selftests: KVM: testing the local IRQs resets
[sfrench/cifs-2.6.git] / arch / x86 / mm / mpx.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * mpx.c - Memory Protection eXtensions
4  *
5  * Copyright (c) 2014, Intel Corporation.
6  * Qiaowei Ren <qiaowei.ren@intel.com>
7  * Dave Hansen <dave.hansen@intel.com>
8  */
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/mm_types.h>
12 #include <linux/mman.h>
13 #include <linux/syscalls.h>
14 #include <linux/sched/sysctl.h>
15
16 #include <asm/insn.h>
17 #include <asm/insn-eval.h>
18 #include <asm/mmu_context.h>
19 #include <asm/mpx.h>
20 #include <asm/processor.h>
21 #include <asm/fpu/internal.h>
22
23 #define CREATE_TRACE_POINTS
24 #include <asm/trace/mpx.h>
25
26 static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm)
27 {
28         if (is_64bit_mm(mm))
29                 return MPX_BD_SIZE_BYTES_64;
30         else
31                 return MPX_BD_SIZE_BYTES_32;
32 }
33
34 static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm)
35 {
36         if (is_64bit_mm(mm))
37                 return MPX_BT_SIZE_BYTES_64;
38         else
39                 return MPX_BT_SIZE_BYTES_32;
40 }
41
42 /*
43  * This is really a simplified "vm_mmap". it only handles MPX
44  * bounds tables (the bounds directory is user-allocated).
45  */
46 static unsigned long mpx_mmap(unsigned long len)
47 {
48         struct mm_struct *mm = current->mm;
49         unsigned long addr, populate;
50
51         /* Only bounds table can be allocated here */
52         if (len != mpx_bt_size_bytes(mm))
53                 return -EINVAL;
54
55         down_write(&mm->mmap_sem);
56         addr = do_mmap(NULL, 0, len, PROT_READ | PROT_WRITE,
57                        MAP_ANONYMOUS | MAP_PRIVATE, VM_MPX, 0, &populate, NULL);
58         up_write(&mm->mmap_sem);
59         if (populate)
60                 mm_populate(addr, populate);
61
62         return addr;
63 }
64
65 static int mpx_insn_decode(struct insn *insn,
66                            struct pt_regs *regs)
67 {
68         unsigned char buf[MAX_INSN_SIZE];
69         int x86_64 = !test_thread_flag(TIF_IA32);
70         int not_copied;
71         int nr_copied;
72
73         not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
74         nr_copied = sizeof(buf) - not_copied;
75         /*
76          * The decoder _should_ fail nicely if we pass it a short buffer.
77          * But, let's not depend on that implementation detail.  If we
78          * did not get anything, just error out now.
79          */
80         if (!nr_copied)
81                 return -EFAULT;
82         insn_init(insn, buf, nr_copied, x86_64);
83         insn_get_length(insn);
84         /*
85          * copy_from_user() tries to get as many bytes as we could see in
86          * the largest possible instruction.  If the instruction we are
87          * after is shorter than that _and_ we attempt to copy from
88          * something unreadable, we might get a short read.  This is OK
89          * as long as the read did not stop in the middle of the
90          * instruction.  Check to see if we got a partial instruction.
91          */
92         if (nr_copied < insn->length)
93                 return -EFAULT;
94
95         insn_get_opcode(insn);
96         /*
97          * We only _really_ need to decode bndcl/bndcn/bndcu
98          * Error out on anything else.
99          */
100         if (insn->opcode.bytes[0] != 0x0f)
101                 goto bad_opcode;
102         if ((insn->opcode.bytes[1] != 0x1a) &&
103             (insn->opcode.bytes[1] != 0x1b))
104                 goto bad_opcode;
105
106         return 0;
107 bad_opcode:
108         return -EINVAL;
109 }
110
111 /*
112  * If a bounds overflow occurs then a #BR is generated. This
113  * function decodes MPX instructions to get violation address
114  * and set this address into extended struct siginfo.
115  *
116  * Note that this is not a super precise way of doing this.
