Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livep...
[sfrench/cifs-2.6.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h>      /* for max_low_pfn */
7 #include <linux/swapfile.h>
8 #include <linux/swapops.h>
9
10 #include <asm/set_memory.h>
11 #include <asm/e820/api.h>
12 #include <asm/init.h>
13 #include <asm/page.h>
14 #include <asm/page_types.h>
15 #include <asm/sections.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/tlb.h>
19 #include <asm/proto.h>
20 #include <asm/dma.h>            /* for MAX_DMA_PFN */
21 #include <asm/microcode.h>
22 #include <asm/kaslr.h>
23 #include <asm/hypervisor.h>
24 #include <asm/cpufeature.h>
25 #include <asm/pti.h>
26
27 /*
28  * We need to define the tracepoints somewhere, and tlb.c
29  * is only compied when SMP=y.
30  */
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/tlb.h>
33
34 #include "mm_internal.h"
35
36 /*
37  * Tables translating between page_cache_type_t and pte encoding.
38  *
39  * The default values are defined statically as minimal supported mode;
40  * WC and WT fall back to UC-.  pat_init() updates these values to support
41  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
42  * for the details.  Note, __early_ioremap() used during early boot-time
43  * takes pgprot_t (pte encoding) and does not use these tables.
44  *
45  *   Index into __cachemode2pte_tbl[] is the cachemode.
46  *
47  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
48  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
49  */
50 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
51         [_PAGE_CACHE_MODE_WB      ]     = 0         | 0        ,
52         [_PAGE_CACHE_MODE_WC      ]     = 0         | _PAGE_PCD,
53         [_PAGE_CACHE_MODE_UC_MINUS]     = 0         | _PAGE_PCD,
54         [_PAGE_CACHE_MODE_UC      ]     = _PAGE_PWT | _PAGE_PCD,
55         [_PAGE_CACHE_MODE_WT      ]     = 0         | _PAGE_PCD,
56         [_PAGE_CACHE_MODE_WP      ]     = 0         | _PAGE_PCD,
57 };
58 EXPORT_SYMBOL(__cachemode2pte_tbl);
59
60 uint8_t __pte2cachemode_tbl[8] = {
61         [__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
62         [__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
63         [__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
64         [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
65         [__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
66         [__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
67         [__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
68         [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
69 };
70 EXPORT_SYMBOL(__pte2cachemode_tbl);
71
72 static unsigned long __initdata pgt_buf_start;
73 static unsigned long __initdata pgt_buf_end;
74 static unsigned long __initdata pgt_buf_top;
75
76 static unsigned long min_pfn_mapped;
77
78 static bool __initdata can_use_brk_pgt = true;
79
80 /*
81  * Pages returned are already directly mapped.
82  *
83  * Changing that is likely to break Xen, see commit:
84  *
85  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
86  *
87  * for detailed information.
88  */
89 __ref void *alloc_low_pages(unsigned int num)
90 {
91         unsigned long pfn;
92         int i;
93
94         if (after_bootmem) {
95                 unsigned int order;
96
97                 order = get_order((unsigned long)num << PAGE_SHIFT);
98                 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
99         }
100
101         if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
102                 unsigned long ret;
103                 if (min_pfn_mapped >= max_pfn_mapped)
104                         panic("alloc_low_pages: ran out of memory");
105                 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
106                                         max_pfn_mapped << PAGE_SHIFT,
107                                         PAGE_SIZE * num , PAGE_SIZE);
108                 if (!ret)
109                         panic("alloc_low_pages: can not alloc memory");
110                 memblock_reserve(ret, PAGE_SIZE * num);
111                 pfn = ret >> PAGE_SHIFT;
112         } else {
113                 pfn = pgt_buf_end;
114                 pgt_buf_end += num;
115                 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
116                         pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
117         }
118
119         for (i = 0; i < num; i++) {
120                 void *adr;
121
122                 adr = __va((pfn + i) << PAGE_SHIFT);
123                 clear_page(adr);
124         }
125
126         return __va(pfn << PAGE_SHIFT);
127 }
128
129 /*
130  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
131  * With KASLR memory randomization, depending on the machine e820 memory
132  * and the PUD alignment. We may need twice more pages when KASLR memory
133  * randomization is enabled.
