Merge remote-tracking branches 'regulator/topic/mt6380', 'regulator/topic/mtk', ...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82  * - enable syscall per default because its emulated by KVM
83  * - enable LME and LMA per default on 64 bit KVM
84  */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32  __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64  __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 #define KVM_NR_SHARED_MSRS 16
138
139 struct kvm_shared_msrs_global {
140         int nr;
141         u32 msrs[KVM_NR_SHARED_MSRS];
142 };
143
144 struct kvm_shared_msrs {
145         struct user_return_notifier urn;
146         bool registered;
147         struct kvm_shared_msr_values {
148                 u64 host;
149                 u64 curr;
150         } values[KVM_NR_SHARED_MSRS];
151 };
152
153 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
154 static struct kvm_shared_msrs __percpu *shared_msrs;
155
156 struct kvm_stats_debugfs_item debugfs_entries[] = {
157         { "pf_fixed", VCPU_STAT(pf_fixed) },
158         { "pf_guest", VCPU_STAT(pf_guest) },
159         { "tlb_flush", VCPU_STAT(tlb_flush) },
160         { "invlpg", VCPU_STAT(invlpg) },
161         { "exits", VCPU_STAT(exits) },
162         { "io_exits", VCPU_STAT(io_exits) },
163         { "mmio_exits", VCPU_STAT(mmio_exits) },
164         { "signal_exits", VCPU_STAT(signal_exits) },
165         { "irq_window", VCPU_STAT(irq_window_exits) },
166         { "nmi_window", VCPU_STAT(nmi_window_exits) },
167         { "halt_exits", VCPU_STAT(halt_exits) },
168         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
169         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
170         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
171         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
172         { "hypercalls", VCPU_STAT(hypercalls) },
173         { "request_irq", VCPU_STAT(request_irq_exits) },
174         { "irq_exits", VCPU_STAT(irq_exits) },
175         { "host_state_reload", VCPU_STAT(host_state_reload) },
176         { "efer_reload", VCPU_STAT(efer_reload) },
177         { "fpu_reload", VCPU_STAT(fpu_reload) },
178         { "insn_emulation", VCPU_STAT(insn_emulation) },
179         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
180         { "irq_injections", VCPU_STAT(irq_injections) },
181         { "nmi_injections", VCPU_STAT(nmi_injections) },
182         { "req_event", VCPU_STAT(req_event) },
183         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187         { "mmu_flooded", VM_STAT(mmu_flooded) },
188         { "mmu_recycled", VM_STAT(mmu_recycled) },
189         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190         { "mmu_unsync", VM_STAT(mmu_unsync) },
191         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192         { "largepages", VM_STAT(lpages) },
193         { "max_mmu_page_hash_collisions",
194                 VM_STAT(max_mmu_page_hash_collisions) },
195         { NULL }
196 };
197
198 u64 __read_mostly host_xcr0;
199
200 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
201
202 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
203 {
204         int i;
205         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
206                 vcpu->arch.apf.gfns[i] = ~0;
207 }
208
209 static void kvm_on_user_return(struct user_return_notifier *urn)
210 {
211         unsigned slot;
212         struct kvm_shared_msrs *locals
213                 = container_of(urn, struct kvm_shared_msrs, urn);
214         struct kvm_shared_msr_values *values;
215         unsigned long flags;
216
217         /*
218          * Disabling irqs at this point since the following code could be
219          * interrupted and executed through kvm_arch_hardware_disable()
220          */
221         local_irq_save(flags);
222         if (locals->registered) {
223                 locals->registered = false;
224                 user_return_notifier_unregister(urn);
225         }
226         local_irq_restore(flags);
227         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
228                 values = &locals->values[slot];
229                 if (values->host != values->curr) {
230                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
231                         values->curr = values->host;
232                 }
233         }
234 }
235
236 static void shared_msr_update(unsigned slot, u32 msr)
237 {
238         u64 value;
239         unsigned int cpu = smp_processor_id();
240         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
241
242         /* only read, and nobody should modify it at this time,
243          * so don't need lock */
244         if (slot >= shared_msrs_global.nr) {
245                 printk(KERN_ERR "kvm: invalid MSR slot!");
246                 return;
247         }
248         rdmsrl_safe(msr, &value);
249         smsr->values[slot].host = value;
250         smsr->values[slot].curr = value;
251 }
252
253 void kvm_define_shared_msr(unsigned slot, u32 msr)
254 {
255         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
256         shared_msrs_global.msrs[slot] = msr;
257         if (slot >= shared_msrs_global.nr)
258                 shared_msrs_global.nr = slot + 1;
259 }
260 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
261
262 static void kvm_shared_msr_cpu_online(void)
263 {
264         unsigned i;
265
266         for (i = 0; i < shared_msrs_global.nr; ++i)
267                 shared_msr_update(i, shared_msrs_global.msrs[i]);
268 }
269
270 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
271 {
272         unsigned int cpu = smp_processor_id();
273         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274         int err;
275
276         if (((value ^ smsr->values[slot].curr) & mask) == 0)
277                 return 0;
278         smsr->values[slot].curr = value;
279         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
280         if (err)
281                 return 1;
282
283         if (!smsr->registered) {
284                 smsr->urn.on_user_return = kvm_on_user_return;
285                 user_return_notifier_register(&smsr->urn);
286                 smsr->registered = true;
287         }
288         return 0;
289 }
290 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
291
292 static void drop_user_return_notifiers(void)
293 {
294         unsigned int cpu = smp_processor_id();
295         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
296
297         if (smsr->registered)
298                 kvm_on_user_return(&smsr->urn);
299 }
300
301 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
302 {
303         return vcpu->arch.apic_base;
304 }
305 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
306
307 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
308 {
309         u64 old_state = vcpu->arch.apic_base &
310                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311         u64 new_state = msr_info->data &
312                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
314                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
315
316         if (!msr_info->host_initiated &&
317             ((msr_info->data & reserved_bits) != 0 ||
318              new_state == X2APIC_ENABLE ||
319              (new_state == MSR_IA32_APICBASE_ENABLE &&
320               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
321              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
322               old_state == 0)))
323                 return 1;
324
325         kvm_lapic_set_base(vcpu, msr_info->data);
326         return 0;
327 }
328 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
329
330 asmlinkage __visible void kvm_spurious_fault(void)
331 {
332         /* Fault while not rebooting.  We want the trace. */
333         BUG();
334 }
335 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
336
337 #define EXCPT_BENIGN            0
338 #define EXCPT_CONTRIBUTORY      1
339 #define EXCPT_PF                2
340
341 static int exception_class(int vector)
342 {
343         switch (vector) {
344         case PF_VECTOR:
345                 return EXCPT_PF;
346         case DE_VECTOR:
347         case TS_VECTOR:
348         case NP_VECTOR:
349         case SS_VECTOR:
350         case GP_VECTOR:
351                 return EXCPT_CONTRIBUTORY;
352         default:
353                 break;
354         }
355         return EXCPT_BENIGN;
356 }
357
358 #define EXCPT_FAULT             0
359 #define EXCPT_TRAP              1
360 #define EXCPT_ABORT             2
361 #define EXCPT_INTERRUPT         3
362
363 static int exception_type(int vector)
364 {
365         unsigned int mask;
366
367         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
368                 return EXCPT_INTERRUPT;
369
370         mask = 1 << vector;
371
372         /* #DB is trap, as instruction watchpoints are handled elsewhere */
373         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
374                 return EXCPT_TRAP;
375
376         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
377                 return EXCPT_ABORT;
378
379         /* Reserved exceptions will result in fault */
380         return EXCPT_FAULT;
381 }
382
383 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
384                 unsigned nr, bool has_error, u32 error_code,
385                 bool reinject)
386 {
387         u32 prev_nr;
388         int class1, class2;
389
390         kvm_make_request(KVM_REQ_EVENT, vcpu);
391
392         if (!vcpu->arch.exception.pending) {
393         queue:
394                 if (has_error && !is_protmode(vcpu))
395                         has_error = false;
396                 vcpu->arch.exception.pending = true;
397                 vcpu->arch.exception.has_error_code = has_error;
398                 vcpu->arch.exception.nr = nr;
399                 vcpu->arch.exception.error_code = error_code;
400                 vcpu->arch.exception.reinject = reinject;
401                 return;
402         }
403
404         /* to check exception */
405         prev_nr = vcpu->arch.exception.nr;
406         if (prev_nr == DF_VECTOR) {
407                 /* triple fault -> shutdown */
408                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
409                 return;
410         }
411         class1 = exception_class(prev_nr);
412         class2 = exception_class(nr);
413         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
414                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
415                 /* generate double fault per SDM Table 5-5 */
416                 vcpu->arch.exception.pending = true;
417                 vcpu->arch.exception.has_error_code = true;
418                 vcpu->arch.exception.nr = DF_VECTOR;
419                 vcpu->arch.exception.error_code = 0;
420         } else
421                 /* replace previous exception with a new one in a hope
422                    that instruction re-execution will regenerate lost
423                    exception */
424                 goto queue;
425 }
426
427 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
428 {
429         kvm_multiple_exception(vcpu, nr, false, 0, false);
430 }
431 EXPORT_SYMBOL_GPL(kvm_queue_exception);
432
433 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
434 {
435         kvm_multiple_exception(vcpu, nr, false, 0, true);
436 }
437 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
438
439 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
440 {
441         if (err)
442                 kvm_inject_gp(vcpu, 0);
443         else
444                 return kvm_skip_emulated_instruction(vcpu);
445
446         return 1;
447 }
448 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
449
450 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
451 {
452         ++vcpu->stat.pf_guest;
453         vcpu->arch.exception.nested_apf =
454                 is_guest_mode(vcpu) && fault->async_page_fault;
455         if (vcpu->arch.exception.nested_apf)
456                 vcpu->arch.apf.nested_apf_token = fault->address;
457         else
458                 vcpu->arch.cr2 = fault->address;
459         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
460 }
461 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
462
463 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
464 {
465         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
466                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
467         else
468                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
469
470         return fault->nested_page_fault;
471 }
472
473 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
474 {
475         atomic_inc(&vcpu->arch.nmi_queued);
476         kvm_make_request(KVM_REQ_NMI, vcpu);
477 }
478 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
479
480 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
481 {
482         kvm_multiple_exception(vcpu, nr, true, error_code, false);
483 }
484 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
485
486 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
487 {
488         kvm_multiple_exception(vcpu, nr, true, error_code, true);
489 }
490 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
491
492 /*
493  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
494  * a #GP and return false.
495  */
496 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
497 {
498         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
499                 return true;
500         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
501         return false;
502 }
503 EXPORT_SYMBOL_GPL(kvm_require_cpl);
504
505 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
506 {
507         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
508                 return true;
509
510         kvm_queue_exception(vcpu, UD_VECTOR);
511         return false;
512 }
513 EXPORT_SYMBOL_GPL(kvm_require_dr);
514
515 /*
516  * This function will be used to read from the physical memory of the currently
517  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
518  * can read from guest physical or from the guest's guest physical memory.
519  */
520 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
521                             gfn_t ngfn, void *data, int offset, int len,
522                             u32 access)
523 {
524         struct x86_exception exception;
525         gfn_t real_gfn;
526         gpa_t ngpa;
527
528         ngpa     = gfn_to_gpa(ngfn);
529         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
530         if (real_gfn == UNMAPPED_GVA)
531                 return -EFAULT;
532
533         real_gfn = gpa_to_gfn(real_gfn);
534
535         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
536 }
537 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
538
539 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
540                                void *data, int offset, int len, u32 access)
541 {
542         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
543                                        data, offset, len, access);
544 }
545
546 /*
547  * Load the pae pdptrs.  Return true is they are all valid.
548  */
549 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
550 {
551         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
552         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
553         int i;
554         int ret;
555         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
556
557         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
558                                       offset * sizeof(u64), sizeof(pdpte),
559                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
560         if (ret < 0) {
561                 ret = 0;
562                 goto out;
563         }
564         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
565                 if ((pdpte[i] & PT_PRESENT_MASK) &&
566                     (pdpte[i] &
567                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
568                         ret = 0;
569                         goto out;
570                 }
571         }
572         ret = 1;
573
574         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
575         __set_bit(VCPU_EXREG_PDPTR,
576                   (unsigned long *)&vcpu->arch.regs_avail);
577         __set_bit(VCPU_EXREG_PDPTR,
578                   (unsigned long *)&vcpu->arch.regs_dirty);
579 out:
580
581         return ret;
582 }
583 EXPORT_SYMBOL_GPL(load_pdptrs);
584
585 bool pdptrs_changed(struct kvm_vcpu *vcpu)
586 {
587         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
588         bool changed = true;
589         int offset;
590         gfn_t gfn;
591         int r;
592
593         if (is_long_mode(vcpu) || !is_pae(vcpu))
594                 return false;
595
596         if (!test_bit(VCPU_EXREG_PDPTR,
597                       (unsigned long *)&vcpu->arch.regs_avail))
598                 return true;
599
600         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
601         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
602         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
603                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
604         if (r < 0)
605                 goto out;
606         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
607 out:
608
609         return changed;
610 }
611 EXPORT_SYMBOL_GPL(pdptrs_changed);
612
613 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
614 {
615         unsigned long old_cr0 = kvm_read_cr0(vcpu);
616         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
617
618         cr0 |= X86_CR0_ET;
619
620 #ifdef CONFIG_X86_64
621         if (cr0 & 0xffffffff00000000UL)
622                 return 1;
623 #endif
624
625         cr0 &= ~CR0_RESERVED_BITS;
626
627         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
628                 return 1;
629
630         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
631                 return 1;
632
633         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
634 #ifdef CONFIG_X86_64
635                 if ((vcpu->arch.efer & EFER_LME)) {
636                         int cs_db, cs_l;
637
638                         if (!is_pae(vcpu))
639                                 return 1;
640                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
641                         if (cs_l)
642                                 return 1;
643                 } else
644 #endif
645                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
646                                                  kvm_read_cr3(vcpu)))
647                         return 1;
648         }
649
650         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
651                 return 1;
652
653         kvm_x86_ops->set_cr0(vcpu, cr0);
654
655         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
656                 kvm_clear_async_pf_completion_queue(vcpu);
657                 kvm_async_pf_hash_reset(vcpu);
658         }
659
660         if ((cr0 ^ old_cr0) & update_bits)
661                 kvm_mmu_reset_context(vcpu);
662
663         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
664             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
665             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
666                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
667
668         return 0;
669 }
670 EXPORT_SYMBOL_GPL(kvm_set_cr0);
671
672 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
673 {
674         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
675 }
676 EXPORT_SYMBOL_GPL(kvm_lmsw);
677
678 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
679 {
680         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
681                         !vcpu->guest_xcr0_loaded) {
682                 /* kvm_set_xcr() also depends on this */
683                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
684                 vcpu->guest_xcr0_loaded = 1;
685         }
686 }
687
688 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
689 {
690         if (vcpu->guest_xcr0_loaded) {
691                 if (vcpu->arch.xcr0 != host_xcr0)
692                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
693                 vcpu->guest_xcr0_loaded = 0;
694         }
695 }
696
697 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
698 {
699         u64 xcr0 = xcr;
700         u64 old_xcr0 = vcpu->arch.xcr0;
701         u64 valid_bits;
702
703         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
704         if (index != XCR_XFEATURE_ENABLED_MASK)
705                 return 1;
706         if (!(xcr0 & XFEATURE_MASK_FP))
707                 return 1;
708         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
709                 return 1;
710
711         /*
712          * Do not allow the guest to set bits that we do not support
713          * saving.  However, xcr0 bit 0 is always set, even if the
714          * emulated CPU does not support XSAVE (see fx_init).
715          */
716         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
717         if (xcr0 & ~valid_bits)
718                 return 1;
719
720         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
721             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
722                 return 1;
723
724         if (xcr0 & XFEATURE_MASK_AVX512) {
725                 if (!(xcr0 & XFEATURE_MASK_YMM))
726                         return 1;
727                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
728                         return 1;
729         }
730         vcpu->arch.xcr0 = xcr0;
731
732         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
733                 kvm_update_cpuid(vcpu);
734         return 0;
735 }
736
737 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
738 {
739         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
740             __kvm_set_xcr(vcpu, index, xcr)) {
741                 kvm_inject_gp(vcpu, 0);
742                 return 1;
743         }
744         return 0;
745 }
746 EXPORT_SYMBOL_GPL(kvm_set_xcr);
747
748 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
749 {
750         unsigned long old_cr4 = kvm_read_cr4(vcpu);
751         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
752                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
753
754         if (cr4 & CR4_RESERVED_BITS)
755                 return 1;
756
757         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
758                 return 1;
759
760         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
761                 return 1;
762
763         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
764                 return 1;
765
766         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
767                 return 1;
768
769         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
770                 return 1;
771
772         if (is_long_mode(vcpu)) {
773                 if (!(cr4 & X86_CR4_PAE))
774                         return 1;
775         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
776                    && ((cr4 ^ old_cr4) & pdptr_bits)
777                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
778                                    kvm_read_cr3(vcpu)))
779                 return 1;
780
781         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
782                 if (!guest_cpuid_has_pcid(vcpu))
783                         return 1;
784
785                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
786                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
787                         return 1;
788         }
789
790         if (kvm_x86_ops->set_cr4(vcpu, cr4))
791                 return 1;
792
793         if (((cr4 ^ old_cr4) & pdptr_bits) ||
794             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
795                 kvm_mmu_reset_context(vcpu);
796
797         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
798                 kvm_update_cpuid(vcpu);
799
800         return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr4);
803
804 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
805 {
806 #ifdef CONFIG_X86_64
807         cr3 &= ~CR3_PCID_INVD;
808 #endif
809
810         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
811                 kvm_mmu_sync_roots(vcpu);
812                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
813                 return 0;
814         }
815
816         if (is_long_mode(vcpu)) {
817                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
818                         return 1;
819         } else if (is_pae(vcpu) && is_paging(vcpu) &&
820                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
821                 return 1;
822
823         vcpu->arch.cr3 = cr3;
824         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
825         kvm_mmu_new_cr3(vcpu);
826         return 0;
827 }
828 EXPORT_SYMBOL_GPL(kvm_set_cr3);
829
830 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
831 {
832         if (cr8 & CR8_RESERVED_BITS)
833                 return 1;
834         if (lapic_in_kernel(vcpu))
835                 kvm_lapic_set_tpr(vcpu, cr8);
836         else
837                 vcpu->arch.cr8 = cr8;
838         return 0;
839 }
840 EXPORT_SYMBOL_GPL(kvm_set_cr8);
841
842 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
843 {
844         if (lapic_in_kernel(vcpu))
845                 return kvm_lapic_get_cr8(vcpu);
846         else
847                 return vcpu->arch.cr8;
848 }
849 EXPORT_SYMBOL_GPL(kvm_get_cr8);
850
851 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
852 {
853         int i;
854
855         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
856                 for (i = 0; i < KVM_NR_DB_REGS; i++)
857                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
858                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
859         }
860 }
861
862 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
863 {
864         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
866 }
867
868 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
869 {
870         unsigned long dr7;
871
872         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
873                 dr7 = vcpu->arch.guest_debug_dr7;
874         else
875                 dr7 = vcpu->arch.dr7;
876         kvm_x86_ops->set_dr7(vcpu, dr7);
877         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
878         if (dr7 & DR7_BP_EN_MASK)
879                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
880 }
881
882 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
883 {
884         u64 fixed = DR6_FIXED_1;
885
886         if (!guest_cpuid_has_rtm(vcpu))
887                 fixed |= DR6_RTM;
888         return fixed;
889 }
890
891 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
892 {
893         switch (dr) {
894         case 0 ... 3:
895                 vcpu->arch.db[dr] = val;
896                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
897                         vcpu->arch.eff_db[dr] = val;
898                 break;
899         case 4:
900                 /* fall through */
901         case 6:
902                 if (val & 0xffffffff00000000ULL)
903                         return -1; /* #GP */
904                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
905                 kvm_update_dr6(vcpu);
906                 break;
907         case 5:
908                 /* fall through */
909         default: /* 7 */
910                 if (val & 0xffffffff00000000ULL)
911                         return -1; /* #GP */
912                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
913                 kvm_update_dr7(vcpu);
914                 break;
915         }
916
917         return 0;
918 }
919
920 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
921 {
922         if (__kvm_set_dr(vcpu, dr, val)) {
923                 kvm_inject_gp(vcpu, 0);
924                 return 1;
925         }
926         return 0;
927 }
928 EXPORT_SYMBOL_GPL(kvm_set_dr);
929
930 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
931 {
932         switch (dr) {
933         case 0 ... 3:
934                 *val = vcpu->arch.db[dr];
935                 break;
936         case 4:
937                 /* fall through */
938         case 6:
939                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
940                         *val = vcpu->arch.dr6;
941                 else
942                         *val = kvm_x86_ops->get_dr6(vcpu);
943                 break;
944         case 5:
945                 /* fall through */
946         default: /* 7 */
947                 *val = vcpu->arch.dr7;
948                 break;
949         }
950         return 0;
951 }
952 EXPORT_SYMBOL_GPL(kvm_get_dr);
953
954 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
955 {
956         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
957         u64 data;
958         int err;
959
960         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
961         if (err)
962                 return err;
963         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
964         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
965         return err;
966 }
967 EXPORT_SYMBOL_GPL(kvm_rdpmc);
968
969 /*
970  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
971  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
972  *
973  * This list is modified at module load time to reflect the
974  * capabilities of the host cpu. This capabilities test skips MSRs that are
975  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
976  * may depend on host virtualization features rather than host cpu features.
977  */
978
979 static u32 msrs_to_save[] = {
980         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
981         MSR_STAR,
982 #ifdef CONFIG_X86_64
983         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
984 #endif
985         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
986         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
987 };
988
989 static unsigned num_msrs_to_save;
990
991 static u32 emulated_msrs[] = {
992         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
993         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
994         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
995         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
996         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
997         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
998         HV_X64_MSR_RESET,
999         HV_X64_MSR_VP_INDEX,
1000         HV_X64_MSR_VP_RUNTIME,
1001         HV_X64_MSR_SCONTROL,
1002         HV_X64_MSR_STIMER0_CONFIG,
1003         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1004         MSR_KVM_PV_EOI_EN,
1005
1006         MSR_IA32_TSC_ADJUST,
1007         MSR_IA32_TSCDEADLINE,
1008         MSR_IA32_MISC_ENABLE,
1009         MSR_IA32_MCG_STATUS,
1010         MSR_IA32_MCG_CTL,
1011         MSR_IA32_MCG_EXT_CTL,
1012         MSR_IA32_SMBASE,
1013         MSR_PLATFORM_INFO,
1014         MSR_MISC_FEATURES_ENABLES,
1015 };
1016
1017 static unsigned num_emulated_msrs;
1018
1019 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1020 {
1021         if (efer & efer_reserved_bits)
1022                 return false;
1023
1024         if (efer & EFER_FFXSR) {
1025                 struct kvm_cpuid_entry2 *feat;
1026
1027                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1028                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1029                         return false;
1030         }
1031
1032         if (efer & EFER_SVME) {
1033                 struct kvm_cpuid_entry2 *feat;
1034
1035                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1036                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1037                         return false;
1038         }
1039
1040         return true;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1043
1044 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1045 {
1046         u64 old_efer = vcpu->arch.efer;
1047
1048         if (!kvm_valid_efer(vcpu, efer))
1049                 return 1;
1050
1051         if (is_paging(vcpu)
1052             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1053                 return 1;
1054
1055         efer &= ~EFER_LMA;
1056         efer |= vcpu->arch.efer & EFER_LMA;
1057
1058         kvm_x86_ops->set_efer(vcpu, efer);
1059
1060         /* Update reserved bits */
1061         if ((efer ^ old_efer) & EFER_NX)
1062                 kvm_mmu_reset_context(vcpu);
1063
1064         return 0;
1065 }
1066
1067 void kvm_enable_efer_bits(u64 mask)
1068 {
1069        efer_reserved_bits &= ~mask;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1072
1073 /*
1074  * Writes msr value into into the appropriate "register".
1075  * Returns 0 on success, non-0 otherwise.
1076  * Assumes vcpu_load() was already called.
1077  */
1078 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1079 {
1080         switch (msr->index) {
1081         case MSR_FS_BASE:
1082         case MSR_GS_BASE:
1083         case MSR_KERNEL_GS_BASE:
1084         case MSR_CSTAR:
1085         case MSR_LSTAR:
1086                 if (is_noncanonical_address(msr->data))
1087                         return 1;
1088                 break;
1089         case MSR_IA32_SYSENTER_EIP:
1090         case MSR_IA32_SYSENTER_ESP:
1091                 /*
1092                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1093                  * non-canonical address is written on Intel but not on
1094                  * AMD (which ignores the top 32-bits, because it does
1095                  * not implement 64-bit SYSENTER).
1096                  *
1097                  * 64-bit code should hence be able to write a non-canonical
1098                  * value on AMD.  Making the address canonical ensures that
1099                  * vmentry does not fail on Intel after writing a non-canonical
1100                  * value, and that something deterministic happens if the guest
1101                  * invokes 64-bit SYSENTER.
1102                  */
1103                 msr->data = get_canonical(msr->data);
1104         }
1105         return kvm_x86_ops->set_msr(vcpu, msr);
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_set_msr);
1108
1109 /*
1110  * Adapt set_msr() to msr_io()'s calling convention
1111  */
1112 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1113 {
1114         struct msr_data msr;
1115         int r;
1116
1117         msr.index = index;
1118         msr.host_initiated = true;
1119         r = kvm_get_msr(vcpu, &msr);
1120         if (r)
1121                 return r;
1122
1123         *data = msr.data;
1124         return 0;
1125 }
1126
1127 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1128 {
1129         struct msr_data msr;
1130
1131         msr.data = *data;
1132         msr.index = index;
1133         msr.host_initiated = true;
1134         return kvm_set_msr(vcpu, &msr);
1135 }
1136
1137 #ifdef CONFIG_X86_64
1138 struct pvclock_gtod_data {
1139         seqcount_t      seq;
1140
1141         struct { /* extract of a clocksource struct */
1142                 int vclock_mode;
1143                 u64     cycle_last;
1144                 u64     mask;
1145                 u32     mult;
1146                 u32     shift;
1147         } clock;
1148
1149         u64             boot_ns;
1150         u64             nsec_base;
1151         u64             wall_time_sec;
1152 };
1153
1154 static struct pvclock_gtod_data pvclock_gtod_data;
1155
1156 static void update_pvclock_gtod(struct timekeeper *tk)
1157 {
1158         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1159         u64 boot_ns;
1160
1161         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1162
1163         write_seqcount_begin(&vdata->seq);
1164
1165         /* copy pvclock gtod data */
1166         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1167         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1168         vdata->clock.mask               = tk->tkr_mono.mask;
1169         vdata->clock.mult               = tk->tkr_mono.mult;
1170         vdata->clock.shift              = tk->tkr_mono.shift;
1171
1172         vdata->boot_ns                  = boot_ns;
1173         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1174
1175         vdata->wall_time_sec            = tk->xtime_sec;
1176
1177         write_seqcount_end(&vdata->seq);
1178 }
1179 #endif
1180
1181 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1182 {
1183         /*
1184          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1185          * vcpu_enter_guest.  This function is only called from
1186          * the physical CPU that is running vcpu.
1187          */
1188         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1189 }
1190
1191 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1192 {
1193         int version;
1194         int r;
1195         struct pvclock_wall_clock wc;
1196         struct timespec64 boot;
1197
1198         if (!wall_clock)
1199                 return;
1200
1201         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1202         if (r)
1203                 return;
1204
1205         if (version & 1)
1206                 ++version;  /* first time write, random junk */
1207
1208         ++version;
1209
1210         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1211                 return;
1212
1213         /*
1214          * The guest calculates current wall clock time by adding
1215          * system time (updated by kvm_guest_time_update below) to the
1216          * wall clock specified here.  guest system time equals host
1217          * system time for us, thus we must fill in host boot time here.
1218          */
1219         getboottime64(&boot);
1220
1221         if (kvm->arch.kvmclock_offset) {
1222                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1223                 boot = timespec64_sub(boot, ts);
1224         }
1225         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1226         wc.nsec = boot.tv_nsec;
1227         wc.version = version;
1228
1229         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1230
1231         version++;
1232         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1233 }
1234
1235 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1236 {
1237         do_shl32_div32(dividend, divisor);
1238         return dividend;
1239 }
1240
1241 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1242                                s8 *pshift, u32 *pmultiplier)
1243 {
1244         uint64_t scaled64;
1245         int32_t  shift = 0;
1246         uint64_t tps64;
1247         uint32_t tps32;
1248
1249         tps64 = base_hz;
1250         scaled64 = scaled_hz;
1251         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1252                 tps64 >>= 1;
1253                 shift--;
1254         }
1255
1256         tps32 = (uint32_t)tps64;
1257         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1258                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1259                         scaled64 >>= 1;
1260                 else
1261                         tps32 <<= 1;
1262                 shift++;
1263         }
1264
1265         *pshift = shift;
1266         *pmultiplier = div_frac(scaled64, tps32);
1267
1268         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1269                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1270 }
1271
1272 #ifdef CONFIG_X86_64
1273 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1274 #endif
1275
1276 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1277 static unsigned long max_tsc_khz;
1278
1279 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1280 {
1281         u64 v = (u64)khz * (1000000 + ppm);
1282         do_div(v, 1000000);
1283         return v;
1284 }
1285
1286 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1287 {
1288         u64 ratio;
1289
1290         /* Guest TSC same frequency as host TSC? */
1291         if (!scale) {
1292                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1293                 return 0;
1294         }
1295
1296         /* TSC scaling supported? */
1297         if (!kvm_has_tsc_control) {
1298                 if (user_tsc_khz > tsc_khz) {
1299                         vcpu->arch.tsc_catchup = 1;
1300                         vcpu->arch.tsc_always_catchup = 1;
1301                         return 0;
1302                 } else {
1303                         WARN(1, "user requested TSC rate below hardware speed\n");
1304                         return -1;
1305                 }
1306         }
1307
1308         /* TSC scaling required  - calculate ratio */
1309         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1310                                 user_tsc_khz, tsc_khz);
1311
1312         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1313                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1314                           user_tsc_khz);
1315                 return -1;
1316         }
1317
1318         vcpu->arch.tsc_scaling_ratio = ratio;
1319         return 0;
1320 }
1321
1322 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1323 {
1324         u32 thresh_lo, thresh_hi;
1325         int use_scaling = 0;
1326
1327         /* tsc_khz can be zero if TSC calibration fails */
1328         if (user_tsc_khz == 0) {
1329                 /* set tsc_scaling_ratio to a safe value */
1330                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1331                 return -1;
1332         }
1333
1334         /* Compute a scale to convert nanoseconds in TSC cycles */
1335         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1336                            &vcpu->arch.virtual_tsc_shift,
1337                            &vcpu->arch.virtual_tsc_mult);
1338         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1339
1340         /*
1341          * Compute the variation in TSC rate which is acceptable
1342          * within the range of tolerance and decide if the
1343          * rate being applied is within that bounds of the hardware
1344          * rate.  If so, no scaling or compensation need be done.