117  * Userspace could have, by the time we get here, written
118  * anything it wants in to the instructions.  We can not
119  * trust anything about it.  They might not be valid
120  * instructions or might encode invalid registers, etc...
121  */
122 int mpx_fault_info(struct mpx_fault_info *info, struct pt_regs *regs)
123 {
124         const struct mpx_bndreg_state *bndregs;
125         const struct mpx_bndreg *bndreg;
126         struct insn insn;
127         uint8_t bndregno;
128         int err;
129
130         err = mpx_insn_decode(&insn, regs);
131         if (err)
132                 goto err_out;
133
134         /*
135          * We know at this point that we are only dealing with
136          * MPX instructions.
137          */
138         insn_get_modrm(&insn);
139         bndregno = X86_MODRM_REG(insn.modrm.value);
140         if (bndregno > 3) {
141                 err = -EINVAL;
142                 goto err_out;
143         }
144         /* get bndregs field from current task's xsave area */
145         bndregs = get_xsave_field_ptr(XFEATURE_BNDREGS);
146         if (!bndregs) {
147                 err = -EINVAL;
148                 goto err_out;
149         }
150         /* now go select the individual register in the set of 4 */
151         bndreg = &bndregs->bndreg[bndregno];
152
153         /*
154          * The registers are always 64-bit, but the upper 32
155          * bits are ignored in 32-bit mode.  Also, note that the
156          * upper bounds are architecturally represented in 1's
157          * complement form.
158          *
159          * The 'unsigned long' cast is because the compiler
160          * complains when casting from integers to different-size
161          * pointers.
162          */
163         info->lower = (void __user *)(unsigned long)bndreg->lower_bound;
164         info->upper = (void __user *)(unsigned long)~bndreg->upper_bound;
165         info->addr  = insn_get_addr_ref(&insn, regs);
166
167         /*
168          * We were not able to extract an address from the instruction,
169          * probably because there was something invalid in it.
170          */
171         if (info->addr == (void __user *)-1) {
172                 err = -EINVAL;
173                 goto err_out;
174         }
175         trace_mpx_bounds_register_exception(info->addr, bndreg);
176         return 0;
177 err_out:
178         /* info might be NULL, but kfree() handles that */
179         return err;
180 }
181
182 static __user void *mpx_get_bounds_dir(void)
183 {
184         const struct mpx_bndcsr *bndcsr;
185
186         if (!cpu_feature_enabled(X86_FEATURE_MPX))
187                 return MPX_INVALID_BOUNDS_DIR;
188
189         /*
190          * The bounds directory pointer is stored in a register
191          * only accessible if we first do an xsave.
192          */
193         bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
194         if (!bndcsr)
195                 return MPX_INVALID_BOUNDS_DIR;
196
197         /*
198          * Make sure the register looks valid by checking the
199          * enable bit.
200          */
201         if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
202                 return MPX_INVALID_BOUNDS_DIR;
203
204         /*
205          * Lastly, mask off the low bits used for configuration
206          * flags, and return the address of the bounds table.
207          */
208         return (void __user *)(unsigned long)
209                 (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
210 }
211
212 int mpx_enable_management(void)
213 {
214         void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
215         struct mm_struct *mm = current->mm;
216         int ret = 0;
217
218         /*
219          * runtime in the userspace will be responsible for allocation of
220          * the bounds directory. Then, it will save the base of the bounds
221          * directory into XSAVE/XRSTOR Save Area and enable MPX through
222          * XRSTOR instruction.
223          *
224          * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
225          * expected to be relatively expensive. Storing the bounds
226          * directory here means that we do not have to do xsave in the
227          * unmap path; we can just use mm->context.bd_addr instead.