134  */
135 #ifndef CONFIG_RANDOMIZE_MEMORY
136 #define INIT_PGD_PAGE_COUNT      6
137 #else
138 #define INIT_PGD_PAGE_COUNT      12
139 #endif
140 #define INIT_PGT_BUF_SIZE       (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
141 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
142 void  __init early_alloc_pgt_buf(void)
143 {
144         unsigned long tables = INIT_PGT_BUF_SIZE;
145         phys_addr_t base;
146
147         base = __pa(extend_brk(tables, PAGE_SIZE));
148
149         pgt_buf_start = base >> PAGE_SHIFT;
150         pgt_buf_end = pgt_buf_start;
151         pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
152 }
153
154 int after_bootmem;
155
156 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
157
158 struct map_range {
159         unsigned long start;
160         unsigned long end;
161         unsigned page_size_mask;
162 };
163
164 static int page_size_mask;
165
166 static void __init probe_page_size_mask(void)
167 {
168         /*
169          * For pagealloc debugging, identity mapping will use small pages.
170          * This will simplify cpa(), which otherwise needs to support splitting
171          * large pages into small in interrupt context, etc.
172          */
173         if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
174                 page_size_mask |= 1 << PG_LEVEL_2M;
175         else
176                 direct_gbpages = 0;
177
178         /* Enable PSE if available */
179         if (boot_cpu_has(X86_FEATURE_PSE))
180                 cr4_set_bits_and_update_boot(X86_CR4_PSE);
181
182         /* Enable PGE if available */
183         __supported_pte_mask &= ~_PAGE_GLOBAL;
184         if (boot_cpu_has(X86_FEATURE_PGE)) {
185                 cr4_set_bits_and_update_boot(X86_CR4_PGE);
186                 __supported_pte_mask |= _PAGE_GLOBAL;
187         }
188
189         /* By the default is everything supported: */
190         __default_kernel_pte_mask = __supported_pte_mask;
191         /* Except when with PTI where the kernel is mostly non-Global: */
192         if (cpu_feature_enabled(X86_FEATURE_PTI))
193                 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
194
195         /* Enable 1 GB linear kernel mappings if available: */
196         if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
197                 printk(KERN_INFO "Using GB pages for direct mapping\n");
198                 page_size_mask |= 1 << PG_LEVEL_1G;
199         } else {
200                 direct_gbpages = 0;
201         }
202 }
203
204 static void setup_pcid(void)
205 {
206         if (!IS_ENABLED(CONFIG_X86_64))
207                 return;
208
209         if (!boot_cpu_has(X86_FEATURE_PCID))
210                 return;
211
212         if (boot_cpu_has(X86_FEATURE_PGE)) {
213                 /*
214                  * This can't be cr4_set_bits_and_update_boot() -- the
215                  * trampoline code can't handle CR4.PCIDE and it wouldn't
216                  * do any good anyway.  Despite the name,
217                  * cr4_set_bits_and_update_boot() doesn't actually cause
218                  * the bits in question to remain set all the way through
219                  * the secondary boot asm.
220                  *
221                  * Instead, we brute-force it and set CR4.PCIDE manually in
222                  * start_secondary().
223                  */
224                 cr4_set_bits(X86_CR4_PCIDE);
225
226                 /*
227                  * INVPCID's single-context modes (2/3) only work if we set
228                  * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
229                  * on systems that have X86_CR4_PCIDE clear, or that have
230                  * no INVPCID support at all.
231                  */
232                 if (boot_cpu_has(X86_FEATURE_INVPCID))
233                         setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
234         } else {
235                 /*
236                  * flush_tlb_all(), as currently implemented, won't work if
237                  * PCID is on but PGE is not.  Since that combination
238                  * doesn't exist on real hardware, there's no reason to try
239                  * to fully support it, but it's polite to avoid corrupting
240                  * data if we're on an improperly configured VM.
