Merge tag 'kvm-s390-next-20150331' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32  kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns = 0;
113 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
114
115 static bool backwards_tsc_observed = false;
116
117 #define KVM_NR_SHARED_MSRS 16
118
119 struct kvm_shared_msrs_global {
120         int nr;
121         u32 msrs[KVM_NR_SHARED_MSRS];
122 };
123
124 struct kvm_shared_msrs {
125         struct user_return_notifier urn;
126         bool registered;
127         struct kvm_shared_msr_values {
128                 u64 host;
129                 u64 curr;
130         } values[KVM_NR_SHARED_MSRS];
131 };
132
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
134 static struct kvm_shared_msrs __percpu *shared_msrs;
135
136 struct kvm_stats_debugfs_item debugfs_entries[] = {
137         { "pf_fixed", VCPU_STAT(pf_fixed) },
138         { "pf_guest", VCPU_STAT(pf_guest) },
139         { "tlb_flush", VCPU_STAT(tlb_flush) },
140         { "invlpg", VCPU_STAT(invlpg) },
141         { "exits", VCPU_STAT(exits) },
142         { "io_exits", VCPU_STAT(io_exits) },
143         { "mmio_exits", VCPU_STAT(mmio_exits) },
144         { "signal_exits", VCPU_STAT(signal_exits) },
145         { "irq_window", VCPU_STAT(irq_window_exits) },
146         { "nmi_window", VCPU_STAT(nmi_window_exits) },
147         { "halt_exits", VCPU_STAT(halt_exits) },
148         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
149         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
150         { "hypercalls", VCPU_STAT(hypercalls) },
151         { "request_irq", VCPU_STAT(request_irq_exits) },
152         { "irq_exits", VCPU_STAT(irq_exits) },
153         { "host_state_reload", VCPU_STAT(host_state_reload) },
154         { "efer_reload", VCPU_STAT(efer_reload) },
155         { "fpu_reload", VCPU_STAT(fpu_reload) },
156         { "insn_emulation", VCPU_STAT(insn_emulation) },
157         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
158         { "irq_injections", VCPU_STAT(irq_injections) },
159         { "nmi_injections", VCPU_STAT(nmi_injections) },
160         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
161         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
162         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
163         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
164         { "mmu_flooded", VM_STAT(mmu_flooded) },
165         { "mmu_recycled", VM_STAT(mmu_recycled) },
166         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
167         { "mmu_unsync", VM_STAT(mmu_unsync) },
168         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
169         { "largepages", VM_STAT(lpages) },
170         { NULL }
171 };
172
173 u64 __read_mostly host_xcr0;
174
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
176
177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
178 {
179         int i;
180         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
181                 vcpu->arch.apf.gfns[i] = ~0;
182 }
183
184 static void kvm_on_user_return(struct user_return_notifier *urn)
185 {
186         unsigned slot;
187         struct kvm_shared_msrs *locals
188                 = container_of(urn, struct kvm_shared_msrs, urn);
189         struct kvm_shared_msr_values *values;
190
191         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
192                 values = &locals->values[slot];
193                 if (values->host != values->curr) {
194                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
195                         values->curr = values->host;
196                 }
197         }
198         locals->registered = false;
199         user_return_notifier_unregister(urn);
200 }
201
202 static void shared_msr_update(unsigned slot, u32 msr)
203 {
204         u64 value;
205         unsigned int cpu = smp_processor_id();
206         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
207
208         /* only read, and nobody should modify it at this time,
209          * so don't need lock */
210         if (slot >= shared_msrs_global.nr) {
211                 printk(KERN_ERR "kvm: invalid MSR slot!");
212                 return;
213         }
214         rdmsrl_safe(msr, &value);
215         smsr->values[slot].host = value;
216         smsr->values[slot].curr = value;
217 }
218
219 void kvm_define_shared_msr(unsigned slot, u32 msr)
220 {
221         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
222         if (slot >= shared_msrs_global.nr)
223                 shared_msrs_global.nr = slot + 1;
224         shared_msrs_global.msrs[slot] = msr;
225         /* we need ensured the shared_msr_global have been updated */
226         smp_wmb();
227 }
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
229
230 static void kvm_shared_msr_cpu_online(void)
231 {
232         unsigned i;
233
234         for (i = 0; i < shared_msrs_global.nr; ++i)
235                 shared_msr_update(i, shared_msrs_global.msrs[i]);
236 }
237
238 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
239 {
240         unsigned int cpu = smp_processor_id();
241         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242         int err;
243
244         if (((value ^ smsr->values[slot].curr) & mask) == 0)
245                 return 0;
246         smsr->values[slot].curr = value;
247         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
248         if (err)
249                 return 1;
250
251         if (!smsr->registered) {
252                 smsr->urn.on_user_return = kvm_on_user_return;
253                 user_return_notifier_register(&smsr->urn);
254                 smsr->registered = true;
255         }
256         return 0;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
259
260 static void drop_user_return_notifiers(void)
261 {
262         unsigned int cpu = smp_processor_id();
263         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
264
265         if (smsr->registered)
266                 kvm_on_user_return(&smsr->urn);
267 }
268
269 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
270 {
271         return vcpu->arch.apic_base;
272 }
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
274
275 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 {
277         u64 old_state = vcpu->arch.apic_base &
278                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
279         u64 new_state = msr_info->data &
280                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
282                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
283
284         if (!msr_info->host_initiated &&
285             ((msr_info->data & reserved_bits) != 0 ||
286              new_state == X2APIC_ENABLE ||
287              (new_state == MSR_IA32_APICBASE_ENABLE &&
288               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
289              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
290               old_state == 0)))
291                 return 1;
292
293         kvm_lapic_set_base(vcpu, msr_info->data);
294         return 0;
295 }
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
297
298 asmlinkage __visible void kvm_spurious_fault(void)
299 {
300         /* Fault while not rebooting.  We want the trace. */
301         BUG();
302 }
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
304
305 #define EXCPT_BENIGN            0
306 #define EXCPT_CONTRIBUTORY      1
307 #define EXCPT_PF                2
308
309 static int exception_class(int vector)
310 {
311         switch (vector) {
312         case PF_VECTOR:
313                 return EXCPT_PF;
314         case DE_VECTOR:
315         case TS_VECTOR:
316         case NP_VECTOR:
317         case SS_VECTOR:
318         case GP_VECTOR:
319                 return EXCPT_CONTRIBUTORY;
320         default:
321                 break;
322         }
323         return EXCPT_BENIGN;
324 }
325
326 #define EXCPT_FAULT             0
327 #define EXCPT_TRAP              1
328 #define EXCPT_ABORT             2
329 #define EXCPT_INTERRUPT         3
330
331 static int exception_type(int vector)
332 {
333         unsigned int mask;
334
335         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
336                 return EXCPT_INTERRUPT;
337
338         mask = 1 << vector;
339
340         /* #DB is trap, as instruction watchpoints are handled elsewhere */
341         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
342                 return EXCPT_TRAP;
343
344         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
345                 return EXCPT_ABORT;
346
347         /* Reserved exceptions will result in fault */
348         return EXCPT_FAULT;
349 }
350
351 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
352                 unsigned nr, bool has_error, u32 error_code,
353                 bool reinject)
354 {
355         u32 prev_nr;
356         int class1, class2;
357
358         kvm_make_request(KVM_REQ_EVENT, vcpu);
359
360         if (!vcpu->arch.exception.pending) {
361         queue:
362                 if (has_error && !is_protmode(vcpu))
363                         has_error = false;
364                 vcpu->arch.exception.pending = true;
365                 vcpu->arch.exception.has_error_code = has_error;
366                 vcpu->arch.exception.nr = nr;
367                 vcpu->arch.exception.error_code = error_code;
368                 vcpu->arch.exception.reinject = reinject;
369                 return;
370         }
371
372         /* to check exception */
373         prev_nr = vcpu->arch.exception.nr;
374         if (prev_nr == DF_VECTOR) {
375                 /* triple fault -> shutdown */
376                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
377                 return;
378         }
379         class1 = exception_class(prev_nr);
380         class2 = exception_class(nr);
381         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
382                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
383                 /* generate double fault per SDM Table 5-5 */
384                 vcpu->arch.exception.pending = true;
385                 vcpu->arch.exception.has_error_code = true;
386                 vcpu->arch.exception.nr = DF_VECTOR;
387                 vcpu->arch.exception.error_code = 0;
388         } else
389                 /* replace previous exception with a new one in a hope
390                    that instruction re-execution will regenerate lost
391                    exception */
392                 goto queue;
393 }
394
395 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
396 {
397         kvm_multiple_exception(vcpu, nr, false, 0, false);
398 }
399 EXPORT_SYMBOL_GPL(kvm_queue_exception);
400
401 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
402 {
403         kvm_multiple_exception(vcpu, nr, false, 0, true);
404 }
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
406
407 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
408 {
409         if (err)
410                 kvm_inject_gp(vcpu, 0);
411         else
412                 kvm_x86_ops->skip_emulated_instruction(vcpu);
413 }
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
415
416 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418         ++vcpu->stat.pf_guest;
419         vcpu->arch.cr2 = fault->address;
420         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
421 }
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
423
424 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
425 {
426         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
427                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
428         else
429                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
430
431         return fault->nested_page_fault;
432 }
433
434 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
435 {
436         atomic_inc(&vcpu->arch.nmi_queued);
437         kvm_make_request(KVM_REQ_NMI, vcpu);
438 }
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
440
441 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
442 {
443         kvm_multiple_exception(vcpu, nr, true, error_code, false);
444 }
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
446
447 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
448 {
449         kvm_multiple_exception(vcpu, nr, true, error_code, true);
450 }
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
452
453 /*
454  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
455  * a #GP and return false.
456  */
457 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
458 {
459         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
460                 return true;
461         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
462         return false;
463 }
464 EXPORT_SYMBOL_GPL(kvm_require_cpl);
465
466 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
467 {
468         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
469                 return true;
470
471         kvm_queue_exception(vcpu, UD_VECTOR);
472         return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_dr);
475
476 /*
477  * This function will be used to read from the physical memory of the currently
478  * running guest. The difference to kvm_read_guest_page is that this function
479  * can read from guest physical or from the guest's guest physical memory.
480  */
481 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
482                             gfn_t ngfn, void *data, int offset, int len,
483                             u32 access)
484 {
485         struct x86_exception exception;
486         gfn_t real_gfn;
487         gpa_t ngpa;
488
489         ngpa     = gfn_to_gpa(ngfn);
490         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
491         if (real_gfn == UNMAPPED_GVA)
492                 return -EFAULT;
493
494         real_gfn = gpa_to_gfn(real_gfn);
495
496         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
497 }
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
499
500 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
501                                void *data, int offset, int len, u32 access)
502 {
503         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
504                                        data, offset, len, access);
505 }
506
507 /*
508  * Load the pae pdptrs.  Return true is they are all valid.
509  */
510 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
511 {
512         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
513         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
514         int i;
515         int ret;
516         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
517
518         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
519                                       offset * sizeof(u64), sizeof(pdpte),
520                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
521         if (ret < 0) {
522                 ret = 0;
523                 goto out;
524         }
525         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
526                 if (is_present_gpte(pdpte[i]) &&
527                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
528                         ret = 0;
529                         goto out;
530                 }
531         }
532         ret = 1;
533
534         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
535         __set_bit(VCPU_EXREG_PDPTR,
536                   (unsigned long *)&vcpu->arch.regs_avail);
537         __set_bit(VCPU_EXREG_PDPTR,
538                   (unsigned long *)&vcpu->arch.regs_dirty);
539 out:
540
541         return ret;
542 }
543 EXPORT_SYMBOL_GPL(load_pdptrs);
544
545 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
546 {
547         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
548         bool changed = true;
549         int offset;
550         gfn_t gfn;
551         int r;
552
553         if (is_long_mode(vcpu) || !is_pae(vcpu))
554                 return false;
555
556         if (!test_bit(VCPU_EXREG_PDPTR,
557                       (unsigned long *)&vcpu->arch.regs_avail))
558                 return true;
559
560         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
561         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
562         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
563                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
564         if (r < 0)
565                 goto out;
566         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
567 out:
568
569         return changed;
570 }
571
572 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
573 {
574         unsigned long old_cr0 = kvm_read_cr0(vcpu);
575         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
576                                     X86_CR0_CD | X86_CR0_NW;
577
578         cr0 |= X86_CR0_ET;
579
580 #ifdef CONFIG_X86_64
581         if (cr0 & 0xffffffff00000000UL)
582                 return 1;
583 #endif
584
585         cr0 &= ~CR0_RESERVED_BITS;
586
587         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
588                 return 1;
589
590         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
591                 return 1;
592
593         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
594 #ifdef CONFIG_X86_64
595                 if ((vcpu->arch.efer & EFER_LME)) {
596                         int cs_db, cs_l;
597
598                         if (!is_pae(vcpu))
599                                 return 1;
600                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
601                         if (cs_l)
602                                 return 1;
603                 } else
604 #endif
605                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
606                                                  kvm_read_cr3(vcpu)))
607                         return 1;
608         }
609
610         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
611                 return 1;
612
613         kvm_x86_ops->set_cr0(vcpu, cr0);
614
615         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
616                 kvm_clear_async_pf_completion_queue(vcpu);
617                 kvm_async_pf_hash_reset(vcpu);
618         }
619
620         if ((cr0 ^ old_cr0) & update_bits)
621                 kvm_mmu_reset_context(vcpu);
622         return 0;
623 }
624 EXPORT_SYMBOL_GPL(kvm_set_cr0);
625
626 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
627 {
628         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
629 }
630 EXPORT_SYMBOL_GPL(kvm_lmsw);
631
632 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
633 {
634         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
635                         !vcpu->guest_xcr0_loaded) {
636                 /* kvm_set_xcr() also depends on this */
637                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
638                 vcpu->guest_xcr0_loaded = 1;
639         }
640 }
641
642 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
643 {
644         if (vcpu->guest_xcr0_loaded) {
645                 if (vcpu->arch.xcr0 != host_xcr0)
646                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
647                 vcpu->guest_xcr0_loaded = 0;
648         }
649 }
650
651 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
652 {
653         u64 xcr0 = xcr;
654         u64 old_xcr0 = vcpu->arch.xcr0;
655         u64 valid_bits;
656
657         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
658         if (index != XCR_XFEATURE_ENABLED_MASK)
659                 return 1;
660         if (!(xcr0 & XSTATE_FP))
661                 return 1;
662         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
663                 return 1;
664
665         /*
666          * Do not allow the guest to set bits that we do not support
667          * saving.  However, xcr0 bit 0 is always set, even if the
668          * emulated CPU does not support XSAVE (see fx_init).
