Merge tag 'stream_open-5.2' of https://lab.nexedi.com/kirr/linux
[sfrench/cifs-2.6.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10
11 #include <asm/tlbflush.h>
12 #include <asm/mmu_context.h>
13 #include <asm/nospec-branch.h>
14 #include <asm/cache.h>
15 #include <asm/apic.h>
16 #include <asm/uv/uv.h>
17
18 #include "mm_internal.h"
19
20 /*
21  *      TLB flushing, formerly SMP-only
22  *              c/o Linus Torvalds.
23  *
24  *      These mean you can really definitely utterly forget about
25  *      writing to user space from interrupts. (Its not allowed anyway).
26  *
27  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
28  *
29  *      More scalable flush, from Andi Kleen
30  *
31  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
32  */
33
34 /*
35  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
36  * stored in cpu_tlb_state.last_user_mm_ibpb.
37  */
38 #define LAST_USER_MM_IBPB       0x1UL
39
40 /*
41  * We get here when we do something requiring a TLB invalidation
42  * but could not go invalidate all of the contexts.  We do the
43  * necessary invalidation by clearing out the 'ctx_id' which
44  * forces a TLB flush when the context is loaded.
45  */
46 static void clear_asid_other(void)
47 {
48         u16 asid;
49
50         /*
51          * This is only expected to be set if we have disabled
52          * kernel _PAGE_GLOBAL pages.
53          */
54         if (!static_cpu_has(X86_FEATURE_PTI)) {
55                 WARN_ON_ONCE(1);
56                 return;
57         }
58
59         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
60                 /* Do not need to flush the current asid */
61                 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
62                         continue;
63                 /*
64                  * Make sure the next time we go to switch to
65                  * this asid, we do a flush:
66                  */
67                 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
68         }
69         this_cpu_write(cpu_tlbstate.invalidate_other, false);
70 }
71
72 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
73
74
75 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
76                             u16 *new_asid, bool *need_flush)
77 {
78         u16 asid;
79
80         if (!static_cpu_has(X86_FEATURE_PCID)) {
81                 *new_asid = 0;
82                 *need_flush = true;
83                 return;
84         }
85
86         if (this_cpu_read(cpu_tlbstate.invalidate_other))
87                 clear_asid_other();
88
89         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
90                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
91                     next->context.ctx_id)
92                         continue;
93
94                 *new_asid = asid;
95                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
96                                next_tlb_gen);
97                 return;
98         }
99
100         /*
101          * We don't currently own an ASID slot on this CPU.
102          * Allocate a slot.
103          */
104         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
105         if (*new_asid >= TLB_NR_DYN_ASIDS) {
106                 *new_asid = 0;
107                 this_cpu_write(cpu_tlbstate.next_asid, 1);
108         }
109         *need_flush = true;
110 }
111
112 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
113 {
114         unsigned long new_mm_cr3;
115
116         if (need_flush) {
117                 invalidate_user_asid(new_asid);
118                 new_mm_cr3 = build_cr3(pgdir, new_asid);
119         } else {
120                 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
121         }
122
123         /*
124          * Caution: many callers of this function expect
125          * that load_cr3() is serializing and orders TLB
126          * fills with respect to the mm_cpumask writes.
127          */
128         write_cr3(new_mm_cr3);
129 }
130
131 void leave_mm(int cpu)
132 {
133         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
134
135         /*
136          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
137          * If so, our callers still expect us to flush the TLB, but there
138          * aren't any user TLB entries in init_mm to worry about.
139          *
140          * This needs to happen before any other sanity checks due to
141          * intel_idle's shenanigans.