1345          */
1346         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1347         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1348         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1349                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1350                 use_scaling = 1;
1351         }
1352         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1353 }
1354
1355 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1356 {
1357         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1358                                       vcpu->arch.virtual_tsc_mult,
1359                                       vcpu->arch.virtual_tsc_shift);
1360         tsc += vcpu->arch.this_tsc_write;
1361         return tsc;
1362 }
1363
1364 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1365 {
1366 #ifdef CONFIG_X86_64
1367         bool vcpus_matched;
1368         struct kvm_arch *ka = &vcpu->kvm->arch;
1369         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1370
1371         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1372                          atomic_read(&vcpu->kvm->online_vcpus));
1373
1374         /*
1375          * Once the masterclock is enabled, always perform request in
1376          * order to update it.
1377          *
1378          * In order to enable masterclock, the host clocksource must be TSC
1379          * and the vcpus need to have matched TSCs.  When that happens,
1380          * perform request to enable masterclock.
1381          */
1382         if (ka->use_master_clock ||
1383             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1384                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1385
1386         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1387                             atomic_read(&vcpu->kvm->online_vcpus),
1388                             ka->use_master_clock, gtod->clock.vclock_mode);
1389 #endif
1390 }
1391
1392 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1393 {
1394         u64 curr_offset = vcpu->arch.tsc_offset;
1395         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1396 }
1397
1398 /*
1399  * Multiply tsc by a fixed point number represented by ratio.
1400  *
1401  * The most significant 64-N bits (mult) of ratio represent the
1402  * integral part of the fixed point number; the remaining N bits
1403  * (frac) represent the fractional part, ie. ratio represents a fixed
1404  * point number (mult + frac * 2^(-N)).
1405  *
1406  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1407  */
1408 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1409 {
1410         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1411 }
1412
1413 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1414 {
1415         u64 _tsc = tsc;
1416         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1417
1418         if (ratio != kvm_default_tsc_scaling_ratio)
1419                 _tsc = __scale_tsc(ratio, tsc);
1420
1421         return _tsc;
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1424
1425 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1426 {
1427         u64 tsc;
1428
1429         tsc = kvm_scale_tsc(vcpu, rdtsc());
1430
1431         return target_tsc - tsc;
1432 }
1433
1434 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1435 {
1436         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1439
1440 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1441 {
1442         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1443         vcpu->arch.tsc_offset = offset;
1444 }
1445
1446 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1447 {
1448         struct kvm *kvm = vcpu->kvm;
1449         u64 offset, ns, elapsed;
1450         unsigned long flags;
1451         bool matched;
1452         bool already_matched;
1453         u64 data = msr->data;
1454         bool synchronizing = false;
1455
1456         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1457         offset = kvm_compute_tsc_offset(vcpu, data);
1458         ns = ktime_get_boot_ns();
1459         elapsed = ns - kvm->arch.last_tsc_nsec;
1460
1461         if (vcpu->arch.virtual_tsc_khz) {
1462                 if (data == 0 && msr->host_initiated) {
1463                         /*
1464                          * detection of vcpu initialization -- need to sync
1465                          * with other vCPUs. This particularly helps to keep
1466                          * kvm_clock stable after CPU hotplug
1467                          */
1468                         synchronizing = true;
1469                 } else {
1470                         u64 tsc_exp = kvm->arch.last_tsc_write +
1471                                                 nsec_to_cycles(vcpu, elapsed);
1472                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1473                         /*
1474                          * Special case: TSC write with a small delta (1 second)
1475                          * of virtual cycle time against real time is
1476                          * interpreted as an attempt to synchronize the CPU.
1477                          */
1478                         synchronizing = data < tsc_exp + tsc_hz &&
1479                                         data + tsc_hz > tsc_exp;
1480                 }
1481         }
1482
1483         /*
1484          * For a reliable TSC, we can match TSC offsets, and for an unstable
1485          * TSC, we add elapsed time in this computation.  We could let the
1486          * compensation code attempt to catch up if we fall behind, but
1487          * it's better to try to match offsets from the beginning.
1488          */
1489         if (synchronizing &&
1490             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1491                 if (!check_tsc_unstable()) {
1492                         offset = kvm->arch.cur_tsc_offset;
1493                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1494                 } else {
1495                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1496                         data += delta;
1497                         offset = kvm_compute_tsc_offset(vcpu, data);
1498                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1499                 }
1500                 matched = true;
1501                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1502         } else {
1503                 /*
1504                  * We split periods of matched TSC writes into generations.
1505                  * For each generation, we track the original measured
1506                  * nanosecond time, offset, and write, so if TSCs are in
1507                  * sync, we can match exact offset, and if not, we can match
1508                  * exact software computation in compute_guest_tsc()
1509                  *
1510                  * These values are tracked in kvm->arch.cur_xxx variables.
1511                  */
1512                 kvm->arch.cur_tsc_generation++;
1513                 kvm->arch.cur_tsc_nsec = ns;
1514                 kvm->arch.cur_tsc_write = data;
1515                 kvm->arch.cur_tsc_offset = offset;
1516                 matched = false;
1517                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1518                          kvm->arch.cur_tsc_generation, data);
1519         }
1520
1521         /*
1522          * We also track th most recent recorded KHZ, write and time to
1523          * allow the matching interval to be extended at each write.
1524          */
1525         kvm->arch.last_tsc_nsec = ns;
1526         kvm->arch.last_tsc_write = data;
1527         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1528
1529         vcpu->arch.last_guest_tsc = data;
1530
1531         /* Keep track of which generation this VCPU has synchronized to */
1532         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1533         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1534         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1535
1536         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1537                 update_ia32_tsc_adjust_msr(vcpu, offset);
1538         kvm_vcpu_write_tsc_offset(vcpu, offset);
1539         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1540
1541         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1542         if (!matched) {
1543                 kvm->arch.nr_vcpus_matched_tsc = 0;
1544         } else if (!already_matched) {
1545                 kvm->arch.nr_vcpus_matched_tsc++;
1546         }
1547
1548         kvm_track_tsc_matching(vcpu);
1549         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1550 }
1551
1552 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1553
1554 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1555                                            s64 adjustment)
1556 {
1557         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1558 }
1559
1560 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1561 {
1562         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1563                 WARN_ON(adjustment < 0);
1564         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1565         adjust_tsc_offset_guest(vcpu, adjustment);
1566 }
1567
1568 #ifdef CONFIG_X86_64
1569
1570 static u64 read_tsc(void)
1571 {
1572         u64 ret = (u64)rdtsc_ordered();
1573         u64 last = pvclock_gtod_data.clock.cycle_last;
1574
1575         if (likely(ret >= last))
1576                 return ret;
1577
1578         /*
1579          * GCC likes to generate cmov here, but this branch is extremely
1580          * predictable (it's just a function of time and the likely is
1581          * very likely) and there's a data dependence, so force GCC
1582          * to generate a branch instead.  I don't barrier() because
1583          * we don't actually need a barrier, and if this function
1584          * ever gets inlined it will generate worse code.
1585          */
1586         asm volatile ("");
1587         return last;
1588 }
1589
1590 static inline u64 vgettsc(u64 *cycle_now)
1591 {
1592         long v;
1593         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1594
1595         *cycle_now = read_tsc();
1596
1597         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1598         return v * gtod->clock.mult;
1599 }
1600
1601 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1602 {
1603         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1604         unsigned long seq;
1605         int mode;
1606         u64 ns;
1607
1608         do {
1609                 seq = read_seqcount_begin(&gtod->seq);
1610                 mode = gtod->clock.vclock_mode;
1611                 ns = gtod->nsec_base;
1612                 ns += vgettsc(cycle_now);
1613                 ns >>= gtod->clock.shift;
1614                 ns += gtod->boot_ns;
1615         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1616         *t = ns;
1617
1618         return mode;
1619 }
1620
1621 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1622 {
1623         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1624         unsigned long seq;
1625         int mode;
1626         u64 ns;
1627
1628         do {
1629                 seq = read_seqcount_begin(&gtod->seq);
1630                 mode = gtod->clock.vclock_mode;
1631                 ts->tv_sec = gtod->wall_time_sec;
1632                 ns = gtod->nsec_base;
1633                 ns += vgettsc(cycle_now);
1634                 ns >>= gtod->clock.shift;
1635         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1636
1637         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1638         ts->tv_nsec = ns;
1639
1640         return mode;
1641 }
1642
1643 /* returns true if host is using tsc clocksource */
1644 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1645 {
1646         /* checked again under seqlock below */
1647         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1648                 return false;
1649
1650         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1651 }
1652
1653 /* returns true if host is using tsc clocksource */
1654 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1655                                            u64 *cycle_now)
1656 {
1657         /* checked again under seqlock below */
1658         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1659                 return false;
1660
1661         return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1662 }
1663 #endif
1664
1665 /*
1666  *
1667  * Assuming a stable TSC across physical CPUS, and a stable TSC
1668  * across virtual CPUs, the following condition is possible.
1669  * Each numbered line represents an event visible to both
1670  * CPUs at the next numbered event.
1671  *
1672  * "timespecX" represents host monotonic time. "tscX" represents
1673  * RDTSC value.
1674  *
1675  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1676  *
1677  * 1.  read timespec0,tsc0
1678  * 2.                                   | timespec1 = timespec0 + N
1679  *                                      | tsc1 = tsc0 + M
1680  * 3. transition to guest               | transition to guest
1681  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1682  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1683  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1684  *
1685  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1686  *
1687  *      - ret0 < ret1
1688  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1689  *              ...
1690  *      - 0 < N - M => M < N
1691  *
1692  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1693  * always the case (the difference between two distinct xtime instances
1694  * might be smaller then the difference between corresponding TSC reads,
1695  * when updating guest vcpus pvclock areas).
1696  *
1697  * To avoid that problem, do not allow visibility of distinct
1698  * system_timestamp/tsc_timestamp values simultaneously: use a master
1699  * copy of host monotonic time values. Update that master copy
1700  * in lockstep.
1701  *
1702  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1703  *
1704  */
1705
1706 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1707 {
1708 #ifdef CONFIG_X86_64
1709         struct kvm_arch *ka = &kvm->arch;
1710         int vclock_mode;
1711         bool host_tsc_clocksource, vcpus_matched;
1712
1713         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1714                         atomic_read(&kvm->online_vcpus));
1715
1716         /*
1717          * If the host uses TSC clock, then passthrough TSC as stable
1718          * to the guest.
1719          */
1720         host_tsc_clocksource = kvm_get_time_and_clockread(
1721                                         &ka->master_kernel_ns,
1722                                         &ka->master_cycle_now);
1723
1724         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1725                                 && !ka->backwards_tsc_observed
1726                                 && !ka->boot_vcpu_runs_old_kvmclock;
1727
1728         if (ka->use_master_clock)
1729                 atomic_set(&kvm_guest_has_master_clock, 1);
1730
1731         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1732         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1733                                         vcpus_matched);
1734 #endif
1735 }
1736
1737 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1738 {
1739         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1740 }
1741
1742 static void kvm_gen_update_masterclock(struct kvm *kvm)
1743 {
1744 #ifdef CONFIG_X86_64
1745         int i;
1746         struct kvm_vcpu *vcpu;
1747         struct kvm_arch *ka = &kvm->arch;
1748
1749         spin_lock(&ka->pvclock_gtod_sync_lock);
1750         kvm_make_mclock_inprogress_request(kvm);
1751         /* no guest entries from this point */
1752         pvclock_update_vm_gtod_copy(kvm);
1753
1754         kvm_for_each_vcpu(i, vcpu, kvm)
1755                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1756
1757         /* guest entries allowed */
1758         kvm_for_each_vcpu(i, vcpu, kvm)
1759                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1760
1761         spin_unlock(&ka->pvclock_gtod_sync_lock);
1762 #endif
1763 }
1764
1765 u64 get_kvmclock_ns(struct kvm *kvm)
1766 {
1767         struct kvm_arch *ka = &kvm->arch;
1768         struct pvclock_vcpu_time_info hv_clock;
1769         u64 ret;
1770
1771         spin_lock(&ka->pvclock_gtod_sync_lock);
1772         if (!ka->use_master_clock) {
1773                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1774                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1775         }
1776
1777         hv_clock.tsc_timestamp = ka->master_cycle_now;
1778         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1779         spin_unlock(&ka->pvclock_gtod_sync_lock);
1780
1781         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1782         get_cpu();
1783
1784         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1785                            &hv_clock.tsc_shift,
1786                            &hv_clock.tsc_to_system_mul);
1787         ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1788
1789         put_cpu();
1790
1791         return ret;
1792 }
1793
1794 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1795 {
1796         struct kvm_vcpu_arch *vcpu = &v->arch;
1797         struct pvclock_vcpu_time_info guest_hv_clock;
1798
1799         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1800                 &guest_hv_clock, sizeof(guest_hv_clock))))
1801                 return;
1802
1803         /* This VCPU is paused, but it's legal for a guest to read another
1804          * VCPU's kvmclock, so we really have to follow the specification where
1805          * it says that version is odd if data is being modified, and even after
1806          * it is consistent.
1807          *
1808          * Version field updates must be kept separate.  This is because
1809          * kvm_write_guest_cached might use a "rep movs" instruction, and
1810          * writes within a string instruction are weakly ordered.  So there
1811          * are three writes overall.
1812          *
1813          * As a small optimization, only write the version field in the first
1814          * and third write.  The vcpu->pv_time cache is still valid, because the
1815          * version field is the first in the struct.
1816          */
1817         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1818
1819         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1820         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1821                                 &vcpu->hv_clock,
1822                                 sizeof(vcpu->hv_clock.version));
1823
1824         smp_wmb();
1825
1826         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1827         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1828
1829         if (vcpu->pvclock_set_guest_stopped_request) {
1830                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1831                 vcpu->pvclock_set_guest_stopped_request = false;
1832         }
1833
1834         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1835
1836         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1837                                 &vcpu->hv_clock,
1838                                 sizeof(vcpu->hv_clock));
1839
1840         smp_wmb();
1841
1842         vcpu->hv_clock.version++;
1843         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1844                                 &vcpu->hv_clock,
1845                                 sizeof(vcpu->hv_clock.version));
1846 }
1847
1848 static int kvm_guest_time_update(struct kvm_vcpu *v)
1849 {
1850         unsigned long flags, tgt_tsc_khz;
1851         struct kvm_vcpu_arch *vcpu = &v->arch;
1852         struct kvm_arch *ka = &v->kvm->arch;
1853         s64 kernel_ns;
1854         u64 tsc_timestamp, host_tsc;
1855         u8 pvclock_flags;
1856         bool use_master_clock;
1857
1858         kernel_ns = 0;
1859         host_tsc = 0;
1860
1861         /*
1862          * If the host uses TSC clock, then passthrough TSC as stable
1863          * to the guest.
1864          */
1865         spin_lock(&ka->pvclock_gtod_sync_lock);
1866         use_master_clock = ka->use_master_clock;
1867         if (use_master_clock) {
1868                 host_tsc = ka->master_cycle_now;
1869                 kernel_ns = ka->master_kernel_ns;
1870         }
1871         spin_unlock(&ka->pvclock_gtod_sync_lock);
1872
1873         /* Keep irq disabled to prevent changes to the clock */
1874         local_irq_save(flags);
1875         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1876         if (unlikely(tgt_tsc_khz == 0)) {
1877                 local_irq_restore(flags);
1878                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1879                 return 1;
1880         }
1881         if (!use_master_clock) {
1882                 host_tsc = rdtsc();
1883                 kernel_ns = ktime_get_boot_ns();
1884         }
1885
1886         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1887
1888         /*
1889          * We may have to catch up the TSC to match elapsed wall clock
1890          * time for two reasons, even if kvmclock is used.
1891          *   1) CPU could have been running below the maximum TSC rate
1892          *   2) Broken TSC compensation resets the base at each VCPU
1893          *      entry to avoid unknown leaps of TSC even when running
1894          *      again on the same CPU.  This may cause apparent elapsed
1895          *      time to disappear, and the guest to stand still or run
1896          *      very slowly.
1897          */
1898         if (vcpu->tsc_catchup) {
1899                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1900                 if (tsc > tsc_timestamp) {
1901                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1902                         tsc_timestamp = tsc;
1903                 }
1904         }
1905
1906         local_irq_restore(flags);
1907
1908         /* With all the info we got, fill in the values */
1909
1910         if (kvm_has_tsc_control)
1911                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1912
1913         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1914                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1915                                    &vcpu->hv_clock.tsc_shift,
1916                                    &vcpu->hv_clock.tsc_to_system_mul);
1917                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1918         }
1919
1920         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1921         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1922         vcpu->last_guest_tsc = tsc_timestamp;
1923
1924         /* If the host uses TSC clocksource, then it is stable */
1925         pvclock_flags = 0;
1926         if (use_master_clock)
1927                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1928
1929         vcpu->hv_clock.flags = pvclock_flags;
1930
1931         if (vcpu->pv_time_enabled)
1932                 kvm_setup_pvclock_page(v);
1933         if (v == kvm_get_vcpu(v->kvm, 0))
1934                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1935         return 0;
1936 }
1937
1938 /*
1939  * kvmclock updates which are isolated to a given vcpu, such as
1940  * vcpu->cpu migration, should not allow system_timestamp from
1941  * the rest of the vcpus to remain static. Otherwise ntp frequency
1942  * correction applies to one vcpu's system_timestamp but not
1943  * the others.
1944  *
1945  * So in those cases, request a kvmclock update for all vcpus.
1946  * We need to rate-limit these requests though, as they can
1947  * considerably slow guests that have a large number of vcpus.
1948  * The time for a remote vcpu to update its kvmclock is bound
1949  * by the delay we use to rate-limit the updates.
1950  */
1951
1952 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1953
1954 static void kvmclock_update_fn(struct work_struct *work)
1955 {
1956         int i;
1957         struct delayed_work *dwork = to_delayed_work(work);
1958         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1959                                            kvmclock_update_work);
1960         struct kvm *kvm = container_of(ka, struct kvm, arch);
1961         struct kvm_vcpu *vcpu;
1962
1963         kvm_for_each_vcpu(i, vcpu, kvm) {
1964                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1965                 kvm_vcpu_kick(vcpu);
1966         }
1967 }
1968
1969 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1970 {
1971         struct kvm *kvm = v->kvm;
1972
1973         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1974         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1975                                         KVMCLOCK_UPDATE_DELAY);
1976 }
1977
1978 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1979
1980 static void kvmclock_sync_fn(struct work_struct *work)
1981 {
1982         struct delayed_work *dwork = to_delayed_work(work);
1983         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1984                                            kvmclock_sync_work);
1985         struct kvm *kvm = container_of(ka, struct kvm, arch);
1986
1987         if (!kvmclock_periodic_sync)
1988                 return;
1989
1990         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1991         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1992                                         KVMCLOCK_SYNC_PERIOD);
1993 }
1994
1995 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1996 {
1997         u64 mcg_cap = vcpu->arch.mcg_cap;
1998         unsigned bank_num = mcg_cap & 0xff;
1999
2000         switch (msr) {
2001         case MSR_IA32_MCG_STATUS:
2002                 vcpu->arch.mcg_status = data;
2003                 break;
2004         case MSR_IA32_MCG_CTL:
2005                 if (!(mcg_cap & MCG_CTL_P))
2006                         return 1;
2007                 if (data != 0 && data != ~(u64)0)
2008                         return -1;
2009                 vcpu->arch.mcg_ctl = data;
2010                 break;
2011         default:
2012                 if (msr >= MSR_IA32_MC0_CTL &&
2013                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2014                         u32 offset = msr - MSR_IA32_MC0_CTL;
2015                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2016                          * some Linux kernels though clear bit 10 in bank 4 to
2017                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2018                          * this to avoid an uncatched #GP in the guest
2019                          */
2020                         if ((offset & 0x3) == 0 &&
2021                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2022                                 return -1;
2023                         vcpu->arch.mce_banks[offset] = data;
2024                         break;
2025                 }
2026                 return 1;
2027         }
2028         return 0;
2029 }
2030
2031 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2032 {
2033         struct kvm *kvm = vcpu->kvm;
2034         int lm = is_long_mode(vcpu);
2035         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2036                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2037         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2038                 : kvm->arch.xen_hvm_config.blob_size_32;
2039         u32 page_num = data & ~PAGE_MASK;
2040         u64 page_addr = data & PAGE_MASK;
2041         u8 *page;
2042         int r;
2043
2044         r = -E2BIG;
2045         if (page_num >= blob_size)
2046                 goto out;
2047         r = -ENOMEM;
2048         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2049         if (IS_ERR(page)) {
2050                 r = PTR_ERR(page);
2051                 goto out;
2052         }
2053         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2054                 goto out_free;
2055         r = 0;
2056 out_free:
2057         kfree(page);
2058 out:
2059         return r;
2060 }
2061
2062 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2063 {
2064         gpa_t gpa = data & ~0x3f;
2065
2066         /* Bits 3:5 are reserved, Should be zero */
2067         if (data & 0x38)
2068                 return 1;
2069
2070         vcpu->arch.apf.msr_val = data;
2071
2072         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2073                 kvm_clear_async_pf_completion_queue(vcpu);
2074                 kvm_async_pf_hash_reset(vcpu);
2075                 return 0;
2076         }
2077
2078         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2079                                         sizeof(u32)))
2080                 return 1;
2081
2082         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2083         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2084         kvm_async_pf_wakeup_all(vcpu);
2085         return 0;
2086 }
2087
2088 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2089 {
2090         vcpu->arch.pv_time_enabled = false;
2091 }
2092
2093 static void record_steal_time(struct kvm_vcpu *vcpu)
2094 {
2095         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2096                 return;
2097
2098         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2099                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2100                 return;
2101
2102         vcpu->arch.st.steal.preempted = 0;
2103
2104         if (vcpu->arch.st.steal.version & 1)
2105                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2106
2107         vcpu->arch.st.steal.version += 1;
2108
2109         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2110                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2111
2112         smp_wmb();
2113
2114         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2115                 vcpu->arch.st.last_steal;
2116         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2117
2118         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2119                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2120
2121         smp_wmb();
2122
2123         vcpu->arch.st.steal.version += 1;
2124
2125         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2126                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2127 }
2128
2129 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2130 {
2131         bool pr = false;
2132         u32 msr = msr_info->index;
2133         u64 data = msr_info->data;
2134
2135         switch (msr) {
2136         case MSR_AMD64_NB_CFG:
2137         case MSR_IA32_UCODE_REV:
2138         case MSR_IA32_UCODE_WRITE:
2139         case MSR_VM_HSAVE_PA:
2140         case MSR_AMD64_PATCH_LOADER:
2141         case MSR_AMD64_BU_CFG2:
2142         case MSR_AMD64_DC_CFG:
2143                 break;
2144
2145         case MSR_EFER:
2146                 return set_efer(vcpu, data);
2147         case MSR_K7_HWCR:
2148                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2149                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2150                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2151                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2152                 if (data != 0) {
2153                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2154                                     data);
2155                         return 1;
2156                 }
2157                 break;
2158         case MSR_FAM10H_MMIO_CONF_BASE:
2159                 if (data != 0) {
2160                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2161                                     "0x%llx\n", data);
2162                         return 1;
2163                 }
2164                 break;
2165         case MSR_IA32_DEBUGCTLMSR:
2166                 if (!data) {
2167                         /* We support the non-activated case already */
2168                         break;
2169                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2170                         /* Values other than LBR and BTF are vendor-specific,
2171                            thus reserved and should throw a #GP */
2172                         return 1;
2173                 }
2174                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2175                             __func__, data);
2176                 break;
2177         case 0x200 ... 0x2ff:
2178                 return kvm_mtrr_set_msr(vcpu, msr, data);
2179         case MSR_IA32_APICBASE:
2180                 return kvm_set_apic_base(vcpu, msr_info);
2181         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2182                 return kvm_x2apic_msr_write(vcpu, msr, data);
2183         case MSR_IA32_TSCDEADLINE:
2184                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2185                 break;
2186         case MSR_IA32_TSC_ADJUST:
2187                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2188                         if (!msr_info->host_initiated) {
2189                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2190                                 adjust_tsc_offset_guest(vcpu, adj);
2191                         }
2192                         vcpu->arch.ia32_tsc_adjust_msr = data;
2193                 }
2194                 break;
2195         case MSR_IA32_MISC_ENABLE:
2196                 vcpu->arch.ia32_misc_enable_msr = data;
2197                 break;
2198         case MSR_IA32_SMBASE:
2199                 if (!msr_info->host_initiated)
2200                         return 1;
2201                 vcpu->arch.smbase = data;
2202                 break;
2203         case MSR_KVM_WALL_CLOCK_NEW:
2204         case MSR_KVM_WALL_CLOCK:
2205                 vcpu->kvm->arch.wall_clock = data;
2206                 kvm_write_wall_clock(vcpu->kvm, data);
2207                 break;
2208         case MSR_KVM_SYSTEM_TIME_NEW:
2209         case MSR_KVM_SYSTEM_TIME: {
2210                 struct kvm_arch *ka = &vcpu->kvm->arch;
2211
2212                 kvmclock_reset(vcpu);
2213
2214                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2215                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2216
2217                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2218                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2219
2220                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2221                 }
2222
2223                 vcpu->arch.time = data;
2224                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2225
2226                 /* we verify if the enable bit is set... */
2227                 if (!(data & 1))
2228                         break;
2229
2230                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2231                      &vcpu->arch.pv_time, data & ~1ULL,
2232                      sizeof(struct pvclock_vcpu_time_info)))
2233                         vcpu->arch.pv_time_enabled = false;
2234                 else
2235                         vcpu->arch.pv_time_enabled = true;
2236
2237                 break;
2238         }
2239         case MSR_KVM_ASYNC_PF_EN:
2240                 if (kvm_pv_enable_async_pf(vcpu, data))
2241                         return 1;
2242                 break;
2243         case MSR_KVM_STEAL_TIME:
2244
2245                 if (unlikely(!sched_info_on()))
2246                         return 1;
2247
2248                 if (data & KVM_STEAL_RESERVED_MASK)
2249                         return 1;
2250
2251                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2252                                                 data & KVM_STEAL_VALID_BITS,
2253                                                 sizeof(struct kvm_steal_time)))
2254                         return 1;
2255
2256                 vcpu->arch.st.msr_val = data;
2257
2258                 if (!(data & KVM_MSR_ENABLED))
2259                         break;
2260
2261                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2262
2263                 break;
2264         case MSR_KVM_PV_EOI_EN:
2265                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2266                         return 1;
2267                 break;
2268
2269         case MSR_IA32_MCG_CTL:
2270         case MSR_IA32_MCG_STATUS:
2271         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2272                 return set_msr_mce(vcpu, msr, data);
2273
2274         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2275         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2276                 pr = true; /* fall through */
2277         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2278         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2279                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2280                         return kvm_pmu_set_msr(vcpu, msr_info);
2281
2282                 if (pr || data != 0)
2283                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2284                                     "0x%x data 0x%llx\n", msr, data);
2285                 break;
2286         case MSR_K7_CLK_CTL:
2287                 /*
2288                  * Ignore all writes to this no longer documented MSR.
2289                  * Writes are only relevant for old K7 processors,
2290                  * all pre-dating SVM, but a recommended workaround from
2291                  * AMD for these chips. It is possible to specify the
2292                  * affected processor models on the command line, hence
2293                  * the need to ignore the workaround.
2294                  */
2295                 break;
2296         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2297         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2298         case HV_X64_MSR_CRASH_CTL:
2299         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2300                 return kvm_hv_set_msr_common(vcpu, msr, data,
2301                                              msr_info->host_initiated);
2302         case MSR_IA32_BBL_CR_CTL3:
2303                 /* Drop writes to this legacy MSR -- see rdmsr
2304                  * counterpart for further detail.
