Merge branch 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 unsigned int min_timer_period_us = 500;
98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
99
100 bool kvm_has_tsc_control;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
102 u32  kvm_max_guest_tsc_khz;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
104
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm = 250;
107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
108
109 #define KVM_NR_SHARED_MSRS 16
110
111 struct kvm_shared_msrs_global {
112         int nr;
113         u32 msrs[KVM_NR_SHARED_MSRS];
114 };
115
116 struct kvm_shared_msrs {
117         struct user_return_notifier urn;
118         bool registered;
119         struct kvm_shared_msr_values {
120                 u64 host;
121                 u64 curr;
122         } values[KVM_NR_SHARED_MSRS];
123 };
124
125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
126 static struct kvm_shared_msrs __percpu *shared_msrs;
127
128 struct kvm_stats_debugfs_item debugfs_entries[] = {
129         { "pf_fixed", VCPU_STAT(pf_fixed) },
130         { "pf_guest", VCPU_STAT(pf_guest) },
131         { "tlb_flush", VCPU_STAT(tlb_flush) },
132         { "invlpg", VCPU_STAT(invlpg) },
133         { "exits", VCPU_STAT(exits) },
134         { "io_exits", VCPU_STAT(io_exits) },
135         { "mmio_exits", VCPU_STAT(mmio_exits) },
136         { "signal_exits", VCPU_STAT(signal_exits) },
137         { "irq_window", VCPU_STAT(irq_window_exits) },
138         { "nmi_window", VCPU_STAT(nmi_window_exits) },
139         { "halt_exits", VCPU_STAT(halt_exits) },
140         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
141         { "hypercalls", VCPU_STAT(hypercalls) },
142         { "request_irq", VCPU_STAT(request_irq_exits) },
143         { "irq_exits", VCPU_STAT(irq_exits) },
144         { "host_state_reload", VCPU_STAT(host_state_reload) },
145         { "efer_reload", VCPU_STAT(efer_reload) },
146         { "fpu_reload", VCPU_STAT(fpu_reload) },
147         { "insn_emulation", VCPU_STAT(insn_emulation) },
148         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
149         { "irq_injections", VCPU_STAT(irq_injections) },
150         { "nmi_injections", VCPU_STAT(nmi_injections) },
151         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
152         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
153         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
154         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
155         { "mmu_flooded", VM_STAT(mmu_flooded) },
156         { "mmu_recycled", VM_STAT(mmu_recycled) },
157         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
158         { "mmu_unsync", VM_STAT(mmu_unsync) },
159         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
160         { "largepages", VM_STAT(lpages) },
161         { NULL }
162 };
163
164 u64 __read_mostly host_xcr0;
165
166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
167
168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
169 {
170         int i;
171         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
172                 vcpu->arch.apf.gfns[i] = ~0;
173 }
174
175 static void kvm_on_user_return(struct user_return_notifier *urn)
176 {
177         unsigned slot;
178         struct kvm_shared_msrs *locals
179                 = container_of(urn, struct kvm_shared_msrs, urn);
180         struct kvm_shared_msr_values *values;
181
182         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
183                 values = &locals->values[slot];
184                 if (values->host != values->curr) {
185                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
186                         values->curr = values->host;
187                 }
188         }
189         locals->registered = false;
190         user_return_notifier_unregister(urn);
191 }
192
193 static void shared_msr_update(unsigned slot, u32 msr)
194 {
195         u64 value;
196         unsigned int cpu = smp_processor_id();
197         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
198
199         /* only read, and nobody should modify it at this time,
200          * so don't need lock */
201         if (slot >= shared_msrs_global.nr) {
202                 printk(KERN_ERR "kvm: invalid MSR slot!");
203                 return;
204         }
205         rdmsrl_safe(msr, &value);
206         smsr->values[slot].host = value;
207         smsr->values[slot].curr = value;
208 }
209
210 void kvm_define_shared_msr(unsigned slot, u32 msr)
211 {
212         if (slot >= shared_msrs_global.nr)
213                 shared_msrs_global.nr = slot + 1;
214         shared_msrs_global.msrs[slot] = msr;
215         /* we need ensured the shared_msr_global have been updated */
216         smp_wmb();
217 }
218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
219
220 static void kvm_shared_msr_cpu_online(void)
221 {
222         unsigned i;
223
224         for (i = 0; i < shared_msrs_global.nr; ++i)
225                 shared_msr_update(i, shared_msrs_global.msrs[i]);
226 }
227
228 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
229 {
230         unsigned int cpu = smp_processor_id();
231         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
232
233         if (((value ^ smsr->values[slot].curr) & mask) == 0)
234                 return;
235         smsr->values[slot].curr = value;
236         wrmsrl(shared_msrs_global.msrs[slot], value);
237         if (!smsr->registered) {
238                 smsr->urn.on_user_return = kvm_on_user_return;
239                 user_return_notifier_register(&smsr->urn);
240                 smsr->registered = true;
241         }
242 }
243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
244
245 static void drop_user_return_notifiers(void *ignore)
246 {
247         unsigned int cpu = smp_processor_id();
248         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
249
250         if (smsr->registered)
251                 kvm_on_user_return(&smsr->urn);
252 }
253
254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 {
256         return vcpu->arch.apic_base;
257 }
258 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
259
260 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
261 {
262         u64 old_state = vcpu->arch.apic_base &
263                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
264         u64 new_state = msr_info->data &
265                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
266         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
267                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
268
269         if (!msr_info->host_initiated &&
270             ((msr_info->data & reserved_bits) != 0 ||
271              new_state == X2APIC_ENABLE ||
272              (new_state == MSR_IA32_APICBASE_ENABLE &&
273               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
274              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
275               old_state == 0)))
276                 return 1;
277
278         kvm_lapic_set_base(vcpu, msr_info->data);
279         return 0;
280 }
281 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
282
283 asmlinkage void kvm_spurious_fault(void)
284 {
285         /* Fault while not rebooting.  We want the trace. */
286         BUG();
287 }
288 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
289
290 #define EXCPT_BENIGN            0
291 #define EXCPT_CONTRIBUTORY      1
292 #define EXCPT_PF                2
293
294 static int exception_class(int vector)
295 {
296         switch (vector) {
297         case PF_VECTOR:
298                 return EXCPT_PF;
299         case DE_VECTOR:
300         case TS_VECTOR:
301         case NP_VECTOR:
302         case SS_VECTOR:
303         case GP_VECTOR:
304                 return EXCPT_CONTRIBUTORY;
305         default:
306                 break;
307         }
308         return EXCPT_BENIGN;
309 }
310
311 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
312                 unsigned nr, bool has_error, u32 error_code,
313                 bool reinject)
314 {
315         u32 prev_nr;
316         int class1, class2;
317
318         kvm_make_request(KVM_REQ_EVENT, vcpu);
319
320         if (!vcpu->arch.exception.pending) {
321         queue:
322                 vcpu->arch.exception.pending = true;
323                 vcpu->arch.exception.has_error_code = has_error;
324                 vcpu->arch.exception.nr = nr;
325                 vcpu->arch.exception.error_code = error_code;
326                 vcpu->arch.exception.reinject = reinject;
327                 return;
328         }
329
330         /* to check exception */
331         prev_nr = vcpu->arch.exception.nr;
332         if (prev_nr == DF_VECTOR) {
333                 /* triple fault -> shutdown */
334                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
335                 return;
336         }
337         class1 = exception_class(prev_nr);
338         class2 = exception_class(nr);
339         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
340                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
341                 /* generate double fault per SDM Table 5-5 */
342                 vcpu->arch.exception.pending = true;
343                 vcpu->arch.exception.has_error_code = true;
344                 vcpu->arch.exception.nr = DF_VECTOR;
345                 vcpu->arch.exception.error_code = 0;
346         } else
347                 /* replace previous exception with a new one in a hope
348                    that instruction re-execution will regenerate lost
349                    exception */
350                 goto queue;
351 }
352
353 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
354 {
355         kvm_multiple_exception(vcpu, nr, false, 0, false);
356 }
357 EXPORT_SYMBOL_GPL(kvm_queue_exception);
358
359 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
360 {
361         kvm_multiple_exception(vcpu, nr, false, 0, true);
362 }
363 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
364
365 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
366 {
367         if (err)
368                 kvm_inject_gp(vcpu, 0);
369         else
370                 kvm_x86_ops->skip_emulated_instruction(vcpu);
371 }
372 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
373
374 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
375 {
376         ++vcpu->stat.pf_guest;
377         vcpu->arch.cr2 = fault->address;
378         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
379 }
380 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
381
382 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
383 {
384         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
385                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
386         else
387                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
388 }
389
390 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
391 {
392         atomic_inc(&vcpu->arch.nmi_queued);
393         kvm_make_request(KVM_REQ_NMI, vcpu);
394 }
395 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
396
397 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
398 {
399         kvm_multiple_exception(vcpu, nr, true, error_code, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
402
403 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
404 {
405         kvm_multiple_exception(vcpu, nr, true, error_code, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
408
409 /*
410  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
411  * a #GP and return false.
412  */
413 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
414 {
415         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
416                 return true;
417         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
418         return false;
419 }
420 EXPORT_SYMBOL_GPL(kvm_require_cpl);
421
422 /*
423  * This function will be used to read from the physical memory of the currently
424  * running guest. The difference to kvm_read_guest_page is that this function
425  * can read from guest physical or from the guest's guest physical memory.
426  */
427 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
428                             gfn_t ngfn, void *data, int offset, int len,
429                             u32 access)
430 {
431         gfn_t real_gfn;
432         gpa_t ngpa;
433
434         ngpa     = gfn_to_gpa(ngfn);
435         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
436         if (real_gfn == UNMAPPED_GVA)
437                 return -EFAULT;
438
439         real_gfn = gpa_to_gfn(real_gfn);
440
441         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
442 }
443 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
444
445 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
446                                void *data, int offset, int len, u32 access)
447 {
448         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
449                                        data, offset, len, access);
450 }
451
452 /*
453  * Load the pae pdptrs.  Return true is they are all valid.
454  */
455 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
456 {
457         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
458         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
459         int i;
460         int ret;
461         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
462
463         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
464                                       offset * sizeof(u64), sizeof(pdpte),
465                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
466         if (ret < 0) {
467                 ret = 0;
468                 goto out;
469         }
470         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
471                 if (is_present_gpte(pdpte[i]) &&
472                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
473                         ret = 0;
474                         goto out;
475                 }
476         }
477         ret = 1;
478
479         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
480         __set_bit(VCPU_EXREG_PDPTR,
481                   (unsigned long *)&vcpu->arch.regs_avail);
482         __set_bit(VCPU_EXREG_PDPTR,
483                   (unsigned long *)&vcpu->arch.regs_dirty);
484 out:
485
486         return ret;
487 }
488 EXPORT_SYMBOL_GPL(load_pdptrs);
489
490 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
491 {
492         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
493         bool changed = true;
494         int offset;
495         gfn_t gfn;
496         int r;
497
498         if (is_long_mode(vcpu) || !is_pae(vcpu))
499                 return false;
500
501         if (!test_bit(VCPU_EXREG_PDPTR,
502                       (unsigned long *)&vcpu->arch.regs_avail))
503                 return true;
504
505         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
506         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
507         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
508                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
509         if (r < 0)
510                 goto out;
511         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
512 out:
513
514         return changed;
515 }
516
517 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
518 {
519         unsigned long old_cr0 = kvm_read_cr0(vcpu);
520         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
521                                     X86_CR0_CD | X86_CR0_NW;
522
523         cr0 |= X86_CR0_ET;
524
525 #ifdef CONFIG_X86_64
526         if (cr0 & 0xffffffff00000000UL)
527                 return 1;
528 #endif
529
530         cr0 &= ~CR0_RESERVED_BITS;
531
532         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
533                 return 1;
534
535         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
536                 return 1;
537
538         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
539 #ifdef CONFIG_X86_64
540                 if ((vcpu->arch.efer & EFER_LME)) {
541                         int cs_db, cs_l;
542
543                         if (!is_pae(vcpu))
544                                 return 1;
545                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
546                         if (cs_l)
547                                 return 1;
548                 } else
549 #endif
550                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
551                                                  kvm_read_cr3(vcpu)))
552                         return 1;
553         }
554
555         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
556                 return 1;
557
558         kvm_x86_ops->set_cr0(vcpu, cr0);
559
560         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
561                 kvm_clear_async_pf_completion_queue(vcpu);
562                 kvm_async_pf_hash_reset(vcpu);
563         }
564
565         if ((cr0 ^ old_cr0) & update_bits)
566                 kvm_mmu_reset_context(vcpu);
567         return 0;
568 }
569 EXPORT_SYMBOL_GPL(kvm_set_cr0);
570
571 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
572 {
573         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
574 }
575 EXPORT_SYMBOL_GPL(kvm_lmsw);
576
577 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
578 {
579         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
580                         !vcpu->guest_xcr0_loaded) {
581                 /* kvm_set_xcr() also depends on this */
582                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
583                 vcpu->guest_xcr0_loaded = 1;
584         }
585 }
586
587 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
588 {
589         if (vcpu->guest_xcr0_loaded) {
590                 if (vcpu->arch.xcr0 != host_xcr0)
591                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
592                 vcpu->guest_xcr0_loaded = 0;
593         }
594 }
595
596 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598         u64 xcr0 = xcr;
599         u64 old_xcr0 = vcpu->arch.xcr0;
600         u64 valid_bits;
601
602         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
603         if (index != XCR_XFEATURE_ENABLED_MASK)
604                 return 1;
605         if (!(xcr0 & XSTATE_FP))
606                 return 1;
607         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
608                 return 1;
609
610         /*
611          * Do not allow the guest to set bits that we do not support
612          * saving.  However, xcr0 bit 0 is always set, even if the
613          * emulated CPU does not support XSAVE (see fx_init).
614          */
615         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
616         if (xcr0 & ~valid_bits)
617                 return 1;
618
619         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
620                 return 1;
621
622         kvm_put_guest_xcr0(vcpu);
623         vcpu->arch.xcr0 = xcr0;
624
625         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
626                 kvm_update_cpuid(vcpu);
627         return 0;
628 }
629
630 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
631 {
632         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
633             __kvm_set_xcr(vcpu, index, xcr)) {
634                 kvm_inject_gp(vcpu, 0);
635                 return 1;
636         }
637         return 0;
638 }
639 EXPORT_SYMBOL_GPL(kvm_set_xcr);
640
641 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
642 {
643         unsigned long old_cr4 = kvm_read_cr4(vcpu);
644         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
645                                    X86_CR4_PAE | X86_CR4_SMEP;
646         if (cr4 & CR4_RESERVED_BITS)
647                 return 1;
648
649         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
650                 return 1;
651
652         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
653                 return 1;
654
655         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
656                 return 1;
657
658         if (is_long_mode(vcpu)) {
659                 if (!(cr4 & X86_CR4_PAE))
660                         return 1;
661         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
662                    && ((cr4 ^ old_cr4) & pdptr_bits)
663                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
664                                    kvm_read_cr3(vcpu)))
665                 return 1;
666
667         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
668                 if (!guest_cpuid_has_pcid(vcpu))
669                         return 1;
670
671                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
672                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
673                         return 1;
674         }
675
676         if (kvm_x86_ops->set_cr4(vcpu, cr4))
677                 return 1;
678
679         if (((cr4 ^ old_cr4) & pdptr_bits) ||
680             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
681                 kvm_mmu_reset_context(vcpu);
682
683         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
684                 kvm_update_cpuid(vcpu);
685
686         return 0;
687 }
688 EXPORT_SYMBOL_GPL(kvm_set_cr4);
689
690 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
691 {
692         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
693                 kvm_mmu_sync_roots(vcpu);
694                 kvm_mmu_flush_tlb(vcpu);
695                 return 0;
696         }
697
698         if (is_long_mode(vcpu)) {
699                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
700                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
701                                 return 1;
702                 } else
703                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
704                                 return 1;
705         } else {
706                 if (is_pae(vcpu)) {
707                         if (cr3 & CR3_PAE_RESERVED_BITS)
708                                 return 1;
709                         if (is_paging(vcpu) &&
710                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
711                                 return 1;
712                 }
713                 /*
714                  * We don't check reserved bits in nonpae mode, because
715                  * this isn't enforced, and VMware depends on this.
716                  */
717         }
718
719         vcpu->arch.cr3 = cr3;
720         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
721         kvm_mmu_new_cr3(vcpu);
722         return 0;
723 }
724 EXPORT_SYMBOL_GPL(kvm_set_cr3);
725
726 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
727 {
728         if (cr8 & CR8_RESERVED_BITS)
729                 return 1;
730         if (irqchip_in_kernel(vcpu->kvm))
731                 kvm_lapic_set_tpr(vcpu, cr8);
732         else
733                 vcpu->arch.cr8 = cr8;
734         return 0;
735 }
736 EXPORT_SYMBOL_GPL(kvm_set_cr8);
737
738 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
739 {
740         if (irqchip_in_kernel(vcpu->kvm))
741                 return kvm_lapic_get_cr8(vcpu);
742         else
743                 return vcpu->arch.cr8;
744 }
745 EXPORT_SYMBOL_GPL(kvm_get_cr8);
746
747 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
748 {
749         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
750                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
751 }
752
753 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
754 {
755         unsigned long dr7;
756
757         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
758                 dr7 = vcpu->arch.guest_debug_dr7;
759         else
760                 dr7 = vcpu->arch.dr7;
761         kvm_x86_ops->set_dr7(vcpu, dr7);
762         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
763         if (dr7 & DR7_BP_EN_MASK)
764                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
765 }
766
767 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
768 {
769         switch (dr) {
770         case 0 ... 3:
771                 vcpu->arch.db[dr] = val;
772                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
773                         vcpu->arch.eff_db[dr] = val;
774                 break;
775         case 4:
776                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
777                         return 1; /* #UD */
778                 /* fall through */
779         case 6:
780                 if (val & 0xffffffff00000000ULL)
781                         return -1; /* #GP */
782                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
783                 kvm_update_dr6(vcpu);
784                 break;
785         case 5:
786                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
787                         return 1; /* #UD */
788                 /* fall through */
789         default: /* 7 */
790                 if (val & 0xffffffff00000000ULL)
791                         return -1; /* #GP */
792                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
793                 kvm_update_dr7(vcpu);
794                 break;
795         }
796
797         return 0;
798 }
799
800 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
801 {
802         int res;
803
804         res = __kvm_set_dr(vcpu, dr, val);
805         if (res > 0)
806                 kvm_queue_exception(vcpu, UD_VECTOR);
807         else if (res < 0)
808                 kvm_inject_gp(vcpu, 0);
809
810         return res;
811 }
812 EXPORT_SYMBOL_GPL(kvm_set_dr);
813
814 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
815 {
816         switch (dr) {
817         case 0 ... 3:
818                 *val = vcpu->arch.db[dr];
819                 break;
820         case 4:
821                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
822                         return 1;
823                 /* fall through */
824         case 6:
825                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
826                         *val = vcpu->arch.dr6;
827                 else
828                         *val = kvm_x86_ops->get_dr6(vcpu);
829                 break;
830         case 5:
831                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
832                         return 1;
833                 /* fall through */
834         default: /* 7 */
835                 *val = vcpu->arch.dr7;
836                 break;
837         }
838
839         return 0;
840 }
841
842 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
843 {
844         if (_kvm_get_dr(vcpu, dr, val)) {
845                 kvm_queue_exception(vcpu, UD_VECTOR);
846                 return 1;
847         }
848         return 0;
849 }
850 EXPORT_SYMBOL_GPL(kvm_get_dr);
851
852 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
853 {
854         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
855         u64 data;
856         int err;
857
858         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
859         if (err)
860                 return err;
861         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
862         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
863         return err;
864 }
865 EXPORT_SYMBOL_GPL(kvm_rdpmc);
866
867 /*
868  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
869  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
870  *
871  * This list is modified at module load time to reflect the
872  * capabilities of the host cpu. This capabilities test skips MSRs that are
873  * kvm-specific. Those are put in the beginning of the list.
874  */
875
876 #define KVM_SAVE_MSRS_BEGIN     12
877 static u32 msrs_to_save[] = {
878         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
879         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
880         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
881         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
882         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
883         MSR_KVM_PV_EOI_EN,
884         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
885         MSR_STAR,
886 #ifdef CONFIG_X86_64
887         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
888 #endif
889         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
890         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
891 };
892
893 static unsigned num_msrs_to_save;
894
895 static const u32 emulated_msrs[] = {
896         MSR_IA32_TSC_ADJUST,
897         MSR_IA32_TSCDEADLINE,
898         MSR_IA32_MISC_ENABLE,
899         MSR_IA32_MCG_STATUS,
900         MSR_IA32_MCG_CTL,
901 };
902
903 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
904 {
905         if (efer & efer_reserved_bits)
906                 return false;
907
908         if (efer & EFER_FFXSR) {
909                 struct kvm_cpuid_entry2 *feat;
910
911                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
912                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
913                         return false;
914         }
915
916         if (efer & EFER_SVME) {
917                 struct kvm_cpuid_entry2 *feat;
918
919                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
920                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
921                         return false;
922         }
923
924         return true;
925 }
926 EXPORT_SYMBOL_GPL(kvm_valid_efer);
927
928 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
929 {
930         u64 old_efer = vcpu->arch.efer;
931
932         if (!kvm_valid_efer(vcpu, efer))
933                 return 1;
934
935         if (is_paging(vcpu)
936             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
937                 return 1;
938
939         efer &= ~EFER_LMA;
940         efer |= vcpu->arch.efer & EFER_LMA;
941
942         kvm_x86_ops->set_efer(vcpu, efer);
943
944         /* Update reserved bits */
945         if ((efer ^ old_efer) & EFER_NX)
946                 kvm_mmu_reset_context(vcpu);
947
948         return 0;
949 }
950
951 void kvm_enable_efer_bits(u64 mask)
952 {
953        efer_reserved_bits &= ~mask;
954 }
955 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
956
957
958 /*
959  * Writes msr value into into the appropriate "register".
960  * Returns 0 on success, non-0 otherwise.
961  * Assumes vcpu_load() was already called.
962  */
963 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
964 {
965         return kvm_x86_ops->set_msr(vcpu, msr);
966 }
967
968 /*
969  * Adapt set_msr() to msr_io()'s calling convention
970  */
971 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
972 {
973         struct msr_data msr;
974
975         msr.data = *data;
976         msr.index = index;
977         msr.host_initiated = true;
978         return kvm_set_msr(vcpu, &msr);
979 }
980
981 #ifdef CONFIG_X86_64
982 struct pvclock_gtod_data {
983         seqcount_t      seq;
984
985         struct { /* extract of a clocksource struct */
986                 int vclock_mode;
987                 cycle_t cycle_last;
988                 cycle_t mask;
989                 u32     mult;
990                 u32     shift;
991         } clock;
992
993         /* open coded 'struct timespec' */
994         u64             monotonic_time_snsec;
995         time_t          monotonic_time_sec;
996 };
997
998 static struct pvclock_gtod_data pvclock_gtod_data;
999
1000 static void update_pvclock_gtod(struct timekeeper *tk)
1001 {
1002         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1003
1004         write_seqcount_begin(&vdata->seq);
1005
1006         /* copy pvclock gtod data */
1007         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
1008         vdata->clock.cycle_last         = tk->clock->cycle_last;
1009         vdata->clock.mask               = tk->clock->mask;
1010         vdata->clock.mult               = tk->mult;
1011         vdata->clock.shift              = tk->shift;
1012
1013         vdata->monotonic_time_sec       = tk->xtime_sec
1014                                         + tk->wall_to_monotonic.tv_sec;
1015         vdata->monotonic_time_snsec     = tk->xtime_nsec
1016                                         + (tk->wall_to_monotonic.tv_nsec
1017                                                 << tk->shift);
1018         while (vdata->monotonic_time_snsec >=
1019                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
1020                 vdata->monotonic_time_snsec -=
1021                                         ((u64)NSEC_PER_SEC) << tk->shift;
1022                 vdata->monotonic_time_sec++;
1023         }
1024
1025         write_seqcount_end(&vdata->seq);
1026 }
1027 #endif
1028
1029
1030 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1031 {
1032         int version;
1033         int r;
1034         struct pvclock_wall_clock wc;
1035         struct timespec boot;
1036
1037         if (!wall_clock)
1038                 return;
1039
1040         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1041         if (r)
1042                 return;
1043
1044         if (version & 1)
1045                 ++version;  /* first time write, random junk */
1046
1047         ++version;
1048
1049         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1050
1051         /*
1052          * The guest calculates current wall clock time by adding
1053          * system time (updated by kvm_guest_time_update below) to the
1054          * wall clock specified here.  guest system time equals host
1055          * system time for us, thus we must fill in host boot time here.