228          */
229         bd_base = mpx_get_bounds_dir();
230         down_write(&mm->mmap_sem);
231
232         /* MPX doesn't support addresses above 47 bits yet. */
233         if (find_vma(mm, DEFAULT_MAP_WINDOW)) {
234                 pr_warn_once("%s (%d): MPX cannot handle addresses "
235                                 "above 47-bits. Disabling.",
236                                 current->comm, current->pid);
237                 ret = -ENXIO;
238                 goto out;
239         }
240         mm->context.bd_addr = bd_base;
241         if (mm->context.bd_addr == MPX_INVALID_BOUNDS_DIR)
242                 ret = -ENXIO;
243 out:
244         up_write(&mm->mmap_sem);
245         return ret;
246 }
247
248 int mpx_disable_management(void)
249 {
250         struct mm_struct *mm = current->mm;
251
252         if (!cpu_feature_enabled(X86_FEATURE_MPX))
253                 return -ENXIO;
254
255         down_write(&mm->mmap_sem);
256         mm->context.bd_addr = MPX_INVALID_BOUNDS_DIR;
257         up_write(&mm->mmap_sem);
258         return 0;
259 }
260
261 static int mpx_cmpxchg_bd_entry(struct mm_struct *mm,
262                 unsigned long *curval,
263                 unsigned long __user *addr,
264                 unsigned long old_val, unsigned long new_val)
265 {
266         int ret;
267         /*
268          * user_atomic_cmpxchg_inatomic() actually uses sizeof()
269          * the pointer that we pass to it to figure out how much
270          * data to cmpxchg.  We have to be careful here not to
271          * pass a pointer to a 64-bit data type when we only want
272          * a 32-bit copy.
273          */
274         if (is_64bit_mm(mm)) {
275                 ret = user_atomic_cmpxchg_inatomic(curval,
276                                 addr, old_val, new_val);
277         } else {
278                 u32 uninitialized_var(curval_32);
279                 u32 old_val_32 = old_val;
280                 u32 new_val_32 = new_val;
281                 u32 __user *addr_32 = (u32 __user *)addr;
282
283                 ret = user_atomic_cmpxchg_inatomic(&curval_32,
284                                 addr_32, old_val_32, new_val_32);
285                 *curval = curval_32;
286         }
287         return ret;
288 }
289
290 /*
291  * With 32-bit mode, a bounds directory is 4MB, and the size of each
292  * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
293  * and the size of each bounds table is 4MB.
294  */
295 static int allocate_bt(struct mm_struct *mm, long __user *bd_entry)
296 {
297         unsigned long expected_old_val = 0;
298         unsigned long actual_old_val = 0;
299         unsigned long bt_addr;
300         unsigned long bd_new_entry;
301         int ret = 0;
302
303         /*
304          * Carve the virtual space out of userspace for the new
305          * bounds table:
306          */
307         bt_addr = mpx_mmap(mpx_bt_size_bytes(mm));
308         if (IS_ERR((void *)bt_addr))
309                 return PTR_ERR((void *)bt_addr);
310         /*
311          * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
312          */
313         bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
314
315         /*
316          * Go poke the address of the new bounds table in to the
317          * bounds directory entry out in userspace memory.  Note:
318          * we may race with another CPU instantiating the same table.
319          * In that case the cmpxchg will see an unexpected
320          * 'actual_old_val'.
321          *
322          * This can fault, but that's OK because we do not hold
323          * mmap_sem at this point, unlike some of the other part
324          * of the MPX code that have to pagefault_disable().
325          */
326         ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val, bd_entry,
327                                    expected_old_val, bd_new_entry);
328         if (ret)
329                 goto out_unmap;
330
331         /*
332          * The user_atomic_cmpxchg_inatomic() will only return nonzero
333          * for faults, *not* if the cmpxchg itself fails.  Now we must
334          * verify that the cmpxchg itself completed successfully.
335          */
336         /*
337          * We expected an empty 'expected_old_val', but instead found
338          * an apparently valid entry.  Assume we raced with another
339          * thread to instantiate this table and desclare succecss.
340          */
341         if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
342                 ret = 0;
343                 goto out_unmap;
344         }
345         /*
346          * We found a non-empty bd_entry but it did not have the
347          * VALID_FLAG set.  Return an error which will result in
348          * a SEGV since this probably means that somebody scribbled
349          * some invalid data in to a bounds table.