142          */
143         if (loaded_mm == &init_mm)
144                 return;
145
146         /* Warn if we're not lazy. */
147         WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
148
149         switch_mm(NULL, &init_mm, NULL);
150 }
151 EXPORT_SYMBOL_GPL(leave_mm);
152
153 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
154                struct task_struct *tsk)
155 {
156         unsigned long flags;
157
158         local_irq_save(flags);
159         switch_mm_irqs_off(prev, next, tsk);
160         local_irq_restore(flags);
161 }
162
163 static void sync_current_stack_to_mm(struct mm_struct *mm)
164 {
165         unsigned long sp = current_stack_pointer;
166         pgd_t *pgd = pgd_offset(mm, sp);
167
168         if (pgtable_l5_enabled()) {
169                 if (unlikely(pgd_none(*pgd))) {
170                         pgd_t *pgd_ref = pgd_offset_k(sp);
171
172                         set_pgd(pgd, *pgd_ref);
173                 }
174         } else {
175                 /*
176                  * "pgd" is faked.  The top level entries are "p4d"s, so sync
177                  * the p4d.  This compiles to approximately the same code as
178                  * the 5-level case.
179                  */
180                 p4d_t *p4d = p4d_offset(pgd, sp);
181
182                 if (unlikely(p4d_none(*p4d))) {
183                         pgd_t *pgd_ref = pgd_offset_k(sp);
184                         p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
185
186                         set_p4d(p4d, *p4d_ref);
187                 }
188         }
189 }
190
191 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
192 {
193         unsigned long next_tif = task_thread_info(next)->flags;
194         unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
195
196         return (unsigned long)next->mm | ibpb;
197 }
198
199 static void cond_ibpb(struct task_struct *next)
200 {
201         if (!next || !next->mm)
202                 return;
203
204         /*
205          * Both, the conditional and the always IBPB mode use the mm
206          * pointer to avoid the IBPB when switching between tasks of the
207          * same process. Using the mm pointer instead of mm->context.ctx_id
208          * opens a hypothetical hole vs. mm_struct reuse, which is more or
209          * less impossible to control by an attacker. Aside of that it
210          * would only affect the first schedule so the theoretically
211          * exposed data is not really interesting.
212          */
213         if (static_branch_likely(&switch_mm_cond_ibpb)) {
214                 unsigned long prev_mm, next_mm;
215
216                 /*
217                  * This is a bit more complex than the always mode because
218                  * it has to handle two cases:
219                  *
220                  * 1) Switch from a user space task (potential attacker)
221                  *    which has TIF_SPEC_IB set to a user space task
222                  *    (potential victim) which has TIF_SPEC_IB not set.
223                  *
224                  * 2) Switch from a user space task (potential attacker)
225                  *    which has TIF_SPEC_IB not set to a user space task
226                  *    (potential victim) which has TIF_SPEC_IB set.
227                  *
228                  * This could be done by unconditionally issuing IBPB when
229                  * a task which has TIF_SPEC_IB set is either scheduled in
230                  * or out. Though that results in two flushes when:
231                  *
232                  * - the same user space task is scheduled out and later
233                  *   scheduled in again and only a kernel thread ran in
234                  *   between.
235                  *
236                  * - a user space task belonging to the same process is
237                  *   scheduled in after a kernel thread ran in between
238                  *
239                  * - a user space task belonging to the same process is
240                  *   scheduled in immediately.
241                  *
242                  * Optimize this with reasonably small overhead for the
243                  * above cases. Mangle the TIF_SPEC_IB bit into the mm
244                  * pointer of the incoming task which is stored in
245                  * cpu_tlbstate.last_user_mm_ibpb for comparison.
246                  */
247                 next_mm = mm_mangle_tif_spec_ib(next);
248                 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
249
250                 /*
251                  * Issue IBPB only if the mm's are different and one or
252                  * both have the IBPB bit set.
253                  */
254                 if (next_mm != prev_mm &&
255                     (next_mm | prev_mm) & LAST_USER_MM_IBPB)
256                         indirect_branch_prediction_barrier();
257
258                 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
259         }
260
261         if (static_branch_unlikely(&switch_mm_always_ibpb)) {
262                 /*
263                  * Only flush when switching to a user space task with a
264                  * different context than the user space task which ran
265                  * last on this CPU.
