Merge tag 'leaks-4.15-rc1' of git://github.com/tcharding/linux
[sfrench/cifs-2.6.git] / arch / x86 / mm / extable.c
1 #include <linux/extable.h>
2 #include <linux/uaccess.h>
3 #include <linux/sched/debug.h>
4
5 #include <asm/fpu/internal.h>
6 #include <asm/traps.h>
7 #include <asm/kdebug.h>
8
9 typedef bool (*ex_handler_t)(const struct exception_table_entry *,
10                             struct pt_regs *, int);
11
12 static inline unsigned long
13 ex_fixup_addr(const struct exception_table_entry *x)
14 {
15         return (unsigned long)&x->fixup + x->fixup;
16 }
17 static inline ex_handler_t
18 ex_fixup_handler(const struct exception_table_entry *x)
19 {
20         return (ex_handler_t)((unsigned long)&x->handler + x->handler);
21 }
22
23 bool ex_handler_default(const struct exception_table_entry *fixup,
24                        struct pt_regs *regs, int trapnr)
25 {
26         regs->ip = ex_fixup_addr(fixup);
27         return true;
28 }
29 EXPORT_SYMBOL(ex_handler_default);
30
31 bool ex_handler_fault(const struct exception_table_entry *fixup,
32                      struct pt_regs *regs, int trapnr)
33 {
34         regs->ip = ex_fixup_addr(fixup);
35         regs->ax = trapnr;
36         return true;
37 }
38 EXPORT_SYMBOL_GPL(ex_handler_fault);
39
40 /*
41  * Handler for UD0 exception following a failed test against the
42  * result of a refcount inc/dec/add/sub.
43  */
44 bool ex_handler_refcount(const struct exception_table_entry *fixup,
45                          struct pt_regs *regs, int trapnr)
46 {
47         /* First unconditionally saturate the refcount. */
48         *(int *)regs->cx = INT_MIN / 2;
49
50         /*
51          * Strictly speaking, this reports the fixup destination, not
52          * the fault location, and not the actually overflowing
53          * instruction, which is the instruction before the "js", but
54          * since that instruction could be a variety of lengths, just
55          * report the location after the overflow, which should be close
56          * enough for finding the overflow, as it's at least back in
57          * the function, having returned from .text.unlikely.
58          */
59         regs->ip = ex_fixup_addr(fixup);
60
61         /*
62          * This function has been called because either a negative refcount
63          * value was seen by any of the refcount functions, or a zero
64          * refcount value was seen by refcount_dec().
65          *
66          * If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result
67          * wrapped around) will be set. Additionally, seeing the refcount
68          * reach 0 will set ZF (Zero Flag: result was zero). In each of
69          * these cases we want a report, since it's a boundary condition.
70          * The SF case is not reported since it indicates post-boundary
71          * manipulations below zero or above INT_MAX. And if none of the
72          * flags are set, something has gone very wrong, so report it.
73          */
74         if (regs->flags & (X86_EFLAGS_OF | X86_EFLAGS_ZF)) {
75                 bool zero = regs->flags & X86_EFLAGS_ZF;
76
77                 refcount_error_report(regs, zero ? "hit zero" : "overflow");
78         } else if ((regs->flags & X86_EFLAGS_SF) == 0) {
79                 /* Report if none of OF, ZF, nor SF are set. */
80                 refcount_error_report(regs, "unexpected saturation");
81         }
82
83         return true;
84 }
85 EXPORT_SYMBOL_GPL(ex_handler_refcount);
86
87 /*
88  * Handler for when we fail to restore a task's FPU state.  We should never get
89  * here because the FPU state of a task using the FPU (task->thread.fpu.state)
90  * should always be valid.  However, past bugs have allowed userspace to set
91  * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
92  * These caused XRSTOR to fail when switching to the task, leaking the FPU
93  * registers of the task previously executing on the CPU.  Mitigate this class
94  * of vulnerability by restoring from the initial state (essentially, zeroing
95  * out all the FPU registers) if we can't restore from the task's FPU state.