669          */
670         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
671         if (xcr0 & ~valid_bits)
672                 return 1;
673
674         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
675                 return 1;
676
677         if (xcr0 & XSTATE_AVX512) {
678                 if (!(xcr0 & XSTATE_YMM))
679                         return 1;
680                 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
681                         return 1;
682         }
683         kvm_put_guest_xcr0(vcpu);
684         vcpu->arch.xcr0 = xcr0;
685
686         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
687                 kvm_update_cpuid(vcpu);
688         return 0;
689 }
690
691 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
692 {
693         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
694             __kvm_set_xcr(vcpu, index, xcr)) {
695                 kvm_inject_gp(vcpu, 0);
696                 return 1;
697         }
698         return 0;
699 }
700 EXPORT_SYMBOL_GPL(kvm_set_xcr);
701
702 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
703 {
704         unsigned long old_cr4 = kvm_read_cr4(vcpu);
705         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
706                                    X86_CR4_PAE | X86_CR4_SMEP;
707         if (cr4 & CR4_RESERVED_BITS)
708                 return 1;
709
710         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
711                 return 1;
712
713         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
714                 return 1;
715
716         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
717                 return 1;
718
719         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
720                 return 1;
721
722         if (is_long_mode(vcpu)) {
723                 if (!(cr4 & X86_CR4_PAE))
724                         return 1;
725         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
726                    && ((cr4 ^ old_cr4) & pdptr_bits)
727                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
728                                    kvm_read_cr3(vcpu)))
729                 return 1;
730
731         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
732                 if (!guest_cpuid_has_pcid(vcpu))
733                         return 1;
734
735                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
737                         return 1;
738         }
739
740         if (kvm_x86_ops->set_cr4(vcpu, cr4))
741                 return 1;
742
743         if (((cr4 ^ old_cr4) & pdptr_bits) ||
744             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
745                 kvm_mmu_reset_context(vcpu);
746
747         if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
748                 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
749
750         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
751                 kvm_update_cpuid(vcpu);
752
753         return 0;
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_cr4);
756
757 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
758 {
759 #ifdef CONFIG_X86_64
760         cr3 &= ~CR3_PCID_INVD;
761 #endif
762
763         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
764                 kvm_mmu_sync_roots(vcpu);
765                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
766                 return 0;
767         }
768
769         if (is_long_mode(vcpu)) {
770                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
771                         return 1;
772         } else if (is_pae(vcpu) && is_paging(vcpu) &&
773                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
774                 return 1;
775
776         vcpu->arch.cr3 = cr3;
777         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
778         kvm_mmu_new_cr3(vcpu);
779         return 0;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_cr3);
782
783 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
784 {
785         if (cr8 & CR8_RESERVED_BITS)
786                 return 1;
787         if (irqchip_in_kernel(vcpu->kvm))
788                 kvm_lapic_set_tpr(vcpu, cr8);
789         else
790                 vcpu->arch.cr8 = cr8;
791         return 0;
792 }
793 EXPORT_SYMBOL_GPL(kvm_set_cr8);
794
795 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
796 {
797         if (irqchip_in_kernel(vcpu->kvm))
798                 return kvm_lapic_get_cr8(vcpu);
799         else
800                 return vcpu->arch.cr8;
801 }
802 EXPORT_SYMBOL_GPL(kvm_get_cr8);
803
804 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
805 {
806         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
807                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
808 }
809
810 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
811 {
812         unsigned long dr7;
813
814         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
815                 dr7 = vcpu->arch.guest_debug_dr7;
816         else
817                 dr7 = vcpu->arch.dr7;
818         kvm_x86_ops->set_dr7(vcpu, dr7);
819         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
820         if (dr7 & DR7_BP_EN_MASK)
821                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
822 }
823
824 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
825 {
826         u64 fixed = DR6_FIXED_1;
827
828         if (!guest_cpuid_has_rtm(vcpu))
829                 fixed |= DR6_RTM;
830         return fixed;
831 }
832
833 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
834 {
835         switch (dr) {
836         case 0 ... 3:
837                 vcpu->arch.db[dr] = val;
838                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
839                         vcpu->arch.eff_db[dr] = val;
840                 break;
841         case 4:
842                 /* fall through */
843         case 6:
844                 if (val & 0xffffffff00000000ULL)
845                         return -1; /* #GP */
846                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
847                 kvm_update_dr6(vcpu);
848                 break;
849         case 5:
850                 /* fall through */
851         default: /* 7 */
852                 if (val & 0xffffffff00000000ULL)
853                         return -1; /* #GP */
854                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
855                 kvm_update_dr7(vcpu);
856                 break;
857         }
858
859         return 0;
860 }
861
862 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
863 {
864         if (__kvm_set_dr(vcpu, dr, val)) {
865                 kvm_inject_gp(vcpu, 0);
866                 return 1;
867         }
868         return 0;
869 }
870 EXPORT_SYMBOL_GPL(kvm_set_dr);
871
872 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
873 {
874         switch (dr) {
875         case 0 ... 3:
876                 *val = vcpu->arch.db[dr];
877                 break;
878         case 4:
879                 /* fall through */
880         case 6:
881                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
882                         *val = vcpu->arch.dr6;
883                 else
884                         *val = kvm_x86_ops->get_dr6(vcpu);
885                 break;
886         case 5:
887                 /* fall through */
888         default: /* 7 */
889                 *val = vcpu->arch.dr7;
890                 break;
891         }
892         return 0;
893 }
894 EXPORT_SYMBOL_GPL(kvm_get_dr);
895
896 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
897 {
898         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
899         u64 data;
900         int err;
901
902         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
903         if (err)
904                 return err;
905         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
906         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
907         return err;
908 }
909 EXPORT_SYMBOL_GPL(kvm_rdpmc);
910
911 /*
912  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
913  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
914  *
915  * This list is modified at module load time to reflect the
916  * capabilities of the host cpu. This capabilities test skips MSRs that are
917  * kvm-specific. Those are put in the beginning of the list.
918  */
919
920 #define KVM_SAVE_MSRS_BEGIN     12
921 static u32 msrs_to_save[] = {
922         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
923         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
924         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
925         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
926         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
927         MSR_KVM_PV_EOI_EN,
928         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
929         MSR_STAR,
930 #ifdef CONFIG_X86_64
931         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
932 #endif
933         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
934         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
935 };
936
937 static unsigned num_msrs_to_save;
938
939 static const u32 emulated_msrs[] = {
940         MSR_IA32_TSC_ADJUST,
941         MSR_IA32_TSCDEADLINE,
942         MSR_IA32_MISC_ENABLE,
943         MSR_IA32_MCG_STATUS,
944         MSR_IA32_MCG_CTL,
945 };
946
947 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
948 {
949         if (efer & efer_reserved_bits)
950                 return false;
951
952         if (efer & EFER_FFXSR) {
953                 struct kvm_cpuid_entry2 *feat;
954
955                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
956                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
957                         return false;
958         }
959
960         if (efer & EFER_SVME) {
961                 struct kvm_cpuid_entry2 *feat;
962
963                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
964                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
965                         return false;
966         }
967
968         return true;
969 }
970 EXPORT_SYMBOL_GPL(kvm_valid_efer);
971
972 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
973 {
974         u64 old_efer = vcpu->arch.efer;
975
976         if (!kvm_valid_efer(vcpu, efer))
977                 return 1;
978
979         if (is_paging(vcpu)
980             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
981                 return 1;
982
983         efer &= ~EFER_LMA;
984         efer |= vcpu->arch.efer & EFER_LMA;
985
986         kvm_x86_ops->set_efer(vcpu, efer);
987
988         /* Update reserved bits */
989         if ((efer ^ old_efer) & EFER_NX)
990                 kvm_mmu_reset_context(vcpu);
991
992         return 0;
993 }
994
995 void kvm_enable_efer_bits(u64 mask)
996 {
997        efer_reserved_bits &= ~mask;
998 }
999 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1000
1001 /*
1002  * Writes msr value into into the appropriate "register".
1003  * Returns 0 on success, non-0 otherwise.
1004  * Assumes vcpu_load() was already called.
1005  */
1006 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1007 {
1008         switch (msr->index) {
1009         case MSR_FS_BASE:
1010         case MSR_GS_BASE:
1011         case MSR_KERNEL_GS_BASE:
1012         case MSR_CSTAR:
1013         case MSR_LSTAR:
1014                 if (is_noncanonical_address(msr->data))
1015                         return 1;
1016                 break;
1017         case MSR_IA32_SYSENTER_EIP:
1018         case MSR_IA32_SYSENTER_ESP:
1019                 /*
1020                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1021                  * non-canonical address is written on Intel but not on
1022                  * AMD (which ignores the top 32-bits, because it does
1023                  * not implement 64-bit SYSENTER).
1024                  *
1025                  * 64-bit code should hence be able to write a non-canonical
1026                  * value on AMD.  Making the address canonical ensures that
1027                  * vmentry does not fail on Intel after writing a non-canonical
1028                  * value, and that something deterministic happens if the guest
1029                  * invokes 64-bit SYSENTER.
1030                  */
1031                 msr->data = get_canonical(msr->data);
1032         }
1033         return kvm_x86_ops->set_msr(vcpu, msr);
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_set_msr);
1036
1037 /*
1038  * Adapt set_msr() to msr_io()'s calling convention
1039  */
1040 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1041 {
1042         struct msr_data msr;
1043
1044         msr.data = *data;
1045         msr.index = index;
1046         msr.host_initiated = true;
1047         return kvm_set_msr(vcpu, &msr);
1048 }
1049
1050 #ifdef CONFIG_X86_64
1051 struct pvclock_gtod_data {
1052         seqcount_t      seq;
1053
1054         struct { /* extract of a clocksource struct */
1055                 int vclock_mode;
1056                 cycle_t cycle_last;
1057                 cycle_t mask;
1058                 u32     mult;
1059                 u32     shift;
1060         } clock;
1061
1062         u64             boot_ns;
1063         u64             nsec_base;
1064 };
1065
1066 static struct pvclock_gtod_data pvclock_gtod_data;
1067
1068 static void update_pvclock_gtod(struct timekeeper *tk)
1069 {
1070         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1071         u64 boot_ns;
1072
1073         boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot));
1074
1075         write_seqcount_begin(&vdata->seq);
1076
1077         /* copy pvclock gtod data */
1078         vdata->clock.vclock_mode        = tk->tkr.clock->archdata.vclock_mode;
1079         vdata->clock.cycle_last         = tk->tkr.cycle_last;
1080         vdata->clock.mask               = tk->tkr.mask;
1081         vdata->clock.mult               = tk->tkr.mult;
1082         vdata->clock.shift              = tk->tkr.shift;
1083
1084         vdata->boot_ns                  = boot_ns;
1085         vdata->nsec_base                = tk->tkr.xtime_nsec;
1086
1087         write_seqcount_end(&vdata->seq);
1088 }
1089 #endif
1090
1091 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1092 {
1093         /*
1094          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1095          * vcpu_enter_guest.  This function is only called from
1096          * the physical CPU that is running vcpu.
1097          */
1098         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1099 }
1100
1101 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1102 {
1103         int version;
1104         int r;
1105         struct pvclock_wall_clock wc;
1106         struct timespec boot;
1107
1108         if (!wall_clock)
1109                 return;
1110
1111         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1112         if (r)
1113                 return;
1114
1115         if (version & 1)
1116                 ++version;  /* first time write, random junk */
1117
1118         ++version;
1119
1120         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1121
1122         /*
1123          * The guest calculates current wall clock time by adding
1124          * system time (updated by kvm_guest_time_update below) to the
1125          * wall clock specified here.  guest system time equals host
1126          * system time for us, thus we must fill in host boot time here.
1127          */
1128         getboottime(&boot);
1129
1130         if (kvm->arch.kvmclock_offset) {
1131                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1132                 boot = timespec_sub(boot, ts);
1133         }
1134         wc.sec = boot.tv_sec;
1135         wc.nsec = boot.tv_nsec;
1136         wc.version = version;
1137
1138         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1139
1140         version++;
1141         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1142 }
1143
1144 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1145 {
1146         uint32_t quotient, remainder;
1147
1148         /* Don't try to replace with do_div(), this one calculates
1149          * "(dividend << 32) / divisor" */
1150         __asm__ ( "divl %4"
1151                   : "=a" (quotient), "=d" (remainder)
1152                   : "0" (0), "1" (dividend), "r" (divisor) );
1153         return quotient;
1154 }
1155
1156 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1157                                s8 *pshift, u32 *pmultiplier)
1158 {
1159         uint64_t scaled64;
1160         int32_t  shift = 0;
1161         uint64_t tps64;
1162         uint32_t tps32;
1163
1164         tps64 = base_khz * 1000LL;
1165         scaled64 = scaled_khz * 1000LL;
1166         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1167                 tps64 >>= 1;
1168                 shift--;
1169         }
1170
1171         tps32 = (uint32_t)tps64;
1172         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1173                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1174                         scaled64 >>= 1;
1175                 else
1176                         tps32 <<= 1;
1177                 shift++;
1178         }
1179
1180         *pshift = shift;
1181         *pmultiplier = div_frac(scaled64, tps32);
1182
1183         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1184                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1185 }
1186
1187 static inline u64 get_kernel_ns(void)
1188 {
1189         return ktime_get_boot_ns();
1190 }
1191
1192 #ifdef CONFIG_X86_64
1193 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1194 #endif
1195
1196 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1197 static unsigned long max_tsc_khz;
1198
1199 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1200 {
1201         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1202                                    vcpu->arch.virtual_tsc_shift);
1203 }
1204
1205 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1206 {
1207         u64 v = (u64)khz * (1000000 + ppm);
1208         do_div(v, 1000000);
1209         return v;
1210 }
1211
1212 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1213 {
1214         u32 thresh_lo, thresh_hi;
1215         int use_scaling = 0;
1216
1217         /* tsc_khz can be zero if TSC calibration fails */
1218         if (this_tsc_khz == 0)
1219                 return;
1220
1221         /* Compute a scale to convert nanoseconds in TSC cycles */
1222         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1223                            &vcpu->arch.virtual_tsc_shift,
1224                            &vcpu->arch.virtual_tsc_mult);
1225         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1226
1227         /*
1228          * Compute the variation in TSC rate which is acceptable
1229          * within the range of tolerance and decide if the
1230          * rate being applied is within that bounds of the hardware
1231          * rate.  If so, no scaling or compensation need be done.
1232          */
1233         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1234         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1235         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1236                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1237                 use_scaling = 1;
1238         }
1239         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1240 }
1241
1242 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1243 {
1244         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1245                                       vcpu->arch.virtual_tsc_mult,
1246                                       vcpu->arch.virtual_tsc_shift);
1247         tsc += vcpu->arch.this_tsc_write;
1248         return tsc;
1249 }
1250
1251 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1252 {
1253 #ifdef CONFIG_X86_64
1254         bool vcpus_matched;
1255         struct kvm_arch *ka = &vcpu->kvm->arch;
1256         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1257
1258         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1259                          atomic_read(&vcpu->kvm->online_vcpus));
1260
1261         /*
1262          * Once the masterclock is enabled, always perform request in
1263          * order to update it.
1264          *
1265          * In order to enable masterclock, the host clocksource must be TSC
1266          * and the vcpus need to have matched TSCs.  When that happens,
1267          * perform request to enable masterclock.
1268          */
1269         if (ka->use_master_clock ||
1270             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1271                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1272
1273         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1274                             atomic_read(&vcpu->kvm->online_vcpus),
1275                             ka->use_master_clock, gtod->clock.vclock_mode);
1276 #endif
1277 }
1278
1279 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1280 {
1281         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1282         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1283 }
1284
1285 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1286 {
1287         struct kvm *kvm = vcpu->kvm;
1288         u64 offset, ns, elapsed;
1289         unsigned long flags;
1290         s64 usdiff;
1291         bool matched;
1292         bool already_matched;
1293         u64 data = msr->data;
1294
1295         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1296         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1297         ns = get_kernel_ns();
1298         elapsed = ns - kvm->arch.last_tsc_nsec;
1299
1300         if (vcpu->arch.virtual_tsc_khz) {
1301                 int faulted = 0;
1302
1303                 /* n.b - signed multiplication and division required */
1304                 usdiff = data - kvm->arch.last_tsc_write;
1305 #ifdef CONFIG_X86_64
1306                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1307 #else
1308                 /* do_div() only does unsigned */
1309                 asm("1: idivl %[divisor]\n"
1310                     "2: xor %%edx, %%edx\n"
1311                     "   movl $0, %[faulted]\n"
1312                     "3:\n"
1313                     ".section .fixup,\"ax\"\n"
1314                     "4: movl $1, %[faulted]\n"
1315                     "   jmp  3b\n"
1316                     ".previous\n"
1317
1318                 _ASM_EXTABLE(1b, 4b)
1319
1320                 : "=A"(usdiff), [faulted] "=r" (faulted)
1321                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1322
1323 #endif
1324                 do_div(elapsed, 1000);
1325                 usdiff -= elapsed;
1326                 if (usdiff < 0)
1327                         usdiff = -usdiff;
1328
1329                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1330                 if (faulted)
1331                         usdiff = USEC_PER_SEC;
1332         } else
1333                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1334
1335         /*
1336          * Special case: TSC write with a small delta (1 second) of virtual
1337          * cycle time against real time is interpreted as an attempt to
1338          * synchronize the CPU.
1339          *
1340          * For a reliable TSC, we can match TSC offsets, and for an unstable
1341          * TSC, we add elapsed time in this computation.  We could let the
1342          * compensation code attempt to catch up if we fall behind, but
1343          * it's better to try to match offsets from the beginning.
1344          */
1345         if (usdiff < USEC_PER_SEC &&
1346             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1347                 if (!check_tsc_unstable()) {
1348                         offset = kvm->arch.cur_tsc_offset;
1349                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1350                 } else {
1351                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1352                         data += delta;
1353                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1354                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1355                 }
1356                 matched = true;
1357                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1358         } else {
1359                 /*
1360                  * We split periods of matched TSC writes into generations.
1361                  * For each generation, we track the original measured
1362                  * nanosecond time, offset, and write, so if TSCs are in
1363                  * sync, we can match exact offset, and if not, we can match
1364                  * exact software computation in compute_guest_tsc()
1365                  *
1366                  * These values are tracked in kvm->arch.cur_xxx variables.
