Merge tag 'docs-4.16' of git://git.lwn.net/linux
[sfrench/cifs-2.6.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18  *      TLB flushing, formerly SMP-only
19  *              c/o Linus Torvalds.
20  *
21  *      These mean you can really definitely utterly forget about
22  *      writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *      More scalable flush, from Andi Kleen
27  *
28  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30
31 /*
32  * We get here when we do something requiring a TLB invalidation
33  * but could not go invalidate all of the contexts.  We do the
34  * necessary invalidation by clearing out the 'ctx_id' which
35  * forces a TLB flush when the context is loaded.
36  */
37 void clear_asid_other(void)
38 {
39         u16 asid;
40
41         /*
42          * This is only expected to be set if we have disabled
43          * kernel _PAGE_GLOBAL pages.
44          */
45         if (!static_cpu_has(X86_FEATURE_PTI)) {
46                 WARN_ON_ONCE(1);
47                 return;
48         }
49
50         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
51                 /* Do not need to flush the current asid */
52                 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
53                         continue;
54                 /*
55                  * Make sure the next time we go to switch to
56                  * this asid, we do a flush:
57                  */
58                 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
59         }
60         this_cpu_write(cpu_tlbstate.invalidate_other, false);
61 }
62
63 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
64
65
66 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
67                             u16 *new_asid, bool *need_flush)
68 {
69         u16 asid;
70
71         if (!static_cpu_has(X86_FEATURE_PCID)) {
72                 *new_asid = 0;
73                 *need_flush = true;
74                 return;
75         }
76
77         if (this_cpu_read(cpu_tlbstate.invalidate_other))
78                 clear_asid_other();
79
80         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
81                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
82                     next->context.ctx_id)
83                         continue;
84
85                 *new_asid = asid;
86                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
87                                next_tlb_gen);
88                 return;
89         }
90
91         /*
92          * We don't currently own an ASID slot on this CPU.
93          * Allocate a slot.
94          */
95         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
96         if (*new_asid >= TLB_NR_DYN_ASIDS) {
97                 *new_asid = 0;
98                 this_cpu_write(cpu_tlbstate.next_asid, 1);
99         }
100         *need_flush = true;
101 }
102
103 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
104 {
105         unsigned long new_mm_cr3;
106
107         if (need_flush) {
108                 invalidate_user_asid(new_asid);
109                 new_mm_cr3 = build_cr3(pgdir, new_asid);
110         } else {
111                 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
112         }
113
114         /*
115          * Caution: many callers of this function expect
116          * that load_cr3() is serializing and orders TLB
117          * fills with respect to the mm_cpumask writes.
118          */
119         write_cr3(new_mm_cr3);
120 }
121
122 void leave_mm(int cpu)
123 {
124         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
125
126         /*
127          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
128          * If so, our callers still expect us to flush the TLB, but there
129          * aren't any user TLB entries in init_mm to worry about.
130          *
131          * This needs to happen before any other sanity checks due to
132          * intel_idle's shenanigans.
133          */
134         if (loaded_mm == &init_mm)
135                 return;
136
137         /* Warn if we're not lazy. */
138         WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
139
140         switch_mm(NULL, &init_mm, NULL);
141 }
142 EXPORT_SYMBOL_GPL(leave_mm);
143
144 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
145                struct task_struct *tsk)
146 {
147         unsigned long flags;
148
149         local_irq_save(flags);
150         switch_mm_irqs_off(prev, next, tsk);
151         local_irq_restore(flags);
152 }
153
154 static void sync_current_stack_to_mm(struct mm_struct *mm)
155 {
156         unsigned long sp = current_stack_pointer;
157         pgd_t *pgd = pgd_offset(mm, sp);
158
159         if (CONFIG_PGTABLE_LEVELS > 4) {
160                 if (unlikely(pgd_none(*pgd))) {
161                         pgd_t *pgd_ref = pgd_offset_k(sp);
162
163                         set_pgd(pgd, *pgd_ref);
164                 }
165         } else {
166                 /*
167                  * "pgd" is faked.  The top level entries are "p4d"s, so sync
168                  * the p4d.  This compiles to approximately the same code as
169                  * the 5-level case.