350          */
351         if (expected_old_val != actual_old_val) {
352                 ret = -EINVAL;
353                 goto out_unmap;
354         }
355         trace_mpx_new_bounds_table(bt_addr);
356         return 0;
357 out_unmap:
358         vm_munmap(bt_addr, mpx_bt_size_bytes(mm));
359         return ret;
360 }
361
362 /*
363  * When a BNDSTX instruction attempts to save bounds to a bounds
364  * table, it will first attempt to look up the table in the
365  * first-level bounds directory.  If it does not find a table in
366  * the directory, a #BR is generated and we get here in order to
367  * allocate a new table.
368  *
369  * With 32-bit mode, the size of BD is 4MB, and the size of each
370  * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
371  * and the size of each bound table is 4MB.
372  */
373 static int do_mpx_bt_fault(void)
374 {
375         unsigned long bd_entry, bd_base;
376         const struct mpx_bndcsr *bndcsr;
377         struct mm_struct *mm = current->mm;
378
379         bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
380         if (!bndcsr)
381                 return -EINVAL;
382         /*
383          * Mask off the preserve and enable bits
384          */
385         bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
386         /*
387          * The hardware provides the address of the missing or invalid
388          * entry via BNDSTATUS, so we don't have to go look it up.
389          */
390         bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
391         /*
392          * Make sure the directory entry is within where we think
393          * the directory is.
394          */
395         if ((bd_entry < bd_base) ||
396             (bd_entry >= bd_base + mpx_bd_size_bytes(mm)))
397                 return -EINVAL;
398
399         return allocate_bt(mm, (long __user *)bd_entry);
400 }
401
402 int mpx_handle_bd_fault(void)
403 {
404         /*
405          * Userspace never asked us to manage the bounds tables,
406          * so refuse to help.
407          */
408         if (!kernel_managing_mpx_tables(current->mm))
409                 return -EINVAL;
410
411         return do_mpx_bt_fault();
412 }
413
414 /*
415  * A thin wrapper around get_user_pages().  Returns 0 if the
416  * fault was resolved or -errno if not.
417  */
418 static int mpx_resolve_fault(long __user *addr, int write)
419 {
420         long gup_ret;
421         int nr_pages = 1;
422
423         gup_ret = get_user_pages((unsigned long)addr, nr_pages,
424                         write ? FOLL_WRITE : 0, NULL, NULL);
425         /*
426          * get_user_pages() returns number of pages gotten.
427          * 0 means we failed to fault in and get anything,
428          * probably because 'addr' is bad.
429          */
430         if (!gup_ret)
431                 return -EFAULT;
432         /* Other error, return it */
433         if (gup_ret < 0)
434                 return gup_ret;
435         /* must have gup'd a page and gup_ret>0, success */
436         return 0;
437 }
438
439 static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm,
440                                              unsigned long bd_entry)
441 {
442         unsigned long bt_addr = bd_entry;
443         int align_to_bytes;
444         /*
445          * Bit 0 in a bt_entry is always the valid bit.
446          */
447         bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG;
448         /*
449          * Tables are naturally aligned at 8-byte boundaries
450          * on 64-bit and 4-byte boundaries on 32-bit.  The
451          * documentation makes it appear that the low bits
452          * are ignored by the hardware, so we do the same.
453          */
454         if (is_64bit_mm(mm))
455                 align_to_bytes = 8;
456         else
457                 align_to_bytes = 4;
458         bt_addr &= ~(align_to_bytes-1);
459         return bt_addr;
460 }
461
462 /*
463  * We only want to do a 4-byte get_user() on 32-bit.  Otherwise,
464  * we might run off the end of the bounds table if we are on
465  * a 64-bit kernel and try to get 8 bytes.