1367                  */
1368                 kvm->arch.cur_tsc_generation++;
1369                 kvm->arch.cur_tsc_nsec = ns;
1370                 kvm->arch.cur_tsc_write = data;
1371                 kvm->arch.cur_tsc_offset = offset;
1372                 matched = false;
1373                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1374                          kvm->arch.cur_tsc_generation, data);
1375         }
1376
1377         /*
1378          * We also track th most recent recorded KHZ, write and time to
1379          * allow the matching interval to be extended at each write.
1380          */
1381         kvm->arch.last_tsc_nsec = ns;
1382         kvm->arch.last_tsc_write = data;
1383         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1384
1385         vcpu->arch.last_guest_tsc = data;
1386
1387         /* Keep track of which generation this VCPU has synchronized to */
1388         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1389         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1390         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1391
1392         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1393                 update_ia32_tsc_adjust_msr(vcpu, offset);
1394         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1395         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1396
1397         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1398         if (!matched) {
1399                 kvm->arch.nr_vcpus_matched_tsc = 0;
1400         } else if (!already_matched) {
1401                 kvm->arch.nr_vcpus_matched_tsc++;
1402         }
1403
1404         kvm_track_tsc_matching(vcpu);
1405         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1406 }
1407
1408 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1409
1410 #ifdef CONFIG_X86_64
1411
1412 static cycle_t read_tsc(void)
1413 {
1414         cycle_t ret;
1415         u64 last;
1416
1417         /*
1418          * Empirically, a fence (of type that depends on the CPU)
1419          * before rdtsc is enough to ensure that rdtsc is ordered
1420          * with respect to loads.  The various CPU manuals are unclear
1421          * as to whether rdtsc can be reordered with later loads,
1422          * but no one has ever seen it happen.
1423          */
1424         rdtsc_barrier();
1425         ret = (cycle_t)vget_cycles();
1426
1427         last = pvclock_gtod_data.clock.cycle_last;
1428
1429         if (likely(ret >= last))
1430                 return ret;
1431
1432         /*
1433          * GCC likes to generate cmov here, but this branch is extremely
1434          * predictable (it's just a funciton of time and the likely is
1435          * very likely) and there's a data dependence, so force GCC
1436          * to generate a branch instead.  I don't barrier() because
1437          * we don't actually need a barrier, and if this function
1438          * ever gets inlined it will generate worse code.
1439          */
1440         asm volatile ("");
1441         return last;
1442 }
1443
1444 static inline u64 vgettsc(cycle_t *cycle_now)
1445 {
1446         long v;
1447         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1448
1449         *cycle_now = read_tsc();
1450
1451         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1452         return v * gtod->clock.mult;
1453 }
1454
1455 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1456 {
1457         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1458         unsigned long seq;
1459         int mode;
1460         u64 ns;
1461
1462         do {
1463                 seq = read_seqcount_begin(&gtod->seq);
1464                 mode = gtod->clock.vclock_mode;
1465                 ns = gtod->nsec_base;
1466                 ns += vgettsc(cycle_now);
1467                 ns >>= gtod->clock.shift;
1468                 ns += gtod->boot_ns;
1469         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1470         *t = ns;
1471
1472         return mode;
1473 }
1474
1475 /* returns true if host is using tsc clocksource */
1476 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1477 {
1478         /* checked again under seqlock below */
1479         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1480                 return false;
1481
1482         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1483 }
1484 #endif
1485
1486 /*
1487  *
1488  * Assuming a stable TSC across physical CPUS, and a stable TSC
1489  * across virtual CPUs, the following condition is possible.
1490  * Each numbered line represents an event visible to both
1491  * CPUs at the next numbered event.
1492  *
1493  * "timespecX" represents host monotonic time. "tscX" represents
1494  * RDTSC value.
1495  *
1496  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1497  *
1498  * 1.  read timespec0,tsc0
1499  * 2.                                   | timespec1 = timespec0 + N
1500  *                                      | tsc1 = tsc0 + M
1501  * 3. transition to guest               | transition to guest
1502  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1503  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1504  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1505  *
1506  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1507  *
1508  *      - ret0 < ret1
1509  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1510  *              ...
1511  *      - 0 < N - M => M < N
1512  *
1513  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1514  * always the case (the difference between two distinct xtime instances
1515  * might be smaller then the difference between corresponding TSC reads,
1516  * when updating guest vcpus pvclock areas).
1517  *
1518  * To avoid that problem, do not allow visibility of distinct
1519  * system_timestamp/tsc_timestamp values simultaneously: use a master
1520  * copy of host monotonic time values. Update that master copy
1521  * in lockstep.
1522  *
1523  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1524  *
1525  */
1526
1527 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1528 {
1529 #ifdef CONFIG_X86_64
1530         struct kvm_arch *ka = &kvm->arch;
1531         int vclock_mode;
1532         bool host_tsc_clocksource, vcpus_matched;
1533
1534         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1535                         atomic_read(&kvm->online_vcpus));
1536
1537         /*
1538          * If the host uses TSC clock, then passthrough TSC as stable
1539          * to the guest.
1540          */
1541         host_tsc_clocksource = kvm_get_time_and_clockread(
1542                                         &ka->master_kernel_ns,
1543                                         &ka->master_cycle_now);
1544
1545         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1546                                 && !backwards_tsc_observed
1547                                 && !ka->boot_vcpu_runs_old_kvmclock;
1548
1549         if (ka->use_master_clock)
1550                 atomic_set(&kvm_guest_has_master_clock, 1);
1551
1552         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1553         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1554                                         vcpus_matched);
1555 #endif
1556 }
1557
1558 static void kvm_gen_update_masterclock(struct kvm *kvm)
1559 {
1560 #ifdef CONFIG_X86_64
1561         int i;
1562         struct kvm_vcpu *vcpu;
1563         struct kvm_arch *ka = &kvm->arch;
1564
1565         spin_lock(&ka->pvclock_gtod_sync_lock);
1566         kvm_make_mclock_inprogress_request(kvm);
1567         /* no guest entries from this point */
1568         pvclock_update_vm_gtod_copy(kvm);
1569
1570         kvm_for_each_vcpu(i, vcpu, kvm)
1571                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1572
1573         /* guest entries allowed */
1574         kvm_for_each_vcpu(i, vcpu, kvm)
1575                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1576
1577         spin_unlock(&ka->pvclock_gtod_sync_lock);
1578 #endif
1579 }
1580
1581 static int kvm_guest_time_update(struct kvm_vcpu *v)
1582 {
1583         unsigned long flags, this_tsc_khz;
1584         struct kvm_vcpu_arch *vcpu = &v->arch;
1585         struct kvm_arch *ka = &v->kvm->arch;
1586         s64 kernel_ns;
1587         u64 tsc_timestamp, host_tsc;
1588         struct pvclock_vcpu_time_info guest_hv_clock;
1589         u8 pvclock_flags;
1590         bool use_master_clock;
1591
1592         kernel_ns = 0;
1593         host_tsc = 0;
1594
1595         /*
1596          * If the host uses TSC clock, then passthrough TSC as stable
1597          * to the guest.
1598          */
1599         spin_lock(&ka->pvclock_gtod_sync_lock);
1600         use_master_clock = ka->use_master_clock;
1601         if (use_master_clock) {
1602                 host_tsc = ka->master_cycle_now;
1603                 kernel_ns = ka->master_kernel_ns;
1604         }
1605         spin_unlock(&ka->pvclock_gtod_sync_lock);
1606
1607         /* Keep irq disabled to prevent changes to the clock */
1608         local_irq_save(flags);
1609         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1610         if (unlikely(this_tsc_khz == 0)) {
1611                 local_irq_restore(flags);
1612                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1613                 return 1;
1614         }
1615         if (!use_master_clock) {
1616                 host_tsc = native_read_tsc();
1617                 kernel_ns = get_kernel_ns();
1618         }
1619
1620         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1621
1622         /*
1623          * We may have to catch up the TSC to match elapsed wall clock
1624          * time for two reasons, even if kvmclock is used.
1625          *   1) CPU could have been running below the maximum TSC rate
1626          *   2) Broken TSC compensation resets the base at each VCPU
1627          *      entry to avoid unknown leaps of TSC even when running
1628          *      again on the same CPU.  This may cause apparent elapsed
1629          *      time to disappear, and the guest to stand still or run
1630          *      very slowly.
1631          */
1632         if (vcpu->tsc_catchup) {
1633                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1634                 if (tsc > tsc_timestamp) {
1635                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1636                         tsc_timestamp = tsc;
1637                 }
1638         }
1639
1640         local_irq_restore(flags);
1641
1642         if (!vcpu->pv_time_enabled)
1643                 return 0;
1644
1645         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1646                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1647                                    &vcpu->hv_clock.tsc_shift,
1648                                    &vcpu->hv_clock.tsc_to_system_mul);
1649                 vcpu->hw_tsc_khz = this_tsc_khz;
1650         }
1651
1652         /* With all the info we got, fill in the values */
1653         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1654         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1655         vcpu->last_guest_tsc = tsc_timestamp;
1656
1657         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1658                 &guest_hv_clock, sizeof(guest_hv_clock))))
1659                 return 0;
1660
1661         /*
1662          * The interface expects us to write an even number signaling that the
1663          * update is finished. Since the guest won't see the intermediate
1664          * state, we just increase by 2 at the end.
1665          */
1666         vcpu->hv_clock.version = guest_hv_clock.version + 2;
1667
1668         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1669         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1670
1671         if (vcpu->pvclock_set_guest_stopped_request) {
1672                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1673                 vcpu->pvclock_set_guest_stopped_request = false;
1674         }
1675
1676         /* If the host uses TSC clocksource, then it is stable */
1677         if (use_master_clock)
1678                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1679
1680         vcpu->hv_clock.flags = pvclock_flags;
1681
1682         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1683
1684         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1685                                 &vcpu->hv_clock,
1686                                 sizeof(vcpu->hv_clock));
1687         return 0;
1688 }
1689
1690 /*
1691  * kvmclock updates which are isolated to a given vcpu, such as
1692  * vcpu->cpu migration, should not allow system_timestamp from
1693  * the rest of the vcpus to remain static. Otherwise ntp frequency
1694  * correction applies to one vcpu's system_timestamp but not
1695  * the others.
1696  *
1697  * So in those cases, request a kvmclock update for all vcpus.
1698  * We need to rate-limit these requests though, as they can
1699  * considerably slow guests that have a large number of vcpus.
1700  * The time for a remote vcpu to update its kvmclock is bound
1701  * by the delay we use to rate-limit the updates.
1702  */
1703
1704 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1705
1706 static void kvmclock_update_fn(struct work_struct *work)
1707 {
1708         int i;
1709         struct delayed_work *dwork = to_delayed_work(work);
1710         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1711                                            kvmclock_update_work);
1712         struct kvm *kvm = container_of(ka, struct kvm, arch);
1713         struct kvm_vcpu *vcpu;
1714
1715         kvm_for_each_vcpu(i, vcpu, kvm) {
1716                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1717                 kvm_vcpu_kick(vcpu);
1718         }
1719 }
1720
1721 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1722 {
1723         struct kvm *kvm = v->kvm;
1724
1725         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1726         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1727                                         KVMCLOCK_UPDATE_DELAY);
1728 }
1729
1730 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1731
1732 static void kvmclock_sync_fn(struct work_struct *work)
1733 {
1734         struct delayed_work *dwork = to_delayed_work(work);
1735         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1736                                            kvmclock_sync_work);
1737         struct kvm *kvm = container_of(ka, struct kvm, arch);
1738
1739         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1740         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1741                                         KVMCLOCK_SYNC_PERIOD);
1742 }
1743
1744 static bool msr_mtrr_valid(unsigned msr)
1745 {
1746         switch (msr) {
1747         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1748         case MSR_MTRRfix64K_00000:
1749         case MSR_MTRRfix16K_80000:
1750         case MSR_MTRRfix16K_A0000:
1751         case MSR_MTRRfix4K_C0000:
1752         case MSR_MTRRfix4K_C8000:
1753         case MSR_MTRRfix4K_D0000:
1754         case MSR_MTRRfix4K_D8000:
1755         case MSR_MTRRfix4K_E0000:
1756         case MSR_MTRRfix4K_E8000:
1757         case MSR_MTRRfix4K_F0000:
1758         case MSR_MTRRfix4K_F8000:
1759         case MSR_MTRRdefType:
1760         case MSR_IA32_CR_PAT:
1761                 return true;
1762         case 0x2f8:
1763                 return true;
1764         }
1765         return false;
1766 }
1767
1768 static bool valid_pat_type(unsigned t)
1769 {
1770         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1771 }
1772
1773 static bool valid_mtrr_type(unsigned t)
1774 {
1775         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1776 }
1777
1778 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1779 {
1780         int i;
1781         u64 mask;
1782
1783         if (!msr_mtrr_valid(msr))
1784                 return false;
1785
1786         if (msr == MSR_IA32_CR_PAT) {
1787                 for (i = 0; i < 8; i++)
1788                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1789                                 return false;
1790                 return true;
1791         } else if (msr == MSR_MTRRdefType) {
1792                 if (data & ~0xcff)
1793                         return false;
1794                 return valid_mtrr_type(data & 0xff);
1795         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1796                 for (i = 0; i < 8 ; i++)
1797                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1798                                 return false;
1799                 return true;
1800         }
1801
1802         /* variable MTRRs */
1803         WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1804
1805         mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1806         if ((msr & 1) == 0) {
1807                 /* MTRR base */
1808                 if (!valid_mtrr_type(data & 0xff))
1809                         return false;
1810                 mask |= 0xf00;
1811         } else
1812                 /* MTRR mask */
1813                 mask |= 0x7ff;
1814         if (data & mask) {
1815                 kvm_inject_gp(vcpu, 0);
1816                 return false;
1817         }
1818
1819         return true;
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1822
1823 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1824 {
1825         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1826
1827         if (!kvm_mtrr_valid(vcpu, msr, data))
1828                 return 1;
1829
1830         if (msr == MSR_MTRRdefType) {
1831                 vcpu->arch.mtrr_state.def_type = data;
1832                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1833         } else if (msr == MSR_MTRRfix64K_00000)
1834                 p[0] = data;
1835         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1836                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1837         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1838                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1839         else if (msr == MSR_IA32_CR_PAT)
1840                 vcpu->arch.pat = data;
1841         else {  /* Variable MTRRs */
1842                 int idx, is_mtrr_mask;
1843                 u64 *pt;
1844
1845                 idx = (msr - 0x200) / 2;
1846                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1847                 if (!is_mtrr_mask)
1848                         pt =
1849                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1850                 else
1851                         pt =
1852                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1853                 *pt = data;
1854         }
1855
1856         kvm_mmu_reset_context(vcpu);
1857         return 0;
1858 }
1859
1860 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1861 {
1862         u64 mcg_cap = vcpu->arch.mcg_cap;
1863         unsigned bank_num = mcg_cap & 0xff;
1864
1865         switch (msr) {
1866         case MSR_IA32_MCG_STATUS:
1867                 vcpu->arch.mcg_status = data;
1868                 break;
1869         case MSR_IA32_MCG_CTL:
1870                 if (!(mcg_cap & MCG_CTL_P))
1871                         return 1;
1872                 if (data != 0 && data != ~(u64)0)
1873                         return -1;
1874                 vcpu->arch.mcg_ctl = data;
1875                 break;
1876         default:
1877                 if (msr >= MSR_IA32_MC0_CTL &&
1878                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1879                         u32 offset = msr - MSR_IA32_MC0_CTL;
1880                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1881                          * some Linux kernels though clear bit 10 in bank 4 to
1882                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1883                          * this to avoid an uncatched #GP in the guest
1884                          */
1885                         if ((offset & 0x3) == 0 &&
1886                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1887                                 return -1;
1888                         vcpu->arch.mce_banks[offset] = data;
1889                         break;
1890                 }
1891                 return 1;
1892         }
1893         return 0;
1894 }
1895
1896 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1897 {
1898         struct kvm *kvm = vcpu->kvm;
1899         int lm = is_long_mode(vcpu);
1900         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1901                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1902         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1903                 : kvm->arch.xen_hvm_config.blob_size_32;
1904         u32 page_num = data & ~PAGE_MASK;
1905         u64 page_addr = data & PAGE_MASK;
1906         u8 *page;
1907         int r;
1908
1909         r = -E2BIG;
1910         if (page_num >= blob_size)
1911                 goto out;
1912         r = -ENOMEM;
1913         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1914         if (IS_ERR(page)) {
1915                 r = PTR_ERR(page);
1916                 goto out;
1917         }
1918         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1919                 goto out_free;
1920         r = 0;
1921 out_free:
1922         kfree(page);
1923 out:
1924         return r;
1925 }
1926
1927 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1928 {
1929         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1930 }
1931
1932 static bool kvm_hv_msr_partition_wide(u32 msr)
1933 {
1934         bool r = false;
1935         switch (msr) {
1936         case HV_X64_MSR_GUEST_OS_ID:
1937         case HV_X64_MSR_HYPERCALL:
1938         case HV_X64_MSR_REFERENCE_TSC:
1939         case HV_X64_MSR_TIME_REF_COUNT:
1940                 r = true;
1941                 break;
1942         }
1943
1944         return r;
1945 }
1946
1947 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1948 {
1949         struct kvm *kvm = vcpu->kvm;
1950
1951         switch (msr) {
1952         case HV_X64_MSR_GUEST_OS_ID:
1953                 kvm->arch.hv_guest_os_id = data;
1954                 /* setting guest os id to zero disables hypercall page */
1955                 if (!kvm->arch.hv_guest_os_id)
1956                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1957                 break;
1958         case HV_X64_MSR_HYPERCALL: {
1959                 u64 gfn;
1960                 unsigned long addr;
1961                 u8 instructions[4];
1962
1963                 /* if guest os id is not set hypercall should remain disabled */
1964                 if (!kvm->arch.hv_guest_os_id)
1965                         break;