170                  */
171                 p4d_t *p4d = p4d_offset(pgd, sp);
172
173                 if (unlikely(p4d_none(*p4d))) {
174                         pgd_t *pgd_ref = pgd_offset_k(sp);
175                         p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
176
177                         set_p4d(p4d, *p4d_ref);
178                 }
179         }
180 }
181
182 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
183                         struct task_struct *tsk)
184 {
185         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
186         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
187         unsigned cpu = smp_processor_id();
188         u64 next_tlb_gen;
189
190         /*
191          * NB: The scheduler will call us with prev == next when switching
192          * from lazy TLB mode to normal mode if active_mm isn't changing.
193          * When this happens, we don't assume that CR3 (and hence
194          * cpu_tlbstate.loaded_mm) matches next.
195          *
196          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
197          */
198
199         /* We don't want flush_tlb_func_* to run concurrently with us. */
200         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
201                 WARN_ON_ONCE(!irqs_disabled());
202
203         /*
204          * Verify that CR3 is what we think it is.  This will catch
205          * hypothetical buggy code that directly switches to swapper_pg_dir
206          * without going through leave_mm() / switch_mm_irqs_off() or that
207          * does something like write_cr3(read_cr3_pa()).
208          *
209          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
210          * isn't free.
211          */
212 #ifdef CONFIG_DEBUG_VM
213         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
214                 /*
215                  * If we were to BUG here, we'd be very likely to kill
216                  * the system so hard that we don't see the call trace.
217                  * Try to recover instead by ignoring the error and doing
218                  * a global flush to minimize the chance of corruption.
219                  *
220                  * (This is far from being a fully correct recovery.
221                  *  Architecturally, the CPU could prefetch something
222                  *  back into an incorrect ASID slot and leave it there
223                  *  to cause trouble down the road.  It's better than
224                  *  nothing, though.)
225                  */
226                 __flush_tlb_all();
227         }
228 #endif
229         this_cpu_write(cpu_tlbstate.is_lazy, false);
230
231         if (real_prev == next) {
232                 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
233                            next->context.ctx_id);
234
235                 /*
236                  * We don't currently support having a real mm loaded without
237                  * our cpu set in mm_cpumask().  We have all the bookkeeping
238                  * in place to figure out whether we would need to flush
239                  * if our cpu were cleared in mm_cpumask(), but we don't
240                  * currently use it.
241                  */
242                 if (WARN_ON_ONCE(real_prev != &init_mm &&
243                                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
244                         cpumask_set_cpu(cpu, mm_cpumask(next));
245
246                 return;
247         } else {
248                 u16 new_asid;
249                 bool need_flush;
250
251                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
252                         /*
253                          * If our current stack is in vmalloc space and isn't
254                          * mapped in the new pgd, we'll double-fault.  Forcibly
255                          * map it.
256                          */
257                         sync_current_stack_to_mm(next);
258                 }
259
260                 /* Stop remote flushes for the previous mm */
261                 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
262                                 real_prev != &init_mm);
263                 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
264
265                 /*
266                  * Start remote flushes and then read tlb_gen.
267                  */
268                 cpumask_set_cpu(cpu, mm_cpumask(next));
269                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
270
271                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
272
273                 if (need_flush) {
274                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
275                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
276                         load_new_mm_cr3(next->pgd, new_asid, true);
277
278                         /*
279                          * NB: This gets called via leave_mm() in the idle path
280                          * where RCU functions differently.  Tracing normally
281                          * uses RCU, so we need to use the _rcuidle variant.
282                          *
283                          * (There is no good reason for this.  The idle code should
284                          *  be rearranged to call this before rcu_idle_enter().)
285                          */
286                         trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
287                 } else {
288                         /* The new ASID is already up to date. */
289                         load_new_mm_cr3(next->pgd, new_asid, false);
290
291                         /* See above wrt _rcuidle. */
292                         trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
293                 }
294
295                 this_cpu_write(cpu_tlbstate.loaded_mm, next);
296                 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
297         }
298
299         load_mm_cr4(next);
300         switch_ldt(real_prev, next);
301 }
302
303 /*
304  * Please ignore the name of this function.  It should be called
305  * switch_to_kernel_thread().