466  */
467 static int get_user_bd_entry(struct mm_struct *mm, unsigned long *bd_entry_ret,
468                 long __user *bd_entry_ptr)
469 {
470         u32 bd_entry_32;
471         int ret;
472
473         if (is_64bit_mm(mm))
474                 return get_user(*bd_entry_ret, bd_entry_ptr);
475
476         /*
477          * Note that get_user() uses the type of the *pointer* to
478          * establish the size of the get, not the destination.
479          */
480         ret = get_user(bd_entry_32, (u32 __user *)bd_entry_ptr);
481         *bd_entry_ret = bd_entry_32;
482         return ret;
483 }
484
485 /*
486  * Get the base of bounds tables pointed by specific bounds
487  * directory entry.
488  */
489 static int get_bt_addr(struct mm_struct *mm,
490                         long __user *bd_entry_ptr,
491                         unsigned long *bt_addr_result)
492 {
493         int ret;
494         int valid_bit;
495         unsigned long bd_entry;
496         unsigned long bt_addr;
497
498         if (!access_ok((bd_entry_ptr), sizeof(*bd_entry_ptr)))
499                 return -EFAULT;
500
501         while (1) {
502                 int need_write = 0;
503
504                 pagefault_disable();
505                 ret = get_user_bd_entry(mm, &bd_entry, bd_entry_ptr);
506                 pagefault_enable();
507                 if (!ret)
508                         break;
509                 if (ret == -EFAULT)
510                         ret = mpx_resolve_fault(bd_entry_ptr, need_write);
511                 /*
512                  * If we could not resolve the fault, consider it
513                  * userspace's fault and error out.
514                  */
515                 if (ret)
516                         return ret;
517         }
518
519         valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG;
520         bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry);
521
522         /*
523          * When the kernel is managing bounds tables, a bounds directory
524          * entry will either have a valid address (plus the valid bit)
525          * *OR* be completely empty. If we see a !valid entry *and* some
526          * data in the address field, we know something is wrong. This
527          * -EINVAL return will cause a SIGSEGV.
528          */
529         if (!valid_bit && bt_addr)
530                 return -EINVAL;
531         /*
532          * Do we have an completely zeroed bt entry?  That is OK.  It
533          * just means there was no bounds table for this memory.  Make
534          * sure to distinguish this from -EINVAL, which will cause
535          * a SEGV.
536          */
537         if (!valid_bit)
538                 return -ENOENT;
539
540         *bt_addr_result = bt_addr;
541         return 0;
542 }
543
544 static inline int bt_entry_size_bytes(struct mm_struct *mm)
545 {
546         if (is_64bit_mm(mm))
547                 return MPX_BT_ENTRY_BYTES_64;
548         else
549                 return MPX_BT_ENTRY_BYTES_32;
550 }
551
552 /*
553  * Take a virtual address and turns it in to the offset in bytes
554  * inside of the bounds table where the bounds table entry
555  * controlling 'addr' can be found.
556  */
557 static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm,
558                 unsigned long addr)
559 {
560         unsigned long bt_table_nr_entries;
561         unsigned long offset = addr;
562
563         if (is_64bit_mm(mm)) {
564                 /* Bottom 3 bits are ignored on 64-bit */
565                 offset >>= 3;
566                 bt_table_nr_entries = MPX_BT_NR_ENTRIES_64;
567         } else {
568                 /* Bottom 2 bits are ignored on 32-bit */
569                 offset >>= 2;
570                 bt_table_nr_entries = MPX_BT_NR_ENTRIES_32;
571         }
572         /*
573          * We know the size of the table in to which we are
574          * indexing, and we have eliminated all the low bits
575          * which are ignored for indexing.
576          *
577          * Mask out all the high bits which we do not need
578          * to index in to the table.  Note that the tables
579          * are always powers of two so this gives us a proper
580          * mask.
581          */
582         offset &= (bt_table_nr_entries-1);
583         /*
584          * We now have an entry offset in terms of *entries* in
585          * the table.  We need to scale it back up to bytes.
586          */
587         offset *= bt_entry_size_bytes(mm);
588         return offset;
589 }
590
591 /*
592  * How much virtual address space does a single bounds
593  * directory entry cover?