1056          */
1057         getboottime(&boot);
1058
1059         if (kvm->arch.kvmclock_offset) {
1060                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1061                 boot = timespec_sub(boot, ts);
1062         }
1063         wc.sec = boot.tv_sec;
1064         wc.nsec = boot.tv_nsec;
1065         wc.version = version;
1066
1067         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1068
1069         version++;
1070         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1071 }
1072
1073 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1074 {
1075         uint32_t quotient, remainder;
1076
1077         /* Don't try to replace with do_div(), this one calculates
1078          * "(dividend << 32) / divisor" */
1079         __asm__ ( "divl %4"
1080                   : "=a" (quotient), "=d" (remainder)
1081                   : "0" (0), "1" (dividend), "r" (divisor) );
1082         return quotient;
1083 }
1084
1085 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1086                                s8 *pshift, u32 *pmultiplier)
1087 {
1088         uint64_t scaled64;
1089         int32_t  shift = 0;
1090         uint64_t tps64;
1091         uint32_t tps32;
1092
1093         tps64 = base_khz * 1000LL;
1094         scaled64 = scaled_khz * 1000LL;
1095         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1096                 tps64 >>= 1;
1097                 shift--;
1098         }
1099
1100         tps32 = (uint32_t)tps64;
1101         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1102                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1103                         scaled64 >>= 1;
1104                 else
1105                         tps32 <<= 1;
1106                 shift++;
1107         }
1108
1109         *pshift = shift;
1110         *pmultiplier = div_frac(scaled64, tps32);
1111
1112         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1113                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1114 }
1115
1116 static inline u64 get_kernel_ns(void)
1117 {
1118         struct timespec ts;
1119
1120         WARN_ON(preemptible());
1121         ktime_get_ts(&ts);
1122         monotonic_to_bootbased(&ts);
1123         return timespec_to_ns(&ts);
1124 }
1125
1126 #ifdef CONFIG_X86_64
1127 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1128 #endif
1129
1130 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1131 unsigned long max_tsc_khz;
1132
1133 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1134 {
1135         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1136                                    vcpu->arch.virtual_tsc_shift);
1137 }
1138
1139 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1140 {
1141         u64 v = (u64)khz * (1000000 + ppm);
1142         do_div(v, 1000000);
1143         return v;
1144 }
1145
1146 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1147 {
1148         u32 thresh_lo, thresh_hi;
1149         int use_scaling = 0;
1150
1151         /* tsc_khz can be zero if TSC calibration fails */
1152         if (this_tsc_khz == 0)
1153                 return;
1154
1155         /* Compute a scale to convert nanoseconds in TSC cycles */
1156         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1157                            &vcpu->arch.virtual_tsc_shift,
1158                            &vcpu->arch.virtual_tsc_mult);
1159         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1160
1161         /*
1162          * Compute the variation in TSC rate which is acceptable
1163          * within the range of tolerance and decide if the
1164          * rate being applied is within that bounds of the hardware
1165          * rate.  If so, no scaling or compensation need be done.
1166          */
1167         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1168         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1169         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1170                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1171                 use_scaling = 1;
1172         }
1173         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1174 }
1175
1176 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1177 {
1178         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1179                                       vcpu->arch.virtual_tsc_mult,
1180                                       vcpu->arch.virtual_tsc_shift);
1181         tsc += vcpu->arch.this_tsc_write;
1182         return tsc;
1183 }
1184
1185 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1186 {
1187 #ifdef CONFIG_X86_64
1188         bool vcpus_matched;
1189         bool do_request = false;
1190         struct kvm_arch *ka = &vcpu->kvm->arch;
1191         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1192
1193         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1194                          atomic_read(&vcpu->kvm->online_vcpus));
1195
1196         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1197                 if (!ka->use_master_clock)
1198                         do_request = 1;
1199
1200         if (!vcpus_matched && ka->use_master_clock)
1201                         do_request = 1;
1202
1203         if (do_request)
1204                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1205
1206         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1207                             atomic_read(&vcpu->kvm->online_vcpus),
1208                             ka->use_master_clock, gtod->clock.vclock_mode);
1209 #endif
1210 }
1211
1212 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1213 {
1214         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1215         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1216 }
1217
1218 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1219 {
1220         struct kvm *kvm = vcpu->kvm;
1221         u64 offset, ns, elapsed;
1222         unsigned long flags;
1223         s64 usdiff;
1224         bool matched;
1225         u64 data = msr->data;
1226
1227         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1228         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1229         ns = get_kernel_ns();
1230         elapsed = ns - kvm->arch.last_tsc_nsec;
1231
1232         if (vcpu->arch.virtual_tsc_khz) {
1233                 int faulted = 0;
1234
1235                 /* n.b - signed multiplication and division required */
1236                 usdiff = data - kvm->arch.last_tsc_write;
1237 #ifdef CONFIG_X86_64
1238                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1239 #else
1240                 /* do_div() only does unsigned */
1241                 asm("1: idivl %[divisor]\n"
1242                     "2: xor %%edx, %%edx\n"
1243                     "   movl $0, %[faulted]\n"
1244                     "3:\n"
1245                     ".section .fixup,\"ax\"\n"
1246                     "4: movl $1, %[faulted]\n"
1247                     "   jmp  3b\n"
1248                     ".previous\n"
1249
1250                 _ASM_EXTABLE(1b, 4b)
1251
1252                 : "=A"(usdiff), [faulted] "=r" (faulted)
1253                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1254
1255 #endif
1256                 do_div(elapsed, 1000);
1257                 usdiff -= elapsed;
1258                 if (usdiff < 0)
1259                         usdiff = -usdiff;
1260
1261                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1262                 if (faulted)
1263                         usdiff = USEC_PER_SEC;
1264         } else
1265                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1266
1267         /*
1268          * Special case: TSC write with a small delta (1 second) of virtual
1269          * cycle time against real time is interpreted as an attempt to
1270          * synchronize the CPU.
1271          *
1272          * For a reliable TSC, we can match TSC offsets, and for an unstable
1273          * TSC, we add elapsed time in this computation.  We could let the
1274          * compensation code attempt to catch up if we fall behind, but
1275          * it's better to try to match offsets from the beginning.
1276          */
1277         if (usdiff < USEC_PER_SEC &&
1278             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1279                 if (!check_tsc_unstable()) {
1280                         offset = kvm->arch.cur_tsc_offset;
1281                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1282                 } else {
1283                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1284                         data += delta;
1285                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1286                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1287                 }
1288                 matched = true;
1289         } else {
1290                 /*
1291                  * We split periods of matched TSC writes into generations.
1292                  * For each generation, we track the original measured
1293                  * nanosecond time, offset, and write, so if TSCs are in
1294                  * sync, we can match exact offset, and if not, we can match
1295                  * exact software computation in compute_guest_tsc()
1296                  *
1297                  * These values are tracked in kvm->arch.cur_xxx variables.
1298                  */
1299                 kvm->arch.cur_tsc_generation++;
1300                 kvm->arch.cur_tsc_nsec = ns;
1301                 kvm->arch.cur_tsc_write = data;
1302                 kvm->arch.cur_tsc_offset = offset;
1303                 matched = false;
1304                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1305                          kvm->arch.cur_tsc_generation, data);
1306         }
1307
1308         /*
1309          * We also track th most recent recorded KHZ, write and time to
1310          * allow the matching interval to be extended at each write.
1311          */
1312         kvm->arch.last_tsc_nsec = ns;
1313         kvm->arch.last_tsc_write = data;
1314         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1315
1316         vcpu->arch.last_guest_tsc = data;
1317
1318         /* Keep track of which generation this VCPU has synchronized to */
1319         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1320         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1321         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1322
1323         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1324                 update_ia32_tsc_adjust_msr(vcpu, offset);
1325         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1326         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1327
1328         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1329         if (matched)
1330                 kvm->arch.nr_vcpus_matched_tsc++;
1331         else
1332                 kvm->arch.nr_vcpus_matched_tsc = 0;
1333
1334         kvm_track_tsc_matching(vcpu);
1335         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1336 }
1337
1338 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1339
1340 #ifdef CONFIG_X86_64
1341
1342 static cycle_t read_tsc(void)
1343 {
1344         cycle_t ret;
1345         u64 last;
1346
1347         /*
1348          * Empirically, a fence (of type that depends on the CPU)
1349          * before rdtsc is enough to ensure that rdtsc is ordered
1350          * with respect to loads.  The various CPU manuals are unclear
1351          * as to whether rdtsc can be reordered with later loads,
1352          * but no one has ever seen it happen.
1353          */
1354         rdtsc_barrier();
1355         ret = (cycle_t)vget_cycles();
1356
1357         last = pvclock_gtod_data.clock.cycle_last;
1358
1359         if (likely(ret >= last))
1360                 return ret;
1361
1362         /*
1363          * GCC likes to generate cmov here, but this branch is extremely
1364          * predictable (it's just a funciton of time and the likely is
1365          * very likely) and there's a data dependence, so force GCC
1366          * to generate a branch instead.  I don't barrier() because
1367          * we don't actually need a barrier, and if this function
1368          * ever gets inlined it will generate worse code.
1369          */
1370         asm volatile ("");
1371         return last;
1372 }
1373
1374 static inline u64 vgettsc(cycle_t *cycle_now)
1375 {
1376         long v;
1377         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1378
1379         *cycle_now = read_tsc();
1380
1381         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1382         return v * gtod->clock.mult;
1383 }
1384
1385 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1386 {
1387         unsigned long seq;
1388         u64 ns;
1389         int mode;
1390         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1391
1392         ts->tv_nsec = 0;
1393         do {
1394                 seq = read_seqcount_begin(&gtod->seq);
1395                 mode = gtod->clock.vclock_mode;
1396                 ts->tv_sec = gtod->monotonic_time_sec;
1397                 ns = gtod->monotonic_time_snsec;
1398                 ns += vgettsc(cycle_now);
1399                 ns >>= gtod->clock.shift;
1400         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1401         timespec_add_ns(ts, ns);
1402
1403         return mode;
1404 }
1405
1406 /* returns true if host is using tsc clocksource */
1407 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1408 {
1409         struct timespec ts;
1410
1411         /* checked again under seqlock below */
1412         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1413                 return false;
1414
1415         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1416                 return false;
1417
1418         monotonic_to_bootbased(&ts);
1419         *kernel_ns = timespec_to_ns(&ts);
1420
1421         return true;
1422 }
1423 #endif
1424
1425 /*
1426  *
1427  * Assuming a stable TSC across physical CPUS, and a stable TSC
1428  * across virtual CPUs, the following condition is possible.
1429  * Each numbered line represents an event visible to both
1430  * CPUs at the next numbered event.
1431  *
1432  * "timespecX" represents host monotonic time. "tscX" represents
1433  * RDTSC value.
1434  *
1435  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1436  *
1437  * 1.  read timespec0,tsc0
1438  * 2.                                   | timespec1 = timespec0 + N
1439  *                                      | tsc1 = tsc0 + M
1440  * 3. transition to guest               | transition to guest
1441  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1442  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1443  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1444  *
1445  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1446  *
1447  *      - ret0 < ret1
1448  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1449  *              ...
1450  *      - 0 < N - M => M < N
1451  *
1452  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1453  * always the case (the difference between two distinct xtime instances
1454  * might be smaller then the difference between corresponding TSC reads,
1455  * when updating guest vcpus pvclock areas).
1456  *
1457  * To avoid that problem, do not allow visibility of distinct
1458  * system_timestamp/tsc_timestamp values simultaneously: use a master
1459  * copy of host monotonic time values. Update that master copy
1460  * in lockstep.
1461  *
1462  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1463  *
1464  */
1465
1466 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1467 {
1468 #ifdef CONFIG_X86_64
1469         struct kvm_arch *ka = &kvm->arch;
1470         int vclock_mode;
1471         bool host_tsc_clocksource, vcpus_matched;
1472
1473         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1474                         atomic_read(&kvm->online_vcpus));
1475
1476         /*
1477          * If the host uses TSC clock, then passthrough TSC as stable
1478          * to the guest.
1479          */
1480         host_tsc_clocksource = kvm_get_time_and_clockread(
1481                                         &ka->master_kernel_ns,
1482                                         &ka->master_cycle_now);
1483
1484         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1485
1486         if (ka->use_master_clock)
1487                 atomic_set(&kvm_guest_has_master_clock, 1);
1488
1489         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1490         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1491                                         vcpus_matched);
1492 #endif
1493 }
1494
1495 static void kvm_gen_update_masterclock(struct kvm *kvm)
1496 {
1497 #ifdef CONFIG_X86_64
1498         int i;
1499         struct kvm_vcpu *vcpu;
1500         struct kvm_arch *ka = &kvm->arch;
1501
1502         spin_lock(&ka->pvclock_gtod_sync_lock);
1503         kvm_make_mclock_inprogress_request(kvm);
1504         /* no guest entries from this point */
1505         pvclock_update_vm_gtod_copy(kvm);
1506
1507         kvm_for_each_vcpu(i, vcpu, kvm)
1508                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1509
1510         /* guest entries allowed */
1511         kvm_for_each_vcpu(i, vcpu, kvm)
1512                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1513
1514         spin_unlock(&ka->pvclock_gtod_sync_lock);
1515 #endif
1516 }
1517
1518 static int kvm_guest_time_update(struct kvm_vcpu *v)
1519 {
1520         unsigned long flags, this_tsc_khz;
1521         struct kvm_vcpu_arch *vcpu = &v->arch;
1522         struct kvm_arch *ka = &v->kvm->arch;
1523         s64 kernel_ns;
1524         u64 tsc_timestamp, host_tsc;
1525         struct pvclock_vcpu_time_info guest_hv_clock;
1526         u8 pvclock_flags;
1527         bool use_master_clock;
1528
1529         kernel_ns = 0;
1530         host_tsc = 0;
1531
1532         /*
1533          * If the host uses TSC clock, then passthrough TSC as stable
1534          * to the guest.
1535          */
1536         spin_lock(&ka->pvclock_gtod_sync_lock);
1537         use_master_clock = ka->use_master_clock;
1538         if (use_master_clock) {
1539                 host_tsc = ka->master_cycle_now;
1540                 kernel_ns = ka->master_kernel_ns;
1541         }
1542         spin_unlock(&ka->pvclock_gtod_sync_lock);
1543
1544         /* Keep irq disabled to prevent changes to the clock */
1545         local_irq_save(flags);
1546         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1547         if (unlikely(this_tsc_khz == 0)) {
1548                 local_irq_restore(flags);
1549                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1550                 return 1;
1551         }
1552         if (!use_master_clock) {
1553                 host_tsc = native_read_tsc();
1554                 kernel_ns = get_kernel_ns();
1555         }
1556
1557         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1558
1559         /*
1560          * We may have to catch up the TSC to match elapsed wall clock
1561          * time for two reasons, even if kvmclock is used.
1562          *   1) CPU could have been running below the maximum TSC rate
1563          *   2) Broken TSC compensation resets the base at each VCPU
1564          *      entry to avoid unknown leaps of TSC even when running
1565          *      again on the same CPU.  This may cause apparent elapsed
1566          *      time to disappear, and the guest to stand still or run
1567          *      very slowly.
1568          */
1569         if (vcpu->tsc_catchup) {
1570                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1571                 if (tsc > tsc_timestamp) {
1572                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1573                         tsc_timestamp = tsc;
1574                 }
1575         }
1576
1577         local_irq_restore(flags);
1578
1579         if (!vcpu->pv_time_enabled)
1580                 return 0;
1581
1582         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1583                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1584                                    &vcpu->hv_clock.tsc_shift,
1585                                    &vcpu->hv_clock.tsc_to_system_mul);
1586                 vcpu->hw_tsc_khz = this_tsc_khz;
1587         }
1588
1589         /* With all the info we got, fill in the values */
1590         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1591         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1592         vcpu->last_guest_tsc = tsc_timestamp;
1593
1594         /*
1595          * The interface expects us to write an even number signaling that the
1596          * update is finished. Since the guest won't see the intermediate
1597          * state, we just increase by 2 at the end.
1598          */
1599         vcpu->hv_clock.version += 2;
1600
1601         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1602                 &guest_hv_clock, sizeof(guest_hv_clock))))
1603                 return 0;
1604
1605         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1606         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1607
1608         if (vcpu->pvclock_set_guest_stopped_request) {
1609                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1610                 vcpu->pvclock_set_guest_stopped_request = false;
1611         }
1612
1613         /* If the host uses TSC clocksource, then it is stable */
1614         if (use_master_clock)
1615                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1616
1617         vcpu->hv_clock.flags = pvclock_flags;
1618
1619         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1620                                 &vcpu->hv_clock,
1621                                 sizeof(vcpu->hv_clock));
1622         return 0;
1623 }
1624
1625 /*
1626  * kvmclock updates which are isolated to a given vcpu, such as
1627  * vcpu->cpu migration, should not allow system_timestamp from
1628  * the rest of the vcpus to remain static. Otherwise ntp frequency
1629  * correction applies to one vcpu's system_timestamp but not
1630  * the others.
1631  *
1632  * So in those cases, request a kvmclock update for all vcpus.
1633  * We need to rate-limit these requests though, as they can
1634  * considerably slow guests that have a large number of vcpus.
1635  * The time for a remote vcpu to update its kvmclock is bound
1636  * by the delay we use to rate-limit the updates.
1637  */
1638
1639 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1640
1641 static void kvmclock_update_fn(struct work_struct *work)
1642 {
1643         int i;
1644         struct delayed_work *dwork = to_delayed_work(work);
1645         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1646                                            kvmclock_update_work);
1647         struct kvm *kvm = container_of(ka, struct kvm, arch);
1648         struct kvm_vcpu *vcpu;
1649
1650         kvm_for_each_vcpu(i, vcpu, kvm) {
1651                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1652                 kvm_vcpu_kick(vcpu);
1653         }
1654 }
1655
1656 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1657 {
1658         struct kvm *kvm = v->kvm;
1659
1660         set_bit(KVM_REQ_CLOCK_UPDATE, &v->requests);
1661         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1662                                         KVMCLOCK_UPDATE_DELAY);
1663 }
1664
1665 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1666
1667 static void kvmclock_sync_fn(struct work_struct *work)
1668 {
1669         struct delayed_work *dwork = to_delayed_work(work);
1670         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1671                                            kvmclock_sync_work);
1672         struct kvm *kvm = container_of(ka, struct kvm, arch);
1673
1674         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1675         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1676                                         KVMCLOCK_SYNC_PERIOD);
1677 }
1678
1679 static bool msr_mtrr_valid(unsigned msr)
1680 {
1681         switch (msr) {
1682         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1683         case MSR_MTRRfix64K_00000:
1684         case MSR_MTRRfix16K_80000:
1685         case MSR_MTRRfix16K_A0000:
1686         case MSR_MTRRfix4K_C0000:
1687         case MSR_MTRRfix4K_C8000:
1688         case MSR_MTRRfix4K_D0000:
1689         case MSR_MTRRfix4K_D8000:
1690         case MSR_MTRRfix4K_E0000:
1691         case MSR_MTRRfix4K_E8000:
1692         case MSR_MTRRfix4K_F0000:
1693         case MSR_MTRRfix4K_F8000:
1694         case MSR_MTRRdefType:
1695         case MSR_IA32_CR_PAT:
1696                 return true;
1697         case 0x2f8:
1698                 return true;
1699         }
1700         return false;
1701 }
1702
1703 static bool valid_pat_type(unsigned t)
1704 {
1705         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1706 }
1707
1708 static bool valid_mtrr_type(unsigned t)
1709 {
1710         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1711 }
1712
1713 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1714 {
1715         int i;
1716
1717         if (!msr_mtrr_valid(msr))
1718                 return false;
1719
1720         if (msr == MSR_IA32_CR_PAT) {
1721                 for (i = 0; i < 8; i++)
1722                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1723                                 return false;
1724                 return true;
1725         } else if (msr == MSR_MTRRdefType) {
1726                 if (data & ~0xcff)
1727                         return false;
1728                 return valid_mtrr_type(data & 0xff);
1729         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1730                 for (i = 0; i < 8 ; i++)
1731                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1732                                 return false;
1733                 return true;
1734         }
1735
1736         /* variable MTRRs */
1737         return valid_mtrr_type(data & 0xff);
1738 }
1739
1740 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1741 {
1742         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1743
1744         if (!mtrr_valid(vcpu, msr, data))
1745                 return 1;
1746
1747         if (msr == MSR_MTRRdefType) {
1748                 vcpu->arch.mtrr_state.def_type = data;
1749                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1750         } else if (msr == MSR_MTRRfix64K_00000)
1751                 p[0] = data;
1752         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1753                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1754         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1755                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1756         else if (msr == MSR_IA32_CR_PAT)
1757                 vcpu->arch.pat = data;
1758         else {  /* Variable MTRRs */
1759                 int idx, is_mtrr_mask;
1760                 u64 *pt;
1761
1762                 idx = (msr - 0x200) / 2;
1763                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1764                 if (!is_mtrr_mask)
1765                         pt =
1766                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1767                 else
1768                         pt =
1769                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1770                 *pt = data;
1771         }
1772
1773         kvm_mmu_reset_context(vcpu);
1774         return 0;
1775 }
1776
1777 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1778 {
1779         u64 mcg_cap = vcpu->arch.mcg_cap;
1780         unsigned bank_num = mcg_cap & 0xff;
1781
1782         switch (msr) {
1783         case MSR_IA32_MCG_STATUS:
1784                 vcpu->arch.mcg_status = data;
1785                 break;
1786         case MSR_IA32_MCG_CTL:
1787                 if (!(mcg_cap & MCG_CTL_P))
1788                         return 1;
1789                 if (data != 0 && data != ~(u64)0)
1790                         return -1;
1791                 vcpu->arch.mcg_ctl = data;
1792                 break;
1793         default:
1794                 if (msr >= MSR_IA32_MC0_CTL &&
1795                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1796                         u32 offset = msr - MSR_IA32_MC0_CTL;
1797                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1798                          * some Linux kernels though clear bit 10 in bank 4 to
1799                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1800                          * this to avoid an uncatched #GP in the guest
1801                          */
1802                         if ((offset & 0x3) == 0 &&
1803                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1804                                 return -1;
1805                         vcpu->arch.mce_banks[offset] = data;
1806                         break;
1807                 }
1808                 return 1;
1809         }
1810         return 0;
1811 }
1812
1813 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1814 {
1815         struct kvm *kvm = vcpu->kvm;
1816         int lm = is_long_mode(vcpu);
1817         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1818                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1819         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1820                 : kvm->arch.xen_hvm_config.blob_size_32;
1821         u32 page_num = data & ~PAGE_MASK;
1822         u64 page_addr = data & PAGE_MASK;
1823         u8 *page;
1824         int r;
1825
1826         r = -E2BIG;
1827         if (page_num >= blob_size)
1828                 goto out;
1829         r = -ENOMEM;
1830         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1831         if (IS_ERR(page)) {
1832                 r = PTR_ERR(page);
1833                 goto out;
1834         }
1835         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1836                 goto out_free;
1837         r = 0;
1838 out_free:
1839         kfree(page);
1840 out:
1841         return r;
1842 }
1843
1844 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1845 {
1846         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1847 }
1848
1849 static bool kvm_hv_msr_partition_wide(u32 msr)
1850 {
1851         bool r = false;
1852         switch (msr) {
1853         case HV_X64_MSR_GUEST_OS_ID:
1854         case HV_X64_MSR_HYPERCALL:
1855         case HV_X64_MSR_REFERENCE_TSC:
1856         case HV_X64_MSR_TIME_REF_COUNT:
1857                 r = true;
1858                 break;
1859         }
1860
1861         return r;
1862 }
1863
1864 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1865 {
1866         struct kvm *kvm = vcpu->kvm;
1867
1868         switch (msr) {
1869         case HV_X64_MSR_GUEST_OS_ID:
1870                 kvm->arch.hv_guest_os_id = data;
1871                 /* setting guest os id to zero disables hypercall page */
1872                 if (!kvm->arch.hv_guest_os_id)
1873                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1874                 break;
1875         case HV_X64_MSR_HYPERCALL: {
1876                 u64 gfn;
1877                 unsigned long addr;
1878                 u8 instructions[4];
1879
1880                 /* if guest os id is not set hypercall should remain disabled */
1881                 if (!kvm->arch.hv_guest_os_id)
1882                         break;
1883                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1884                         kvm->arch.hv_hypercall = data;
1885                         break;
1886                 }
1887                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1888                 addr = gfn_to_hva(kvm, gfn);
1889                 if (kvm_is_error_hva(addr))
1890                         return 1;
1891                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1892                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1893                 if (__copy_to_user((void __user *)addr, instructions, 4))
1894                         return 1;
1895                 kvm->arch.hv_hypercall = data;
1896                 mark_page_dirty(kvm, gfn);
1897                 break;
1898         }
1899         case HV_X64_MSR_REFERENCE_TSC: {
1900                 u64 gfn;
1901                 HV_REFERENCE_TSC_PAGE tsc_ref;
1902                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1903                 kvm->arch.hv_tsc_page = data;
1904                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1905                         break;
1906                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1907                 if (kvm_write_guest(kvm, data,
1908                         &tsc_ref, sizeof(tsc_ref)))
1909                         return 1;
1910                 mark_page_dirty(kvm, gfn);
1911                 break;
1912         }
1913         default:
1914                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1915                             "data 0x%llx\n", msr, data);
1916                 return 1;
1917         }
1918         return 0;
1919 }
1920
1921 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1922 {
1923         switch (msr) {
1924         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1925                 u64 gfn;
1926                 unsigned long addr;
1927
1928                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1929                         vcpu->arch.hv_vapic = data;
1930                         break;
1931                 }
1932                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1933                 addr = gfn_to_hva(vcpu->kvm, gfn);
1934                 if (kvm_is_error_hva(addr))
1935                         return 1;
1936                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1937                         return 1;
1938                 vcpu->arch.hv_vapic = data;
1939                 mark_page_dirty(vcpu->kvm, gfn);
1940                 break;
1941         }
1942         case HV_X64_MSR_EOI:
1943                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1944         case HV_X64_MSR_ICR:
1945                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1946         case HV_X64_MSR_TPR:
1947                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1948         default:
1949                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1950                             "data 0x%llx\n", msr, data);
1951                 return 1;
1952         }
1953
1954         return 0;
1955 }
1956
1957 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1958 {
1959         gpa_t gpa = data & ~0x3f;
1960
1961         /* Bits 2:5 are reserved, Should be zero */
1962         if (data & 0x3c)
1963                 return 1;
1964
1965         vcpu->arch.apf.msr_val = data;
1966
1967         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1968                 kvm_clear_async_pf_completion_queue(vcpu);
1969                 kvm_async_pf_hash_reset(vcpu);
1970                 return 0;
1971         }
1972
1973         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1974                                         sizeof(u32)))
1975                 return 1;
1976
1977         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1978         kvm_async_pf_wakeup_all(vcpu);
1979         return 0;
1980 }
1981
1982 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1983 {
1984         vcpu->arch.pv_time_enabled = false;
1985 }
1986
1987 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1988 {
1989         u64 delta;
1990
1991         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1992                 return;
1993
1994         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1995         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1996         vcpu->arch.st.accum_steal = delta;
1997 }
1998
1999 static void record_steal_time(struct kvm_vcpu *vcpu)
2000 {
2001         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2002                 return;
2003
2004         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2005                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2006                 return;
2007
2008         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2009         vcpu->arch.st.steal.version += 2;
2010         vcpu->arch.st.accum_steal = 0;
2011
2012         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2013                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2014 }
2015
2016 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2017 {
2018         bool pr = false;
2019         u32 msr = msr_info->index;
2020         u64 data = msr_info->data;
2021
2022         switch (msr) {
2023         case MSR_AMD64_NB_CFG:
2024         case MSR_IA32_UCODE_REV:
2025         case MSR_IA32_UCODE_WRITE:
2026         case MSR_VM_HSAVE_PA:
2027         case MSR_AMD64_PATCH_LOADER:
2028         case MSR_AMD64_BU_CFG2:
2029                 break;
2030
2031         case MSR_EFER:
2032                 return set_efer(vcpu, data);
2033         case MSR_K7_HWCR:
2034                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2035                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2036                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2037                 if (data != 0) {
2038                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2039                                     data);
2040                         return 1;
2041                 }
2042                 break;
2043         case MSR_FAM10H_MMIO_CONF_BASE:
2044                 if (data != 0) {
2045                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2046                                     "0x%llx\n", data);
2047                         return 1;
2048                 }
2049                 break;
2050         case MSR_IA32_DEBUGCTLMSR:
2051                 if (!data) {
2052                         /* We support the non-activated case already */
2053                         break;
2054                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2055                         /* Values other than LBR and BTF are vendor-specific,
2056                            thus reserved and should throw a #GP */
2057                         return 1;
2058                 }
2059                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2060                             __func__, data);
2061                 break;
2062         case 0x200 ... 0x2ff:
2063                 return set_msr_mtrr(vcpu, msr, data);
2064         case MSR_IA32_APICBASE:
2065                 return kvm_set_apic_base(vcpu, msr_info);
2066         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2067                 return kvm_x2apic_msr_write(vcpu, msr, data);
2068         case MSR_IA32_TSCDEADLINE:
2069                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2070                 break;
2071         case MSR_IA32_TSC_ADJUST:
2072                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2073                         if (!msr_info->host_initiated) {
2074                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2075                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2076                         }
2077                         vcpu->arch.ia32_tsc_adjust_msr = data;
2078                 }
2079                 break;
2080         case MSR_IA32_MISC_ENABLE:
2081                 vcpu->arch.ia32_misc_enable_msr = data;
2082                 break;
2083         case MSR_KVM_WALL_CLOCK_NEW:
2084         case MSR_KVM_WALL_CLOCK:
2085                 vcpu->kvm->arch.wall_clock = data;
2086                 kvm_write_wall_clock(vcpu->kvm, data);
2087                 break;
2088         case MSR_KVM_SYSTEM_TIME_NEW:
2089         case MSR_KVM_SYSTEM_TIME: {
2090                 u64 gpa_offset;
2091                 kvmclock_reset(vcpu);
2092
2093                 vcpu->arch.time = data;
2094                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2095
2096                 /* we verify if the enable bit is set... */
2097                 if (!(data & 1))
2098                         break;
2099
2100                 gpa_offset = data & ~(PAGE_MASK | 1);
2101
2102                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2103                      &vcpu->arch.pv_time, data & ~1ULL,
2104                      sizeof(struct pvclock_vcpu_time_info)))
2105                         vcpu->arch.pv_time_enabled = false;
2106                 else
2107                         vcpu->arch.pv_time_enabled = true;
2108
2109                 break;
2110         }
2111         case MSR_KVM_ASYNC_PF_EN:
2112                 if (kvm_pv_enable_async_pf(vcpu, data))
2113                         return 1;
2114                 break;
2115         case MSR_KVM_STEAL_TIME:
2116
2117                 if (unlikely(!sched_info_on()))
2118                         return 1;
2119
2120                 if (data & KVM_STEAL_RESERVED_MASK)
2121                         return 1;
2122
2123                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2124                                                 data & KVM_STEAL_VALID_BITS,
2125                                                 sizeof(struct kvm_steal_time)))
2126                         return 1;
2127
2128                 vcpu->arch.st.msr_val = data;
2129
2130                 if (!(data & KVM_MSR_ENABLED))
2131                         break;
2132
2133                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2134
2135                 preempt_disable();
2136                 accumulate_steal_time(vcpu);
2137                 preempt_enable();
2138
2139                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2140
2141                 break;
2142         case MSR_KVM_PV_EOI_EN:
2143                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2144                         return 1;
2145                 break;
2146
2147         case MSR_IA32_MCG_CTL:
2148         case MSR_IA32_MCG_STATUS:
2149         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2150                 return set_msr_mce(vcpu, msr, data);
2151
2152         /* Performance counters are not protected by a CPUID bit,
2153          * so we should check all of them in the generic path for the sake of
2154          * cross vendor migration.