2305                  */
2306                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2307                 break;
2308         case MSR_AMD64_OSVW_ID_LENGTH:
2309                 if (!guest_cpuid_has_osvw(vcpu))
2310                         return 1;
2311                 vcpu->arch.osvw.length = data;
2312                 break;
2313         case MSR_AMD64_OSVW_STATUS:
2314                 if (!guest_cpuid_has_osvw(vcpu))
2315                         return 1;
2316                 vcpu->arch.osvw.status = data;
2317                 break;
2318         case MSR_PLATFORM_INFO:
2319                 if (!msr_info->host_initiated ||
2320                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2321                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2322                      cpuid_fault_enabled(vcpu)))
2323                         return 1;
2324                 vcpu->arch.msr_platform_info = data;
2325                 break;
2326         case MSR_MISC_FEATURES_ENABLES:
2327                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2328                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2329                      !supports_cpuid_fault(vcpu)))
2330                         return 1;
2331                 vcpu->arch.msr_misc_features_enables = data;
2332                 break;
2333         default:
2334                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2335                         return xen_hvm_config(vcpu, data);
2336                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2337                         return kvm_pmu_set_msr(vcpu, msr_info);
2338                 if (!ignore_msrs) {
2339                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2340                                     msr, data);
2341                         return 1;
2342                 } else {
2343                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2344                                     msr, data);
2345                         break;
2346                 }
2347         }
2348         return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2351
2352
2353 /*
2354  * Reads an msr value (of 'msr_index') into 'pdata'.
2355  * Returns 0 on success, non-0 otherwise.
2356  * Assumes vcpu_load() was already called.
2357  */
2358 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2359 {
2360         return kvm_x86_ops->get_msr(vcpu, msr);
2361 }
2362 EXPORT_SYMBOL_GPL(kvm_get_msr);
2363
2364 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2365 {
2366         u64 data;
2367         u64 mcg_cap = vcpu->arch.mcg_cap;
2368         unsigned bank_num = mcg_cap & 0xff;
2369
2370         switch (msr) {
2371         case MSR_IA32_P5_MC_ADDR:
2372         case MSR_IA32_P5_MC_TYPE:
2373                 data = 0;
2374                 break;
2375         case MSR_IA32_MCG_CAP:
2376                 data = vcpu->arch.mcg_cap;
2377                 break;
2378         case MSR_IA32_MCG_CTL:
2379                 if (!(mcg_cap & MCG_CTL_P))
2380                         return 1;
2381                 data = vcpu->arch.mcg_ctl;
2382                 break;
2383         case MSR_IA32_MCG_STATUS:
2384                 data = vcpu->arch.mcg_status;
2385                 break;
2386         default:
2387                 if (msr >= MSR_IA32_MC0_CTL &&
2388                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2389                         u32 offset = msr - MSR_IA32_MC0_CTL;
2390                         data = vcpu->arch.mce_banks[offset];
2391                         break;
2392                 }
2393                 return 1;
2394         }
2395         *pdata = data;
2396         return 0;
2397 }
2398
2399 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2400 {
2401         switch (msr_info->index) {
2402         case MSR_IA32_PLATFORM_ID:
2403         case MSR_IA32_EBL_CR_POWERON:
2404         case MSR_IA32_DEBUGCTLMSR:
2405         case MSR_IA32_LASTBRANCHFROMIP:
2406         case MSR_IA32_LASTBRANCHTOIP:
2407         case MSR_IA32_LASTINTFROMIP:
2408         case MSR_IA32_LASTINTTOIP:
2409         case MSR_K8_SYSCFG:
2410         case MSR_K8_TSEG_ADDR:
2411         case MSR_K8_TSEG_MASK:
2412         case MSR_K7_HWCR:
2413         case MSR_VM_HSAVE_PA:
2414         case MSR_K8_INT_PENDING_MSG:
2415         case MSR_AMD64_NB_CFG:
2416         case MSR_FAM10H_MMIO_CONF_BASE:
2417         case MSR_AMD64_BU_CFG2:
2418         case MSR_IA32_PERF_CTL:
2419         case MSR_AMD64_DC_CFG:
2420                 msr_info->data = 0;
2421                 break;
2422         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2423         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2424         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2425         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2426                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2427                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2428                 msr_info->data = 0;
2429                 break;
2430         case MSR_IA32_UCODE_REV:
2431                 msr_info->data = 0x100000000ULL;
2432                 break;
2433         case MSR_MTRRcap:
2434         case 0x200 ... 0x2ff:
2435                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2436         case 0xcd: /* fsb frequency */
2437                 msr_info->data = 3;
2438                 break;
2439                 /*
2440                  * MSR_EBC_FREQUENCY_ID
2441                  * Conservative value valid for even the basic CPU models.
2442                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2443                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2444                  * and 266MHz for model 3, or 4. Set Core Clock
2445                  * Frequency to System Bus Frequency Ratio to 1 (bits
2446                  * 31:24) even though these are only valid for CPU
2447                  * models > 2, however guests may end up dividing or
2448                  * multiplying by zero otherwise.
2449                  */
2450         case MSR_EBC_FREQUENCY_ID:
2451                 msr_info->data = 1 << 24;
2452                 break;
2453         case MSR_IA32_APICBASE:
2454                 msr_info->data = kvm_get_apic_base(vcpu);
2455                 break;
2456         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2457                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2458                 break;
2459         case MSR_IA32_TSCDEADLINE:
2460                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2461                 break;
2462         case MSR_IA32_TSC_ADJUST:
2463                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2464                 break;
2465         case MSR_IA32_MISC_ENABLE:
2466                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2467                 break;
2468         case MSR_IA32_SMBASE:
2469                 if (!msr_info->host_initiated)
2470                         return 1;
2471                 msr_info->data = vcpu->arch.smbase;
2472                 break;
2473         case MSR_IA32_PERF_STATUS:
2474                 /* TSC increment by tick */
2475                 msr_info->data = 1000ULL;
2476                 /* CPU multiplier */
2477                 msr_info->data |= (((uint64_t)4ULL) << 40);
2478                 break;
2479         case MSR_EFER:
2480                 msr_info->data = vcpu->arch.efer;
2481                 break;
2482         case MSR_KVM_WALL_CLOCK:
2483         case MSR_KVM_WALL_CLOCK_NEW:
2484                 msr_info->data = vcpu->kvm->arch.wall_clock;
2485                 break;
2486         case MSR_KVM_SYSTEM_TIME:
2487         case MSR_KVM_SYSTEM_TIME_NEW:
2488                 msr_info->data = vcpu->arch.time;
2489                 break;
2490         case MSR_KVM_ASYNC_PF_EN:
2491                 msr_info->data = vcpu->arch.apf.msr_val;
2492                 break;
2493         case MSR_KVM_STEAL_TIME:
2494                 msr_info->data = vcpu->arch.st.msr_val;
2495                 break;
2496         case MSR_KVM_PV_EOI_EN:
2497                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2498                 break;
2499         case MSR_IA32_P5_MC_ADDR:
2500         case MSR_IA32_P5_MC_TYPE:
2501         case MSR_IA32_MCG_CAP:
2502         case MSR_IA32_MCG_CTL:
2503         case MSR_IA32_MCG_STATUS:
2504         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2505                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2506         case MSR_K7_CLK_CTL:
2507                 /*
2508                  * Provide expected ramp-up count for K7. All other
2509                  * are set to zero, indicating minimum divisors for
2510                  * every field.
2511                  *
2512                  * This prevents guest kernels on AMD host with CPU
2513                  * type 6, model 8 and higher from exploding due to
2514                  * the rdmsr failing.
2515                  */
2516                 msr_info->data = 0x20000000;
2517                 break;
2518         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2519         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2520         case HV_X64_MSR_CRASH_CTL:
2521         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2522                 return kvm_hv_get_msr_common(vcpu,
2523                                              msr_info->index, &msr_info->data);
2524                 break;
2525         case MSR_IA32_BBL_CR_CTL3:
2526                 /* This legacy MSR exists but isn't fully documented in current
2527                  * silicon.  It is however accessed by winxp in very narrow
2528                  * scenarios where it sets bit #19, itself documented as
2529                  * a "reserved" bit.  Best effort attempt to source coherent
2530                  * read data here should the balance of the register be
2531                  * interpreted by the guest:
2532                  *
2533                  * L2 cache control register 3: 64GB range, 256KB size,
2534                  * enabled, latency 0x1, configured
2535                  */
2536                 msr_info->data = 0xbe702111;
2537                 break;
2538         case MSR_AMD64_OSVW_ID_LENGTH:
2539                 if (!guest_cpuid_has_osvw(vcpu))
2540                         return 1;
2541                 msr_info->data = vcpu->arch.osvw.length;
2542                 break;
2543         case MSR_AMD64_OSVW_STATUS:
2544                 if (!guest_cpuid_has_osvw(vcpu))
2545                         return 1;
2546                 msr_info->data = vcpu->arch.osvw.status;
2547                 break;
2548         case MSR_PLATFORM_INFO:
2549                 msr_info->data = vcpu->arch.msr_platform_info;
2550                 break;
2551         case MSR_MISC_FEATURES_ENABLES:
2552                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2553                 break;
2554         default:
2555                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2556                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2557                 if (!ignore_msrs) {
2558                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2559                                                msr_info->index);
2560                         return 1;
2561                 } else {
2562                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2563                         msr_info->data = 0;
2564                 }
2565                 break;
2566         }
2567         return 0;
2568 }
2569 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2570
2571 /*
2572  * Read or write a bunch of msrs. All parameters are kernel addresses.
2573  *
2574  * @return number of msrs set successfully.
2575  */
2576 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2577                     struct kvm_msr_entry *entries,
2578                     int (*do_msr)(struct kvm_vcpu *vcpu,
2579                                   unsigned index, u64 *data))
2580 {
2581         int i, idx;
2582
2583         idx = srcu_read_lock(&vcpu->kvm->srcu);
2584         for (i = 0; i < msrs->nmsrs; ++i)
2585                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2586                         break;
2587         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2588
2589         return i;
2590 }
2591
2592 /*
2593  * Read or write a bunch of msrs. Parameters are user addresses.
2594  *
2595  * @return number of msrs set successfully.
2596  */
2597 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2598                   int (*do_msr)(struct kvm_vcpu *vcpu,
2599                                 unsigned index, u64 *data),
2600                   int writeback)
2601 {
2602         struct kvm_msrs msrs;
2603         struct kvm_msr_entry *entries;
2604         int r, n;
2605         unsigned size;
2606
2607         r = -EFAULT;
2608         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2609                 goto out;
2610
2611         r = -E2BIG;
2612         if (msrs.nmsrs >= MAX_IO_MSRS)
2613                 goto out;
2614
2615         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2616         entries = memdup_user(user_msrs->entries, size);
2617         if (IS_ERR(entries)) {
2618                 r = PTR_ERR(entries);
2619                 goto out;
2620         }
2621
2622         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2623         if (r < 0)
2624                 goto out_free;
2625
2626         r = -EFAULT;
2627         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2628                 goto out_free;
2629
2630         r = n;
2631
2632 out_free:
2633         kfree(entries);
2634 out:
2635         return r;
2636 }
2637
2638 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2639 {
2640         int r;
2641
2642         switch (ext) {
2643         case KVM_CAP_IRQCHIP:
2644         case KVM_CAP_HLT:
2645         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2646         case KVM_CAP_SET_TSS_ADDR:
2647         case KVM_CAP_EXT_CPUID:
2648         case KVM_CAP_EXT_EMUL_CPUID:
2649         case KVM_CAP_CLOCKSOURCE:
2650         case KVM_CAP_PIT:
2651         case KVM_CAP_NOP_IO_DELAY:
2652         case KVM_CAP_MP_STATE:
2653         case KVM_CAP_SYNC_MMU:
2654         case KVM_CAP_USER_NMI:
2655         case KVM_CAP_REINJECT_CONTROL:
2656         case KVM_CAP_IRQ_INJECT_STATUS:
2657         case KVM_CAP_IOEVENTFD:
2658         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2659         case KVM_CAP_PIT2:
2660         case KVM_CAP_PIT_STATE2:
2661         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2662         case KVM_CAP_XEN_HVM:
2663         case KVM_CAP_VCPU_EVENTS:
2664         case KVM_CAP_HYPERV:
2665         case KVM_CAP_HYPERV_VAPIC:
2666         case KVM_CAP_HYPERV_SPIN:
2667         case KVM_CAP_HYPERV_SYNIC:
2668         case KVM_CAP_HYPERV_SYNIC2:
2669         case KVM_CAP_HYPERV_VP_INDEX:
2670         case KVM_CAP_PCI_SEGMENT:
2671         case KVM_CAP_DEBUGREGS:
2672         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2673         case KVM_CAP_XSAVE:
2674         case KVM_CAP_ASYNC_PF:
2675         case KVM_CAP_GET_TSC_KHZ:
2676         case KVM_CAP_KVMCLOCK_CTRL:
2677         case KVM_CAP_READONLY_MEM:
2678         case KVM_CAP_HYPERV_TIME:
2679         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2680         case KVM_CAP_TSC_DEADLINE_TIMER:
2681         case KVM_CAP_ENABLE_CAP_VM:
2682         case KVM_CAP_DISABLE_QUIRKS:
2683         case KVM_CAP_SET_BOOT_CPU_ID:
2684         case KVM_CAP_SPLIT_IRQCHIP:
2685         case KVM_CAP_IMMEDIATE_EXIT:
2686                 r = 1;
2687                 break;
2688         case KVM_CAP_ADJUST_CLOCK:
2689                 r = KVM_CLOCK_TSC_STABLE;
2690                 break;
2691         case KVM_CAP_X86_GUEST_MWAIT:
2692                 r = kvm_mwait_in_guest();
2693                 break;
2694         case KVM_CAP_X86_SMM:
2695                 /* SMBASE is usually relocated above 1M on modern chipsets,
2696                  * and SMM handlers might indeed rely on 4G segment limits,
2697                  * so do not report SMM to be available if real mode is
2698                  * emulated via vm86 mode.  Still, do not go to great lengths
2699                  * to avoid userspace's usage of the feature, because it is a
2700                  * fringe case that is not enabled except via specific settings
2701                  * of the module parameters.
2702                  */
2703                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2704                 break;
2705         case KVM_CAP_VAPIC:
2706                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2707                 break;
2708         case KVM_CAP_NR_VCPUS:
2709                 r = KVM_SOFT_MAX_VCPUS;
2710                 break;
2711         case KVM_CAP_MAX_VCPUS:
2712                 r = KVM_MAX_VCPUS;
2713                 break;
2714         case KVM_CAP_NR_MEMSLOTS:
2715                 r = KVM_USER_MEM_SLOTS;
2716                 break;
2717         case KVM_CAP_PV_MMU:    /* obsolete */
2718                 r = 0;
2719                 break;
2720         case KVM_CAP_MCE:
2721                 r = KVM_MAX_MCE_BANKS;
2722                 break;
2723         case KVM_CAP_XCRS:
2724                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2725                 break;
2726         case KVM_CAP_TSC_CONTROL:
2727                 r = kvm_has_tsc_control;
2728                 break;
2729         case KVM_CAP_X2APIC_API:
2730                 r = KVM_X2APIC_API_VALID_FLAGS;
2731                 break;
2732         default:
2733                 r = 0;
2734                 break;
2735         }
2736         return r;
2737
2738 }
2739
2740 long kvm_arch_dev_ioctl(struct file *filp,
2741                         unsigned int ioctl, unsigned long arg)
2742 {
2743         void __user *argp = (void __user *)arg;
2744         long r;
2745
2746         switch (ioctl) {
2747         case KVM_GET_MSR_INDEX_LIST: {
2748                 struct kvm_msr_list __user *user_msr_list = argp;
2749                 struct kvm_msr_list msr_list;
2750                 unsigned n;
2751
2752                 r = -EFAULT;
2753                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2754                         goto out;
2755                 n = msr_list.nmsrs;
2756                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2757                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2758                         goto out;
2759                 r = -E2BIG;
2760                 if (n < msr_list.nmsrs)
2761                         goto out;
2762                 r = -EFAULT;
2763                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2764                                  num_msrs_to_save * sizeof(u32)))
2765                         goto out;
2766                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2767                                  &emulated_msrs,
2768                                  num_emulated_msrs * sizeof(u32)))
2769                         goto out;
2770                 r = 0;
2771                 break;
2772         }
2773         case KVM_GET_SUPPORTED_CPUID:
2774         case KVM_GET_EMULATED_CPUID: {
2775                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2776                 struct kvm_cpuid2 cpuid;
2777
2778                 r = -EFAULT;
2779                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2780                         goto out;
2781
2782                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2783                                             ioctl);
2784                 if (r)
2785                         goto out;
2786
2787                 r = -EFAULT;
2788                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2789                         goto out;
2790                 r = 0;
2791                 break;
2792         }
2793         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2794                 r = -EFAULT;
2795                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2796                                  sizeof(kvm_mce_cap_supported)))
2797                         goto out;
2798                 r = 0;
2799                 break;
2800         }
2801         default:
2802                 r = -EINVAL;
2803         }
2804 out:
2805         return r;
2806 }
2807
2808 static void wbinvd_ipi(void *garbage)
2809 {
2810         wbinvd();
2811 }
2812
2813 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2814 {
2815         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2816 }
2817
2818 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2819 {
2820         /* Address WBINVD may be executed by guest */
2821         if (need_emulate_wbinvd(vcpu)) {
2822                 if (kvm_x86_ops->has_wbinvd_exit())
2823                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2824                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2825                         smp_call_function_single(vcpu->cpu,
2826                                         wbinvd_ipi, NULL, 1);
2827         }
2828
2829         kvm_x86_ops->vcpu_load(vcpu, cpu);
2830
2831         /* Apply any externally detected TSC adjustments (due to suspend) */
2832         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2833                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2834                 vcpu->arch.tsc_offset_adjustment = 0;
2835                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2836         }
2837
2838         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2839                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2840                                 rdtsc() - vcpu->arch.last_host_tsc;
2841                 if (tsc_delta < 0)
2842                         mark_tsc_unstable("KVM discovered backwards TSC");
2843
2844                 if (check_tsc_unstable()) {
2845                         u64 offset = kvm_compute_tsc_offset(vcpu,
2846                                                 vcpu->arch.last_guest_tsc);
2847                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2848                         vcpu->arch.tsc_catchup = 1;
2849                 }
2850
2851                 if (kvm_lapic_hv_timer_in_use(vcpu))
2852                         kvm_lapic_restart_hv_timer(vcpu);
2853
2854                 /*
2855                  * On a host with synchronized TSC, there is no need to update
2856                  * kvmclock on vcpu->cpu migration
2857                  */
2858                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2859                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2860                 if (vcpu->cpu != cpu)
2861                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2862                 vcpu->cpu = cpu;
2863         }
2864
2865         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2866 }
2867
2868 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2869 {
2870         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2871                 return;
2872
2873         vcpu->arch.st.steal.preempted = 1;
2874
2875         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2876                         &vcpu->arch.st.steal.preempted,
2877                         offsetof(struct kvm_steal_time, preempted),
2878                         sizeof(vcpu->arch.st.steal.preempted));
2879 }
2880
2881 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2882 {
2883         int idx;
2884         /*
2885          * Disable page faults because we're in atomic context here.
2886          * kvm_write_guest_offset_cached() would call might_fault()
2887          * that relies on pagefault_disable() to tell if there's a
2888          * bug. NOTE: the write to guest memory may not go through if
2889          * during postcopy live migration or if there's heavy guest
2890          * paging.
2891          */
2892         pagefault_disable();
2893         /*
2894          * kvm_memslots() will be called by
2895          * kvm_write_guest_offset_cached() so take the srcu lock.
2896          */
2897         idx = srcu_read_lock(&vcpu->kvm->srcu);
2898         kvm_steal_time_set_preempted(vcpu);
2899         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2900         pagefault_enable();
2901         kvm_x86_ops->vcpu_put(vcpu);
2902         kvm_put_guest_fpu(vcpu);
2903         vcpu->arch.last_host_tsc = rdtsc();
2904 }
2905
2906 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2907                                     struct kvm_lapic_state *s)
2908 {
2909         if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2910                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2911
2912         return kvm_apic_get_state(vcpu, s);
2913 }
2914
2915 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2916                                     struct kvm_lapic_state *s)
2917 {
2918         int r;
2919
2920         r = kvm_apic_set_state(vcpu, s);
2921         if (r)
2922                 return r;
2923         update_cr8_intercept(vcpu);
2924
2925         return 0;
2926 }
2927
2928 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2929 {
2930         return (!lapic_in_kernel(vcpu) ||
2931                 kvm_apic_accept_pic_intr(vcpu));
2932 }
2933
2934 /*
2935  * if userspace requested an interrupt window, check that the
2936  * interrupt window is open.
2937  *
2938  * No need to exit to userspace if we already have an interrupt queued.
2939  */
2940 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2941 {
2942         return kvm_arch_interrupt_allowed(vcpu) &&
2943                 !kvm_cpu_has_interrupt(vcpu) &&
2944                 !kvm_event_needs_reinjection(vcpu) &&
2945                 kvm_cpu_accept_dm_intr(vcpu);
2946 }
2947
2948 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2949                                     struct kvm_interrupt *irq)
2950 {
2951         if (irq->irq >= KVM_NR_INTERRUPTS)
2952                 return -EINVAL;
2953
2954         if (!irqchip_in_kernel(vcpu->kvm)) {
2955                 kvm_queue_interrupt(vcpu, irq->irq, false);
2956                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2957                 return 0;
2958         }
2959
2960         /*
2961          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2962          * fail for in-kernel 8259.
2963          */
2964         if (pic_in_kernel(vcpu->kvm))
2965                 return -ENXIO;
2966
2967         if (vcpu->arch.pending_external_vector != -1)
2968                 return -EEXIST;
2969
2970         vcpu->arch.pending_external_vector = irq->irq;
2971         kvm_make_request(KVM_REQ_EVENT, vcpu);
2972         return 0;
2973 }
2974
2975 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2976 {
2977         kvm_inject_nmi(vcpu);
2978
2979         return 0;
2980 }
2981
2982 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2983 {
2984         kvm_make_request(KVM_REQ_SMI, vcpu);
2985
2986         return 0;
2987 }
2988
2989 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2990                                            struct kvm_tpr_access_ctl *tac)
2991 {
2992         if (tac->flags)
2993                 return -EINVAL;
2994         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2995         return 0;
2996 }
2997
2998 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2999                                         u64 mcg_cap)
3000 {
3001         int r;
3002         unsigned bank_num = mcg_cap & 0xff, bank;
3003
3004         r = -EINVAL;
3005         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3006                 goto out;
3007         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3008                 goto out;
3009         r = 0;
3010         vcpu->arch.mcg_cap = mcg_cap;
3011         /* Init IA32_MCG_CTL to all 1s */
3012         if (mcg_cap & MCG_CTL_P)
3013                 vcpu->arch.mcg_ctl = ~(u64)0;
3014         /* Init IA32_MCi_CTL to all 1s */
3015         for (bank = 0; bank < bank_num; bank++)
3016                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3017
3018         if (kvm_x86_ops->setup_mce)
3019                 kvm_x86_ops->setup_mce(vcpu);
3020 out:
3021         return r;
3022 }
3023
3024 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3025                                       struct kvm_x86_mce *mce)
3026 {
3027         u64 mcg_cap = vcpu->arch.mcg_cap;
3028         unsigned bank_num = mcg_cap & 0xff;
3029         u64 *banks = vcpu->arch.mce_banks;
3030
3031         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3032                 return -EINVAL;
3033         /*
3034          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3035          * reporting is disabled
3036          */
3037         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3038             vcpu->arch.mcg_ctl != ~(u64)0)
3039                 return 0;
3040         banks += 4 * mce->bank;
3041         /*
3042          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3043          * reporting is disabled for the bank
3044          */
3045         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3046                 return 0;
3047         if (mce->status & MCI_STATUS_UC) {
3048                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3049                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3050                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3051                         return 0;
3052                 }
3053                 if (banks[1] & MCI_STATUS_VAL)
3054                         mce->status |= MCI_STATUS_OVER;
3055                 banks[2] = mce->addr;
3056                 banks[3] = mce->misc;
3057                 vcpu->arch.mcg_status = mce->mcg_status;
3058                 banks[1] = mce->status;
3059                 kvm_queue_exception(vcpu, MC_VECTOR);
3060         } else if (!(banks[1] & MCI_STATUS_VAL)
3061                    || !(banks[1] & MCI_STATUS_UC)) {
3062                 if (banks[1] & MCI_STATUS_VAL)
3063                         mce->status |= MCI_STATUS_OVER;
3064                 banks[2] = mce->addr;
3065                 banks[3] = mce->misc;
3066                 banks[1] = mce->status;
3067         } else
3068                 banks[1] |= MCI_STATUS_OVER;
3069         return 0;
3070 }
3071
3072 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3073                                                struct kvm_vcpu_events *events)
3074 {
3075         process_nmi(vcpu);
3076         events->exception.injected =
3077                 vcpu->arch.exception.pending &&
3078                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3079         events->exception.nr = vcpu->arch.exception.nr;
3080         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3081         events->exception.pad = 0;
3082         events->exception.error_code = vcpu->arch.exception.error_code;
3083
3084         events->interrupt.injected =
3085                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3086         events->interrupt.nr = vcpu->arch.interrupt.nr;
3087         events->interrupt.soft = 0;
3088         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3089
3090         events->nmi.injected = vcpu->arch.nmi_injected;
3091         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3092         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3093         events->nmi.pad = 0;
3094
3095         events->sipi_vector = 0; /* never valid when reporting to user space */
3096
3097         events->smi.smm = is_smm(vcpu);
3098         events->smi.pending = vcpu->arch.smi_pending;
3099         events->smi.smm_inside_nmi =
3100                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3101         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3102
3103         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3104                          | KVM_VCPUEVENT_VALID_SHADOW
3105                          | KVM_VCPUEVENT_VALID_SMM);
3106         memset(&events->reserved, 0, sizeof(events->reserved));
3107 }
3108
3109 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3110
3111 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3112                                               struct kvm_vcpu_events *events)
3113 {
3114         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3115                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3116                               | KVM_VCPUEVENT_VALID_SHADOW
3117                               | KVM_VCPUEVENT_VALID_SMM))
3118                 return -EINVAL;
3119
3120         if (events->exception.injected &&
3121             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3122              is_guest_mode(vcpu)))
3123                 return -EINVAL;
3124
3125         /* INITs are latched while in SMM */
3126         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3127             (events->smi.smm || events->smi.pending) &&
3128             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3129                 return -EINVAL;
3130
3131         process_nmi(vcpu);
3132         vcpu->arch.exception.pending = events->exception.injected;
3133         vcpu->arch.exception.nr = events->exception.nr;
3134         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3135         vcpu->arch.exception.error_code = events->exception.error_code;
3136
3137         vcpu->arch.interrupt.pending = events->interrupt.injected;
3138         vcpu->arch.interrupt.nr = events->interrupt.nr;
3139         vcpu->arch.interrupt.soft = events->interrupt.soft;
3140         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3141                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3142                                                   events->interrupt.shadow);
3143
3144         vcpu->arch.nmi_injected = events->nmi.injected;
3145         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3146                 vcpu->arch.nmi_pending = events->nmi.pending;
3147         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3148
3149         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3150             lapic_in_kernel(vcpu))
3151                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3152
3153         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3154                 u32 hflags = vcpu->arch.hflags;
3155                 if (events->smi.smm)
3156                         hflags |= HF_SMM_MASK;
3157                 else
3158                         hflags &= ~HF_SMM_MASK;
3159                 kvm_set_hflags(vcpu, hflags);
3160
3161                 vcpu->arch.smi_pending = events->smi.pending;
3162
3163                 if (events->smi.smm) {
3164                         if (events->smi.smm_inside_nmi)
3165                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3166                         else
3167                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3168                         if (lapic_in_kernel(vcpu)) {
3169                                 if (events->smi.latched_init)
3170                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3171                                 else
3172                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3173                         }
3174                 }
3175         }
3176
3177         kvm_make_request(KVM_REQ_EVENT, vcpu);
3178
3179         return 0;
3180 }
3181
3182 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3183                                              struct kvm_debugregs *dbgregs)
3184 {
3185         unsigned long val;
3186
3187         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3188         kvm_get_dr(vcpu, 6, &val);
3189         dbgregs->dr6 = val;
3190         dbgregs->dr7 = vcpu->arch.dr7;
3191         dbgregs->flags = 0;
3192         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3193 }
3194
3195 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3196                                             struct kvm_debugregs *dbgregs)
3197 {
3198         if (dbgregs->flags)
3199                 return -EINVAL;
3200
3201         if (dbgregs->dr6 & ~0xffffffffull)
3202                 return -EINVAL;
3203         if (dbgregs->dr7 & ~0xffffffffull)
3204                 return -EINVAL;
3205
3206         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3207         kvm_update_dr0123(vcpu);
3208         vcpu->arch.dr6 = dbgregs->dr6;
3209         kvm_update_dr6(vcpu);
3210         vcpu->arch.dr7 = dbgregs->dr7;
3211         kvm_update_dr7(vcpu);
3212
3213         return 0;
3214 }
3215
3216 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3217
3218 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3219 {
3220         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3221         u64 xstate_bv = xsave->header.xfeatures;
3222         u64 valid;
3223
3224         /*
3225          * Copy legacy XSAVE area, to avoid complications with CPUID
3226          * leaves 0 and 1 in the loop below.
3227          */
3228         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3229
3230         /* Set XSTATE_BV */
3231         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3232         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3233
3234         /*
3235          * Copy each region from the possibly compacted offset to the
3236          * non-compacted offset.