594  *
595  * Note, we need a long long because 4GB doesn't fit in
596  * to a long on 32-bit.
597  */
598 static inline unsigned long bd_entry_virt_space(struct mm_struct *mm)
599 {
600         unsigned long long virt_space;
601         unsigned long long GB = (1ULL << 30);
602
603         /*
604          * This covers 32-bit emulation as well as 32-bit kernels
605          * running on 64-bit hardware.
606          */
607         if (!is_64bit_mm(mm))
608                 return (4ULL * GB) / MPX_BD_NR_ENTRIES_32;
609
610         /*
611          * 'x86_virt_bits' returns what the hardware is capable
612          * of, and returns the full >32-bit address space when
613          * running 32-bit kernels on 64-bit hardware.
614          */
615         virt_space = (1ULL << boot_cpu_data.x86_virt_bits);
616         return virt_space / MPX_BD_NR_ENTRIES_64;
617 }
618
619 /*
620  * Free the backing physical pages of bounds table 'bt_addr'.
621  * Assume start...end is within that bounds table.
622  */
623 static noinline int zap_bt_entries_mapping(struct mm_struct *mm,
624                 unsigned long bt_addr,
625                 unsigned long start_mapping, unsigned long end_mapping)
626 {
627         struct vm_area_struct *vma;
628         unsigned long addr, len;
629         unsigned long start;
630         unsigned long end;
631
632         /*
633          * if we 'end' on a boundary, the offset will be 0 which
634          * is not what we want.  Back it up a byte to get the
635          * last bt entry.  Then once we have the entry itself,
636          * move 'end' back up by the table entry size.
637          */
638         start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping);
639         end   = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1);
640         /*
641          * Move end back up by one entry.  Among other things
642          * this ensures that it remains page-aligned and does
643          * not screw up zap_page_range()
644          */
645         end += bt_entry_size_bytes(mm);
646
647         /*
648          * Find the first overlapping vma. If vma->vm_start > start, there
649          * will be a hole in the bounds table. This -EINVAL return will
650          * cause a SIGSEGV.
651          */
652         vma = find_vma(mm, start);
653         if (!vma || vma->vm_start > start)
654                 return -EINVAL;
655
656         /*
657          * A NUMA policy on a VM_MPX VMA could cause this bounds table to
658          * be split. So we need to look across the entire 'start -> end'
659          * range of this bounds table, find all of the VM_MPX VMAs, and
660          * zap only those.
661          */
662         addr = start;
663         while (vma && vma->vm_start < end) {
664                 /*
665                  * We followed a bounds directory entry down
666                  * here.  If we find a non-MPX VMA, that's bad,
667                  * so stop immediately and return an error.  This
668                  * probably results in a SIGSEGV.
669                  */
670                 if (!(vma->vm_flags & VM_MPX))
671                         return -EINVAL;
672
673                 len = min(vma->vm_end, end) - addr;
674                 zap_page_range(vma, addr, len);
675                 trace_mpx_unmap_zap(addr, addr+len);
676
677                 vma = vma->vm_next;
678                 addr = vma->vm_start;
679         }
680         return 0;
681 }
682
683 static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm,
684                 unsigned long addr)
685 {
686         /*
687          * There are several ways to derive the bd offsets.  We
688          * use the following approach here:
689          * 1. We know the size of the virtual address space
690          * 2. We know the number of entries in a bounds table
691          * 3. We know that each entry covers a fixed amount of
692          *    virtual address space.
693          * So, we can just divide the virtual address by the
694          * virtual space used by one entry to determine which
695          * entry "controls" the given virtual address.
696          */
697         if (is_64bit_mm(mm)) {
698                 int bd_entry_size = 8; /* 64-bit pointer */
699                 /*
700                  * Take the 64-bit addressing hole in to account.