241                  */
242                 setup_clear_cpu_cap(X86_FEATURE_PCID);
243         }
244 }
245
246 #ifdef CONFIG_X86_32
247 #define NR_RANGE_MR 3
248 #else /* CONFIG_X86_64 */
249 #define NR_RANGE_MR 5
250 #endif
251
252 static int __meminit save_mr(struct map_range *mr, int nr_range,
253                              unsigned long start_pfn, unsigned long end_pfn,
254                              unsigned long page_size_mask)
255 {
256         if (start_pfn < end_pfn) {
257                 if (nr_range >= NR_RANGE_MR)
258                         panic("run out of range for init_memory_mapping\n");
259                 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
260                 mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
261                 mr[nr_range].page_size_mask = page_size_mask;
262                 nr_range++;
263         }
264
265         return nr_range;
266 }
267
268 /*
269  * adjust the page_size_mask for small range to go with
270  *      big page size instead small one if nearby are ram too.
271  */
272 static void __ref adjust_range_page_size_mask(struct map_range *mr,
273                                                          int nr_range)
274 {
275         int i;
276
277         for (i = 0; i < nr_range; i++) {
278                 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
279                     !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
280                         unsigned long start = round_down(mr[i].start, PMD_SIZE);
281                         unsigned long end = round_up(mr[i].end, PMD_SIZE);
282
283 #ifdef CONFIG_X86_32
284                         if ((end >> PAGE_SHIFT) > max_low_pfn)
285                                 continue;
286 #endif
287
288                         if (memblock_is_region_memory(start, end - start))
289                                 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
290                 }
291                 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
292                     !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
293                         unsigned long start = round_down(mr[i].start, PUD_SIZE);
294                         unsigned long end = round_up(mr[i].end, PUD_SIZE);
295
296                         if (memblock_is_region_memory(start, end - start))
297                                 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
298                 }
299         }
300 }
301
302 static const char *page_size_string(struct map_range *mr)
303 {
304         static const char str_1g[] = "1G";
305         static const char str_2m[] = "2M";
306         static const char str_4m[] = "4M";
307         static const char str_4k[] = "4k";
308
309         if (mr->page_size_mask & (1<<PG_LEVEL_1G))
310                 return str_1g;
311         /*
312          * 32-bit without PAE has a 4M large page size.
313          * PG_LEVEL_2M is misnamed, but we can at least
314          * print out the right size in the string.
315          */
316         if (IS_ENABLED(CONFIG_X86_32) &&
317             !IS_ENABLED(CONFIG_X86_PAE) &&
318             mr->page_size_mask & (1<<PG_LEVEL_2M))
319                 return str_4m;
320
321         if (mr->page_size_mask & (1<<PG_LEVEL_2M))
322                 return str_2m;
323
324         return str_4k;
325 }
326
327 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
328                                      unsigned long start,
329                                      unsigned long end)
330 {
331         unsigned long start_pfn, end_pfn, limit_pfn;
332         unsigned long pfn;
333         int i;
334
335         limit_pfn = PFN_DOWN(end);
336
337         /* head if not big page alignment ? */
338         pfn = start_pfn = PFN_DOWN(start);
339 #ifdef CONFIG_X86_32
340         /*
341          * Don't use a large page for the first 2/4MB of memory
342          * because there are often fixed size MTRRs in there
343          * and overlapping MTRRs into large pages can cause
344          * slowdowns.
345          */
346         if (pfn == 0)
347                 end_pfn = PFN_DOWN(PMD_SIZE);
348         else
349                 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
350 #else /* CONFIG_X86_64 */
351         end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
352 #endif
353         if (end_pfn > limit_pfn)
354                 end_pfn = limit_pfn;
355         if (start_pfn < end_pfn) {
356                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
357                 pfn = end_pfn;
358         }
359
360         /* big page (2M) range */
361         start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
362 #ifdef CONFIG_X86_32
363         end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
364 #else /* CONFIG_X86_64 */
365         end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
366         if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
367                 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
368 #endif
369
370         if (start_pfn < end_pfn) {
371                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
372                                 page_size_mask & (1<<PG_LEVEL_2M));
373                 pfn = end_pfn;
374         }
375
376 #ifdef CONFIG_X86_64
377         /* big page (1G) range */
378         start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
379         end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
380         if (start_pfn < end_pfn) {
381                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
382                                 page_size_mask &
383                                  ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
384                 pfn = end_pfn;
385         }
386
387         /* tail is not big page (1G) alignment */
388         start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
389         end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
390         if (start_pfn < end_pfn) {
391                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