2155          * Writing a zero into the event select MSRs disables them,
2156          * which we perfectly emulate ;-). Any other value should be at least
2157          * reported, some guests depend on them.
2158          */
2159         case MSR_K7_EVNTSEL0:
2160         case MSR_K7_EVNTSEL1:
2161         case MSR_K7_EVNTSEL2:
2162         case MSR_K7_EVNTSEL3:
2163                 if (data != 0)
2164                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2165                                     "0x%x data 0x%llx\n", msr, data);
2166                 break;
2167         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2168          * so we ignore writes to make it happy.
2169          */
2170         case MSR_K7_PERFCTR0:
2171         case MSR_K7_PERFCTR1:
2172         case MSR_K7_PERFCTR2:
2173         case MSR_K7_PERFCTR3:
2174                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2175                             "0x%x data 0x%llx\n", msr, data);
2176                 break;
2177         case MSR_P6_PERFCTR0:
2178         case MSR_P6_PERFCTR1:
2179                 pr = true;
2180         case MSR_P6_EVNTSEL0:
2181         case MSR_P6_EVNTSEL1:
2182                 if (kvm_pmu_msr(vcpu, msr))
2183                         return kvm_pmu_set_msr(vcpu, msr_info);
2184
2185                 if (pr || data != 0)
2186                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2187                                     "0x%x data 0x%llx\n", msr, data);
2188                 break;
2189         case MSR_K7_CLK_CTL:
2190                 /*
2191                  * Ignore all writes to this no longer documented MSR.
2192                  * Writes are only relevant for old K7 processors,
2193                  * all pre-dating SVM, but a recommended workaround from
2194                  * AMD for these chips. It is possible to specify the
2195                  * affected processor models on the command line, hence
2196                  * the need to ignore the workaround.
2197                  */
2198                 break;
2199         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2200                 if (kvm_hv_msr_partition_wide(msr)) {
2201                         int r;
2202                         mutex_lock(&vcpu->kvm->lock);
2203                         r = set_msr_hyperv_pw(vcpu, msr, data);
2204                         mutex_unlock(&vcpu->kvm->lock);
2205                         return r;
2206                 } else
2207                         return set_msr_hyperv(vcpu, msr, data);
2208                 break;
2209         case MSR_IA32_BBL_CR_CTL3:
2210                 /* Drop writes to this legacy MSR -- see rdmsr
2211                  * counterpart for further detail.
2212                  */
2213                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2214                 break;
2215         case MSR_AMD64_OSVW_ID_LENGTH:
2216                 if (!guest_cpuid_has_osvw(vcpu))
2217                         return 1;
2218                 vcpu->arch.osvw.length = data;
2219                 break;
2220         case MSR_AMD64_OSVW_STATUS:
2221                 if (!guest_cpuid_has_osvw(vcpu))
2222                         return 1;
2223                 vcpu->arch.osvw.status = data;
2224                 break;
2225         default:
2226                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2227                         return xen_hvm_config(vcpu, data);
2228                 if (kvm_pmu_msr(vcpu, msr))
2229                         return kvm_pmu_set_msr(vcpu, msr_info);
2230                 if (!ignore_msrs) {
2231                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2232                                     msr, data);
2233                         return 1;
2234                 } else {
2235                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2236                                     msr, data);
2237                         break;
2238                 }
2239         }
2240         return 0;
2241 }
2242 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2243
2244
2245 /*
2246  * Reads an msr value (of 'msr_index') into 'pdata'.
2247  * Returns 0 on success, non-0 otherwise.
2248  * Assumes vcpu_load() was already called.
2249  */
2250 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2251 {
2252         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2253 }
2254
2255 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2256 {
2257         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2258
2259         if (!msr_mtrr_valid(msr))
2260                 return 1;
2261
2262         if (msr == MSR_MTRRdefType)
2263                 *pdata = vcpu->arch.mtrr_state.def_type +
2264                          (vcpu->arch.mtrr_state.enabled << 10);
2265         else if (msr == MSR_MTRRfix64K_00000)
2266                 *pdata = p[0];
2267         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2268                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2269         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2270                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2271         else if (msr == MSR_IA32_CR_PAT)
2272                 *pdata = vcpu->arch.pat;
2273         else {  /* Variable MTRRs */
2274                 int idx, is_mtrr_mask;
2275                 u64 *pt;
2276
2277                 idx = (msr - 0x200) / 2;
2278                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2279                 if (!is_mtrr_mask)
2280                         pt =
2281                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2282                 else
2283                         pt =
2284                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2285                 *pdata = *pt;
2286         }
2287
2288         return 0;
2289 }
2290
2291 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2292 {
2293         u64 data;
2294         u64 mcg_cap = vcpu->arch.mcg_cap;
2295         unsigned bank_num = mcg_cap & 0xff;
2296
2297         switch (msr) {
2298         case MSR_IA32_P5_MC_ADDR:
2299         case MSR_IA32_P5_MC_TYPE:
2300                 data = 0;
2301                 break;
2302         case MSR_IA32_MCG_CAP:
2303                 data = vcpu->arch.mcg_cap;
2304                 break;
2305         case MSR_IA32_MCG_CTL:
2306                 if (!(mcg_cap & MCG_CTL_P))
2307                         return 1;
2308                 data = vcpu->arch.mcg_ctl;
2309                 break;
2310         case MSR_IA32_MCG_STATUS:
2311                 data = vcpu->arch.mcg_status;
2312                 break;
2313         default:
2314                 if (msr >= MSR_IA32_MC0_CTL &&
2315                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2316                         u32 offset = msr - MSR_IA32_MC0_CTL;
2317                         data = vcpu->arch.mce_banks[offset];
2318                         break;
2319                 }
2320                 return 1;
2321         }
2322         *pdata = data;
2323         return 0;
2324 }
2325
2326 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2327 {
2328         u64 data = 0;
2329         struct kvm *kvm = vcpu->kvm;
2330
2331         switch (msr) {
2332         case HV_X64_MSR_GUEST_OS_ID:
2333                 data = kvm->arch.hv_guest_os_id;
2334                 break;
2335         case HV_X64_MSR_HYPERCALL:
2336                 data = kvm->arch.hv_hypercall;
2337                 break;
2338         case HV_X64_MSR_TIME_REF_COUNT: {
2339                 data =
2340                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2341                 break;
2342         }
2343         case HV_X64_MSR_REFERENCE_TSC:
2344                 data = kvm->arch.hv_tsc_page;
2345                 break;
2346         default:
2347                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2348                 return 1;
2349         }
2350
2351         *pdata = data;
2352         return 0;
2353 }
2354
2355 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2356 {
2357         u64 data = 0;
2358
2359         switch (msr) {
2360         case HV_X64_MSR_VP_INDEX: {
2361                 int r;
2362                 struct kvm_vcpu *v;
2363                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2364                         if (v == vcpu) {
2365                                 data = r;
2366                                 break;
2367                         }
2368                 }
2369                 break;
2370         }
2371         case HV_X64_MSR_EOI:
2372                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2373         case HV_X64_MSR_ICR:
2374                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2375         case HV_X64_MSR_TPR:
2376                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2377         case HV_X64_MSR_APIC_ASSIST_PAGE:
2378                 data = vcpu->arch.hv_vapic;
2379                 break;
2380         default:
2381                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2382                 return 1;
2383         }
2384         *pdata = data;
2385         return 0;
2386 }
2387
2388 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2389 {
2390         u64 data;
2391
2392         switch (msr) {
2393         case MSR_IA32_PLATFORM_ID:
2394         case MSR_IA32_EBL_CR_POWERON:
2395         case MSR_IA32_DEBUGCTLMSR:
2396         case MSR_IA32_LASTBRANCHFROMIP:
2397         case MSR_IA32_LASTBRANCHTOIP:
2398         case MSR_IA32_LASTINTFROMIP:
2399         case MSR_IA32_LASTINTTOIP:
2400         case MSR_K8_SYSCFG:
2401         case MSR_K7_HWCR:
2402         case MSR_VM_HSAVE_PA:
2403         case MSR_K7_EVNTSEL0:
2404         case MSR_K7_PERFCTR0:
2405         case MSR_K8_INT_PENDING_MSG:
2406         case MSR_AMD64_NB_CFG:
2407         case MSR_FAM10H_MMIO_CONF_BASE:
2408         case MSR_AMD64_BU_CFG2:
2409                 data = 0;
2410                 break;
2411         case MSR_P6_PERFCTR0:
2412         case MSR_P6_PERFCTR1:
2413         case MSR_P6_EVNTSEL0:
2414         case MSR_P6_EVNTSEL1:
2415                 if (kvm_pmu_msr(vcpu, msr))
2416                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2417                 data = 0;
2418                 break;
2419         case MSR_IA32_UCODE_REV:
2420                 data = 0x100000000ULL;
2421                 break;
2422         case MSR_MTRRcap:
2423                 data = 0x500 | KVM_NR_VAR_MTRR;
2424                 break;
2425         case 0x200 ... 0x2ff:
2426                 return get_msr_mtrr(vcpu, msr, pdata);
2427         case 0xcd: /* fsb frequency */
2428                 data = 3;
2429                 break;
2430                 /*
2431                  * MSR_EBC_FREQUENCY_ID
2432                  * Conservative value valid for even the basic CPU models.
2433                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2434                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2435                  * and 266MHz for model 3, or 4. Set Core Clock
2436                  * Frequency to System Bus Frequency Ratio to 1 (bits
2437                  * 31:24) even though these are only valid for CPU
2438                  * models > 2, however guests may end up dividing or
2439                  * multiplying by zero otherwise.
2440                  */
2441         case MSR_EBC_FREQUENCY_ID:
2442                 data = 1 << 24;
2443                 break;
2444         case MSR_IA32_APICBASE:
2445                 data = kvm_get_apic_base(vcpu);
2446                 break;
2447         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2448                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2449                 break;
2450         case MSR_IA32_TSCDEADLINE:
2451                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2452                 break;
2453         case MSR_IA32_TSC_ADJUST:
2454                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2455                 break;
2456         case MSR_IA32_MISC_ENABLE:
2457                 data = vcpu->arch.ia32_misc_enable_msr;
2458                 break;
2459         case MSR_IA32_PERF_STATUS:
2460                 /* TSC increment by tick */
2461                 data = 1000ULL;
2462                 /* CPU multiplier */
2463                 data |= (((uint64_t)4ULL) << 40);
2464                 break;
2465         case MSR_EFER:
2466                 data = vcpu->arch.efer;
2467                 break;
2468         case MSR_KVM_WALL_CLOCK:
2469         case MSR_KVM_WALL_CLOCK_NEW:
2470                 data = vcpu->kvm->arch.wall_clock;
2471                 break;
2472         case MSR_KVM_SYSTEM_TIME:
2473         case MSR_KVM_SYSTEM_TIME_NEW:
2474                 data = vcpu->arch.time;
2475                 break;
2476         case MSR_KVM_ASYNC_PF_EN:
2477                 data = vcpu->arch.apf.msr_val;
2478                 break;
2479         case MSR_KVM_STEAL_TIME:
2480                 data = vcpu->arch.st.msr_val;
2481                 break;
2482         case MSR_KVM_PV_EOI_EN:
2483                 data = vcpu->arch.pv_eoi.msr_val;
2484                 break;
2485         case MSR_IA32_P5_MC_ADDR:
2486         case MSR_IA32_P5_MC_TYPE:
2487         case MSR_IA32_MCG_CAP:
2488         case MSR_IA32_MCG_CTL:
2489         case MSR_IA32_MCG_STATUS:
2490         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2491                 return get_msr_mce(vcpu, msr, pdata);
2492         case MSR_K7_CLK_CTL:
2493                 /*
2494                  * Provide expected ramp-up count for K7. All other
2495                  * are set to zero, indicating minimum divisors for
2496                  * every field.
2497                  *
2498                  * This prevents guest kernels on AMD host with CPU
2499                  * type 6, model 8 and higher from exploding due to
2500                  * the rdmsr failing.
2501                  */
2502                 data = 0x20000000;
2503                 break;
2504         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2505                 if (kvm_hv_msr_partition_wide(msr)) {
2506                         int r;
2507                         mutex_lock(&vcpu->kvm->lock);
2508                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2509                         mutex_unlock(&vcpu->kvm->lock);
2510                         return r;
2511                 } else
2512                         return get_msr_hyperv(vcpu, msr, pdata);
2513                 break;
2514         case MSR_IA32_BBL_CR_CTL3:
2515                 /* This legacy MSR exists but isn't fully documented in current
2516                  * silicon.  It is however accessed by winxp in very narrow
2517                  * scenarios where it sets bit #19, itself documented as
2518                  * a "reserved" bit.  Best effort attempt to source coherent
2519                  * read data here should the balance of the register be
2520                  * interpreted by the guest:
2521                  *
2522                  * L2 cache control register 3: 64GB range, 256KB size,
2523                  * enabled, latency 0x1, configured
2524                  */
2525                 data = 0xbe702111;
2526                 break;
2527         case MSR_AMD64_OSVW_ID_LENGTH:
2528                 if (!guest_cpuid_has_osvw(vcpu))
2529                         return 1;
2530                 data = vcpu->arch.osvw.length;
2531                 break;
2532         case MSR_AMD64_OSVW_STATUS:
2533                 if (!guest_cpuid_has_osvw(vcpu))
2534                         return 1;
2535                 data = vcpu->arch.osvw.status;
2536                 break;
2537         default:
2538                 if (kvm_pmu_msr(vcpu, msr))
2539                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2540                 if (!ignore_msrs) {
2541                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2542                         return 1;
2543                 } else {
2544                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2545                         data = 0;
2546                 }
2547                 break;
2548         }
2549         *pdata = data;
2550         return 0;
2551 }
2552 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2553
2554 /*
2555  * Read or write a bunch of msrs. All parameters are kernel addresses.
2556  *
2557  * @return number of msrs set successfully.
2558  */
2559 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2560                     struct kvm_msr_entry *entries,
2561                     int (*do_msr)(struct kvm_vcpu *vcpu,
2562                                   unsigned index, u64 *data))
2563 {
2564         int i, idx;
2565
2566         idx = srcu_read_lock(&vcpu->kvm->srcu);
2567         for (i = 0; i < msrs->nmsrs; ++i)
2568                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2569                         break;
2570         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2571
2572         return i;
2573 }
2574
2575 /*
2576  * Read or write a bunch of msrs. Parameters are user addresses.
2577  *
2578  * @return number of msrs set successfully.