266                  */
267                 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
268                         indirect_branch_prediction_barrier();
269                         this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
270                 }
271         }
272 }
273
274 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
275                         struct task_struct *tsk)
276 {
277         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
278         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
279         bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
280         unsigned cpu = smp_processor_id();
281         u64 next_tlb_gen;
282         bool need_flush;
283         u16 new_asid;
284
285         /*
286          * NB: The scheduler will call us with prev == next when switching
287          * from lazy TLB mode to normal mode if active_mm isn't changing.
288          * When this happens, we don't assume that CR3 (and hence
289          * cpu_tlbstate.loaded_mm) matches next.
290          *
291          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
292          */
293
294         /* We don't want flush_tlb_func_* to run concurrently with us. */
295         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
296                 WARN_ON_ONCE(!irqs_disabled());
297
298         /*
299          * Verify that CR3 is what we think it is.  This will catch
300          * hypothetical buggy code that directly switches to swapper_pg_dir
301          * without going through leave_mm() / switch_mm_irqs_off() or that
302          * does something like write_cr3(read_cr3_pa()).
303          *
304          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
305          * isn't free.
306          */
307 #ifdef CONFIG_DEBUG_VM
308         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
309                 /*
310                  * If we were to BUG here, we'd be very likely to kill
311                  * the system so hard that we don't see the call trace.
312                  * Try to recover instead by ignoring the error and doing
313                  * a global flush to minimize the chance of corruption.
314                  *
315                  * (This is far from being a fully correct recovery.
316                  *  Architecturally, the CPU could prefetch something
317                  *  back into an incorrect ASID slot and leave it there
318                  *  to cause trouble down the road.  It's better than
319                  *  nothing, though.)
320                  */
321                 __flush_tlb_all();
322         }
323 #endif
324         this_cpu_write(cpu_tlbstate.is_lazy, false);
325
326         /*
327          * The membarrier system call requires a full memory barrier and
328          * core serialization before returning to user-space, after
329          * storing to rq->curr. Writing to CR3 provides that full
330          * memory barrier and core serializing instruction.
331          */
332         if (real_prev == next) {
333                 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
334                            next->context.ctx_id);
335
336                 /*
337                  * Even in lazy TLB mode, the CPU should stay set in the
338                  * mm_cpumask. The TLB shootdown code can figure out from
339                  * from cpu_tlbstate.is_lazy whether or not to send an IPI.
340                  */
341                 if (WARN_ON_ONCE(real_prev != &init_mm &&
342                                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
343                         cpumask_set_cpu(cpu, mm_cpumask(next));
344
345                 /*
346                  * If the CPU is not in lazy TLB mode, we are just switching
347                  * from one thread in a process to another thread in the same
348                  * process. No TLB flush required.
349                  */
350                 if (!was_lazy)
351                         return;
352
353                 /*
354                  * Read the tlb_gen to check whether a flush is needed.
355                  * If the TLB is up to date, just use it.
356                  * The barrier synchronizes with the tlb_gen increment in
357                  * the TLB shootdown code.
358                  */
359                 smp_mb();
360                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
361                 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
362                                 next_tlb_gen)
363                         return;
364
365                 /*
366                  * TLB contents went out of date while we were in lazy
367                  * mode. Fall through to the TLB switching code below.
368                  */
369                 new_asid = prev_asid;
370                 need_flush = true;
371         } else {
372                 /*
373                  * Avoid user/user BTB poisoning by flushing the branch
374                  * predictor when switching between processes. This stops
375                  * one process from doing Spectre-v2 attacks on another.
376                  */
377                 cond_ibpb(tsk);
378
379                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
380                         /*
381                          * If our current stack is in vmalloc space and isn't
382                          * mapped in the new pgd, we'll double-fault.  Forcibly
383                          * map it.
384                          */
385                         sync_current_stack_to_mm(next);
386                 }
387
388                 /*
389                  * Stop remote flushes for the previous mm.