392                                 page_size_mask & (1<<PG_LEVEL_2M));
393                 pfn = end_pfn;
394         }
395 #endif
396
397         /* tail is not big page (2M) alignment */
398         start_pfn = pfn;
399         end_pfn = limit_pfn;
400         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
401
402         if (!after_bootmem)
403                 adjust_range_page_size_mask(mr, nr_range);
404
405         /* try to merge same page size and continuous */
406         for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
407                 unsigned long old_start;
408                 if (mr[i].end != mr[i+1].start ||
409                     mr[i].page_size_mask != mr[i+1].page_size_mask)
410                         continue;
411                 /* move it */
412                 old_start = mr[i].start;
413                 memmove(&mr[i], &mr[i+1],
414                         (nr_range - 1 - i) * sizeof(struct map_range));
415                 mr[i--].start = old_start;
416                 nr_range--;
417         }
418
419         for (i = 0; i < nr_range; i++)
420                 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
421                                 mr[i].start, mr[i].end - 1,
422                                 page_size_string(&mr[i]));
423
424         return nr_range;
425 }
426
427 struct range pfn_mapped[E820_MAX_ENTRIES];
428 int nr_pfn_mapped;
429
430 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
431 {
432         nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
433                                              nr_pfn_mapped, start_pfn, end_pfn);
434         nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
435
436         max_pfn_mapped = max(max_pfn_mapped, end_pfn);
437
438         if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
439                 max_low_pfn_mapped = max(max_low_pfn_mapped,
440                                          min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
441 }
442
443 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
444 {
445         int i;
446
447         for (i = 0; i < nr_pfn_mapped; i++)
448                 if ((start_pfn >= pfn_mapped[i].start) &&
449                     (end_pfn <= pfn_mapped[i].end))
450                         return true;
451
452         return false;
453 }
454
455 /*
456  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
457  * This runs before bootmem is initialized and gets pages directly from
458  * the physical memory. To access them they are temporarily mapped.
459  */
460 unsigned long __ref init_memory_mapping(unsigned long start,
461                                                unsigned long end)
462 {
463         struct map_range mr[NR_RANGE_MR];
464         unsigned long ret = 0;
465         int nr_range, i;
466
467         pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
468                start, end - 1);
469
470         memset(mr, 0, sizeof(mr));
471         nr_range = split_mem_range(mr, 0, start, end);
472
473         for (i = 0; i < nr_range; i++)
474                 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
475                                                    mr[i].page_size_mask);
476
477         add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
478
479         return ret >> PAGE_SHIFT;
480 }
481
482 /*
483  * We need to iterate through the E820 memory map and create direct mappings
484  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
485  * create direct mappings for all pfns from [0 to max_low_pfn) and
486  * [4GB to max_pfn) because of possible memory holes in high addresses
487  * that cannot be marked as UC by fixed/variable range MTRRs.
488  * Depending on the alignment of E820 ranges, this may possibly result
489  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
490  *
491  * init_mem_mapping() calls init_range_memory_mapping() with big range.
492  * That range would have hole in the middle or ends, and only ram parts
493  * will be mapped in init_range_memory_mapping().
494  */
495 static unsigned long __init init_range_memory_mapping(
496                                            unsigned long r_start,
497                                            unsigned long r_end)
498 {
499         unsigned long start_pfn, end_pfn;
500         unsigned long mapped_ram_size = 0;
501         int i;
502
503         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
504                 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
505                 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
506                 if (start >= end)
507                         continue;
508
509                 /*
510                  * if it is overlapping with brk pgt, we need to
511                  * alloc pgt buf from memblock instead.
512                  */
513                 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
514                                     min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
515                 init_memory_mapping(start, end);
516                 mapped_ram_size += end - start;
517                 can_use_brk_pgt = true;
518         }
519
520         return mapped_ram_size;
521 }
522
523 static unsigned long __init get_new_step_size(unsigned long step_size)
524 {
525         /*
526          * Initial mapped size is PMD_SIZE (2M).
527          * We can not set step_size to be PUD_SIZE (1G) yet.
528          * In worse case, when we cross the 1G boundary, and
529          * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
530          * to map 1G range with PTE. Hence we use one less than the
531          * difference of page table level shifts.
532          *
533          * Don't need to worry about overflow in the top-down case, on 32bit,
534          * when step_size is 0, round_down() returns 0 for start, and that
535          * turns it into 0x100000000ULL.
536          * In the bottom-up case, round_up(x, 0) returns 0 though too, which
537          * needs to be taken into consideration by the code below.