2579  */
2580 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2581                   int (*do_msr)(struct kvm_vcpu *vcpu,
2582                                 unsigned index, u64 *data),
2583                   int writeback)
2584 {
2585         struct kvm_msrs msrs;
2586         struct kvm_msr_entry *entries;
2587         int r, n;
2588         unsigned size;
2589
2590         r = -EFAULT;
2591         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2592                 goto out;
2593
2594         r = -E2BIG;
2595         if (msrs.nmsrs >= MAX_IO_MSRS)
2596                 goto out;
2597
2598         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2599         entries = memdup_user(user_msrs->entries, size);
2600         if (IS_ERR(entries)) {
2601                 r = PTR_ERR(entries);
2602                 goto out;
2603         }
2604
2605         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2606         if (r < 0)
2607                 goto out_free;
2608
2609         r = -EFAULT;
2610         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2611                 goto out_free;
2612
2613         r = n;
2614
2615 out_free:
2616         kfree(entries);
2617 out:
2618         return r;
2619 }
2620
2621 int kvm_dev_ioctl_check_extension(long ext)
2622 {
2623         int r;
2624
2625         switch (ext) {
2626         case KVM_CAP_IRQCHIP:
2627         case KVM_CAP_HLT:
2628         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2629         case KVM_CAP_SET_TSS_ADDR:
2630         case KVM_CAP_EXT_CPUID:
2631         case KVM_CAP_EXT_EMUL_CPUID:
2632         case KVM_CAP_CLOCKSOURCE:
2633         case KVM_CAP_PIT:
2634         case KVM_CAP_NOP_IO_DELAY:
2635         case KVM_CAP_MP_STATE:
2636         case KVM_CAP_SYNC_MMU:
2637         case KVM_CAP_USER_NMI:
2638         case KVM_CAP_REINJECT_CONTROL:
2639         case KVM_CAP_IRQ_INJECT_STATUS:
2640         case KVM_CAP_IRQFD:
2641         case KVM_CAP_IOEVENTFD:
2642         case KVM_CAP_PIT2:
2643         case KVM_CAP_PIT_STATE2:
2644         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2645         case KVM_CAP_XEN_HVM:
2646         case KVM_CAP_ADJUST_CLOCK:
2647         case KVM_CAP_VCPU_EVENTS:
2648         case KVM_CAP_HYPERV:
2649         case KVM_CAP_HYPERV_VAPIC:
2650         case KVM_CAP_HYPERV_SPIN:
2651         case KVM_CAP_PCI_SEGMENT:
2652         case KVM_CAP_DEBUGREGS:
2653         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2654         case KVM_CAP_XSAVE:
2655         case KVM_CAP_ASYNC_PF:
2656         case KVM_CAP_GET_TSC_KHZ:
2657         case KVM_CAP_KVMCLOCK_CTRL:
2658         case KVM_CAP_READONLY_MEM:
2659         case KVM_CAP_HYPERV_TIME:
2660         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2661 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2662         case KVM_CAP_ASSIGN_DEV_IRQ:
2663         case KVM_CAP_PCI_2_3:
2664 #endif
2665                 r = 1;
2666                 break;
2667         case KVM_CAP_COALESCED_MMIO:
2668                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2669                 break;
2670         case KVM_CAP_VAPIC:
2671                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2672                 break;
2673         case KVM_CAP_NR_VCPUS:
2674                 r = KVM_SOFT_MAX_VCPUS;
2675                 break;
2676         case KVM_CAP_MAX_VCPUS:
2677                 r = KVM_MAX_VCPUS;
2678                 break;
2679         case KVM_CAP_NR_MEMSLOTS:
2680                 r = KVM_USER_MEM_SLOTS;
2681                 break;
2682         case KVM_CAP_PV_MMU:    /* obsolete */
2683                 r = 0;
2684                 break;
2685 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2686         case KVM_CAP_IOMMU:
2687                 r = iommu_present(&pci_bus_type);
2688                 break;
2689 #endif
2690         case KVM_CAP_MCE:
2691                 r = KVM_MAX_MCE_BANKS;
2692                 break;
2693         case KVM_CAP_XCRS:
2694                 r = cpu_has_xsave;
2695                 break;
2696         case KVM_CAP_TSC_CONTROL:
2697                 r = kvm_has_tsc_control;
2698                 break;
2699         case KVM_CAP_TSC_DEADLINE_TIMER:
2700                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2701                 break;
2702         default:
2703                 r = 0;
2704                 break;
2705         }
2706         return r;
2707
2708 }
2709
2710 long kvm_arch_dev_ioctl(struct file *filp,
2711                         unsigned int ioctl, unsigned long arg)
2712 {
2713         void __user *argp = (void __user *)arg;
2714         long r;
2715
2716         switch (ioctl) {
2717         case KVM_GET_MSR_INDEX_LIST: {
2718                 struct kvm_msr_list __user *user_msr_list = argp;
2719                 struct kvm_msr_list msr_list;
2720                 unsigned n;
2721
2722                 r = -EFAULT;
2723                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2724                         goto out;
2725                 n = msr_list.nmsrs;
2726                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2727                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2728                         goto out;
2729                 r = -E2BIG;
2730                 if (n < msr_list.nmsrs)
2731                         goto out;
2732                 r = -EFAULT;
2733                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2734                                  num_msrs_to_save * sizeof(u32)))
2735                         goto out;
2736                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2737                                  &emulated_msrs,
2738                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2739                         goto out;
2740                 r = 0;
2741                 break;
2742         }
2743         case KVM_GET_SUPPORTED_CPUID:
2744         case KVM_GET_EMULATED_CPUID: {
2745                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2746                 struct kvm_cpuid2 cpuid;
2747
2748                 r = -EFAULT;
2749                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2750                         goto out;
2751
2752                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2753                                             ioctl);
2754                 if (r)
2755                         goto out;
2756
2757                 r = -EFAULT;
2758                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2759                         goto out;
2760                 r = 0;
2761                 break;
2762         }
2763         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2764                 u64 mce_cap;
2765
2766                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2767                 r = -EFAULT;
2768                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2769                         goto out;
2770                 r = 0;
2771                 break;
2772         }
2773         default:
2774                 r = -EINVAL;
2775         }
2776 out:
2777         return r;
2778 }
2779
2780 static void wbinvd_ipi(void *garbage)
2781 {
2782         wbinvd();
2783 }
2784
2785 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2786 {
2787         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2788 }
2789
2790 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2791 {
2792         /* Address WBINVD may be executed by guest */
2793         if (need_emulate_wbinvd(vcpu)) {
2794                 if (kvm_x86_ops->has_wbinvd_exit())
2795                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2796                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2797                         smp_call_function_single(vcpu->cpu,
2798                                         wbinvd_ipi, NULL, 1);
2799         }
2800
2801         kvm_x86_ops->vcpu_load(vcpu, cpu);
2802
2803         /* Apply any externally detected TSC adjustments (due to suspend) */
2804         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2805                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2806                 vcpu->arch.tsc_offset_adjustment = 0;
2807                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2808         }
2809
2810         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2811                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2812                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2813                 if (tsc_delta < 0)
2814                         mark_tsc_unstable("KVM discovered backwards TSC");
2815                 if (check_tsc_unstable()) {
2816                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2817                                                 vcpu->arch.last_guest_tsc);
2818                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2819                         vcpu->arch.tsc_catchup = 1;
2820                 }
2821                 /*
2822                  * On a host with synchronized TSC, there is no need to update
2823                  * kvmclock on vcpu->cpu migration
2824                  */
2825                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2826                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2827                 if (vcpu->cpu != cpu)
2828                         kvm_migrate_timers(vcpu);
2829                 vcpu->cpu = cpu;
2830         }
2831
2832         accumulate_steal_time(vcpu);
2833         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2834 }
2835
2836 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2837 {
2838         kvm_x86_ops->vcpu_put(vcpu);
2839         kvm_put_guest_fpu(vcpu);
2840         vcpu->arch.last_host_tsc = native_read_tsc();
2841 }
2842
2843 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2844                                     struct kvm_lapic_state *s)
2845 {
2846         kvm_x86_ops->sync_pir_to_irr(vcpu);
2847         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2848
2849         return 0;
2850 }
2851
2852 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2853                                     struct kvm_lapic_state *s)
2854 {
2855         kvm_apic_post_state_restore(vcpu, s);
2856         update_cr8_intercept(vcpu);
2857
2858         return 0;
2859 }
2860
2861 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2862                                     struct kvm_interrupt *irq)
2863 {
2864         if (irq->irq >= KVM_NR_INTERRUPTS)
2865                 return -EINVAL;
2866         if (irqchip_in_kernel(vcpu->kvm))
2867                 return -ENXIO;
2868
2869         kvm_queue_interrupt(vcpu, irq->irq, false);
2870         kvm_make_request(KVM_REQ_EVENT, vcpu);
2871
2872         return 0;
2873 }
2874
2875 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2876 {
2877         kvm_inject_nmi(vcpu);
2878
2879         return 0;
2880 }
2881
2882 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2883                                            struct kvm_tpr_access_ctl *tac)
2884 {
2885         if (tac->flags)
2886                 return -EINVAL;
2887         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2888         return 0;
2889 }
2890
2891 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2892                                         u64 mcg_cap)
2893 {
2894         int r;
2895         unsigned bank_num = mcg_cap & 0xff, bank;
2896
2897         r = -EINVAL;
2898         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2899                 goto out;
2900         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2901                 goto out;
2902         r = 0;
2903         vcpu->arch.mcg_cap = mcg_cap;
2904         /* Init IA32_MCG_CTL to all 1s */
2905         if (mcg_cap & MCG_CTL_P)
2906                 vcpu->arch.mcg_ctl = ~(u64)0;
2907         /* Init IA32_MCi_CTL to all 1s */
2908         for (bank = 0; bank < bank_num; bank++)
2909                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2910 out:
2911         return r;
2912 }
2913
2914 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2915                                       struct kvm_x86_mce *mce)
2916 {
2917         u64 mcg_cap = vcpu->arch.mcg_cap;
2918         unsigned bank_num = mcg_cap & 0xff;
2919         u64 *banks = vcpu->arch.mce_banks;
2920
2921         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2922                 return -EINVAL;
2923         /*
2924          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2925          * reporting is disabled
2926          */
2927         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2928             vcpu->arch.mcg_ctl != ~(u64)0)
2929                 return 0;
2930         banks += 4 * mce->bank;
2931         /*
2932          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2933          * reporting is disabled for the bank
2934          */
2935         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2936                 return 0;
2937         if (mce->status & MCI_STATUS_UC) {
2938                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2939                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2940                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2941                         return 0;
2942                 }
2943                 if (banks[1] & MCI_STATUS_VAL)
2944                         mce->status |= MCI_STATUS_OVER;
2945                 banks[2] = mce->addr;
2946                 banks[3] = mce->misc;
2947                 vcpu->arch.mcg_status = mce->mcg_status;
2948                 banks[1] = mce->status;
2949                 kvm_queue_exception(vcpu, MC_VECTOR);
2950         } else if (!(banks[1] & MCI_STATUS_VAL)
2951                    || !(banks[1] & MCI_STATUS_UC)) {
2952                 if (banks[1] & MCI_STATUS_VAL)
2953                         mce->status |= MCI_STATUS_OVER;
2954                 banks[2] = mce->addr;
2955                 banks[3] = mce->misc;
2956                 banks[1] = mce->status;
2957         } else
2958                 banks[1] |= MCI_STATUS_OVER;
2959         return 0;
2960 }
2961
2962 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2963                                                struct kvm_vcpu_events *events)
2964 {
2965         process_nmi(vcpu);
2966         events->exception.injected =
2967                 vcpu->arch.exception.pending &&
2968                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2969         events->exception.nr = vcpu->arch.exception.nr;
2970         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2971         events->exception.pad = 0;
2972         events->exception.error_code = vcpu->arch.exception.error_code;
2973
2974         events->interrupt.injected =
2975                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2976         events->interrupt.nr = vcpu->arch.interrupt.nr;
2977         events->interrupt.soft = 0;
2978         events->interrupt.shadow =
2979                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2980                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2981
2982         events->nmi.injected = vcpu->arch.nmi_injected;
2983         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2984         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2985         events->nmi.pad = 0;
2986
2987         events->sipi_vector = 0; /* never valid when reporting to user space */
2988
2989         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2990                          | KVM_VCPUEVENT_VALID_SHADOW);
2991         memset(&events->reserved, 0, sizeof(events->reserved));
2992 }
2993
2994 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2995                                               struct kvm_vcpu_events *events)
2996 {
2997         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2998                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2999                               | KVM_VCPUEVENT_VALID_SHADOW))
3000                 return -EINVAL;
3001
3002         process_nmi(vcpu);
3003         vcpu->arch.exception.pending = events->exception.injected;
3004         vcpu->arch.exception.nr = events->exception.nr;
3005         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3006         vcpu->arch.exception.error_code = events->exception.error_code;
3007
3008         vcpu->arch.interrupt.pending = events->interrupt.injected;
3009         vcpu->arch.interrupt.nr = events->interrupt.nr;
3010         vcpu->arch.interrupt.soft = events->interrupt.soft;
3011         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3012                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3013                                                   events->interrupt.shadow);
3014
3015         vcpu->arch.nmi_injected = events->nmi.injected;
3016         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3017                 vcpu->arch.nmi_pending = events->nmi.pending;
3018         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3019
3020         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3021             kvm_vcpu_has_lapic(vcpu))
3022                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3023
3024         kvm_make_request(KVM_REQ_EVENT, vcpu);
3025
3026         return 0;
3027 }
3028
3029 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3030                                              struct kvm_debugregs *dbgregs)
3031 {
3032         unsigned long val;
3033
3034         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3035         _kvm_get_dr(vcpu, 6, &val);
3036         dbgregs->dr6 = val;
3037         dbgregs->dr7 = vcpu->arch.dr7;
3038         dbgregs->flags = 0;
3039         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3040 }
3041
3042 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3043                                             struct kvm_debugregs *dbgregs)
3044 {
3045         if (dbgregs->flags)
3046                 return -EINVAL;
3047
3048         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3049         vcpu->arch.dr6 = dbgregs->dr6;
3050         kvm_update_dr6(vcpu);
3051         vcpu->arch.dr7 = dbgregs->dr7;
3052         kvm_update_dr7(vcpu);
3053
3054         return 0;
3055 }
3056
3057 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3058                                          struct kvm_xsave *guest_xsave)
3059 {
3060         if (cpu_has_xsave) {
3061                 memcpy(guest_xsave->region,
3062                         &vcpu->arch.guest_fpu.state->xsave,
3063                         vcpu->arch.guest_xstate_size);
3064                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3065                         vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3066         } else {
3067                 memcpy(guest_xsave->region,
3068                         &vcpu->arch.guest_fpu.state->fxsave,
3069                         sizeof(struct i387_fxsave_struct));
3070                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3071                         XSTATE_FPSSE;
3072         }
3073 }
3074
3075 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3076                                         struct kvm_xsave *guest_xsave)
3077 {
3078         u64 xstate_bv =
3079                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3080
3081         if (cpu_has_xsave) {
3082                 /*
3083                  * Here we allow setting states that are not present in
3084                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3085                  * with old userspace.
3086                  */
3087                 if (xstate_bv & ~kvm_supported_xcr0())
3088                         return -EINVAL;
3089                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3090                         guest_xsave->region, vcpu->arch.guest_xstate_size);
3091         } else {
3092                 if (xstate_bv & ~XSTATE_FPSSE)
3093                         return -EINVAL;
3094                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3095                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3096         }
3097         return 0;
3098 }
3099
3100 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3101                                         struct kvm_xcrs *guest_xcrs)
3102 {
3103         if (!cpu_has_xsave) {
3104                 guest_xcrs->nr_xcrs = 0;
3105                 return;
3106         }
3107
3108         guest_xcrs->nr_xcrs = 1;
3109         guest_xcrs->flags = 0;
3110         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3111         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3112 }
3113
3114 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3115                                        struct kvm_xcrs *guest_xcrs)
3116 {
3117         int i, r = 0;
3118
3119         if (!cpu_has_xsave)
3120                 return -EINVAL;
3121
3122         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3123                 return -EINVAL;
3124
3125         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3126                 /* Only support XCR0 currently */
3127                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3128                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3129                                 guest_xcrs->xcrs[i].value);
3130                         break;
3131                 }
3132         if (r)
3133                 r = -EINVAL;
3134         return r;
3135 }
3136
3137 /*
3138  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3139  * stopped by the hypervisor.  This function will be called from the host only.
3140  * EINVAL is returned when the host attempts to set the flag for a guest that
3141  * does not support pv clocks.
3142  */
3143 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3144 {
3145         if (!vcpu->arch.pv_time_enabled)
3146                 return -EINVAL;
3147         vcpu->arch.pvclock_set_guest_stopped_request = true;
3148         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3149         return 0;
3150 }
3151
3152 long kvm_arch_vcpu_ioctl(struct file *filp,
3153                          unsigned int ioctl, unsigned long arg)
3154 {
3155         struct kvm_vcpu *vcpu = filp->private_data;
3156         void __user *argp = (void __user *)arg;
3157         int r;
3158         union {
3159                 struct kvm_lapic_state *lapic;
3160                 struct kvm_xsave *xsave;
3161                 struct kvm_xcrs *xcrs;
3162                 void *buffer;
3163         } u;
3164
3165         u.buffer = NULL;
3166         switch (ioctl) {
3167         case KVM_GET_LAPIC: {
3168                 r = -EINVAL;
3169                 if (!vcpu->arch.apic)
3170                         goto out;
3171                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3172
3173                 r = -ENOMEM;
3174                 if (!u.lapic)
3175                         goto out;
3176                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3177                 if (r)
3178                         goto out;
3179                 r = -EFAULT;
3180                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3181                         goto out;
3182                 r = 0;
3183                 break;
3184         }
3185         case KVM_SET_LAPIC: {
3186                 r = -EINVAL;
3187                 if (!vcpu->arch.apic)
3188                         goto out;
3189                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3190                 if (IS_ERR(u.lapic))
3191                         return PTR_ERR(u.lapic);
3192
3193                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3194                 break;
3195         }
3196         case KVM_INTERRUPT: {
3197                 struct kvm_interrupt irq;
3198
3199                 r = -EFAULT;
3200                 if (copy_from_user(&irq, argp, sizeof irq))
3201                         goto out;
3202                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3203                 break;
3204         }
3205         case KVM_NMI: {
3206                 r = kvm_vcpu_ioctl_nmi(vcpu);
3207                 break;
3208         }
3209         case KVM_SET_CPUID: {
3210                 struct kvm_cpuid __user *cpuid_arg = argp;
3211                 struct kvm_cpuid cpuid;
3212
3213                 r = -EFAULT;
3214                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3215                         goto out;
3216                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3217                 break;
3218         }
3219         case KVM_SET_CPUID2: {
3220                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3221                 struct kvm_cpuid2 cpuid;
3222
3223                 r = -EFAULT;
3224                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3225                         goto out;
3226                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3227                                               cpuid_arg->entries);
3228                 break;
3229         }
3230         case KVM_GET_CPUID2: {
3231                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3232                 struct kvm_cpuid2 cpuid;
3233
3234                 r = -EFAULT;
3235                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3236                         goto out;
3237                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3238                                               cpuid_arg->entries);
3239                 if (r)
3240                         goto out;
3241                 r = -EFAULT;
3242                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3243                         goto out;
3244                 r = 0;
3245                 break;
3246         }
3247         case KVM_GET_MSRS:
3248                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3249                 break;
3250         case KVM_SET_MSRS:
3251                 r = msr_io(vcpu, argp, do_set_msr, 0);
3252                 break;
3253         case KVM_TPR_ACCESS_REPORTING: {
3254                 struct kvm_tpr_access_ctl tac;
3255
3256                 r = -EFAULT;
3257                 if (copy_from_user(&tac, argp, sizeof tac))
3258                         goto out;
3259                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3260                 if (r)
3261                         goto out;
3262                 r = -EFAULT;
3263                 if (copy_to_user(argp, &tac, sizeof tac))
3264                         goto out;
3265                 r = 0;
3266                 break;
3267         };
3268         case KVM_SET_VAPIC_ADDR: {
3269                 struct kvm_vapic_addr va;
3270
3271                 r = -EINVAL;
3272                 if (!irqchip_in_kernel(vcpu->kvm))
3273                         goto out;
3274                 r = -EFAULT;
3275                 if (copy_from_user(&va, argp, sizeof va))
3276                         goto out;
3277                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3278                 break;
3279         }
3280         case KVM_X86_SETUP_MCE: {
3281                 u64 mcg_cap;
3282
3283                 r = -EFAULT;
3284                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3285                         goto out;
3286                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3287                 break;
3288         }
3289         case KVM_X86_SET_MCE: {
3290                 struct kvm_x86_mce mce;
3291
3292                 r = -EFAULT;
3293                 if (copy_from_user(&mce, argp, sizeof mce))
3294                         goto out;
3295                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3296                 break;
3297         }
3298         case KVM_GET_VCPU_EVENTS: {
3299                 struct kvm_vcpu_events events;
3300
3301                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3302
3303                 r = -EFAULT;
3304                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3305                         break;
3306                 r = 0;
3307                 break;
3308         }
3309         case KVM_SET_VCPU_EVENTS: {
3310                 struct kvm_vcpu_events events;
3311
3312                 r = -EFAULT;
3313                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3314                         break;
3315
3316                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3317                 break;
3318         }
3319         case KVM_GET_DEBUGREGS: {
3320                 struct kvm_debugregs dbgregs;
3321
3322                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3323
3324                 r = -EFAULT;
3325                 if (copy_to_user(argp, &dbgregs,
3326                                  sizeof(struct kvm_debugregs)))
3327                         break;
3328                 r = 0;
3329                 break;
3330         }
3331         case KVM_SET_DEBUGREGS: {
3332                 struct kvm_debugregs dbgregs;
3333
3334                 r = -EFAULT;
3335                 if (copy_from_user(&dbgregs, argp,
3336                                    sizeof(struct kvm_debugregs)))
3337                         break;
3338
3339                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3340                 break;
3341         }
3342         case KVM_GET_XSAVE: {
3343                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3344                 r = -ENOMEM;
3345                 if (!u.xsave)
3346                         break;
3347
3348                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3349
3350                 r = -EFAULT;
3351                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3352                         break;
3353                 r = 0;
3354                 break;
3355         }
3356         case KVM_SET_XSAVE: {
3357                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3358                 if (IS_ERR(u.xsave))
3359                         return PTR_ERR(u.xsave);
3360
3361                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3362                 break;
3363         }
3364         case KVM_GET_XCRS: {
3365                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3366                 r = -ENOMEM;
3367                 if (!u.xcrs)
3368                         break;
3369
3370                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3371
3372                 r = -EFAULT;
3373                 if (copy_to_user(argp, u.xcrs,
3374                                  sizeof(struct kvm_xcrs)))
3375                         break;
3376                 r = 0;
3377                 break;
3378         }
3379         case KVM_SET_XCRS: {
3380                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3381                 if (IS_ERR(u.xcrs))
3382                         return PTR_ERR(u.xcrs);
3383
3384                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3385                 break;
3386         }
3387         case KVM_SET_TSC_KHZ: {
3388                 u32 user_tsc_khz;
3389
3390                 r = -EINVAL;
3391                 user_tsc_khz = (u32)arg;
3392
3393                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3394                         goto out;
3395
3396                 if (user_tsc_khz == 0)
3397                         user_tsc_khz = tsc_khz;
3398
3399                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3400
3401                 r = 0;
3402                 goto out;
3403         }
3404         case KVM_GET_TSC_KHZ: {
3405                 r = vcpu->arch.virtual_tsc_khz;
3406                 goto out;
3407         }
3408         case KVM_KVMCLOCK_CTRL: {
3409                 r = kvm_set_guest_paused(vcpu);
3410                 goto out;
3411         }
3412         default:
3413                 r = -EINVAL;
3414         }
3415 out:
3416         kfree(u.buffer);
3417         return r;
3418 }
3419
3420 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3421 {
3422         return VM_FAULT_SIGBUS;
3423 }
3424
3425 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3426 {
3427         int ret;
3428
3429         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3430                 return -EINVAL;
3431         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3432         return ret;
3433 }
3434
3435 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3436                                               u64 ident_addr)
3437 {
3438         kvm->arch.ept_identity_map_addr = ident_addr;
3439         return 0;
3440 }
3441
3442 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3443                                           u32 kvm_nr_mmu_pages)
3444 {
3445         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3446                 return -EINVAL;
3447
3448         mutex_lock(&kvm->slots_lock);
3449
3450         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3451         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3452
3453         mutex_unlock(&kvm->slots_lock);
3454         return 0;
3455 }
3456
3457 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3458 {
3459         return kvm->arch.n_max_mmu_pages;
3460 }
3461
3462 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3463 {
3464         int r;
3465
3466         r = 0;
3467         switch (chip->chip_id) {
3468         case KVM_IRQCHIP_PIC_MASTER:
3469                 memcpy(&chip->chip.pic,
3470                         &pic_irqchip(kvm)->pics[0],
3471                         sizeof(struct kvm_pic_state));
3472                 break;
3473         case KVM_IRQCHIP_PIC_SLAVE:
3474                 memcpy(&chip->chip.pic,
3475                         &pic_irqchip(kvm)->pics[1],
3476                         sizeof(struct kvm_pic_state));
3477                 break;
3478         case KVM_IRQCHIP_IOAPIC:
3479                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3480                 break;
3481         default:
3482                 r = -EINVAL;
3483                 break;
3484         }
3485         return r;
3486 }
3487
3488 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3489 {
3490         int r;
3491
3492         r = 0;
3493         switch (chip->chip_id) {
3494         case KVM_IRQCHIP_PIC_MASTER:
3495                 spin_lock(&pic_irqchip(kvm)->lock);
3496                 memcpy(&pic_irqchip(kvm)->pics[0],
3497                         &chip->chip.pic,
3498                         sizeof(struct kvm_pic_state));
3499                 spin_unlock(&pic_irqchip(kvm)->lock);
3500                 break;
3501         case KVM_IRQCHIP_PIC_SLAVE:
3502                 spin_lock(&pic_irqchip(kvm)->lock);
3503                 memcpy(&pic_irqchip(kvm)->pics[1],
3504                         &chip->chip.pic,
3505                         sizeof(struct kvm_pic_state));
3506                 spin_unlock(&pic_irqchip(kvm)->lock);
3507                 break;
3508         case KVM_IRQCHIP_IOAPIC:
3509                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3510                 break;
3511         default:
3512                 r = -EINVAL;
3513                 break;
3514         }
3515         kvm_pic_update_irq(pic_irqchip(kvm));
3516         return r;
3517 }
3518
3519 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3520 {
3521         int r = 0;
3522
3523         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3524         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3525         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3526         return r;
3527 }
3528
3529 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3530 {
3531         int r = 0;
3532
3533         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3534         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3535         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3536         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3537         return r;
3538 }
3539
3540 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3541 {
3542         int r = 0;
3543
3544         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3545         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3546                 sizeof(ps->channels));
3547         ps->flags = kvm->arch.vpit->pit_state.flags;
3548         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3549         memset(&ps->reserved, 0, sizeof(ps->reserved));
3550         return r;
3551 }
3552
3553 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3554 {
3555         int r = 0, start = 0;
3556         u32 prev_legacy, cur_legacy;
3557         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3558         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3559         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3560         if (!prev_legacy && cur_legacy)
3561                 start = 1;
3562         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3563                sizeof(kvm->arch.vpit->pit_state.channels));
3564         kvm->arch.vpit->pit_state.flags = ps->flags;
3565         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3566         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3567         return r;
3568 }
3569
3570 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3571                                  struct kvm_reinject_control *control)
3572 {
3573         if (!kvm->arch.vpit)
3574                 return -ENXIO;
3575         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3576         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3577         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3578         return 0;
3579 }
3580
3581 /**
3582  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3583  * @kvm: kvm instance
3584  * @log: slot id and address to which we copy the log
3585  *
3586  * We need to keep it in mind that VCPU threads can write to the bitmap
3587  * concurrently.  So, to avoid losing data, we keep the following order for
3588  * each bit:
3589  *
3590  *   1. Take a snapshot of the bit and clear it if needed.
3591  *   2. Write protect the corresponding page.
3592  *   3. Flush TLB's if needed.
3593  *   4. Copy the snapshot to the userspace.
3594  *
3595  * Between 2 and 3, the guest may write to the page using the remaining TLB
3596  * entry.  This is not a problem because the page will be reported dirty at
3597  * step 4 using the snapshot taken before and step 3 ensures that successive
3598  * writes will be logged for the next call.
3599  */
3600 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3601 {
3602         int r;
3603         struct kvm_memory_slot *memslot;
3604         unsigned long n, i;
3605         unsigned long *dirty_bitmap;
3606         unsigned long *dirty_bitmap_buffer;
3607         bool is_dirty = false;
3608
3609         mutex_lock(&kvm->slots_lock);
3610
3611         r = -EINVAL;
3612         if (log->slot >= KVM_USER_MEM_SLOTS)
3613                 goto out;
3614
3615         memslot = id_to_memslot(kvm->memslots, log->slot);
3616
3617         dirty_bitmap = memslot->dirty_bitmap;
3618         r = -ENOENT;
3619         if (!dirty_bitmap)
3620                 goto out;
3621
3622         n = kvm_dirty_bitmap_bytes(memslot);
3623
3624         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3625         memset(dirty_bitmap_buffer, 0, n);
3626
3627         spin_lock(&kvm->mmu_lock);
3628
3629         for (i = 0; i < n / sizeof(long); i++) {
3630                 unsigned long mask;
3631                 gfn_t offset;
3632
3633                 if (!dirty_bitmap[i])
3634                         continue;
3635
3636                 is_dirty = true;
3637
3638                 mask = xchg(&dirty_bitmap[i], 0);
3639                 dirty_bitmap_buffer[i] = mask;
3640
3641                 offset = i * BITS_PER_LONG;
3642                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3643         }
3644         if (is_dirty)
3645                 kvm_flush_remote_tlbs(kvm);
3646
3647         spin_unlock(&kvm->mmu_lock);
3648
3649         r = -EFAULT;
3650         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3651                 goto out;
3652
3653         r = 0;
3654 out:
3655         mutex_unlock(&kvm->slots_lock);
3656         return r;
3657 }
3658
3659 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3660                         bool line_status)
3661 {
3662         if (!irqchip_in_kernel(kvm))
3663                 return -ENXIO;
3664
3665         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3666                                         irq_event->irq, irq_event->level,
3667                                         line_status);
3668         return 0;
3669 }
3670
3671 long kvm_arch_vm_ioctl(struct file *filp,
3672                        unsigned int ioctl, unsigned long arg)
3673 {
3674         struct kvm *kvm = filp->private_data;
3675         void __user *argp = (void __user *)arg;
3676         int r = -ENOTTY;
3677         /*
3678          * This union makes it completely explicit to gcc-3.x
3679          * that these two variables' stack usage should be
3680          * combined, not added together.