701                  */
702                 addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1);
703                 return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
704         } else {
705                 int bd_entry_size = 4; /* 32-bit pointer */
706                 /*
707                  * 32-bit has no hole so this case needs no mask
708                  */
709                 return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
710         }
711         /*
712          * The two return calls above are exact copies.  If we
713          * pull out a single copy and put it in here, gcc won't
714          * realize that we're doing a power-of-2 divide and use
715          * shifts.  It uses a real divide.  If we put them up
716          * there, it manages to figure it out (gcc 4.8.3).
717          */
718 }
719
720 static int unmap_entire_bt(struct mm_struct *mm,
721                 long __user *bd_entry, unsigned long bt_addr)
722 {
723         unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
724         unsigned long uninitialized_var(actual_old_val);
725         int ret;
726
727         while (1) {
728                 int need_write = 1;
729                 unsigned long cleared_bd_entry = 0;
730
731                 pagefault_disable();
732                 ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,
733                                 bd_entry, expected_old_val, cleared_bd_entry);
734                 pagefault_enable();
735                 if (!ret)
736                         break;
737                 if (ret == -EFAULT)
738                         ret = mpx_resolve_fault(bd_entry, need_write);
739                 /*
740                  * If we could not resolve the fault, consider it
741                  * userspace's fault and error out.
742                  */
743                 if (ret)
744                         return ret;
745         }
746         /*
747          * The cmpxchg was performed, check the results.
748          */
749         if (actual_old_val != expected_old_val) {
750                 /*
751                  * Someone else raced with us to unmap the table.
752                  * That is OK, since we were both trying to do
753                  * the same thing.  Declare success.
754                  */
755                 if (!actual_old_val)
756                         return 0;
757                 /*
758                  * Something messed with the bounds directory
759                  * entry.  We hold mmap_sem for read or write
760                  * here, so it could not be a _new_ bounds table
761                  * that someone just allocated.  Something is
762                  * wrong, so pass up the error and SIGSEGV.
763                  */
764                 return -EINVAL;
765         }
766         /*
767          * Note, we are likely being called under do_munmap() already. To
768          * avoid recursion, do_munmap() will check whether it comes
769          * from one bounds table through VM_MPX flag.
770          */
771         return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm), NULL);
772 }
773
774 static int try_unmap_single_bt(struct mm_struct *mm,
775                unsigned long start, unsigned long end)
776 {
777         struct vm_area_struct *next;
778         struct vm_area_struct *prev;
779         /*
780          * "bta" == Bounds Table Area: the area controlled by the
781          * bounds table that we are unmapping.
782          */
783         unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1);
784         unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm);
785         unsigned long uninitialized_var(bt_addr);
786         void __user *bde_vaddr;
787         int ret;
788         /*
789          * We already unlinked the VMAs from the mm's rbtree so 'start'
790          * is guaranteed to be in a hole. This gets us the first VMA
791          * before the hole in to 'prev' and the next VMA after the hole
792          * in to 'next'.
793          */
794         next = find_vma_prev(mm, start, &prev);
795         /*
796          * Do not count other MPX bounds table VMAs as neighbors.
797          * Although theoretically possible, we do not allow bounds
798          * tables for bounds tables so our heads do not explode.
799          * If we count them as neighbors here, we may end up with
800          * lots of tables even though we have no actual table
801          * entries in use.
802          */
803         while (next && (next->vm_flags & VM_MPX))
804                 next = next->vm_next;
805         while (prev && (prev->vm_flags & VM_MPX))
806                 prev = prev->vm_prev;
807         /*
808          * We know 'start' and 'end' lie within an area controlled
809          * by a single bounds table.  See if there are any other
810          * VMAs controlled by that bounds table.  If there are not
811          * then we can "expand" the are we are unmapping to possibly
812          * cover the entire table.
813          */
814         next = find_vma_prev(mm, start, &prev);
815         if ((!prev || prev->vm_end <= bta_start_vaddr) &&
816             (!next || next->vm_start >= bta_end_vaddr)) {
817                 /*
818                  * No neighbor VMAs controlled by same bounds
819                  * table.  Try to unmap the whole thing
820                  */
821                 start = bta_start_vaddr;
822                 end = bta_end_vaddr;
823         }
824
825         bde_vaddr = mm->context.bd_addr + mpx_get_bd_entry_offset(mm, start);
826         ret = get_bt_addr(mm, bde_vaddr, &bt_addr);
827         /*
828          * No bounds table there, so nothing to unmap.