538          */
539         return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
540 }
541
542 /**
543  * memory_map_top_down - Map [map_start, map_end) top down
544  * @map_start: start address of the target memory range
545  * @map_end: end address of the target memory range
546  *
547  * This function will setup direct mapping for memory range
548  * [map_start, map_end) in top-down. That said, the page tables
549  * will be allocated at the end of the memory, and we map the
550  * memory in top-down.
551  */
552 static void __init memory_map_top_down(unsigned long map_start,
553                                        unsigned long map_end)
554 {
555         unsigned long real_end, start, last_start;
556         unsigned long step_size;
557         unsigned long addr;
558         unsigned long mapped_ram_size = 0;
559
560         /* xen has big range in reserved near end of ram, skip it at first.*/
561         addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
562         real_end = addr + PMD_SIZE;
563
564         /* step_size need to be small so pgt_buf from BRK could cover it */
565         step_size = PMD_SIZE;
566         max_pfn_mapped = 0; /* will get exact value next */
567         min_pfn_mapped = real_end >> PAGE_SHIFT;
568         last_start = start = real_end;
569
570         /*
571          * We start from the top (end of memory) and go to the bottom.
572          * The memblock_find_in_range() gets us a block of RAM from the
573          * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
574          * for page table.
575          */
576         while (last_start > map_start) {
577                 if (last_start > step_size) {
578                         start = round_down(last_start - 1, step_size);
579                         if (start < map_start)
580                                 start = map_start;
581                 } else
582                         start = map_start;
583                 mapped_ram_size += init_range_memory_mapping(start,
584                                                         last_start);
585                 last_start = start;
586                 min_pfn_mapped = last_start >> PAGE_SHIFT;
587                 if (mapped_ram_size >= step_size)
588                         step_size = get_new_step_size(step_size);
589         }
590
591         if (real_end < map_end)
592                 init_range_memory_mapping(real_end, map_end);
593 }
594
595 /**
596  * memory_map_bottom_up - Map [map_start, map_end) bottom up
597  * @map_start: start address of the target memory range
598  * @map_end: end address of the target memory range
599  *
600  * This function will setup direct mapping for memory range
601  * [map_start, map_end) in bottom-up. Since we have limited the
602  * bottom-up allocation above the kernel, the page tables will
603  * be allocated just above the kernel and we map the memory
604  * in [map_start, map_end) in bottom-up.
605  */
606 static void __init memory_map_bottom_up(unsigned long map_start,
607                                         unsigned long map_end)
608 {
609         unsigned long next, start;
610         unsigned long mapped_ram_size = 0;
611         /* step_size need to be small so pgt_buf from BRK could cover it */
612         unsigned long step_size = PMD_SIZE;
613
614         start = map_start;
615         min_pfn_mapped = start >> PAGE_SHIFT;
616
617         /*
618          * We start from the bottom (@map_start) and go to the top (@map_end).
619          * The memblock_find_in_range() gets us a block of RAM from the
620          * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
621          * for page table.
622          */
623         while (start < map_end) {
624                 if (step_size && map_end - start > step_size) {
625                         next = round_up(start + 1, step_size);
626                         if (next > map_end)
627                                 next = map_end;
628                 } else {
629                         next = map_end;
630                 }
631
632                 mapped_ram_size += init_range_memory_mapping(start, next);
633                 start = next;
634
635                 if (mapped_ram_size >= step_size)
636                         step_size = get_new_step_size(step_size);
637         }
638 }
639
640 void __init init_mem_mapping(void)
641 {
642         unsigned long end;
643
644         pti_check_boottime_disable();
645         probe_page_size_mask();
646         setup_pcid();
647
648 #ifdef CONFIG_X86_64
649         end = max_pfn << PAGE_SHIFT;
650 #else
651         end = max_low_pfn << PAGE_SHIFT;
652 #endif
653
654         /* the ISA range is always mapped regardless of memory holes */
655         init_memory_mapping(0, ISA_END_ADDRESS);
656
657         /* Init the trampoline, possibly with KASLR memory offset */
658         init_trampoline();
659
660         /*
661          * If the allocation is in bottom-up direction, we setup direct mapping
662          * in bottom-up, otherwise we setup direct mapping in top-down.