1966                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1967                         kvm->arch.hv_hypercall = data;
1968                         break;
1969                 }
1970                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1971                 addr = gfn_to_hva(kvm, gfn);
1972                 if (kvm_is_error_hva(addr))
1973                         return 1;
1974                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1975                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1976                 if (__copy_to_user((void __user *)addr, instructions, 4))
1977                         return 1;
1978                 kvm->arch.hv_hypercall = data;
1979                 mark_page_dirty(kvm, gfn);
1980                 break;
1981         }
1982         case HV_X64_MSR_REFERENCE_TSC: {
1983                 u64 gfn;
1984                 HV_REFERENCE_TSC_PAGE tsc_ref;
1985                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1986                 kvm->arch.hv_tsc_page = data;
1987                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1988                         break;
1989                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1990                 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1991                         &tsc_ref, sizeof(tsc_ref)))
1992                         return 1;
1993                 mark_page_dirty(kvm, gfn);
1994                 break;
1995         }
1996         default:
1997                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1998                             "data 0x%llx\n", msr, data);
1999                 return 1;
2000         }
2001         return 0;
2002 }
2003
2004 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2005 {
2006         switch (msr) {
2007         case HV_X64_MSR_APIC_ASSIST_PAGE: {
2008                 u64 gfn;
2009                 unsigned long addr;
2010
2011                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2012                         vcpu->arch.hv_vapic = data;
2013                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2014                                 return 1;
2015                         break;
2016                 }
2017                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2018                 addr = gfn_to_hva(vcpu->kvm, gfn);
2019                 if (kvm_is_error_hva(addr))
2020                         return 1;
2021                 if (__clear_user((void __user *)addr, PAGE_SIZE))
2022                         return 1;
2023                 vcpu->arch.hv_vapic = data;
2024                 mark_page_dirty(vcpu->kvm, gfn);
2025                 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2026                         return 1;
2027                 break;
2028         }
2029         case HV_X64_MSR_EOI:
2030                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2031         case HV_X64_MSR_ICR:
2032                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2033         case HV_X64_MSR_TPR:
2034                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2035         default:
2036                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2037                             "data 0x%llx\n", msr, data);
2038                 return 1;
2039         }
2040
2041         return 0;
2042 }
2043
2044 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2045 {
2046         gpa_t gpa = data & ~0x3f;
2047
2048         /* Bits 2:5 are reserved, Should be zero */
2049         if (data & 0x3c)
2050                 return 1;
2051
2052         vcpu->arch.apf.msr_val = data;
2053
2054         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2055                 kvm_clear_async_pf_completion_queue(vcpu);
2056                 kvm_async_pf_hash_reset(vcpu);
2057                 return 0;
2058         }
2059
2060         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2061                                         sizeof(u32)))
2062                 return 1;
2063
2064         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2065         kvm_async_pf_wakeup_all(vcpu);
2066         return 0;
2067 }
2068
2069 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2070 {
2071         vcpu->arch.pv_time_enabled = false;
2072 }
2073
2074 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2075 {
2076         u64 delta;
2077
2078         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2079                 return;
2080
2081         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2082         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2083         vcpu->arch.st.accum_steal = delta;
2084 }
2085
2086 static void record_steal_time(struct kvm_vcpu *vcpu)
2087 {
2088         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2089                 return;
2090
2091         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2092                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2093                 return;
2094
2095         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2096         vcpu->arch.st.steal.version += 2;
2097         vcpu->arch.st.accum_steal = 0;
2098
2099         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2100                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2101 }
2102
2103 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2104 {
2105         bool pr = false;
2106         u32 msr = msr_info->index;
2107         u64 data = msr_info->data;
2108
2109         switch (msr) {
2110         case MSR_AMD64_NB_CFG:
2111         case MSR_IA32_UCODE_REV:
2112         case MSR_IA32_UCODE_WRITE:
2113         case MSR_VM_HSAVE_PA:
2114         case MSR_AMD64_PATCH_LOADER:
2115         case MSR_AMD64_BU_CFG2:
2116                 break;
2117
2118         case MSR_EFER:
2119                 return set_efer(vcpu, data);
2120         case MSR_K7_HWCR:
2121                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2122                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2123                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2124                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2125                 if (data != 0) {
2126                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2127                                     data);
2128                         return 1;
2129                 }
2130                 break;
2131         case MSR_FAM10H_MMIO_CONF_BASE:
2132                 if (data != 0) {
2133                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2134                                     "0x%llx\n", data);
2135                         return 1;
2136                 }
2137                 break;
2138         case MSR_IA32_DEBUGCTLMSR:
2139                 if (!data) {
2140                         /* We support the non-activated case already */
2141                         break;
2142                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2143                         /* Values other than LBR and BTF are vendor-specific,
2144                            thus reserved and should throw a #GP */
2145                         return 1;
2146                 }
2147                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2148                             __func__, data);
2149                 break;
2150         case 0x200 ... 0x2ff:
2151                 return set_msr_mtrr(vcpu, msr, data);
2152         case MSR_IA32_APICBASE:
2153                 return kvm_set_apic_base(vcpu, msr_info);
2154         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2155                 return kvm_x2apic_msr_write(vcpu, msr, data);
2156         case MSR_IA32_TSCDEADLINE:
2157                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2158                 break;
2159         case MSR_IA32_TSC_ADJUST:
2160                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2161                         if (!msr_info->host_initiated) {
2162                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2163                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2164                         }
2165                         vcpu->arch.ia32_tsc_adjust_msr = data;
2166                 }
2167                 break;
2168         case MSR_IA32_MISC_ENABLE:
2169                 vcpu->arch.ia32_misc_enable_msr = data;
2170                 break;
2171         case MSR_KVM_WALL_CLOCK_NEW:
2172         case MSR_KVM_WALL_CLOCK:
2173                 vcpu->kvm->arch.wall_clock = data;
2174                 kvm_write_wall_clock(vcpu->kvm, data);
2175                 break;
2176         case MSR_KVM_SYSTEM_TIME_NEW:
2177         case MSR_KVM_SYSTEM_TIME: {
2178                 u64 gpa_offset;
2179                 struct kvm_arch *ka = &vcpu->kvm->arch;
2180
2181                 kvmclock_reset(vcpu);
2182
2183                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2184                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2185
2186                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2187                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2188                                         &vcpu->requests);
2189
2190                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2191                 }
2192
2193                 vcpu->arch.time = data;
2194                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2195
2196                 /* we verify if the enable bit is set... */
2197                 if (!(data & 1))
2198                         break;
2199
2200                 gpa_offset = data & ~(PAGE_MASK | 1);
2201
2202                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2203                      &vcpu->arch.pv_time, data & ~1ULL,
2204                      sizeof(struct pvclock_vcpu_time_info)))
2205                         vcpu->arch.pv_time_enabled = false;
2206                 else
2207                         vcpu->arch.pv_time_enabled = true;
2208
2209                 break;
2210         }
2211         case MSR_KVM_ASYNC_PF_EN:
2212                 if (kvm_pv_enable_async_pf(vcpu, data))
2213                         return 1;
2214                 break;
2215         case MSR_KVM_STEAL_TIME:
2216
2217                 if (unlikely(!sched_info_on()))
2218                         return 1;
2219
2220                 if (data & KVM_STEAL_RESERVED_MASK)
2221                         return 1;
2222
2223                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2224                                                 data & KVM_STEAL_VALID_BITS,
2225                                                 sizeof(struct kvm_steal_time)))
2226                         return 1;
2227
2228                 vcpu->arch.st.msr_val = data;
2229
2230                 if (!(data & KVM_MSR_ENABLED))
2231                         break;
2232
2233                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2234
2235                 preempt_disable();
2236                 accumulate_steal_time(vcpu);
2237                 preempt_enable();
2238
2239                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2240
2241                 break;
2242         case MSR_KVM_PV_EOI_EN:
2243                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2244                         return 1;
2245                 break;
2246
2247         case MSR_IA32_MCG_CTL:
2248         case MSR_IA32_MCG_STATUS:
2249         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2250                 return set_msr_mce(vcpu, msr, data);
2251
2252         /* Performance counters are not protected by a CPUID bit,
2253          * so we should check all of them in the generic path for the sake of
2254          * cross vendor migration.
2255          * Writing a zero into the event select MSRs disables them,
2256          * which we perfectly emulate ;-). Any other value should be at least
2257          * reported, some guests depend on them.
2258          */
2259         case MSR_K7_EVNTSEL0:
2260         case MSR_K7_EVNTSEL1:
2261         case MSR_K7_EVNTSEL2:
2262         case MSR_K7_EVNTSEL3:
2263                 if (data != 0)
2264                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2265                                     "0x%x data 0x%llx\n", msr, data);
2266                 break;
2267         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2268          * so we ignore writes to make it happy.
2269          */
2270         case MSR_K7_PERFCTR0:
2271         case MSR_K7_PERFCTR1:
2272         case MSR_K7_PERFCTR2:
2273         case MSR_K7_PERFCTR3:
2274                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2275                             "0x%x data 0x%llx\n", msr, data);
2276                 break;
2277         case MSR_P6_PERFCTR0:
2278         case MSR_P6_PERFCTR1:
2279                 pr = true;
2280         case MSR_P6_EVNTSEL0:
2281         case MSR_P6_EVNTSEL1:
2282                 if (kvm_pmu_msr(vcpu, msr))
2283                         return kvm_pmu_set_msr(vcpu, msr_info);
2284
2285                 if (pr || data != 0)
2286                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2287                                     "0x%x data 0x%llx\n", msr, data);
2288                 break;
2289         case MSR_K7_CLK_CTL:
2290                 /*
2291                  * Ignore all writes to this no longer documented MSR.
2292                  * Writes are only relevant for old K7 processors,
2293                  * all pre-dating SVM, but a recommended workaround from
2294                  * AMD for these chips. It is possible to specify the
2295                  * affected processor models on the command line, hence
2296                  * the need to ignore the workaround.
2297                  */
2298                 break;
2299         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2300                 if (kvm_hv_msr_partition_wide(msr)) {
2301                         int r;
2302                         mutex_lock(&vcpu->kvm->lock);
2303                         r = set_msr_hyperv_pw(vcpu, msr, data);
2304                         mutex_unlock(&vcpu->kvm->lock);
2305                         return r;
2306                 } else
2307                         return set_msr_hyperv(vcpu, msr, data);
2308                 break;
2309         case MSR_IA32_BBL_CR_CTL3:
2310                 /* Drop writes to this legacy MSR -- see rdmsr
2311                  * counterpart for further detail.
2312                  */
2313                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2314                 break;
2315         case MSR_AMD64_OSVW_ID_LENGTH:
2316                 if (!guest_cpuid_has_osvw(vcpu))
2317                         return 1;
2318                 vcpu->arch.osvw.length = data;
2319                 break;
2320         case MSR_AMD64_OSVW_STATUS:
2321                 if (!guest_cpuid_has_osvw(vcpu))
2322                         return 1;
2323                 vcpu->arch.osvw.status = data;
2324                 break;
2325         default:
2326                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2327                         return xen_hvm_config(vcpu, data);
2328                 if (kvm_pmu_msr(vcpu, msr))
2329                         return kvm_pmu_set_msr(vcpu, msr_info);
2330                 if (!ignore_msrs) {
2331                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2332                                     msr, data);
2333                         return 1;
2334                 } else {
2335                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2336                                     msr, data);
2337                         break;
2338                 }
2339         }
2340         return 0;
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2343
2344
2345 /*
2346  * Reads an msr value (of 'msr_index') into 'pdata'.
2347  * Returns 0 on success, non-0 otherwise.
2348  * Assumes vcpu_load() was already called.
2349  */
2350 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2351 {
2352         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2353 }
2354 EXPORT_SYMBOL_GPL(kvm_get_msr);
2355
2356 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2357 {
2358         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2359
2360         if (!msr_mtrr_valid(msr))
2361                 return 1;
2362
2363         if (msr == MSR_MTRRdefType)
2364                 *pdata = vcpu->arch.mtrr_state.def_type +
2365                          (vcpu->arch.mtrr_state.enabled << 10);
2366         else if (msr == MSR_MTRRfix64K_00000)
2367                 *pdata = p[0];
2368         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2369                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2370         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2371                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2372         else if (msr == MSR_IA32_CR_PAT)
2373                 *pdata = vcpu->arch.pat;
2374         else {  /* Variable MTRRs */
2375                 int idx, is_mtrr_mask;
2376                 u64 *pt;
2377
2378                 idx = (msr - 0x200) / 2;
2379                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2380                 if (!is_mtrr_mask)
2381                         pt =
2382                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2383                 else
2384                         pt =
2385                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2386                 *pdata = *pt;
2387         }
2388
2389         return 0;
2390 }
2391
2392 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2393 {
2394         u64 data;
2395         u64 mcg_cap = vcpu->arch.mcg_cap;
2396         unsigned bank_num = mcg_cap & 0xff;
2397
2398         switch (msr) {
2399         case MSR_IA32_P5_MC_ADDR:
2400         case MSR_IA32_P5_MC_TYPE:
2401                 data = 0;
2402                 break;
2403         case MSR_IA32_MCG_CAP:
2404                 data = vcpu->arch.mcg_cap;
2405                 break;
2406         case MSR_IA32_MCG_CTL:
2407                 if (!(mcg_cap & MCG_CTL_P))
2408                         return 1;
2409                 data = vcpu->arch.mcg_ctl;
2410                 break;
2411         case MSR_IA32_MCG_STATUS:
2412                 data = vcpu->arch.mcg_status;
2413                 break;
2414         default:
2415                 if (msr >= MSR_IA32_MC0_CTL &&
2416                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2417                         u32 offset = msr - MSR_IA32_MC0_CTL;
2418                         data = vcpu->arch.mce_banks[offset];
2419                         break;
2420                 }
2421                 return 1;
2422         }
2423         *pdata = data;
2424         return 0;
2425 }
2426
2427 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2428 {
2429         u64 data = 0;
2430         struct kvm *kvm = vcpu->kvm;
2431
2432         switch (msr) {
2433         case HV_X64_MSR_GUEST_OS_ID:
2434                 data = kvm->arch.hv_guest_os_id;
2435                 break;
2436         case HV_X64_MSR_HYPERCALL:
2437                 data = kvm->arch.hv_hypercall;
2438                 break;
2439         case HV_X64_MSR_TIME_REF_COUNT: {
2440                 data =
2441                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2442                 break;
2443         }
2444         case HV_X64_MSR_REFERENCE_TSC:
2445                 data = kvm->arch.hv_tsc_page;
2446                 break;
2447         default:
2448                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2449                 return 1;
2450         }
2451
2452         *pdata = data;
2453         return 0;
2454 }
2455
2456 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2457 {
2458         u64 data = 0;
2459
2460         switch (msr) {
2461         case HV_X64_MSR_VP_INDEX: {
2462                 int r;
2463                 struct kvm_vcpu *v;
2464                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2465                         if (v == vcpu) {
2466                                 data = r;
2467                                 break;
2468                         }
2469                 }
2470                 break;
2471         }
2472         case HV_X64_MSR_EOI:
2473                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2474         case HV_X64_MSR_ICR:
2475                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2476         case HV_X64_MSR_TPR:
2477                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2478         case HV_X64_MSR_APIC_ASSIST_PAGE:
2479                 data = vcpu->arch.hv_vapic;
2480                 break;
2481         default:
2482                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2483                 return 1;
2484         }
2485         *pdata = data;
2486         return 0;
2487 }
2488
2489 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2490 {
2491         u64 data;
2492
2493         switch (msr) {
2494         case MSR_IA32_PLATFORM_ID:
2495         case MSR_IA32_EBL_CR_POWERON:
2496         case MSR_IA32_DEBUGCTLMSR:
2497         case MSR_IA32_LASTBRANCHFROMIP:
2498         case MSR_IA32_LASTBRANCHTOIP:
2499         case MSR_IA32_LASTINTFROMIP:
2500         case MSR_IA32_LASTINTTOIP:
2501         case MSR_K8_SYSCFG:
2502         case MSR_K7_HWCR:
2503         case MSR_VM_HSAVE_PA:
2504         case MSR_K7_EVNTSEL0:
2505         case MSR_K7_EVNTSEL1:
2506         case MSR_K7_EVNTSEL2:
2507         case MSR_K7_EVNTSEL3:
2508         case MSR_K7_PERFCTR0:
2509         case MSR_K7_PERFCTR1:
2510         case MSR_K7_PERFCTR2:
2511         case MSR_K7_PERFCTR3:
2512         case MSR_K8_INT_PENDING_MSG:
2513         case MSR_AMD64_NB_CFG:
2514         case MSR_FAM10H_MMIO_CONF_BASE:
2515         case MSR_AMD64_BU_CFG2:
2516                 data = 0;
2517                 break;
2518         case MSR_P6_PERFCTR0:
2519         case MSR_P6_PERFCTR1:
2520         case MSR_P6_EVNTSEL0:
2521         case MSR_P6_EVNTSEL1:
2522                 if (kvm_pmu_msr(vcpu, msr))
2523                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2524                 data = 0;
2525                 break;
2526         case MSR_IA32_UCODE_REV:
2527                 data = 0x100000000ULL;
2528                 break;
2529         case MSR_MTRRcap:
2530                 data = 0x500 | KVM_NR_VAR_MTRR;
2531                 break;
2532         case 0x200 ... 0x2ff:
2533                 return get_msr_mtrr(vcpu, msr, pdata);
2534         case 0xcd: /* fsb frequency */
2535                 data = 3;
2536                 break;
2537                 /*
2538                  * MSR_EBC_FREQUENCY_ID
2539                  * Conservative value valid for even the basic CPU models.