3681          */
3682         union {
3683                 struct kvm_pit_state ps;
3684                 struct kvm_pit_state2 ps2;
3685                 struct kvm_pit_config pit_config;
3686         } u;
3687
3688         switch (ioctl) {
3689         case KVM_SET_TSS_ADDR:
3690                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3691                 break;
3692         case KVM_SET_IDENTITY_MAP_ADDR: {
3693                 u64 ident_addr;
3694
3695                 r = -EFAULT;
3696                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3697                         goto out;
3698                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3699                 break;
3700         }
3701         case KVM_SET_NR_MMU_PAGES:
3702                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3703                 break;
3704         case KVM_GET_NR_MMU_PAGES:
3705                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3706                 break;
3707         case KVM_CREATE_IRQCHIP: {
3708                 struct kvm_pic *vpic;
3709
3710                 mutex_lock(&kvm->lock);
3711                 r = -EEXIST;
3712                 if (kvm->arch.vpic)
3713                         goto create_irqchip_unlock;
3714                 r = -EINVAL;
3715                 if (atomic_read(&kvm->online_vcpus))
3716                         goto create_irqchip_unlock;
3717                 r = -ENOMEM;
3718                 vpic = kvm_create_pic(kvm);
3719                 if (vpic) {
3720                         r = kvm_ioapic_init(kvm);
3721                         if (r) {
3722                                 mutex_lock(&kvm->slots_lock);
3723                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3724                                                           &vpic->dev_master);
3725                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3726                                                           &vpic->dev_slave);
3727                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3728                                                           &vpic->dev_eclr);
3729                                 mutex_unlock(&kvm->slots_lock);
3730                                 kfree(vpic);
3731                                 goto create_irqchip_unlock;
3732                         }
3733                 } else
3734                         goto create_irqchip_unlock;
3735                 smp_wmb();
3736                 kvm->arch.vpic = vpic;
3737                 smp_wmb();
3738                 r = kvm_setup_default_irq_routing(kvm);
3739                 if (r) {
3740                         mutex_lock(&kvm->slots_lock);
3741                         mutex_lock(&kvm->irq_lock);
3742                         kvm_ioapic_destroy(kvm);
3743                         kvm_destroy_pic(kvm);
3744                         mutex_unlock(&kvm->irq_lock);
3745                         mutex_unlock(&kvm->slots_lock);
3746                 }
3747         create_irqchip_unlock:
3748                 mutex_unlock(&kvm->lock);
3749                 break;
3750         }
3751         case KVM_CREATE_PIT:
3752                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3753                 goto create_pit;
3754         case KVM_CREATE_PIT2:
3755                 r = -EFAULT;
3756                 if (copy_from_user(&u.pit_config, argp,
3757                                    sizeof(struct kvm_pit_config)))
3758                         goto out;
3759         create_pit:
3760                 mutex_lock(&kvm->slots_lock);
3761                 r = -EEXIST;
3762                 if (kvm->arch.vpit)
3763                         goto create_pit_unlock;
3764                 r = -ENOMEM;
3765                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3766                 if (kvm->arch.vpit)
3767                         r = 0;
3768         create_pit_unlock:
3769                 mutex_unlock(&kvm->slots_lock);
3770                 break;
3771         case KVM_GET_IRQCHIP: {
3772                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3773                 struct kvm_irqchip *chip;
3774
3775                 chip = memdup_user(argp, sizeof(*chip));
3776                 if (IS_ERR(chip)) {
3777                         r = PTR_ERR(chip);
3778                         goto out;
3779                 }
3780
3781                 r = -ENXIO;
3782                 if (!irqchip_in_kernel(kvm))
3783                         goto get_irqchip_out;
3784                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3785                 if (r)
3786                         goto get_irqchip_out;
3787                 r = -EFAULT;
3788                 if (copy_to_user(argp, chip, sizeof *chip))
3789                         goto get_irqchip_out;
3790                 r = 0;
3791         get_irqchip_out:
3792                 kfree(chip);
3793                 break;
3794         }
3795         case KVM_SET_IRQCHIP: {
3796                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3797                 struct kvm_irqchip *chip;
3798
3799                 chip = memdup_user(argp, sizeof(*chip));
3800                 if (IS_ERR(chip)) {
3801                         r = PTR_ERR(chip);
3802                         goto out;
3803                 }
3804
3805                 r = -ENXIO;
3806                 if (!irqchip_in_kernel(kvm))
3807                         goto set_irqchip_out;
3808                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3809                 if (r)
3810                         goto set_irqchip_out;
3811                 r = 0;
3812         set_irqchip_out:
3813                 kfree(chip);
3814                 break;
3815         }
3816         case KVM_GET_PIT: {
3817                 r = -EFAULT;
3818                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3819                         goto out;
3820                 r = -ENXIO;
3821                 if (!kvm->arch.vpit)
3822                         goto out;
3823                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3824                 if (r)
3825                         goto out;
3826                 r = -EFAULT;
3827                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3828                         goto out;
3829                 r = 0;
3830                 break;
3831         }
3832         case KVM_SET_PIT: {
3833                 r = -EFAULT;
3834                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3835                         goto out;
3836                 r = -ENXIO;
3837                 if (!kvm->arch.vpit)
3838                         goto out;
3839                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3840                 break;
3841         }
3842         case KVM_GET_PIT2: {
3843                 r = -ENXIO;
3844                 if (!kvm->arch.vpit)
3845                         goto out;
3846                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3847                 if (r)
3848                         goto out;
3849                 r = -EFAULT;
3850                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3851                         goto out;
3852                 r = 0;
3853                 break;
3854         }
3855         case KVM_SET_PIT2: {
3856                 r = -EFAULT;
3857                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3858                         goto out;
3859                 r = -ENXIO;
3860                 if (!kvm->arch.vpit)
3861                         goto out;
3862                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3863                 break;
3864         }
3865         case KVM_REINJECT_CONTROL: {
3866                 struct kvm_reinject_control control;
3867                 r =  -EFAULT;
3868                 if (copy_from_user(&control, argp, sizeof(control)))
3869                         goto out;
3870                 r = kvm_vm_ioctl_reinject(kvm, &control);
3871                 break;
3872         }
3873         case KVM_XEN_HVM_CONFIG: {
3874                 r = -EFAULT;
3875                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3876                                    sizeof(struct kvm_xen_hvm_config)))
3877                         goto out;
3878                 r = -EINVAL;
3879                 if (kvm->arch.xen_hvm_config.flags)
3880                         goto out;
3881                 r = 0;
3882                 break;
3883         }
3884         case KVM_SET_CLOCK: {
3885                 struct kvm_clock_data user_ns;
3886                 u64 now_ns;
3887                 s64 delta;
3888
3889                 r = -EFAULT;
3890                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3891                         goto out;
3892
3893                 r = -EINVAL;
3894                 if (user_ns.flags)
3895                         goto out;
3896
3897                 r = 0;
3898                 local_irq_disable();
3899                 now_ns = get_kernel_ns();
3900                 delta = user_ns.clock - now_ns;
3901                 local_irq_enable();
3902                 kvm->arch.kvmclock_offset = delta;
3903                 kvm_gen_update_masterclock(kvm);
3904                 break;
3905         }
3906         case KVM_GET_CLOCK: {
3907                 struct kvm_clock_data user_ns;
3908                 u64 now_ns;
3909
3910                 local_irq_disable();
3911                 now_ns = get_kernel_ns();
3912                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3913                 local_irq_enable();
3914                 user_ns.flags = 0;
3915                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3916
3917                 r = -EFAULT;
3918                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3919                         goto out;
3920                 r = 0;
3921                 break;
3922         }
3923
3924         default:
3925                 ;
3926         }
3927 out:
3928         return r;
3929 }
3930
3931 static void kvm_init_msr_list(void)
3932 {
3933         u32 dummy[2];
3934         unsigned i, j;
3935
3936         /* skip the first msrs in the list. KVM-specific */
3937         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3938                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3939                         continue;
3940
3941                 /*
3942                  * Even MSRs that are valid in the host may not be exposed
3943                  * to the guests in some cases.  We could work around this
3944                  * in VMX with the generic MSR save/load machinery, but it
3945                  * is not really worthwhile since it will really only
3946                  * happen with nested virtualization.
3947                  */
3948                 switch (msrs_to_save[i]) {
3949                 case MSR_IA32_BNDCFGS:
3950                         if (!kvm_x86_ops->mpx_supported())
3951                                 continue;
3952                         break;
3953                 default:
3954                         break;
3955                 }
3956
3957                 if (j < i)
3958                         msrs_to_save[j] = msrs_to_save[i];
3959                 j++;
3960         }
3961         num_msrs_to_save = j;
3962 }
3963
3964 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3965                            const void *v)
3966 {
3967         int handled = 0;
3968         int n;
3969
3970         do {
3971                 n = min(len, 8);
3972                 if (!(vcpu->arch.apic &&
3973                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3974                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3975                         break;
3976                 handled += n;
3977                 addr += n;
3978                 len -= n;
3979                 v += n;
3980         } while (len);
3981
3982         return handled;
3983 }
3984
3985 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3986 {
3987         int handled = 0;
3988         int n;
3989
3990         do {
3991                 n = min(len, 8);
3992                 if (!(vcpu->arch.apic &&
3993                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3994                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3995                         break;
3996                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3997                 handled += n;
3998                 addr += n;
3999                 len -= n;
4000                 v += n;
4001         } while (len);
4002
4003         return handled;
4004 }
4005
4006 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4007                         struct kvm_segment *var, int seg)
4008 {
4009         kvm_x86_ops->set_segment(vcpu, var, seg);
4010 }
4011
4012 void kvm_get_segment(struct kvm_vcpu *vcpu,
4013                      struct kvm_segment *var, int seg)
4014 {
4015         kvm_x86_ops->get_segment(vcpu, var, seg);
4016 }
4017
4018 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
4019 {
4020         gpa_t t_gpa;
4021         struct x86_exception exception;
4022
4023         BUG_ON(!mmu_is_nested(vcpu));
4024
4025         /* NPT walks are always user-walks */
4026         access |= PFERR_USER_MASK;
4027         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
4028
4029         return t_gpa;
4030 }
4031
4032 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4033                               struct x86_exception *exception)
4034 {
4035         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4036         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4037 }
4038
4039  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4040                                 struct x86_exception *exception)
4041 {
4042         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4043         access |= PFERR_FETCH_MASK;
4044         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4045 }
4046
4047 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4048                                struct x86_exception *exception)
4049 {
4050         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4051         access |= PFERR_WRITE_MASK;
4052         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4053 }
4054
4055 /* uses this to access any guest's mapped memory without checking CPL */
4056 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4057                                 struct x86_exception *exception)
4058 {
4059         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4060 }
4061
4062 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4063                                       struct kvm_vcpu *vcpu, u32 access,
4064                                       struct x86_exception *exception)
4065 {
4066         void *data = val;
4067         int r = X86EMUL_CONTINUE;
4068
4069         while (bytes) {
4070                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4071                                                             exception);
4072                 unsigned offset = addr & (PAGE_SIZE-1);
4073                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4074                 int ret;
4075
4076                 if (gpa == UNMAPPED_GVA)
4077                         return X86EMUL_PROPAGATE_FAULT;
4078                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
4079                 if (ret < 0) {
4080                         r = X86EMUL_IO_NEEDED;
4081                         goto out;
4082                 }
4083
4084                 bytes -= toread;
4085                 data += toread;
4086                 addr += toread;
4087         }
4088 out:
4089         return r;
4090 }
4091
4092 /* used for instruction fetching */
4093 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4094                                 gva_t addr, void *val, unsigned int bytes,
4095                                 struct x86_exception *exception)
4096 {
4097         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4098         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4099
4100         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4101                                           access | PFERR_FETCH_MASK,
4102                                           exception);
4103 }
4104
4105 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4106                                gva_t addr, void *val, unsigned int bytes,
4107                                struct x86_exception *exception)
4108 {
4109         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4110         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4111
4112         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4113                                           exception);
4114 }
4115 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4116
4117 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4118                                       gva_t addr, void *val, unsigned int bytes,
4119                                       struct x86_exception *exception)
4120 {
4121         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4122         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4123 }
4124
4125 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4126                                        gva_t addr, void *val,
4127                                        unsigned int bytes,
4128                                        struct x86_exception *exception)
4129 {
4130         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4131         void *data = val;
4132         int r = X86EMUL_CONTINUE;
4133
4134         while (bytes) {
4135                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4136                                                              PFERR_WRITE_MASK,
4137                                                              exception);
4138                 unsigned offset = addr & (PAGE_SIZE-1);
4139                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4140                 int ret;
4141
4142                 if (gpa == UNMAPPED_GVA)
4143                         return X86EMUL_PROPAGATE_FAULT;
4144                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4145                 if (ret < 0) {
4146                         r = X86EMUL_IO_NEEDED;
4147                         goto out;
4148                 }
4149
4150                 bytes -= towrite;
4151                 data += towrite;
4152                 addr += towrite;
4153         }
4154 out:
4155         return r;
4156 }
4157 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4158
4159 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4160                                 gpa_t *gpa, struct x86_exception *exception,
4161                                 bool write)
4162 {
4163         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4164                 | (write ? PFERR_WRITE_MASK : 0);
4165
4166         if (vcpu_match_mmio_gva(vcpu, gva)
4167             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4168                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4169                                         (gva & (PAGE_SIZE - 1));
4170                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4171                 return 1;
4172         }
4173
4174         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4175
4176         if (*gpa == UNMAPPED_GVA)
4177                 return -1;
4178
4179         /* For APIC access vmexit */
4180         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4181                 return 1;
4182
4183         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4184                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4185                 return 1;
4186         }
4187
4188         return 0;
4189 }
4190
4191 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4192                         const void *val, int bytes)
4193 {
4194         int ret;
4195
4196         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4197         if (ret < 0)
4198                 return 0;
4199         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4200         return 1;
4201 }
4202
4203 struct read_write_emulator_ops {
4204         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4205                                   int bytes);
4206         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4207                                   void *val, int bytes);
4208         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4209                                int bytes, void *val);
4210         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4211                                     void *val, int bytes);
4212         bool write;
4213 };
4214
4215 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4216 {
4217         if (vcpu->mmio_read_completed) {
4218                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4219                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4220                 vcpu->mmio_read_completed = 0;
4221                 return 1;
4222         }
4223
4224         return 0;
4225 }
4226
4227 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4228                         void *val, int bytes)
4229 {
4230         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4231 }
4232
4233 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4234                          void *val, int bytes)
4235 {
4236         return emulator_write_phys(vcpu, gpa, val, bytes);
4237 }
4238
4239 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4240 {
4241         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4242         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4243 }
4244
4245 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4246                           void *val, int bytes)
4247 {
4248         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4249         return X86EMUL_IO_NEEDED;
4250 }
4251
4252 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4253                            void *val, int bytes)
4254 {
4255         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4256
4257         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4258         return X86EMUL_CONTINUE;
4259 }
4260
4261 static const struct read_write_emulator_ops read_emultor = {
4262         .read_write_prepare = read_prepare,
4263         .read_write_emulate = read_emulate,
4264         .read_write_mmio = vcpu_mmio_read,
4265         .read_write_exit_mmio = read_exit_mmio,
4266 };
4267
4268 static const struct read_write_emulator_ops write_emultor = {
4269         .read_write_emulate = write_emulate,
4270         .read_write_mmio = write_mmio,
4271         .read_write_exit_mmio = write_exit_mmio,
4272         .write = true,
4273 };
4274
4275 static int emulator_read_write_onepage(unsigned long addr, void *val,
4276                                        unsigned int bytes,
4277                                        struct x86_exception *exception,
4278                                        struct kvm_vcpu *vcpu,
4279                                        const struct read_write_emulator_ops *ops)
4280 {
4281         gpa_t gpa;
4282         int handled, ret;
4283         bool write = ops->write;
4284         struct kvm_mmio_fragment *frag;
4285
4286         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4287
4288         if (ret < 0)
4289                 return X86EMUL_PROPAGATE_FAULT;
4290
4291         /* For APIC access vmexit */
4292         if (ret)
4293                 goto mmio;
4294
4295         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4296                 return X86EMUL_CONTINUE;
4297
4298 mmio:
4299         /*
4300          * Is this MMIO handled locally?
4301          */
4302         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4303         if (handled == bytes)
4304                 return X86EMUL_CONTINUE;
4305
4306         gpa += handled;
4307         bytes -= handled;
4308         val += handled;
4309
4310         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4311         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4312         frag->gpa = gpa;
4313         frag->data = val;
4314         frag->len = bytes;
4315         return X86EMUL_CONTINUE;
4316 }
4317
4318 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4319                         void *val, unsigned int bytes,
4320                         struct x86_exception *exception,
4321                         const struct read_write_emulator_ops *ops)
4322 {
4323         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4324         gpa_t gpa;
4325         int rc;
4326
4327         if (ops->read_write_prepare &&
4328                   ops->read_write_prepare(vcpu, val, bytes))
4329                 return X86EMUL_CONTINUE;
4330
4331         vcpu->mmio_nr_fragments = 0;
4332
4333         /* Crossing a page boundary? */
4334         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4335                 int now;
4336
4337                 now = -addr & ~PAGE_MASK;
4338                 rc = emulator_read_write_onepage(addr, val, now, exception,
4339                                                  vcpu, ops);
4340
4341                 if (rc != X86EMUL_CONTINUE)
4342                         return rc;
4343                 addr += now;
4344                 val += now;
4345                 bytes -= now;
4346         }
4347
4348         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4349                                          vcpu, ops);
4350         if (rc != X86EMUL_CONTINUE)
4351                 return rc;
4352
4353         if (!vcpu->mmio_nr_fragments)
4354                 return rc;
4355
4356         gpa = vcpu->mmio_fragments[0].gpa;
4357
4358         vcpu->mmio_needed = 1;
4359         vcpu->mmio_cur_fragment = 0;
4360
4361         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4362         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4363         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4364         vcpu->run->mmio.phys_addr = gpa;
4365
4366         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4367 }
4368
4369 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4370                                   unsigned long addr,
4371                                   void *val,
4372                                   unsigned int bytes,
4373                                   struct x86_exception *exception)
4374 {
4375         return emulator_read_write(ctxt, addr, val, bytes,
4376                                    exception, &read_emultor);
4377 }
4378
4379 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4380                             unsigned long addr,
4381                             const void *val,
4382                             unsigned int bytes,
4383                             struct x86_exception *exception)
4384 {
4385         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4386                                    exception, &write_emultor);
4387 }
4388
4389 #define CMPXCHG_TYPE(t, ptr, old, new) \
4390         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4391
4392 #ifdef CONFIG_X86_64
4393 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4394 #else
4395 #  define CMPXCHG64(ptr, old, new) \
4396         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4397 #endif
4398
4399 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4400                                      unsigned long addr,
4401                                      const void *old,
4402                                      const void *new,
4403                                      unsigned int bytes,
4404                                      struct x86_exception *exception)
4405 {
4406         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4407         gpa_t gpa;
4408         struct page *page;
4409         char *kaddr;
4410         bool exchanged;
4411
4412         /* guests cmpxchg8b have to be emulated atomically */
4413         if (bytes > 8 || (bytes & (bytes - 1)))
4414                 goto emul_write;
4415
4416         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4417
4418         if (gpa == UNMAPPED_GVA ||
4419             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4420                 goto emul_write;
4421
4422         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4423                 goto emul_write;
4424
4425         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4426         if (is_error_page(page))
4427                 goto emul_write;
4428
4429         kaddr = kmap_atomic(page);
4430         kaddr += offset_in_page(gpa);
4431         switch (bytes) {
4432         case 1:
4433                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4434                 break;
4435         case 2:
4436                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4437                 break;
4438         case 4:
4439                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4440                 break;
4441         case 8:
4442                 exchanged = CMPXCHG64(kaddr, old, new);
4443                 break;
4444         default:
4445                 BUG();
4446         }
4447         kunmap_atomic(kaddr);
4448         kvm_release_page_dirty(page);
4449
4450         if (!exchanged)
4451                 return X86EMUL_CMPXCHG_FAILED;
4452
4453         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4454         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4455
4456         return X86EMUL_CONTINUE;
4457
4458 emul_write:
4459         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4460
4461         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4462 }
4463
4464 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4465 {
4466         /* TODO: String I/O for in kernel device */
4467         int r;
4468
4469         if (vcpu->arch.pio.in)
4470                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4471                                     vcpu->arch.pio.size, pd);
4472         else
4473                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4474                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4475                                      pd);
4476         return r;
4477 }
4478
4479 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4480                                unsigned short port, void *val,
4481                                unsigned int count, bool in)
4482 {
4483         trace_kvm_pio(!in, port, size, count);
4484
4485         vcpu->arch.pio.port = port;
4486         vcpu->arch.pio.in = in;
4487         vcpu->arch.pio.count  = count;
4488         vcpu->arch.pio.size = size;
4489
4490         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4491                 vcpu->arch.pio.count = 0;
4492                 return 1;
4493         }
4494
4495         vcpu->run->exit_reason = KVM_EXIT_IO;
4496         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4497         vcpu->run->io.size = size;
4498         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4499         vcpu->run->io.count = count;
4500         vcpu->run->io.port = port;
4501
4502         return 0;
4503 }
4504
4505 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4506                                     int size, unsigned short port, void *val,
4507                                     unsigned int count)
4508 {
4509         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4510         int ret;
4511
4512         if (vcpu->arch.pio.count)
4513                 goto data_avail;
4514
4515         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4516         if (ret) {
4517 data_avail:
4518                 memcpy(val, vcpu->arch.pio_data, size * count);
4519                 vcpu->arch.pio.count = 0;
4520                 return 1;
4521         }
4522
4523         return 0;
4524 }
4525
4526 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4527                                      int size, unsigned short port,
4528                                      const void *val, unsigned int count)
4529 {
4530         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4531
4532         memcpy(vcpu->arch.pio_data, val, size * count);
4533         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4534 }
4535
4536 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4537 {
4538         return kvm_x86_ops->get_segment_base(vcpu, seg);
4539 }
4540
4541 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4542 {
4543         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4544 }
4545
4546 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4547 {
4548         if (!need_emulate_wbinvd(vcpu))
4549                 return X86EMUL_CONTINUE;
4550
4551         if (kvm_x86_ops->has_wbinvd_exit()) {
4552                 int cpu = get_cpu();
4553
4554                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4555                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4556                                 wbinvd_ipi, NULL, 1);
4557                 put_cpu();
4558                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4559         } else
4560                 wbinvd();
4561         return X86EMUL_CONTINUE;
4562 }
4563 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4564
4565 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4566 {
4567         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4568 }
4569
4570 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4571 {
4572         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4573 }
4574
4575 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4576 {
4577
4578         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4579 }
4580
4581 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4582 {
4583         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4584 }
4585
4586 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4587 {
4588         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4589         unsigned long value;
4590
4591         switch (cr) {
4592         case 0:
4593                 value = kvm_read_cr0(vcpu);
4594                 break;
4595         case 2:
4596                 value = vcpu->arch.cr2;
4597                 break;
4598         case 3:
4599                 value = kvm_read_cr3(vcpu);
4600                 break;
4601         case 4:
4602                 value = kvm_read_cr4(vcpu);
4603                 break;
4604         case 8:
4605                 value = kvm_get_cr8(vcpu);
4606                 break;
4607         default:
4608                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4609                 return 0;
4610         }
4611
4612         return value;
4613 }
4614
4615 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4616 {
4617         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4618         int res = 0;
4619
4620         switch (cr) {
4621         case 0:
4622                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4623                 break;
4624         case 2:
4625                 vcpu->arch.cr2 = val;
4626                 break;
4627         case 3:
4628                 res = kvm_set_cr3(vcpu, val);
4629                 break;
4630         case 4:
4631                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4632                 break;
4633         case 8:
4634                 res = kvm_set_cr8(vcpu, val);
4635                 break;
4636         default:
4637                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4638                 res = -1;
4639         }
4640
4641         return res;
4642 }
4643
4644 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4645 {
4646         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4647 }
4648
4649 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4650 {
4651         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4652 }
4653
4654 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4655 {
4656         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4657 }
4658
4659 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4660 {
4661         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4662 }
4663
4664 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4665 {
4666         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4667 }
4668
4669 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4670 {
4671         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4672 }
4673
4674 static unsigned long emulator_get_cached_segment_base(
4675         struct x86_emulate_ctxt *ctxt, int seg)
4676 {
4677         return get_segment_base(emul_to_vcpu(ctxt), seg);
4678 }
4679
4680 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4681                                  struct desc_struct *desc, u32 *base3,
4682                                  int seg)
4683 {
4684         struct kvm_segment var;
4685
4686         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4687         *selector = var.selector;
4688
4689         if (var.unusable) {
4690                 memset(desc, 0, sizeof(*desc));
4691                 return false;
4692         }
4693
4694         if (var.g)
4695                 var.limit >>= 12;
4696         set_desc_limit(desc, var.limit);
4697         set_desc_base(desc, (unsigned long)var.base);
4698 #ifdef CONFIG_X86_64
4699         if (base3)
4700                 *base3 = var.base >> 32;
4701 #endif
4702         desc->type = var.type;
4703         desc->s = var.s;
4704         desc->dpl = var.dpl;
4705         desc->p = var.present;
4706         desc->avl = var.avl;
4707         desc->l = var.l;
4708         desc->d = var.db;
4709         desc->g = var.g;
4710
4711         return true;
4712 }
4713
4714 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4715                                  struct desc_struct *desc, u32 base3,
4716                                  int seg)
4717 {
4718         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4719         struct kvm_segment var;
4720
4721         var.selector = selector;
4722         var.base = get_desc_base(desc);
4723 #ifdef CONFIG_X86_64
4724         var.base |= ((u64)base3) << 32;
4725 #endif
4726         var.limit = get_desc_limit(desc);
4727         if (desc->g)
4728                 var.limit = (var.limit << 12) | 0xfff;
4729         var.type = desc->type;
4730         var.present = desc->p;
4731         var.dpl = desc->dpl;
4732         var.db = desc->d;
4733         var.s = desc->s;
4734         var.l = desc->l;
4735         var.g = desc->g;
4736         var.avl = desc->avl;
4737         var.present = desc->p;
4738         var.unusable = !var.present;
4739         var.padding = 0;
4740
4741         kvm_set_segment(vcpu, &var, seg);
4742         return;
4743 }
4744
4745 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4746                             u32 msr_index, u64 *pdata)
4747 {
4748         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4749 }
4750
4751 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4752                             u32 msr_index, u64 data)
4753 {
4754         struct msr_data msr;
4755
4756         msr.data = data;
4757         msr.index = msr_index;
4758         msr.host_initiated = false;
4759         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4760 }
4761
4762 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4763                              u32 pmc, u64 *pdata)
4764 {
4765         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4766 }
4767
4768 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4769 {
4770         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4771 }
4772
4773 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4774 {
4775         preempt_disable();
4776         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4777         /*
4778          * CR0.TS may reference the host fpu state, not the guest fpu state,
4779          * so it may be clear at this point.