829          */
830         if (ret == -ENOENT) {
831                 ret = 0;
832                 return 0;
833         }
834         if (ret)
835                 return ret;
836         /*
837          * We are unmapping an entire table.  Either because the
838          * unmap that started this whole process was large enough
839          * to cover an entire table, or that the unmap was small
840          * but was the area covered by a bounds table.
841          */
842         if ((start == bta_start_vaddr) &&
843             (end == bta_end_vaddr))
844                 return unmap_entire_bt(mm, bde_vaddr, bt_addr);
845         return zap_bt_entries_mapping(mm, bt_addr, start, end);
846 }
847
848 static int mpx_unmap_tables(struct mm_struct *mm,
849                 unsigned long start, unsigned long end)
850 {
851         unsigned long one_unmap_start;
852         trace_mpx_unmap_search(start, end);
853
854         one_unmap_start = start;
855         while (one_unmap_start < end) {
856                 int ret;
857                 unsigned long next_unmap_start = ALIGN(one_unmap_start+1,
858                                                        bd_entry_virt_space(mm));
859                 unsigned long one_unmap_end = end;
860                 /*
861                  * if the end is beyond the current bounds table,
862                  * move it back so we only deal with a single one
863                  * at a time
864                  */
865                 if (one_unmap_end > next_unmap_start)
866                         one_unmap_end = next_unmap_start;
867                 ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end);
868                 if (ret)
869                         return ret;
870
871                 one_unmap_start = next_unmap_start;
872         }
873         return 0;
874 }
875
876 /*
877  * Free unused bounds tables covered in a virtual address region being
878  * munmap()ed. Assume end > start.
879  *
880  * This function will be called by do_munmap(), and the VMAs covering
881  * the virtual address region start...end have already been split if
882  * necessary, and the 'vma' is the first vma in this range (start -> end).
883  */
884 void mpx_notify_unmap(struct mm_struct *mm, unsigned long start,
885                       unsigned long end)
886 {
887         struct vm_area_struct *vma;
888         int ret;
889
890         /*
891          * Refuse to do anything unless userspace has asked
892          * the kernel to help manage the bounds tables,
893          */
894         if (!kernel_managing_mpx_tables(current->mm))
895                 return;
896         /*
897          * This will look across the entire 'start -> end' range,
898          * and find all of the non-VM_MPX VMAs.
899          *
900          * To avoid recursion, if a VM_MPX vma is found in the range
901          * (start->end), we will not continue follow-up work. This
902          * recursion represents having bounds tables for bounds tables,
903          * which should not occur normally. Being strict about it here
904          * helps ensure that we do not have an exploitable stack overflow.
905          */
906         vma = find_vma(mm, start);
907         while (vma && vma->vm_start < end) {
908                 if (vma->vm_flags & VM_MPX)
909                         return;
910                 vma = vma->vm_next;
911         }
912
913         ret = mpx_unmap_tables(mm, start, end);
914         if (ret)
915                 force_sig(SIGSEGV);
916 }
917
918 /* MPX cannot handle addresses above 47 bits yet. */
919 unsigned long mpx_unmapped_area_check(unsigned long addr, unsigned long len,
920                 unsigned long flags)
921 {
922         if (!kernel_managing_mpx_tables(current->mm))
923                 return addr;
924         if (addr + len <= DEFAULT_MAP_WINDOW)
925                 return addr;
926         if (flags & MAP_FIXED)
927                 return -ENOMEM;
928
929         /*
930          * Requested len is larger than the whole area we're allowed to map in.
931          * Resetting hinting address wouldn't do much good -- fail early.
932          */
933         if (len > DEFAULT_MAP_WINDOW)
934                 return -ENOMEM;
935
936         /* Look for unmap area within DEFAULT_MAP_WINDOW */
937         return 0;
938 }