2540                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2541                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2542                  * and 266MHz for model 3, or 4. Set Core Clock
2543                  * Frequency to System Bus Frequency Ratio to 1 (bits
2544                  * 31:24) even though these are only valid for CPU
2545                  * models > 2, however guests may end up dividing or
2546                  * multiplying by zero otherwise.
2547                  */
2548         case MSR_EBC_FREQUENCY_ID:
2549                 data = 1 << 24;
2550                 break;
2551         case MSR_IA32_APICBASE:
2552                 data = kvm_get_apic_base(vcpu);
2553                 break;
2554         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2555                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2556                 break;
2557         case MSR_IA32_TSCDEADLINE:
2558                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2559                 break;
2560         case MSR_IA32_TSC_ADJUST:
2561                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2562                 break;
2563         case MSR_IA32_MISC_ENABLE:
2564                 data = vcpu->arch.ia32_misc_enable_msr;
2565                 break;
2566         case MSR_IA32_PERF_STATUS:
2567                 /* TSC increment by tick */
2568                 data = 1000ULL;
2569                 /* CPU multiplier */
2570                 data |= (((uint64_t)4ULL) << 40);
2571                 break;
2572         case MSR_EFER:
2573                 data = vcpu->arch.efer;
2574                 break;
2575         case MSR_KVM_WALL_CLOCK:
2576         case MSR_KVM_WALL_CLOCK_NEW:
2577                 data = vcpu->kvm->arch.wall_clock;
2578                 break;
2579         case MSR_KVM_SYSTEM_TIME:
2580         case MSR_KVM_SYSTEM_TIME_NEW:
2581                 data = vcpu->arch.time;
2582                 break;
2583         case MSR_KVM_ASYNC_PF_EN:
2584                 data = vcpu->arch.apf.msr_val;
2585                 break;
2586         case MSR_KVM_STEAL_TIME:
2587                 data = vcpu->arch.st.msr_val;
2588                 break;
2589         case MSR_KVM_PV_EOI_EN:
2590                 data = vcpu->arch.pv_eoi.msr_val;
2591                 break;
2592         case MSR_IA32_P5_MC_ADDR:
2593         case MSR_IA32_P5_MC_TYPE:
2594         case MSR_IA32_MCG_CAP:
2595         case MSR_IA32_MCG_CTL:
2596         case MSR_IA32_MCG_STATUS:
2597         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2598                 return get_msr_mce(vcpu, msr, pdata);
2599         case MSR_K7_CLK_CTL:
2600                 /*
2601                  * Provide expected ramp-up count for K7. All other
2602                  * are set to zero, indicating minimum divisors for
2603                  * every field.
2604                  *
2605                  * This prevents guest kernels on AMD host with CPU
2606                  * type 6, model 8 and higher from exploding due to
2607                  * the rdmsr failing.
2608                  */
2609                 data = 0x20000000;
2610                 break;
2611         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2612                 if (kvm_hv_msr_partition_wide(msr)) {
2613                         int r;
2614                         mutex_lock(&vcpu->kvm->lock);
2615                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2616                         mutex_unlock(&vcpu->kvm->lock);
2617                         return r;
2618                 } else
2619                         return get_msr_hyperv(vcpu, msr, pdata);
2620                 break;
2621         case MSR_IA32_BBL_CR_CTL3:
2622                 /* This legacy MSR exists but isn't fully documented in current
2623                  * silicon.  It is however accessed by winxp in very narrow
2624                  * scenarios where it sets bit #19, itself documented as
2625                  * a "reserved" bit.  Best effort attempt to source coherent
2626                  * read data here should the balance of the register be
2627                  * interpreted by the guest:
2628                  *
2629                  * L2 cache control register 3: 64GB range, 256KB size,
2630                  * enabled, latency 0x1, configured
2631                  */
2632                 data = 0xbe702111;
2633                 break;
2634         case MSR_AMD64_OSVW_ID_LENGTH:
2635                 if (!guest_cpuid_has_osvw(vcpu))
2636                         return 1;
2637                 data = vcpu->arch.osvw.length;
2638                 break;
2639         case MSR_AMD64_OSVW_STATUS:
2640                 if (!guest_cpuid_has_osvw(vcpu))
2641                         return 1;
2642                 data = vcpu->arch.osvw.status;
2643                 break;
2644         default:
2645                 if (kvm_pmu_msr(vcpu, msr))
2646                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2647                 if (!ignore_msrs) {
2648                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2649                         return 1;
2650                 } else {
2651                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2652                         data = 0;
2653                 }
2654                 break;
2655         }
2656         *pdata = data;
2657         return 0;
2658 }
2659 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2660
2661 /*
2662  * Read or write a bunch of msrs. All parameters are kernel addresses.
2663  *
2664  * @return number of msrs set successfully.
2665  */
2666 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2667                     struct kvm_msr_entry *entries,
2668                     int (*do_msr)(struct kvm_vcpu *vcpu,
2669                                   unsigned index, u64 *data))
2670 {
2671         int i, idx;
2672
2673         idx = srcu_read_lock(&vcpu->kvm->srcu);
2674         for (i = 0; i < msrs->nmsrs; ++i)
2675                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2676                         break;
2677         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2678
2679         return i;
2680 }
2681
2682 /*
2683  * Read or write a bunch of msrs. Parameters are user addresses.
2684  *
2685  * @return number of msrs set successfully.
2686  */
2687 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2688                   int (*do_msr)(struct kvm_vcpu *vcpu,
2689                                 unsigned index, u64 *data),
2690                   int writeback)
2691 {
2692         struct kvm_msrs msrs;
2693         struct kvm_msr_entry *entries;
2694         int r, n;
2695         unsigned size;
2696
2697         r = -EFAULT;
2698         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2699                 goto out;
2700
2701         r = -E2BIG;
2702         if (msrs.nmsrs >= MAX_IO_MSRS)
2703                 goto out;
2704
2705         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2706         entries = memdup_user(user_msrs->entries, size);
2707         if (IS_ERR(entries)) {
2708                 r = PTR_ERR(entries);
2709                 goto out;
2710         }
2711
2712         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2713         if (r < 0)
2714                 goto out_free;
2715
2716         r = -EFAULT;
2717         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2718                 goto out_free;
2719
2720         r = n;
2721
2722 out_free:
2723         kfree(entries);
2724 out:
2725         return r;
2726 }
2727
2728 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2729 {
2730         int r;
2731
2732         switch (ext) {
2733         case KVM_CAP_IRQCHIP:
2734         case KVM_CAP_HLT:
2735         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2736         case KVM_CAP_SET_TSS_ADDR:
2737         case KVM_CAP_EXT_CPUID:
2738         case KVM_CAP_EXT_EMUL_CPUID:
2739         case KVM_CAP_CLOCKSOURCE:
2740         case KVM_CAP_PIT:
2741         case KVM_CAP_NOP_IO_DELAY:
2742         case KVM_CAP_MP_STATE:
2743         case KVM_CAP_SYNC_MMU:
2744         case KVM_CAP_USER_NMI:
2745         case KVM_CAP_REINJECT_CONTROL:
2746         case KVM_CAP_IRQ_INJECT_STATUS:
2747         case KVM_CAP_IRQFD:
2748         case KVM_CAP_IOEVENTFD:
2749         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2750         case KVM_CAP_PIT2:
2751         case KVM_CAP_PIT_STATE2:
2752         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2753         case KVM_CAP_XEN_HVM:
2754         case KVM_CAP_ADJUST_CLOCK:
2755         case KVM_CAP_VCPU_EVENTS:
2756         case KVM_CAP_HYPERV:
2757         case KVM_CAP_HYPERV_VAPIC:
2758         case KVM_CAP_HYPERV_SPIN:
2759         case KVM_CAP_PCI_SEGMENT:
2760         case KVM_CAP_DEBUGREGS:
2761         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2762         case KVM_CAP_XSAVE:
2763         case KVM_CAP_ASYNC_PF:
2764         case KVM_CAP_GET_TSC_KHZ:
2765         case KVM_CAP_KVMCLOCK_CTRL:
2766         case KVM_CAP_READONLY_MEM:
2767         case KVM_CAP_HYPERV_TIME:
2768         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2769         case KVM_CAP_TSC_DEADLINE_TIMER:
2770 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2771         case KVM_CAP_ASSIGN_DEV_IRQ:
2772         case KVM_CAP_PCI_2_3:
2773 #endif
2774                 r = 1;
2775                 break;
2776         case KVM_CAP_COALESCED_MMIO:
2777                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2778                 break;
2779         case KVM_CAP_VAPIC:
2780                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2781                 break;
2782         case KVM_CAP_NR_VCPUS:
2783                 r = KVM_SOFT_MAX_VCPUS;
2784                 break;
2785         case KVM_CAP_MAX_VCPUS:
2786                 r = KVM_MAX_VCPUS;
2787                 break;
2788         case KVM_CAP_NR_MEMSLOTS:
2789                 r = KVM_USER_MEM_SLOTS;
2790                 break;
2791         case KVM_CAP_PV_MMU:    /* obsolete */
2792                 r = 0;
2793                 break;
2794 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2795         case KVM_CAP_IOMMU:
2796                 r = iommu_present(&pci_bus_type);
2797                 break;
2798 #endif
2799         case KVM_CAP_MCE:
2800                 r = KVM_MAX_MCE_BANKS;
2801                 break;
2802         case KVM_CAP_XCRS:
2803                 r = cpu_has_xsave;
2804                 break;
2805         case KVM_CAP_TSC_CONTROL:
2806                 r = kvm_has_tsc_control;
2807                 break;
2808         default:
2809                 r = 0;
2810                 break;
2811         }
2812         return r;
2813
2814 }
2815
2816 long kvm_arch_dev_ioctl(struct file *filp,
2817                         unsigned int ioctl, unsigned long arg)
2818 {
2819         void __user *argp = (void __user *)arg;
2820         long r;
2821
2822         switch (ioctl) {
2823         case KVM_GET_MSR_INDEX_LIST: {
2824                 struct kvm_msr_list __user *user_msr_list = argp;
2825                 struct kvm_msr_list msr_list;
2826                 unsigned n;
2827
2828                 r = -EFAULT;
2829                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2830                         goto out;
2831                 n = msr_list.nmsrs;
2832                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2833                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2834                         goto out;
2835                 r = -E2BIG;
2836                 if (n < msr_list.nmsrs)
2837                         goto out;
2838                 r = -EFAULT;
2839                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2840                                  num_msrs_to_save * sizeof(u32)))
2841                         goto out;
2842                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2843                                  &emulated_msrs,
2844                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2845                         goto out;
2846                 r = 0;
2847                 break;
2848         }
2849         case KVM_GET_SUPPORTED_CPUID:
2850         case KVM_GET_EMULATED_CPUID: {
2851                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2852                 struct kvm_cpuid2 cpuid;
2853
2854                 r = -EFAULT;
2855                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2856                         goto out;
2857
2858                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2859                                             ioctl);
2860                 if (r)
2861                         goto out;
2862
2863                 r = -EFAULT;
2864                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2865                         goto out;
2866                 r = 0;
2867                 break;
2868         }
2869         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2870                 u64 mce_cap;
2871
2872                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2873                 r = -EFAULT;
2874                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2875                         goto out;
2876                 r = 0;
2877                 break;
2878         }
2879         default:
2880                 r = -EINVAL;
2881         }
2882 out:
2883         return r;
2884 }
2885
2886 static void wbinvd_ipi(void *garbage)
2887 {
2888         wbinvd();
2889 }
2890
2891 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2892 {
2893         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2894 }
2895
2896 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2897 {
2898         /* Address WBINVD may be executed by guest */
2899         if (need_emulate_wbinvd(vcpu)) {
2900                 if (kvm_x86_ops->has_wbinvd_exit())
2901                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2902                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2903                         smp_call_function_single(vcpu->cpu,
2904                                         wbinvd_ipi, NULL, 1);
2905         }
2906
2907         kvm_x86_ops->vcpu_load(vcpu, cpu);
2908
2909         /* Apply any externally detected TSC adjustments (due to suspend) */
2910         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2911                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2912                 vcpu->arch.tsc_offset_adjustment = 0;
2913                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2914         }
2915
2916         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2917                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2918                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2919                 if (tsc_delta < 0)
2920                         mark_tsc_unstable("KVM discovered backwards TSC");
2921                 if (check_tsc_unstable()) {
2922                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2923                                                 vcpu->arch.last_guest_tsc);
2924                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2925                         vcpu->arch.tsc_catchup = 1;
2926                 }
2927                 /*
2928                  * On a host with synchronized TSC, there is no need to update
2929                  * kvmclock on vcpu->cpu migration
2930                  */
2931                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2932                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2933                 if (vcpu->cpu != cpu)
2934                         kvm_migrate_timers(vcpu);
2935                 vcpu->cpu = cpu;
2936         }
2937
2938         accumulate_steal_time(vcpu);
2939         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2940 }
2941
2942 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2943 {
2944         kvm_x86_ops->vcpu_put(vcpu);
2945         kvm_put_guest_fpu(vcpu);
2946         vcpu->arch.last_host_tsc = native_read_tsc();
2947 }
2948
2949 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2950                                     struct kvm_lapic_state *s)
2951 {
2952         kvm_x86_ops->sync_pir_to_irr(vcpu);
2953         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2954
2955         return 0;
2956 }
2957
2958 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2959                                     struct kvm_lapic_state *s)
2960 {
2961         kvm_apic_post_state_restore(vcpu, s);
2962         update_cr8_intercept(vcpu);
2963
2964         return 0;
2965 }
2966
2967 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2968                                     struct kvm_interrupt *irq)
2969 {
2970         if (irq->irq >= KVM_NR_INTERRUPTS)
2971                 return -EINVAL;
2972         if (irqchip_in_kernel(vcpu->kvm))
2973                 return -ENXIO;
2974
2975         kvm_queue_interrupt(vcpu, irq->irq, false);
2976         kvm_make_request(KVM_REQ_EVENT, vcpu);
2977
2978         return 0;
2979 }
2980
2981 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2982 {
2983         kvm_inject_nmi(vcpu);
2984
2985         return 0;
2986 }
2987
2988 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2989                                            struct kvm_tpr_access_ctl *tac)
2990 {
2991         if (tac->flags)
2992                 return -EINVAL;
2993         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2994         return 0;
2995 }
2996
2997 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2998                                         u64 mcg_cap)
2999 {
3000         int r;
3001         unsigned bank_num = mcg_cap & 0xff, bank;
3002
3003         r = -EINVAL;
3004         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3005                 goto out;
3006         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3007                 goto out;
3008         r = 0;
3009         vcpu->arch.mcg_cap = mcg_cap;
3010         /* Init IA32_MCG_CTL to all 1s */
3011         if (mcg_cap & MCG_CTL_P)
3012                 vcpu->arch.mcg_ctl = ~(u64)0;
3013         /* Init IA32_MCi_CTL to all 1s */
3014         for (bank = 0; bank < bank_num; bank++)
3015                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3016 out:
3017         return r;
3018 }
3019
3020 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3021                                       struct kvm_x86_mce *mce)
3022 {
3023         u64 mcg_cap = vcpu->arch.mcg_cap;
3024         unsigned bank_num = mcg_cap & 0xff;
3025         u64 *banks = vcpu->arch.mce_banks;
3026
3027         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3028                 return -EINVAL;
3029         /*
3030          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3031          * reporting is disabled
3032          */
3033         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3034             vcpu->arch.mcg_ctl != ~(u64)0)
3035                 return 0;
3036         banks += 4 * mce->bank;
3037         /*
3038          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3039          * reporting is disabled for the bank
3040          */
3041         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3042                 return 0;
3043         if (mce->status & MCI_STATUS_UC) {
3044                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3045                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3046                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3047                         return 0;
3048                 }
3049                 if (banks[1] & MCI_STATUS_VAL)
3050                         mce->status |= MCI_STATUS_OVER;
3051                 banks[2] = mce->addr;
3052                 banks[3] = mce->misc;
3053                 vcpu->arch.mcg_status = mce->mcg_status;
3054                 banks[1] = mce->status;
3055                 kvm_queue_exception(vcpu, MC_VECTOR);
3056         } else if (!(banks[1] & MCI_STATUS_VAL)
3057                    || !(banks[1] & MCI_STATUS_UC)) {
3058                 if (banks[1] & MCI_STATUS_VAL)
3059                         mce->status |= MCI_STATUS_OVER;
3060                 banks[2] = mce->addr;
3061                 banks[3] = mce->misc;
3062                 banks[1] = mce->status;
3063         } else
3064                 banks[1] |= MCI_STATUS_OVER;
3065         return 0;
3066 }
3067
3068 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3069                                                struct kvm_vcpu_events *events)
3070 {
3071         process_nmi(vcpu);
3072         events->exception.injected =
3073                 vcpu->arch.exception.pending &&
3074                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3075         events->exception.nr = vcpu->arch.exception.nr;
3076         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3077         events->exception.pad = 0;
3078         events->exception.error_code = vcpu->arch.exception.error_code;
3079
3080         events->interrupt.injected =
3081                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3082         events->interrupt.nr = vcpu->arch.interrupt.nr;
3083         events->interrupt.soft = 0;
3084         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3085
3086         events->nmi.injected = vcpu->arch.nmi_injected;
3087         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3088         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3089         events->nmi.pad = 0;
3090
3091         events->sipi_vector = 0; /* never valid when reporting to user space */
3092
3093         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3094                          | KVM_VCPUEVENT_VALID_SHADOW);
3095         memset(&events->reserved, 0, sizeof(events->reserved));
3096 }
3097
3098 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3099                                               struct kvm_vcpu_events *events)
3100 {
3101         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3102                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3103                               | KVM_VCPUEVENT_VALID_SHADOW))
3104                 return -EINVAL;
3105
3106         process_nmi(vcpu);
3107         vcpu->arch.exception.pending = events->exception.injected;
3108         vcpu->arch.exception.nr = events->exception.nr;
3109         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3110         vcpu->arch.exception.error_code = events->exception.error_code;
3111
3112         vcpu->arch.interrupt.pending = events->interrupt.injected;
3113         vcpu->arch.interrupt.nr = events->interrupt.nr;
3114         vcpu->arch.interrupt.soft = events->interrupt.soft;
3115         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3116                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3117                                                   events->interrupt.shadow);
3118
3119         vcpu->arch.nmi_injected = events->nmi.injected;
3120         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3121                 vcpu->arch.nmi_pending = events->nmi.pending;
3122         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3123
3124         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3125             kvm_vcpu_has_lapic(vcpu))
3126                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3127
