49d9778376d774c3d6f17eb47118176efb99b718
[sfrench/cifs-2.6.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18  *      TLB flushing, formerly SMP-only
19  *              c/o Linus Torvalds.
20  *
21  *      These mean you can really definitely utterly forget about
22  *      writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *      More scalable flush, from Andi Kleen
27  *
28  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30
31 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
32
33 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
34                             u16 *new_asid, bool *need_flush)
35 {
36         u16 asid;
37
38         if (!static_cpu_has(X86_FEATURE_PCID)) {
39                 *new_asid = 0;
40                 *need_flush = true;
41                 return;
42         }
43
44         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
45                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
46                     next->context.ctx_id)
47                         continue;
48
49                 *new_asid = asid;
50                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
51                                next_tlb_gen);
52                 return;
53         }
54
55         /*
56          * We don't currently own an ASID slot on this CPU.
57          * Allocate a slot.
58          */
59         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
60         if (*new_asid >= TLB_NR_DYN_ASIDS) {
61                 *new_asid = 0;
62                 this_cpu_write(cpu_tlbstate.next_asid, 1);
63         }
64         *need_flush = true;
65 }
66
67 void leave_mm(int cpu)
68 {
69         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
70
71         /*
72          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
73          * If so, our callers still expect us to flush the TLB, but there
74          * aren't any user TLB entries in init_mm to worry about.
75          *
76          * This needs to happen before any other sanity checks due to
77          * intel_idle's shenanigans.
78          */
79         if (loaded_mm == &init_mm)
80                 return;
81
82         /* Warn if we're not lazy. */
83         WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm)));
84
85         switch_mm(NULL, &init_mm, NULL);
86 }
87
88 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
89                struct task_struct *tsk)
90 {
91         unsigned long flags;
92
93         local_irq_save(flags);
94         switch_mm_irqs_off(prev, next, tsk);
95         local_irq_restore(flags);
96 }
97
98 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
99                         struct task_struct *tsk)
100 {
101         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
102         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
103         unsigned cpu = smp_processor_id();
104         u64 next_tlb_gen;
105
106         /*
107          * NB: The scheduler will call us with prev == next when switching
108          * from lazy TLB mode to normal mode if active_mm isn't changing.
109          * When this happens, we don't assume that CR3 (and hence
110          * cpu_tlbstate.loaded_mm) matches next.
111          *
112          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
113          */
114
115         /* We don't want flush_tlb_func_* to run concurrently with us. */
116         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
117                 WARN_ON_ONCE(!irqs_disabled());
118
119         /*
120          * Verify that CR3 is what we think it is.  This will catch
121          * hypothetical buggy code that directly switches to swapper_pg_dir
122          * without going through leave_mm() / switch_mm_irqs_off() or that
123          * does something like write_cr3(read_cr3_pa()).
124          *
125          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
126          * isn't free.
127          */
128 #ifdef CONFIG_DEBUG_VM
129         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev, prev_asid))) {
130                 /*
131                  * If we were to BUG here, we'd be very likely to kill
132                  * the system so hard that we don't see the call trace.
133                  * Try to recover instead by ignoring the error and doing
134                  * a global flush to minimize the chance of corruption.
135                  *
136                  * (This is far from being a fully correct recovery.
137                  *  Architecturally, the CPU could prefetch something
138                  *  back into an incorrect ASID slot and leave it there
139                  *  to cause trouble down the road.  It's better than
140                  *  nothing, though.)
141                  */
142                 __flush_tlb_all();
143         }
144 #endif
145
146         if (real_prev == next) {
147                 VM_BUG_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
148                           next->context.ctx_id);
149
150                 if (cpumask_test_cpu(cpu, mm_cpumask(next))) {
151                         /*
152                          * There's nothing to do: we weren't lazy, and we
153                          * aren't changing our mm.  We don't need to flush
154                          * anything, nor do we need to update CR3, CR4, or
155                          * LDTR.
156                          */
157                         return;
158                 }
159
160                 /* Resume remote flushes and then read tlb_gen. */
161                 cpumask_set_cpu(cpu, mm_cpumask(next));
162                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
163
164                 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) <
165                     next_tlb_gen) {
166                         /*
167                          * Ideally, we'd have a flush_tlb() variant that
168                          * takes the known CR3 value as input.  This would
169                          * be faster on Xen PV and on hypothetical CPUs
170                          * on which INVPCID is fast.