306  *
307  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
308  * kernel thread or other context without an mm.  Acceptable implementations
309  * include doing nothing whatsoever, switching to init_mm, or various clever
310  * lazy tricks to try to minimize TLB flushes.
311  *
312  * The scheduler reserves the right to call enter_lazy_tlb() several times
313  * in a row.  It will notify us that we're going back to a real mm by
314  * calling switch_mm_irqs_off().
315  */
316 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
317 {
318         if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
319                 return;
320
321         if (tlb_defer_switch_to_init_mm()) {
322                 /*
323                  * There's a significant optimization that may be possible
324                  * here.  We have accurate enough TLB flush tracking that we
325                  * don't need to maintain coherence of TLB per se when we're
326                  * lazy.  We do, however, need to maintain coherence of
327                  * paging-structure caches.  We could, in principle, leave our
328                  * old mm loaded and only switch to init_mm when
329                  * tlb_remove_page() happens.
330                  */
331                 this_cpu_write(cpu_tlbstate.is_lazy, true);
332         } else {
333                 switch_mm(NULL, &init_mm, NULL);
334         }
335 }
336
337 /*
338  * Call this when reinitializing a CPU.  It fixes the following potential
339  * problems:
340  *
341  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
342  *   because the CPU was taken down and came back up with CR3's PCID
343  *   bits clear.  CPU hotplug can do this.
344  *
345  * - The TLB contains junk in slots corresponding to inactive ASIDs.
346  *
347  * - The CPU went so far out to lunch that it may have missed a TLB
348  *   flush.
349  */
350 void initialize_tlbstate_and_flush(void)
351 {
352         int i;
353         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
354         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
355         unsigned long cr3 = __read_cr3();
356
357         /* Assert that CR3 already references the right mm. */
358         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
359
360         /*
361          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
362          * doesn't work like other CR4 bits because it can only be set from
363          * long mode.)
364          */
365         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
366                 !(cr4_read_shadow() & X86_CR4_PCIDE));
367
368         /* Force ASID 0 and force a TLB flush. */
369         write_cr3(build_cr3(mm->pgd, 0));
370
371         /* Reinitialize tlbstate. */
372         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
373         this_cpu_write(cpu_tlbstate.next_asid, 1);
374         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
375         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
376
377         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
378                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
379 }
380
381 /*
382  * flush_tlb_func_common()'s memory ordering requirement is that any
383  * TLB fills that happen after we flush the TLB are ordered after we
384  * read active_mm's tlb_gen.  We don't need any explicit barriers
385  * because all x86 flush operations are serializing and the
386  * atomic64_read operation won't be reordered by the compiler.
387  */
388 static void flush_tlb_func_common(const struct flush_tlb_info *f,
389                                   bool local, enum tlb_flush_reason reason)
390 {
391         /*
392          * We have three different tlb_gen values in here.  They are:
393          *
394          * - mm_tlb_gen:     the latest generation.
395          * - local_tlb_gen:  the generation that this CPU has already caught
396          *                   up to.
397          * - f->new_tlb_gen: the generation that the requester of the flush
398          *                   wants us to catch up to.
399          */
400         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
401         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
402         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
403         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
404
405         /* This code cannot presently handle being reentered. */
406         VM_WARN_ON(!irqs_disabled());
407
408         if (unlikely(loaded_mm == &init_mm))
409                 return;
410
411         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
412                    loaded_mm->context.ctx_id);
413
414         if (this_cpu_read(cpu_tlbstate.is_lazy)) {
415                 /*
416                  * We're in lazy mode.  We need to at least flush our
417                  * paging-structure cache to avoid speculatively reading
418                  * garbage into our TLB.  Since switching to init_mm is barely
419                  * slower than a minimal flush, just switch to init_mm.
420                  */
421                 switch_mm_irqs_off(NULL, &init_mm, NULL);
422                 return;
423         }
424
425         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
426                 /*
427                  * There's nothing to do: we're already up to date.  This can
428                  * happen if two concurrent flushes happen -- the first flush to
429                  * be handled can catch us all the way up, leaving no work for
430                  * the second flush.