3237          */
3238         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3239         while (valid) {
3240                 u64 feature = valid & -valid;
3241                 int index = fls64(feature) - 1;
3242                 void *src = get_xsave_addr(xsave, feature);
3243
3244                 if (src) {
3245                         u32 size, offset, ecx, edx;
3246                         cpuid_count(XSTATE_CPUID, index,
3247                                     &size, &offset, &ecx, &edx);
3248                         if (feature == XFEATURE_MASK_PKRU)
3249                                 memcpy(dest + offset, &vcpu->arch.pkru,
3250                                        sizeof(vcpu->arch.pkru));
3251                         else
3252                                 memcpy(dest + offset, src, size);
3253
3254                 }
3255
3256                 valid -= feature;
3257         }
3258 }
3259
3260 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3261 {
3262         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3263         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3264         u64 valid;
3265
3266         /*
3267          * Copy legacy XSAVE area, to avoid complications with CPUID
3268          * leaves 0 and 1 in the loop below.
3269          */
3270         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3271
3272         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3273         xsave->header.xfeatures = xstate_bv;
3274         if (boot_cpu_has(X86_FEATURE_XSAVES))
3275                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3276
3277         /*
3278          * Copy each region from the non-compacted offset to the
3279          * possibly compacted offset.
3280          */
3281         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3282         while (valid) {
3283                 u64 feature = valid & -valid;
3284                 int index = fls64(feature) - 1;
3285                 void *dest = get_xsave_addr(xsave, feature);
3286
3287                 if (dest) {
3288                         u32 size, offset, ecx, edx;
3289                         cpuid_count(XSTATE_CPUID, index,
3290                                     &size, &offset, &ecx, &edx);
3291                         if (feature == XFEATURE_MASK_PKRU)
3292                                 memcpy(&vcpu->arch.pkru, src + offset,
3293                                        sizeof(vcpu->arch.pkru));
3294                         else
3295                                 memcpy(dest, src + offset, size);
3296                 }
3297
3298                 valid -= feature;
3299         }
3300 }
3301
3302 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3303                                          struct kvm_xsave *guest_xsave)
3304 {
3305         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3306                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3307                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3308         } else {
3309                 memcpy(guest_xsave->region,
3310                         &vcpu->arch.guest_fpu.state.fxsave,
3311                         sizeof(struct fxregs_state));
3312                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3313                         XFEATURE_MASK_FPSSE;
3314         }
3315 }
3316
3317 #define XSAVE_MXCSR_OFFSET 24
3318
3319 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3320                                         struct kvm_xsave *guest_xsave)
3321 {
3322         u64 xstate_bv =
3323                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3324         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3325
3326         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3327                 /*
3328                  * Here we allow setting states that are not present in
3329                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3330                  * with old userspace.
3331                  */
3332                 if (xstate_bv & ~kvm_supported_xcr0() ||
3333                         mxcsr & ~mxcsr_feature_mask)
3334                         return -EINVAL;
3335                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3336         } else {
3337                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3338                         mxcsr & ~mxcsr_feature_mask)
3339                         return -EINVAL;
3340                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3341                         guest_xsave->region, sizeof(struct fxregs_state));
3342         }
3343         return 0;
3344 }
3345
3346 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3347                                         struct kvm_xcrs *guest_xcrs)
3348 {
3349         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3350                 guest_xcrs->nr_xcrs = 0;
3351                 return;
3352         }
3353
3354         guest_xcrs->nr_xcrs = 1;
3355         guest_xcrs->flags = 0;
3356         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3357         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3358 }
3359
3360 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3361                                        struct kvm_xcrs *guest_xcrs)
3362 {
3363         int i, r = 0;
3364
3365         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3366                 return -EINVAL;
3367
3368         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3369                 return -EINVAL;
3370
3371         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3372                 /* Only support XCR0 currently */
3373                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3374                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3375                                 guest_xcrs->xcrs[i].value);
3376                         break;
3377                 }
3378         if (r)
3379                 r = -EINVAL;
3380         return r;
3381 }
3382
3383 /*
3384  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3385  * stopped by the hypervisor.  This function will be called from the host only.
3386  * EINVAL is returned when the host attempts to set the flag for a guest that
3387  * does not support pv clocks.
3388  */
3389 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3390 {
3391         if (!vcpu->arch.pv_time_enabled)
3392                 return -EINVAL;
3393         vcpu->arch.pvclock_set_guest_stopped_request = true;
3394         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3395         return 0;
3396 }
3397
3398 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3399                                      struct kvm_enable_cap *cap)
3400 {
3401         if (cap->flags)
3402                 return -EINVAL;
3403
3404         switch (cap->cap) {
3405         case KVM_CAP_HYPERV_SYNIC2:
3406                 if (cap->args[0])
3407                         return -EINVAL;
3408         case KVM_CAP_HYPERV_SYNIC:
3409                 if (!irqchip_in_kernel(vcpu->kvm))
3410                         return -EINVAL;
3411                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3412                                              KVM_CAP_HYPERV_SYNIC2);
3413         default:
3414                 return -EINVAL;
3415         }
3416 }
3417
3418 long kvm_arch_vcpu_ioctl(struct file *filp,
3419                          unsigned int ioctl, unsigned long arg)
3420 {
3421         struct kvm_vcpu *vcpu = filp->private_data;
3422         void __user *argp = (void __user *)arg;
3423         int r;
3424         union {
3425                 struct kvm_lapic_state *lapic;
3426                 struct kvm_xsave *xsave;
3427                 struct kvm_xcrs *xcrs;
3428                 void *buffer;
3429         } u;
3430
3431         u.buffer = NULL;
3432         switch (ioctl) {
3433         case KVM_GET_LAPIC: {
3434                 r = -EINVAL;
3435                 if (!lapic_in_kernel(vcpu))
3436                         goto out;
3437                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3438
3439                 r = -ENOMEM;
3440                 if (!u.lapic)
3441                         goto out;
3442                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3443                 if (r)
3444                         goto out;
3445                 r = -EFAULT;
3446                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3447                         goto out;
3448                 r = 0;
3449                 break;
3450         }
3451         case KVM_SET_LAPIC: {
3452                 r = -EINVAL;
3453                 if (!lapic_in_kernel(vcpu))
3454                         goto out;
3455                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3456                 if (IS_ERR(u.lapic))
3457                         return PTR_ERR(u.lapic);
3458
3459                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3460                 break;
3461         }
3462         case KVM_INTERRUPT: {
3463                 struct kvm_interrupt irq;
3464
3465                 r = -EFAULT;
3466                 if (copy_from_user(&irq, argp, sizeof irq))
3467                         goto out;
3468                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3469                 break;
3470         }
3471         case KVM_NMI: {
3472                 r = kvm_vcpu_ioctl_nmi(vcpu);
3473                 break;
3474         }
3475         case KVM_SMI: {
3476                 r = kvm_vcpu_ioctl_smi(vcpu);
3477                 break;
3478         }
3479         case KVM_SET_CPUID: {
3480                 struct kvm_cpuid __user *cpuid_arg = argp;
3481                 struct kvm_cpuid cpuid;
3482
3483                 r = -EFAULT;
3484                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3485                         goto out;
3486                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3487                 break;
3488         }
3489         case KVM_SET_CPUID2: {
3490                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3491                 struct kvm_cpuid2 cpuid;
3492
3493                 r = -EFAULT;
3494                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3495                         goto out;
3496                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3497                                               cpuid_arg->entries);
3498                 break;
3499         }
3500         case KVM_GET_CPUID2: {
3501                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3502                 struct kvm_cpuid2 cpuid;
3503
3504                 r = -EFAULT;
3505                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3506                         goto out;
3507                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3508                                               cpuid_arg->entries);
3509                 if (r)
3510                         goto out;
3511                 r = -EFAULT;
3512                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3513                         goto out;
3514                 r = 0;
3515                 break;
3516         }
3517         case KVM_GET_MSRS:
3518                 r = msr_io(vcpu, argp, do_get_msr, 1);
3519                 break;
3520         case KVM_SET_MSRS:
3521                 r = msr_io(vcpu, argp, do_set_msr, 0);
3522                 break;
3523         case KVM_TPR_ACCESS_REPORTING: {
3524                 struct kvm_tpr_access_ctl tac;
3525
3526                 r = -EFAULT;
3527                 if (copy_from_user(&tac, argp, sizeof tac))
3528                         goto out;
3529                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3530                 if (r)
3531                         goto out;
3532                 r = -EFAULT;
3533                 if (copy_to_user(argp, &tac, sizeof tac))
3534                         goto out;
3535                 r = 0;
3536                 break;
3537         };
3538         case KVM_SET_VAPIC_ADDR: {
3539                 struct kvm_vapic_addr va;
3540                 int idx;
3541
3542                 r = -EINVAL;
3543                 if (!lapic_in_kernel(vcpu))
3544                         goto out;
3545                 r = -EFAULT;
3546                 if (copy_from_user(&va, argp, sizeof va))
3547                         goto out;
3548                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3549                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3550                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3551                 break;
3552         }
3553         case KVM_X86_SETUP_MCE: {
3554                 u64 mcg_cap;
3555
3556                 r = -EFAULT;
3557                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3558                         goto out;
3559                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3560                 break;
3561         }
3562         case KVM_X86_SET_MCE: {
3563                 struct kvm_x86_mce mce;
3564
3565                 r = -EFAULT;
3566                 if (copy_from_user(&mce, argp, sizeof mce))
3567                         goto out;
3568                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3569                 break;
3570         }
3571         case KVM_GET_VCPU_EVENTS: {
3572                 struct kvm_vcpu_events events;
3573
3574                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3575
3576                 r = -EFAULT;
3577                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3578                         break;
3579                 r = 0;
3580                 break;
3581         }
3582         case KVM_SET_VCPU_EVENTS: {
3583                 struct kvm_vcpu_events events;
3584
3585                 r = -EFAULT;
3586                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3587                         break;
3588
3589                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3590                 break;
3591         }
3592         case KVM_GET_DEBUGREGS: {
3593                 struct kvm_debugregs dbgregs;
3594
3595                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3596
3597                 r = -EFAULT;
3598                 if (copy_to_user(argp, &dbgregs,
3599                                  sizeof(struct kvm_debugregs)))
3600                         break;
3601                 r = 0;
3602                 break;
3603         }
3604         case KVM_SET_DEBUGREGS: {
3605                 struct kvm_debugregs dbgregs;
3606
3607                 r = -EFAULT;
3608                 if (copy_from_user(&dbgregs, argp,
3609                                    sizeof(struct kvm_debugregs)))
3610                         break;
3611
3612                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3613                 break;
3614         }
3615         case KVM_GET_XSAVE: {
3616                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3617                 r = -ENOMEM;
3618                 if (!u.xsave)
3619                         break;
3620
3621                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3622
3623                 r = -EFAULT;
3624                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3625                         break;
3626                 r = 0;
3627                 break;
3628         }
3629         case KVM_SET_XSAVE: {
3630                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3631                 if (IS_ERR(u.xsave))
3632                         return PTR_ERR(u.xsave);
3633
3634                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3635                 break;
3636         }
3637         case KVM_GET_XCRS: {
3638                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3639                 r = -ENOMEM;
3640                 if (!u.xcrs)
3641                         break;
3642
3643                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3644
3645                 r = -EFAULT;
3646                 if (copy_to_user(argp, u.xcrs,
3647                                  sizeof(struct kvm_xcrs)))
3648                         break;
3649                 r = 0;
3650                 break;
3651         }
3652         case KVM_SET_XCRS: {
3653                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3654                 if (IS_ERR(u.xcrs))
3655                         return PTR_ERR(u.xcrs);
3656
3657                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3658                 break;
3659         }
3660         case KVM_SET_TSC_KHZ: {
3661                 u32 user_tsc_khz;
3662
3663                 r = -EINVAL;
3664                 user_tsc_khz = (u32)arg;
3665
3666                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3667                         goto out;
3668
3669                 if (user_tsc_khz == 0)
3670                         user_tsc_khz = tsc_khz;
3671
3672                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3673                         r = 0;
3674
3675                 goto out;
3676         }
3677         case KVM_GET_TSC_KHZ: {
3678                 r = vcpu->arch.virtual_tsc_khz;
3679                 goto out;
3680         }
3681         case KVM_KVMCLOCK_CTRL: {
3682                 r = kvm_set_guest_paused(vcpu);
3683                 goto out;
3684         }
3685         case KVM_ENABLE_CAP: {
3686                 struct kvm_enable_cap cap;
3687
3688                 r = -EFAULT;
3689                 if (copy_from_user(&cap, argp, sizeof(cap)))
3690                         goto out;
3691                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3692                 break;
3693         }
3694         default:
3695                 r = -EINVAL;
3696         }
3697 out:
3698         kfree(u.buffer);
3699         return r;
3700 }
3701
3702 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3703 {
3704         return VM_FAULT_SIGBUS;
3705 }
3706
3707 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3708 {
3709         int ret;
3710
3711         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3712                 return -EINVAL;
3713         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3714         return ret;
3715 }
3716
3717 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3718                                               u64 ident_addr)
3719 {
3720         kvm->arch.ept_identity_map_addr = ident_addr;
3721         return 0;
3722 }
3723
3724 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3725                                           u32 kvm_nr_mmu_pages)
3726 {
3727         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3728                 return -EINVAL;
3729
3730         mutex_lock(&kvm->slots_lock);
3731
3732         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3733         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3734
3735         mutex_unlock(&kvm->slots_lock);
3736         return 0;
3737 }
3738
3739 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3740 {
3741         return kvm->arch.n_max_mmu_pages;
3742 }
3743
3744 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3745 {
3746         struct kvm_pic *pic = kvm->arch.vpic;
3747         int r;
3748
3749         r = 0;
3750         switch (chip->chip_id) {
3751         case KVM_IRQCHIP_PIC_MASTER:
3752                 memcpy(&chip->chip.pic, &pic->pics[0],
3753                         sizeof(struct kvm_pic_state));
3754                 break;
3755         case KVM_IRQCHIP_PIC_SLAVE:
3756                 memcpy(&chip->chip.pic, &pic->pics[1],
3757                         sizeof(struct kvm_pic_state));
3758                 break;
3759         case KVM_IRQCHIP_IOAPIC:
3760                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3761                 break;
3762         default:
3763                 r = -EINVAL;
3764                 break;
3765         }
3766         return r;
3767 }
3768
3769 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3770 {
3771         struct kvm_pic *pic = kvm->arch.vpic;
3772         int r;
3773
3774         r = 0;
3775         switch (chip->chip_id) {
3776         case KVM_IRQCHIP_PIC_MASTER:
3777                 spin_lock(&pic->lock);
3778                 memcpy(&pic->pics[0], &chip->chip.pic,
3779                         sizeof(struct kvm_pic_state));
3780                 spin_unlock(&pic->lock);
3781                 break;
3782         case KVM_IRQCHIP_PIC_SLAVE:
3783                 spin_lock(&pic->lock);
3784                 memcpy(&pic->pics[1], &chip->chip.pic,
3785                         sizeof(struct kvm_pic_state));
3786                 spin_unlock(&pic->lock);
3787                 break;
3788         case KVM_IRQCHIP_IOAPIC:
3789                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3790                 break;
3791         default:
3792                 r = -EINVAL;
3793                 break;
3794         }
3795         kvm_pic_update_irq(pic);
3796         return r;
3797 }
3798
3799 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3800 {
3801         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3802
3803         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3804
3805         mutex_lock(&kps->lock);
3806         memcpy(ps, &kps->channels, sizeof(*ps));
3807         mutex_unlock(&kps->lock);
3808         return 0;
3809 }
3810
3811 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3812 {
3813         int i;
3814         struct kvm_pit *pit = kvm->arch.vpit;
3815
3816         mutex_lock(&pit->pit_state.lock);
3817         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3818         for (i = 0; i < 3; i++)
3819                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3820         mutex_unlock(&pit->pit_state.lock);
3821         return 0;
3822 }
3823
3824 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3825 {
3826         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3827         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3828                 sizeof(ps->channels));
3829         ps->flags = kvm->arch.vpit->pit_state.flags;
3830         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3831         memset(&ps->reserved, 0, sizeof(ps->reserved));
3832         return 0;
3833 }
3834
3835 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3836 {
3837         int start = 0;
3838         int i;
3839         u32 prev_legacy, cur_legacy;
3840         struct kvm_pit *pit = kvm->arch.vpit;
3841
3842         mutex_lock(&pit->pit_state.lock);
3843         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3844         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3845         if (!prev_legacy && cur_legacy)
3846                 start = 1;
3847         memcpy(&pit->pit_state.channels, &ps->channels,
3848                sizeof(pit->pit_state.channels));
3849         pit->pit_state.flags = ps->flags;
3850         for (i = 0; i < 3; i++)
3851                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3852                                    start && i == 0);
3853         mutex_unlock(&pit->pit_state.lock);
3854         return 0;
3855 }
3856
3857 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3858                                  struct kvm_reinject_control *control)
3859 {
3860         struct kvm_pit *pit = kvm->arch.vpit;
3861
3862         if (!pit)
3863                 return -ENXIO;
3864
3865         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3866          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3867          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3868          */
3869         mutex_lock(&pit->pit_state.lock);
3870         kvm_pit_set_reinject(pit, control->pit_reinject);
3871         mutex_unlock(&pit->pit_state.lock);
3872
3873         return 0;
3874 }
3875
3876 /**
3877  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3878  * @kvm: kvm instance
3879  * @log: slot id and address to which we copy the log
3880  *
3881  * Steps 1-4 below provide general overview of dirty page logging. See
3882  * kvm_get_dirty_log_protect() function description for additional details.
3883  *
3884  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3885  * always flush the TLB (step 4) even if previous step failed  and the dirty
3886  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3887  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3888  * writes will be marked dirty for next log read.
3889  *
3890  *   1. Take a snapshot of the bit and clear it if needed.
3891  *   2. Write protect the corresponding page.
3892  *   3. Copy the snapshot to the userspace.
3893  *   4. Flush TLB's if needed.
3894  */
3895 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3896 {
3897         bool is_dirty = false;
3898         int r;
3899
3900         mutex_lock(&kvm->slots_lock);
3901
3902         /*
3903          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3904          */
3905         if (kvm_x86_ops->flush_log_dirty)
3906                 kvm_x86_ops->flush_log_dirty(kvm);
3907
3908         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3909
3910         /*
3911          * All the TLBs can be flushed out of mmu lock, see the comments in
3912          * kvm_mmu_slot_remove_write_access().
3913          */
3914         lockdep_assert_held(&kvm->slots_lock);
3915         if (is_dirty)
3916                 kvm_flush_remote_tlbs(kvm);
3917
3918         mutex_unlock(&kvm->slots_lock);
3919         return r;
3920 }
3921
3922 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3923                         bool line_status)
3924 {
3925         if (!irqchip_in_kernel(kvm))
3926                 return -ENXIO;
3927
3928         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3929                                         irq_event->irq, irq_event->level,
3930                                         line_status);
3931         return 0;
3932 }
3933
3934 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3935                                    struct kvm_enable_cap *cap)
3936 {
3937         int r;
3938
3939         if (cap->flags)
3940                 return -EINVAL;
3941
3942         switch (cap->cap) {
3943         case KVM_CAP_DISABLE_QUIRKS:
3944                 kvm->arch.disabled_quirks = cap->args[0];
3945                 r = 0;
3946                 break;
3947         case KVM_CAP_SPLIT_IRQCHIP: {
3948                 mutex_lock(&kvm->lock);
3949                 r = -EINVAL;
3950                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3951                         goto split_irqchip_unlock;
3952                 r = -EEXIST;
3953                 if (irqchip_in_kernel(kvm))
3954                         goto split_irqchip_unlock;
3955                 if (kvm->created_vcpus)
3956                         goto split_irqchip_unlock;
3957                 r = kvm_setup_empty_irq_routing(kvm);
3958                 if (r)
3959                         goto split_irqchip_unlock;
3960                 /* Pairs with irqchip_in_kernel. */
3961                 smp_wmb();
3962                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3963                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3964                 r = 0;
3965 split_irqchip_unlock:
3966                 mutex_unlock(&kvm->lock);
3967                 break;
3968         }
3969         case KVM_CAP_X2APIC_API:
3970                 r = -EINVAL;
3971                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3972                         break;
3973
3974                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3975                         kvm->arch.x2apic_format = true;
3976                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3977                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3978
3979                 r = 0;
3980                 break;
3981         default:
3982                 r = -EINVAL;
3983                 break;
3984         }
3985         return r;
3986 }
3987
3988 long kvm_arch_vm_ioctl(struct file *filp,
3989                        unsigned int ioctl, unsigned long arg)
3990 {
3991         struct kvm *kvm = filp->private_data;
3992         void __user *argp = (void __user *)arg;
3993         int r = -ENOTTY;
3994         /*
3995          * This union makes it completely explicit to gcc-3.x
3996          * that these two variables' stack usage should be
3997          * combined, not added together.
3998          */
3999         union {
4000                 struct kvm_pit_state ps;
4001                 struct kvm_pit_state2 ps2;
4002                 struct kvm_pit_config pit_config;
4003         } u;
4004
4005         switch (ioctl) {
4006         case KVM_SET_TSS_ADDR:
4007                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4008                 break;
4009         case KVM_SET_IDENTITY_MAP_ADDR: {
4010                 u64 ident_addr;
4011
4012                 r = -EFAULT;
4013                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4014                         goto out;
4015                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4016                 break;
4017         }
4018         case KVM_SET_NR_MMU_PAGES:
4019                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4020                 break;
4021         case KVM_GET_NR_MMU_PAGES:
4022                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4023                 break;
4024         case KVM_CREATE_IRQCHIP: {
4025                 mutex_lock(&kvm->lock);
4026
4027                 r = -EEXIST;
4028                 if (irqchip_in_kernel(kvm))
4029                         goto create_irqchip_unlock;
4030
4031                 r = -EINVAL;
4032                 if (kvm->created_vcpus)
4033                         goto create_irqchip_unlock;
4034
4035                 r = kvm_pic_init(kvm);
4036                 if (r)
4037                         goto create_irqchip_unlock;
4038
4039                 r = kvm_ioapic_init(kvm);
4040                 if (r) {
4041                         kvm_pic_destroy(kvm);
4042                         goto create_irqchip_unlock;
4043                 }
4044
4045                 r = kvm_setup_default_irq_routing(kvm);
4046                 if (r) {
4047                         kvm_ioapic_destroy(kvm);
4048                         kvm_pic_destroy(kvm);
4049                         goto create_irqchip_unlock;
4050                 }
4051                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4052                 smp_wmb();
4053                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4054         create_irqchip_unlock:
4055                 mutex_unlock(&kvm->lock);
4056                 break;
4057         }
4058         case KVM_CREATE_PIT:
4059                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4060                 goto create_pit;
4061         case KVM_CREATE_PIT2:
4062                 r = -EFAULT;
4063                 if (copy_from_user(&u.pit_config, argp,
4064                                    sizeof(struct kvm_pit_config)))
4065                         goto out;
4066         create_pit:
4067                 mutex_lock(&kvm->lock);
4068                 r = -EEXIST;
4069                 if (kvm->arch.vpit)
4070                         goto create_pit_unlock;
4071                 r = -ENOMEM;
4072                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4073                 if (kvm->arch.vpit)
4074                         r = 0;
4075         create_pit_unlock:
4076                 mutex_unlock(&kvm->lock);
4077                 break;
4078         case KVM_GET_IRQCHIP: {
4079                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4080                 struct kvm_irqchip *chip;
4081
4082                 chip = memdup_user(argp, sizeof(*chip));
4083                 if (IS_ERR(chip)) {
4084                         r = PTR_ERR(chip);
4085                         goto out;
4086                 }
4087
4088                 r = -ENXIO;
4089                 if (!irqchip_kernel(kvm))
4090                         goto get_irqchip_out;
4091                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4092                 if (r)
4093                         goto get_irqchip_out;
4094                 r = -EFAULT;
4095                 if (copy_to_user(argp, chip, sizeof *chip))
4096                         goto get_irqchip_out;
4097                 r = 0;
4098         get_irqchip_out:
4099                 kfree(chip);
4100                 break;
4101         }
4102         case KVM_SET_IRQCHIP: {
4103                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4104                 struct kvm_irqchip *chip;
4105
4106                 chip = memdup_user(argp, sizeof(*chip));
4107                 if (IS_ERR(chip)) {
4108                         r = PTR_ERR(chip);
4109                         goto out;
4110                 }
4111
4112                 r = -ENXIO;
4113                 if (!irqchip_kernel(kvm))
4114                         goto set_irqchip_out;
4115                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4116                 if (r)
4117                         goto set_irqchip_out;
4118                 r = 0;
4119         set_irqchip_out:
4120                 kfree(chip);
4121                 break;
4122         }
4123         case KVM_GET_PIT: {
4124                 r = -EFAULT;
4125                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4126                         goto out;
4127                 r = -ENXIO;
4128                 if (!kvm->arch.vpit)
4129                         goto out;
4130                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4131                 if (r)
4132                         goto out;
4133                 r = -EFAULT;
4134                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4135                         goto out;
4136                 r = 0;
4137                 break;
4138         }
4139         case KVM_SET_PIT: {
4140                 r = -EFAULT;
4141                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4142                         goto out;
4143                 r = -ENXIO;
4144                 if (!kvm->arch.vpit)
4145                         goto out;
4146                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4147                 break;
4148         }
4149         case KVM_GET_PIT2: {
4150                 r = -ENXIO;
4151                 if (!kvm->arch.vpit)
4152                         goto out;
4153                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4154                 if (r)
4155                         goto out;
4156                 r = -EFAULT;
4157                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4158                         goto out;
4159                 r = 0;
4160                 break;
4161         }
4162         case KVM_SET_PIT2: {
4163                 r = -EFAULT;
4164                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4165                         goto out;
4166                 r = -ENXIO;
4167                 if (!kvm->arch.vpit)
4168                         goto out;
4169                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4170                 break;
4171         }
4172         case KVM_REINJECT_CONTROL: {
4173                 struct kvm_reinject_control control;
4174                 r =  -EFAULT;
4175                 if (copy_from_user(&control, argp, sizeof(control)))
4176                         goto out;
4177                 r = kvm_vm_ioctl_reinject(kvm, &control);
4178                 break;
4179         }
4180         case KVM_SET_BOOT_CPU_ID:
4181                 r = 0;
4182                 mutex_lock(&kvm->lock);
4183                 if (kvm->created_vcpus)
4184                         r = -EBUSY;
4185                 else
4186                         kvm->arch.bsp_vcpu_id = arg;
4187                 mutex_unlock(&kvm->lock);
4188                 break;
4189         case KVM_XEN_HVM_CONFIG: {
4190                 r = -EFAULT;
4191                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4192                                    sizeof(struct kvm_xen_hvm_config)))
4193                         goto out;
4194                 r = -EINVAL;
4195                 if (kvm->arch.xen_hvm_config.flags)
4196                         goto out;
4197                 r = 0;
4198                 break;
4199         }
4200         case KVM_SET_CLOCK: {
4201                 struct kvm_clock_data user_ns;
4202                 u64 now_ns;
4203
4204                 r = -EFAULT;
4205                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4206                         goto out;
4207
4208                 r = -EINVAL;
4209                 if (user_ns.flags)
4210                         goto out;
4211
4212                 r = 0;
4213                 /*
4214                  * TODO: userspace has to take care of races with VCPU_RUN, so
4215                  * kvm_gen_update_masterclock() can be cut down to locked
4216                  * pvclock_update_vm_gtod_copy().
4217                  */
4218                 kvm_gen_update_masterclock(kvm);
4219                 now_ns = get_kvmclock_ns(kvm);
4220                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4221                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4222                 break;
4223         }
4224         case KVM_GET_CLOCK: {
4225                 struct kvm_clock_data user_ns;
4226                 u64 now_ns;
4227
4228                 now_ns = get_kvmclock_ns(kvm);
4229                 user_ns.clock = now_ns;
4230                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4231                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4232
4233                 r = -EFAULT;
4234                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4235                         goto out;
4236                 r = 0;
4237                 break;
4238         }
4239         case KVM_ENABLE_CAP: {
4240                 struct kvm_enable_cap cap;
4241
4242                 r = -EFAULT;
4243                 if (copy_from_user(&cap, argp, sizeof(cap)))
4244                         goto out;
4245                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4246                 break;
4247         }
4248         default:
4249                 r = -ENOTTY;
4250         }
4251 out:
4252         return r;
4253 }
4254
4255 static void kvm_init_msr_list(void)
4256 {
4257         u32 dummy[2];
4258         unsigned i, j;
4259
4260         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4261                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4262                         continue;
4263
4264                 /*
4265                  * Even MSRs that are valid in the host may not be exposed
4266                  * to the guests in some cases.