171                          */
172                         this_cpu_write(cpu_tlbstate.ctxs[prev_asid].tlb_gen,
173                                        next_tlb_gen);
174                         write_cr3(build_cr3(next, prev_asid));
175                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
176                                         TLB_FLUSH_ALL);
177                 }
178
179                 /*
180                  * We just exited lazy mode, which means that CR4 and/or LDTR
181                  * may be stale.  (Changes to the required CR4 and LDTR states
182                  * are not reflected in tlb_gen.)
183                  */
184         } else {
185                 u16 new_asid;
186                 bool need_flush;
187
188                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
189                         /*
190                          * If our current stack is in vmalloc space and isn't
191                          * mapped in the new pgd, we'll double-fault.  Forcibly
192                          * map it.
193                          */
194                         unsigned int index = pgd_index(current_stack_pointer);
195                         pgd_t *pgd = next->pgd + index;
196
197                         if (unlikely(pgd_none(*pgd)))
198                                 set_pgd(pgd, init_mm.pgd[index]);
199                 }
200
201                 /* Stop remote flushes for the previous mm */
202                 if (cpumask_test_cpu(cpu, mm_cpumask(real_prev)))
203                         cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
204
205                 VM_WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
206
207                 /*
208                  * Start remote flushes and then read tlb_gen.
209                  */
210                 cpumask_set_cpu(cpu, mm_cpumask(next));
211                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
212
213                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
214
215                 if (need_flush) {
216                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
217                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
218                         write_cr3(build_cr3(next, new_asid));
219                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
220                                         TLB_FLUSH_ALL);
221                 } else {
222                         /* The new ASID is already up to date. */
223                         write_cr3(build_cr3_noflush(next, new_asid));
224                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
225                 }
226
227                 this_cpu_write(cpu_tlbstate.loaded_mm, next);
228                 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
229         }
230
231         load_mm_cr4(next);
232         switch_ldt(real_prev, next);
233 }
234
235 /*
236  * Call this when reinitializing a CPU.  It fixes the following potential
237  * problems:
238  *
239  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
240  *   because the CPU was taken down and came back up with CR3's PCID
241  *   bits clear.  CPU hotplug can do this.
242  *
243  * - The TLB contains junk in slots corresponding to inactive ASIDs.
244  *
245  * - The CPU went so far out to lunch that it may have missed a TLB
246  *   flush.
247  */
248 void initialize_tlbstate_and_flush(void)
249 {
250         int i;
251         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
252         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
253         unsigned long cr3 = __read_cr3();
254
255         /* Assert that CR3 already references the right mm. */
256         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
257
258         /*
259          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
260          * doesn't work like other CR4 bits because it can only be set from
261          * long mode.)
262          */
263         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
264                 !(cr4_read_shadow() & X86_CR4_PCIDE));
265
266         /* Force ASID 0 and force a TLB flush. */
267         write_cr3(build_cr3(mm, 0));
268
269         /* Reinitialize tlbstate. */
270         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
271         this_cpu_write(cpu_tlbstate.next_asid, 1);
272         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
273         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
274
275         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
276                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
277 }
278
279 /*
280  * flush_tlb_func_common()'s memory ordering requirement is that any
281  * TLB fills that happen after we flush the TLB are ordered after we
282  * read active_mm's tlb_gen.  We don't need any explicit barriers
283  * because all x86 flush operations are serializing and the
284  * atomic64_read operation won't be reordered by the compiler.
285  */
286 static void flush_tlb_func_common(const struct flush_tlb_info *f,
287                                   bool local, enum tlb_flush_reason reason)
288 {
289         /*
290          * We have three different tlb_gen values in here.  They are:
291          *
292          * - mm_tlb_gen:     the latest generation.
293          * - local_tlb_gen:  the generation that this CPU has already caught
294          *                   up to.
295          * - f->new_tlb_gen: the generation that the requester of the flush
296          *                   wants us to catch up to.
297          */
298         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
299         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
300         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
301         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
302
303         /* This code cannot presently handle being reentered. */
304         VM_WARN_ON(!irqs_disabled());
305
306         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
307                    loaded_mm->context.ctx_id);
308
309         if (!cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm))) {
310                 /*
311                  * We're in lazy mode -- don't flush.  We can get here on
312                  * remote flushes due to races and on local flushes if a
313                  * kernel thread coincidentally flushes the mm it's lazily
314                  * still using.