390                  * Skip kernel threads; we never send init_mm TLB flushing IPIs,
391                  * but the bitmap manipulation can cause cache line contention.
392                  */
393                 if (real_prev != &init_mm) {
394                         VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
395                                                 mm_cpumask(real_prev)));
396                         cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
397                 }
398
399                 /*
400                  * Start remote flushes and then read tlb_gen.
401                  */
402                 if (next != &init_mm)
403                         cpumask_set_cpu(cpu, mm_cpumask(next));
404                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
405
406                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
407
408                 /* Let nmi_uaccess_okay() know that we're changing CR3. */
409                 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
410                 barrier();
411         }
412
413         if (need_flush) {
414                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
415                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
416                 load_new_mm_cr3(next->pgd, new_asid, true);
417
418                 /*
419                  * NB: This gets called via leave_mm() in the idle path
420                  * where RCU functions differently.  Tracing normally
421                  * uses RCU, so we need to use the _rcuidle variant.
422                  *
423                  * (There is no good reason for this.  The idle code should
424                  *  be rearranged to call this before rcu_idle_enter().)
425                  */
426                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
427         } else {
428                 /* The new ASID is already up to date. */
429                 load_new_mm_cr3(next->pgd, new_asid, false);
430
431                 /* See above wrt _rcuidle. */
432                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
433         }
434
435         /* Make sure we write CR3 before loaded_mm. */
436         barrier();
437
438         this_cpu_write(cpu_tlbstate.loaded_mm, next);
439         this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
440
441         if (next != real_prev) {
442                 load_mm_cr4(next);
443                 switch_ldt(real_prev, next);
444         }
445 }
446
447 /*
448  * Please ignore the name of this function.  It should be called
449  * switch_to_kernel_thread().
450  *
451  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
452  * kernel thread or other context without an mm.  Acceptable implementations
453  * include doing nothing whatsoever, switching to init_mm, or various clever
454  * lazy tricks to try to minimize TLB flushes.
455  *
456  * The scheduler reserves the right to call enter_lazy_tlb() several times
457  * in a row.  It will notify us that we're going back to a real mm by
458  * calling switch_mm_irqs_off().
459  */
460 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
461 {
462         if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
463                 return;
464
465         this_cpu_write(cpu_tlbstate.is_lazy, true);
466 }
467
468 /*
469  * Call this when reinitializing a CPU.  It fixes the following potential
470  * problems:
471  *
472  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
473  *   because the CPU was taken down and came back up with CR3's PCID
474  *   bits clear.  CPU hotplug can do this.
475  *
476  * - The TLB contains junk in slots corresponding to inactive ASIDs.
477  *
478  * - The CPU went so far out to lunch that it may have missed a TLB
479  *   flush.
480  */
481 void initialize_tlbstate_and_flush(void)
482 {
483         int i;
484         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
485         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
486         unsigned long cr3 = __read_cr3();
487
488         /* Assert that CR3 already references the right mm. */
489         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
490
491         /*
492          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
493          * doesn't work like other CR4 bits because it can only be set from
494          * long mode.)
495          */
496         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
497                 !(cr4_read_shadow() & X86_CR4_PCIDE));
498
499         /* Force ASID 0 and force a TLB flush. */
500         write_cr3(build_cr3(mm->pgd, 0));
501
502         /* Reinitialize tlbstate. */
503         this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
504         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
505         this_cpu_write(cpu_tlbstate.next_asid, 1);
506         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
507         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
508
509         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
510                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
511 }
512
513 /*
514  * flush_tlb_func_common()'s memory ordering requirement is that any
515  * TLB fills that happen after we flush the TLB are ordered after we
516  * read active_mm's tlb_gen.  We don't need any explicit barriers
517  * because all x86 flush operations are serializing and the
518  * atomic64_read operation won't be reordered by the compiler.