4267                  */
4268                 switch (msrs_to_save[i]) {
4269                 case MSR_IA32_BNDCFGS:
4270                         if (!kvm_x86_ops->mpx_supported())
4271                                 continue;
4272                         break;
4273                 case MSR_TSC_AUX:
4274                         if (!kvm_x86_ops->rdtscp_supported())
4275                                 continue;
4276                         break;
4277                 default:
4278                         break;
4279                 }
4280
4281                 if (j < i)
4282                         msrs_to_save[j] = msrs_to_save[i];
4283                 j++;
4284         }
4285         num_msrs_to_save = j;
4286
4287         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4288                 switch (emulated_msrs[i]) {
4289                 case MSR_IA32_SMBASE:
4290                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4291                                 continue;
4292                         break;
4293                 default:
4294                         break;
4295                 }
4296
4297                 if (j < i)
4298                         emulated_msrs[j] = emulated_msrs[i];
4299                 j++;
4300         }
4301         num_emulated_msrs = j;
4302 }
4303
4304 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4305                            const void *v)
4306 {
4307         int handled = 0;
4308         int n;
4309
4310         do {
4311                 n = min(len, 8);
4312                 if (!(lapic_in_kernel(vcpu) &&
4313                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4314                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4315                         break;
4316                 handled += n;
4317                 addr += n;
4318                 len -= n;
4319                 v += n;
4320         } while (len);
4321
4322         return handled;
4323 }
4324
4325 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4326 {
4327         int handled = 0;
4328         int n;
4329
4330         do {
4331                 n = min(len, 8);
4332                 if (!(lapic_in_kernel(vcpu) &&
4333                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4334                                          addr, n, v))
4335                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4336                         break;
4337                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4338                 handled += n;
4339                 addr += n;
4340                 len -= n;
4341                 v += n;
4342         } while (len);
4343
4344         return handled;
4345 }
4346
4347 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4348                         struct kvm_segment *var, int seg)
4349 {
4350         kvm_x86_ops->set_segment(vcpu, var, seg);
4351 }
4352
4353 void kvm_get_segment(struct kvm_vcpu *vcpu,
4354                      struct kvm_segment *var, int seg)
4355 {
4356         kvm_x86_ops->get_segment(vcpu, var, seg);
4357 }
4358
4359 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4360                            struct x86_exception *exception)
4361 {
4362         gpa_t t_gpa;
4363
4364         BUG_ON(!mmu_is_nested(vcpu));
4365
4366         /* NPT walks are always user-walks */
4367         access |= PFERR_USER_MASK;
4368         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4369
4370         return t_gpa;
4371 }
4372
4373 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4374                               struct x86_exception *exception)
4375 {
4376         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4377         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4378 }
4379
4380  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4381                                 struct x86_exception *exception)
4382 {
4383         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4384         access |= PFERR_FETCH_MASK;
4385         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4386 }
4387
4388 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4389                                struct x86_exception *exception)
4390 {
4391         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4392         access |= PFERR_WRITE_MASK;
4393         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4394 }
4395
4396 /* uses this to access any guest's mapped memory without checking CPL */
4397 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4398                                 struct x86_exception *exception)
4399 {
4400         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4401 }
4402
4403 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4404                                       struct kvm_vcpu *vcpu, u32 access,
4405                                       struct x86_exception *exception)
4406 {
4407         void *data = val;
4408         int r = X86EMUL_CONTINUE;
4409
4410         while (bytes) {
4411                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4412                                                             exception);
4413                 unsigned offset = addr & (PAGE_SIZE-1);
4414                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4415                 int ret;
4416
4417                 if (gpa == UNMAPPED_GVA)
4418                         return X86EMUL_PROPAGATE_FAULT;
4419                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4420                                                offset, toread);
4421                 if (ret < 0) {
4422                         r = X86EMUL_IO_NEEDED;
4423                         goto out;
4424                 }
4425
4426                 bytes -= toread;
4427                 data += toread;
4428                 addr += toread;
4429         }
4430 out:
4431         return r;
4432 }
4433
4434 /* used for instruction fetching */
4435 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4436                                 gva_t addr, void *val, unsigned int bytes,
4437                                 struct x86_exception *exception)
4438 {
4439         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4440         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4441         unsigned offset;
4442         int ret;
4443
4444         /* Inline kvm_read_guest_virt_helper for speed.  */
4445         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4446                                                     exception);
4447         if (unlikely(gpa == UNMAPPED_GVA))
4448                 return X86EMUL_PROPAGATE_FAULT;
4449
4450         offset = addr & (PAGE_SIZE-1);
4451         if (WARN_ON(offset + bytes > PAGE_SIZE))
4452                 bytes = (unsigned)PAGE_SIZE - offset;
4453         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4454                                        offset, bytes);
4455         if (unlikely(ret < 0))
4456                 return X86EMUL_IO_NEEDED;
4457
4458         return X86EMUL_CONTINUE;
4459 }
4460
4461 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4462                                gva_t addr, void *val, unsigned int bytes,
4463                                struct x86_exception *exception)
4464 {
4465         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4466         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4467
4468         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4469                                           exception);
4470 }
4471 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4472
4473 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4474                                       gva_t addr, void *val, unsigned int bytes,
4475                                       struct x86_exception *exception)
4476 {
4477         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4478         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4479 }
4480
4481 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4482                 unsigned long addr, void *val, unsigned int bytes)
4483 {
4484         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4485         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4486
4487         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4488 }
4489
4490 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4491                                        gva_t addr, void *val,
4492                                        unsigned int bytes,
4493                                        struct x86_exception *exception)
4494 {
4495         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4496         void *data = val;
4497         int r = X86EMUL_CONTINUE;
4498
4499         while (bytes) {
4500                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4501                                                              PFERR_WRITE_MASK,
4502                                                              exception);
4503                 unsigned offset = addr & (PAGE_SIZE-1);
4504                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4505                 int ret;
4506
4507                 if (gpa == UNMAPPED_GVA)
4508                         return X86EMUL_PROPAGATE_FAULT;
4509                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4510                 if (ret < 0) {
4511                         r = X86EMUL_IO_NEEDED;
4512                         goto out;
4513                 }
4514
4515                 bytes -= towrite;
4516                 data += towrite;
4517                 addr += towrite;
4518         }
4519 out:
4520         return r;
4521 }
4522 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4523
4524 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4525                             gpa_t gpa, bool write)
4526 {
4527         /* For APIC access vmexit */
4528         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4529                 return 1;
4530
4531         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4532                 trace_vcpu_match_mmio(gva, gpa, write, true);
4533                 return 1;
4534         }
4535
4536         return 0;
4537 }
4538
4539 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4540                                 gpa_t *gpa, struct x86_exception *exception,
4541                                 bool write)
4542 {
4543         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4544                 | (write ? PFERR_WRITE_MASK : 0);
4545
4546         /*
4547          * currently PKRU is only applied to ept enabled guest so
4548          * there is no pkey in EPT page table for L1 guest or EPT
4549          * shadow page table for L2 guest.
4550          */
4551         if (vcpu_match_mmio_gva(vcpu, gva)
4552             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4553                                  vcpu->arch.access, 0, access)) {
4554                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4555                                         (gva & (PAGE_SIZE - 1));
4556                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4557                 return 1;
4558         }
4559
4560         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4561
4562         if (*gpa == UNMAPPED_GVA)
4563                 return -1;
4564
4565         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4566 }
4567
4568 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4569                         const void *val, int bytes)
4570 {
4571         int ret;
4572
4573         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4574         if (ret < 0)
4575                 return 0;
4576         kvm_page_track_write(vcpu, gpa, val, bytes);
4577         return 1;
4578 }
4579
4580 struct read_write_emulator_ops {
4581         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4582                                   int bytes);
4583         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4584                                   void *val, int bytes);
4585         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4586                                int bytes, void *val);
4587         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4588                                     void *val, int bytes);
4589         bool write;
4590 };
4591
4592 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4593 {
4594         if (vcpu->mmio_read_completed) {
4595                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4596                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4597                 vcpu->mmio_read_completed = 0;
4598                 return 1;
4599         }
4600
4601         return 0;
4602 }
4603
4604 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4605                         void *val, int bytes)
4606 {
4607         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4608 }
4609
4610 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4611                          void *val, int bytes)
4612 {
4613         return emulator_write_phys(vcpu, gpa, val, bytes);
4614 }
4615
4616 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4617 {
4618         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4619         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4620 }
4621
4622 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4623                           void *val, int bytes)
4624 {
4625         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4626         return X86EMUL_IO_NEEDED;
4627 }
4628
4629 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4630                            void *val, int bytes)
4631 {
4632         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4633
4634         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4635         return X86EMUL_CONTINUE;
4636 }
4637
4638 static const struct read_write_emulator_ops read_emultor = {
4639         .read_write_prepare = read_prepare,
4640         .read_write_emulate = read_emulate,
4641         .read_write_mmio = vcpu_mmio_read,
4642         .read_write_exit_mmio = read_exit_mmio,
4643 };
4644
4645 static const struct read_write_emulator_ops write_emultor = {
4646         .read_write_emulate = write_emulate,
4647         .read_write_mmio = write_mmio,
4648         .read_write_exit_mmio = write_exit_mmio,
4649         .write = true,
4650 };
4651
4652 static int emulator_read_write_onepage(unsigned long addr, void *val,
4653                                        unsigned int bytes,
4654                                        struct x86_exception *exception,
4655                                        struct kvm_vcpu *vcpu,
4656                                        const struct read_write_emulator_ops *ops)
4657 {
4658         gpa_t gpa;
4659         int handled, ret;
4660         bool write = ops->write;
4661         struct kvm_mmio_fragment *frag;
4662         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4663
4664         /*
4665          * If the exit was due to a NPF we may already have a GPA.
4666          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4667          * Note, this cannot be used on string operations since string
4668          * operation using rep will only have the initial GPA from the NPF
4669          * occurred.
4670          */
4671         if (vcpu->arch.gpa_available &&
4672             emulator_can_use_gpa(ctxt) &&
4673             vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4674             (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4675                 gpa = exception->address;
4676                 goto mmio;
4677         }
4678
4679         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4680
4681         if (ret < 0)
4682                 return X86EMUL_PROPAGATE_FAULT;
4683
4684         /* For APIC access vmexit */
4685         if (ret)
4686                 goto mmio;
4687
4688         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4689                 return X86EMUL_CONTINUE;
4690
4691 mmio:
4692         /*
4693          * Is this MMIO handled locally?
4694          */
4695         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4696         if (handled == bytes)
4697                 return X86EMUL_CONTINUE;
4698
4699         gpa += handled;
4700         bytes -= handled;
4701         val += handled;
4702
4703         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4704         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4705         frag->gpa = gpa;
4706         frag->data = val;
4707         frag->len = bytes;
4708         return X86EMUL_CONTINUE;
4709 }
4710
4711 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4712                         unsigned long addr,
4713                         void *val, unsigned int bytes,
4714                         struct x86_exception *exception,
4715                         const struct read_write_emulator_ops *ops)
4716 {
4717         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4718         gpa_t gpa;
4719         int rc;
4720
4721         if (ops->read_write_prepare &&
4722                   ops->read_write_prepare(vcpu, val, bytes))
4723                 return X86EMUL_CONTINUE;
4724
4725         vcpu->mmio_nr_fragments = 0;
4726
4727         /* Crossing a page boundary? */
4728         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4729                 int now;
4730
4731                 now = -addr & ~PAGE_MASK;
4732                 rc = emulator_read_write_onepage(addr, val, now, exception,
4733                                                  vcpu, ops);
4734
4735                 if (rc != X86EMUL_CONTINUE)
4736                         return rc;
4737                 addr += now;
4738                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4739                         addr = (u32)addr;
4740                 val += now;
4741                 bytes -= now;
4742         }
4743
4744         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4745                                          vcpu, ops);
4746         if (rc != X86EMUL_CONTINUE)
4747                 return rc;
4748
4749         if (!vcpu->mmio_nr_fragments)
4750                 return rc;
4751
4752         gpa = vcpu->mmio_fragments[0].gpa;
4753
4754         vcpu->mmio_needed = 1;
4755         vcpu->mmio_cur_fragment = 0;
4756
4757         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4758         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4759         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4760         vcpu->run->mmio.phys_addr = gpa;
4761
4762         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4763 }
4764
4765 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4766                                   unsigned long addr,
4767                                   void *val,
4768                                   unsigned int bytes,
4769                                   struct x86_exception *exception)
4770 {
4771         return emulator_read_write(ctxt, addr, val, bytes,
4772                                    exception, &read_emultor);
4773 }
4774
4775 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4776                             unsigned long addr,
4777                             const void *val,
4778                             unsigned int bytes,
4779                             struct x86_exception *exception)
4780 {
4781         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4782                                    exception, &write_emultor);
4783 }
4784
4785 #define CMPXCHG_TYPE(t, ptr, old, new) \
4786         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4787
4788 #ifdef CONFIG_X86_64
4789 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4790 #else
4791 #  define CMPXCHG64(ptr, old, new) \
4792         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4793 #endif
4794
4795 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4796                                      unsigned long addr,
4797                                      const void *old,
4798                                      const void *new,
4799                                      unsigned int bytes,
4800                                      struct x86_exception *exception)
4801 {
4802         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4803         gpa_t gpa;
4804         struct page *page;
4805         char *kaddr;
4806         bool exchanged;
4807
4808         /* guests cmpxchg8b have to be emulated atomically */
4809         if (bytes > 8 || (bytes & (bytes - 1)))
4810                 goto emul_write;
4811
4812         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4813
4814         if (gpa == UNMAPPED_GVA ||
4815             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4816                 goto emul_write;
4817
4818         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4819                 goto emul_write;
4820
4821         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4822         if (is_error_page(page))
4823                 goto emul_write;
4824
4825         kaddr = kmap_atomic(page);
4826         kaddr += offset_in_page(gpa);
4827         switch (bytes) {
4828         case 1:
4829                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4830                 break;
4831         case 2:
4832                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4833                 break;
4834         case 4:
4835                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4836                 break;
4837         case 8:
4838                 exchanged = CMPXCHG64(kaddr, old, new);
4839                 break;
4840         default:
4841                 BUG();
4842         }
4843         kunmap_atomic(kaddr);
4844         kvm_release_page_dirty(page);
4845
4846         if (!exchanged)
4847                 return X86EMUL_CMPXCHG_FAILED;
4848
4849         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4850         kvm_page_track_write(vcpu, gpa, new, bytes);
4851
4852         return X86EMUL_CONTINUE;
4853
4854 emul_write:
4855         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4856
4857         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4858 }
4859
4860 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4861 {
4862         int r = 0, i;
4863
4864         for (i = 0; i < vcpu->arch.pio.count; i++) {
4865                 if (vcpu->arch.pio.in)
4866                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4867                                             vcpu->arch.pio.size, pd);
4868                 else
4869                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4870                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
4871                                              pd);
4872                 if (r)
4873                         break;
4874                 pd += vcpu->arch.pio.size;
4875         }
4876         return r;
4877 }
4878
4879 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4880                                unsigned short port, void *val,
4881                                unsigned int count, bool in)
4882 {
4883         vcpu->arch.pio.port = port;
4884         vcpu->arch.pio.in = in;
4885         vcpu->arch.pio.count  = count;
4886         vcpu->arch.pio.size = size;
4887
4888         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4889                 vcpu->arch.pio.count = 0;
4890                 return 1;
4891         }
4892
4893         vcpu->run->exit_reason = KVM_EXIT_IO;
4894         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4895         vcpu->run->io.size = size;
4896         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4897         vcpu->run->io.count = count;
4898         vcpu->run->io.port = port;
4899
4900         return 0;
4901 }
4902
4903 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4904                                     int size, unsigned short port, void *val,
4905                                     unsigned int count)
4906 {
4907         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4908         int ret;
4909
4910         if (vcpu->arch.pio.count)
4911                 goto data_avail;
4912
4913         memset(vcpu->arch.pio_data, 0, size * count);
4914
4915         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4916         if (ret) {
4917 data_avail:
4918                 memcpy(val, vcpu->arch.pio_data, size * count);
4919                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4920                 vcpu->arch.pio.count = 0;
4921                 return 1;
4922         }
4923
4924         return 0;
4925 }
4926
4927 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4928                                      int size, unsigned short port,
4929                                      const void *val, unsigned int count)
4930 {
4931         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4932
4933         memcpy(vcpu->arch.pio_data, val, size * count);
4934         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4935         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4936 }
4937
4938 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4939 {
4940         return kvm_x86_ops->get_segment_base(vcpu, seg);
4941 }
4942
4943 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4944 {
4945         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4946 }
4947
4948 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4949 {
4950         if (!need_emulate_wbinvd(vcpu))
4951                 return X86EMUL_CONTINUE;
4952
4953         if (kvm_x86_ops->has_wbinvd_exit()) {
4954                 int cpu = get_cpu();
4955
4956                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4957                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4958                                 wbinvd_ipi, NULL, 1);
4959                 put_cpu();
4960                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4961         } else
4962                 wbinvd();
4963         return X86EMUL_CONTINUE;
4964 }
4965
4966 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4967 {
4968         kvm_emulate_wbinvd_noskip(vcpu);
4969         return kvm_skip_emulated_instruction(vcpu);
4970 }
4971 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4972
4973
4974
4975 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4976 {
4977         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4978 }
4979
4980 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4981                            unsigned long *dest)
4982 {
4983         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4984 }
4985
4986 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4987                            unsigned long value)
4988 {
4989
4990         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4991 }
4992
4993 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4994 {
4995         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4996 }
4997
4998 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4999 {
5000         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5001         unsigned long value;
5002
5003         switch (cr) {
5004         case 0:
5005                 value = kvm_read_cr0(vcpu);
5006                 break;
5007         case 2:
5008                 value = vcpu->arch.cr2;
5009                 break;
5010         case 3:
5011                 value = kvm_read_cr3(vcpu);
5012                 break;
5013         case 4:
5014                 value = kvm_read_cr4(vcpu);
5015                 break;
5016         case 8:
5017                 value = kvm_get_cr8(vcpu);
5018                 break;
5019         default:
5020                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5021                 return 0;
5022         }
5023
5024         return value;
5025 }
5026
5027 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5028 {
5029         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5030         int res = 0;
5031
5032         switch (cr) {
5033         case 0:
5034                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5035                 break;
5036         case 2:
5037                 vcpu->arch.cr2 = val;
5038                 break;
5039         case 3:
5040                 res = kvm_set_cr3(vcpu, val);
5041                 break;
5042         case 4:
5043                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5044                 break;
5045         case 8:
5046                 res = kvm_set_cr8(vcpu, val);
5047                 break;
5048         default:
5049                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5050                 res = -1;
5051         }
5052
5053         return res;
5054 }
5055
5056 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5057 {
5058         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5059 }
5060
5061 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5062 {
5063         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5064 }
5065
5066 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5067 {
5068         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5069 }
5070
5071 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5072 {
5073         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5074 }
5075
5076 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5077 {
5078         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5079 }
5080
5081 static unsigned long emulator_get_cached_segment_base(
5082         struct x86_emulate_ctxt *ctxt, int seg)
5083 {
5084         return get_segment_base(emul_to_vcpu(ctxt), seg);
5085 }
5086
5087 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5088                                  struct desc_struct *desc, u32 *base3,
5089                                  int seg)
5090 {
5091         struct kvm_segment var;
5092
5093         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5094         *selector = var.selector;
5095
5096         if (var.unusable) {
5097                 memset(desc, 0, sizeof(*desc));
5098                 if (base3)
5099                         *base3 = 0;
5100                 return false;
5101         }
5102
5103         if (var.g)
5104                 var.limit >>= 12;
5105         set_desc_limit(desc, var.limit);
5106         set_desc_base(desc, (unsigned long)var.base);
5107 #ifdef CONFIG_X86_64
5108         if (base3)
5109                 *base3 = var.base >> 32;
5110 #endif
5111         desc->type = var.type;
5112         desc->s = var.s;
5113         desc->dpl = var.dpl;
5114         desc->p = var.present;
5115         desc->avl = var.avl;
5116         desc->l = var.l;
5117         desc->d = var.db;
5118         desc->g = var.g;
5119
5120         return true;
5121 }
5122
5123 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5124                                  struct desc_struct *desc, u32 base3,
5125                                  int seg)
5126 {
5127         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5128         struct kvm_segment var;
5129
5130         var.selector = selector;
5131         var.base = get_desc_base(desc);
5132 #ifdef CONFIG_X86_64
5133         var.base |= ((u64)base3) << 32;
5134 #endif
5135         var.limit = get_desc_limit(desc);
5136         if (desc->g)
5137                 var.limit = (var.limit << 12) | 0xfff;
5138         var.type = desc->type;
5139         var.dpl = desc->dpl;
5140         var.db = desc->d;
5141         var.s = desc->s;
5142         var.l = desc->l;
5143         var.g = desc->g;
5144         var.avl = desc->avl;
5145         var.present = desc->p;
5146         var.unusable = !var.present;
5147         var.padding = 0;
5148
5149         kvm_set_segment(vcpu, &var, seg);
5150         return;
5151 }
5152
5153 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5154                             u32 msr_index, u64 *pdata)
5155 {
5156         struct msr_data msr;
5157         int r;
5158
5159         msr.index = msr_index;
5160         msr.host_initiated = false;
5161         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5162         if (r)
5163                 return r;
5164
5165         *pdata = msr.data;
5166         return 0;
5167 }
5168
5169 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5170                             u32 msr_index, u64 data)
5171 {
5172         struct msr_data msr;
5173
5174         msr.data = data;
5175         msr.index = msr_index;
5176         msr.host_initiated = false;
5177         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5178 }
5179
5180 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5181 {
5182         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5183
5184         return vcpu->arch.smbase;
5185 }
5186
5187 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5188 {
5189         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5190
5191         vcpu->arch.smbase = smbase;
5192 }
5193
5194 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5195                               u32 pmc)
5196 {
5197         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5198 }
5199
5200 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5201                              u32 pmc, u64 *pdata)
5202 {
5203         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5204 }
5205
5206 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5207 {
5208         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5209 }
5210
5211 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5212 {
5213         preempt_disable();
5214         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5215 }
5216
5217 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5218 {
5219         preempt_enable();
5220 }
5221
5222 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5223                               struct x86_instruction_info *info,
5224                               enum x86_intercept_stage stage)
5225 {
5226         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5227 }
5228
5229 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5230                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5231 {
5232         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5233 }
5234
5235 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5236 {
5237         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5238 }
5239
5240 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5241 {
5242         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5243 }
5244
5245 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5246 {
5247         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5248 }
5249
5250 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5251 {
5252         return emul_to_vcpu(ctxt)->arch.hflags;
5253 }
5254
5255 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5256 {
5257         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5258 }
5259
5260 static const struct x86_emulate_ops emulate_ops = {
5261         .read_gpr            = emulator_read_gpr,
5262         .write_gpr           = emulator_write_gpr,
5263         .read_std            = kvm_read_guest_virt_system,
5264         .write_std           = kvm_write_guest_virt_system,
5265         .read_phys           = kvm_read_guest_phys_system,
5266         .fetch               = kvm_fetch_guest_virt,
5267         .read_emulated       = emulator_read_emulated,
5268         .write_emulated      = emulator_write_emulated,
5269         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5270         .invlpg              = emulator_invlpg,
5271         .pio_in_emulated     = emulator_pio_in_emulated,
5272         .pio_out_emulated    = emulator_pio_out_emulated,
5273         .get_segment         = emulator_get_segment,
5274         .set_segment         = emulator_set_segment,
5275         .get_cached_segment_base = emulator_get_cached_segment_base,
5276         .get_gdt             = emulator_get_gdt,
5277         .get_idt             = emulator_get_idt,
5278         .set_gdt             = emulator_set_gdt,
5279         .set_idt             = emulator_set_idt,
5280         .get_cr              = emulator_get_cr,
5281         .set_cr              = emulator_set_cr,
5282         .cpl                 = emulator_get_cpl,
5283         .get_dr              = emulator_get_dr,
5284         .set_dr              = emulator_set_dr,
5285         .get_smbase          = emulator_get_smbase,
5286         .set_smbase          = emulator_set_smbase,
5287         .set_msr             = emulator_set_msr,
5288         .get_msr             = emulator_get_msr,
5289         .check_pmc           = emulator_check_pmc,
5290         .read_pmc            = emulator_read_pmc,
5291         .halt                = emulator_halt,
5292         .wbinvd              = emulator_wbinvd,
5293         .fix_hypercall       = emulator_fix_hypercall,
5294         .get_fpu             = emulator_get_fpu,
5295         .put_fpu             = emulator_put_fpu,
5296         .intercept           = emulator_intercept,
5297         .get_cpuid           = emulator_get_cpuid,
5298         .set_nmi_mask        = emulator_set_nmi_mask,
5299         .get_hflags          = emulator_get_hflags,
5300         .set_hflags          = emulator_set_hflags,
5301 };
5302
5303 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5304 {
5305         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5306         /*
5307          * an sti; sti; sequence only disable interrupts for the first
5308          * instruction. So, if the last instruction, be it emulated or
5309          * not, left the system with the INT_STI flag enabled, it
5310          * means that the last instruction is an sti. We should not
5311          * leave the flag on in this case. The same goes for mov ss
5312          */
5313         if (int_shadow & mask)
5314                 mask = 0;
5315         if (unlikely(int_shadow || mask)) {
5316                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5317                 if (!mask)
5318                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5319         }
5320 }
5321
5322 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5323 {
5324         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5325         if (ctxt->exception.vector == PF_VECTOR)
5326                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5327
5328         if (ctxt->exception.error_code_valid)
5329                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5330                                       ctxt->exception.error_code);
5331         else
5332                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5333         return false;
5334 }
5335
5336 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5337 {
5338         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5339         int cs_db, cs_l;
5340
5341         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5342
5343         ctxt->eflags = kvm_get_rflags(vcpu);
5344         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5345
5346         ctxt->eip = kvm_rip_read(vcpu);
5347         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5348                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5349                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5350                      cs_db                              ? X86EMUL_MODE_PROT32 :
5351                                                           X86EMUL_MODE_PROT16;
5352         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5353         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5354         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5355
5356         init_decode_cache(ctxt);
5357         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5358 }
5359
5360 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5361 {
5362         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5363         int ret;
5364
5365         init_emulate_ctxt(vcpu);
5366
5367         ctxt->op_bytes = 2;
5368         ctxt->ad_bytes = 2;
5369         ctxt->_eip = ctxt->eip + inc_eip;
5370         ret = emulate_int_real(ctxt, irq);
5371
5372         if (ret != X86EMUL_CONTINUE)
5373                 return EMULATE_FAIL;
5374
5375         ctxt->eip = ctxt->_eip;
5376         kvm_rip_write(vcpu, ctxt->eip);
5377         kvm_set_rflags(vcpu, ctxt->eflags);
5378
5379         if (irq == NMI_VECTOR)
5380                 vcpu->arch.nmi_pending = 0;
5381         else
5382                 vcpu->arch.interrupt.pending = false;
5383
5384         return EMULATE_DONE;
5385 }
5386 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5387
5388 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5389 {
5390         int r = EMULATE_DONE;
5391
5392         ++vcpu->stat.insn_emulation_fail;
5393         trace_kvm_emulate_insn_failed(vcpu);
5394         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5395                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5396                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5397                 vcpu->run->internal.ndata = 0;
5398                 r = EMULATE_FAIL;
5399         }
5400         kvm_queue_exception(vcpu, UD_VECTOR);
5401
5402         return r;
5403 }
5404
5405 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5406                                   bool write_fault_to_shadow_pgtable,
5407                                   int emulation_type)
5408 {
5409         gpa_t gpa = cr2;
5410         kvm_pfn_t pfn;
5411
5412         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5413                 return false;
5414
5415         if (!vcpu->arch.mmu.direct_map) {
5416                 /*
5417                  * Write permission should be allowed since only
5418                  * write access need to be emulated.
5419                  */
5420                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5421
5422                 /*
5423                  * If the mapping is invalid in guest, let cpu retry
5424                  * it to generate fault.
5425                  */
5426                 if (gpa == UNMAPPED_GVA)
5427                         return true;
5428         }
5429
5430         /*
5431          * Do not retry the unhandleable instruction if it faults on the
5432          * readonly host memory, otherwise it will goto a infinite loop:
5433          * retry instruction -> write #PF -> emulation fail -> retry
5434          * instruction -> ...
5435          */
5436         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5437
5438         /*
5439          * If the instruction failed on the error pfn, it can not be fixed,
5440          * report the error to userspace.
5441          */
5442         if (is_error_noslot_pfn(pfn))
5443                 return false;
5444
5445         kvm_release_pfn_clean(pfn);
5446
5447         /* The instructions are well-emulated on direct mmu. */
5448         if (vcpu->arch.mmu.direct_map) {
5449                 unsigned int indirect_shadow_pages;
5450
5451                 spin_lock(&vcpu->kvm->mmu_lock);
5452                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5453                 spin_unlock(&vcpu->kvm->mmu_lock);
5454
5455                 if (indirect_shadow_pages)
5456                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5457
5458                 return true;
5459         }
5460
5461         /*
5462          * if emulation was due to access to shadowed page table
5463          * and it failed try to unshadow page and re-enter the
5464          * guest to let CPU execute the instruction.
5465          */
5466         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5467
5468         /*
5469          * If the access faults on its page table, it can not
5470          * be fixed by unprotecting shadow page and it should
5471          * be reported to userspace.
5472          */
5473         return !write_fault_to_shadow_pgtable;
5474 }
5475
5476 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5477                               unsigned long cr2,  int emulation_type)
5478 {
5479         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5480         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5481
5482         last_retry_eip = vcpu->arch.last_retry_eip;
5483         last_retry_addr = vcpu->arch.last_retry_addr;
5484
5485         /*
5486          * If the emulation is caused by #PF and it is non-page_table
5487          * writing instruction, it means the VM-EXIT is caused by shadow
5488          * page protected, we can zap the shadow page and retry this
5489          * instruction directly.
5490          *
5491          * Note: if the guest uses a non-page-table modifying instruction
5492          * on the PDE that points to the instruction, then we will unmap
5493          * the instruction and go to an infinite loop. So, we cache the
5494          * last retried eip and the last fault address, if we meet the eip
5495          * and the address again, we can break out of the potential infinite
5496          * loop.
