_t ttm;
608         u64 mmr_offset = bcp->status_mmr;
609         int right_shift = bcp->status_index;
610         int desc = bcp->uvhub_cpu;
611         long busy_reps = 0;
612         struct ptc_stats *stat = bcp->statp;
613
614         descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
615
616         /* spin on the status MMR, waiting for it to go idle */
617         while (descriptor_stat != UV2H_DESC_IDLE) {
618                 if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT)) {
619                         /*
620                          * A h/w bug on the destination side may
621                          * have prevented the message being marked
622                          * pending, thus it doesn't get replied to
623                          * and gets continually nacked until it times
624                          * out with a SOURCE_TIMEOUT.
625                          */
626                         stat->s_stimeout++;
627                         return FLUSH_GIVEUP;
628                 } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
629                         ttm = get_cycles();
630
631                         /*
632                          * Our retries may be blocked by all destination
633                          * swack resources being consumed, and a timeout
634                          * pending.  In that case hardware returns the
635                          * ERROR that looks like a destination timeout.
636                          * Without using the extended status we have to
637                          * deduce from the short time that this was a
638                          * strong nack.
639                          */
640                         if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
641                                 bcp->conseccompletes = 0;
642                                 stat->s_plugged++;
643                                 /* FLUSH_RETRY_PLUGGED causes hang on boot */
644                                 return FLUSH_GIVEUP;
645                         }
646                         stat->s_dtimeout++;
647                         bcp->conseccompletes = 0;
648                         /* FLUSH_RETRY_TIMEOUT causes hang on boot */
649                         return FLUSH_GIVEUP;
650                 } else {
651                         busy_reps++;
652                         if (busy_reps > 1000000) {
653                                 /* not to hammer on the clock */
654                                 busy_reps = 0;
655                                 ttm = get_cycles();
656                                 if ((ttm - bcp->send_message) > bcp->timeout_interval)
657                                         return handle_uv2_busy(bcp);
658                         }
659                         /*
660                          * descriptor_stat is still BUSY
661                          */
662                         cpu_relax();
663                 }
664                 descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
665         }
666         bcp->conseccompletes++;
667         return FLUSH_COMPLETE;
668 }
669
670 /*
671  * Returns the status of current BAU message for cpu desc as a bit field
672  * [Error][Busy][Aux]
673  */
674 static u64 read_status(u64 status_mmr, int index, int desc)
675 {
676         u64 stat;
677
678         stat = ((read_lmmr(status_mmr) >> index) & UV_ACT_STATUS_MASK) << 1;
679         stat |= (read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_2) >> desc) & 0x1;
680
681         return stat;
682 }
683
684 static int uv4_wait_completion(struct bau_desc *bau_desc,
685                                 struct bau_control *bcp, long try)
686 {
687         struct ptc_stats *stat = bcp->statp;
688         u64 descriptor_stat;
689         u64 mmr = bcp->status_mmr;
690         int index = bcp->status_index;
691         int desc = bcp->uvhub_cpu;
692
693         descriptor_stat = read_status(mmr, index, desc);
694
695         /* spin on the status MMR, waiting for it to go idle */
696         while (descriptor_stat != UV2H_DESC_IDLE) {
697                 switch (descriptor_stat) {
698                 case UV2H_DESC_SOURCE_TIMEOUT:
699                         stat->s_stimeout++;
700                         return FLUSH_GIVEUP;
701
702                 case UV2H_DESC_DEST_TIMEOUT:
703                         stat->s_dtimeout++;
704                         bcp->conseccompletes = 0;
705                         return FLUSH_RETRY_TIMEOUT;
706
707                 case UV2H_DESC_DEST_STRONG_NACK:
708                         stat->s_plugged++;
709                         bcp->conseccompletes = 0;
710                         return FLUSH_RETRY_PLUGGED;
711
712                 case UV2H_DESC_DEST_PUT_ERR:
713                         bcp->conseccompletes = 0;
714                         return FLUSH_GIVEUP;
715
716                 default:
717                         /* descriptor_stat is still BUSY */
718                         cpu_relax();
719                 }
720                 descriptor_stat = read_status(mmr, index, desc);
721         }
722         bcp->conseccompletes++;
723         return FLUSH_COMPLETE;
724 }
725
726 /*
727  * Our retries are blocked by all destination sw ack resources being
728  * in use, and a timeout is pending. In that case hardware immediately
729  * returns the ERROR that looks like a destination timeout.
730  */
731 static void destination_plugged(struct bau_desc *bau_desc,
732                         struct bau_control *bcp,
733                         struct bau_control *hmaster, struct ptc_stats *stat)
734 {
735         udelay(bcp->plugged_delay);
736         bcp->plugged_tries++;
737
738         if (bcp->plugged_tries >= bcp->plugsb4reset) {
739                 bcp->plugged_tries = 0;
740
741                 quiesce_local_uvhub(hmaster);
742
743                 spin_lock(&hmaster->queue_lock);
744                 reset_with_ipi(&bau_desc->distribution, bcp);
745                 spin_unlock(&hmaster->queue_lock);
746
747                 end_uvhub_quiesce(hmaster);
748
749                 bcp->ipi_attempts++;
750                 stat->s_resets_plug++;
751         }
752 }
753
754 static void destination_timeout(struct bau_desc *bau_desc,
755                         struct bau_control *bcp, struct bau_control *hmaster,
756                         struct ptc_stats *stat)
757 {
758         hmaster->max_concurr = 1;
759         bcp->timeout_tries++;
760         if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
761                 bcp->timeout_tries = 0;
762
763                 quiesce_local_uvhub(hmaster);
764
765                 spin_lock(&hmaster->queue_lock);
766                 reset_with_ipi(&bau_desc->distribution, bcp);
767                 spin_unlock(&hmaster->queue_lock);
768
769                 end_uvhub_quiesce(hmaster);
770
771                 bcp->ipi_attempts++;
772                 stat->s_resets_timeout++;
773         }
774 }
775
776 /*
777  * Stop all cpus on a uvhub from using the BAU for a period of time.
778  * This is reversed by check_enable.