431                  */
432                 trace_tlb_flush(reason, 0);
433                 return;
434         }
435
436         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
437         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
438
439         /*
440          * If we get to this point, we know that our TLB is out of date.
441          * This does not strictly imply that we need to flush (it's
442          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
443          * going to need to flush in the very near future, so we might
444          * as well get it over with.
445          *
446          * The only question is whether to do a full or partial flush.
447          *
448          * We do a partial flush if requested and two extra conditions
449          * are met:
450          *
451          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
452          *    we've always done all needed flushes to catch up to
453          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
454          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
455          *    us up to date for tlb_gen 3 is the partial flush we're
456          *    processing.
457          *
458          *    As an example of why this check is needed, suppose that there
459          *    are two concurrent flushes.  The first is a full flush that
460          *    changes context.tlb_gen from 1 to 2.  The second is a partial
461          *    flush that changes context.tlb_gen from 2 to 3.  If they get
462          *    processed on this CPU in reverse order, we'll see
463          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
464          *    If we were to use __flush_tlb_single() and set local_tlb_gen to
465          *    3, we'd be break the invariant: we'd update local_tlb_gen above
466          *    1 without the full flush that's needed for tlb_gen 2.
467          *
468          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
469          *    Partial TLB flushes are not all that much cheaper than full TLB
470          *    flushes, so it seems unlikely that it would be a performance win
471          *    to do a partial flush if that won't bring our TLB fully up to
472          *    date.  By doing a full flush instead, we can increase
473          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
474          *    avoid another flush in the very near future.
475          */
476         if (f->end != TLB_FLUSH_ALL &&
477             f->new_tlb_gen == local_tlb_gen + 1 &&
478             f->new_tlb_gen == mm_tlb_gen) {
479                 /* Partial flush */
480                 unsigned long addr;
481                 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
482
483                 addr = f->start;
484                 while (addr < f->end) {
485                         __flush_tlb_single(addr);
486                         addr += PAGE_SIZE;
487                 }
488                 if (local)
489                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
490                 trace_tlb_flush(reason, nr_pages);
491         } else {
492                 /* Full flush. */
493                 local_flush_tlb();
494                 if (local)
495                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
496                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
497         }
498
499         /* Both paths above update our state to mm_tlb_gen. */
500         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
501 }
502
503 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
504 {
505         const struct flush_tlb_info *f = info;
506
507         flush_tlb_func_common(f, true, reason);
508 }
509
510 static void flush_tlb_func_remote(void *info)
511 {
512         const struct flush_tlb_info *f = info;
513
514         inc_irq_stat(irq_tlb_count);
515
516         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
517                 return;
518
519         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
520         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
521 }
522
523 void native_flush_tlb_others(const struct cpumask *cpumask,
524                              const struct flush_tlb_info *info)
525 {
526         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
527         if (info->end == TLB_FLUSH_ALL)
528                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
529         else
530                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
531                                 (info->end - info->start) >> PAGE_SHIFT);
532
533         if (is_uv_system()) {
534                 /*
535                  * This whole special case is confused.  UV has a "Broadcast
536                  * Assist Unit", which seems to be a fancy way to send IPIs.
537                  * Back when x86 used an explicit TLB flush IPI, UV was
538                  * optimized to use its own mechanism.  These days, x86 uses
539                  * smp_call_function_many(), but UV still uses a manual IPI,
540                  * and that IPI's action is out of date -- it does a manual
541                  * flush instead of calling flush_tlb_func_remote().  This
542                  * means that the percpu tlb_gen variables won't be updated
543                  * and we'll do pointless flushes on future context switches.
544                  *
545                  * Rather than hooking native_flush_tlb_others() here, I think
546                  * that UV should be updated so that smp_call_function_many(),
547                  * etc, are optimal on UV.
548                  */
549                 unsigned int cpu;
550
551                 cpu = smp_processor_id();
552                 cpumask = uv_flush_tlb_others(cpumask, info);
553                 if (cpumask)
554                         smp_call_function_many(cpumask, flush_tlb_func_remote,
555                                                (void *)info, 1);
556                 return;
557         }
558         smp_call_function_many(cpumask, flush_tlb_func_remote,
559                                (void *)info, 1);
560 }
561
562 /*
563  * See Documentation/x86/tlb.txt for details.  We choose 33
564  * because it is large enough to cover the vast majority (at
565  * least 95%) of allocations, and is small enough that we are
566  * confident it will not cause too much overhead.  Each single
567  * flush is about 100 ns, so this caps the maximum overhead at
568  * _about_ 3,000 ns.