663          */
664         if (memblock_bottom_up()) {
665                 unsigned long kernel_end = __pa_symbol(_end);
666
667                 /*
668                  * we need two separate calls here. This is because we want to
669                  * allocate page tables above the kernel. So we first map
670                  * [kernel_end, end) to make memory above the kernel be mapped
671                  * as soon as possible. And then use page tables allocated above
672                  * the kernel to map [ISA_END_ADDRESS, kernel_end).
673                  */
674                 memory_map_bottom_up(kernel_end, end);
675                 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
676         } else {
677                 memory_map_top_down(ISA_END_ADDRESS, end);
678         }
679
680 #ifdef CONFIG_X86_64
681         if (max_pfn > max_low_pfn) {
682                 /* can we preseve max_low_pfn ?*/
683                 max_low_pfn = max_pfn;
684         }
685 #else
686         early_ioremap_page_table_range_init();
687 #endif
688
689         load_cr3(swapper_pg_dir);
690         __flush_tlb_all();
691
692         x86_init.hyper.init_mem_mapping();
693
694         early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
695 }
696
697 /*
698  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
699  * is valid. The argument is a physical page number.
700  *
701  * On x86, access has to be given to the first megabyte of RAM because that
702  * area traditionally contains BIOS code and data regions used by X, dosemu,
703  * and similar apps. Since they map the entire memory range, the whole range
704  * must be allowed (for mapping), but any areas that would otherwise be
705  * disallowed are flagged as being "zero filled" instead of rejected.
706  * Access has to be given to non-kernel-ram areas as well, these contain the
707  * PCI mmio resources as well as potential bios/acpi data regions.
708  */
709 int devmem_is_allowed(unsigned long pagenr)
710 {
711         if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
712                                 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
713                         != REGION_DISJOINT) {
714                 /*
715                  * For disallowed memory regions in the low 1MB range,
716                  * request that the page be shown as all zeros.
717                  */
718                 if (pagenr < 256)
719                         return 2;
720
721                 return 0;
722         }
723
724         /*
725          * This must follow RAM test, since System RAM is considered a
726          * restricted resource under CONFIG_STRICT_IOMEM.
727          */
728         if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
729                 /* Low 1MB bypasses iomem restrictions. */
730                 if (pagenr < 256)
731                         return 1;
732
733                 return 0;
734         }
735
736         return 1;
737 }
738
739 void free_init_pages(char *what, unsigned long begin, unsigned long end)
740 {
741         unsigned long begin_aligned, end_aligned;
742
743         /* Make sure boundaries are page aligned */
744         begin_aligned = PAGE_ALIGN(begin);
745         end_aligned   = end & PAGE_MASK;
746
747         if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
748                 begin = begin_aligned;
749                 end   = end_aligned;
750         }
751
752         if (begin >= end)
753                 return;
754
755         /*
756          * If debugging page accesses then do not free this memory but
757          * mark them not present - any buggy init-section access will
758          * create a kernel page fault:
759          */
760         if (debug_pagealloc_enabled()) {
761                 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
762                         begin, end - 1);
763                 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
764         } else {
765                 /*
766                  * We just marked the kernel text read only above, now that
767                  * we are going to free part of that, we need to make that
768                  * writeable and non-executable first.
769                  */
770                 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
771                 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
772
773                 free_reserved_area((void *)begin, (void *)end,
774                                    POISON_FREE_INITMEM, what);
775         }
776 }
777
778 /*
779  * begin/end can be in the direct map or the "high kernel mapping"
780  * used for the kernel image only.  free_init_pages() will do the
781  * right thing for either kind of address.
782  */
783 void free_kernel_image_pages(void *begin, void *end)
784 {
785         unsigned long begin_ul = (unsigned long)begin;
786         unsigned long end_ul = (unsigned long)end;
787         unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
788
789
790         free_init_pages("unused kernel image", begin_ul, end_ul);
791
792         /*
793          * PTI maps some of the kernel into userspace.  For performance,
794          * this includes some kernel areas that do not contain secrets.
795          * Those areas might be adjacent to the parts of the kernel image
796          * being freed, which may contain secrets.  Remove the "high kernel
797          * image mapping" for these freed areas, ensuring they are not even
798          * potentially vulnerable to Meltdown regardless of the specific
799          * optimizations PTI is currently using.