779  */
780 static void disable_for_period(struct bau_control *bcp, struct ptc_stats *stat)
781 {
782         int tcpu;
783         struct bau_control *tbcp;
784         struct bau_control *hmaster;
785         cycles_t tm1;
786
787         hmaster = bcp->uvhub_master;
788         spin_lock(&hmaster->disable_lock);
789         if (!bcp->baudisabled) {
790                 stat->s_bau_disabled++;
791                 tm1 = get_cycles();
792                 for_each_present_cpu(tcpu) {
793                         tbcp = &per_cpu(bau_control, tcpu);
794                         if (tbcp->uvhub_master == hmaster) {
795                                 tbcp->baudisabled = 1;
796                                 tbcp->set_bau_on_time =
797                                         tm1 + bcp->disabled_period;
798                         }
799                 }
800         }
801         spin_unlock(&hmaster->disable_lock);
802 }
803
804 static void count_max_concurr(int stat, struct bau_control *bcp,
805                                 struct bau_control *hmaster)
806 {
807         bcp->plugged_tries = 0;
808         bcp->timeout_tries = 0;
809         if (stat != FLUSH_COMPLETE)
810                 return;
811         if (bcp->conseccompletes <= bcp->complete_threshold)
812                 return;
813         if (hmaster->max_concurr >= hmaster->max_concurr_const)
814                 return;
815         hmaster->max_concurr++;
816 }
817
818 static void record_send_stats(cycles_t time1, cycles_t time2,
819                 struct bau_control *bcp, struct ptc_stats *stat,
820                 int completion_status, int try)
821 {
822         cycles_t elapsed;
823
824         if (time2 > time1) {
825                 elapsed = time2 - time1;
826                 stat->s_time += elapsed;
827
828                 if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
829                         bcp->period_requests++;
830                         bcp->period_time += elapsed;
831                         if ((elapsed > usec_2_cycles(bcp->cong_response_us)) &&
832                             (bcp->period_requests > bcp->cong_reps) &&
833                             ((bcp->period_time / bcp->period_requests) >
834                                         usec_2_cycles(bcp->cong_response_us))) {
835                                 stat->s_congested++;
836                                 disable_for_period(bcp, stat);
837                         }
838                 }
839         } else
840                 stat->s_requestor--;
841
842         if (completion_status == FLUSH_COMPLETE && try > 1)
843                 stat->s_retriesok++;
844         else if (completion_status == FLUSH_GIVEUP) {
845                 stat->s_giveup++;
846                 if (get_cycles() > bcp->period_end)
847                         bcp->period_giveups = 0;
848                 bcp->period_giveups++;
849                 if (bcp->period_giveups == 1)
850                         bcp->period_end = get_cycles() + bcp->disabled_period;
851                 if (bcp->period_giveups > bcp->giveup_limit) {
852                         disable_for_period(bcp, stat);
853                         stat->s_giveuplimit++;
854                 }
855         }
856 }
857
858 /*
859  * Because of a uv1 hardware bug only a limited number of concurrent
860  * requests can be made.
861  */
862 static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
863 {
864         spinlock_t *lock = &hmaster->uvhub_lock;
865         atomic_t *v;
866
867         v = &hmaster->active_descriptor_count;
868         if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
869                 stat->s_throttles++;
870                 do {
871                         cpu_relax();
872                 } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
873         }
874 }
875
876 /*
877  * Handle the completion status of a message send.
878  */
879 static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
880                         struct bau_control *bcp, struct bau_control *hmaster,
881                         struct ptc_stats *stat)
882 {
883         if (completion_status == FLUSH_RETRY_PLUGGED)
884                 destination_plugged(bau_desc, bcp, hmaster, stat);
885         else if (completion_status == FLUSH_RETRY_TIMEOUT)
886                 destination_timeout(bau_desc, bcp, hmaster, stat);
887 }
888
889 /*
890  * Send a broadcast and wait for it to complete.
891  *
892  * The flush_mask contains the cpus the broadcast is to be sent to including
893  * cpus that are on the local uvhub.
894  *
895  * Returns 0 if all flushing represented in the mask was done.
896  * Returns 1 if it gives up entirely and the original cpu mask is to be
897  * returned to the kernel.
898  */
899 static int uv_flush_send_and_wait(struct cpumask *flush_mask,
900                                   struct bau_control *bcp,
901                                   struct bau_desc *bau_desc)
902 {
903         int seq_number = 0;
904         int completion_stat = 0;
905         int uv1 = 0;
906         long try = 0;
907         unsigned long index;
908         cycles_t time1;
909         cycles_t time2;
910         struct ptc_stats *stat = bcp->statp;
911         struct bau_control *hmaster = bcp->uvhub_master;
912         struct uv1_bau_msg_header *uv1_hdr = NULL;
913         struct uv2_3_bau_msg_header *uv2_3_hdr = NULL;
914
915         if (bcp->uvhub_version == UV_BAU_V1) {
916                 uv1 = 1;
917                 uv1_throttle(hmaster, stat);
918         }
919
920         while (hmaster->uvhub_quiesce)
921                 cpu_relax();
922
923         time1 = get_cycles();
924         if (uv1)
925                 uv1_hdr = &bau_desc->header.uv1_hdr;
926         else
927                 /* uv2 and uv3 */
928                 uv2_3_hdr = &bau_desc->header.uv2_3_hdr;
929
930         do {
931                 if (try == 0) {
932                         if (uv1)
933                                 uv1_hdr->msg_type = MSG_REGULAR;
934                         else
935                                 uv2_3_hdr->msg_type = MSG_REGULAR;
936                         seq_number = bcp->message_number++;
937                 } else {
938                         if (uv1)
939                                 uv1_hdr->msg_type = MSG_RETRY;
940                         else
941                                 uv2_3_hdr->msg_type = MSG_RETRY;
942                         stat->s_retry_messages++;
943                 }
944
945                 if (uv1)
946                         uv1_hdr->sequence = seq_number;
947                 else
948                         uv2_3_hdr->sequence = seq_number;
949                 index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
950                 bcp->send_message = get_cycles();
951
952                 write_mmr_activation(index);
953
954                 try++;
955                 completion_stat = ops.wait_completion(bau_desc, bcp, try);
956
957                 handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
958
959                 if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
960                         bcp->ipi_attempts = 0;
961                         stat->s_overipilimit++;
962                         completion_stat = FLUSH_GIVEUP;
963                         break;
964                 }
965                 cpu_relax();
966         } while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
967                  (completion_stat == FLUSH_RETRY_TIMEOUT));
968
969         time2 = get_cycles();
970
971         count_max_concurr(completion_stat, bcp, hmaster);
972
973         while (hmaster->uvhub_quiesce)
974                 cpu_relax();
975
976         atomic_dec(&hmaster->active_descriptor_count);
977
978         record_send_stats(time1, time2, bcp, stat, completion_stat, try);
979
980         if (completion_stat == FLUSH_GIVEUP)
981                 /* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
982                 return 1;
983         return 0;
984 }
985
986 /*
987  * The BAU is disabled for this uvhub. When the disabled time period has
988  * expired re-enable it.
989  * Return 0 if it is re-enabled for all cpus on this uvhub.
990  */
991 static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
992 {
993         int tcpu;
994         struct bau_control *tbcp;
995         struct bau_control *hmaster;
996
997         hmaster = bcp->uvhub_master;
998         spin_lock(&hmaster->disable_lock);
999         if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) {
1000                 stat->s_bau_reenabled++;
1001                 for_each_present_cpu(tcpu) {
1002                         tbcp = &per_cpu(bau_control, tcpu);
1003                         if (tbcp->uvhub_master == hmaster) {
1004                                 tbcp->baudisabled = 0;
1005                                 tbcp->period_requests = 0;
1006                                 tbcp->period_time = 0;
1007                                 tbcp->period_giveups = 0;
1008                         }
1009                 }
1010                 spin_unlock(&hmaster->disable_lock);
1011                 return 0;
1012         }
1013         spin_unlock(&hmaster->disable_lock);
1014         return -1;
1015 }
1016
1017 static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
1018                                 int remotes, struct bau_desc *bau_desc)
1019 {
1020         stat->s_requestor++;
1021         stat->s_ntargcpu += remotes + locals;
1022         stat->s_ntargremotes += remotes;
1023         stat->s_ntarglocals += locals;
1024
1025         /* uvhub statistics */
1026         hubs = bau_uvhub_weight(&bau_desc->distribution);
1027         if (locals) {
1028                 stat->s_ntarglocaluvhub++;
1029                 stat->s_ntargremoteuvhub += (hubs - 1);
1030         } else
1031                 stat->s_ntargremoteuvhub += hubs;
1032
1033         stat->s_ntarguvhub += hubs;
1034
1035         if (hubs >= 16)
1036                 stat->s_ntarguvhub16++;
1037         else if (hubs >= 8)
1038                 stat->s_ntarguvhub8++;
1039         else if (hubs >= 4)
1040                 stat->s_ntarguvhub4++;
1041         else if (hubs >= 2)
1042                 stat->s_ntarguvhub2++;
1043         else
1044                 stat->s_ntarguvhub1++;
1045 }
1046
1047 /*
1048  * Translate a cpu mask to the uvhub distribution mask in the BAU
1049  * activation descriptor.