4780          */
4781         clts();
4782 }
4783
4784 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4785 {
4786         preempt_enable();
4787 }
4788
4789 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4790                               struct x86_instruction_info *info,
4791                               enum x86_intercept_stage stage)
4792 {
4793         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4794 }
4795
4796 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4797                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4798 {
4799         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4800 }
4801
4802 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4803 {
4804         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4805 }
4806
4807 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4808 {
4809         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4810 }
4811
4812 static const struct x86_emulate_ops emulate_ops = {
4813         .read_gpr            = emulator_read_gpr,
4814         .write_gpr           = emulator_write_gpr,
4815         .read_std            = kvm_read_guest_virt_system,
4816         .write_std           = kvm_write_guest_virt_system,
4817         .fetch               = kvm_fetch_guest_virt,
4818         .read_emulated       = emulator_read_emulated,
4819         .write_emulated      = emulator_write_emulated,
4820         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4821         .invlpg              = emulator_invlpg,
4822         .pio_in_emulated     = emulator_pio_in_emulated,
4823         .pio_out_emulated    = emulator_pio_out_emulated,
4824         .get_segment         = emulator_get_segment,
4825         .set_segment         = emulator_set_segment,
4826         .get_cached_segment_base = emulator_get_cached_segment_base,
4827         .get_gdt             = emulator_get_gdt,
4828         .get_idt             = emulator_get_idt,
4829         .set_gdt             = emulator_set_gdt,
4830         .set_idt             = emulator_set_idt,
4831         .get_cr              = emulator_get_cr,
4832         .set_cr              = emulator_set_cr,
4833         .set_rflags          = emulator_set_rflags,
4834         .cpl                 = emulator_get_cpl,
4835         .get_dr              = emulator_get_dr,
4836         .set_dr              = emulator_set_dr,
4837         .set_msr             = emulator_set_msr,
4838         .get_msr             = emulator_get_msr,
4839         .read_pmc            = emulator_read_pmc,
4840         .halt                = emulator_halt,
4841         .wbinvd              = emulator_wbinvd,
4842         .fix_hypercall       = emulator_fix_hypercall,
4843         .get_fpu             = emulator_get_fpu,
4844         .put_fpu             = emulator_put_fpu,
4845         .intercept           = emulator_intercept,
4846         .get_cpuid           = emulator_get_cpuid,
4847 };
4848
4849 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4850 {
4851         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4852         /*
4853          * an sti; sti; sequence only disable interrupts for the first
4854          * instruction. So, if the last instruction, be it emulated or
4855          * not, left the system with the INT_STI flag enabled, it
4856          * means that the last instruction is an sti. We should not
4857          * leave the flag on in this case. The same goes for mov ss
4858          */
4859         if (!(int_shadow & mask))
4860                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4861 }
4862
4863 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4864 {
4865         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4866         if (ctxt->exception.vector == PF_VECTOR)
4867                 kvm_propagate_fault(vcpu, &ctxt->exception);
4868         else if (ctxt->exception.error_code_valid)
4869                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4870                                       ctxt->exception.error_code);
4871         else
4872                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4873 }
4874
4875 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4876 {
4877         memset(&ctxt->opcode_len, 0,
4878                (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4879
4880         ctxt->fetch.start = 0;
4881         ctxt->fetch.end = 0;
4882         ctxt->io_read.pos = 0;
4883         ctxt->io_read.end = 0;
4884         ctxt->mem_read.pos = 0;
4885         ctxt->mem_read.end = 0;
4886 }
4887
4888 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4889 {
4890         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4891         int cs_db, cs_l;
4892
4893         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4894
4895         ctxt->eflags = kvm_get_rflags(vcpu);
4896         ctxt->eip = kvm_rip_read(vcpu);
4897         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4898                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4899                      cs_l                               ? X86EMUL_MODE_PROT64 :
4900                      cs_db                              ? X86EMUL_MODE_PROT32 :
4901                                                           X86EMUL_MODE_PROT16;
4902         ctxt->guest_mode = is_guest_mode(vcpu);
4903
4904         init_decode_cache(ctxt);
4905         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4906 }
4907
4908 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4909 {
4910         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4911         int ret;
4912
4913         init_emulate_ctxt(vcpu);
4914
4915         ctxt->op_bytes = 2;
4916         ctxt->ad_bytes = 2;
4917         ctxt->_eip = ctxt->eip + inc_eip;
4918         ret = emulate_int_real(ctxt, irq);
4919
4920         if (ret != X86EMUL_CONTINUE)
4921                 return EMULATE_FAIL;
4922
4923         ctxt->eip = ctxt->_eip;
4924         kvm_rip_write(vcpu, ctxt->eip);
4925         kvm_set_rflags(vcpu, ctxt->eflags);
4926
4927         if (irq == NMI_VECTOR)
4928                 vcpu->arch.nmi_pending = 0;
4929         else
4930                 vcpu->arch.interrupt.pending = false;
4931
4932         return EMULATE_DONE;
4933 }
4934 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4935
4936 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4937 {
4938         int r = EMULATE_DONE;
4939
4940         ++vcpu->stat.insn_emulation_fail;
4941         trace_kvm_emulate_insn_failed(vcpu);
4942         if (!is_guest_mode(vcpu)) {
4943                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4944                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4945                 vcpu->run->internal.ndata = 0;
4946                 r = EMULATE_FAIL;
4947         }
4948         kvm_queue_exception(vcpu, UD_VECTOR);
4949
4950         return r;
4951 }
4952
4953 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4954                                   bool write_fault_to_shadow_pgtable,
4955                                   int emulation_type)
4956 {
4957         gpa_t gpa = cr2;
4958         pfn_t pfn;
4959
4960         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4961                 return false;
4962
4963         if (!vcpu->arch.mmu.direct_map) {
4964                 /*
4965                  * Write permission should be allowed since only
4966                  * write access need to be emulated.
4967                  */
4968                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4969
4970                 /*
4971                  * If the mapping is invalid in guest, let cpu retry
4972                  * it to generate fault.
4973                  */
4974                 if (gpa == UNMAPPED_GVA)
4975                         return true;
4976         }
4977
4978         /*
4979          * Do not retry the unhandleable instruction if it faults on the
4980          * readonly host memory, otherwise it will goto a infinite loop:
4981          * retry instruction -> write #PF -> emulation fail -> retry
4982          * instruction -> ...
4983          */
4984         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4985
4986         /*
4987          * If the instruction failed on the error pfn, it can not be fixed,
4988          * report the error to userspace.
4989          */
4990         if (is_error_noslot_pfn(pfn))
4991                 return false;
4992
4993         kvm_release_pfn_clean(pfn);
4994
4995         /* The instructions are well-emulated on direct mmu. */
4996         if (vcpu->arch.mmu.direct_map) {
4997                 unsigned int indirect_shadow_pages;
4998
4999                 spin_lock(&vcpu->kvm->mmu_lock);
5000                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5001                 spin_unlock(&vcpu->kvm->mmu_lock);
5002
5003                 if (indirect_shadow_pages)
5004                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5005
5006                 return true;
5007         }
5008
5009         /*
5010          * if emulation was due to access to shadowed page table
5011          * and it failed try to unshadow page and re-enter the
5012          * guest to let CPU execute the instruction.
5013          */
5014         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5015
5016         /*
5017          * If the access faults on its page table, it can not
5018          * be fixed by unprotecting shadow page and it should
5019          * be reported to userspace.
5020          */
5021         return !write_fault_to_shadow_pgtable;
5022 }
5023
5024 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5025                               unsigned long cr2,  int emulation_type)
5026 {
5027         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5028         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5029
5030         last_retry_eip = vcpu->arch.last_retry_eip;
5031         last_retry_addr = vcpu->arch.last_retry_addr;
5032
5033         /*
5034          * If the emulation is caused by #PF and it is non-page_table
5035          * writing instruction, it means the VM-EXIT is caused by shadow
5036          * page protected, we can zap the shadow page and retry this
5037          * instruction directly.
5038          *
5039          * Note: if the guest uses a non-page-table modifying instruction
5040          * on the PDE that points to the instruction, then we will unmap
5041          * the instruction and go to an infinite loop. So, we cache the
5042          * last retried eip and the last fault address, if we meet the eip
5043          * and the address again, we can break out of the potential infinite
5044          * loop.
5045          */
5046         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5047
5048         if (!(emulation_type & EMULTYPE_RETRY))
5049                 return false;
5050
5051         if (x86_page_table_writing_insn(ctxt))
5052                 return false;
5053
5054         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5055                 return false;
5056
5057         vcpu->arch.last_retry_eip = ctxt->eip;
5058         vcpu->arch.last_retry_addr = cr2;
5059
5060         if (!vcpu->arch.mmu.direct_map)
5061                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5062
5063         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5064
5065         return true;
5066 }
5067
5068 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5069 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5070
5071 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5072                                 unsigned long *db)
5073 {
5074         u32 dr6 = 0;
5075         int i;
5076         u32 enable, rwlen;
5077
5078         enable = dr7;
5079         rwlen = dr7 >> 16;
5080         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5081                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5082                         dr6 |= (1 << i);
5083         return dr6;
5084 }
5085
5086 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5087 {
5088         struct kvm_run *kvm_run = vcpu->run;
5089
5090         /*
5091          * Use the "raw" value to see if TF was passed to the processor.
5092          * Note that the new value of the flags has not been saved yet.
5093          *
5094          * This is correct even for TF set by the guest, because "the
5095          * processor will not generate this exception after the instruction
5096          * that sets the TF flag".
5097          */
5098         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5099
5100         if (unlikely(rflags & X86_EFLAGS_TF)) {
5101                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5102                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5103                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5104                         kvm_run->debug.arch.exception = DB_VECTOR;
5105                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5106                         *r = EMULATE_USER_EXIT;
5107                 } else {
5108                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5109                         /*
5110                          * "Certain debug exceptions may clear bit 0-3.  The
5111                          * remaining contents of the DR6 register are never
5112                          * cleared by the processor".
5113                          */
5114                         vcpu->arch.dr6 &= ~15;
5115                         vcpu->arch.dr6 |= DR6_BS;
5116                         kvm_queue_exception(vcpu, DB_VECTOR);
5117                 }
5118         }
5119 }
5120
5121 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5122 {
5123         struct kvm_run *kvm_run = vcpu->run;
5124         unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5125         u32 dr6 = 0;
5126
5127         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5128             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5129                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5130                                            vcpu->arch.guest_debug_dr7,
5131                                            vcpu->arch.eff_db);
5132
5133                 if (dr6 != 0) {
5134                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5135                         kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5136                                 get_segment_base(vcpu, VCPU_SREG_CS);
5137
5138                         kvm_run->debug.arch.exception = DB_VECTOR;
5139                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5140                         *r = EMULATE_USER_EXIT;
5141                         return true;
5142                 }
5143         }
5144
5145         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5146                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5147                                            vcpu->arch.dr7,
5148                                            vcpu->arch.db);
5149
5150                 if (dr6 != 0) {
5151                         vcpu->arch.dr6 &= ~15;
5152                         vcpu->arch.dr6 |= dr6;
5153                         kvm_queue_exception(vcpu, DB_VECTOR);
5154                         *r = EMULATE_DONE;
5155                         return true;
5156                 }
5157         }
5158
5159         return false;
5160 }
5161
5162 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5163                             unsigned long cr2,
5164                             int emulation_type,
5165                             void *insn,
5166                             int insn_len)
5167 {
5168         int r;
5169         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5170         bool writeback = true;
5171         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5172
5173         /*
5174          * Clear write_fault_to_shadow_pgtable here to ensure it is
5175          * never reused.
5176          */
5177         vcpu->arch.write_fault_to_shadow_pgtable = false;
5178         kvm_clear_exception_queue(vcpu);
5179
5180         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5181                 init_emulate_ctxt(vcpu);
5182
5183                 /*
5184                  * We will reenter on the same instruction since
5185                  * we do not set complete_userspace_io.  This does not
5186                  * handle watchpoints yet, those would be handled in
5187                  * the emulate_ops.
5188                  */
5189                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5190                         return r;
5191
5192                 ctxt->interruptibility = 0;
5193                 ctxt->have_exception = false;
5194                 ctxt->perm_ok = false;
5195
5196                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5197
5198                 r = x86_decode_insn(ctxt, insn, insn_len);
5199
5200                 trace_kvm_emulate_insn_start(vcpu);
5201                 ++vcpu->stat.insn_emulation;
5202                 if (r != EMULATION_OK)  {
5203                         if (emulation_type & EMULTYPE_TRAP_UD)
5204                                 return EMULATE_FAIL;
5205                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5206                                                 emulation_type))
5207                                 return EMULATE_DONE;
5208                         if (emulation_type & EMULTYPE_SKIP)
5209                                 return EMULATE_FAIL;
5210                         return handle_emulation_failure(vcpu);
5211                 }
5212         }
5213
5214         if (emulation_type & EMULTYPE_SKIP) {
5215                 kvm_rip_write(vcpu, ctxt->_eip);
5216                 return EMULATE_DONE;
5217         }
5218
5219         if (retry_instruction(ctxt, cr2, emulation_type))
5220                 return EMULATE_DONE;
5221
5222         /* this is needed for vmware backdoor interface to work since it
5223            changes registers values  during IO operation */
5224         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5225                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5226                 emulator_invalidate_register_cache(ctxt);
5227         }
5228
5229 restart:
5230         r = x86_emulate_insn(ctxt);
5231
5232         if (r == EMULATION_INTERCEPTED)
5233                 return EMULATE_DONE;
5234
5235         if (r == EMULATION_FAILED) {
5236                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5237                                         emulation_type))
5238                         return EMULATE_DONE;
5239
5240                 return handle_emulation_failure(vcpu);
5241         }
5242
5243         if (ctxt->have_exception) {
5244                 inject_emulated_exception(vcpu);
5245                 r = EMULATE_DONE;
5246         } else if (vcpu->arch.pio.count) {
5247                 if (!vcpu->arch.pio.in) {
5248                         /* FIXME: return into emulator if single-stepping.  */
5249                         vcpu->arch.pio.count = 0;
5250                 } else {
5251                         writeback = false;
5252                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5253                 }
5254                 r = EMULATE_USER_EXIT;
5255         } else if (vcpu->mmio_needed) {
5256                 if (!vcpu->mmio_is_write)
5257                         writeback = false;
5258                 r = EMULATE_USER_EXIT;
5259                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5260         } else if (r == EMULATION_RESTART)
5261                 goto restart;
5262         else
5263                 r = EMULATE_DONE;
5264
5265         if (writeback) {
5266                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5267                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5268                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5269                 kvm_rip_write(vcpu, ctxt->eip);
5270                 if (r == EMULATE_DONE)
5271                         kvm_vcpu_check_singlestep(vcpu, &r);
5272                 kvm_set_rflags(vcpu, ctxt->eflags);
5273         } else
5274                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5275
5276         return r;
5277 }
5278 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5279
5280 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5281 {
5282         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5283         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5284                                             size, port, &val, 1);
5285         /* do not return to emulator after return from userspace */
5286         vcpu->arch.pio.count = 0;
5287         return ret;
5288 }
5289 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5290
5291 static void tsc_bad(void *info)
5292 {
5293         __this_cpu_write(cpu_tsc_khz, 0);
5294 }
5295
5296 static void tsc_khz_changed(void *data)
5297 {
5298         struct cpufreq_freqs *freq = data;
5299         unsigned long khz = 0;
5300
5301         if (data)
5302                 khz = freq->new;
5303         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5304                 khz = cpufreq_quick_get(raw_smp_processor_id());
5305         if (!khz)
5306                 khz = tsc_khz;
5307         __this_cpu_write(cpu_tsc_khz, khz);
5308 }
5309
5310 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5311                                      void *data)
5312 {
5313         struct cpufreq_freqs *freq = data;
5314         struct kvm *kvm;
5315         struct kvm_vcpu *vcpu;
5316         int i, send_ipi = 0;
5317
5318         /*
5319          * We allow guests to temporarily run on slowing clocks,
5320          * provided we notify them after, or to run on accelerating
5321          * clocks, provided we notify them before.  Thus time never
5322          * goes backwards.
5323          *
5324          * However, we have a problem.  We can't atomically update
5325          * the frequency of a given CPU from this function; it is
5326          * merely a notifier, which can be called from any CPU.
5327          * Changing the TSC frequency at arbitrary points in time
5328          * requires a recomputation of local variables related to
5329          * the TSC for each VCPU.  We must flag these local variables
5330          * to be updated and be sure the update takes place with the
5331          * new frequency before any guests proceed.
5332          *
5333          * Unfortunately, the combination of hotplug CPU and frequency
5334          * change creates an intractable locking scenario; the order
5335          * of when these callouts happen is undefined with respect to
5336          * CPU hotplug, and they can race with each other.  As such,
5337          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5338          * undefined; you can actually have a CPU frequency change take
5339          * place in between the computation of X and the setting of the
5340          * variable.  To protect against this problem, all updates of
5341          * the per_cpu tsc_khz variable are done in an interrupt
5342          * protected IPI, and all callers wishing to update the value
5343          * must wait for a synchronous IPI to complete (which is trivial
5344          * if the caller is on the CPU already).  This establishes the
5345          * necessary total order on variable updates.
5346          *
5347          * Note that because a guest time update may take place
5348          * anytime after the setting of the VCPU's request bit, the
5349          * correct TSC value must be set before the request.  However,
5350          * to ensure the update actually makes it to any guest which
5351          * starts running in hardware virtualization between the set
5352          * and the acquisition of the spinlock, we must also ping the
5353          * CPU after setting the request bit.
5354          *
5355          */
5356
5357         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5358                 return 0;
5359         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5360                 return 0;
5361
5362         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5363
5364         spin_lock(&kvm_lock);
5365         list_for_each_entry(kvm, &vm_list, vm_list) {
5366                 kvm_for_each_vcpu(i, vcpu, kvm) {
5367                         if (vcpu->cpu != freq->cpu)
5368                                 continue;
5369                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5370                         if (vcpu->cpu != smp_processor_id())
5371                                 send_ipi = 1;
5372                 }
5373         }
5374         spin_unlock(&kvm_lock);
5375
5376         if (freq->old < freq->new && send_ipi) {
5377                 /*
5378                  * We upscale the frequency.  Must make the guest
5379                  * doesn't see old kvmclock values while running with
5380                  * the new frequency, otherwise we risk the guest sees
5381                  * time go backwards.
5382                  *
5383                  * In case we update the frequency for another cpu
5384                  * (which might be in guest context) send an interrupt
5385                  * to kick the cpu out of guest context.  Next time
5386                  * guest context is entered kvmclock will be updated,
5387                  * so the guest will not see stale values.
5388                  */
5389                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5390         }
5391         return 0;
5392 }
5393
5394 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5395         .notifier_call  = kvmclock_cpufreq_notifier
5396 };
5397
5398 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5399                                         unsigned long action, void *hcpu)
5400 {
5401         unsigned int cpu = (unsigned long)hcpu;
5402
5403         switch (action) {
5404                 case CPU_ONLINE:
5405                 case CPU_DOWN_FAILED:
5406                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5407                         break;
5408                 case CPU_DOWN_PREPARE:
5409                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5410                         break;
5411         }
5412         return NOTIFY_OK;
5413 }
5414
5415 static struct notifier_block kvmclock_cpu_notifier_block = {
5416         .notifier_call  = kvmclock_cpu_notifier,
5417         .priority = -INT_MAX
5418 };
5419
5420 static void kvm_timer_init(void)
5421 {
5422         int cpu;
5423
5424         max_tsc_khz = tsc_khz;
5425
5426         cpu_notifier_register_begin();
5427         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5428 #ifdef CONFIG_CPU_FREQ
5429                 struct cpufreq_policy policy;
5430                 memset(&policy, 0, sizeof(policy));
5431                 cpu = get_cpu();
5432                 cpufreq_get_policy(&policy, cpu);
5433                 if (policy.cpuinfo.max_freq)
5434                         max_tsc_khz = policy.cpuinfo.max_freq;
5435                 put_cpu();
5436 #endif
5437                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5438                                           CPUFREQ_TRANSITION_NOTIFIER);
5439         }
5440         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5441         for_each_online_cpu(cpu)
5442                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5443
5444         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5445         cpu_notifier_register_done();
5446
5447 }
5448
5449 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5450
5451 int kvm_is_in_guest(void)
5452 {
5453         return __this_cpu_read(current_vcpu) != NULL;
5454 }
5455
5456 static int kvm_is_user_mode(void)
5457 {
5458         int user_mode = 3;
5459
5460         if (__this_cpu_read(current_vcpu))
5461                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5462
5463         return user_mode != 0;
5464 }
5465
5466 static unsigned long kvm_get_guest_ip(void)
5467 {
5468         unsigned long ip = 0;
5469
5470         if (__this_cpu_read(current_vcpu))
5471                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5472
5473         return ip;
5474 }
5475
5476 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5477         .is_in_guest            = kvm_is_in_guest,
5478         .is_user_mode           = kvm_is_user_mode,
5479         .get_guest_ip           = kvm_get_guest_ip,
5480 };
5481
5482 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5483 {
5484         __this_cpu_write(current_vcpu, vcpu);
5485 }
5486 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5487
5488 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5489 {
5490         __this_cpu_write(current_vcpu, NULL);
5491 }
5492 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5493
5494 static void kvm_set_mmio_spte_mask(void)
5495 {
5496         u64 mask;
5497         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5498
5499         /*
5500          * Set the reserved bits and the present bit of an paging-structure
5501          * entry to generate page fault with PFER.RSV = 1.
5502          */
5503          /* Mask the reserved physical address bits. */
5504         mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5505
5506         /* Bit 62 is always reserved for 32bit host. */
5507         mask |= 0x3ull << 62;
5508
5509         /* Set the present bit. */
5510         mask |= 1ull;
5511
5512 #ifdef CONFIG_X86_64
5513         /*
5514          * If reserved bit is not supported, clear the present bit to disable
5515          * mmio page fault.
5516          */
5517         if (maxphyaddr == 52)
5518                 mask &= ~1ull;
5519 #endif
5520
5521         kvm_mmu_set_mmio_spte_mask(mask);
5522 }
5523
5524 #ifdef CONFIG_X86_64
5525 static void pvclock_gtod_update_fn(struct work_struct *work)
5526 {
5527         struct kvm *kvm;
5528
5529         struct kvm_vcpu *vcpu;
5530         int i;
5531
5532         spin_lock(&kvm_lock);
5533         list_for_each_entry(kvm, &vm_list, vm_list)
5534                 kvm_for_each_vcpu(i, vcpu, kvm)
5535                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5536         atomic_set(&kvm_guest_has_master_clock, 0);
5537         spin_unlock(&kvm_lock);
5538 }
5539
5540 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5541
5542 /*
5543  * Notification about pvclock gtod data update.
5544  */
5545 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5546                                void *priv)
5547 {
5548         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5549         struct timekeeper *tk = priv;
5550
5551         update_pvclock_gtod(tk);
5552
5553         /* disable master clock if host does not trust, or does not
5554          * use, TSC clocksource
5555          */
5556         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5557             atomic_read(&kvm_guest_has_master_clock) != 0)
5558                 queue_work(system_long_wq, &pvclock_gtod_work);
5559
5560         return 0;
5561 }
5562
5563 static struct notifier_block pvclock_gtod_notifier = {
5564         .notifier_call = pvclock_gtod_notify,
5565 };
5566 #endif
5567
5568 int kvm_arch_init(void *opaque)
5569 {
5570         int r;
5571         struct kvm_x86_ops *ops = opaque;
5572
5573         if (kvm_x86_ops) {
5574                 printk(KERN_ERR "kvm: already loaded the other module\n");
5575                 r = -EEXIST;
5576                 goto out;
5577         }
5578
5579         if (!ops->cpu_has_kvm_support()) {
5580                 printk(KERN_ERR "kvm: no hardware support\n");
5581                 r = -EOPNOTSUPP;
5582                 goto out;
5583         }
5584         if (ops->disabled_by_bios()) {
5585                 printk(KERN_ERR "kvm: disabled by bios\n");
5586                 r = -EOPNOTSUPP;
5587                 goto out;
5588         }
5589
5590         r = -ENOMEM;
5591         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5592         if (!shared_msrs) {
5593                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5594                 goto out;
5595         }
5596
5597         r = kvm_mmu_module_init();
5598         if (r)
5599                 goto out_free_percpu;
5600
5601         kvm_set_mmio_spte_mask();
5602
5603         kvm_x86_ops = ops;
5604         kvm_init_msr_list();
5605
5606         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5607                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5608
5609         kvm_timer_init();
5610
5611         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5612
5613         if (cpu_has_xsave)
5614                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5615
5616         kvm_lapic_init();
5617 #ifdef CONFIG_X86_64
5618         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5619 #endif
5620
5621         return 0;
5622
5623 out_free_percpu:
5624         free_percpu(shared_msrs);
5625 out:
5626         return r;
5627 }
5628
5629 void kvm_arch_exit(void)
5630 {
5631         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5632
5633         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5634                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5635                                             CPUFREQ_TRANSITION_NOTIFIER);
5636         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5637 #ifdef CONFIG_X86_64
5638         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5639 #endif
5640         kvm_x86_ops = NULL;
5641         kvm_mmu_module_exit();
5642         free_percpu(shared_msrs);
5643 }
5644
5645 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5646 {
5647         ++vcpu->stat.halt_exits;
5648         if (irqchip_in_kernel(vcpu->kvm)) {
5649                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5650                 return 1;
5651         } else {
5652                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5653                 return 0;
5654         }
5655 }
5656 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5657
5658 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5659 {
5660         u64 param, ingpa, outgpa, ret;
5661         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5662         bool fast, longmode;
5663         int cs_db, cs_l;
5664
5665         /*
5666          * hypercall generates UD from non zero cpl and real mode
5667          * per HYPER-V spec
5668          */
5669         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5670                 kvm_queue_exception(vcpu, UD_VECTOR);
5671                 return 0;
5672         }
5673
5674         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5675         longmode = is_long_mode(vcpu) && cs_l == 1;
5676
5677         if (!longmode) {
5678                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5679                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5680                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5681                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5682                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5683                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5684         }
5685 #ifdef CONFIG_X86_64
5686         else {
5687                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5688                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5689                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5690         }
5691 #endif
5692
5693         code = param & 0xffff;
5694         fast = (param >> 16) & 0x1;
5695         rep_cnt = (param >> 32) & 0xfff;
5696         rep_idx = (param >> 48) & 0xfff;
5697
5698         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5699
5700         switch (code) {
5701         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5702                 kvm_vcpu_on_spin(vcpu);
5703                 break;
5704         default:
5705                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5706                 break;
5707         }
5708
5709         ret = res | (((u64)rep_done & 0xfff) << 32);
5710         if (longmode) {
5711                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5712         } else {
5713                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5714                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5715         }
5716
5717         return 1;
5718 }
5719
5720 /*
5721  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5722  *
5723  * @apicid - apicid of vcpu to be kicked.