5497          */
5498         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5499
5500         if (!(emulation_type & EMULTYPE_RETRY))
5501                 return false;
5502
5503         if (x86_page_table_writing_insn(ctxt))
5504                 return false;
5505
5506         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5507                 return false;
5508
5509         vcpu->arch.last_retry_eip = ctxt->eip;
5510         vcpu->arch.last_retry_addr = cr2;
5511
5512         if (!vcpu->arch.mmu.direct_map)
5513                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5514
5515         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5516
5517         return true;
5518 }
5519
5520 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5521 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5522
5523 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5524 {
5525         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5526                 /* This is a good place to trace that we are exiting SMM.  */
5527                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5528
5529                 /* Process a latched INIT or SMI, if any.  */
5530                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5531         }
5532
5533         kvm_mmu_reset_context(vcpu);
5534 }
5535
5536 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5537 {
5538         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5539
5540         vcpu->arch.hflags = emul_flags;
5541
5542         if (changed & HF_SMM_MASK)
5543                 kvm_smm_changed(vcpu);
5544 }
5545
5546 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5547                                 unsigned long *db)
5548 {
5549         u32 dr6 = 0;
5550         int i;
5551         u32 enable, rwlen;
5552
5553         enable = dr7;
5554         rwlen = dr7 >> 16;
5555         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5556                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5557                         dr6 |= (1 << i);
5558         return dr6;
5559 }
5560
5561 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5562 {
5563         struct kvm_run *kvm_run = vcpu->run;
5564
5565         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5566                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5567                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5568                 kvm_run->debug.arch.exception = DB_VECTOR;
5569                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5570                 *r = EMULATE_USER_EXIT;
5571         } else {
5572                 /*
5573                  * "Certain debug exceptions may clear bit 0-3.  The
5574                  * remaining contents of the DR6 register are never
5575                  * cleared by the processor".
5576                  */
5577                 vcpu->arch.dr6 &= ~15;
5578                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5579                 kvm_queue_exception(vcpu, DB_VECTOR);
5580         }
5581 }
5582
5583 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5584 {
5585         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5586         int r = EMULATE_DONE;
5587
5588         kvm_x86_ops->skip_emulated_instruction(vcpu);
5589
5590         /*
5591          * rflags is the old, "raw" value of the flags.  The new value has
5592          * not been saved yet.
5593          *
5594          * This is correct even for TF set by the guest, because "the
5595          * processor will not generate this exception after the instruction
5596          * that sets the TF flag".
5597          */
5598         if (unlikely(rflags & X86_EFLAGS_TF))
5599                 kvm_vcpu_do_singlestep(vcpu, &r);
5600         return r == EMULATE_DONE;
5601 }
5602 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5603
5604 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5605 {
5606         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5607             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5608                 struct kvm_run *kvm_run = vcpu->run;
5609                 unsigned long eip = kvm_get_linear_rip(vcpu);
5610                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5611                                            vcpu->arch.guest_debug_dr7,
5612                                            vcpu->arch.eff_db);
5613
5614                 if (dr6 != 0) {
5615                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5616                         kvm_run->debug.arch.pc = eip;
5617                         kvm_run->debug.arch.exception = DB_VECTOR;
5618                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5619                         *r = EMULATE_USER_EXIT;
5620                         return true;
5621                 }
5622         }
5623
5624         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5625             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5626                 unsigned long eip = kvm_get_linear_rip(vcpu);
5627                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5628                                            vcpu->arch.dr7,
5629                                            vcpu->arch.db);
5630
5631                 if (dr6 != 0) {
5632                         vcpu->arch.dr6 &= ~15;
5633                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5634                         kvm_queue_exception(vcpu, DB_VECTOR);
5635                         *r = EMULATE_DONE;
5636                         return true;
5637                 }
5638         }
5639
5640         return false;
5641 }
5642
5643 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5644                             unsigned long cr2,
5645                             int emulation_type,
5646                             void *insn,
5647                             int insn_len)
5648 {
5649         int r;
5650         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5651         bool writeback = true;
5652         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5653
5654         /*
5655          * Clear write_fault_to_shadow_pgtable here to ensure it is
5656          * never reused.
5657          */
5658         vcpu->arch.write_fault_to_shadow_pgtable = false;
5659         kvm_clear_exception_queue(vcpu);
5660
5661         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5662                 init_emulate_ctxt(vcpu);
5663
5664                 /*
5665                  * We will reenter on the same instruction since
5666                  * we do not set complete_userspace_io.  This does not
5667                  * handle watchpoints yet, those would be handled in
5668                  * the emulate_ops.
5669                  */
5670                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5671                         return r;
5672
5673                 ctxt->interruptibility = 0;
5674                 ctxt->have_exception = false;
5675                 ctxt->exception.vector = -1;
5676                 ctxt->perm_ok = false;
5677
5678                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5679
5680                 r = x86_decode_insn(ctxt, insn, insn_len);
5681
5682                 trace_kvm_emulate_insn_start(vcpu);
5683                 ++vcpu->stat.insn_emulation;
5684                 if (r != EMULATION_OK)  {
5685                         if (emulation_type & EMULTYPE_TRAP_UD)
5686                                 return EMULATE_FAIL;
5687                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5688                                                 emulation_type))
5689                                 return EMULATE_DONE;
5690                         if (emulation_type & EMULTYPE_SKIP)
5691                                 return EMULATE_FAIL;
5692                         return handle_emulation_failure(vcpu);
5693                 }
5694         }
5695
5696         if (emulation_type & EMULTYPE_SKIP) {
5697                 kvm_rip_write(vcpu, ctxt->_eip);
5698                 if (ctxt->eflags & X86_EFLAGS_RF)
5699                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5700                 return EMULATE_DONE;
5701         }
5702
5703         if (retry_instruction(ctxt, cr2, emulation_type))
5704                 return EMULATE_DONE;
5705
5706         /* this is needed for vmware backdoor interface to work since it
5707            changes registers values  during IO operation */
5708         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5709                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5710                 emulator_invalidate_register_cache(ctxt);
5711         }
5712
5713 restart:
5714         /* Save the faulting GPA (cr2) in the address field */
5715         ctxt->exception.address = cr2;
5716
5717         r = x86_emulate_insn(ctxt);
5718
5719         if (r == EMULATION_INTERCEPTED)
5720                 return EMULATE_DONE;
5721
5722         if (r == EMULATION_FAILED) {
5723                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5724                                         emulation_type))
5725                         return EMULATE_DONE;
5726
5727                 return handle_emulation_failure(vcpu);
5728         }
5729
5730         if (ctxt->have_exception) {
5731                 r = EMULATE_DONE;
5732                 if (inject_emulated_exception(vcpu))
5733                         return r;
5734         } else if (vcpu->arch.pio.count) {
5735                 if (!vcpu->arch.pio.in) {
5736                         /* FIXME: return into emulator if single-stepping.  */
5737                         vcpu->arch.pio.count = 0;
5738                 } else {
5739                         writeback = false;
5740                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5741                 }
5742                 r = EMULATE_USER_EXIT;
5743         } else if (vcpu->mmio_needed) {
5744                 if (!vcpu->mmio_is_write)
5745                         writeback = false;
5746                 r = EMULATE_USER_EXIT;
5747                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5748         } else if (r == EMULATION_RESTART)
5749                 goto restart;
5750         else
5751                 r = EMULATE_DONE;
5752
5753         if (writeback) {
5754                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5755                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5756                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5757                 kvm_rip_write(vcpu, ctxt->eip);
5758                 if (r == EMULATE_DONE &&
5759                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5760                         kvm_vcpu_do_singlestep(vcpu, &r);
5761                 if (!ctxt->have_exception ||
5762                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5763                         __kvm_set_rflags(vcpu, ctxt->eflags);
5764
5765                 /*
5766                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5767                  * do nothing, and it will be requested again as soon as
5768                  * the shadow expires.  But we still need to check here,
5769                  * because POPF has no interrupt shadow.
5770                  */
5771                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5772                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5773         } else
5774                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5775
5776         return r;
5777 }
5778 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5779
5780 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5781 {
5782         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5783         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5784                                             size, port, &val, 1);
5785         /* do not return to emulator after return from userspace */
5786         vcpu->arch.pio.count = 0;
5787         return ret;
5788 }
5789 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5790
5791 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5792 {
5793         unsigned long val;
5794
5795         /* We should only ever be called with arch.pio.count equal to 1 */
5796         BUG_ON(vcpu->arch.pio.count != 1);
5797
5798         /* For size less than 4 we merge, else we zero extend */
5799         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5800                                         : 0;
5801
5802         /*
5803          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5804          * the copy and tracing
5805          */
5806         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5807                                  vcpu->arch.pio.port, &val, 1);
5808         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5809
5810         return 1;
5811 }
5812
5813 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5814 {
5815         unsigned long val;
5816         int ret;
5817
5818         /* For size less than 4 we merge, else we zero extend */
5819         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5820
5821         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5822                                        &val, 1);
5823         if (ret) {
5824                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5825                 return ret;
5826         }
5827
5828         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5829
5830         return 0;
5831 }
5832 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5833
5834 static int kvmclock_cpu_down_prep(unsigned int cpu)
5835 {
5836         __this_cpu_write(cpu_tsc_khz, 0);
5837         return 0;
5838 }
5839
5840 static void tsc_khz_changed(void *data)
5841 {
5842         struct cpufreq_freqs *freq = data;
5843         unsigned long khz = 0;
5844
5845         if (data)
5846                 khz = freq->new;
5847         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5848                 khz = cpufreq_quick_get(raw_smp_processor_id());
5849         if (!khz)
5850                 khz = tsc_khz;
5851         __this_cpu_write(cpu_tsc_khz, khz);
5852 }
5853
5854 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5855                                      void *data)
5856 {
5857         struct cpufreq_freqs *freq = data;
5858         struct kvm *kvm;
5859         struct kvm_vcpu *vcpu;
5860         int i, send_ipi = 0;
5861
5862         /*
5863          * We allow guests to temporarily run on slowing clocks,
5864          * provided we notify them after, or to run on accelerating
5865          * clocks, provided we notify them before.  Thus time never
5866          * goes backwards.
5867          *
5868          * However, we have a problem.  We can't atomically update
5869          * the frequency of a given CPU from this function; it is
5870          * merely a notifier, which can be called from any CPU.
5871          * Changing the TSC frequency at arbitrary points in time
5872          * requires a recomputation of local variables related to
5873          * the TSC for each VCPU.  We must flag these local variables
5874          * to be updated and be sure the update takes place with the
5875          * new frequency before any guests proceed.
5876          *
5877          * Unfortunately, the combination of hotplug CPU and frequency
5878          * change creates an intractable locking scenario; the order
5879          * of when these callouts happen is undefined with respect to
5880          * CPU hotplug, and they can race with each other.  As such,
5881          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5882          * undefined; you can actually have a CPU frequency change take
5883          * place in between the computation of X and the setting of the
5884          * variable.  To protect against this problem, all updates of
5885          * the per_cpu tsc_khz variable are done in an interrupt
5886          * protected IPI, and all callers wishing to update the value
5887          * must wait for a synchronous IPI to complete (which is trivial
5888          * if the caller is on the CPU already).  This establishes the
5889          * necessary total order on variable updates.
5890          *
5891          * Note that because a guest time update may take place
5892          * anytime after the setting of the VCPU's request bit, the
5893          * correct TSC value must be set before the request.  However,
5894          * to ensure the update actually makes it to any guest which
5895          * starts running in hardware virtualization between the set
5896          * and the acquisition of the spinlock, we must also ping the
5897          * CPU after setting the request bit.
5898          *
5899          */
5900
5901         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5902                 return 0;
5903         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5904                 return 0;
5905
5906         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5907
5908         spin_lock(&kvm_lock);
5909         list_for_each_entry(kvm, &vm_list, vm_list) {
5910                 kvm_for_each_vcpu(i, vcpu, kvm) {
5911                         if (vcpu->cpu != freq->cpu)
5912                                 continue;
5913                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5914                         if (vcpu->cpu != smp_processor_id())
5915                                 send_ipi = 1;
5916                 }
5917         }
5918         spin_unlock(&kvm_lock);
5919
5920         if (freq->old < freq->new && send_ipi) {
5921                 /*
5922                  * We upscale the frequency.  Must make the guest
5923                  * doesn't see old kvmclock values while running with
5924                  * the new frequency, otherwise we risk the guest sees
5925                  * time go backwards.
5926                  *
5927                  * In case we update the frequency for another cpu
5928                  * (which might be in guest context) send an interrupt
5929                  * to kick the cpu out of guest context.  Next time
5930                  * guest context is entered kvmclock will be updated,
5931                  * so the guest will not see stale values.
5932                  */
5933                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5934         }
5935         return 0;
5936 }
5937
5938 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5939         .notifier_call  = kvmclock_cpufreq_notifier
5940 };
5941
5942 static int kvmclock_cpu_online(unsigned int cpu)
5943 {
5944         tsc_khz_changed(NULL);
5945         return 0;
5946 }
5947
5948 static void kvm_timer_init(void)
5949 {
5950         max_tsc_khz = tsc_khz;
5951
5952         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5953 #ifdef CONFIG_CPU_FREQ
5954                 struct cpufreq_policy policy;
5955                 int cpu;
5956
5957                 memset(&policy, 0, sizeof(policy));
5958                 cpu = get_cpu();
5959                 cpufreq_get_policy(&policy, cpu);
5960                 if (policy.cpuinfo.max_freq)
5961                         max_tsc_khz = policy.cpuinfo.max_freq;
5962                 put_cpu();
5963 #endif
5964                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5965                                           CPUFREQ_TRANSITION_NOTIFIER);
5966         }
5967         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5968
5969         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5970                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5971 }
5972
5973 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5974
5975 int kvm_is_in_guest(void)
5976 {
5977         return __this_cpu_read(current_vcpu) != NULL;
5978 }
5979
5980 static int kvm_is_user_mode(void)
5981 {
5982         int user_mode = 3;
5983
5984         if (__this_cpu_read(current_vcpu))
5985                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5986
5987         return user_mode != 0;
5988 }
5989
5990 static unsigned long kvm_get_guest_ip(void)
5991 {
5992         unsigned long ip = 0;
5993
5994         if (__this_cpu_read(current_vcpu))
5995                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5996
5997         return ip;
5998 }
5999
6000 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6001         .is_in_guest            = kvm_is_in_guest,
6002         .is_user_mode           = kvm_is_user_mode,
6003         .get_guest_ip           = kvm_get_guest_ip,
6004 };
6005
6006 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6007 {
6008         __this_cpu_write(current_vcpu, vcpu);
6009 }
6010 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6011
6012 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6013 {
6014         __this_cpu_write(current_vcpu, NULL);
6015 }
6016 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6017
6018 static void kvm_set_mmio_spte_mask(void)
6019 {
6020         u64 mask;
6021         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6022
6023         /*
6024          * Set the reserved bits and the present bit of an paging-structure
6025          * entry to generate page fault with PFER.RSV = 1.
6026          */
6027          /* Mask the reserved physical address bits. */
6028         mask = rsvd_bits(maxphyaddr, 51);
6029
6030         /* Set the present bit. */
6031         mask |= 1ull;
6032
6033 #ifdef CONFIG_X86_64
6034         /*
6035          * If reserved bit is not supported, clear the present bit to disable
6036          * mmio page fault.
6037          */
6038         if (maxphyaddr == 52)
6039                 mask &= ~1ull;
6040 #endif
6041
6042         kvm_mmu_set_mmio_spte_mask(mask, mask);
6043 }
6044
6045 #ifdef CONFIG_X86_64
6046 static void pvclock_gtod_update_fn(struct work_struct *work)
6047 {
6048         struct kvm *kvm;
6049
6050         struct kvm_vcpu *vcpu;
6051         int i;
6052
6053         spin_lock(&kvm_lock);
6054         list_for_each_entry(kvm, &vm_list, vm_list)
6055                 kvm_for_each_vcpu(i, vcpu, kvm)
6056                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6057         atomic_set(&kvm_guest_has_master_clock, 0);
6058         spin_unlock(&kvm_lock);
6059 }
6060
6061 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6062
6063 /*
6064  * Notification about pvclock gtod data update.
6065  */
6066 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6067                                void *priv)
6068 {
6069         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6070         struct timekeeper *tk = priv;
6071
6072         update_pvclock_gtod(tk);
6073
6074         /* disable master clock if host does not trust, or does not
6075          * use, TSC clocksource
6076          */
6077         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6078             atomic_read(&kvm_guest_has_master_clock) != 0)
6079                 queue_work(system_long_wq, &pvclock_gtod_work);
6080
6081         return 0;
6082 }
6083
6084 static struct notifier_block pvclock_gtod_notifier = {
6085         .notifier_call = pvclock_gtod_notify,
6086 };
6087 #endif
6088
6089 int kvm_arch_init(void *opaque)
6090 {
6091         int r;
6092         struct kvm_x86_ops *ops = opaque;
6093
6094         if (kvm_x86_ops) {
6095                 printk(KERN_ERR "kvm: already loaded the other module\n");
6096                 r = -EEXIST;
6097                 goto out;
6098         }
6099
6100         if (!ops->cpu_has_kvm_support()) {
6101                 printk(KERN_ERR "kvm: no hardware support\n");
6102                 r = -EOPNOTSUPP;
6103                 goto out;
6104         }
6105         if (ops->disabled_by_bios()) {
6106                 printk(KERN_ERR "kvm: disabled by bios\n");
6107                 r = -EOPNOTSUPP;
6108                 goto out;
6109         }
6110
6111         r = -ENOMEM;
6112         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6113         if (!shared_msrs) {
6114                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6115                 goto out;
6116         }
6117
6118         r = kvm_mmu_module_init();
6119         if (r)
6120                 goto out_free_percpu;
6121
6122         kvm_set_mmio_spte_mask();
6123
6124         kvm_x86_ops = ops;
6125
6126         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6127                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6128                         PT_PRESENT_MASK, 0);
6129         kvm_timer_init();
6130
6131         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6132
6133         if (boot_cpu_has(X86_FEATURE_XSAVE))
6134                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6135
6136         kvm_lapic_init();
6137 #ifdef CONFIG_X86_64
6138         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6139 #endif
6140
6141         return 0;
6142
6143 out_free_percpu:
6144         free_percpu(shared_msrs);
6145 out:
6146         return r;
6147 }
6148
6149 void kvm_arch_exit(void)
6150 {
6151         kvm_lapic_exit();
6152         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6153
6154         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6155                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6156                                             CPUFREQ_TRANSITION_NOTIFIER);
6157         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6158 #ifdef CONFIG_X86_64
6159         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6160 #endif
6161         kvm_x86_ops = NULL;
6162         kvm_mmu_module_exit();
6163         free_percpu(shared_msrs);
6164 }
6165
6166 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6167 {
6168         ++vcpu->stat.halt_exits;
6169         if (lapic_in_kernel(vcpu)) {
6170                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6171                 return 1;
6172         } else {
6173                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6174                 return 0;
6175         }
6176 }
6177 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6178
6179 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6180 {
6181         int ret = kvm_skip_emulated_instruction(vcpu);
6182         /*
6183          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6184          * KVM_EXIT_DEBUG here.
6185          */
6186         return kvm_vcpu_halt(vcpu) && ret;
6187 }
6188 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6189
6190 #ifdef CONFIG_X86_64
6191 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6192                                 unsigned long clock_type)
6193 {
6194         struct kvm_clock_pairing clock_pairing;
6195         struct timespec ts;
6196         u64 cycle;
6197         int ret;
6198
6199         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6200                 return -KVM_EOPNOTSUPP;
6201
6202         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6203                 return -KVM_EOPNOTSUPP;
6204
6205         clock_pairing.sec = ts.tv_sec;
6206         clock_pairing.nsec = ts.tv_nsec;
6207         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6208         clock_pairing.flags = 0;
6209
6210         ret = 0;
6211         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6212                             sizeof(struct kvm_clock_pairing)))
6213                 ret = -KVM_EFAULT;
6214
6215         return ret;
6216 }
6217 #endif
6218
6219 /*
6220  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6221  *
6222  * @apicid - apicid of vcpu to be kicked.
6223  */
6224 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6225 {
6226         struct kvm_lapic_irq lapic_irq;
6227
6228         lapic_irq.shorthand = 0;
6229         lapic_irq.dest_mode = 0;
6230         lapic_irq.level = 0;
6231         lapic_irq.dest_id = apicid;
6232         lapic_irq.msi_redir_hint = false;
6233
6234         lapic_irq.delivery_mode = APIC_DM_REMRD;
6235         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6236 }
6237
6238 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6239 {
6240         vcpu->arch.apicv_active = false;
6241         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6242 }
6243
6244 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6245 {
6246         unsigned long nr, a0, a1, a2, a3, ret;
6247         int op_64_bit, r;
6248
6249         r = kvm_skip_emulated_instruction(vcpu);
6250
6251         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6252                 return kvm_hv_hypercall(vcpu);
6253
6254         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6255         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6256         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6257         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6258         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6259
6260         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6261
6262         op_64_bit = is_64_bit_mode(vcpu);
6263         if (!op_64_bit) {
6264                 nr &= 0xFFFFFFFF;
6265                 a0 &= 0xFFFFFFFF;
6266                 a1 &= 0xFFFFFFFF;
6267                 a2 &= 0xFFFFFFFF;
6268                 a3 &= 0xFFFFFFFF;
6269         }
6270
6271         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6272                 ret = -KVM_EPERM;
6273                 goto out;
6274         }
6275
6276         switch (nr) {
6277         case KVM_HC_VAPIC_POLL_IRQ:
6278                 ret = 0;
6279                 break;
6280         case KVM_HC_KICK_CPU:
6281                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6282                 ret = 0;
6283                 break;
6284 #ifdef CONFIG_X86_64
6285         case KVM_HC_CLOCK_PAIRING:
6286                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6287                 break;
6288 #endif
6289         default:
6290                 ret = -KVM_ENOSYS;
6291                 break;
6292         }
6293 out:
6294         if (!op_64_bit)
6295                 ret = (u32)ret;
6296         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6297         ++vcpu->stat.hypercalls;
6298         return r;
6299 }
6300 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6301
6302 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6303 {
6304         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6305         char instruction[3];
6306         unsigned long rip = kvm_rip_read(vcpu);
6307
6308         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6309
6310         return emulator_write_emulated(ctxt, rip, instruction, 3,
6311                 &ctxt->exception);
6312 }
6313
6314 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6315 {
6316         return vcpu->run->request_interrupt_window &&
6317                 likely(!pic_in_kernel(vcpu->kvm));
6318 }
6319
6320 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6321 {
6322         struct kvm_run *kvm_run = vcpu->run;
6323
6324         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6325         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6326         kvm_run->cr8 = kvm_get_cr8(vcpu);
6327         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6328         kvm_run->ready_for_interrupt_injection =
6329                 pic_in_kernel(vcpu->kvm) ||
6330                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6331 }
6332
6333 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6334 {
6335         int max_irr, tpr;
6336
6337         if (!kvm_x86_ops->update_cr8_intercept)
6338                 return;
6339
6340         if (!lapic_in_kernel(vcpu))
6341                 return;
6342
6343         if (vcpu->arch.apicv_active)
6344                 return;
6345
6346         if (!vcpu->arch.apic->vapic_addr)
6347                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6348         else
6349                 max_irr = -1;
6350
6351         if (max_irr != -1)
6352                 max_irr >>= 4;
6353
6354         tpr = kvm_lapic_get_cr8(vcpu);
6355
6356         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6357 }
6358
6359 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6360 {
6361         int r;
6362
6363         /* try to reinject previous events if any */
6364         if (vcpu->arch.exception.pending) {
6365                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6366                                         vcpu->arch.exception.has_error_code,
6367                                         vcpu->arch.exception.error_code);
6368
6369                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6370                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6371                                              X86_EFLAGS_RF);
6372
6373                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6374                     (vcpu->arch.dr7 & DR7_GD)) {
6375                         vcpu->arch.dr7 &= ~DR7_GD;
6376                         kvm_update_dr7(vcpu);
6377                 }
6378
6379                 kvm_x86_ops->queue_exception(vcpu);
6380                 return 0;
6381         }
6382
6383         if (vcpu->arch.nmi_injected) {
6384                 kvm_x86_ops->set_nmi(vcpu);
6385                 return 0;
6386         }
6387
6388         if (vcpu->arch.interrupt.pending) {
6389                 kvm_x86_ops->set_irq(vcpu);
6390                 return 0;
6391         }
6392
6393         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6394                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6395                 if (r != 0)
6396                         return r;
6397         }
6398
6399         /* try to inject new event if pending */
6400         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6401                 vcpu->arch.smi_pending = false;
6402                 enter_smm(vcpu);
6403         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6404                 --vcpu->arch.nmi_pending;
6405                 vcpu->arch.nmi_injected = true;
6406                 kvm_x86_ops->set_nmi(vcpu);
6407         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6408                 /*
6409                  * Because interrupts can be injected asynchronously, we are
6410                  * calling check_nested_events again here to avoid a race condition.
6411                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6412                  * proposal and current concerns.  Perhaps we should be setting
6413                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6414                  */
6415                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6416                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6417                         if (r != 0)
6418                                 return r;
6419                 }
6420                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6421                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6422                                             false);
6423                         kvm_x86_ops->set_irq(vcpu);
6424                 }
6425         }
6426
6427         return 0;
6428 }
6429
6430 static void process_nmi(struct kvm_vcpu *vcpu)
6431 {
6432         unsigned limit = 2;
6433
6434         /*
6435          * x86 is limited to one NMI running, and one NMI pending after it.
6436          * If an NMI is already in progress, limit further NMIs to just one.
6437          * Otherwise, allow two (and we'll inject the first one immediately).
6438          */
6439         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6440                 limit = 1;
6441
6442         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6443         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6444         kvm_make_request(KVM_REQ_EVENT, vcpu);
6445 }
6446
6447 #define put_smstate(type, buf, offset, val)                       \
6448         *(type *)((buf) + (offset) - 0x7e00) = val
6449
6450 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6451 {
6452         u32 flags = 0;
6453         flags |= seg->g       << 23;
6454         flags |= seg->db      << 22;
6455         flags |= seg->l       << 21;
6456         flags |= seg->avl     << 20;
6457         flags |= seg->present << 15;
6458         flags |= seg->dpl     << 13;
6459         flags |= seg->s       << 12;
6460         flags |= seg->type    << 8;
6461         return flags;
6462 }
6463
6464 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6465 {
6466         struct kvm_segment seg;
6467         int offset;
6468
6469         kvm_get_segment(vcpu, &seg, n);
6470         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6471
6472         if (n < 3)
6473                 offset = 0x7f84 + n * 12;
6474         else
6475                 offset = 0x7f2c + (n - 3) * 12;
6476
6477         put_smstate(u32, buf, offset + 8, seg.base);
6478         put_smstate(u32, buf, offset + 4, seg.limit);
6479         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6480 }
6481
6482 #ifdef CONFIG_X86_64
6483 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6484 {
6485         struct kvm_segment seg;
6486         int offset;
6487         u16 flags;
6488
6489         kvm_get_segment(vcpu, &seg, n);
6490         offset = 0x7e00 + n * 16;
6491
6492         flags = enter_smm_get_segment_flags(&seg) >> 8;
6493         put_smstate(u16, buf, offset, seg.selector);
6494         put_smstate(u16, buf, offset + 2, flags);
6495         put_smstate(u32, buf, offset + 4, seg.limit);
6496         put_smstate(u64, buf, offset + 8, seg.base);
6497 }
6498 #endif
6499
6500 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6501 {
6502         struct desc_ptr dt;
6503         struct kvm_segment seg;
6504         unsigned long val;
6505         int i;
6506
6507         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6508         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6509         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6510         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6511
6512         for (i = 0; i < 8; i++)
6513                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6514
6515         kvm_get_dr(vcpu, 6, &val);
6516         put_smstate(u32, buf, 0x7fcc, (u32)val);
6517         kvm_get_dr(vcpu, 7, &val);
6518         put_smstate(u32, buf, 0x7fc8, (u32)val);
6519
6520         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6521         put_smstate(u32, buf, 0x7fc4, seg.selector);
6522         put_smstate(u32, buf, 0x7f64, seg.base);
6523         put_smstate(u32, buf, 0x7f60, seg.limit);
6524         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6525
6526         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6527         put_smstate(u32, buf, 0x7fc0, seg.selector);
6528         put_smstate(u32, buf, 0x7f80, seg.base);
6529         put_smstate(u32, buf, 0x7f7c, seg.limit);
6530         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6531
6532         kvm_x86_ops->get_gdt(vcpu, &dt);
6533         put_smstate(u32, buf, 0x7f74, dt.address);
6534         put_smstate(u32, buf, 0x7f70, dt.size);
6535
6536         kvm_x86_ops->get_idt(vcpu, &dt);
6537         put_smstate(u32, buf, 0x7f58, dt.address);
6538         put_smstate(u32, buf, 0x7f54, dt.size);
6539
6540         for (i = 0; i < 6; i++)
6541                 enter_smm_save_seg_32(vcpu, buf, i);
6542
6543         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6544
6545         /* revision id */
6546         put_smstate(u32, buf, 0x7efc, 0x00020000);
6547         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6548 }
6549
6550 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6551 {
6552 #ifdef CONFIG_X86_64
6553         struct desc_ptr dt;
6554         struct kvm_segment seg;
6555         unsigned long val;
6556         int i;
6557
6558         for (i = 0; i < 16; i++)
6559                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6560
6561         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6562         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6563
6564         kvm_get_dr(vcpu, 6, &val);
6565         put_smstate(u64, buf, 0x7f68, val);
6566         kvm_get_dr(vcpu, 7, &val);
6567         put_smstate(u64, buf, 0x7f60, val);
6568
6569         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6570         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6571         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6572
6573         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6574
6575         /* revision id */
6576         put_smstate(u32, buf, 0x7efc, 0x00020064);
6577
6578         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6579
6580         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6581         put_smstate(u16, buf, 0x7e90, seg.selector);
6582         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6583         put_smstate(u32, buf, 0x7e94, seg.limit);
6584         put_smstate(u64, buf, 0x7e98, seg.base);
6585
6586         kvm_x86_ops->get_idt(vcpu, &dt);
6587         put_smstate(u32, buf, 0x7e84, dt.size);
6588         put_smstate(u64, buf, 0x7e88, dt.address);
6589
6590         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6591         put_smstate(u16, buf, 0x7e70, seg.selector);
6592         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6593         put_smstate(u32, buf, 0x7e74, seg.limit);
6594         put_smstate(u64, buf, 0x7e78, seg.base);
6595
6596         kvm_x86_ops->get_gdt(vcpu, &dt);
6597         put_smstate(u32, buf, 0x7e64, dt.size);
6598         put_smstate(u64, buf, 0x7e68, dt.address);
6599
6600         for (i = 0; i < 6; i++)
6601                 enter_smm_save_seg_64(vcpu, buf, i);
6602 #else
6603         WARN_ON_ONCE(1);
6604 #endif
6605 }
6606
6607 static void enter_smm(struct kvm_vcpu *vcpu)
6608 {
6609         struct kvm_segment cs, ds;
6610         struct desc_ptr dt;
6611         char buf[512];
6612         u32 cr0;
6613
6614         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6615         vcpu->arch.hflags |= HF_SMM_MASK;
6616         memset(buf, 0, 512);
6617         if (guest_cpuid_has_longmode(vcpu))
6618                 enter_smm_save_state_64(vcpu, buf);
6619         else
6620                 enter_smm_save_state_32(vcpu, buf);
6621
6622         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6623
6624         if (kvm_x86_ops->get_nmi_mask(vcpu))
6625                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6626         else
6627                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6628
6629         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6630         kvm_rip_write(vcpu, 0x8000);
6631
6632         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6633         kvm_x86_ops->set_cr0(vcpu, cr0);
6634         vcpu->arch.cr0 = cr0;
6635
6636         kvm_x86_ops->set_cr4(vcpu, 0);
6637
6638         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6639         dt.address = dt.size = 0;
6640         kvm_x86_ops->set_idt(vcpu, &dt);
6641
6642         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6643
6644         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6645         cs.base = vcpu->arch.smbase;
6646
6647         ds.selector = 0;
6648         ds.base = 0;
6649
6650         cs.limit    = ds.limit = 0xffffffff;
6651         cs.type     = ds.type = 0x3;
6652         cs.dpl      = ds.dpl = 0;
6653         cs.db       = ds.db = 0;
6654         cs.s        = ds.s = 1;
6655         cs.l        = ds.l = 0;
6656         cs.g        = ds.g = 1;
6657         cs.avl      = ds.avl = 0;
6658         cs.present  = ds.present = 1;
6659         cs.unusable = ds.unusable = 0;
6660         cs.padding  = ds.padding = 0;
6661
6662         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6663         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6664         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6665         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6666         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6667         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6668
6669         if (guest_cpuid_has_longmode(vcpu))
6670                 kvm_x86_ops->set_efer(vcpu, 0);
6671
6672         kvm_update_cpuid(vcpu);
6673         kvm_mmu_reset_context(vcpu);
6674 }
6675
6676 static void process_smi(struct kvm_vcpu *vcpu)
6677 {
6678         vcpu->arch.smi_pending = true;
6679         kvm_make_request(KVM_REQ_EVENT, vcpu);
6680 }
6681
6682 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6683 {
6684         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6685 }
6686
6687 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6688 {
6689         u64 eoi_exit_bitmap[4];
6690
6691         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6692                 return;
6693
6694         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6695
6696         if (irqchip_split(vcpu->kvm))
6697                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6698         else {
6699                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6700                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6701                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6702         }
6703         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6704                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6705         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6706 }
6707
6708 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6709 {
6710         ++vcpu->stat.tlb_flush;
6711         kvm_x86_ops->tlb_flush(vcpu);
6712 }
6713
6714 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6715 {
6716         struct page *page = NULL;
6717
6718         if (!lapic_in_kernel(vcpu))
6719                 return;
6720
6721         if (!kvm_x86_ops->set_apic_access_page_addr)
6722                 return;
6723
6724         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6725         if (is_error_page(page))
6726                 return;
6727         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6728
6729         /*
6730          * Do not pin apic access page in memory, the MMU notifier
6731          * will call us again if it is migrated or swapped out.