1050  */
1051 static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
1052                         struct bau_desc *bau_desc, int *localsp, int *remotesp)
1053 {
1054         int cpu;
1055         int pnode;
1056         int cnt = 0;
1057         struct hub_and_pnode *hpp;
1058
1059         for_each_cpu(cpu, flush_mask) {
1060                 /*
1061                  * The distribution vector is a bit map of pnodes, relative
1062                  * to the partition base pnode (and the partition base nasid
1063                  * in the header).
1064                  * Translate cpu to pnode and hub using a local memory array.
1065                  */
1066                 hpp = &bcp->socket_master->thp[cpu];
1067                 pnode = hpp->pnode - bcp->partition_base_pnode;
1068                 bau_uvhub_set(pnode, &bau_desc->distribution);
1069                 cnt++;
1070                 if (hpp->uvhub == bcp->uvhub)
1071                         (*localsp)++;
1072                 else
1073                         (*remotesp)++;
1074         }
1075         if (!cnt)
1076                 return 1;
1077         return 0;
1078 }
1079
1080 /*
1081  * globally purge translation cache of a virtual address or all TLB's
1082  * @cpumask: mask of all cpu's in which the address is to be removed
1083  * @mm: mm_struct containing virtual address range
1084  * @start: start virtual address to be removed from TLB
1085  * @end: end virtual address to be remove from TLB
1086  * @cpu: the current cpu
1087  *
1088  * This is the entry point for initiating any UV global TLB shootdown.
1089  *
1090  * Purges the translation caches of all specified processors of the given
1091  * virtual address, or purges all TLB's on specified processors.
1092  *
1093  * The caller has derived the cpumask from the mm_struct.  This function
1094  * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1095  *
1096  * The cpumask is converted into a uvhubmask of the uvhubs containing
1097  * those cpus.
1098  *
1099  * Note that this function should be called with preemption disabled.
1100  *
1101  * Returns NULL if all remote flushing was done.
1102  * Returns pointer to cpumask if some remote flushing remains to be
1103  * done.  The returned pointer is valid till preemption is re-enabled.
1104  */
1105 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
1106                                           const struct flush_tlb_info *info)
1107 {
1108         unsigned int cpu = smp_processor_id();
1109         int locals = 0, remotes = 0, hubs = 0;
1110         struct bau_desc *bau_desc;
1111         struct cpumask *flush_mask;
1112         struct ptc_stats *stat;
1113         struct bau_control *bcp;
1114         unsigned long descriptor_status, status, address;
1115
1116         bcp = &per_cpu(bau_control, cpu);
1117
1118         if (bcp->nobau)
1119                 return cpumask;
1120
1121         stat = bcp->statp;
1122         stat->s_enters++;
1123
1124         if (bcp->busy) {
1125                 descriptor_status =
1126                         read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_0);
1127                 status = ((descriptor_status >> (bcp->uvhub_cpu *
1128                         UV_ACT_STATUS_SIZE)) & UV_ACT_STATUS_MASK) << 1;
1129                 if (status == UV2H_DESC_BUSY)
1130                         return cpumask;
1131                 bcp->busy = 0;
1132         }
1133
1134         /* bau was disabled due to slow response */
1135         if (bcp->baudisabled) {
1136                 if (check_enable(bcp, stat)) {
1137                         stat->s_ipifordisabled++;
1138                         return cpumask;
1139                 }
1140         }
1141
1142         /*
1143          * Each sending cpu has a per-cpu mask which it fills from the caller's
1144          * cpu mask.  All cpus are converted to uvhubs and copied to the
1145          * activation descriptor.
1146          */
1147         flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
1148         /* don't actually do a shootdown of the local cpu */
1149         cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
1150
1151         if (cpumask_test_cpu(cpu, cpumask))
1152                 stat->s_ntargself++;
1153
1154         bau_desc = bcp->descriptor_base;
1155         bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu);
1156         bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
1157         if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
1158                 return NULL;
1159
1160         record_send_statistics(stat, locals, hubs, remotes, bau_desc);
1161
1162         if (!info->end || (info->end - info->start) <= PAGE_SIZE)
1163                 address = info->start;
1164         else
1165                 address = TLB_FLUSH_ALL;
1166
1167         switch (bcp->uvhub_version) {
1168         case UV_BAU_V1:
1169         case UV_BAU_V2:
1170         case UV_BAU_V3:
1171                 bau_desc->payload.uv1_2_3.address = address;
1172                 bau_desc->payload.uv1_2_3.sending_cpu = cpu;
1173                 break;
1174         case UV_BAU_V4:
1175                 bau_desc->payload.uv4.address = address;
1176                 bau_desc->payload.uv4.sending_cpu = cpu;
1177                 bau_desc->payload.uv4.qualifier = BAU_DESC_QUALIFIER;
1178                 break;
1179         }
1180
1181         /*
1182          * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
1183          * or 1 if it gave up and the original cpumask should be returned.
1184          */
1185         if (!uv_flush_send_and_wait(flush_mask, bcp, bau_desc))
1186                 return NULL;
1187         else
1188                 return cpumask;
1189 }
1190
1191 /*
1192  * Search the message queue for any 'other' unprocessed message with the
1193  * same software acknowledge resource bit vector as the 'msg' message.
1194  */
1195 static struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
1196                                                   struct bau_control *bcp)
1197 {
1198         struct bau_pq_entry *msg_next = msg + 1;
1199         unsigned char swack_vec = msg->swack_vec;
1200
1201         if (msg_next > bcp->queue_last)
1202                 msg_next = bcp->queue_first;
1203         while (msg_next != msg) {
1204                 if ((msg_next->canceled == 0) && (msg_next->replied_to == 0) &&
1205                                 (msg_next->swack_vec == swack_vec))
1206                         return msg_next;
1207                 msg_next++;
1208                 if (msg_next > bcp->queue_last)
1209                         msg_next = bcp->queue_first;
1210         }
1211         return NULL;
1212 }
1213
1214 /*
1215  * UV2 needs to work around a bug in which an arriving message has not
1216  * set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
1217  * Such a message must be ignored.
1218  */
1219 static void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
1220 {
1221         unsigned long mmr_image;
1222         unsigned char swack_vec;
1223         struct bau_pq_entry *msg = mdp->msg;
1224         struct bau_pq_entry *other_msg;
1225
1226         mmr_image = ops.read_l_sw_ack();
1227         swack_vec = msg->swack_vec;
1228
1229         if ((swack_vec & mmr_image) == 0) {
1230                 /*
1231                  * This message was assigned a swack resource, but no
1232                  * reserved acknowlegment is pending.
1233                  * The bug has prevented this message from setting the MMR.
1234                  */
1235                 /*
1236                  * Some message has set the MMR 'pending' bit; it might have
1237                  * been another message.  Look for that message.
1238                  */
1239                 other_msg = find_another_by_swack(msg, bcp);
1240                 if (other_msg) {
1241                         /*
1242                          * There is another. Process this one but do not
1243                          * ack it.