315                  */
316                 return;
317         }
318
319         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
320                 /*
321                  * There's nothing to do: we're already up to date.  This can
322                  * happen if two concurrent flushes happen -- the first flush to
323                  * be handled can catch us all the way up, leaving no work for
324                  * the second flush.
325                  */
326                 trace_tlb_flush(reason, 0);
327                 return;
328         }
329
330         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
331         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
332
333         /*
334          * If we get to this point, we know that our TLB is out of date.
335          * This does not strictly imply that we need to flush (it's
336          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
337          * going to need to flush in the very near future, so we might
338          * as well get it over with.
339          *
340          * The only question is whether to do a full or partial flush.
341          *
342          * We do a partial flush if requested and two extra conditions
343          * are met:
344          *
345          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
346          *    we've always done all needed flushes to catch up to
347          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
348          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
349          *    us up to date for tlb_gen 3 is the partial flush we're
350          *    processing.
351          *
352          *    As an example of why this check is needed, suppose that there
353          *    are two concurrent flushes.  The first is a full flush that
354          *    changes context.tlb_gen from 1 to 2.  The second is a partial
355          *    flush that changes context.tlb_gen from 2 to 3.  If they get
356          *    processed on this CPU in reverse order, we'll see
357          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
358          *    If we were to use __flush_tlb_single() and set local_tlb_gen to
359          *    3, we'd be break the invariant: we'd update local_tlb_gen above
360          *    1 without the full flush that's needed for tlb_gen 2.
361          *
362          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
363          *    Partial TLB flushes are not all that much cheaper than full TLB
364          *    flushes, so it seems unlikely that it would be a performance win
365          *    to do a partial flush if that won't bring our TLB fully up to
366          *    date.  By doing a full flush instead, we can increase
367          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
368          *    avoid another flush in the very near future.
369          */
370         if (f->end != TLB_FLUSH_ALL &&
371             f->new_tlb_gen == local_tlb_gen + 1 &&
372             f->new_tlb_gen == mm_tlb_gen) {
373                 /* Partial flush */
374                 unsigned long addr;
375                 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
376
377                 addr = f->start;
378                 while (addr < f->end) {
379                         __flush_tlb_single(addr);
380                         addr += PAGE_SIZE;
381                 }
382                 if (local)
383                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
384                 trace_tlb_flush(reason, nr_pages);
385         } else {
386                 /* Full flush. */
387                 local_flush_tlb();
388                 if (local)
389                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
390                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
391         }
392
393         /* Both paths above update our state to mm_tlb_gen. */
394         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
395 }
396
397 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
398 {
399         const struct flush_tlb_info *f = info;
400
401         flush_tlb_func_common(f, true, reason);
402 }
403
404 static void flush_tlb_func_remote(void *info)
405 {
406         const struct flush_tlb_info *f = info;
407
408         inc_irq_stat(irq_tlb_count);
409
410         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
411                 return;
412
413         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
414         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
415 }
416
417 void native_flush_tlb_others(const struct cpumask *cpumask,
418                              const struct flush_tlb_info *info)
419 {
420         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
421         if (info->end == TLB_FLUSH_ALL)
422                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
423         else
424                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
425                                 (info->end - info->start) >> PAGE_SHIFT);
426
427         if (is_uv_system()) {
428                 /*
429                  * This whole special case is confused.  UV has a "Broadcast
430                  * Assist Unit", which seems to be a fancy way to send IPIs.
431                  * Back when x86 used an explicit TLB flush IPI, UV was
432                  * optimized to use its own mechanism.  These days, x86 uses
433                  * smp_call_function_many(), but UV still uses a manual IPI,
434                  * and that IPI's action is out of date -- it does a manual
435                  * flush instead of calling flush_tlb_func_remote().  This
436                  * means that the percpu tlb_gen variables won't be updated
437                  * and we'll do pointless flushes on future context switches.
438                  *
439                  * Rather than hooking native_flush_tlb_others() here, I think
440                  * that UV should be updated so that smp_call_function_many(),
441                  * etc, are optimal on UV.