3128         kvm_make_request(KVM_REQ_EVENT, vcpu);
3129
3130         return 0;
3131 }
3132
3133 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3134                                              struct kvm_debugregs *dbgregs)
3135 {
3136         unsigned long val;
3137
3138         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3139         kvm_get_dr(vcpu, 6, &val);
3140         dbgregs->dr6 = val;
3141         dbgregs->dr7 = vcpu->arch.dr7;
3142         dbgregs->flags = 0;
3143         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3144 }
3145
3146 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3147                                             struct kvm_debugregs *dbgregs)
3148 {
3149         if (dbgregs->flags)
3150                 return -EINVAL;
3151
3152         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3153         vcpu->arch.dr6 = dbgregs->dr6;
3154         kvm_update_dr6(vcpu);
3155         vcpu->arch.dr7 = dbgregs->dr7;
3156         kvm_update_dr7(vcpu);
3157
3158         return 0;
3159 }
3160
3161 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3162
3163 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3164 {
3165         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3166         u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3167         u64 valid;
3168
3169         /*
3170          * Copy legacy XSAVE area, to avoid complications with CPUID
3171          * leaves 0 and 1 in the loop below.
3172          */
3173         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3174
3175         /* Set XSTATE_BV */
3176         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3177
3178         /*
3179          * Copy each region from the possibly compacted offset to the
3180          * non-compacted offset.
3181          */
3182         valid = xstate_bv & ~XSTATE_FPSSE;
3183         while (valid) {
3184                 u64 feature = valid & -valid;
3185                 int index = fls64(feature) - 1;
3186                 void *src = get_xsave_addr(xsave, feature);
3187
3188                 if (src) {
3189                         u32 size, offset, ecx, edx;
3190                         cpuid_count(XSTATE_CPUID, index,
3191                                     &size, &offset, &ecx, &edx);
3192                         memcpy(dest + offset, src, size);
3193                 }
3194
3195                 valid -= feature;
3196         }
3197 }
3198
3199 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3200 {
3201         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3202         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3203         u64 valid;
3204
3205         /*
3206          * Copy legacy XSAVE area, to avoid complications with CPUID
3207          * leaves 0 and 1 in the loop below.
3208          */
3209         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3210
3211         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3212         xsave->xsave_hdr.xstate_bv = xstate_bv;
3213         if (cpu_has_xsaves)
3214                 xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3215
3216         /*
3217          * Copy each region from the non-compacted offset to the
3218          * possibly compacted offset.
3219          */
3220         valid = xstate_bv & ~XSTATE_FPSSE;
3221         while (valid) {
3222                 u64 feature = valid & -valid;
3223                 int index = fls64(feature) - 1;
3224                 void *dest = get_xsave_addr(xsave, feature);
3225
3226                 if (dest) {
3227                         u32 size, offset, ecx, edx;
3228                         cpuid_count(XSTATE_CPUID, index,
3229                                     &size, &offset, &ecx, &edx);
3230                         memcpy(dest, src + offset, size);
3231                 } else
3232                         WARN_ON_ONCE(1);
3233
3234                 valid -= feature;
3235         }
3236 }
3237
3238 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3239                                          struct kvm_xsave *guest_xsave)
3240 {
3241         if (cpu_has_xsave) {
3242                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3243                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3244         } else {
3245                 memcpy(guest_xsave->region,
3246                         &vcpu->arch.guest_fpu.state->fxsave,
3247                         sizeof(struct i387_fxsave_struct));
3248                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3249                         XSTATE_FPSSE;
3250         }
3251 }
3252
3253 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3254                                         struct kvm_xsave *guest_xsave)
3255 {
3256         u64 xstate_bv =
3257                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3258
3259         if (cpu_has_xsave) {
3260                 /*
3261                  * Here we allow setting states that are not present in
3262                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3263                  * with old userspace.
3264                  */
3265                 if (xstate_bv & ~kvm_supported_xcr0())
3266                         return -EINVAL;
3267                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3268         } else {
3269                 if (xstate_bv & ~XSTATE_FPSSE)
3270                         return -EINVAL;
3271                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3272                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3273         }
3274         return 0;
3275 }
3276
3277 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3278                                         struct kvm_xcrs *guest_xcrs)
3279 {
3280         if (!cpu_has_xsave) {
3281                 guest_xcrs->nr_xcrs = 0;
3282                 return;
3283         }
3284
3285         guest_xcrs->nr_xcrs = 1;
3286         guest_xcrs->flags = 0;
3287         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3288         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3289 }
3290
3291 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3292                                        struct kvm_xcrs *guest_xcrs)
3293 {
3294         int i, r = 0;
3295
3296         if (!cpu_has_xsave)
3297                 return -EINVAL;
3298
3299         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3300                 return -EINVAL;
3301
3302         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3303                 /* Only support XCR0 currently */
3304                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3305                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3306                                 guest_xcrs->xcrs[i].value);
3307                         break;
3308                 }
3309         if (r)
3310                 r = -EINVAL;
3311         return r;
3312 }
3313
3314 /*
3315  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3316  * stopped by the hypervisor.  This function will be called from the host only.
3317  * EINVAL is returned when the host attempts to set the flag for a guest that
3318  * does not support pv clocks.
3319  */
3320 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3321 {
3322         if (!vcpu->arch.pv_time_enabled)
3323                 return -EINVAL;
3324         vcpu->arch.pvclock_set_guest_stopped_request = true;
3325         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3326         return 0;
3327 }
3328
3329 long kvm_arch_vcpu_ioctl(struct file *filp,
3330                          unsigned int ioctl, unsigned long arg)
3331 {
3332         struct kvm_vcpu *vcpu = filp->private_data;
3333         void __user *argp = (void __user *)arg;
3334         int r;
3335         union {
3336                 struct kvm_lapic_state *lapic;
3337                 struct kvm_xsave *xsave;
3338                 struct kvm_xcrs *xcrs;
3339                 void *buffer;
3340         } u;
3341
3342         u.buffer = NULL;
3343         switch (ioctl) {
3344         case KVM_GET_LAPIC: {
3345                 r = -EINVAL;
3346                 if (!vcpu->arch.apic)
3347                         goto out;
3348                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3349
3350                 r = -ENOMEM;
3351                 if (!u.lapic)
3352                         goto out;
3353                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3354                 if (r)
3355                         goto out;
3356                 r = -EFAULT;
3357                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3358                         goto out;
3359                 r = 0;
3360                 break;
3361         }
3362         case KVM_SET_LAPIC: {
3363                 r = -EINVAL;
3364                 if (!vcpu->arch.apic)
3365                         goto out;
3366                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3367                 if (IS_ERR(u.lapic))
3368                         return PTR_ERR(u.lapic);
3369
3370                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3371                 break;
3372         }
3373         case KVM_INTERRUPT: {
3374                 struct kvm_interrupt irq;
3375
3376                 r = -EFAULT;
3377                 if (copy_from_user(&irq, argp, sizeof irq))
3378                         goto out;
3379                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3380                 break;
3381         }
3382         case KVM_NMI: {
3383                 r = kvm_vcpu_ioctl_nmi(vcpu);
3384                 break;
3385         }
3386         case KVM_SET_CPUID: {
3387                 struct kvm_cpuid __user *cpuid_arg = argp;
3388                 struct kvm_cpuid cpuid;
3389
3390                 r = -EFAULT;
3391                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3392                         goto out;
3393                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3394                 break;
3395         }
3396         case KVM_SET_CPUID2: {
3397                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3398                 struct kvm_cpuid2 cpuid;
3399
3400                 r = -EFAULT;
3401                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3402                         goto out;
3403                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3404                                               cpuid_arg->entries);
3405                 break;
3406         }
3407         case KVM_GET_CPUID2: {
3408                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3409                 struct kvm_cpuid2 cpuid;
3410
3411                 r = -EFAULT;
3412                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3413                         goto out;
3414                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3415                                               cpuid_arg->entries);
3416                 if (r)
3417                         goto out;
3418                 r = -EFAULT;
3419                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3420                         goto out;
3421                 r = 0;
3422                 break;
3423         }
3424         case KVM_GET_MSRS:
3425                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3426                 break;
3427         case KVM_SET_MSRS:
3428                 r = msr_io(vcpu, argp, do_set_msr, 0);
3429                 break;
3430         case KVM_TPR_ACCESS_REPORTING: {
3431                 struct kvm_tpr_access_ctl tac;
3432
3433                 r = -EFAULT;
3434                 if (copy_from_user(&tac, argp, sizeof tac))
3435                         goto out;
3436                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3437                 if (r)
3438                         goto out;
3439                 r = -EFAULT;
3440                 if (copy_to_user(argp, &tac, sizeof tac))
3441                         goto out;
3442                 r = 0;
3443                 break;
3444         };
3445         case KVM_SET_VAPIC_ADDR: {
3446                 struct kvm_vapic_addr va;
3447
3448                 r = -EINVAL;
3449                 if (!irqchip_in_kernel(vcpu->kvm))
3450                         goto out;
3451                 r = -EFAULT;
3452                 if (copy_from_user(&va, argp, sizeof va))
3453                         goto out;
3454                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3455                 break;
3456         }
3457         case KVM_X86_SETUP_MCE: {
3458                 u64 mcg_cap;
3459
3460                 r = -EFAULT;
3461                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3462                         goto out;
3463                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3464                 break;
3465         }
3466         case KVM_X86_SET_MCE: {
3467                 struct kvm_x86_mce mce;
3468
3469                 r = -EFAULT;
3470                 if (copy_from_user(&mce, argp, sizeof mce))
3471                         goto out;
3472                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3473                 break;
3474         }
3475         case KVM_GET_VCPU_EVENTS: {
3476                 struct kvm_vcpu_events events;
3477
3478                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3479
3480                 r = -EFAULT;
3481                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3482                         break;
3483                 r = 0;
3484                 break;
3485         }
3486         case KVM_SET_VCPU_EVENTS: {
3487                 struct kvm_vcpu_events events;
3488
3489                 r = -EFAULT;
3490                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3491                         break;
3492
3493                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3494                 break;
3495         }
3496         case KVM_GET_DEBUGREGS: {
3497                 struct kvm_debugregs dbgregs;
3498
3499                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3500
3501                 r = -EFAULT;
3502                 if (copy_to_user(argp, &dbgregs,
3503                                  sizeof(struct kvm_debugregs)))
3504                         break;
3505                 r = 0;
3506                 break;
3507         }
3508         case KVM_SET_DEBUGREGS: {
3509                 struct kvm_debugregs dbgregs;
3510
3511                 r = -EFAULT;
3512                 if (copy_from_user(&dbgregs, argp,
3513                                    sizeof(struct kvm_debugregs)))
3514                         break;
3515
3516                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3517                 break;
3518         }
3519         case KVM_GET_XSAVE: {
3520                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3521                 r = -ENOMEM;
3522                 if (!u.xsave)
3523                         break;
3524
3525                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3526
3527                 r = -EFAULT;
3528                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3529                         break;
3530                 r = 0;
3531                 break;
3532         }
3533         case KVM_SET_XSAVE: {
3534                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3535                 if (IS_ERR(u.xsave))
3536                         return PTR_ERR(u.xsave);
3537
3538                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3539                 break;
3540         }
3541         case KVM_GET_XCRS: {
3542                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3543                 r = -ENOMEM;
3544                 if (!u.xcrs)
3545                         break;
3546
3547                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3548
3549                 r = -EFAULT;
3550                 if (copy_to_user(argp, u.xcrs,
3551                                  sizeof(struct kvm_xcrs)))
3552                         break;
3553                 r = 0;
3554                 break;
3555         }
3556         case KVM_SET_XCRS: {
3557                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3558                 if (IS_ERR(u.xcrs))
3559                         return PTR_ERR(u.xcrs);
3560
3561                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3562                 break;
3563         }
3564         case KVM_SET_TSC_KHZ: {
3565                 u32 user_tsc_khz;
3566
3567                 r = -EINVAL;
3568                 user_tsc_khz = (u32)arg;
3569
3570                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3571                         goto out;
3572
3573                 if (user_tsc_khz == 0)
3574                         user_tsc_khz = tsc_khz;
3575
3576                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3577
3578                 r = 0;
3579                 goto out;
3580         }
3581         case KVM_GET_TSC_KHZ: {
3582                 r = vcpu->arch.virtual_tsc_khz;
3583                 goto out;
3584         }
3585         case KVM_KVMCLOCK_CTRL: {
3586                 r = kvm_set_guest_paused(vcpu);
3587                 goto out;
3588         }
3589         default:
3590                 r = -EINVAL;
3591         }
3592 out:
3593         kfree(u.buffer);
3594         return r;
3595 }
3596
3597 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3598 {
3599         return VM_FAULT_SIGBUS;
3600 }
3601
3602 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3603 {
3604         int ret;
3605
3606         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3607                 return -EINVAL;
3608         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3609         return ret;
3610 }
3611
3612 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3613                                               u64 ident_addr)
3614 {
3615         kvm->arch.ept_identity_map_addr = ident_addr;
3616         return 0;
3617 }
3618
3619 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3620                                           u32 kvm_nr_mmu_pages)
3621 {
3622         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3623                 return -EINVAL;
3624
3625         mutex_lock(&kvm->slots_lock);
3626
3627         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3628         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3629
3630         mutex_unlock(&kvm->slots_lock);
3631         return 0;
3632 }
3633
3634 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3635 {
3636         return kvm->arch.n_max_mmu_pages;
3637 }
3638
3639 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3640 {
3641         int r;
3642
3643         r = 0;
3644         switch (chip->chip_id) {
3645         case KVM_IRQCHIP_PIC_MASTER:
3646                 memcpy(&chip->chip.pic,
3647                         &pic_irqchip(kvm)->pics[0],
3648                         sizeof(struct kvm_pic_state));
3649                 break;
3650         case KVM_IRQCHIP_PIC_SLAVE:
3651                 memcpy(&chip->chip.pic,
3652                         &pic_irqchip(kvm)->pics[1],
3653                         sizeof(struct kvm_pic_state));
3654                 break;
3655         case KVM_IRQCHIP_IOAPIC:
3656                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3657                 break;
3658         default:
3659                 r = -EINVAL;
3660                 break;
3661         }
3662         return r;
3663 }
3664
3665 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3666 {
3667         int r;
3668
3669         r = 0;
3670         switch (chip->chip_id) {
3671         case KVM_IRQCHIP_PIC_MASTER:
3672                 spin_lock(&pic_irqchip(kvm)->lock);
3673                 memcpy(&pic_irqchip(kvm)->pics[0],
3674                         &chip->chip.pic,
3675                         sizeof(struct kvm_pic_state));
3676                 spin_unlock(&pic_irqchip(kvm)->lock);
3677                 break;
3678         case KVM_IRQCHIP_PIC_SLAVE:
3679                 spin_lock(&pic_irqchip(kvm)->lock);
3680                 memcpy(&pic_irqchip(kvm)->pics[1],
3681                         &chip->chip.pic,
3682                         sizeof(struct kvm_pic_state));
3683                 spin_unlock(&pic_irqchip(kvm)->lock);
3684                 break;
3685         case KVM_IRQCHIP_IOAPIC:
3686                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3687                 break;
3688         default:
3689                 r = -EINVAL;
3690                 break;
3691         }
3692         kvm_pic_update_irq(pic_irqchip(kvm));
3693         return r;
3694 }
3695
3696 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3697 {
3698         int r = 0;
3699
3700         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3701         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3702         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3703         return r;
3704 }
3705
3706 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3707 {
3708         int r = 0;
3709
3710         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3711         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3712         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3713         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3714         return r;
3715 }
3716
3717 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3718 {
3719         int r = 0;
3720
3721         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3722         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3723                 sizeof(ps->channels));
3724         ps->flags = kvm->arch.vpit->pit_state.flags;
3725         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3726         memset(&ps->reserved, 0, sizeof(ps->reserved));
3727         return r;
3728 }
3729
3730 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3731 {
3732         int r = 0, start = 0;
3733         u32 prev_legacy, cur_legacy;
3734         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3735         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3736         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3737         if (!prev_legacy && cur_legacy)
3738                 start = 1;
3739         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3740                sizeof(kvm->arch.vpit->pit_state.channels));
3741         kvm->arch.vpit->pit_state.flags = ps->flags;
3742         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3743         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3744         return r;
3745 }
3746
3747 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3748                                  struct kvm_reinject_control *control)
3749 {
3750         if (!kvm->arch.vpit)
3751                 return -ENXIO;
3752         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3753         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3754         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3755         return 0;
3756 }
3757
3758 /**
3759  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3760  * @kvm: kvm instance
3761  * @log: slot id and address to which we copy the log
3762  *
3763  * Steps 1-4 below provide general overview of dirty page logging. See
3764  * kvm_get_dirty_log_protect() function description for additional details.