1244                          */
1245                         bau_process_message(mdp, bcp, 0);
1246                         /*
1247                          * Let the natural processing of that other message
1248                          * acknowledge it. Don't get the processing of sw_ack's
1249                          * out of order.
1250                          */
1251                         return;
1252                 }
1253         }
1254
1255         /*
1256          * Either the MMR shows this one pending a reply or there is no
1257          * other message using this sw_ack, so it is safe to acknowledge it.
1258          */
1259         bau_process_message(mdp, bcp, 1);
1260
1261         return;
1262 }
1263
1264 /*
1265  * The BAU message interrupt comes here. (registered by set_intr_gate)
1266  * See entry_64.S
1267  *
1268  * We received a broadcast assist message.
1269  *
1270  * Interrupts are disabled; this interrupt could represent
1271  * the receipt of several messages.
1272  *
1273  * All cores/threads on this hub get this interrupt.
1274  * The last one to see it does the software ack.
1275  * (the resource will not be freed until noninterruptable cpus see this
1276  *  interrupt; hardware may timeout the s/w ack and reply ERROR)
1277  */
1278 void uv_bau_message_interrupt(struct pt_regs *regs)
1279 {
1280         int count = 0;
1281         cycles_t time_start;
1282         struct bau_pq_entry *msg;
1283         struct bau_control *bcp;
1284         struct ptc_stats *stat;
1285         struct msg_desc msgdesc;
1286
1287         ack_APIC_irq();
1288         time_start = get_cycles();
1289
1290         bcp = &per_cpu(bau_control, smp_processor_id());
1291         stat = bcp->statp;
1292
1293         msgdesc.queue_first = bcp->queue_first;
1294         msgdesc.queue_last = bcp->queue_last;
1295
1296         msg = bcp->bau_msg_head;
1297         while (msg->swack_vec) {
1298                 count++;
1299
1300                 msgdesc.msg_slot = msg - msgdesc.queue_first;
1301                 msgdesc.msg = msg;
1302                 if (bcp->uvhub_version == UV_BAU_V2)
1303                         process_uv2_message(&msgdesc, bcp);
1304                 else
1305                         /* no error workaround for uv1 or uv3 */
1306                         bau_process_message(&msgdesc, bcp, 1);
1307
1308                 msg++;
1309                 if (msg > msgdesc.queue_last)
1310                         msg = msgdesc.queue_first;
1311                 bcp->bau_msg_head = msg;
1312         }
1313         stat->d_time += (get_cycles() - time_start);
1314         if (!count)
1315                 stat->d_nomsg++;
1316         else if (count > 1)
1317                 stat->d_multmsg++;
1318 }
1319
1320 /*
1321  * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1322  * shootdown message timeouts enabled.  The timeout does not cause
1323  * an interrupt, but causes an error message to be returned to
1324  * the sender.
1325  */
1326 static void __init enable_timeouts(void)
1327 {
1328         int uvhub;
1329         int nuvhubs;
1330         int pnode;
1331         unsigned long mmr_image;
1332
1333         nuvhubs = uv_num_possible_blades();
1334
1335         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1336                 if (!uv_blade_nr_possible_cpus(uvhub))
1337                         continue;
1338
1339                 pnode = uv_blade_to_pnode(uvhub);
1340                 mmr_image = read_mmr_misc_control(pnode);
1341                 /*
1342                  * Set the timeout period and then lock it in, in three
1343                  * steps; captures and locks in the period.
1344                  *
1345                  * To program the period, the SOFT_ACK_MODE must be off.
1346                  */
1347                 mmr_image &= ~(1L << SOFTACK_MSHIFT);
1348                 write_mmr_misc_control(pnode, mmr_image);
1349                 /*
1350                  * Set the 4-bit period.
1351                  */
1352                 mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1353                 mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1354                 write_mmr_misc_control(pnode, mmr_image);
1355                 /*
1356                  * UV1:
1357                  * Subsequent reversals of the timebase bit (3) cause an
1358                  * immediate timeout of one or all INTD resources as
1359                  * indicated in bits 2:0 (7 causes all of them to timeout).
1360                  */
1361                 mmr_image |= (1L << SOFTACK_MSHIFT);
1362                 if (is_uv2_hub()) {
1363                         /* do not touch the legacy mode bit */
1364                         /* hw bug workaround; do not use extended status */
1365                         mmr_image &= ~(1L << UV2_EXT_SHFT);
1366                 } else if (is_uv3_hub()) {
1367                         mmr_image &= ~(1L << PREFETCH_HINT_SHFT);
1368                         mmr_image |= (1L << SB_STATUS_SHFT);
1369                 }
1370                 write_mmr_misc_control(pnode, mmr_image);
1371         }
1372 }
1373
1374 static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1375 {
1376         if (*offset < num_possible_cpus())
1377                 return offset;
1378         return NULL;
1379 }
1380
1381 static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1382 {
1383         (*offset)++;
1384         if (*offset < num_possible_cpus())
1385                 return offset;
1386         return NULL;
1387 }
1388
1389 static void ptc_seq_stop(struct seq_file *file, void *data)
1390 {
1391 }
1392
1393 /*
1394  * Display the statistics thru /proc/sgi_uv/ptc_statistics
1395  * 'data' points to the cpu number
1396  * Note: see the descriptions in stat_description[].
1397  */
1398 static int ptc_seq_show(struct seq_file *file, void *data)
1399 {
1400         struct ptc_stats *stat;
1401         struct bau_control *bcp;
1402         int cpu;
1403
1404         cpu = *(loff_t *)data;
1405         if (!cpu) {
1406                 seq_puts(file,
1407                          "# cpu bauoff sent stime self locals remotes ncpus localhub ");
1408                 seq_puts(file, "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1409                 seq_puts(file,
1410                          "numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries ");
1411                 seq_puts(file,
1412                          "rok resetp resett giveup sto bz throt disable ");
1413                 seq_puts(file,
1414                          "enable wars warshw warwaits enters ipidis plugged ");
1415                 seq_puts(file,
1416                          "ipiover glim cong swack recv rtime all one mult ");
1417                 seq_puts(file, "none retry canc nocan reset rcan\n");
1418         }
1419         if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1420                 bcp = &per_cpu(bau_control, cpu);
1421                 if (bcp->nobau) {
1422                         seq_printf(file, "cpu %d bau disabled\n", cpu);
1423                         return 0;
1424                 }
1425                 stat = bcp->statp;
1426                 /* source side statistics */
1427                 seq_printf(file,
1428                         "cpu %d %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1429                            cpu, bcp->nobau, stat->s_requestor,
1430                            cycles_2_us(stat->s_time),
1431                            stat->s_ntargself, stat->s_ntarglocals,
1432                            stat->s_ntargremotes, stat->s_ntargcpu,
1433                            stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1434                            stat->s_ntarguvhub, stat->s_ntarguvhub16);
1435                 seq_printf(file, "%ld %ld %ld %ld %ld %ld ",
1436                            stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1437                            stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1438                            stat->s_dtimeout, stat->s_strongnacks);
1439                 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1440                            stat->s_retry_messages, stat->s_retriesok,
1441                            stat->s_resets_plug, stat->s_resets_timeout,
1442                            stat->s_giveup, stat->s_stimeout,
1443                            stat->s_busy, stat->s_throttles);
1444                 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1445                            stat->s_bau_disabled, stat->s_bau_reenabled,
1446                            stat->s_uv2_wars, stat->s_uv2_wars_hw,
1447                            stat->s_uv2_war_waits, stat->s_enters,
1448                            stat->s_ipifordisabled, stat->s_plugged,
1449                            stat->s_overipilimit, stat->s_giveuplimit,
1450                            stat->s_congested);
1451
1452                 /* destination side statistics */
1453                 seq_printf(file,
1454                         "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
1455                            ops.read_g_sw_ack(uv_cpu_to_pnode(cpu)),
1456                            stat->d_requestee, cycles_2_us(stat->d_time),
1457                            stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1458                            stat->d_nomsg, stat->d_retries, stat->d_canceled,
1459                            stat->d_nocanceled, stat->d_resets,