800          *
801          * The "noalias" prevents unmapping the direct map alias which is
802          * needed to access the freed pages.
803          *
804          * This is only valid for 64bit kernels. 32bit has only one mapping
805          * which can't be treated in this way for obvious reasons.
806          */
807         if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
808                 set_memory_np_noalias(begin_ul, len_pages);
809 }
810
811 void __ref free_initmem(void)
812 {
813         e820__reallocate_tables();
814
815         free_kernel_image_pages(&__init_begin, &__init_end);
816 }
817
818 #ifdef CONFIG_BLK_DEV_INITRD
819 void __init free_initrd_mem(unsigned long start, unsigned long end)
820 {
821         /*
822          * end could be not aligned, and We can not align that,
823          * decompresser could be confused by aligned initrd_end
824          * We already reserve the end partial page before in
825          *   - i386_start_kernel()
826          *   - x86_64_start_kernel()
827          *   - relocate_initrd()
828          * So here We can do PAGE_ALIGN() safely to get partial page to be freed
829          */
830         free_init_pages("initrd", start, PAGE_ALIGN(end));
831 }
832 #endif
833
834 /*
835  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
836  * and pass it to the MM layer - to help it set zone watermarks more
837  * accurately.
838  *
839  * Done on 64-bit systems only for the time being, although 32-bit systems
840  * might benefit from this as well.
841  */
842 void __init memblock_find_dma_reserve(void)
843 {
844 #ifdef CONFIG_X86_64
845         u64 nr_pages = 0, nr_free_pages = 0;
846         unsigned long start_pfn, end_pfn;
847         phys_addr_t start_addr, end_addr;
848         int i;
849         u64 u;
850
851         /*
852          * Iterate over all memory ranges (free and reserved ones alike),
853          * to calculate the total number of pages in the first 16 MB of RAM:
854          */
855         nr_pages = 0;
856         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
857                 start_pfn = min(start_pfn, MAX_DMA_PFN);
858                 end_pfn   = min(end_pfn,   MAX_DMA_PFN);
859
860                 nr_pages += end_pfn - start_pfn;
861         }
862
863         /*
864          * Iterate over free memory ranges to calculate the number of free
865          * pages in the DMA zone, while not counting potential partial
866          * pages at the beginning or the end of the range:
867          */
868         nr_free_pages = 0;
869         for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
870                 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
871                 end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
872
873                 if (start_pfn < end_pfn)
874                         nr_free_pages += end_pfn - start_pfn;
875         }
876
877         set_dma_reserve(nr_pages - nr_free_pages);
878 #endif
879 }
880
881 void __init zone_sizes_init(void)
882 {
883         unsigned long max_zone_pfns[MAX_NR_ZONES];
884
885         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
886
887 #ifdef CONFIG_ZONE_DMA
888         max_zone_pfns[ZONE_DMA]         = min(MAX_DMA_PFN, max_low_pfn);
889 #endif
890 #ifdef CONFIG_ZONE_DMA32
891         max_zone_pfns[ZONE_DMA32]       = min(MAX_DMA32_PFN, max_low_pfn);
892 #endif
893         max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
894 #ifdef CONFIG_HIGHMEM
895         max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
896 #endif
897
898         free_area_init_nodes(max_zone_pfns);
899 }
900
901 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
902         .loaded_mm = &init_mm,
903         .next_asid = 1,
904         .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
905 };
906 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
907
908 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
909 {
910         /* entry 0 MUST be WB (hardwired to speed up translations) */
911         BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
912
913         __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
914         __pte2cachemode_tbl[entry] = cache;
915 }
916
917 #ifdef CONFIG_SWAP
918 unsigned long max_swapfile_size(void)
919 {
920         unsigned long pages;
921
922         pages = generic_max_swapfile_size();
923
924         if (boot_cpu_has_bug(X86_BUG_L1TF)) {
925                 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
926                 unsigned long l1tf_limit = l1tf_pfn_limit() + 1;
927                 /*
928                  * We encode swap offsets also with 3 bits below those for pfn
929                  * which makes the usable limit higher.
930                  */
931 #if CONFIG_PGTABLE_LEVELS > 2
932                 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
933 #endif
934                 pages = min_t(unsigned long, l1tf_limit, pages);
935         }
936         return pages;
937 }
938 #endif