519  */
520 static void flush_tlb_func_common(const struct flush_tlb_info *f,
521                                   bool local, enum tlb_flush_reason reason)
522 {
523         /*
524          * We have three different tlb_gen values in here.  They are:
525          *
526          * - mm_tlb_gen:     the latest generation.
527          * - local_tlb_gen:  the generation that this CPU has already caught
528          *                   up to.
529          * - f->new_tlb_gen: the generation that the requester of the flush
530          *                   wants us to catch up to.
531          */
532         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
533         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
534         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
535         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
536
537         /* This code cannot presently handle being reentered. */
538         VM_WARN_ON(!irqs_disabled());
539
540         if (unlikely(loaded_mm == &init_mm))
541                 return;
542
543         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
544                    loaded_mm->context.ctx_id);
545
546         if (this_cpu_read(cpu_tlbstate.is_lazy)) {
547                 /*
548                  * We're in lazy mode.  We need to at least flush our
549                  * paging-structure cache to avoid speculatively reading
550                  * garbage into our TLB.  Since switching to init_mm is barely
551                  * slower than a minimal flush, just switch to init_mm.
552                  *
553                  * This should be rare, with native_flush_tlb_others skipping
554                  * IPIs to lazy TLB mode CPUs.
555                  */
556                 switch_mm_irqs_off(NULL, &init_mm, NULL);
557                 return;
558         }
559
560         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
561                 /*
562                  * There's nothing to do: we're already up to date.  This can
563                  * happen if two concurrent flushes happen -- the first flush to
564                  * be handled can catch us all the way up, leaving no work for
565                  * the second flush.
566                  */
567                 trace_tlb_flush(reason, 0);
568                 return;
569         }
570
571         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
572         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
573
574         /*
575          * If we get to this point, we know that our TLB is out of date.
576          * This does not strictly imply that we need to flush (it's
577          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
578          * going to need to flush in the very near future, so we might
579          * as well get it over with.
580          *
581          * The only question is whether to do a full or partial flush.
582          *
583          * We do a partial flush if requested and two extra conditions
584          * are met:
585          *
586          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
587          *    we've always done all needed flushes to catch up to
588          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
589          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
590          *    us up to date for tlb_gen 3 is the partial flush we're
591          *    processing.
592          *
593          *    As an example of why this check is needed, suppose that there
594          *    are two concurrent flushes.  The first is a full flush that
595          *    changes context.tlb_gen from 1 to 2.  The second is a partial
596          *    flush that changes context.tlb_gen from 2 to 3.  If they get
597          *    processed on this CPU in reverse order, we'll see
598          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
599          *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
600          *    3, we'd be break the invariant: we'd update local_tlb_gen above
601          *    1 without the full flush that's needed for tlb_gen 2.
602          *
603          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
604          *    Partial TLB flushes are not all that much cheaper than full TLB
605          *    flushes, so it seems unlikely that it would be a performance win
606          *    to do a partial flush if that won't bring our TLB fully up to
607          *    date.  By doing a full flush instead, we can increase
608          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
609          *    avoid another flush in the very near future.
610          */
611         if (f->end != TLB_FLUSH_ALL &&
612             f->new_tlb_gen == local_tlb_gen + 1 &&
613             f->new_tlb_gen == mm_tlb_gen) {
614                 /* Partial flush */
615                 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
616                 unsigned long addr = f->start;
617
618                 while (addr < f->end) {
619                         __flush_tlb_one_user(addr);
620                         addr += 1UL << f->stride_shift;
621                 }
622                 if (local)
623                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
624                 trace_tlb_flush(reason, nr_invalidate);
625         } else {
626                 /* Full flush. */
627                 local_flush_tlb();
628                 if (local)
629                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
630                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
631         }
632
633         /* Both paths above update our state to mm_tlb_gen. */
634         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
635 }
636
637 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
638 {
639         const struct flush_tlb_info *f = info;
640
641         flush_tlb_func_common(f, true, reason);
642 }
643
644 static void flush_tlb_func_remote(void *info)
645 {
646         const struct flush_tlb_info *f = info;
647
648         inc_irq_stat(irq_tlb_count);
649
650         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
651                 return;
652
653         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
654         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
655 }
656
657 static bool tlb_is_not_lazy(int cpu, void *data)
658 {
659         return !per_cpu(cpu_tlbstate.is_lazy, cpu);
660 }
661
662 void native_flush_tlb_others(const struct cpumask *cpumask,
663                              const struct flush_tlb_info *info)
664 {
665         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
666         if (info->end == TLB_FLUSH_ALL)
667                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
668         else
669                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
670                                 (info->end - info->start) >> PAGE_SHIFT);
671
672         if (is_uv_system()) {
673                 /*
674                  * This whole special case is confused.  UV has a "Broadcast
675                  * Assist Unit", which seems to be a fancy way to send IPIs.