1460                            stat->d_rcanceled);
1461         }
1462         return 0;
1463 }
1464
1465 /*
1466  * Display the tunables thru debugfs
1467  */
1468 static ssize_t tunables_read(struct file *file, char __user *userbuf,
1469                                 size_t count, loff_t *ppos)
1470 {
1471         char *buf;
1472         int ret;
1473
1474         buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d %d\n",
1475                 "max_concur plugged_delay plugsb4reset timeoutsb4reset",
1476                 "ipi_reset_limit complete_threshold congested_response_us",
1477                 "congested_reps disabled_period giveup_limit",
1478                 max_concurr, plugged_delay, plugsb4reset,
1479                 timeoutsb4reset, ipi_reset_limit, complete_threshold,
1480                 congested_respns_us, congested_reps, disabled_period,
1481                 giveup_limit);
1482
1483         if (!buf)
1484                 return -ENOMEM;
1485
1486         ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1487         kfree(buf);
1488         return ret;
1489 }
1490
1491 /*
1492  * handle a write to /proc/sgi_uv/ptc_statistics
1493  * -1: reset the statistics
1494  *  0: display meaning of the statistics
1495  */
1496 static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1497                                 size_t count, loff_t *data)
1498 {
1499         int cpu;
1500         int i;
1501         int elements;
1502         long input_arg;
1503         char optstr[64];
1504         struct ptc_stats *stat;
1505
1506         if (count == 0 || count > sizeof(optstr))
1507                 return -EINVAL;
1508         if (copy_from_user(optstr, user, count))
1509                 return -EFAULT;
1510         optstr[count - 1] = '\0';
1511
1512         if (!strcmp(optstr, "on")) {
1513                 set_bau_on();
1514                 return count;
1515         } else if (!strcmp(optstr, "off")) {
1516                 set_bau_off();
1517                 return count;
1518         }
1519
1520         if (kstrtol(optstr, 10, &input_arg) < 0) {
1521                 pr_debug("%s is invalid\n", optstr);
1522                 return -EINVAL;
1523         }
1524
1525         if (input_arg == 0) {
1526                 elements = ARRAY_SIZE(stat_description);
1527                 pr_debug("# cpu:      cpu number\n");
1528                 pr_debug("Sender statistics:\n");
1529                 for (i = 0; i < elements; i++)
1530                         pr_debug("%s\n", stat_description[i]);
1531         } else if (input_arg == -1) {
1532                 for_each_present_cpu(cpu) {
1533                         stat = &per_cpu(ptcstats, cpu);
1534                         memset(stat, 0, sizeof(struct ptc_stats));
1535                 }
1536         }
1537
1538         return count;
1539 }
1540
1541 static int local_atoi(const char *name)
1542 {
1543         int val = 0;
1544
1545         for (;; name++) {
1546                 switch (*name) {
1547                 case '0' ... '9':
1548                         val = 10*val+(*name-'0');
1549                         break;
1550                 default:
1551                         return val;
1552                 }
1553         }
1554 }
1555
1556 /*
1557  * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1558  * Zero values reset them to defaults.
1559  */
1560 static int parse_tunables_write(struct bau_control *bcp, char *instr,
1561                                 int count)
1562 {
1563         char *p;
1564         char *q;
1565         int cnt = 0;
1566         int val;
1567         int e = ARRAY_SIZE(tunables);
1568
1569         p = instr + strspn(instr, WHITESPACE);
1570         q = p;
1571         for (; *p; p = q + strspn(q, WHITESPACE)) {
1572                 q = p + strcspn(p, WHITESPACE);
1573                 cnt++;
1574                 if (q == p)
1575                         break;
1576         }
1577         if (cnt != e) {
1578                 pr_info("bau tunable error: should be %d values\n", e);
1579                 return -EINVAL;
1580         }
1581
1582         p = instr + strspn(instr, WHITESPACE);
1583         q = p;
1584         for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1585                 q = p + strcspn(p, WHITESPACE);
1586                 val = local_atoi(p);
1587                 switch (cnt) {
1588                 case 0:
1589                         if (val == 0) {
1590                                 max_concurr = MAX_BAU_CONCURRENT;
1591                                 max_concurr_const = MAX_BAU_CONCURRENT;
1592                                 continue;
1593                         }
1594                         if (val < 1 || val > bcp->cpus_in_uvhub) {
1595                                 pr_debug(
1596                                 "Error: BAU max concurrent %d is invalid\n",
1597                                 val);
1598                                 return -EINVAL;
1599                         }
1600                         max_concurr = val;
1601                         max_concurr_const = val;
1602                         continue;
1603                 default:
1604                         if (val == 0)
1605                                 *tunables[cnt].tunp = tunables[cnt].deflt;
1606                         else
1607                                 *tunables[cnt].tunp = val;
1608                         continue;
1609                 }
1610                 if (q == p)
1611                         break;
1612         }
1613         return 0;
1614 }
1615
1616 /*
1617  * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1618  */
1619 static ssize_t tunables_write(struct file *file, const char __user *user,
1620                                 size_t count, loff_t *data)
1621 {
1622         int cpu;
1623         int ret;
1624         char instr[100];
1625         struct bau_control *bcp;
1626
1627         if (count == 0 || count > sizeof(instr)-1)
1628                 return -EINVAL;
1629         if (copy_from_user(instr, user, count))
1630                 return -EFAULT;
1631
1632         instr[count] = '\0';
1633
1634         cpu = get_cpu();
1635         bcp = &per_cpu(bau_control, cpu);
1636         ret = parse_tunables_write(bcp, instr, count);
1637         put_cpu();
1638         if (ret)
1639                 return ret;
1640
1641         for_each_present_cpu(cpu) {
1642                 bcp = &per_cpu(bau_control, cpu);
1643                 bcp->max_concurr         = max_concurr;
1644                 bcp->max_concurr_const   = max_concurr;
1645                 bcp->plugged_delay       = plugged_delay;
1646                 bcp->plugsb4reset        = plugsb4reset;
1647                 bcp->timeoutsb4reset     = timeoutsb4reset;
1648                 bcp->ipi_reset_limit     = ipi_reset_limit;
1649                 bcp->complete_threshold  = complete_threshold;
1650                 bcp->cong_response_us    = congested_respns_us;
1651                 bcp->cong_reps           = congested_reps;
1652                 bcp->disabled_period     = sec_2_cycles(disabled_period);
1653                 bcp->giveup_limit        = giveup_limit;
1654         }
1655         return count;
1656 }
1657
1658 static const struct seq_operations uv_ptc_seq_ops = {
1659         .start          = ptc_seq_start,
1660         .next           = ptc_seq_next,
1661         .stop           = ptc_seq_stop,
1662         .show           = ptc_seq_show
1663 };
1664
1665 static int ptc_proc_open(struct inode *inode, struct file *file)
1666 {
1667         return seq_open(file, &uv_ptc_seq_ops);
1668 }
1669
1670 static int tunables_open(struct inode *inode, struct file *file)
1671 {
1672         return 0;
1673 }
1674
1675 static const struct file_operations proc_uv_ptc_operations = {
1676         .open           = ptc_proc_open,
1677         .read           = seq_read,
1678         .write          = ptc_proc_write,
1679         .llseek         = seq_lseek,
1680         .release        = seq_release,
1681 };
1682
1683 static const struct file_operations tunables_fops = {
1684         .open           = tunables_open,
1685         .read           = tunables_read,
1686         .write          = tunables_write,
1687         .llseek         = default_llseek,
1688 };
1689
1690 static int __init uv_ptc_init(void)
1691 {
1692         struct proc_dir_entry *proc_uv_ptc;
1693
1694         if (!is_uv_system())
1695                 return 0;
1696
1697         proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1698                                   &proc_uv_ptc_operations);
1699         if (!proc_uv_ptc) {
1700                 pr_err("unable to create %s proc entry\n",
1701                        UV_PTC_BASENAME);
1702                 return -EINVAL;
1703         }
1704
1705         tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1706         if (!tunables_dir) {
1707                 pr_err("unable to create debugfs directory %s\n",
1708                        UV_BAU_TUNABLES_DIR);
1709                 return -EINVAL;
1710         }
1711         tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1712                                         tunables_dir, NULL, &tunables_fops);
1713         if (!tunables_file) {
1714                 pr_err("unable to create debugfs file %s\n",
1715                        UV_BAU_TUNABLES_FILE);
1716                 return -EINVAL;
1717         }
1718         return 0;
1719 }
1720
1721 /*
1722  * Initialize the sending side's sending buffers.