6732          */
6733         put_page(page);
6734 }
6735 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6736
6737 /*
6738  * Returns 1 to let vcpu_run() continue the guest execution loop without
6739  * exiting to the userspace.  Otherwise, the value will be returned to the
6740  * userspace.
6741  */
6742 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6743 {
6744         int r;
6745         bool req_int_win =
6746                 dm_request_for_irq_injection(vcpu) &&
6747                 kvm_cpu_accept_dm_intr(vcpu);
6748
6749         bool req_immediate_exit = false;
6750
6751         if (kvm_request_pending(vcpu)) {
6752                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6753                         kvm_mmu_unload(vcpu);
6754                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6755                         __kvm_migrate_timers(vcpu);
6756                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6757                         kvm_gen_update_masterclock(vcpu->kvm);
6758                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6759                         kvm_gen_kvmclock_update(vcpu);
6760                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6761                         r = kvm_guest_time_update(vcpu);
6762                         if (unlikely(r))
6763                                 goto out;
6764                 }
6765                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6766                         kvm_mmu_sync_roots(vcpu);
6767                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6768                         kvm_vcpu_flush_tlb(vcpu);
6769                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6770                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6771                         r = 0;
6772                         goto out;
6773                 }
6774                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6775                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6776                         r = 0;
6777                         goto out;
6778                 }
6779                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6780                         /* Page is swapped out. Do synthetic halt */
6781                         vcpu->arch.apf.halted = true;
6782                         r = 1;
6783                         goto out;
6784                 }
6785                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6786                         record_steal_time(vcpu);
6787                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6788                         process_smi(vcpu);
6789                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6790                         process_nmi(vcpu);
6791                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6792                         kvm_pmu_handle_event(vcpu);
6793                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6794                         kvm_pmu_deliver_pmi(vcpu);
6795                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6796                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6797                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6798                                      vcpu->arch.ioapic_handled_vectors)) {
6799                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6800                                 vcpu->run->eoi.vector =
6801                                                 vcpu->arch.pending_ioapic_eoi;
6802                                 r = 0;
6803                                 goto out;
6804                         }
6805                 }
6806                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6807                         vcpu_scan_ioapic(vcpu);
6808                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6809                         kvm_vcpu_reload_apic_access_page(vcpu);
6810                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6811                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6812                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6813                         r = 0;
6814                         goto out;
6815                 }
6816                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6817                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6818                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6819                         r = 0;
6820                         goto out;
6821                 }
6822                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6823                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6824                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6825                         r = 0;
6826                         goto out;
6827                 }
6828
6829                 /*
6830                  * KVM_REQ_HV_STIMER has to be processed after
6831                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6832                  * depend on the guest clock being up-to-date
6833                  */
6834                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6835                         kvm_hv_process_stimers(vcpu);
6836         }
6837
6838         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6839                 ++vcpu->stat.req_event;
6840                 kvm_apic_accept_events(vcpu);
6841                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6842                         r = 1;
6843                         goto out;
6844                 }
6845
6846                 if (inject_pending_event(vcpu, req_int_win) != 0)
6847                         req_immediate_exit = true;
6848                 else {
6849                         /* Enable NMI/IRQ window open exits if needed.
6850                          *
6851                          * SMIs have two cases: 1) they can be nested, and
6852                          * then there is nothing to do here because RSM will
6853                          * cause a vmexit anyway; 2) or the SMI can be pending
6854                          * because inject_pending_event has completed the
6855                          * injection of an IRQ or NMI from the previous vmexit,
6856                          * and then we request an immediate exit to inject the SMI.
6857                          */
6858                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6859                                 req_immediate_exit = true;
6860                         if (vcpu->arch.nmi_pending)
6861                                 kvm_x86_ops->enable_nmi_window(vcpu);
6862                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6863                                 kvm_x86_ops->enable_irq_window(vcpu);
6864                 }
6865
6866                 if (kvm_lapic_enabled(vcpu)) {
6867                         update_cr8_intercept(vcpu);
6868                         kvm_lapic_sync_to_vapic(vcpu);
6869                 }
6870         }
6871
6872         r = kvm_mmu_reload(vcpu);
6873         if (unlikely(r)) {
6874                 goto cancel_injection;
6875         }
6876
6877         preempt_disable();
6878
6879         kvm_x86_ops->prepare_guest_switch(vcpu);
6880         kvm_load_guest_fpu(vcpu);
6881
6882         /*
6883          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6884          * IPI are then delayed after guest entry, which ensures that they
6885          * result in virtual interrupt delivery.
6886          */
6887         local_irq_disable();
6888         vcpu->mode = IN_GUEST_MODE;
6889
6890         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6891
6892         /*
6893          * 1) We should set ->mode before checking ->requests.  Please see
6894          * the comment in kvm_vcpu_exiting_guest_mode().
6895          *
6896          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6897          * pairs with the memory barrier implicit in pi_test_and_set_on
6898          * (see vmx_deliver_posted_interrupt).
6899          *
6900          * 3) This also orders the write to mode from any reads to the page
6901          * tables done while the VCPU is running.  Please see the comment
6902          * in kvm_flush_remote_tlbs.
6903          */
6904         smp_mb__after_srcu_read_unlock();
6905
6906         /*
6907          * This handles the case where a posted interrupt was
6908          * notified with kvm_vcpu_kick.
6909          */
6910         if (kvm_lapic_enabled(vcpu)) {
6911                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6912                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6913         }
6914
6915         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6916             || need_resched() || signal_pending(current)) {
6917                 vcpu->mode = OUTSIDE_GUEST_MODE;
6918                 smp_wmb();
6919                 local_irq_enable();
6920                 preempt_enable();
6921                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6922                 r = 1;
6923                 goto cancel_injection;
6924         }
6925
6926         kvm_load_guest_xcr0(vcpu);
6927
6928         if (req_immediate_exit) {
6929                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6930                 smp_send_reschedule(vcpu->cpu);
6931         }
6932
6933         trace_kvm_entry(vcpu->vcpu_id);
6934         wait_lapic_expire(vcpu);
6935         guest_enter_irqoff();
6936
6937         if (unlikely(vcpu->arch.switch_db_regs)) {
6938                 set_debugreg(0, 7);
6939                 set_debugreg(vcpu->arch.eff_db[0], 0);
6940                 set_debugreg(vcpu->arch.eff_db[1], 1);
6941                 set_debugreg(vcpu->arch.eff_db[2], 2);
6942                 set_debugreg(vcpu->arch.eff_db[3], 3);
6943                 set_debugreg(vcpu->arch.dr6, 6);
6944                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6945         }
6946
6947         kvm_x86_ops->run(vcpu);
6948
6949         /*
6950          * Do this here before restoring debug registers on the host.  And
6951          * since we do this before handling the vmexit, a DR access vmexit
6952          * can (a) read the correct value of the debug registers, (b) set
6953          * KVM_DEBUGREG_WONT_EXIT again.
6954          */
6955         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6956                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6957                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6958                 kvm_update_dr0123(vcpu);
6959                 kvm_update_dr6(vcpu);
6960                 kvm_update_dr7(vcpu);
6961                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6962         }
6963
6964         /*
6965          * If the guest has used debug registers, at least dr7
6966          * will be disabled while returning to the host.
6967          * If we don't have active breakpoints in the host, we don't
6968          * care about the messed up debug address registers. But if
6969          * we have some of them active, restore the old state.
6970          */
6971         if (hw_breakpoint_active())
6972                 hw_breakpoint_restore();
6973
6974         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6975
6976         vcpu->mode = OUTSIDE_GUEST_MODE;
6977         smp_wmb();
6978
6979         kvm_put_guest_xcr0(vcpu);
6980
6981         kvm_x86_ops->handle_external_intr(vcpu);
6982
6983         ++vcpu->stat.exits;
6984
6985         guest_exit_irqoff();
6986
6987         local_irq_enable();
6988         preempt_enable();
6989
6990         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6991
6992         /*
6993          * Profile KVM exit RIPs:
6994          */
6995         if (unlikely(prof_on == KVM_PROFILING)) {
6996                 unsigned long rip = kvm_rip_read(vcpu);
6997                 profile_hit(KVM_PROFILING, (void *)rip);
6998         }
6999
7000         if (unlikely(vcpu->arch.tsc_always_catchup))
7001                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7002
7003         if (vcpu->arch.apic_attention)
7004                 kvm_lapic_sync_from_vapic(vcpu);
7005
7006         r = kvm_x86_ops->handle_exit(vcpu);
7007         return r;
7008
7009 cancel_injection:
7010         kvm_x86_ops->cancel_injection(vcpu);
7011         if (unlikely(vcpu->arch.apic_attention))
7012                 kvm_lapic_sync_from_vapic(vcpu);
7013 out:
7014         return r;
7015 }
7016
7017 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7018 {
7019         if (!kvm_arch_vcpu_runnable(vcpu) &&
7020             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7021                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7022                 kvm_vcpu_block(vcpu);
7023                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7024
7025                 if (kvm_x86_ops->post_block)
7026                         kvm_x86_ops->post_block(vcpu);
7027
7028                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7029                         return 1;
7030         }
7031
7032         kvm_apic_accept_events(vcpu);
7033         switch(vcpu->arch.mp_state) {
7034         case KVM_MP_STATE_HALTED:
7035                 vcpu->arch.pv.pv_unhalted = false;
7036                 vcpu->arch.mp_state =
7037                         KVM_MP_STATE_RUNNABLE;
7038         case KVM_MP_STATE_RUNNABLE:
7039                 vcpu->arch.apf.halted = false;
7040                 break;
7041         case KVM_MP_STATE_INIT_RECEIVED:
7042                 break;
7043         default:
7044                 return -EINTR;
7045                 break;
7046         }
7047         return 1;
7048 }
7049
7050 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7051 {
7052         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7053                 kvm_x86_ops->check_nested_events(vcpu, false);
7054
7055         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7056                 !vcpu->arch.apf.halted);
7057 }
7058
7059 static int vcpu_run(struct kvm_vcpu *vcpu)
7060 {
7061         int r;
7062         struct kvm *kvm = vcpu->kvm;
7063
7064         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7065
7066         for (;;) {
7067                 if (kvm_vcpu_running(vcpu)) {
7068                         r = vcpu_enter_guest(vcpu);
7069                 } else {
7070                         r = vcpu_block(kvm, vcpu);
7071                 }
7072
7073                 if (r <= 0)
7074                         break;
7075
7076                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7077                 if (kvm_cpu_has_pending_timer(vcpu))
7078                         kvm_inject_pending_timer_irqs(vcpu);
7079
7080                 if (dm_request_for_irq_injection(vcpu) &&
7081                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7082                         r = 0;
7083                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7084                         ++vcpu->stat.request_irq_exits;
7085                         break;
7086                 }
7087
7088                 kvm_check_async_pf_completion(vcpu);
7089
7090                 if (signal_pending(current)) {
7091                         r = -EINTR;
7092                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7093                         ++vcpu->stat.signal_exits;
7094                         break;
7095                 }
7096                 if (need_resched()) {
7097                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7098                         cond_resched();
7099                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7100                 }
7101         }
7102
7103         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7104
7105         return r;
7106 }
7107
7108 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7109 {
7110         int r;
7111         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7112         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7113         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7114         if (r != EMULATE_DONE)
7115                 return 0;
7116         return 1;
7117 }
7118
7119 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7120 {
7121         BUG_ON(!vcpu->arch.pio.count);
7122
7123         return complete_emulated_io(vcpu);
7124 }
7125
7126 /*
7127  * Implements the following, as a state machine:
7128  *
7129  * read:
7130  *   for each fragment
7131  *     for each mmio piece in the fragment
7132  *       write gpa, len
7133  *       exit
7134  *       copy data
7135  *   execute insn
7136  *
7137  * write:
7138  *   for each fragment
7139  *     for each mmio piece in the fragment
7140  *       write gpa, len
7141  *       copy data
7142  *       exit
7143  */
7144 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7145 {
7146         struct kvm_run *run = vcpu->run;
7147         struct kvm_mmio_fragment *frag;
7148         unsigned len;
7149
7150         BUG_ON(!vcpu->mmio_needed);
7151
7152         /* Complete previous fragment */
7153         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7154         len = min(8u, frag->len);
7155         if (!vcpu->mmio_is_write)
7156                 memcpy(frag->data, run->mmio.data, len);
7157
7158         if (frag->len <= 8) {
7159                 /* Switch to the next fragment. */
7160                 frag++;
7161                 vcpu->mmio_cur_fragment++;
7162         } else {
7163                 /* Go forward to the next mmio piece. */
7164                 frag->data += len;
7165                 frag->gpa += len;
7166                 frag->len -= len;
7167         }
7168
7169         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7170                 vcpu->mmio_needed = 0;
7171
7172                 /* FIXME: return into emulator if single-stepping.  */
7173                 if (vcpu->mmio_is_write)
7174                         return 1;
7175                 vcpu->mmio_read_completed = 1;
7176                 return complete_emulated_io(vcpu);
7177         }
7178
7179         run->exit_reason = KVM_EXIT_MMIO;
7180         run->mmio.phys_addr = frag->gpa;
7181         if (vcpu->mmio_is_write)
7182                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7183         run->mmio.len = min(8u, frag->len);
7184         run->mmio.is_write = vcpu->mmio_is_write;
7185         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7186         return 0;
7187 }
7188
7189
7190 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7191 {
7192         struct fpu *fpu = &current->thread.fpu;
7193         int r;
7194         sigset_t sigsaved;
7195
7196         fpu__activate_curr(fpu);
7197
7198         if (vcpu->sigset_active)
7199                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7200
7201         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7202                 kvm_vcpu_block(vcpu);
7203                 kvm_apic_accept_events(vcpu);
7204                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7205                 r = -EAGAIN;
7206                 goto out;
7207         }
7208
7209         /* re-sync apic's tpr */
7210         if (!lapic_in_kernel(vcpu)) {
7211                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7212                         r = -EINVAL;
7213                         goto out;
7214                 }
7215         }
7216
7217         if (unlikely(vcpu->arch.complete_userspace_io)) {
7218                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7219                 vcpu->arch.complete_userspace_io = NULL;
7220                 r = cui(vcpu);
7221                 if (r <= 0)
7222                         goto out;
7223         } else
7224                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7225
7226         if (kvm_run->immediate_exit)
7227                 r = -EINTR;
7228         else
7229                 r = vcpu_run(vcpu);
7230
7231 out:
7232         post_kvm_run_save(vcpu);
7233         if (vcpu->sigset_active)
7234                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7235
7236         return r;
7237 }
7238
7239 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7240 {
7241         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7242                 /*
7243                  * We are here if userspace calls get_regs() in the middle of
7244                  * instruction emulation. Registers state needs to be copied
7245                  * back from emulation context to vcpu. Userspace shouldn't do
7246                  * that usually, but some bad designed PV devices (vmware
7247                  * backdoor interface) need this to work
7248                  */
7249                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7250                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7251         }
7252         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7253         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7254         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7255         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7256         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7257         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7258         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7259         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7260 #ifdef CONFIG_X86_64
7261         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7262         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7263         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7264         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7265         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7266         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7267         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7268         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7269 #endif
7270
7271         regs->rip = kvm_rip_read(vcpu);
7272         regs->rflags = kvm_get_rflags(vcpu);
7273
7274         return 0;
7275 }
7276
7277 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7278 {
7279         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7280         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7281
7282         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7283         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7284         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7285         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7286         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7287         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7288         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7289         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7290 #ifdef CONFIG_X86_64
7291         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7292         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7293         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7294         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7295         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7296         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7297         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7298         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7299 #endif
7300
7301         kvm_rip_write(vcpu, regs->rip);
7302         kvm_set_rflags(vcpu, regs->rflags);
7303
7304         vcpu->arch.exception.pending = false;
7305
7306         kvm_make_request(KVM_REQ_EVENT, vcpu);
7307
7308         return 0;
7309 }
7310
7311 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7312 {
7313         struct kvm_segment cs;
7314
7315         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7316         *db = cs.db;
7317         *l = cs.l;
7318 }
7319 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7320
7321 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7322                                   struct kvm_sregs *sregs)
7323 {
7324         struct desc_ptr dt;
7325
7326         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7327         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7328         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7329         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7330         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7331         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7332
7333         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7334         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7335
7336         kvm_x86_ops->get_idt(vcpu, &dt);
7337         sregs->idt.limit = dt.size;
7338         sregs->idt.base = dt.address;
7339         kvm_x86_ops->get_gdt(vcpu, &dt);
7340         sregs->gdt.limit = dt.size;
7341         sregs->gdt.base = dt.address;
7342
7343         sregs->cr0 = kvm_read_cr0(vcpu);
7344         sregs->cr2 = vcpu->arch.cr2;
7345         sregs->cr3 = kvm_read_cr3(vcpu);
7346         sregs->cr4 = kvm_read_cr4(vcpu);
7347         sregs->cr8 = kvm_get_cr8(vcpu);
7348         sregs->efer = vcpu->arch.efer;
7349         sregs->apic_base = kvm_get_apic_base(vcpu);
7350
7351         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7352
7353         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7354                 set_bit(vcpu->arch.interrupt.nr,
7355                         (unsigned long *)sregs->interrupt_bitmap);
7356
7357         return 0;
7358 }
7359
7360 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7361                                     struct kvm_mp_state *mp_state)
7362 {
7363         kvm_apic_accept_events(vcpu);
7364         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7365                                         vcpu->arch.pv.pv_unhalted)
7366                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7367         else
7368                 mp_state->mp_state = vcpu->arch.mp_state;
7369
7370         return 0;
7371 }
7372
7373 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7374                                     struct kvm_mp_state *mp_state)
7375 {
7376         if (!lapic_in_kernel(vcpu) &&
7377             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7378                 return -EINVAL;
7379
7380         /* INITs are latched while in SMM */
7381         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7382             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7383              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7384                 return -EINVAL;
7385
7386         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7387                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7388                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7389         } else
7390                 vcpu->arch.mp_state = mp_state->mp_state;
7391         kvm_make_request(KVM_REQ_EVENT, vcpu);
7392         return 0;
7393 }
7394
7395 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7396                     int reason, bool has_error_code, u32 error_code)
7397 {
7398         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7399         int ret;
7400
7401         init_emulate_ctxt(vcpu);
7402
7403         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7404                                    has_error_code, error_code);
7405
7406         if (ret)
7407                 return EMULATE_FAIL;
7408
7409         kvm_rip_write(vcpu, ctxt->eip);
7410         kvm_set_rflags(vcpu, ctxt->eflags);
7411         kvm_make_request(KVM_REQ_EVENT, vcpu);
7412         return EMULATE_DONE;
7413 }
7414 EXPORT_SYMBOL_GPL(kvm_task_switch);
7415
7416 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7417                                   struct kvm_sregs *sregs)
7418 {
7419         struct msr_data apic_base_msr;
7420         int mmu_reset_needed = 0;
7421         int pending_vec, max_bits, idx;
7422         struct desc_ptr dt;
7423
7424         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7425                 return -EINVAL;
7426
7427         dt.size = sregs->idt.limit;
7428         dt.address = sregs->idt.base;
7429         kvm_x86_ops->set_idt(vcpu, &dt);
7430         dt.size = sregs->gdt.limit;
7431         dt.address = sregs->gdt.base;
7432         kvm_x86_ops->set_gdt(vcpu, &dt);
7433
7434         vcpu->arch.cr2 = sregs->cr2;
7435         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7436         vcpu->arch.cr3 = sregs->cr3;
7437         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7438
7439         kvm_set_cr8(vcpu, sregs->cr8);
7440
7441         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7442         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7443         apic_base_msr.data = sregs->apic_base;
7444         apic_base_msr.host_initiated = true;
7445         kvm_set_apic_base(vcpu, &apic_base_msr);
7446
7447         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7448         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7449         vcpu->arch.cr0 = sregs->cr0;
7450
7451         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7452         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7453         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7454                 kvm_update_cpuid(vcpu);
7455
7456         idx = srcu_read_lock(&vcpu->kvm->srcu);
7457         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7458                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7459                 mmu_reset_needed = 1;
7460         }
7461         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7462
7463         if (mmu_reset_needed)
7464                 kvm_mmu_reset_context(vcpu);
7465
7466         max_bits = KVM_NR_INTERRUPTS;
7467         pending_vec = find_first_bit(
7468                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7469         if (pending_vec < max_bits) {
7470                 kvm_queue_interrupt(vcpu, pending_vec, false);
7471                 pr_debug("Set back pending irq %d\n", pending_vec);
7472         }
7473
7474         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7475         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7476         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7477         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7478         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7479         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7480
7481         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7482         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7483
7484         update_cr8_intercept(vcpu);
7485
7486         /* Older userspace won't unhalt the vcpu on reset. */
7487         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7488             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7489             !is_protmode(vcpu))
7490                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7491
7492         kvm_make_request(KVM_REQ_EVENT, vcpu);
7493
7494         return 0;
7495 }
7496
7497 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7498                                         struct kvm_guest_debug *dbg)
7499 {
7500         unsigned long rflags;
7501         int i, r;
7502
7503         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7504                 r = -EBUSY;
7505                 if (vcpu->arch.exception.pending)
7506                         goto out;
7507                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7508                         kvm_queue_exception(vcpu, DB_VECTOR);
7509                 else
7510                         kvm_queue_exception(vcpu, BP_VECTOR);
7511         }
7512
7513         /*
7514          * Read rflags as long as potentially injected trace flags are still
7515          * filtered out.
7516          */
7517         rflags = kvm_get_rflags(vcpu);
7518
7519         vcpu->guest_debug = dbg->control;
7520         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7521                 vcpu->guest_debug = 0;
7522
7523         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7524                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7525                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7526                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7527         } else {
7528                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7529                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7530         }
7531         kvm_update_dr7(vcpu);
7532
7533         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7534                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7535                         get_segment_base(vcpu, VCPU_SREG_CS);
7536
7537         /*
7538          * Trigger an rflags update that will inject or remove the trace
7539          * flags.
7540          */
7541         kvm_set_rflags(vcpu, rflags);
7542
7543         kvm_x86_ops->update_bp_intercept(vcpu);
7544
7545         r = 0;
7546
7547 out:
7548
7549         return r;
7550 }
7551
7552 /*
7553  * Translate a guest virtual address to a guest physical address.
7554  */
7555 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7556                                     struct kvm_translation *tr)
7557 {
7558         unsigned long vaddr = tr->linear_address;
7559         gpa_t gpa;
7560         int idx;
7561
7562         idx = srcu_read_lock(&vcpu->kvm->srcu);
7563         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7564         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7565         tr->physical_address = gpa;
7566         tr->valid = gpa != UNMAPPED_GVA;
7567         tr->writeable = 1;
7568         tr->usermode = 0;
7569
7570         return 0;
7571 }
7572
7573 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7574 {
7575         struct fxregs_state *fxsave =
7576                         &vcpu->arch.guest_fpu.state.fxsave;
7577
7578         memcpy(fpu->fpr, fxsave->st_space, 128);
7579         fpu->fcw = fxsave->cwd;
7580         fpu->fsw = fxsave->swd;
7581         fpu->ftwx = fxsave->twd;
7582         fpu->last_opcode = fxsave->fop;
7583         fpu->last_ip = fxsave->rip;
7584         fpu->last_dp = fxsave->rdp;
7585         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7586
7587         return 0;
7588 }
7589
7590 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7591 {
7592         struct fxregs_state *fxsave =
7593                         &vcpu->arch.guest_fpu.state.fxsave;
7594
7595         memcpy(fxsave->st_space, fpu->fpr, 128);
7596         fxsave->cwd = fpu->fcw;
7597         fxsave->swd = fpu->fsw;
7598         fxsave->twd = fpu->ftwx;
7599         fxsave->fop = fpu->last_opcode;
7600         fxsave->rip = fpu->last_ip;
7601         fxsave->rdp = fpu->last_dp;
7602         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7603
7604         return 0;
7605 }
7606
7607 static void fx_init(struct kvm_vcpu *vcpu)
7608 {
7609         fpstate_init(&vcpu->arch.guest_fpu.state);
7610         if (boot_cpu_has(X86_FEATURE_XSAVES))
7611                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7612                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7613
7614         /*
7615          * Ensure guest xcr0 is valid for loading
7616          */
7617         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7618
7619         vcpu->arch.cr0 |= X86_CR0_ET;
7620 }
7621
7622 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7623 {
7624         if (vcpu->guest_fpu_loaded)
7625                 return;
7626
7627         /*
7628          * Restore all possible states in the guest,
7629          * and assume host would use all available bits.
7630          * Guest xcr0 would be loaded later.