442                  */
443                 unsigned int cpu;
444
445                 cpu = smp_processor_id();
446                 cpumask = uv_flush_tlb_others(cpumask, info);
447                 if (cpumask)
448                         smp_call_function_many(cpumask, flush_tlb_func_remote,
449                                                (void *)info, 1);
450                 return;
451         }
452         smp_call_function_many(cpumask, flush_tlb_func_remote,
453                                (void *)info, 1);
454 }
455
456 /*
457  * See Documentation/x86/tlb.txt for details.  We choose 33
458  * because it is large enough to cover the vast majority (at
459  * least 95%) of allocations, and is small enough that we are
460  * confident it will not cause too much overhead.  Each single
461  * flush is about 100 ns, so this caps the maximum overhead at
462  * _about_ 3,000 ns.
463  *
464  * This is in units of pages.
465  */
466 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
467
468 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
469                                 unsigned long end, unsigned long vmflag)
470 {
471         int cpu;
472
473         struct flush_tlb_info info = {
474                 .mm = mm,
475         };
476
477         cpu = get_cpu();
478
479         /* This is also a barrier that synchronizes with switch_mm(). */
480         info.new_tlb_gen = inc_mm_tlb_gen(mm);
481
482         /* Should we flush just the requested range? */
483         if ((end != TLB_FLUSH_ALL) &&
484             !(vmflag & VM_HUGETLB) &&
485             ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
486                 info.start = start;
487                 info.end = end;
488         } else {
489                 info.start = 0UL;
490                 info.end = TLB_FLUSH_ALL;
491         }
492
493         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
494                 VM_WARN_ON(irqs_disabled());
495                 local_irq_disable();
496                 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
497                 local_irq_enable();
498         }
499
500         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
501                 flush_tlb_others(mm_cpumask(mm), &info);
502
503         put_cpu();
504 }
505
506
507 static void do_flush_tlb_all(void *info)
508 {
509         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
510         __flush_tlb_all();
511 }
512
513 void flush_tlb_all(void)
514 {
515         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
516         on_each_cpu(do_flush_tlb_all, NULL, 1);
517 }
518
519 static void do_kernel_range_flush(void *info)
520 {
521         struct flush_tlb_info *f = info;
522         unsigned long addr;
523
524         /* flush range by one by one 'invlpg' */
525         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
526                 __flush_tlb_single(addr);
527 }
528
529 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
530 {
531
532         /* Balance as user space task's flush, a bit conservative */
533         if (end == TLB_FLUSH_ALL ||
534             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
535                 on_each_cpu(do_flush_tlb_all, NULL, 1);
536         } else {
537                 struct flush_tlb_info info;
538                 info.start = start;
539                 info.end = end;
540                 on_each_cpu(do_kernel_range_flush, &info, 1);
541         }
542 }
543
544 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
545 {
546         struct flush_tlb_info info = {
547                 .mm = NULL,
548                 .start = 0UL,
549                 .end = TLB_FLUSH_ALL,
550         };
551
552         int cpu = get_cpu();
553
554         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
555                 VM_WARN_ON(irqs_disabled());
556                 local_irq_disable();
557                 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
558                 local_irq_enable();
559         }
560
561         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
562                 flush_tlb_others(&batch->cpumask, &info);
563
564         cpumask_clear(&batch->cpumask);
565
566         put_cpu();
567 }
568
569 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
570                              size_t count, loff_t *ppos)
571 {
572         char buf[32];
573         unsigned int len;
574
575         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
576         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
577 }
578
579 static ssize_t tlbflush_write_file(struct file *file,
580                  const char __user *user_buf, size_t count, loff_t *ppos)
581 {
582         char buf[32];
583         ssize_t len;
584         int ceiling;
585
586         len = min(count, sizeof(buf) - 1);
587         if (copy_from_user(buf, user_buf, len))
588                 return -EFAULT;
589
590         buf[len] = '\0';
591         if (kstrtoint(buf, 0, &ceiling))
592                 return -EINVAL;
593
594         if (ceiling < 0)
595                 return -EINVAL;
596
597         tlb_single_page_flush_ceiling = ceiling;
598         return count;
599 }
600
601 static const struct file_operations fops_tlbflush = {
602         .read = tlbflush_read_file,
603         .write = tlbflush_write_file,
604         .llseek = default_llseek,
605 };
606
607 static int __init create_tlb_single_page_flush_ceiling(void)
608 {
609         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
610                             arch_debugfs_dir, NULL, &fops_tlbflush);
611         return 0;
612 }
613 late_initcall(create_tlb_single_page_flush_ceiling);