1723  */
1724 static void activation_descriptor_init(int node, int pnode, int base_pnode)
1725 {
1726         int i;
1727         int cpu;
1728         int uv1 = 0;
1729         unsigned long gpa;
1730         unsigned long m;
1731         unsigned long n;
1732         size_t dsize;
1733         struct bau_desc *bau_desc;
1734         struct bau_desc *bd2;
1735         struct uv1_bau_msg_header *uv1_hdr;
1736         struct uv2_3_bau_msg_header *uv2_3_hdr;
1737         struct bau_control *bcp;
1738
1739         /*
1740          * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1741          * per cpu; and one per cpu on the uvhub (ADP_SZ)
1742          */
1743         dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1744         bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1745         BUG_ON(!bau_desc);
1746
1747         gpa = uv_gpa(bau_desc);
1748         n = uv_gpa_to_gnode(gpa);
1749         m = ops.bau_gpa_to_offset(gpa);
1750         if (is_uv1_hub())
1751                 uv1 = 1;
1752
1753         /* the 14-bit pnode */
1754         write_mmr_descriptor_base(pnode,
1755                 (n << UVH_LB_BAU_SB_DESCRIPTOR_BASE_NODE_ID_SHFT | m));
1756         /*
1757          * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1758          * cpu even though we only use the first one; one descriptor can
1759          * describe a broadcast to 256 uv hubs.
1760          */
1761         for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1762                 memset(bd2, 0, sizeof(struct bau_desc));
1763                 if (uv1) {
1764                         uv1_hdr = &bd2->header.uv1_hdr;
1765                         uv1_hdr->swack_flag = 1;
1766                         /*
1767                          * The base_dest_nasid set in the message header
1768                          * is the nasid of the first uvhub in the partition.
1769                          * The bit map will indicate destination pnode numbers
1770                          * relative to that base. They may not be consecutive
1771                          * if nasid striding is being used.
1772                          */
1773                         uv1_hdr->base_dest_nasid =
1774                                                   UV_PNODE_TO_NASID(base_pnode);
1775                         uv1_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1776                         uv1_hdr->command         = UV_NET_ENDPOINT_INTD;
1777                         uv1_hdr->int_both        = 1;
1778                         /*
1779                          * all others need to be set to zero:
1780                          *   fairness chaining multilevel count replied_to
1781                          */
1782                 } else {
1783                         /*
1784                          * BIOS uses legacy mode, but uv2 and uv3 hardware always
1785                          * uses native mode for selective broadcasts.
1786                          */
1787                         uv2_3_hdr = &bd2->header.uv2_3_hdr;
1788                         uv2_3_hdr->swack_flag      = 1;
1789                         uv2_3_hdr->base_dest_nasid =
1790                                                   UV_PNODE_TO_NASID(base_pnode);
1791                         uv2_3_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1792                         uv2_3_hdr->command         = UV_NET_ENDPOINT_INTD;
1793                 }
1794         }
1795         for_each_present_cpu(cpu) {
1796                 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1797                         continue;
1798                 bcp = &per_cpu(bau_control, cpu);
1799                 bcp->descriptor_base = bau_desc;
1800         }
1801 }
1802
1803 /*
1804  * initialize the destination side's receiving buffers
1805  * entered for each uvhub in the partition
1806  * - node is first node (kernel memory notion) on the uvhub
1807  * - pnode is the uvhub's physical identifier
1808  */
1809 static void pq_init(int node, int pnode)
1810 {
1811         int cpu;
1812         size_t plsize;
1813         char *cp;
1814         void *vp;
1815         unsigned long gnode, first, last, tail;
1816         struct bau_pq_entry *pqp;
1817         struct bau_control *bcp;
1818
1819         plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1820         vp = kmalloc_node(plsize, GFP_KERNEL, node);
1821         pqp = (struct bau_pq_entry *)vp;
1822         BUG_ON(!pqp);
1823
1824         cp = (char *)pqp + 31;
1825         pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1826
1827         for_each_present_cpu(cpu) {
1828                 if (pnode != uv_cpu_to_pnode(cpu))
1829                         continue;
1830                 /* for every cpu on this pnode: */
1831                 bcp = &per_cpu(bau_control, cpu);
1832                 bcp->queue_first        = pqp;
1833                 bcp->bau_msg_head       = pqp;
1834                 bcp->queue_last         = pqp + (DEST_Q_SIZE - 1);
1835         }
1836
1837         first = ops.bau_gpa_to_offset(uv_gpa(pqp));
1838         last = ops.bau_gpa_to_offset(uv_gpa(pqp + (DEST_Q_SIZE - 1)));
1839
1840         /*
1841          * Pre UV4, the gnode is required to locate the payload queue
1842          * and the payload queue tail must be maintained by the kernel.
1843          */
1844         bcp = &per_cpu(bau_control, smp_processor_id());
1845         if (bcp->uvhub_version <= UV_BAU_V3) {
1846                 tail = first;
1847                 gnode = uv_gpa_to_gnode(uv_gpa(pqp));
1848                 first = (gnode << UV_PAYLOADQ_GNODE_SHIFT) | tail;
1849                 write_mmr_payload_tail(pnode, tail);
1850         }
1851
1852         ops.write_payload_first(pnode, first);
1853         ops.write_payload_last(pnode, last);
1854
1855         /* in effect, all msg_type's are set to MSG_NOOP */
1856         memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1857 }
1858
1859 /*
1860  * Initialization of each UV hub's structures
1861  */
1862 static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1863 {
1864         int node;
1865         int pnode;
1866         unsigned long apicid;
1867
1868         node = uvhub_to_first_node(uvhub);
1869         pnode = uv_blade_to_pnode(uvhub);
1870
1871         activation_descriptor_init(node, pnode, base_pnode);
1872
1873         pq_init(node, pnode);
1874         /*
1875          * The below initialization can't be in firmware because the
1876          * messaging IRQ will be determined by the OS.