7631          */
7632         vcpu->guest_fpu_loaded = 1;
7633         __kernel_fpu_begin();
7634         /* PKRU is separately restored in kvm_x86_ops->run.  */
7635         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7636                                 ~XFEATURE_MASK_PKRU);
7637         trace_kvm_fpu(1);
7638 }
7639
7640 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7641 {
7642         if (!vcpu->guest_fpu_loaded)
7643                 return;
7644
7645         vcpu->guest_fpu_loaded = 0;
7646         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7647         __kernel_fpu_end();
7648         ++vcpu->stat.fpu_reload;
7649         trace_kvm_fpu(0);
7650 }
7651
7652 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7653 {
7654         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7655
7656         kvmclock_reset(vcpu);
7657
7658         kvm_x86_ops->vcpu_free(vcpu);
7659         free_cpumask_var(wbinvd_dirty_mask);
7660 }
7661
7662 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7663                                                 unsigned int id)
7664 {
7665         struct kvm_vcpu *vcpu;
7666
7667         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7668                 printk_once(KERN_WARNING
7669                 "kvm: SMP vm created on host with unstable TSC; "
7670                 "guest TSC will not be reliable\n");
7671
7672         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7673
7674         return vcpu;
7675 }
7676
7677 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7678 {
7679         int r;
7680
7681         kvm_vcpu_mtrr_init(vcpu);
7682         r = vcpu_load(vcpu);
7683         if (r)
7684                 return r;
7685         kvm_vcpu_reset(vcpu, false);
7686         kvm_mmu_setup(vcpu);
7687         vcpu_put(vcpu);
7688         return r;
7689 }
7690
7691 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7692 {
7693         struct msr_data msr;
7694         struct kvm *kvm = vcpu->kvm;
7695
7696         kvm_hv_vcpu_postcreate(vcpu);
7697
7698         if (vcpu_load(vcpu))
7699                 return;
7700         msr.data = 0x0;
7701         msr.index = MSR_IA32_TSC;
7702         msr.host_initiated = true;
7703         kvm_write_tsc(vcpu, &msr);
7704         vcpu_put(vcpu);
7705
7706         if (!kvmclock_periodic_sync)
7707                 return;
7708
7709         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7710                                         KVMCLOCK_SYNC_PERIOD);
7711 }
7712
7713 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7714 {
7715         int r;
7716         vcpu->arch.apf.msr_val = 0;
7717
7718         r = vcpu_load(vcpu);
7719         BUG_ON(r);
7720         kvm_mmu_unload(vcpu);
7721         vcpu_put(vcpu);
7722
7723         kvm_x86_ops->vcpu_free(vcpu);
7724 }
7725
7726 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7727 {
7728         vcpu->arch.hflags = 0;
7729
7730         vcpu->arch.smi_pending = 0;
7731         atomic_set(&vcpu->arch.nmi_queued, 0);
7732         vcpu->arch.nmi_pending = 0;
7733         vcpu->arch.nmi_injected = false;
7734         kvm_clear_interrupt_queue(vcpu);
7735         kvm_clear_exception_queue(vcpu);
7736
7737         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7738         kvm_update_dr0123(vcpu);
7739         vcpu->arch.dr6 = DR6_INIT;
7740         kvm_update_dr6(vcpu);
7741         vcpu->arch.dr7 = DR7_FIXED_1;
7742         kvm_update_dr7(vcpu);
7743
7744         vcpu->arch.cr2 = 0;
7745
7746         kvm_make_request(KVM_REQ_EVENT, vcpu);
7747         vcpu->arch.apf.msr_val = 0;
7748         vcpu->arch.st.msr_val = 0;
7749
7750         kvmclock_reset(vcpu);
7751
7752         kvm_clear_async_pf_completion_queue(vcpu);
7753         kvm_async_pf_hash_reset(vcpu);
7754         vcpu->arch.apf.halted = false;
7755
7756         if (!init_event) {
7757                 kvm_pmu_reset(vcpu);
7758                 vcpu->arch.smbase = 0x30000;
7759
7760                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7761                 vcpu->arch.msr_misc_features_enables = 0;
7762         }
7763
7764         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7765         vcpu->arch.regs_avail = ~0;
7766         vcpu->arch.regs_dirty = ~0;
7767
7768         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7769 }
7770
7771 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7772 {
7773         struct kvm_segment cs;
7774
7775         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7776         cs.selector = vector << 8;
7777         cs.base = vector << 12;
7778         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7779         kvm_rip_write(vcpu, 0);
7780 }
7781
7782 int kvm_arch_hardware_enable(void)
7783 {
7784         struct kvm *kvm;
7785         struct kvm_vcpu *vcpu;
7786         int i;
7787         int ret;
7788         u64 local_tsc;
7789         u64 max_tsc = 0;
7790         bool stable, backwards_tsc = false;
7791
7792         kvm_shared_msr_cpu_online();
7793         ret = kvm_x86_ops->hardware_enable();
7794         if (ret != 0)
7795                 return ret;
7796
7797         local_tsc = rdtsc();
7798         stable = !check_tsc_unstable();
7799         list_for_each_entry(kvm, &vm_list, vm_list) {
7800                 kvm_for_each_vcpu(i, vcpu, kvm) {
7801                         if (!stable && vcpu->cpu == smp_processor_id())
7802                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7803                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7804                                 backwards_tsc = true;
7805                                 if (vcpu->arch.last_host_tsc > max_tsc)
7806                                         max_tsc = vcpu->arch.last_host_tsc;
7807                         }
7808                 }
7809         }
7810
7811         /*
7812          * Sometimes, even reliable TSCs go backwards.  This happens on
7813          * platforms that reset TSC during suspend or hibernate actions, but
7814          * maintain synchronization.  We must compensate.  Fortunately, we can
7815          * detect that condition here, which happens early in CPU bringup,
7816          * before any KVM threads can be running.  Unfortunately, we can't
7817          * bring the TSCs fully up to date with real time, as we aren't yet far
7818          * enough into CPU bringup that we know how much real time has actually
7819          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7820          * variables that haven't been updated yet.
7821          *
7822          * So we simply find the maximum observed TSC above, then record the
7823          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7824          * the adjustment will be applied.  Note that we accumulate
7825          * adjustments, in case multiple suspend cycles happen before some VCPU
7826          * gets a chance to run again.  In the event that no KVM threads get a
7827          * chance to run, we will miss the entire elapsed period, as we'll have
7828          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7829          * loose cycle time.  This isn't too big a deal, since the loss will be
7830          * uniform across all VCPUs (not to mention the scenario is extremely
7831          * unlikely). It is possible that a second hibernate recovery happens
7832          * much faster than a first, causing the observed TSC here to be
7833          * smaller; this would require additional padding adjustment, which is
7834          * why we set last_host_tsc to the local tsc observed here.
7835          *
7836          * N.B. - this code below runs only on platforms with reliable TSC,
7837          * as that is the only way backwards_tsc is set above.  Also note
7838          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7839          * have the same delta_cyc adjustment applied if backwards_tsc
7840          * is detected.  Note further, this adjustment is only done once,
7841          * as we reset last_host_tsc on all VCPUs to stop this from being
7842          * called multiple times (one for each physical CPU bringup).
7843          *
7844          * Platforms with unreliable TSCs don't have to deal with this, they
7845          * will be compensated by the logic in vcpu_load, which sets the TSC to
7846          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7847          * guarantee that they stay in perfect synchronization.
7848          */
7849         if (backwards_tsc) {
7850                 u64 delta_cyc = max_tsc - local_tsc;
7851                 list_for_each_entry(kvm, &vm_list, vm_list) {
7852                         kvm->arch.backwards_tsc_observed = true;
7853                         kvm_for_each_vcpu(i, vcpu, kvm) {
7854                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7855                                 vcpu->arch.last_host_tsc = local_tsc;
7856                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7857                         }
7858
7859                         /*
7860                          * We have to disable TSC offset matching.. if you were
7861                          * booting a VM while issuing an S4 host suspend....
7862                          * you may have some problem.  Solving this issue is
7863                          * left as an exercise to the reader.
7864                          */
7865                         kvm->arch.last_tsc_nsec = 0;
7866                         kvm->arch.last_tsc_write = 0;
7867                 }
7868
7869         }
7870         return 0;
7871 }
7872
7873 void kvm_arch_hardware_disable(void)
7874 {
7875         kvm_x86_ops->hardware_disable();
7876         drop_user_return_notifiers();
7877 }
7878
7879 int kvm_arch_hardware_setup(void)
7880 {
7881         int r;
7882
7883         r = kvm_x86_ops->hardware_setup();
7884         if (r != 0)
7885                 return r;
7886
7887         if (kvm_has_tsc_control) {
7888                 /*
7889                  * Make sure the user can only configure tsc_khz values that
7890                  * fit into a signed integer.
7891                  * A min value is not calculated needed because it will always
7892                  * be 1 on all machines.
7893                  */
7894                 u64 max = min(0x7fffffffULL,
7895                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7896                 kvm_max_guest_tsc_khz = max;
7897
7898                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7899         }
7900
7901         kvm_init_msr_list();
7902         return 0;
7903 }
7904
7905 void kvm_arch_hardware_unsetup(void)
7906 {
7907         kvm_x86_ops->hardware_unsetup();
7908 }
7909
7910 void kvm_arch_check_processor_compat(void *rtn)
7911 {
7912         kvm_x86_ops->check_processor_compatibility(rtn);
7913 }
7914
7915 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7916 {
7917         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7918 }
7919 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7920
7921 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7922 {
7923         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7924 }
7925
7926 struct static_key kvm_no_apic_vcpu __read_mostly;
7927 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7928
7929 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7930 {
7931         struct page *page;
7932         struct kvm *kvm;
7933         int r;
7934
7935         BUG_ON(vcpu->kvm == NULL);
7936         kvm = vcpu->kvm;
7937
7938         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7939         vcpu->arch.pv.pv_unhalted = false;
7940         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7941         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7942                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7943         else
7944                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7945
7946         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7947         if (!page) {
7948                 r = -ENOMEM;
7949                 goto fail;
7950         }
7951         vcpu->arch.pio_data = page_address(page);
7952
7953         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7954
7955         r = kvm_mmu_create(vcpu);
7956         if (r < 0)
7957                 goto fail_free_pio_data;
7958
7959         if (irqchip_in_kernel(kvm)) {
7960                 r = kvm_create_lapic(vcpu);
7961                 if (r < 0)
7962                         goto fail_mmu_destroy;
7963         } else
7964                 static_key_slow_inc(&kvm_no_apic_vcpu);
7965
7966         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7967                                        GFP_KERNEL);
7968         if (!vcpu->arch.mce_banks) {
7969                 r = -ENOMEM;
7970                 goto fail_free_lapic;
7971         }
7972         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7973
7974         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7975                 r = -ENOMEM;
7976                 goto fail_free_mce_banks;
7977         }
7978
7979         fx_init(vcpu);
7980
7981         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7982         vcpu->arch.pv_time_enabled = false;
7983
7984         vcpu->arch.guest_supported_xcr0 = 0;
7985         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7986
7987         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7988
7989         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7990
7991         kvm_async_pf_hash_reset(vcpu);
7992         kvm_pmu_init(vcpu);
7993
7994         vcpu->arch.pending_external_vector = -1;
7995
7996         kvm_hv_vcpu_init(vcpu);
7997
7998         return 0;
7999
8000 fail_free_mce_banks:
8001         kfree(vcpu->arch.mce_banks);
8002 fail_free_lapic:
8003         kvm_free_lapic(vcpu);
8004 fail_mmu_destroy:
8005         kvm_mmu_destroy(vcpu);
8006 fail_free_pio_data:
8007         free_page((unsigned long)vcpu->arch.pio_data);
8008 fail:
8009         return r;
8010 }
8011
8012 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8013 {
8014         int idx;
8015
8016         kvm_hv_vcpu_uninit(vcpu);
8017         kvm_pmu_destroy(vcpu);
8018         kfree(vcpu->arch.mce_banks);
8019         kvm_free_lapic(vcpu);
8020         idx = srcu_read_lock(&vcpu->kvm->srcu);
8021         kvm_mmu_destroy(vcpu);
8022         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8023         free_page((unsigned long)vcpu->arch.pio_data);
8024         if (!lapic_in_kernel(vcpu))
8025                 static_key_slow_dec(&kvm_no_apic_vcpu);
8026 }
8027
8028 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8029 {
8030         kvm_x86_ops->sched_in(vcpu, cpu);
8031 }
8032
8033 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8034 {
8035         if (type)
8036                 return -EINVAL;
8037
8038         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8039         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8040         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8041         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8042         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8043
8044         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8045         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8046         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8047         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8048                 &kvm->arch.irq_sources_bitmap);
8049
8050         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8051         mutex_init(&kvm->arch.apic_map_lock);
8052         mutex_init(&kvm->arch.hyperv.hv_lock);
8053         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8054
8055         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8056         pvclock_update_vm_gtod_copy(kvm);
8057
8058         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8059         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8060
8061         kvm_page_track_init(kvm);
8062         kvm_mmu_init_vm(kvm);
8063
8064         if (kvm_x86_ops->vm_init)
8065                 return kvm_x86_ops->vm_init(kvm);
8066
8067         return 0;
8068 }
8069
8070 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8071 {
8072         int r;
8073         r = vcpu_load(vcpu);
8074         BUG_ON(r);
8075         kvm_mmu_unload(vcpu);
8076         vcpu_put(vcpu);
8077 }
8078
8079 static void kvm_free_vcpus(struct kvm *kvm)
8080 {
8081         unsigned int i;
8082         struct kvm_vcpu *vcpu;
8083
8084         /*
8085          * Unpin any mmu pages first.
8086          */
8087         kvm_for_each_vcpu(i, vcpu, kvm) {
8088                 kvm_clear_async_pf_completion_queue(vcpu);
8089                 kvm_unload_vcpu_mmu(vcpu);
8090         }
8091         kvm_for_each_vcpu(i, vcpu, kvm)
8092                 kvm_arch_vcpu_free(vcpu);
8093
8094         mutex_lock(&kvm->lock);
8095         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8096                 kvm->vcpus[i] = NULL;
8097
8098         atomic_set(&kvm->online_vcpus, 0);
8099         mutex_unlock(&kvm->lock);
8100 }
8101
8102 void kvm_arch_sync_events(struct kvm *kvm)
8103 {
8104         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8105         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8106         kvm_free_pit(kvm);
8107 }
8108
8109 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8110 {
8111         int i, r;
8112         unsigned long hva;
8113         struct kvm_memslots *slots = kvm_memslots(kvm);
8114         struct kvm_memory_slot *slot, old;
8115
8116         /* Called with kvm->slots_lock held.  */
8117         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8118                 return -EINVAL;
8119
8120         slot = id_to_memslot(slots, id);
8121         if (size) {
8122                 if (slot->npages)
8123                         return -EEXIST;
8124
8125                 /*
8126                  * MAP_SHARED to prevent internal slot pages from being moved
8127                  * by fork()/COW.
8128                  */
8129                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8130                               MAP_SHARED | MAP_ANONYMOUS, 0);
8131                 if (IS_ERR((void *)hva))
8132                         return PTR_ERR((void *)hva);
8133         } else {
8134                 if (!slot->npages)
8135                         return 0;
8136
8137                 hva = 0;
8138         }
8139
8140         old = *slot;
8141         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8142                 struct kvm_userspace_memory_region m;
8143
8144                 m.slot = id | (i << 16);
8145                 m.flags = 0;
8146                 m.guest_phys_addr = gpa;
8147                 m.userspace_addr = hva;
8148                 m.memory_size = size;
8149                 r = __kvm_set_memory_region(kvm, &m);
8150                 if (r < 0)
8151                         return r;
8152         }
8153
8154         if (!size) {
8155                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8156                 WARN_ON(r < 0);
8157         }
8158
8159         return 0;
8160 }
8161 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8162
8163 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8164 {
8165         int r;
8166
8167         mutex_lock(&kvm->slots_lock);
8168         r = __x86_set_memory_region(kvm, id, gpa, size);
8169         mutex_unlock(&kvm->slots_lock);
8170
8171         return r;
8172 }
8173 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8174
8175 void kvm_arch_destroy_vm(struct kvm *kvm)
8176 {
8177         if (current->mm == kvm->mm) {
8178                 /*
8179                  * Free memory regions allocated on behalf of userspace,
8180                  * unless the the memory map has changed due to process exit
8181                  * or fd copying.
8182                  */
8183                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8184                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8185                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8186         }
8187         if (kvm_x86_ops->vm_destroy)
8188                 kvm_x86_ops->vm_destroy(kvm);
8189         kvm_pic_destroy(kvm);
8190         kvm_ioapic_destroy(kvm);
8191         kvm_free_vcpus(kvm);
8192         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8193         kvm_mmu_uninit_vm(kvm);
8194         kvm_page_track_cleanup(kvm);
8195 }
8196
8197 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8198                            struct kvm_memory_slot *dont)
8199 {
8200         int i;
8201
8202         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8203                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8204                         kvfree(free->arch.rmap[i]);
8205                         free->arch.rmap[i] = NULL;
8206                 }
8207                 if (i == 0)
8208                         continue;
8209
8210                 if (!dont || free->arch.lpage_info[i - 1] !=
8211                              dont->arch.lpage_info[i - 1]) {
8212                         kvfree(free->arch.lpage_info[i - 1]);
8213                         free->arch.lpage_info[i - 1] = NULL;
8214                 }
8215         }
8216
8217         kvm_page_track_free_memslot(free, dont);
8218 }
8219
8220 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8221                             unsigned long npages)
8222 {
8223         int i;
8224
8225         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8226                 struct kvm_lpage_info *linfo;
8227                 unsigned long ugfn;
8228                 int lpages;
8229                 int level = i + 1;
8230
8231                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8232                                       slot->base_gfn, level) + 1;
8233
8234                 slot->arch.rmap[i] =
8235                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8236                 if (!slot->arch.rmap[i])
8237                         goto out_free;
8238                 if (i == 0)
8239                         continue;
8240
8241                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8242                 if (!linfo)
8243                         goto out_free;
8244
8245                 slot->arch.lpage_info[i - 1] = linfo;
8246
8247                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8248                         linfo[0].disallow_lpage = 1;
8249                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8250                         linfo[lpages - 1].disallow_lpage = 1;
8251                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8252                 /*
8253                  * If the gfn and userspace address are not aligned wrt each
8254                  * other, or if explicitly asked to, disable large page
8255                  * support for this slot
8256                  */
8257                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8258                     !kvm_largepages_enabled()) {
8259                         unsigned long j;
8260
8261                         for (j = 0; j < lpages; ++j)
8262                                 linfo[j].disallow_lpage = 1;
8263                 }
8264         }
8265
8266         if (kvm_page_track_create_memslot(slot, npages))
8267                 goto out_free;
8268
8269         return 0;
8270
8271 out_free:
8272         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8273                 kvfree(slot->arch.rmap[i]);
8274                 slot->arch.rmap[i] = NULL;
8275                 if (i == 0)
8276                         continue;
8277
8278                 kvfree(slot->arch.lpage_info[i - 1]);
8279                 slot->arch.lpage_info[i - 1] = NULL;
8280         }
8281         return -ENOMEM;
8282 }
8283
8284 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8285 {
8286         /*
8287          * memslots->generation has been incremented.
8288          * mmio generation may have reached its maximum value.
8289          */
8290         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8291 }
8292
8293 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8294                                 struct kvm_memory_slot *memslot,
8295                                 const struct kvm_userspace_memory_region *mem,
8296                                 enum kvm_mr_change change)
8297 {
8298         return 0;
8299 }
8300
8301 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8302                                      struct kvm_memory_slot *new)
8303 {
8304         /* Still write protect RO slot */
8305         if (new->flags & KVM_MEM_READONLY) {
8306                 kvm_mmu_slot_remove_write_access(kvm, new);
8307                 return;
8308         }
8309
8310         /*
8311          * Call kvm_x86_ops dirty logging hooks when they are valid.
8312          *
8313          * kvm_x86_ops->slot_disable_log_dirty is called when:
8314          *
8315          *  - KVM_MR_CREATE with dirty logging is disabled
8316          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8317          *
8318          * The reason is, in case of PML, we need to set D-bit for any slots
8319          * with dirty logging disabled in order to eliminate unnecessary GPA
8320          * logging in PML buffer (and potential PML buffer full VMEXT). This
8321          * guarantees leaving PML enabled during guest's lifetime won't have
8322          * any additonal overhead from PML when guest is running with dirty
8323          * logging disabled for memory slots.
8324          *
8325          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8326          * to dirty logging mode.
8327          *
8328          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8329          *
8330          * In case of write protect:
8331          *
8332          * Write protect all pages for dirty logging.
8333          *
8334          * All the sptes including the large sptes which point to this
8335          * slot are set to readonly. We can not create any new large
8336          * spte on this slot until the end of the logging.
8337          *
8338          * See the comments in fast_page_fault().
8339          */
8340         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8341                 if (kvm_x86_ops->slot_enable_log_dirty)
8342                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8343                 else
8344                         kvm_mmu_slot_remove_write_access(kvm, new);
8345         } else {
8346                 if (kvm_x86_ops->slot_disable_log_dirty)
8347                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8348         }
8349 }
8350
8351 void kvm_arch_commit_memory_region(struct kvm *kvm,
8352                                 const struct kvm_userspace_memory_region *mem,
8353                                 const struct kvm_memory_slot *old,
8354                                 const struct kvm_memory_slot *new,
8355                                 enum kvm_mr_change change)
8356 {
8357         int nr_mmu_pages = 0;
8358
8359         if (!kvm->arch.n_requested_mmu_pages)
8360                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8361
8362         if (nr_mmu_pages)
8363                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8364
8365         /*
8366          * Dirty logging tracks sptes in 4k granularity, meaning that large
8367          * sptes have to be split.  If live migration is successful, the guest
8368          * in the source machine will be destroyed and large sptes will be
8369          * created in the destination. However, if the guest continues to run
8370          * in the source machine (for example if live migration fails), small
8371          * sptes will remain around and cause bad performance.
8372          *
8373          * Scan sptes if dirty logging has been stopped, dropping those
8374          * which can be collapsed into a single large-page spte.  Later
8375          * page faults will create the large-page sptes.
8376          */
8377         if ((change != KVM_MR_DELETE) &&
8378                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8379                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8380                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8381
8382         /*
8383          * Set up write protection and/or dirty logging for the new slot.
8384          *
8385          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8386          * been zapped so no dirty logging staff is needed for old slot. For
8387          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8388          * new and it's also covered when dealing with the new slot.
8389          *
8390          * FIXME: const-ify all uses of struct kvm_memory_slot.
8391          */
8392         if (change != KVM_MR_DELETE)
8393                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8394 }
8395
8396 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8397 {
8398         kvm_mmu_invalidate_zap_all_pages(kvm);
8399 }
8400
8401 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8402                                    struct kvm_memory_slot *slot)
8403 {
8404         kvm_page_track_flush_slot(kvm, slot);
8405 }
8406
8407 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8408 {
8409         if (!list_empty_careful(&vcpu->async_pf.done))
8410                 return true;
8411
8412         if (kvm_apic_has_events(vcpu))
8413                 return true;
8414
8415         if (vcpu->arch.pv.pv_unhalted)
8416                 return true;
8417
8418         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8419             (vcpu->arch.nmi_pending &&
8420              kvm_x86_ops->nmi_allowed(vcpu)))
8421                 return true;
8422
8423         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8424             (vcpu->arch.smi_pending && !is_smm(vcpu)))
8425                 return true;
8426
8427         if (kvm_arch_interrupt_allowed(vcpu) &&
8428             kvm_cpu_has_interrupt(vcpu))
8429                 return true;
8430
8431         if (kvm_hv_has_stimer_pending(vcpu))
8432                 return true;
8433
8434         return false;
8435 }
8436
8437 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8438 {
8439         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8440 }
8441
8442 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8443 {
8444         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8445 }
8446
8447 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8448 {
8449         return kvm_x86_ops->interrupt_allowed(vcpu);
8450 }
8451
8452 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8453 {
8454         if (is_64_bit_mode(vcpu))
8455                 return kvm_rip_read(vcpu);
8456         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8457                      kvm_rip_read(vcpu));
8458 }
8459 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8460
8461 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8462 {
8463         return kvm_get_linear_rip(vcpu) == linear_rip;
8464 }
8465 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8466
8467 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8468 {
8469         unsigned long rflags;
8470
8471         rflags = kvm_x86_ops->get_rflags(vcpu);
8472         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8473                 rflags &= ~X86_EFLAGS_TF;
8474         return rflags;
8475 }
8476 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8477
8478 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8479 {
8480         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8481             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8482                 rflags |= X86_EFLAGS_TF;
8483         kvm_x86_ops->set_rflags(vcpu, rflags);
8484 }
8485
8486 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8487 {
8488         __kvm_set_rflags(vcpu, rflags);
8489         kvm_make_request(KVM_REQ_EVENT, vcpu);
8490 }
8491 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8492
8493 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8494 {
8495         int r;
8496
8497         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8498               work->wakeup_all)
8499                 return;
8500
8501         r = kvm_mmu_reload(vcpu);
8502         if (unlikely(r))
8503                 return;
8504
8505         if (!vcpu->arch.mmu.direct_map &&
8506               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8507                 return;
8508
8509         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8510 }
8511
8512 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8513 {
8514         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8515 }
8516
8517 static inline u32 kvm_async_pf_next_probe(u32 key)
8518 {
8519         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8520 }
8521
8522 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8523 {
8524         u32 key = kvm_async_pf_hash_fn(gfn);
8525
8526         while (vcpu->arch.apf.gfns[key] != ~0)
8527                 key = kvm_async_pf_next_probe(key);
8528
8529         vcpu->arch.apf.gfns[key] = gfn;
8530 }
8531
8532 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8533 {
8534         int i;
8535         u32 key = kvm_async_pf_hash_fn(gfn);
8536
8537         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8538                      (vcpu->arch.apf.gfns[key] != gfn &&
8539                       vcpu->arch.apf.gfns[key] != ~0); i++)
8540                 key = kvm_async_pf_next_probe(key);
8541
8542         return key;
8543 }
8544
8545 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8546 {
8547         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8548 }
8549
8550 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8551 {
8552         u32 i, j, k;
8553
8554         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8555         while (true) {
8556                 vcpu->arch.apf.gfns[i] = ~0;
8557                 do {
8558                         j = kvm_async_pf_next_probe(j);
8559                         if (vcpu->arch.apf.gfns[j] == ~0)
8560                                 return;
8561                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8562                         /*
8563                          * k lies cyclically in ]i,j]
8564                          * |    i.k.j |
8565                          * |....j i.k.| or  |.k..j i...|
8566                          */
8567                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8568                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8569                 i = j;
8570         }
8571 }
8572
8573 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8574 {
8575
8576         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8577                                       sizeof(val));
8578 }
8579
8580 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8581                                      struct kvm_async_pf *work)
8582 {
8583         struct x86_exception fault;
8584
8585         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8586         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8587
8588         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8589             (vcpu->arch.apf.send_user_only &&
8590              kvm_x86_ops->get_cpl(vcpu) == 0))
8591                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8592         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8593                 fault.vector = PF_VECTOR;
8594                 fault.error_code_valid = true;
8595                 fault.error_code = 0;
8596                 fault.nested_page_fault = false;
8597                 fault.address = work->arch.token;
8598                 fault.async_page_fault = true;
8599                 kvm_inject_page_fault(vcpu, &fault);
8600         }
8601 }
8602
8603 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8604                                  struct kvm_async_pf *work)
8605 {
8606         struct x86_exception fault;
8607
8608         if (work->wakeup_all)
8609                 work->arch.token = ~0; /* broadcast wakeup */
8610         else
8611                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8612         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8613
8614         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8615             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8616                 fault.vector = PF_VECTOR;
8617                 fault.error_code_valid = true;
8618                 fault.error_code = 0;
8619                 fault.nested_page_fault = false;
8620                 fault.address = work->arch.token;
8621                 fault.async_page_fault = true;
8622                 kvm_inject_page_fault(vcpu, &fault);
8623         }
8624         vcpu->arch.apf.halted = false;
8625         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8626 }
8627
8628 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8629 {
8630         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8631                 return true;
8632         else
8633                 return kvm_can_do_async_pf(vcpu);
8634 }
8635
8636 void kvm_arch_start_assignment(struct kvm *kvm)
8637 {
8638         atomic_inc(&kvm->arch.assigned_device_count);
8639 }
8640 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8641
8642 void kvm_arch_end_assignment(struct kvm *kvm)
8643 {
8644         atomic_dec(&kvm->arch.assigned_device_count);
8645 }
8646 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8647
8648 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8649 {
8650         return atomic_read(&kvm->arch.assigned_device_count);
8651 }
8652 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8653
8654 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8655 {
8656         atomic_inc(&kvm->arch.noncoherent_dma_count);
8657 }
8658 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8659
8660 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8661 {
8662         atomic_dec(&kvm->arch.noncoherent_dma_count);
8663 }
8664 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8665
8666 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8667 {
8668         return atomic_read(&kvm->arch.noncoherent_dma_count);
8669 }
8670 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8671
8672 bool kvm_arch_has_irq_bypass(void)
8673 {
8674         return kvm_x86_ops->update_pi_irte != NULL;
8675 }
8676
8677 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8678                                       struct irq_bypass_producer *prod)
8679 {
8680         struct kvm_kernel_irqfd *irqfd =
8681                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8682
8683         irqfd->producer = prod;
8684
8685         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8686                                            prod->irq, irqfd->gsi, 1);
8687 }
8688
8689 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8690                                       struct irq_bypass_producer *prod)
8691 {
8692         int ret;
8693         struct kvm_kernel_irqfd *irqfd =
8694                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8695
8696         WARN_ON(irqfd->producer != prod);
8697         irqfd->producer = NULL;
8698
8699         /*
8700          * When producer of consumer is unregistered, we change back to
8701          * remapped mode, so we can re-use the current implementation
8702          * when the irq is masked/disabled or the consumer side (KVM
8703          * int this case doesn't want to receive the interrupts.
8704         */
8705         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8706         if (ret)
8707                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8708                        " fails: %d\n", irqfd->consumer.token, ret);
8709 }
8710
8711 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8712                                    uint32_t guest_irq, bool set)
8713 {
8714         if (!kvm_x86_ops->update_pi_irte)
8715                 return -EINVAL;
8716
8717         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8718 }
8719
8720 bool kvm_vector_hashing_enabled(void)
8721 {
8722         return vector_hashing;
8723 }
8724 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8725
8726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8743 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8744 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);