676                  * Back when x86 used an explicit TLB flush IPI, UV was
677                  * optimized to use its own mechanism.  These days, x86 uses
678                  * smp_call_function_many(), but UV still uses a manual IPI,
679                  * and that IPI's action is out of date -- it does a manual
680                  * flush instead of calling flush_tlb_func_remote().  This
681                  * means that the percpu tlb_gen variables won't be updated
682                  * and we'll do pointless flushes on future context switches.
683                  *
684                  * Rather than hooking native_flush_tlb_others() here, I think
685                  * that UV should be updated so that smp_call_function_many(),
686                  * etc, are optimal on UV.
687                  */
688                 cpumask = uv_flush_tlb_others(cpumask, info);
689                 if (cpumask)
690                         smp_call_function_many(cpumask, flush_tlb_func_remote,
691                                                (void *)info, 1);
692                 return;
693         }
694
695         /*
696          * If no page tables were freed, we can skip sending IPIs to
697          * CPUs in lazy TLB mode. They will flush the CPU themselves
698          * at the next context switch.
699          *
700          * However, if page tables are getting freed, we need to send the
701          * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
702          * up on the new contents of what used to be page tables, while
703          * doing a speculative memory access.
704          */
705         if (info->freed_tables)
706                 smp_call_function_many(cpumask, flush_tlb_func_remote,
707                                (void *)info, 1);
708         else
709                 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
710                                 (void *)info, 1, GFP_ATOMIC, cpumask);
711 }
712
713 /*
714  * See Documentation/x86/tlb.txt for details.  We choose 33
715  * because it is large enough to cover the vast majority (at
716  * least 95%) of allocations, and is small enough that we are
717  * confident it will not cause too much overhead.  Each single
718  * flush is about 100 ns, so this caps the maximum overhead at
719  * _about_ 3,000 ns.
720  *
721  * This is in units of pages.
722  */
723 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
724
725 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
726
727 #ifdef CONFIG_DEBUG_VM
728 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
729 #endif
730
731 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
732                         unsigned long start, unsigned long end,
733                         unsigned int stride_shift, bool freed_tables,
734                         u64 new_tlb_gen)
735 {
736         struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
737
738 #ifdef CONFIG_DEBUG_VM
739         /*
740          * Ensure that the following code is non-reentrant and flush_tlb_info
741          * is not overwritten. This means no TLB flushing is initiated by
742          * interrupt handlers and machine-check exception handlers.