1877          */
1878         apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1879         write_mmr_data_config(pnode, ((apicid << 32) | vector));
1880 }
1881
1882 /*
1883  * We will set BAU_MISC_CONTROL with a timeout period.
1884  * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1885  * So the destination timeout period has to be calculated from them.
1886  */
1887 static int calculate_destination_timeout(void)
1888 {
1889         unsigned long mmr_image;
1890         int mult1;
1891         int mult2;
1892         int index;
1893         int base;
1894         int ret;
1895         unsigned long ts_ns;
1896
1897         if (is_uv1_hub()) {
1898                 mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1899                 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1900                 index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1901                 mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1902                 mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1903                 ts_ns = timeout_base_ns[index];
1904                 ts_ns *= (mult1 * mult2);
1905                 ret = ts_ns / 1000;
1906         } else {
1907                 /* same destination timeout for uv2 and uv3 */
1908                 /* 4 bits  0/1 for 10/80us base, 3 bits of multiplier */
1909                 mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
1910                 mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1911                 if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1912                         base = 80;
1913                 else
1914                         base = 10;
1915                 mult1 = mmr_image & UV2_ACK_MASK;
1916                 ret = mult1 * base;
1917         }
1918         return ret;
1919 }
1920
1921 static void __init init_per_cpu_tunables(void)
1922 {
1923         int cpu;
1924         struct bau_control *bcp;
1925
1926         for_each_present_cpu(cpu) {
1927                 bcp = &per_cpu(bau_control, cpu);
1928                 bcp->baudisabled                = 0;
1929                 if (nobau)
1930                         bcp->nobau              = true;
1931                 bcp->statp                      = &per_cpu(ptcstats, cpu);
1932                 /* time interval to catch a hardware stay-busy bug */
1933                 bcp->timeout_interval           = usec_2_cycles(2*timeout_us);
1934                 bcp->max_concurr                = max_concurr;
1935                 bcp->max_concurr_const          = max_concurr;
1936                 bcp->plugged_delay              = plugged_delay;
1937                 bcp->plugsb4reset               = plugsb4reset;
1938                 bcp->timeoutsb4reset            = timeoutsb4reset;
1939                 bcp->ipi_reset_limit            = ipi_reset_limit;
1940                 bcp->complete_threshold         = complete_threshold;
1941                 bcp->cong_response_us           = congested_respns_us;
1942                 bcp->cong_reps                  = congested_reps;
1943                 bcp->disabled_period            = sec_2_cycles(disabled_period);
1944                 bcp->giveup_limit               = giveup_limit;
1945                 spin_lock_init(&bcp->queue_lock);
1946                 spin_lock_init(&bcp->uvhub_lock);
1947                 spin_lock_init(&bcp->disable_lock);
1948         }
1949 }
1950
1951 /*
1952  * Scan all cpus to collect blade and socket summaries.
1953  */
1954 static int __init get_cpu_topology(int base_pnode,
1955                                         struct uvhub_desc *uvhub_descs,
1956                                         unsigned char *uvhub_mask)
1957 {
1958         int cpu;
1959         int pnode;
1960         int uvhub;
1961         int socket;
1962         struct bau_control *bcp;
1963         struct uvhub_desc *bdp;
1964         struct socket_desc *sdp;
1965
1966         for_each_present_cpu(cpu) {
1967                 bcp = &per_cpu(bau_control, cpu);
1968
1969                 memset(bcp, 0, sizeof(struct bau_control));
1970
1971                 pnode = uv_cpu_hub_info(cpu)->pnode;
1972                 if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1973                         pr_emerg(
1974                                 "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1975                                 cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1976                         return 1;
1977                 }
1978
1979                 bcp->osnode = cpu_to_node(cpu);
1980                 bcp->partition_base_pnode = base_pnode;
1981
1982                 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1983                 *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1984                 bdp = &uvhub_descs[uvhub];
1985
1986                 bdp->num_cpus++;
1987                 bdp->uvhub = uvhub;
1988                 bdp->pnode = pnode;
1989
1990                 /* kludge: 'assuming' one node per socket, and assuming that
1991                    disabling a socket just leaves a gap in node numbers */
1992                 socket = bcp->osnode & 1;
1993                 bdp->socket_mask |= (1 << socket);
1994                 sdp = &bdp->socket[socket];
1995                 sdp->cpu_number[sdp->num_cpus] = cpu;
1996                 sdp->num_cpus++;
1997                 if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1998                         pr_emerg("%d cpus per socket invalid\n",
1999                                 sdp->num_cpus);
2000                         return 1;
2001                 }
2002         }
2003         return 0;
2004 }
2005
2006 /*
2007  * Each socket is to get a local array of pnodes/hubs.
2008  */
2009 static void make_per_cpu_thp(struct bau_control *smaster)
2010 {
2011         int cpu;
2012         size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
2013
2014         smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
2015         memset(smaster->thp, 0, hpsz);
2016         for_each_present_cpu(cpu) {
2017                 smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
2018                 smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
2019         }
2020 }
2021
2022 /*
2023  * Each uvhub is to get a local cpumask.
2024  */
2025 static void make_per_hub_cpumask(struct bau_control *hmaster)
2026 {
2027         int sz = sizeof(cpumask_t);
2028
2029         hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
2030 }
2031
2032 /*
2033  * Initialize all the per_cpu information for the cpu's on a given socket,
2034  * given what has been gathered into the socket_desc struct.
2035  * And reports the chosen hub and socket masters back to the caller.
2036  */
2037 static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
2038                         struct bau_control **smasterp,
2039                         struct bau_control **hmasterp)
2040 {
2041         int i, cpu, uvhub_cpu;
2042         struct bau_control *bcp;
2043
2044         for (i = 0; i < sdp->num_cpus; i++) {
2045                 cpu = sdp->cpu_number[i];
2046                 bcp = &per_cpu(bau_control, cpu);
2047                 bcp->cpu = cpu;
2048                 if (i == 0) {
2049                         *smasterp = bcp;
2050                         if (!(*hmasterp))
2051                                 *hmasterp = bcp;
2052                 }
2053                 bcp->cpus_in_uvhub = bdp->num_cpus;
2054                 bcp->cpus_in_socket = sdp->num_cpus;
2055                 bcp->socket_master = *smasterp;
2056                 bcp->uvhub = bdp->uvhub;
2057                 if (is_uv1_hub())
2058                         bcp->uvhub_version = UV_BAU_V1;
2059                 else if (is_uv2_hub())
2060                         bcp->uvhub_version = UV_BAU_V2;
2061                 else if (is_uv3_hub())
2062                         bcp->uvhub_version = UV_BAU_V3;
2063                 else if (is_uv4_hub())
2064                         bcp->uvhub_version = UV_BAU_V4;
2065                 else {
2066                         pr_emerg("uvhub version not 1, 2, 3, or 4\n");
2067                         return 1;
2068                 }
2069                 bcp->uvhub_master = *hmasterp;
2070                 uvhub_cpu = uv_cpu_blade_processor_id(cpu);
2071                 bcp->uvhub_cpu = uvhub_cpu;
2072
2073                 /*
2074                  * The ERROR and BUSY status registers are located pairwise over
2075                  * the STATUS_0 and STATUS_1 mmrs; each an array[32] of 2 bits.