5724  */
5725 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5726 {
5727         struct kvm_lapic_irq lapic_irq;
5728
5729         lapic_irq.shorthand = 0;
5730         lapic_irq.dest_mode = 0;
5731         lapic_irq.dest_id = apicid;
5732
5733         lapic_irq.delivery_mode = APIC_DM_REMRD;
5734         kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5735 }
5736
5737 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5738 {
5739         unsigned long nr, a0, a1, a2, a3, ret;
5740         int r = 1;
5741
5742         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5743                 return kvm_hv_hypercall(vcpu);
5744
5745         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5746         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5747         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5748         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5749         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5750
5751         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5752
5753         if (!is_long_mode(vcpu)) {
5754                 nr &= 0xFFFFFFFF;
5755                 a0 &= 0xFFFFFFFF;
5756                 a1 &= 0xFFFFFFFF;
5757                 a2 &= 0xFFFFFFFF;
5758                 a3 &= 0xFFFFFFFF;
5759         }
5760
5761         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5762                 ret = -KVM_EPERM;
5763                 goto out;
5764         }
5765
5766         switch (nr) {
5767         case KVM_HC_VAPIC_POLL_IRQ:
5768                 ret = 0;
5769                 break;
5770         case KVM_HC_KICK_CPU:
5771                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5772                 ret = 0;
5773                 break;
5774         default:
5775                 ret = -KVM_ENOSYS;
5776                 break;
5777         }
5778 out:
5779         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5780         ++vcpu->stat.hypercalls;
5781         return r;
5782 }
5783 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5784
5785 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5786 {
5787         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5788         char instruction[3];
5789         unsigned long rip = kvm_rip_read(vcpu);
5790
5791         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5792
5793         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5794 }
5795
5796 /*
5797  * Check if userspace requested an interrupt window, and that the
5798  * interrupt window is open.
5799  *
5800  * No need to exit to userspace if we already have an interrupt queued.
5801  */
5802 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5803 {
5804         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5805                 vcpu->run->request_interrupt_window &&
5806                 kvm_arch_interrupt_allowed(vcpu));
5807 }
5808
5809 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5810 {
5811         struct kvm_run *kvm_run = vcpu->run;
5812
5813         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5814         kvm_run->cr8 = kvm_get_cr8(vcpu);
5815         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5816         if (irqchip_in_kernel(vcpu->kvm))
5817                 kvm_run->ready_for_interrupt_injection = 1;
5818         else
5819                 kvm_run->ready_for_interrupt_injection =
5820                         kvm_arch_interrupt_allowed(vcpu) &&
5821                         !kvm_cpu_has_interrupt(vcpu) &&
5822                         !kvm_event_needs_reinjection(vcpu);
5823 }
5824
5825 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5826 {
5827         int max_irr, tpr;
5828
5829         if (!kvm_x86_ops->update_cr8_intercept)
5830                 return;
5831
5832         if (!vcpu->arch.apic)
5833                 return;
5834
5835         if (!vcpu->arch.apic->vapic_addr)
5836                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5837         else
5838                 max_irr = -1;
5839
5840         if (max_irr != -1)
5841                 max_irr >>= 4;
5842
5843         tpr = kvm_lapic_get_cr8(vcpu);
5844
5845         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5846 }
5847
5848 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5849 {
5850         int r;
5851
5852         /* try to reinject previous events if any */
5853         if (vcpu->arch.exception.pending) {
5854                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5855                                         vcpu->arch.exception.has_error_code,
5856                                         vcpu->arch.exception.error_code);
5857                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5858                                           vcpu->arch.exception.has_error_code,
5859                                           vcpu->arch.exception.error_code,
5860                                           vcpu->arch.exception.reinject);
5861                 return 0;
5862         }
5863
5864         if (vcpu->arch.nmi_injected) {
5865                 kvm_x86_ops->set_nmi(vcpu);
5866                 return 0;
5867         }
5868
5869         if (vcpu->arch.interrupt.pending) {
5870                 kvm_x86_ops->set_irq(vcpu);
5871                 return 0;
5872         }
5873
5874         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5875                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5876                 if (r != 0)
5877                         return r;
5878         }
5879
5880         /* try to inject new event if pending */
5881         if (vcpu->arch.nmi_pending) {
5882                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5883                         --vcpu->arch.nmi_pending;
5884                         vcpu->arch.nmi_injected = true;
5885                         kvm_x86_ops->set_nmi(vcpu);
5886                 }
5887         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5888                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5889                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5890                                             false);
5891                         kvm_x86_ops->set_irq(vcpu);
5892                 }
5893         }
5894         return 0;
5895 }
5896
5897 static void process_nmi(struct kvm_vcpu *vcpu)
5898 {
5899         unsigned limit = 2;
5900
5901         /*
5902          * x86 is limited to one NMI running, and one NMI pending after it.
5903          * If an NMI is already in progress, limit further NMIs to just one.
5904          * Otherwise, allow two (and we'll inject the first one immediately).
5905          */
5906         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5907                 limit = 1;
5908
5909         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5910         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5911         kvm_make_request(KVM_REQ_EVENT, vcpu);
5912 }
5913
5914 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5915 {
5916         u64 eoi_exit_bitmap[4];
5917         u32 tmr[8];
5918
5919         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5920                 return;
5921
5922         memset(eoi_exit_bitmap, 0, 32);
5923         memset(tmr, 0, 32);
5924
5925         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5926         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5927         kvm_apic_update_tmr(vcpu, tmr);
5928 }
5929
5930 /*
5931  * Returns 1 to let __vcpu_run() continue the guest execution loop without
5932  * exiting to the userspace.  Otherwise, the value will be returned to the
5933  * userspace.
5934  */
5935 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5936 {
5937         int r;
5938         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5939                 vcpu->run->request_interrupt_window;
5940         bool req_immediate_exit = false;
5941
5942         if (vcpu->requests) {
5943                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5944                         kvm_mmu_unload(vcpu);
5945                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5946                         __kvm_migrate_timers(vcpu);
5947                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5948                         kvm_gen_update_masterclock(vcpu->kvm);
5949                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5950                         kvm_gen_kvmclock_update(vcpu);
5951                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5952                         r = kvm_guest_time_update(vcpu);
5953                         if (unlikely(r))
5954                                 goto out;
5955                 }
5956                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5957                         kvm_mmu_sync_roots(vcpu);
5958                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5959                         kvm_x86_ops->tlb_flush(vcpu);
5960                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5961                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5962                         r = 0;
5963                         goto out;
5964                 }
5965                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5966                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5967                         r = 0;
5968                         goto out;
5969                 }
5970                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5971                         vcpu->fpu_active = 0;
5972                         kvm_x86_ops->fpu_deactivate(vcpu);
5973                 }
5974                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5975                         /* Page is swapped out. Do synthetic halt */
5976                         vcpu->arch.apf.halted = true;
5977                         r = 1;
5978                         goto out;
5979                 }
5980                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5981                         record_steal_time(vcpu);
5982                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5983                         process_nmi(vcpu);
5984                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5985                         kvm_handle_pmu_event(vcpu);
5986                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5987                         kvm_deliver_pmi(vcpu);
5988                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5989                         vcpu_scan_ioapic(vcpu);
5990         }
5991
5992         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5993                 kvm_apic_accept_events(vcpu);
5994                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5995                         r = 1;
5996                         goto out;
5997                 }
5998
5999                 if (inject_pending_event(vcpu, req_int_win) != 0)
6000                         req_immediate_exit = true;
6001                 /* enable NMI/IRQ window open exits if needed */
6002                 else if (vcpu->arch.nmi_pending)
6003                         kvm_x86_ops->enable_nmi_window(vcpu);
6004                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6005                         kvm_x86_ops->enable_irq_window(vcpu);
6006
6007                 if (kvm_lapic_enabled(vcpu)) {
6008                         /*
6009                          * Update architecture specific hints for APIC
6010                          * virtual interrupt delivery.
6011                          */
6012                         if (kvm_x86_ops->hwapic_irr_update)
6013                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6014                                         kvm_lapic_find_highest_irr(vcpu));
6015                         update_cr8_intercept(vcpu);
6016                         kvm_lapic_sync_to_vapic(vcpu);
6017                 }
6018         }
6019
6020         r = kvm_mmu_reload(vcpu);
6021         if (unlikely(r)) {
6022                 goto cancel_injection;
6023         }
6024
6025         preempt_disable();
6026
6027         kvm_x86_ops->prepare_guest_switch(vcpu);
6028         if (vcpu->fpu_active)
6029                 kvm_load_guest_fpu(vcpu);
6030         kvm_load_guest_xcr0(vcpu);
6031
6032         vcpu->mode = IN_GUEST_MODE;
6033
6034         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6035
6036         /* We should set ->mode before check ->requests,
6037          * see the comment in make_all_cpus_request.
6038          */
6039         smp_mb__after_srcu_read_unlock();
6040
6041         local_irq_disable();
6042
6043         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6044             || need_resched() || signal_pending(current)) {
6045                 vcpu->mode = OUTSIDE_GUEST_MODE;
6046                 smp_wmb();
6047                 local_irq_enable();
6048                 preempt_enable();
6049                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6050                 r = 1;
6051                 goto cancel_injection;
6052         }
6053
6054         if (req_immediate_exit)
6055                 smp_send_reschedule(vcpu->cpu);
6056
6057         kvm_guest_enter();
6058
6059         if (unlikely(vcpu->arch.switch_db_regs)) {
6060                 set_debugreg(0, 7);
6061                 set_debugreg(vcpu->arch.eff_db[0], 0);
6062                 set_debugreg(vcpu->arch.eff_db[1], 1);
6063                 set_debugreg(vcpu->arch.eff_db[2], 2);
6064                 set_debugreg(vcpu->arch.eff_db[3], 3);
6065                 set_debugreg(vcpu->arch.dr6, 6);
6066         }
6067
6068         trace_kvm_entry(vcpu->vcpu_id);
6069         kvm_x86_ops->run(vcpu);
6070
6071         /*
6072          * Do this here before restoring debug registers on the host.  And
6073          * since we do this before handling the vmexit, a DR access vmexit
6074          * can (a) read the correct value of the debug registers, (b) set
6075          * KVM_DEBUGREG_WONT_EXIT again.
6076          */
6077         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6078                 int i;
6079
6080                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6081                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6082                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6083                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6084         }
6085
6086         /*
6087          * If the guest has used debug registers, at least dr7
6088          * will be disabled while returning to the host.
6089          * If we don't have active breakpoints in the host, we don't
6090          * care about the messed up debug address registers. But if
6091          * we have some of them active, restore the old state.
6092          */
6093         if (hw_breakpoint_active())
6094                 hw_breakpoint_restore();
6095
6096         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6097                                                            native_read_tsc());
6098
6099         vcpu->mode = OUTSIDE_GUEST_MODE;
6100         smp_wmb();
6101
6102         /* Interrupt is enabled by handle_external_intr() */
6103         kvm_x86_ops->handle_external_intr(vcpu);
6104
6105         ++vcpu->stat.exits;
6106
6107         /*
6108          * We must have an instruction between local_irq_enable() and
6109          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6110          * the interrupt shadow.  The stat.exits increment will do nicely.
6111          * But we need to prevent reordering, hence this barrier():
6112          */
6113         barrier();
6114
6115         kvm_guest_exit();
6116
6117         preempt_enable();
6118
6119         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6120
6121         /*
6122          * Profile KVM exit RIPs:
6123          */
6124         if (unlikely(prof_on == KVM_PROFILING)) {
6125                 unsigned long rip = kvm_rip_read(vcpu);
6126                 profile_hit(KVM_PROFILING, (void *)rip);
6127         }
6128
6129         if (unlikely(vcpu->arch.tsc_always_catchup))
6130                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6131
6132         if (vcpu->arch.apic_attention)
6133                 kvm_lapic_sync_from_vapic(vcpu);
6134
6135         r = kvm_x86_ops->handle_exit(vcpu);
6136         return r;
6137
6138 cancel_injection:
6139         kvm_x86_ops->cancel_injection(vcpu);
6140         if (unlikely(vcpu->arch.apic_attention))
6141                 kvm_lapic_sync_from_vapic(vcpu);
6142 out:
6143         return r;
6144 }
6145
6146
6147 static int __vcpu_run(struct kvm_vcpu *vcpu)
6148 {
6149         int r;
6150         struct kvm *kvm = vcpu->kvm;
6151
6152         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6153
6154         r = 1;
6155         while (r > 0) {
6156                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6157                     !vcpu->arch.apf.halted)
6158                         r = vcpu_enter_guest(vcpu);
6159                 else {
6160                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6161                         kvm_vcpu_block(vcpu);
6162                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6163                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6164                                 kvm_apic_accept_events(vcpu);
6165                                 switch(vcpu->arch.mp_state) {
6166                                 case KVM_MP_STATE_HALTED:
6167                                         vcpu->arch.pv.pv_unhalted = false;
6168                                         vcpu->arch.mp_state =
6169                                                 KVM_MP_STATE_RUNNABLE;
6170                                 case KVM_MP_STATE_RUNNABLE:
6171                                         vcpu->arch.apf.halted = false;
6172                                         break;
6173                                 case KVM_MP_STATE_INIT_RECEIVED:
6174                                         break;
6175                                 default:
6176                                         r = -EINTR;
6177                                         break;
6178                                 }
6179                         }
6180                 }
6181
6182                 if (r <= 0)
6183                         break;
6184
6185                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6186                 if (kvm_cpu_has_pending_timer(vcpu))
6187                         kvm_inject_pending_timer_irqs(vcpu);
6188
6189                 if (dm_request_for_irq_injection(vcpu)) {
6190                         r = -EINTR;
6191                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6192                         ++vcpu->stat.request_irq_exits;
6193                 }
6194
6195                 kvm_check_async_pf_completion(vcpu);
6196
6197                 if (signal_pending(current)) {
6198                         r = -EINTR;
6199                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6200                         ++vcpu->stat.signal_exits;
6201                 }
6202                 if (need_resched()) {
6203                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6204                         cond_resched();
6205                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6206                 }
6207         }
6208
6209         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6210
6211         return r;
6212 }
6213
6214 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6215 {
6216         int r;
6217         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6218         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6219         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6220         if (r != EMULATE_DONE)
6221                 return 0;
6222         return 1;
6223 }
6224
6225 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6226 {
6227         BUG_ON(!vcpu->arch.pio.count);
6228
6229         return complete_emulated_io(vcpu);
6230 }
6231
6232 /*
6233  * Implements the following, as a state machine:
6234  *
6235  * read:
6236  *   for each fragment
6237  *     for each mmio piece in the fragment
6238  *       write gpa, len
6239  *       exit
6240  *       copy data
6241  *   execute insn
6242  *
6243  * write:
6244  *   for each fragment
6245  *     for each mmio piece in the fragment
6246  *       write gpa, len
6247  *       copy data
6248  *       exit
6249  */
6250 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6251 {
6252         struct kvm_run *run = vcpu->run;
6253         struct kvm_mmio_fragment *frag;
6254         unsigned len;
6255
6256         BUG_ON(!vcpu->mmio_needed);
6257
6258         /* Complete previous fragment */
6259         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6260         len = min(8u, frag->len);
6261         if (!vcpu->mmio_is_write)
6262                 memcpy(frag->data, run->mmio.data, len);
6263
6264         if (frag->len <= 8) {
6265                 /* Switch to the next fragment. */
6266                 frag++;
6267                 vcpu->mmio_cur_fragment++;
6268         } else {
6269                 /* Go forward to the next mmio piece. */
6270                 frag->data += len;
6271                 frag->gpa += len;
6272                 frag->len -= len;
6273         }
6274
6275         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6276                 vcpu->mmio_needed = 0;
6277
6278                 /* FIXME: return into emulator if single-stepping.  */
6279                 if (vcpu->mmio_is_write)
6280                         return 1;
6281                 vcpu->mmio_read_completed = 1;
6282                 return complete_emulated_io(vcpu);
6283         }
6284
6285         run->exit_reason = KVM_EXIT_MMIO;
6286         run->mmio.phys_addr = frag->gpa;
6287         if (vcpu->mmio_is_write)
6288                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6289         run->mmio.len = min(8u, frag->len);
6290         run->mmio.is_write = vcpu->mmio_is_write;
6291         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6292         return 0;
6293 }
6294
6295
6296 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6297 {
6298         int r;
6299         sigset_t sigsaved;
6300
6301         if (!tsk_used_math(current) && init_fpu(current))
6302                 return -ENOMEM;
6303
6304         if (vcpu->sigset_active)
6305                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6306
6307         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6308                 kvm_vcpu_block(vcpu);
6309                 kvm_apic_accept_events(vcpu);
6310                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6311                 r = -EAGAIN;
6312                 goto out;
6313         }
6314
6315         /* re-sync apic's tpr */
6316         if (!irqchip_in_kernel(vcpu->kvm)) {
6317                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6318                         r = -EINVAL;
6319                         goto out;
6320                 }
6321         }
6322
6323         if (unlikely(vcpu->arch.complete_userspace_io)) {
6324                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6325                 vcpu->arch.complete_userspace_io = NULL;
6326                 r = cui(vcpu);
6327                 if (r <= 0)
6328                         goto out;
6329         } else
6330                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6331
6332         r = __vcpu_run(vcpu);
6333
6334 out:
6335         post_kvm_run_save(vcpu);
6336         if (vcpu->sigset_active)
6337                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6338
6339         return r;
6340 }
6341
6342 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6343 {
6344         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6345                 /*
6346                  * We are here if userspace calls get_regs() in the middle of
6347                  * instruction emulation. Registers state needs to be copied
6348                  * back from emulation context to vcpu. Userspace shouldn't do
6349                  * that usually, but some bad designed PV devices (vmware
6350                  * backdoor interface) need this to work
6351                  */
6352                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6353                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6354         }
6355         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6356         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6357         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6358         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6359         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6360         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6361         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6362         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6363 #ifdef CONFIG_X86_64
6364         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6365         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6366         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6367         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6368         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6369         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6370         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6371         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6372 #endif
6373
6374         regs->rip = kvm_rip_read(vcpu);
6375         regs->rflags = kvm_get_rflags(vcpu);
6376
6377         return 0;
6378 }
6379
6380 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6381 {
6382         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6383         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6384
6385         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6386         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6387         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6388         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6389         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6390         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6391         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6392         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6393 #ifdef CONFIG_X86_64
6394         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6395         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6396         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6397         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6398         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6399         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6400         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6401         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6402 #endif
6403
6404         kvm_rip_write(vcpu, regs->rip);
6405         kvm_set_rflags(vcpu, regs->rflags);
6406
6407         vcpu->arch.exception.pending = false;
6408
6409         kvm_make_request(KVM_REQ_EVENT, vcpu);
6410
6411         return 0;
6412 }
6413
6414 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6415 {
6416         struct kvm_segment cs;
6417
6418         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6419         *db = cs.db;
6420         *l = cs.l;
6421 }
6422 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6423
6424 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6425                                   struct kvm_sregs *sregs)
6426 {
6427         struct desc_ptr dt;
6428
6429         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6430         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6431         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6432         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6433         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6434         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6435
6436         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6437         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6438
6439         kvm_x86_ops->get_idt(vcpu, &dt);
6440         sregs->idt.limit = dt.size;
6441         sregs->idt.base = dt.address;
6442         kvm_x86_ops->get_gdt(vcpu, &dt);
6443         sregs->gdt.limit = dt.size;
6444         sregs->gdt.base = dt.address;
6445
6446         sregs->cr0 = kvm_read_cr0(vcpu);
6447         sregs->cr2 = vcpu->arch.cr2;
6448         sregs->cr3 = kvm_read_cr3(vcpu);
6449         sregs->cr4 = kvm_read_cr4(vcpu);
6450         sregs->cr8 = kvm_get_cr8(vcpu);
6451         sregs->efer = vcpu->arch.efer;
6452         sregs->apic_base = kvm_get_apic_base(vcpu);
6453
6454         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6455
6456         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6457                 set_bit(vcpu->arch.interrupt.nr,
6458                         (unsigned long *)sregs->interrupt_bitmap);
6459
6460         return 0;
6461 }
6462
6463 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6464                                     struct kvm_mp_state *mp_state)
6465 {
6466         kvm_apic_accept_events(vcpu);
6467         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6468                                         vcpu->arch.pv.pv_unhalted)
6469                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6470         else
6471                 mp_state->mp_state = vcpu->arch.mp_state;
6472
6473         return 0;
6474 }
6475
6476 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6477                                     struct kvm_mp_state *mp_state)
6478 {
6479         if (!kvm_vcpu_has_lapic(vcpu) &&
6480             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6481                 return -EINVAL;
6482
6483         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6484                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6485                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6486         } else
6487                 vcpu->arch.mp_state = mp_state->mp_state;
6488         kvm_make_request(KVM_REQ_EVENT, vcpu);
6489         return 0;
6490 }
6491
6492 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6493                     int reason, bool has_error_code, u32 error_code)
6494 {
6495         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6496         int ret;
6497
6498         init_emulate_ctxt(vcpu);
6499
6500         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6501                                    has_error_code, error_code);
6502
6503         if (ret)
6504                 return EMULATE_FAIL;
6505
6506         kvm_rip_write(vcpu, ctxt->eip);
6507         kvm_set_rflags(vcpu, ctxt->eflags);
6508         kvm_make_request(KVM_REQ_EVENT, vcpu);
6509         return EMULATE_DONE;
6510 }
6511 EXPORT_SYMBOL_GPL(kvm_task_switch);
6512
6513 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6514                                   struct kvm_sregs *sregs)
6515 {
6516         struct msr_data apic_base_msr;
6517         int mmu_reset_needed = 0;
6518         int pending_vec, max_bits, idx;
6519         struct desc_ptr dt;
6520
6521         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6522                 return -EINVAL;
6523
6524         dt.size = sregs->idt.limit;
6525         dt.address = sregs->idt.base;
6526         kvm_x86_ops->set_idt(vcpu, &dt);
6527         dt.size = sregs->gdt.limit;
6528         dt.address = sregs->gdt.base;
6529         kvm_x86_ops->set_gdt(vcpu, &dt);
6530
6531         vcpu->arch.cr2 = sregs->cr2;
6532         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6533         vcpu->arch.cr3 = sregs->cr3;
6534         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6535
6536         kvm_set_cr8(vcpu, sregs->cr8);
6537
6538         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6539         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6540         apic_base_msr.data = sregs->apic_base;
6541         apic_base_msr.host_initiated = true;
6542         kvm_set_apic_base(vcpu, &apic_base_msr);
6543
6544         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6545         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6546         vcpu->arch.cr0 = sregs->cr0;
6547
6548         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6549         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6550         if (sregs->cr4 & X86_CR4_OSXSAVE)
6551                 kvm_update_cpuid(vcpu);
6552
6553         idx = srcu_read_lock(&vcpu->kvm->srcu);
6554         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6555                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6556                 mmu_reset_needed = 1;
6557         }
6558         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6559
6560         if (mmu_reset_needed)
6561                 kvm_mmu_reset_context(vcpu);
6562
6563         max_bits = KVM_NR_INTERRUPTS;
6564         pending_vec = find_first_bit(
6565                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6566         if (pending_vec < max_bits) {
6567                 kvm_queue_interrupt(vcpu, pending_vec, false);
6568                 pr_debug("Set back pending irq %d\n", pending_vec);
6569         }
6570
6571         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6572         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6573         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6574         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6575         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6576         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6577
6578         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6579         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6580
6581         update_cr8_intercept(vcpu);
6582
6583         /* Older userspace won't unhalt the vcpu on reset. */
6584         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6585             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6586             !is_protmode(vcpu))
6587                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6588
6589         kvm_make_request(KVM_REQ_EVENT, vcpu);
6590
6591         return 0;
6592 }
6593
6594 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6595                                         struct kvm_guest_debug *dbg)
6596 {
6597         unsigned long rflags;
6598         int i, r;
6599
6600         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6601                 r = -EBUSY;
6602                 if (vcpu->arch.exception.pending)
6603                         goto out;
6604                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6605                         kvm_queue_exception(vcpu, DB_VECTOR);
6606                 else
6607                         kvm_queue_exception(vcpu, BP_VECTOR);
6608         }
6609
6610         /*
6611          * Read rflags as long as potentially injected trace flags are still
6612          * filtered out.
6613          */
6614         rflags = kvm_get_rflags(vcpu);
6615
6616         vcpu->guest_debug = dbg->control;
6617         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6618                 vcpu->guest_debug = 0;
6619
6620         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6621                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6622                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6623                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6624         } else {
6625                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6626                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6627         }
6628         kvm_update_dr7(vcpu);
6629
6630         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6631                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6632                         get_segment_base(vcpu, VCPU_SREG_CS);
6633
6634         /*
6635          * Trigger an rflags update that will inject or remove the trace
6636          * flags.
6637          */
6638         kvm_set_rflags(vcpu, rflags);
6639
6640         kvm_x86_ops->update_db_bp_intercept(vcpu);
6641
6642         r = 0;
6643
6644 out:
6645
6646         return r;
6647 }
6648
6649 /*
6650  * Translate a guest virtual address to a guest physical address.