3765  *
3766  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3767  * always flush the TLB (step 4) even if previous step failed  and the dirty
3768  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3769  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3770  * writes will be marked dirty for next log read.
3771  *
3772  *   1. Take a snapshot of the bit and clear it if needed.
3773  *   2. Write protect the corresponding page.
3774  *   3. Copy the snapshot to the userspace.
3775  *   4. Flush TLB's if needed.
3776  */
3777 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3778 {
3779         bool is_dirty = false;
3780         int r;
3781
3782         mutex_lock(&kvm->slots_lock);
3783
3784         /*
3785          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3786          */
3787         if (kvm_x86_ops->flush_log_dirty)
3788                 kvm_x86_ops->flush_log_dirty(kvm);
3789
3790         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3791
3792         /*
3793          * All the TLBs can be flushed out of mmu lock, see the comments in
3794          * kvm_mmu_slot_remove_write_access().
3795          */
3796         lockdep_assert_held(&kvm->slots_lock);
3797         if (is_dirty)
3798                 kvm_flush_remote_tlbs(kvm);
3799
3800         mutex_unlock(&kvm->slots_lock);
3801         return r;
3802 }
3803
3804 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3805                         bool line_status)
3806 {
3807         if (!irqchip_in_kernel(kvm))
3808                 return -ENXIO;
3809
3810         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3811                                         irq_event->irq, irq_event->level,
3812                                         line_status);
3813         return 0;
3814 }
3815
3816 long kvm_arch_vm_ioctl(struct file *filp,
3817                        unsigned int ioctl, unsigned long arg)
3818 {
3819         struct kvm *kvm = filp->private_data;
3820         void __user *argp = (void __user *)arg;
3821         int r = -ENOTTY;
3822         /*
3823          * This union makes it completely explicit to gcc-3.x
3824          * that these two variables' stack usage should be
3825          * combined, not added together.
3826          */
3827         union {
3828                 struct kvm_pit_state ps;
3829                 struct kvm_pit_state2 ps2;
3830                 struct kvm_pit_config pit_config;
3831         } u;
3832
3833         switch (ioctl) {
3834         case KVM_SET_TSS_ADDR:
3835                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3836                 break;
3837         case KVM_SET_IDENTITY_MAP_ADDR: {
3838                 u64 ident_addr;
3839
3840                 r = -EFAULT;
3841                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3842                         goto out;
3843                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3844                 break;
3845         }
3846         case KVM_SET_NR_MMU_PAGES:
3847                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3848                 break;
3849         case KVM_GET_NR_MMU_PAGES:
3850                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3851                 break;
3852         case KVM_CREATE_IRQCHIP: {
3853                 struct kvm_pic *vpic;
3854
3855                 mutex_lock(&kvm->lock);
3856                 r = -EEXIST;
3857                 if (kvm->arch.vpic)
3858                         goto create_irqchip_unlock;
3859                 r = -EINVAL;
3860                 if (atomic_read(&kvm->online_vcpus))
3861                         goto create_irqchip_unlock;
3862                 r = -ENOMEM;
3863                 vpic = kvm_create_pic(kvm);
3864                 if (vpic) {
3865                         r = kvm_ioapic_init(kvm);
3866                         if (r) {
3867                                 mutex_lock(&kvm->slots_lock);
3868                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3869                                                           &vpic->dev_master);
3870                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3871                                                           &vpic->dev_slave);
3872                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3873                                                           &vpic->dev_eclr);
3874                                 mutex_unlock(&kvm->slots_lock);
3875                                 kfree(vpic);
3876                                 goto create_irqchip_unlock;
3877                         }
3878                 } else
3879                         goto create_irqchip_unlock;
3880                 smp_wmb();
3881                 kvm->arch.vpic = vpic;
3882                 smp_wmb();
3883                 r = kvm_setup_default_irq_routing(kvm);
3884                 if (r) {
3885                         mutex_lock(&kvm->slots_lock);
3886                         mutex_lock(&kvm->irq_lock);
3887                         kvm_ioapic_destroy(kvm);
3888                         kvm_destroy_pic(kvm);
3889                         mutex_unlock(&kvm->irq_lock);
3890                         mutex_unlock(&kvm->slots_lock);
3891                 }
3892         create_irqchip_unlock:
3893                 mutex_unlock(&kvm->lock);
3894                 break;
3895         }
3896         case KVM_CREATE_PIT:
3897                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3898                 goto create_pit;
3899         case KVM_CREATE_PIT2:
3900                 r = -EFAULT;
3901                 if (copy_from_user(&u.pit_config, argp,
3902                                    sizeof(struct kvm_pit_config)))
3903                         goto out;
3904         create_pit:
3905                 mutex_lock(&kvm->slots_lock);
3906                 r = -EEXIST;
3907                 if (kvm->arch.vpit)
3908                         goto create_pit_unlock;
3909                 r = -ENOMEM;
3910                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3911                 if (kvm->arch.vpit)
3912                         r = 0;
3913         create_pit_unlock:
3914                 mutex_unlock(&kvm->slots_lock);
3915                 break;
3916         case KVM_GET_IRQCHIP: {
3917                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3918                 struct kvm_irqchip *chip;
3919
3920                 chip = memdup_user(argp, sizeof(*chip));
3921                 if (IS_ERR(chip)) {
3922                         r = PTR_ERR(chip);
3923                         goto out;
3924                 }
3925
3926                 r = -ENXIO;
3927                 if (!irqchip_in_kernel(kvm))
3928                         goto get_irqchip_out;
3929                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3930                 if (r)
3931                         goto get_irqchip_out;
3932                 r = -EFAULT;
3933                 if (copy_to_user(argp, chip, sizeof *chip))
3934                         goto get_irqchip_out;
3935                 r = 0;
3936         get_irqchip_out:
3937                 kfree(chip);
3938                 break;
3939         }
3940         case KVM_SET_IRQCHIP: {
3941                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3942                 struct kvm_irqchip *chip;
3943
3944                 chip = memdup_user(argp, sizeof(*chip));
3945                 if (IS_ERR(chip)) {
3946                         r = PTR_ERR(chip);
3947                         goto out;
3948                 }
3949
3950                 r = -ENXIO;
3951                 if (!irqchip_in_kernel(kvm))
3952                         goto set_irqchip_out;
3953                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3954                 if (r)
3955                         goto set_irqchip_out;
3956                 r = 0;
3957         set_irqchip_out:
3958                 kfree(chip);
3959                 break;
3960         }
3961         case KVM_GET_PIT: {
3962                 r = -EFAULT;
3963                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3964                         goto out;
3965                 r = -ENXIO;
3966                 if (!kvm->arch.vpit)
3967                         goto out;
3968                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3969                 if (r)
3970                         goto out;
3971                 r = -EFAULT;
3972                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3973                         goto out;
3974                 r = 0;
3975                 break;
3976         }
3977         case KVM_SET_PIT: {
3978                 r = -EFAULT;
3979                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3980                         goto out;
3981                 r = -ENXIO;
3982                 if (!kvm->arch.vpit)
3983                         goto out;
3984                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3985                 break;
3986         }
3987         case KVM_GET_PIT2: {
3988                 r = -ENXIO;
3989                 if (!kvm->arch.vpit)
3990                         goto out;
3991                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3992                 if (r)
3993                         goto out;
3994                 r = -EFAULT;
3995                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3996                         goto out;
3997                 r = 0;
3998                 break;
3999         }
4000         case KVM_SET_PIT2: {
4001                 r = -EFAULT;
4002                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4003                         goto out;
4004                 r = -ENXIO;
4005                 if (!kvm->arch.vpit)
4006                         goto out;
4007                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4008                 break;
4009         }
4010         case KVM_REINJECT_CONTROL: {
4011                 struct kvm_reinject_control control;
4012                 r =  -EFAULT;
4013                 if (copy_from_user(&control, argp, sizeof(control)))
4014                         goto out;
4015                 r = kvm_vm_ioctl_reinject(kvm, &control);
4016                 break;
4017         }
4018         case KVM_XEN_HVM_CONFIG: {
4019                 r = -EFAULT;
4020                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4021                                    sizeof(struct kvm_xen_hvm_config)))
4022                         goto out;
4023                 r = -EINVAL;
4024                 if (kvm->arch.xen_hvm_config.flags)
4025                         goto out;
4026                 r = 0;
4027                 break;
4028         }
4029         case KVM_SET_CLOCK: {
4030                 struct kvm_clock_data user_ns;
4031                 u64 now_ns;
4032                 s64 delta;
4033
4034                 r = -EFAULT;
4035                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4036                         goto out;
4037
4038                 r = -EINVAL;
4039                 if (user_ns.flags)
4040                         goto out;
4041
4042                 r = 0;
4043                 local_irq_disable();
4044                 now_ns = get_kernel_ns();
4045                 delta = user_ns.clock - now_ns;
4046                 local_irq_enable();
4047                 kvm->arch.kvmclock_offset = delta;
4048                 kvm_gen_update_masterclock(kvm);
4049                 break;
4050         }
4051         case KVM_GET_CLOCK: {
4052                 struct kvm_clock_data user_ns;
4053                 u64 now_ns;
4054
4055                 local_irq_disable();
4056                 now_ns = get_kernel_ns();
4057                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4058                 local_irq_enable();
4059                 user_ns.flags = 0;
4060                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4061
4062                 r = -EFAULT;
4063                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4064                         goto out;
4065                 r = 0;
4066                 break;
4067         }
4068
4069         default:
4070                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4071         }
4072 out:
4073         return r;
4074 }
4075
4076 static void kvm_init_msr_list(void)
4077 {
4078         u32 dummy[2];
4079         unsigned i, j;
4080
4081         /* skip the first msrs in the list. KVM-specific */
4082         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4083                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4084                         continue;
4085
4086                 /*
4087                  * Even MSRs that are valid in the host may not be exposed
4088                  * to the guests in some cases.  We could work around this
4089                  * in VMX with the generic MSR save/load machinery, but it
4090                  * is not really worthwhile since it will really only
4091                  * happen with nested virtualization.