2076                  */
2077                 if (uvhub_cpu < UV_CPUS_PER_AS) {
2078                         bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
2079                         bcp->status_index = uvhub_cpu * UV_ACT_STATUS_SIZE;
2080                 } else {
2081                         bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
2082                         bcp->status_index = (uvhub_cpu - UV_CPUS_PER_AS)
2083                                                 * UV_ACT_STATUS_SIZE;
2084                 }
2085
2086                 if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
2087                         pr_emerg("%d cpus per uvhub invalid\n",
2088                                 bcp->uvhub_cpu);
2089                         return 1;
2090                 }
2091         }
2092         return 0;
2093 }
2094
2095 /*
2096  * Summarize the blade and socket topology into the per_cpu structures.
2097  */
2098 static int __init summarize_uvhub_sockets(int nuvhubs,
2099                         struct uvhub_desc *uvhub_descs,
2100                         unsigned char *uvhub_mask)
2101 {
2102         int socket;
2103         int uvhub;
2104         unsigned short socket_mask;
2105
2106         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2107                 struct uvhub_desc *bdp;
2108                 struct bau_control *smaster = NULL;
2109                 struct bau_control *hmaster = NULL;
2110
2111                 if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
2112                         continue;
2113
2114                 bdp = &uvhub_descs[uvhub];
2115                 socket_mask = bdp->socket_mask;
2116                 socket = 0;
2117                 while (socket_mask) {
2118                         struct socket_desc *sdp;
2119                         if ((socket_mask & 1)) {
2120                                 sdp = &bdp->socket[socket];
2121                                 if (scan_sock(sdp, bdp, &smaster, &hmaster))
2122                                         return 1;
2123                                 make_per_cpu_thp(smaster);
2124                         }
2125                         socket++;
2126                         socket_mask = (socket_mask >> 1);
2127                 }
2128                 make_per_hub_cpumask(hmaster);
2129         }
2130         return 0;
2131 }
2132
2133 /*
2134  * initialize the bau_control structure for each cpu
2135  */
2136 static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
2137 {
2138         unsigned char *uvhub_mask;
2139         void *vp;
2140         struct uvhub_desc *uvhub_descs;
2141
2142         if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2143                 timeout_us = calculate_destination_timeout();
2144
2145         vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
2146         uvhub_descs = (struct uvhub_desc *)vp;
2147         memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
2148         uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
2149
2150         if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
2151                 goto fail;
2152
2153         if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
2154                 goto fail;
2155
2156         kfree(uvhub_descs);
2157         kfree(uvhub_mask);
2158         init_per_cpu_tunables();
2159         return 0;
2160
2161 fail:
2162         kfree(uvhub_descs);
2163         kfree(uvhub_mask);
2164         return 1;
2165 }
2166
2167 static const struct bau_operations uv1_bau_ops __initconst = {
2168         .bau_gpa_to_offset       = uv_gpa_to_offset,
2169         .read_l_sw_ack           = read_mmr_sw_ack,
2170         .read_g_sw_ack           = read_gmmr_sw_ack,
2171         .write_l_sw_ack          = write_mmr_sw_ack,
2172         .write_g_sw_ack          = write_gmmr_sw_ack,
2173         .write_payload_first     = write_mmr_payload_first,
2174         .write_payload_last      = write_mmr_payload_last,
2175         .wait_completion         = uv1_wait_completion,
2176 };
2177
2178 static const struct bau_operations uv2_3_bau_ops __initconst = {
2179         .bau_gpa_to_offset       = uv_gpa_to_offset,
2180         .read_l_sw_ack           = read_mmr_sw_ack,
2181         .read_g_sw_ack           = read_gmmr_sw_ack,
2182         .write_l_sw_ack          = write_mmr_sw_ack,
2183         .write_g_sw_ack          = write_gmmr_sw_ack,
2184         .write_payload_first     = write_mmr_payload_first,
2185         .write_payload_last      = write_mmr_payload_last,
2186         .wait_completion         = uv2_3_wait_completion,
2187 };
2188
2189 static const struct bau_operations uv4_bau_ops __initconst = {
2190         .bau_gpa_to_offset       = uv_gpa_to_soc_phys_ram,
2191         .read_l_sw_ack           = read_mmr_proc_sw_ack,
2192         .read_g_sw_ack           = read_gmmr_proc_sw_ack,
2193         .write_l_sw_ack          = write_mmr_proc_sw_ack,
2194         .write_g_sw_ack          = write_gmmr_proc_sw_ack,
2195         .write_payload_first     = write_mmr_proc_payload_first,
2196         .write_payload_last      = write_mmr_proc_payload_last,
2197         .wait_completion         = uv4_wait_completion,
2198 };
2199
2200 /*
2201  * Initialization of BAU-related structures
2202  */
2203 static int __init uv_bau_init(void)
2204 {
2205         int uvhub;
2206         int pnode;
2207         int nuvhubs;
2208         int cur_cpu;
2209         int cpus;
2210         int vector;
2211         cpumask_var_t *mask;
2212
2213         if (!is_uv_system())
2214                 return 0;
2215
2216         if (is_uv4_hub())
2217                 ops = uv4_bau_ops;
2218         else if (is_uv3_hub())
2219                 ops = uv2_3_bau_ops;
2220         else if (is_uv2_hub())
2221                 ops = uv2_3_bau_ops;
2222         else if (is_uv1_hub())
2223                 ops = uv1_bau_ops;
2224
2225         nuvhubs = uv_num_possible_blades();
2226         if (nuvhubs < 2) {
2227                 pr_crit("UV: BAU disabled - insufficient hub count\n");
2228                 goto err_bau_disable;
2229         }
2230
2231         for_each_possible_cpu(cur_cpu) {
2232                 mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
2233                 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
2234         }
2235
2236         uv_base_pnode = 0x7fffffff;
2237         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2238                 cpus = uv_blade_nr_possible_cpus(uvhub);
2239                 if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
2240                         uv_base_pnode = uv_blade_to_pnode(uvhub);
2241         }
2242
2243         /* software timeouts are not supported on UV4 */
2244         if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2245                 enable_timeouts();
2246
2247         if (init_per_cpu(nuvhubs, uv_base_pnode)) {
2248                 pr_crit("UV: BAU disabled - per CPU init failed\n");
2249                 goto err_bau_disable;
2250         }
2251
2252         vector = UV_BAU_MESSAGE;
2253         for_each_possible_blade(uvhub) {
2254                 if (uv_blade_nr_possible_cpus(uvhub))
2255                         init_uvhub(uvhub, vector, uv_base_pnode);
2256         }
2257
2258         alloc_intr_gate(vector, uv_bau_message_intr1);
2259
2260         for_each_possible_blade(uvhub) {
2261                 if (uv_blade_nr_possible_cpus(uvhub)) {
2262                         unsigned long val;
2263                         unsigned long mmr;
2264                         pnode = uv_blade_to_pnode(uvhub);
2265                         /* INIT the bau */
2266                         val = 1L << 63;
2267                         write_gmmr_activation(pnode, val);
2268                         mmr = 1; /* should be 1 to broadcast to both sockets */
2269                         if (!is_uv1_hub())
2270                                 write_mmr_data_broadcast(pnode, mmr);
2271                 }
2272         }
2273
2274         return 0;
2275
2276 err_bau_disable:
2277
2278         for_each_possible_cpu(cur_cpu)
2279                 free_cpumask_var(per_cpu(uv_flush_tlb_mask, cur_cpu));
2280
2281         set_bau_off();
2282         nobau_perm = 1;
2283
2284         return -EINVAL;
2285 }
2286 core_initcall(uv_bau_init);
2287 fs_initcall(uv_ptc_init);