743          */
744         BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
745 #endif
746
747         info->start             = start;
748         info->end               = end;
749         info->mm                = mm;
750         info->stride_shift      = stride_shift;
751         info->freed_tables      = freed_tables;
752         info->new_tlb_gen       = new_tlb_gen;
753
754         return info;
755 }
756
757 static inline void put_flush_tlb_info(void)
758 {
759 #ifdef CONFIG_DEBUG_VM
760         /* Complete reentrency prevention checks */
761         barrier();
762         this_cpu_dec(flush_tlb_info_idx);
763 #endif
764 }
765
766 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
767                                 unsigned long end, unsigned int stride_shift,
768                                 bool freed_tables)
769 {
770         struct flush_tlb_info *info;
771         u64 new_tlb_gen;
772         int cpu;
773
774         cpu = get_cpu();
775
776         /* Should we flush just the requested range? */
777         if ((end == TLB_FLUSH_ALL) ||
778             ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
779                 start = 0;
780                 end = TLB_FLUSH_ALL;
781         }
782
783         /* This is also a barrier that synchronizes with switch_mm(). */
784         new_tlb_gen = inc_mm_tlb_gen(mm);
785
786         info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
787                                   new_tlb_gen);
788
789         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
790                 lockdep_assert_irqs_enabled();
791                 local_irq_disable();
792                 flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
793                 local_irq_enable();
794         }
795
796         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
797                 flush_tlb_others(mm_cpumask(mm), info);
798
799         put_flush_tlb_info();
800         put_cpu();
801 }
802
803
804 static void do_flush_tlb_all(void *info)
805 {
806         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
807         __flush_tlb_all();
808 }
809
810 void flush_tlb_all(void)
811 {
812         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
813         on_each_cpu(do_flush_tlb_all, NULL, 1);
814 }
815
816 static void do_kernel_range_flush(void *info)
817 {
818         struct flush_tlb_info *f = info;
819         unsigned long addr;
820
821         /* flush range by one by one 'invlpg' */
822         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
823                 __flush_tlb_one_kernel(addr);
824 }
825
826 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
827 {
828         /* Balance as user space task's flush, a bit conservative */
829         if (end == TLB_FLUSH_ALL ||
830             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
831                 on_each_cpu(do_flush_tlb_all, NULL, 1);
832         } else {
833                 struct flush_tlb_info *info;
834
835                 preempt_disable();
836                 info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
837
838                 on_each_cpu(do_kernel_range_flush, info, 1);
839
840                 put_flush_tlb_info();
841                 preempt_enable();
842         }
843 }
844
845 /*
846  * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
847  * This means that the 'struct flush_tlb_info' that describes which mappings to
848  * flush is actually fixed. We therefore set a single fixed struct and use it in
849  * arch_tlbbatch_flush().
850  */
851 static const struct flush_tlb_info full_flush_tlb_info = {
852         .mm = NULL,
853         .start = 0,
854         .end = TLB_FLUSH_ALL,
855 };
856
857 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
858 {
859         int cpu = get_cpu();
860
861         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
862                 lockdep_assert_irqs_enabled();
863                 local_irq_disable();
864                 flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
865                 local_irq_enable();
866         }
867
868         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
869                 flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
870
871         cpumask_clear(&batch->cpumask);
872
873         put_cpu();
874 }
875
876 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
877                              size_t count, loff_t *ppos)
878 {
879         char buf[32];
880         unsigned int len;
881
882         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
883         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
884 }
885
886 static ssize_t tlbflush_write_file(struct file *file,
887                  const char __user *user_buf, size_t count, loff_t *ppos)
888 {
889         char buf[32];
890         ssize_t len;
891         int ceiling;
892
893         len = min(count, sizeof(buf) - 1);
894         if (copy_from_user(buf, user_buf, len))
895                 return -EFAULT;
896
897         buf[len] = '\0';
898         if (kstrtoint(buf, 0, &ceiling))
899                 return -EINVAL;
900
901         if (ceiling < 0)
902                 return -EINVAL;
903
904         tlb_single_page_flush_ceiling = ceiling;
905         return count;
906 }
907
908 static const struct file_operations fops_tlbflush = {
909         .read = tlbflush_read_file,
910         .write = tlbflush_write_file,
911         .llseek = default_llseek,
912 };
913
914 static int __init create_tlb_single_page_flush_ceiling(void)
915 {
916         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
917                             arch_debugfs_dir, NULL, &fops_tlbflush);
918         return 0;
919 }
920 late_initcall(create_tlb_single_page_flush_ceiling);