569  *
570  * This is in units of pages.
571  */
572 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
573
574 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
575                                 unsigned long end, unsigned long vmflag)
576 {
577         int cpu;
578
579         struct flush_tlb_info info = {
580                 .mm = mm,
581         };
582
583         cpu = get_cpu();
584
585         /* This is also a barrier that synchronizes with switch_mm(). */
586         info.new_tlb_gen = inc_mm_tlb_gen(mm);
587
588         /* Should we flush just the requested range? */
589         if ((end != TLB_FLUSH_ALL) &&
590             !(vmflag & VM_HUGETLB) &&
591             ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
592                 info.start = start;
593                 info.end = end;
594         } else {
595                 info.start = 0UL;
596                 info.end = TLB_FLUSH_ALL;
597         }
598
599         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
600                 VM_WARN_ON(irqs_disabled());
601                 local_irq_disable();
602                 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
603                 local_irq_enable();
604         }
605
606         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
607                 flush_tlb_others(mm_cpumask(mm), &info);
608
609         put_cpu();
610 }
611
612
613 static void do_flush_tlb_all(void *info)
614 {
615         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
616         __flush_tlb_all();
617 }
618
619 void flush_tlb_all(void)
620 {
621         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
622         on_each_cpu(do_flush_tlb_all, NULL, 1);
623 }
624
625 static void do_kernel_range_flush(void *info)
626 {
627         struct flush_tlb_info *f = info;
628         unsigned long addr;
629
630         /* flush range by one by one 'invlpg' */
631         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
632                 __flush_tlb_one(addr);
633 }
634
635 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
636 {
637
638         /* Balance as user space task's flush, a bit conservative */
639         if (end == TLB_FLUSH_ALL ||
640             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
641                 on_each_cpu(do_flush_tlb_all, NULL, 1);
642         } else {
643                 struct flush_tlb_info info;
644                 info.start = start;
645                 info.end = end;
646                 on_each_cpu(do_kernel_range_flush, &info, 1);
647         }
648 }
649
650 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
651 {
652         struct flush_tlb_info info = {
653                 .mm = NULL,
654                 .start = 0UL,
655                 .end = TLB_FLUSH_ALL,
656         };
657
658         int cpu = get_cpu();
659
660         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
661                 VM_WARN_ON(irqs_disabled());
662                 local_irq_disable();
663                 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
664                 local_irq_enable();
665         }
666
667         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
668                 flush_tlb_others(&batch->cpumask, &info);
669
670         cpumask_clear(&batch->cpumask);
671
672         put_cpu();
673 }
674
675 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
676                              size_t count, loff_t *ppos)
677 {
678         char buf[32];
679         unsigned int len;
680
681         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
682         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
683 }
684
685 static ssize_t tlbflush_write_file(struct file *file,
686                  const char __user *user_buf, size_t count, loff_t *ppos)
687 {
688         char buf[32];
689         ssize_t len;
690         int ceiling;
691
692         len = min(count, sizeof(buf) - 1);
693         if (copy_from_user(buf, user_buf, len))
694                 return -EFAULT;
695
696         buf[len] = '\0';
697         if (kstrtoint(buf, 0, &ceiling))
698                 return -EINVAL;
699
700         if (ceiling < 0)
701                 return -EINVAL;
702
703         tlb_single_page_flush_ceiling = ceiling;
704         return count;
705 }
706
707 static const struct file_operations fops_tlbflush = {
708         .read = tlbflush_read_file,
709         .write = tlbflush_write_file,
710         .llseek = default_llseek,
711 };
712
713 static int __init create_tlb_single_page_flush_ceiling(void)
714 {
715         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
716                             arch_debugfs_dir, NULL, &fops_tlbflush);
717         return 0;
718 }
719 late_initcall(create_tlb_single_page_flush_ceiling);