96  */
97 bool ex_handler_fprestore(const struct exception_table_entry *fixup,
98                           struct pt_regs *regs, int trapnr)
99 {
100         regs->ip = ex_fixup_addr(fixup);
101
102         WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
103                   (void *)instruction_pointer(regs));
104
105         __copy_kernel_to_fpregs(&init_fpstate, -1);
106         return true;
107 }
108 EXPORT_SYMBOL_GPL(ex_handler_fprestore);
109
110 bool ex_handler_ext(const struct exception_table_entry *fixup,
111                    struct pt_regs *regs, int trapnr)
112 {
113         /* Special hack for uaccess_err */
114         current->thread.uaccess_err = 1;
115         regs->ip = ex_fixup_addr(fixup);
116         return true;
117 }
118 EXPORT_SYMBOL(ex_handler_ext);
119
120 bool ex_handler_rdmsr_unsafe(const struct exception_table_entry *fixup,
121                              struct pt_regs *regs, int trapnr)
122 {
123         if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pF)\n",
124                          (unsigned int)regs->cx, regs->ip, (void *)regs->ip))
125                 show_stack_regs(regs);
126
127         /* Pretend that the read succeeded and returned 0. */
128         regs->ip = ex_fixup_addr(fixup);
129         regs->ax = 0;
130         regs->dx = 0;
131         return true;
132 }
133 EXPORT_SYMBOL(ex_handler_rdmsr_unsafe);
134
135 bool ex_handler_wrmsr_unsafe(const struct exception_table_entry *fixup,
136                              struct pt_regs *regs, int trapnr)
137 {
138         if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pF)\n",
139                          (unsigned int)regs->cx, (unsigned int)regs->dx,
140                          (unsigned int)regs->ax,  regs->ip, (void *)regs->ip))
141                 show_stack_regs(regs);
142
143         /* Pretend that the write succeeded. */
144         regs->ip = ex_fixup_addr(fixup);
145         return true;
146 }
147 EXPORT_SYMBOL(ex_handler_wrmsr_unsafe);
148
149 bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
150                          struct pt_regs *regs, int trapnr)
151 {
152         if (static_cpu_has(X86_BUG_NULL_SEG))
153                 asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
154         asm volatile ("mov %0, %%fs" : : "rm" (0));
155         return ex_handler_default(fixup, regs, trapnr);
156 }
157 EXPORT_SYMBOL(ex_handler_clear_fs);
158
159 bool ex_has_fault_handler(unsigned long ip)
160 {
161         const struct exception_table_entry *e;
162         ex_handler_t handler;
163
164         e = search_exception_tables(ip);
165         if (!e)
166                 return false;
167         handler = ex_fixup_handler(e);
168
169         return handler == ex_handler_fault;
170 }
171
172 int fixup_exception(struct pt_regs *regs, int trapnr)
173 {
174         const struct exception_table_entry *e;
175         ex_handler_t handler;
176
177 #ifdef CONFIG_PNPBIOS
178         if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
179                 extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
180                 extern u32 pnp_bios_is_utter_crap;
181                 pnp_bios_is_utter_crap = 1;
182                 printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
183                 __asm__ volatile(
184                         "movl %0, %%esp\n\t"
185                         "jmp *%1\n\t"
186                         : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
187                 panic("do_trap: can't hit this");
188         }
189 #endif
190
191         e = search_exception_tables(regs->ip);
192         if (!e)
193                 return 0;
194
195         handler = ex_fixup_handler(e);
196         return handler(e, regs, trapnr);
197 }
198
199 extern unsigned int early_recursion_flag;
200
201 /* Restricted version used during very early boot */
202 void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
203 {
204         /* Ignore early NMIs. */
205         if (trapnr == X86_TRAP_NMI)
206                 return;
207
208         if (early_recursion_flag > 2)
209                 goto halt_loop;
210
211         /*
212          * Old CPUs leave the high bits of CS on the stack
213          * undefined.  I'm not sure which CPUs do this, but at least
214          * the 486 DX works this way.
215          */
216         if (regs->cs != __KERNEL_CS)
217                 goto fail;
218
219         /*
220          * The full exception fixup machinery is available as soon as
221          * the early IDT is loaded.  This means that it is the
222          * responsibility of extable users to either function correctly
223          * when handlers are invoked early or to simply avoid causing
224          * exceptions before they're ready to handle them.
225          *
226          * This is better than filtering which handlers can be used,
227          * because refusing to call a handler here is guaranteed to
228          * result in a hard-to-debug panic.
229          *
230          * Keep in mind that not all vectors actually get here.  Early
231          * fage faults, for example, are special.
232          */
233         if (fixup_exception(regs, trapnr))
234                 return;
235
236         if (fixup_bug(regs, trapnr))
237                 return;
238
239 fail:
240         early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
241                      (unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
242                      regs->orig_ax, read_cr2());
243
244         show_regs(regs);
245
246 halt_loop:
247         while (true)
248                 halt();
249 }