Merge branch 'linux-4.12' of git://github.com/skeggsb/linux into drm-next
[sfrench/cifs-2.6.git] / arch / x86 / mm / kaslr.c
1 /*
2  * This file implements KASLR memory randomization for x86_64. It randomizes
3  * the virtual address space of kernel memory regions (physical memory
4  * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
5  * exploits relying on predictable kernel addresses.
6  *
7  * Entropy is generated using the KASLR early boot functions now shared in
8  * the lib directory (originally written by Kees Cook). Randomization is
9  * done on PGD & PUD page table levels to increase possible addresses. The
10  * physical memory mapping code was adapted to support PUD level virtual
11  * addresses. This implementation on the best configuration provides 30,000
12  * possible virtual addresses in average for each memory region. An additional
13  * low memory page is used to ensure each CPU can start with a PGD aligned
14  * virtual address (for realmode).
15  *
16  * The order of each memory region is not changed. The feature looks at
17  * the available space for the regions based on different configuration
18  * options and randomizes the base and space between each. The size of the
19  * physical memory mapping is the available physical memory.
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/random.h>
25
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
28 #include <asm/setup.h>
29 #include <asm/kaslr.h>
30
31 #include "mm_internal.h"
32
33 #define TB_SHIFT 40
34
35 /*
36  * Virtual address start and end range for randomization. The end changes base
37  * on configuration to have the highest amount of space for randomization.
38  * It increases the possible random position for each randomized region.
39  *
40  * You need to add an if/def entry if you introduce a new memory region
41  * compatible with KASLR. Your entry must be in logical order with memory
42  * layout. For example, ESPFIX is before EFI because its virtual address is
43  * before. You also need to add a BUILD_BUG_ON() in kernel_randomize_memory() to
44  * ensure that this order is correct and won't be changed.
45  */
46 static const unsigned long vaddr_start = __PAGE_OFFSET_BASE;
47
48 #if defined(CONFIG_X86_ESPFIX64)
49 static const unsigned long vaddr_end = ESPFIX_BASE_ADDR;
50 #elif defined(CONFIG_EFI)
51 static const unsigned long vaddr_end = EFI_VA_END;
52 #else
53 static const unsigned long vaddr_end = __START_KERNEL_map;
54 #endif
55
56 /* Default values */
57 unsigned long page_offset_base = __PAGE_OFFSET_BASE;
58 EXPORT_SYMBOL(page_offset_base);
59 unsigned long vmalloc_base = __VMALLOC_BASE;
60 EXPORT_SYMBOL(vmalloc_base);
61 unsigned long vmemmap_base = __VMEMMAP_BASE;
62 EXPORT_SYMBOL(vmemmap_base);
63
64 /*
65  * Memory regions randomized by KASLR (except modules that use a separate logic
66  * earlier during boot). The list is ordered based on virtual addresses. This
67  * order is kept after randomization.
68  */
69 static __initdata struct kaslr_memory_region {
70         unsigned long *base;
71         unsigned long size_tb;
72 } kaslr_regions[] = {
73         { &page_offset_base, 64/* Maximum */ },
74         { &vmalloc_base, VMALLOC_SIZE_TB },
75         { &vmemmap_base, 1 },
76 };
77
78 /* Get size in bytes used by the memory region */
79 static inline unsigned long get_padding(struct kaslr_memory_region *region)
80 {
81         return (region->size_tb << TB_SHIFT);
82 }
83
84 /*
85  * Apply no randomization if KASLR was disabled at boot or if KASAN
86  * is enabled. KASAN shadow mappings rely on regions being PGD aligned.
87  */
88 static inline bool kaslr_memory_enabled(void)
89 {
90         return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN);
91 }
92
93 /* Initialize base and padding for each memory region randomized with KASLR */
94 void __init kernel_randomize_memory(void)
95 {
96         size_t i;
97         unsigned long vaddr = vaddr_start;
98         unsigned long rand, memory_tb;
99         struct rnd_state rand_state;
100         unsigned long remain_entropy;
101
102         /*
103          * All these BUILD_BUG_ON checks ensures the memory layout is
104          * consistent with the vaddr_start/vaddr_end variables.
105          */
106         BUILD_BUG_ON(vaddr_start >= vaddr_end);
107         BUILD_BUG_ON(IS_ENABLED(CONFIG_X86_ESPFIX64) &&
108                      vaddr_end >= EFI_VA_END);
109         BUILD_BUG_ON((IS_ENABLED(CONFIG_X86_ESPFIX64) ||
110                       IS_ENABLED(CONFIG_EFI)) &&
111                      vaddr_end >= __START_KERNEL_map);
112         BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
113
114         if (!kaslr_memory_enabled())
115                 return;
116
117         /*
118          * Update Physical memory mapping to available and
119          * add padding if needed (especially for memory hotplug support).
120          */
121         BUG_ON(kaslr_regions[0].base != &page_offset_base);
122         memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
123                 CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
124
125         /* Adapt phyiscal memory region size based on available memory */
126         if (memory_tb < kaslr_regions[0].size_tb)
127                 kaslr_regions[0].size_tb = memory_tb;
128
129         /* Calculate entropy available between regions */
130         remain_entropy = vaddr_end - vaddr_start;
131         for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
132                 remain_entropy -= get_padding(&kaslr_regions[i]);
133
134         prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
135
136         for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
137                 unsigned long entropy;
138
139                 /*
140                  * Select a random virtual address using the extra entropy
141                  * available.
142                  */
143                 entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
144                 prandom_bytes_state(&rand_state, &rand, sizeof(rand));
145                 entropy = (rand % (entropy + 1)) & PUD_MASK;
146                 vaddr += entropy;
147                 *kaslr_regions[i].base = vaddr;
148
149                 /*
150                  * Jump the region and add a minimum padding based on
151                  * randomization alignment.
152                  */
153                 vaddr += get_padding(&kaslr_regions[i]);
154                 vaddr = round_up(vaddr + 1, PUD_SIZE);
155                 remain_entropy -= entropy;
156         }
157 }
158
159 /*
160  * Create PGD aligned trampoline table to allow real mode initialization
161  * of additional CPUs. Consume only 1 low memory page.
162  */
163 void __meminit init_trampoline(void)
164 {
165         unsigned long paddr, paddr_next;
166         pgd_t *pgd;
167         pud_t *pud_page, *pud_page_tramp;
168         int i;
169
170         if (!kaslr_memory_enabled()) {
171                 init_trampoline_default();
172                 return;
173         }
174
175         pud_page_tramp = alloc_low_page();
176
177         paddr = 0;
178         pgd = pgd_offset_k((unsigned long)__va(paddr));
179         pud_page = (pud_t *) pgd_page_vaddr(*pgd);
180
181         for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) {
182                 pud_t *pud, *pud_tramp;
183                 unsigned long vaddr = (unsigned long)__va(paddr);
184
185                 pud_tramp = pud_page_tramp + pud_index(paddr);
186                 pud = pud_page + pud_index(vaddr);
187                 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
188
189                 *pud_tramp = *pud;
190         }
191
192         set_pgd(&trampoline_pgd_entry,
193                 __pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
194 }