6651  */
6652 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6653                                     struct kvm_translation *tr)
6654 {
6655         unsigned long vaddr = tr->linear_address;
6656         gpa_t gpa;
6657         int idx;
6658
6659         idx = srcu_read_lock(&vcpu->kvm->srcu);
6660         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6661         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6662         tr->physical_address = gpa;
6663         tr->valid = gpa != UNMAPPED_GVA;
6664         tr->writeable = 1;
6665         tr->usermode = 0;
6666
6667         return 0;
6668 }
6669
6670 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6671 {
6672         struct i387_fxsave_struct *fxsave =
6673                         &vcpu->arch.guest_fpu.state->fxsave;
6674
6675         memcpy(fpu->fpr, fxsave->st_space, 128);
6676         fpu->fcw = fxsave->cwd;
6677         fpu->fsw = fxsave->swd;
6678         fpu->ftwx = fxsave->twd;
6679         fpu->last_opcode = fxsave->fop;
6680         fpu->last_ip = fxsave->rip;
6681         fpu->last_dp = fxsave->rdp;
6682         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6683
6684         return 0;
6685 }
6686
6687 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6688 {
6689         struct i387_fxsave_struct *fxsave =
6690                         &vcpu->arch.guest_fpu.state->fxsave;
6691
6692         memcpy(fxsave->st_space, fpu->fpr, 128);
6693         fxsave->cwd = fpu->fcw;
6694         fxsave->swd = fpu->fsw;
6695         fxsave->twd = fpu->ftwx;
6696         fxsave->fop = fpu->last_opcode;
6697         fxsave->rip = fpu->last_ip;
6698         fxsave->rdp = fpu->last_dp;
6699         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6700
6701         return 0;
6702 }
6703
6704 int fx_init(struct kvm_vcpu *vcpu)
6705 {
6706         int err;
6707
6708         err = fpu_alloc(&vcpu->arch.guest_fpu);
6709         if (err)
6710                 return err;
6711
6712         fpu_finit(&vcpu->arch.guest_fpu);
6713
6714         /*
6715          * Ensure guest xcr0 is valid for loading
6716          */
6717         vcpu->arch.xcr0 = XSTATE_FP;
6718
6719         vcpu->arch.cr0 |= X86_CR0_ET;
6720
6721         return 0;
6722 }
6723 EXPORT_SYMBOL_GPL(fx_init);
6724
6725 static void fx_free(struct kvm_vcpu *vcpu)
6726 {
6727         fpu_free(&vcpu->arch.guest_fpu);
6728 }
6729
6730 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6731 {
6732         if (vcpu->guest_fpu_loaded)
6733                 return;
6734
6735         /*
6736          * Restore all possible states in the guest,
6737          * and assume host would use all available bits.
6738          * Guest xcr0 would be loaded later.
6739          */
6740         kvm_put_guest_xcr0(vcpu);
6741         vcpu->guest_fpu_loaded = 1;
6742         __kernel_fpu_begin();
6743         fpu_restore_checking(&vcpu->arch.guest_fpu);
6744         trace_kvm_fpu(1);
6745 }
6746
6747 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6748 {
6749         kvm_put_guest_xcr0(vcpu);
6750
6751         if (!vcpu->guest_fpu_loaded)
6752                 return;
6753
6754         vcpu->guest_fpu_loaded = 0;
6755         fpu_save_init(&vcpu->arch.guest_fpu);
6756         __kernel_fpu_end();
6757         ++vcpu->stat.fpu_reload;
6758         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6759         trace_kvm_fpu(0);
6760 }
6761
6762 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6763 {
6764         kvmclock_reset(vcpu);
6765
6766         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6767         fx_free(vcpu);
6768         kvm_x86_ops->vcpu_free(vcpu);
6769 }
6770
6771 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6772                                                 unsigned int id)
6773 {
6774         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6775                 printk_once(KERN_WARNING
6776                 "kvm: SMP vm created on host with unstable TSC; "
6777                 "guest TSC will not be reliable\n");
6778         return kvm_x86_ops->vcpu_create(kvm, id);
6779 }
6780
6781 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6782 {
6783         int r;
6784
6785         vcpu->arch.mtrr_state.have_fixed = 1;
6786         r = vcpu_load(vcpu);
6787         if (r)
6788                 return r;
6789         kvm_vcpu_reset(vcpu);
6790         kvm_mmu_setup(vcpu);
6791         vcpu_put(vcpu);
6792
6793         return r;
6794 }
6795
6796 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6797 {
6798         int r;
6799         struct msr_data msr;
6800         struct kvm *kvm = vcpu->kvm;
6801
6802         r = vcpu_load(vcpu);
6803         if (r)
6804                 return r;
6805         msr.data = 0x0;
6806         msr.index = MSR_IA32_TSC;
6807         msr.host_initiated = true;
6808         kvm_write_tsc(vcpu, &msr);
6809         vcpu_put(vcpu);
6810
6811         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
6812                                         KVMCLOCK_SYNC_PERIOD);
6813
6814         return r;
6815 }
6816
6817 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6818 {
6819         int r;
6820         vcpu->arch.apf.msr_val = 0;
6821
6822         r = vcpu_load(vcpu);
6823         BUG_ON(r);
6824         kvm_mmu_unload(vcpu);
6825         vcpu_put(vcpu);
6826
6827         fx_free(vcpu);
6828         kvm_x86_ops->vcpu_free(vcpu);
6829 }
6830
6831 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6832 {
6833         atomic_set(&vcpu->arch.nmi_queued, 0);
6834         vcpu->arch.nmi_pending = 0;
6835         vcpu->arch.nmi_injected = false;
6836
6837         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6838         vcpu->arch.dr6 = DR6_FIXED_1;
6839         kvm_update_dr6(vcpu);
6840         vcpu->arch.dr7 = DR7_FIXED_1;
6841         kvm_update_dr7(vcpu);
6842
6843         kvm_make_request(KVM_REQ_EVENT, vcpu);
6844         vcpu->arch.apf.msr_val = 0;
6845         vcpu->arch.st.msr_val = 0;
6846
6847         kvmclock_reset(vcpu);
6848
6849         kvm_clear_async_pf_completion_queue(vcpu);
6850         kvm_async_pf_hash_reset(vcpu);
6851         vcpu->arch.apf.halted = false;
6852
6853         kvm_pmu_reset(vcpu);
6854
6855         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6856         vcpu->arch.regs_avail = ~0;
6857         vcpu->arch.regs_dirty = ~0;
6858
6859         kvm_x86_ops->vcpu_reset(vcpu);
6860 }
6861
6862 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6863 {
6864         struct kvm_segment cs;
6865
6866         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6867         cs.selector = vector << 8;
6868         cs.base = vector << 12;
6869         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6870         kvm_rip_write(vcpu, 0);
6871 }
6872
6873 int kvm_arch_hardware_enable(void *garbage)
6874 {
6875         struct kvm *kvm;
6876         struct kvm_vcpu *vcpu;
6877         int i;
6878         int ret;
6879         u64 local_tsc;
6880         u64 max_tsc = 0;
6881         bool stable, backwards_tsc = false;
6882
6883         kvm_shared_msr_cpu_online();
6884         ret = kvm_x86_ops->hardware_enable(garbage);
6885         if (ret != 0)
6886                 return ret;
6887
6888         local_tsc = native_read_tsc();
6889         stable = !check_tsc_unstable();
6890         list_for_each_entry(kvm, &vm_list, vm_list) {
6891                 kvm_for_each_vcpu(i, vcpu, kvm) {
6892                         if (!stable && vcpu->cpu == smp_processor_id())
6893                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6894                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6895                                 backwards_tsc = true;
6896                                 if (vcpu->arch.last_host_tsc > max_tsc)
6897                                         max_tsc = vcpu->arch.last_host_tsc;
6898                         }
6899                 }
6900         }
6901
6902         /*
6903          * Sometimes, even reliable TSCs go backwards.  This happens on
6904          * platforms that reset TSC during suspend or hibernate actions, but
6905          * maintain synchronization.  We must compensate.  Fortunately, we can
6906          * detect that condition here, which happens early in CPU bringup,
6907          * before any KVM threads can be running.  Unfortunately, we can't
6908          * bring the TSCs fully up to date with real time, as we aren't yet far
6909          * enough into CPU bringup that we know how much real time has actually
6910          * elapsed; our helper function, get_kernel_ns() will be using boot
6911          * variables that haven't been updated yet.
6912          *
6913          * So we simply find the maximum observed TSC above, then record the
6914          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6915          * the adjustment will be applied.  Note that we accumulate
6916          * adjustments, in case multiple suspend cycles happen before some VCPU
6917          * gets a chance to run again.  In the event that no KVM threads get a
6918          * chance to run, we will miss the entire elapsed period, as we'll have
6919          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6920          * loose cycle time.  This isn't too big a deal, since the loss will be
6921          * uniform across all VCPUs (not to mention the scenario is extremely
6922          * unlikely). It is possible that a second hibernate recovery happens
6923          * much faster than a first, causing the observed TSC here to be
6924          * smaller; this would require additional padding adjustment, which is
6925          * why we set last_host_tsc to the local tsc observed here.
6926          *
6927          * N.B. - this code below runs only on platforms with reliable TSC,
6928          * as that is the only way backwards_tsc is set above.  Also note
6929          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6930          * have the same delta_cyc adjustment applied if backwards_tsc
6931          * is detected.  Note further, this adjustment is only done once,
6932          * as we reset last_host_tsc on all VCPUs to stop this from being
6933          * called multiple times (one for each physical CPU bringup).
6934          *
6935          * Platforms with unreliable TSCs don't have to deal with this, they
6936          * will be compensated by the logic in vcpu_load, which sets the TSC to
6937          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6938          * guarantee that they stay in perfect synchronization.
6939          */
6940         if (backwards_tsc) {
6941                 u64 delta_cyc = max_tsc - local_tsc;
6942                 list_for_each_entry(kvm, &vm_list, vm_list) {
6943                         kvm_for_each_vcpu(i, vcpu, kvm) {
6944                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6945                                 vcpu->arch.last_host_tsc = local_tsc;
6946                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6947                                         &vcpu->requests);
6948                         }
6949
6950                         /*
6951                          * We have to disable TSC offset matching.. if you were
6952                          * booting a VM while issuing an S4 host suspend....
6953                          * you may have some problem.  Solving this issue is
6954                          * left as an exercise to the reader.
6955                          */
6956                         kvm->arch.last_tsc_nsec = 0;
6957                         kvm->arch.last_tsc_write = 0;
6958                 }
6959
6960         }
6961         return 0;
6962 }
6963
6964 void kvm_arch_hardware_disable(void *garbage)
6965 {
6966         kvm_x86_ops->hardware_disable(garbage);
6967         drop_user_return_notifiers(garbage);
6968 }
6969
6970 int kvm_arch_hardware_setup(void)
6971 {
6972         return kvm_x86_ops->hardware_setup();
6973 }
6974
6975 void kvm_arch_hardware_unsetup(void)
6976 {
6977         kvm_x86_ops->hardware_unsetup();
6978 }
6979
6980 void kvm_arch_check_processor_compat(void *rtn)
6981 {
6982         kvm_x86_ops->check_processor_compatibility(rtn);
6983 }
6984
6985 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6986 {
6987         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6988 }
6989
6990 struct static_key kvm_no_apic_vcpu __read_mostly;
6991
6992 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6993 {
6994         struct page *page;
6995         struct kvm *kvm;
6996         int r;
6997
6998         BUG_ON(vcpu->kvm == NULL);
6999         kvm = vcpu->kvm;
7000
7001         vcpu->arch.pv.pv_unhalted = false;
7002         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7003         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7004                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7005         else
7006                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7007
7008         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7009         if (!page) {
7010                 r = -ENOMEM;
7011                 goto fail;
7012         }
7013         vcpu->arch.pio_data = page_address(page);
7014
7015         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7016
7017         r = kvm_mmu_create(vcpu);
7018         if (r < 0)
7019                 goto fail_free_pio_data;
7020
7021         if (irqchip_in_kernel(kvm)) {
7022                 r = kvm_create_lapic(vcpu);
7023                 if (r < 0)
7024                         goto fail_mmu_destroy;
7025         } else
7026                 static_key_slow_inc(&kvm_no_apic_vcpu);
7027
7028         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7029                                        GFP_KERNEL);
7030         if (!vcpu->arch.mce_banks) {
7031                 r = -ENOMEM;
7032                 goto fail_free_lapic;
7033         }
7034         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7035
7036         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7037                 r = -ENOMEM;
7038                 goto fail_free_mce_banks;
7039         }
7040
7041         r = fx_init(vcpu);
7042         if (r)
7043                 goto fail_free_wbinvd_dirty_mask;
7044
7045         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7046         vcpu->arch.pv_time_enabled = false;
7047
7048         vcpu->arch.guest_supported_xcr0 = 0;
7049         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7050
7051         kvm_async_pf_hash_reset(vcpu);
7052         kvm_pmu_init(vcpu);
7053
7054         return 0;
7055 fail_free_wbinvd_dirty_mask:
7056         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7057 fail_free_mce_banks:
7058         kfree(vcpu->arch.mce_banks);
7059 fail_free_lapic:
7060         kvm_free_lapic(vcpu);
7061 fail_mmu_destroy:
7062         kvm_mmu_destroy(vcpu);
7063 fail_free_pio_data:
7064         free_page((unsigned long)vcpu->arch.pio_data);
7065 fail:
7066         return r;
7067 }
7068
7069 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7070 {
7071         int idx;
7072
7073         kvm_pmu_destroy(vcpu);
7074         kfree(vcpu->arch.mce_banks);
7075         kvm_free_lapic(vcpu);
7076         idx = srcu_read_lock(&vcpu->kvm->srcu);
7077         kvm_mmu_destroy(vcpu);
7078         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7079         free_page((unsigned long)vcpu->arch.pio_data);
7080         if (!irqchip_in_kernel(vcpu->kvm))
7081                 static_key_slow_dec(&kvm_no_apic_vcpu);
7082 }
7083
7084 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7085 {
7086         if (type)
7087                 return -EINVAL;
7088
7089         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7090         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7091         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7092         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7093
7094         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7095         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7096         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7097         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7098                 &kvm->arch.irq_sources_bitmap);
7099
7100         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7101         mutex_init(&kvm->arch.apic_map_lock);
7102         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7103
7104         pvclock_update_vm_gtod_copy(kvm);
7105
7106         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7107         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7108
7109         return 0;
7110 }
7111
7112 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7113 {
7114         int r;
7115         r = vcpu_load(vcpu);
7116         BUG_ON(r);
7117         kvm_mmu_unload(vcpu);
7118         vcpu_put(vcpu);
7119 }
7120
7121 static void kvm_free_vcpus(struct kvm *kvm)
7122 {
7123         unsigned int i;
7124         struct kvm_vcpu *vcpu;
7125
7126         /*
7127          * Unpin any mmu pages first.
7128          */
7129         kvm_for_each_vcpu(i, vcpu, kvm) {
7130                 kvm_clear_async_pf_completion_queue(vcpu);
7131                 kvm_unload_vcpu_mmu(vcpu);
7132         }
7133         kvm_for_each_vcpu(i, vcpu, kvm)
7134                 kvm_arch_vcpu_free(vcpu);
7135
7136         mutex_lock(&kvm->lock);
7137         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7138                 kvm->vcpus[i] = NULL;
7139
7140         atomic_set(&kvm->online_vcpus, 0);
7141         mutex_unlock(&kvm->lock);
7142 }
7143
7144 void kvm_arch_sync_events(struct kvm *kvm)
7145 {
7146         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7147         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7148         kvm_free_all_assigned_devices(kvm);
7149         kvm_free_pit(kvm);
7150 }
7151
7152 void kvm_arch_destroy_vm(struct kvm *kvm)
7153 {
7154         if (current->mm == kvm->mm) {
7155                 /*
7156                  * Free memory regions allocated on behalf of userspace,
7157                  * unless the the memory map has changed due to process exit
7158                  * or fd copying.
7159                  */
7160                 struct kvm_userspace_memory_region mem;
7161                 memset(&mem, 0, sizeof(mem));
7162                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7163                 kvm_set_memory_region(kvm, &mem);
7164
7165                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7166                 kvm_set_memory_region(kvm, &mem);
7167
7168                 mem.slot = TSS_PRIVATE_MEMSLOT;
7169                 kvm_set_memory_region(kvm, &mem);
7170         }
7171         kvm_iommu_unmap_guest(kvm);
7172         kfree(kvm->arch.vpic);
7173         kfree(kvm->arch.vioapic);
7174         kvm_free_vcpus(kvm);
7175         if (kvm->arch.apic_access_page)
7176                 put_page(kvm->arch.apic_access_page);
7177         if (kvm->arch.ept_identity_pagetable)
7178                 put_page(kvm->arch.ept_identity_pagetable);
7179         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7180 }
7181
7182 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7183                            struct kvm_memory_slot *dont)
7184 {
7185         int i;
7186
7187         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7188                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7189                         kvm_kvfree(free->arch.rmap[i]);
7190                         free->arch.rmap[i] = NULL;
7191                 }
7192                 if (i == 0)
7193                         continue;
7194
7195                 if (!dont || free->arch.lpage_info[i - 1] !=
7196                              dont->arch.lpage_info[i - 1]) {
7197                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7198                         free->arch.lpage_info[i - 1] = NULL;
7199                 }
7200         }
7201 }
7202
7203 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7204                             unsigned long npages)
7205 {
7206         int i;
7207
7208         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7209                 unsigned long ugfn;
7210                 int lpages;
7211                 int level = i + 1;
7212
7213                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7214                                       slot->base_gfn, level) + 1;
7215
7216                 slot->arch.rmap[i] =
7217                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7218                 if (!slot->arch.rmap[i])
7219                         goto out_free;
7220                 if (i == 0)
7221                         continue;
7222
7223                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7224                                         sizeof(*slot->arch.lpage_info[i - 1]));
7225                 if (!slot->arch.lpage_info[i - 1])
7226                         goto out_free;
7227
7228                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7229                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7230                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7231                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7232                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7233                 /*
7234                  * If the gfn and userspace address are not aligned wrt each
7235                  * other, or if explicitly asked to, disable large page
7236                  * support for this slot
7237                  */
7238                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7239                     !kvm_largepages_enabled()) {
7240                         unsigned long j;
7241
7242                         for (j = 0; j < lpages; ++j)
7243                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7244                 }
7245         }
7246
7247         return 0;
7248
7249 out_free:
7250         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7251                 kvm_kvfree(slot->arch.rmap[i]);
7252                 slot->arch.rmap[i] = NULL;
7253                 if (i == 0)
7254                         continue;
7255
7256                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7257                 slot->arch.lpage_info[i - 1] = NULL;
7258         }
7259         return -ENOMEM;
7260 }
7261
7262 void kvm_arch_memslots_updated(struct kvm *kvm)
7263 {
7264         /*
7265          * memslots->generation has been incremented.
7266          * mmio generation may have reached its maximum value.
7267          */
7268         kvm_mmu_invalidate_mmio_sptes(kvm);
7269 }
7270
7271 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7272                                 struct kvm_memory_slot *memslot,
7273                                 struct kvm_userspace_memory_region *mem,
7274                                 enum kvm_mr_change change)
7275 {
7276         /*
7277          * Only private memory slots need to be mapped here since
7278          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7279          */
7280         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7281                 unsigned long userspace_addr;
7282
7283                 /*
7284                  * MAP_SHARED to prevent internal slot pages from being moved
7285                  * by fork()/COW.
7286                  */
7287                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7288                                          PROT_READ | PROT_WRITE,
7289                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7290
7291                 if (IS_ERR((void *)userspace_addr))
7292                         return PTR_ERR((void *)userspace_addr);
7293
7294                 memslot->userspace_addr = userspace_addr;
7295         }
7296
7297         return 0;
7298 }
7299
7300 void kvm_arch_commit_memory_region(struct kvm *kvm,
7301                                 struct kvm_userspace_memory_region *mem,
7302                                 const struct kvm_memory_slot *old,
7303                                 enum kvm_mr_change change)
7304 {
7305
7306         int nr_mmu_pages = 0;
7307
7308         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7309                 int ret;
7310
7311                 ret = vm_munmap(old->userspace_addr,
7312                                 old->npages * PAGE_SIZE);
7313                 if (ret < 0)
7314                         printk(KERN_WARNING
7315                                "kvm_vm_ioctl_set_memory_region: "
7316                                "failed to munmap memory\n");
7317         }
7318
7319         if (!kvm->arch.n_requested_mmu_pages)
7320                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7321
7322         if (nr_mmu_pages)
7323                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7324         /*
7325          * Write protect all pages for dirty logging.
7326          * Existing largepage mappings are destroyed here and new ones will
7327          * not be created until the end of the logging.
7328          */
7329         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7330                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7331 }
7332
7333 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7334 {
7335         kvm_mmu_invalidate_zap_all_pages(kvm);
7336 }
7337
7338 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7339                                    struct kvm_memory_slot *slot)
7340 {
7341         kvm_mmu_invalidate_zap_all_pages(kvm);
7342 }
7343
7344 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7345 {
7346         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7347                 kvm_x86_ops->check_nested_events(vcpu, false);
7348
7349         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7350                 !vcpu->arch.apf.halted)
7351                 || !list_empty_careful(&vcpu->async_pf.done)
7352                 || kvm_apic_has_events(vcpu)
7353                 || vcpu->arch.pv.pv_unhalted
7354                 || atomic_read(&vcpu->arch.nmi_queued) ||
7355                 (kvm_arch_interrupt_allowed(vcpu) &&
7356                  kvm_cpu_has_interrupt(vcpu));
7357 }
7358
7359 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7360 {
7361         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7362 }
7363
7364 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7365 {
7366         return kvm_x86_ops->interrupt_allowed(vcpu);
7367 }
7368
7369 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7370 {
7371         unsigned long current_rip = kvm_rip_read(vcpu) +
7372                 get_segment_base(vcpu, VCPU_SREG_CS);
7373
7374         return current_rip == linear_rip;
7375 }
7376 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7377
7378 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7379 {
7380         unsigned long rflags;
7381
7382         rflags = kvm_x86_ops->get_rflags(vcpu);
7383         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7384                 rflags &= ~X86_EFLAGS_TF;
7385         return rflags;
7386 }
7387 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7388
7389 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7390 {
7391         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7392             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7393                 rflags |= X86_EFLAGS_TF;
7394         kvm_x86_ops->set_rflags(vcpu, rflags);
7395         kvm_make_request(KVM_REQ_EVENT, vcpu);
7396 }
7397 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7398
7399 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7400 {
7401         int r;
7402
7403         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7404               work->wakeup_all)
7405                 return;
7406
7407         r = kvm_mmu_reload(vcpu);
7408         if (unlikely(r))
7409                 return;
7410
7411         if (!vcpu->arch.mmu.direct_map &&
7412               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7413                 return;
7414
7415         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7416 }
7417
7418 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7419 {
7420         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7421 }
7422
7423 static inline u32 kvm_async_pf_next_probe(u32 key)
7424 {
7425         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7426 }
7427
7428 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7429 {
7430         u32 key = kvm_async_pf_hash_fn(gfn);
7431
7432         while (vcpu->arch.apf.gfns[key] != ~0)
7433                 key = kvm_async_pf_next_probe(key);
7434
7435         vcpu->arch.apf.gfns[key] = gfn;
7436 }
7437
7438 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7439 {
7440         int i;
7441         u32 key = kvm_async_pf_hash_fn(gfn);
7442
7443         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7444                      (vcpu->arch.apf.gfns[key] != gfn &&
7445                       vcpu->arch.apf.gfns[key] != ~0); i++)
7446                 key = kvm_async_pf_next_probe(key);
7447
7448         return key;
7449 }
7450
7451 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7452 {
7453         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7454 }
7455
7456 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7457 {
7458         u32 i, j, k;
7459
7460         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7461         while (true) {
7462                 vcpu->arch.apf.gfns[i] = ~0;
7463                 do {
7464                         j = kvm_async_pf_next_probe(j);
7465                         if (vcpu->arch.apf.gfns[j] == ~0)
7466                                 return;
7467                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7468                         /*
7469                          * k lies cyclically in ]i,j]
7470                          * |    i.k.j |
7471                          * |....j i.k.| or  |.k..j i...|
7472                          */
7473                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7474                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7475                 i = j;
7476         }
7477 }
7478
7479 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7480 {
7481
7482         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7483                                       sizeof(val));
7484 }
7485
7486 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7487                                      struct kvm_async_pf *work)
7488 {
7489         struct x86_exception fault;
7490
7491         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7492         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7493
7494         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7495             (vcpu->arch.apf.send_user_only &&
7496              kvm_x86_ops->get_cpl(vcpu) == 0))
7497                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7498         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7499                 fault.vector = PF_VECTOR;
7500                 fault.error_code_valid = true;
7501                 fault.error_code = 0;
7502                 fault.nested_page_fault = false;
7503                 fault.address = work->arch.token;
7504                 kvm_inject_page_fault(vcpu, &fault);
7505         }
7506 }
7507
7508 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7509                                  struct kvm_async_pf *work)
7510 {
7511         struct x86_exception fault;
7512
7513         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7514         if (work->wakeup_all)
7515                 work->arch.token = ~0; /* broadcast wakeup */
7516         else
7517                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7518
7519         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7520             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7521                 fault.vector = PF_VECTOR;
7522                 fault.error_code_valid = true;
7523                 fault.error_code = 0;
7524                 fault.nested_page_fault = false;
7525                 fault.address = work->arch.token;
7526                 kvm_inject_page_fault(vcpu, &fault);
7527         }
7528         vcpu->arch.apf.halted = false;
7529         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7530 }
7531
7532 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7533 {
7534         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7535                 return true;
7536         else
7537                 return !kvm_event_needs_reinjection(vcpu) &&
7538                         kvm_x86_ops->interrupt_allowed(vcpu);
7539 }
7540
7541 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7542 {
7543         atomic_inc(&kvm->arch.noncoherent_dma_count);
7544 }
7545 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7546
7547 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7548 {
7549         atomic_dec(&kvm->arch.noncoherent_dma_count);
7550 }
7551 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7552
7553 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7554 {
7555         return atomic_read(&kvm->arch.noncoherent_dma_count);
7556 }
7557 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7558
7559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);