4092                  */
4093                 switch (msrs_to_save[i]) {
4094                 case MSR_IA32_BNDCFGS:
4095                         if (!kvm_x86_ops->mpx_supported())
4096                                 continue;
4097                         break;
4098                 default:
4099                         break;
4100                 }
4101
4102                 if (j < i)
4103                         msrs_to_save[j] = msrs_to_save[i];
4104                 j++;
4105         }
4106         num_msrs_to_save = j;
4107 }
4108
4109 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4110                            const void *v)
4111 {
4112         int handled = 0;
4113         int n;
4114
4115         do {
4116                 n = min(len, 8);
4117                 if (!(vcpu->arch.apic &&
4118                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4119                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4120                         break;
4121                 handled += n;
4122                 addr += n;
4123                 len -= n;
4124                 v += n;
4125         } while (len);
4126
4127         return handled;
4128 }
4129
4130 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4131 {
4132         int handled = 0;
4133         int n;
4134
4135         do {
4136                 n = min(len, 8);
4137                 if (!(vcpu->arch.apic &&
4138                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4139                                          addr, n, v))
4140                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4141                         break;
4142                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4143                 handled += n;
4144                 addr += n;
4145                 len -= n;
4146                 v += n;
4147         } while (len);
4148
4149         return handled;
4150 }
4151
4152 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4153                         struct kvm_segment *var, int seg)
4154 {
4155         kvm_x86_ops->set_segment(vcpu, var, seg);
4156 }
4157
4158 void kvm_get_segment(struct kvm_vcpu *vcpu,
4159                      struct kvm_segment *var, int seg)
4160 {
4161         kvm_x86_ops->get_segment(vcpu, var, seg);
4162 }
4163
4164 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4165                            struct x86_exception *exception)
4166 {
4167         gpa_t t_gpa;
4168
4169         BUG_ON(!mmu_is_nested(vcpu));
4170
4171         /* NPT walks are always user-walks */
4172         access |= PFERR_USER_MASK;
4173         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4174
4175         return t_gpa;
4176 }
4177
4178 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4179                               struct x86_exception *exception)
4180 {
4181         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4182         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4183 }
4184
4185  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4186                                 struct x86_exception *exception)
4187 {
4188         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4189         access |= PFERR_FETCH_MASK;
4190         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4191 }
4192
4193 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4194                                struct x86_exception *exception)
4195 {
4196         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4197         access |= PFERR_WRITE_MASK;
4198         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4199 }
4200
4201 /* uses this to access any guest's mapped memory without checking CPL */
4202 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4203                                 struct x86_exception *exception)
4204 {
4205         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4206 }
4207
4208 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4209                                       struct kvm_vcpu *vcpu, u32 access,
4210                                       struct x86_exception *exception)
4211 {
4212         void *data = val;
4213         int r = X86EMUL_CONTINUE;
4214
4215         while (bytes) {
4216                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4217                                                             exception);
4218                 unsigned offset = addr & (PAGE_SIZE-1);
4219                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4220                 int ret;
4221
4222                 if (gpa == UNMAPPED_GVA)
4223                         return X86EMUL_PROPAGATE_FAULT;
4224                 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4225                                           offset, toread);
4226                 if (ret < 0) {
4227                         r = X86EMUL_IO_NEEDED;
4228                         goto out;
4229                 }
4230
4231                 bytes -= toread;
4232                 data += toread;
4233                 addr += toread;
4234         }
4235 out:
4236         return r;
4237 }
4238
4239 /* used for instruction fetching */
4240 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4241                                 gva_t addr, void *val, unsigned int bytes,
4242                                 struct x86_exception *exception)
4243 {
4244         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4245         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4246         unsigned offset;
4247         int ret;
4248
4249         /* Inline kvm_read_guest_virt_helper for speed.  */
4250         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4251                                                     exception);
4252         if (unlikely(gpa == UNMAPPED_GVA))
4253                 return X86EMUL_PROPAGATE_FAULT;
4254
4255         offset = addr & (PAGE_SIZE-1);
4256         if (WARN_ON(offset + bytes > PAGE_SIZE))
4257                 bytes = (unsigned)PAGE_SIZE - offset;
4258         ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4259                                   offset, bytes);
4260         if (unlikely(ret < 0))
4261                 return X86EMUL_IO_NEEDED;
4262
4263         return X86EMUL_CONTINUE;
4264 }
4265
4266 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4267                                gva_t addr, void *val, unsigned int bytes,
4268                                struct x86_exception *exception)
4269 {
4270         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4271         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4272
4273         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4274                                           exception);
4275 }
4276 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4277
4278 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4279                                       gva_t addr, void *val, unsigned int bytes,
4280                                       struct x86_exception *exception)
4281 {
4282         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4283         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4284 }
4285
4286 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4287                                        gva_t addr, void *val,
4288                                        unsigned int bytes,
4289                                        struct x86_exception *exception)
4290 {
4291         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4292         void *data = val;
4293         int r = X86EMUL_CONTINUE;
4294
4295         while (bytes) {
4296                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4297                                                              PFERR_WRITE_MASK,
4298                                                              exception);
4299                 unsigned offset = addr & (PAGE_SIZE-1);
4300                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4301                 int ret;
4302
4303                 if (gpa == UNMAPPED_GVA)
4304                         return X86EMUL_PROPAGATE_FAULT;
4305                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4306                 if (ret < 0) {
4307                         r = X86EMUL_IO_NEEDED;
4308                         goto out;
4309                 }
4310
4311                 bytes -= towrite;
4312                 data += towrite;
4313                 addr += towrite;
4314         }
4315 out:
4316         return r;
4317 }
4318 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4319
4320 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4321                                 gpa_t *gpa, struct x86_exception *exception,
4322                                 bool write)
4323 {
4324         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4325                 | (write ? PFERR_WRITE_MASK : 0);
4326
4327         if (vcpu_match_mmio_gva(vcpu, gva)
4328             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4329                                  vcpu->arch.access, access)) {
4330                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4331                                         (gva & (PAGE_SIZE - 1));
4332                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4333                 return 1;
4334         }
4335
4336         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4337
4338         if (*gpa == UNMAPPED_GVA)
4339                 return -1;
4340
4341         /* For APIC access vmexit */
4342         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4343                 return 1;
4344
4345         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4346                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4347                 return 1;
4348         }
4349
4350         return 0;
4351 }
4352
4353 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4354                         const void *val, int bytes)
4355 {
4356         int ret;
4357
4358         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4359         if (ret < 0)
4360                 return 0;
4361         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4362         return 1;
4363 }
4364
4365 struct read_write_emulator_ops {
4366         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4367                                   int bytes);
4368         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4369                                   void *val, int bytes);
4370         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4371                                int bytes, void *val);
4372         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4373                                     void *val, int bytes);
4374         bool write;
4375 };
4376
4377 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4378 {
4379         if (vcpu->mmio_read_completed) {
4380                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4381                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4382                 vcpu->mmio_read_completed = 0;
4383                 return 1;
4384         }
4385
4386         return 0;
4387 }
4388
4389 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4390                         void *val, int bytes)
4391 {
4392         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4393 }
4394
4395 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4396                          void *val, int bytes)
4397 {
4398         return emulator_write_phys(vcpu, gpa, val, bytes);
4399 }
4400
4401 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4402 {
4403         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4404         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4405 }
4406
4407 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4408                           void *val, int bytes)
4409 {
4410         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4411         return X86EMUL_IO_NEEDED;
4412 }
4413
4414 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4415                            void *val, int bytes)
4416 {
4417         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4418
4419         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4420         return X86EMUL_CONTINUE;
4421 }
4422
4423 static const struct read_write_emulator_ops read_emultor = {
4424         .read_write_prepare = read_prepare,
4425         .read_write_emulate = read_emulate,
4426         .read_write_mmio = vcpu_mmio_read,
4427         .read_write_exit_mmio = read_exit_mmio,
4428 };
4429
4430 static const struct read_write_emulator_ops write_emultor = {
4431         .read_write_emulate = write_emulate,
4432         .read_write_mmio = write_mmio,
4433         .read_write_exit_mmio = write_exit_mmio,
4434         .write = true,
4435 };
4436
4437 static int emulator_read_write_onepage(unsigned long addr, void *val,
4438                                        unsigned int bytes,
4439                                        struct x86_exception *exception,
4440                                        struct kvm_vcpu *vcpu,
4441                                        const struct read_write_emulator_ops *ops)
4442 {
4443         gpa_t gpa;
4444         int handled, ret;
4445         bool write = ops->write;
4446         struct kvm_mmio_fragment *frag;
4447
4448         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4449
4450         if (ret < 0)
4451                 return X86EMUL_PROPAGATE_FAULT;
4452
4453         /* For APIC access vmexit */
4454         if (ret)
4455                 goto mmio;
4456
4457         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4458                 return X86EMUL_CONTINUE;
4459
4460 mmio:
4461         /*
4462          * Is this MMIO handled locally?
4463          */
4464         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4465         if (handled == bytes)
4466                 return X86EMUL_CONTINUE;
4467
4468         gpa += handled;
4469         bytes -= handled;
4470         val += handled;
4471
4472         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4473         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4474         frag->gpa = gpa;
4475         frag->data = val;
4476         frag->len = bytes;
4477         return X86EMUL_CONTINUE;
4478 }
4479
4480 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4481                         unsigned long addr,
4482                         void *val, unsigned int bytes,
4483                         struct x86_exception *exception,
4484                         const struct read_write_emulator_ops *ops)
4485 {
4486         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4487         gpa_t gpa;
4488         int rc;
4489
4490         if (ops->read_write_prepare &&
4491                   ops->read_write_prepare(vcpu, val, bytes))
4492                 return X86EMUL_CONTINUE;
4493
4494         vcpu->mmio_nr_fragments = 0;
4495
4496         /* Crossing a page boundary? */
4497         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4498                 int now;
4499
4500                 now = -addr & ~PAGE_MASK;
4501                 rc = emulator_read_write_onepage(addr, val, now, exception,
4502                                                  vcpu, ops);
4503
4504                 if (rc != X86EMUL_CONTINUE)
4505                         return rc;
4506                 addr += now;
4507                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4508                         addr = (u32)addr;
4509                 val += now;
4510                 bytes -= now;
4511         }
4512
4513         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4514                                          vcpu, ops);
4515         if (rc != X86EMUL_CONTINUE)
4516                 return rc;
4517
4518         if (!vcpu->mmio_nr_fragments)
4519                 return rc;
4520
4521         gpa = vcpu->mmio_fragments[0].gpa;
4522
4523         vcpu->mmio_needed = 1;
4524         vcpu->mmio_cur_fragment = 0;
4525
4526         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4527         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4528         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4529         vcpu->run->mmio.phys_addr = gpa;
4530
4531         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4532 }
4533
4534 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4535                                   unsigned long addr,
4536                                   void *val,
4537                                   unsigned int bytes,
4538                                   struct x86_exception *exception)
4539 {
4540         return emulator_read_write(ctxt, addr, val, bytes,
4541                                    exception, &read_emultor);
4542 }
4543
4544 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4545                             unsigned long addr,
4546                             const void *val,
4547                             unsigned int bytes,
4548                             struct x86_exception *exception)
4549 {
4550         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4551                                    exception, &write_emultor);
4552 }
4553
4554 #define CMPXCHG_TYPE(t, ptr, old, new) \
4555         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4556
4557 #ifdef CONFIG_X86_64
4558 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4559 #else
4560 #  define CMPXCHG64(ptr, old, new) \
4561         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4562 #endif
4563
4564 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4565                                      unsigned long addr,
4566                                      const void *old,
4567                                      const void *new,
4568                                      unsigned int bytes,
4569                                      struct x86_exception *exception)
4570 {
4571         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4572         gpa_t gpa;
4573         struct page *page;
4574         char *kaddr;
4575         bool exchanged;
4576
4577         /* guests cmpxchg8b have to be emulated atomically */
4578         if (bytes > 8 || (bytes & (bytes - 1)))
4579                 goto emul_write;
4580
4581         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4582
4583         if (gpa == UNMAPPED_GVA ||
4584             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4585                 goto emul_write;
4586
4587         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4588                 goto emul_write;
4589
4590         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4591         if (is_error_page(page))
4592                 goto emul_write;
4593
4594         kaddr = kmap_atomic(page);
4595         kaddr += offset_in_page(gpa);
4596         switch (bytes) {
4597         case 1:
4598                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4599                 break;
4600         case 2:
4601                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4602                 break;
4603         case 4:
4604                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4605                 break;
4606         case 8:
4607                 exchanged = CMPXCHG64(kaddr, old, new);
4608                 break;
4609         default:
4610                 BUG();
4611         }
4612         kunmap_atomic(kaddr);
4613         kvm_release_page_dirty(page);
4614
4615         if (!exchanged)
4616                 return X86EMUL_CMPXCHG_FAILED;
4617
4618         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4619         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4620
4621         return X86EMUL_CONTINUE;
4622
4623 emul_write:
4624         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4625
4626         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4627 }
4628
4629 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4630 {
4631         /* TODO: String I/O for in kernel device */
4632         int r;
4633
4634         if (vcpu->arch.pio.in)
4635                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4636                                     vcpu->arch.pio.size, pd);
4637         else
4638                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4639                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4640                                      pd);
4641         return r;
4642 }
4643
4644 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4645                                unsigned short port, void *val,
4646                                unsigned int count, bool in)
4647 {
4648         vcpu->arch.pio.port = port;
4649         vcpu->arch.pio.in = in;
4650         vcpu->arch.pio.count  = count;
4651         vcpu->arch.pio.size = size;
4652
4653         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4654                 vcpu->arch.pio.count = 0;
4655                 return 1;
4656         }
4657
4658         vcpu->run->exit_reason = KVM_EXIT_IO;
4659         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4660         vcpu->run->io.size = size;
4661         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4662         vcpu->run->io.count = count;
4663         vcpu->run->io.port = port;
4664
4665         return 0;
4666 }
4667
4668 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4669                                     int size, unsigned short port, void *val,
4670                                     unsigned int count)
4671 {
4672         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4673         int ret;
4674
4675         if (vcpu->arch.pio.count)
4676                 goto data_avail;
4677
4678         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4679         if (ret) {
4680 data_avail:
4681                 memcpy(val, vcpu->arch.pio_data, size * count);
4682                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4683                 vcpu->arch.pio.count = 0;
4684                 return 1;
4685         }
4686
4687         return 0;
4688 }
4689
4690 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4691                                      int size, unsigned short port,
4692                                      const void *val, unsigned int count)
4693 {
4694         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4695
4696         memcpy(vcpu->arch.pio_data, val, size * count);
4697         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4698         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4699 }
4700
4701 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4702 {
4703         return kvm_x86_ops->get_segment_base(vcpu, seg);
4704 }
4705
4706 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4707 {
4708         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4709 }
4710
4711 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4712 {
4713         if (!need_emulate_wbinvd(vcpu))
4714                 return X86EMUL_CONTINUE;
4715
4716         if (kvm_x86_ops->has_wbinvd_exit()) {
4717                 int cpu = get_cpu();
4718
4719                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4720                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4721                                 wbinvd_ipi, NULL, 1);
4722                 put_cpu();
4723                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4724         } else
4725                 wbinvd();
4726         return X86EMUL_CONTINUE;
4727 }
4728
4729 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4730 {
4731         kvm_x86_ops->skip_emulated_instruction(vcpu);
4732         return kvm_emulate_wbinvd_noskip(vcpu);
4733 }
4734 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4735
4736
4737
4738 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4739 {
4740         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4741 }
4742
4743 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4744                            unsigned long *dest)
4745 {
4746         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4747 }
4748
4749 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4750                            unsigned long value)
4751 {
4752
4753         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4754 }
4755
4756 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4757 {
4758         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4759 }
4760
4761 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4762 {
4763         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4764         unsigned long value;
4765
4766         switch (cr) {
4767         case 0:
4768                 value = kvm_read_cr0(vcpu);
4769                 break;
4770         case 2:
4771                 value = vcpu->arch.cr2;
4772                 break;
4773         case 3:
4774                 value = kvm_read_cr3(vcpu);
4775                 break;
4776         case 4:
4777                 value = kvm_read_cr4(vcpu);
4778                 break;
4779         case 8:
4780                 value = kvm_get_cr8(vcpu);
4781                 break;
4782         default:
4783                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4784                 return 0;
4785         }
4786
4787         return value;
4788 }
4789
4790 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4791 {
4792         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4793         int res = 0;
4794
4795         switch (cr) {
4796         case 0:
4797                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4798                 break;
4799         case 2:
4800                 vcpu->arch.cr2 = val;
4801                 break;
4802         case 3:
4803                 res = kvm_set_cr3(vcpu, val);
4804                 break;
4805         case 4:
4806                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4807                 break;
4808         case 8:
4809                 res = kvm_set_cr8(vcpu, val);
4810                 break;
4811         default:
4812                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4813                 res = -1;
4814         }
4815
4816         return res;
4817 }
4818
4819 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4820 {
4821         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4822 }
4823
4824 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4825 {
4826         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4827 }
4828
4829 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4830 {
4831         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4832 }
4833
4834 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4835 {
4836         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4837 }
4838
4839 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4840 {
4841         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4842 }
4843
4844 static unsigned long emulator_get_cached_segment_base(
4845         struct x86_emulate_ctxt *ctxt, int seg)
4846 {
4847         return get_segment_base(emul_to_vcpu(ctxt), seg);
4848 }
4849
4850 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4851                                  struct desc_struct *desc, u32 *base3,
4852                                  int seg)
4853 {
4854         struct kvm_segment var;
4855
4856         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4857         *selector = var.selector;
4858
4859         if (var.unusable) {
4860                 memset(desc, 0, sizeof(*desc));
4861                 return false;
4862         }
4863
4864         if (var.g)
4865                 var.limit >>= 12;
4866         set_desc_limit(desc, var.limit);
4867         set_desc_base(desc, (unsigned long)var.base);
4868 #ifdef CONFIG_X86_64
4869         if (base3)
4870                 *base3 = var.base >> 32;
4871 #endif
4872         desc->type = var.type;
4873         desc->s = var.s;
4874         desc->dpl = var.dpl;
4875         desc->p = var.present;
4876         desc->avl = var.avl;
4877         desc->l = var.l;
4878         desc->d = var.db;
4879         desc->g = var.g;
4880
4881         return true;
4882 }
4883
4884 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4885                                  struct desc_struct *desc, u32 base3,
4886                                  int seg)
4887 {
4888         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4889         struct kvm_segment var;
4890
4891         var.selector = selector;
4892         var.base = get_desc_base(desc);
4893 #ifdef CONFIG_X86_64
4894         var.base |= ((u64)base3) << 32;
4895 #endif
4896         var.limit = get_desc_limit(desc);
4897         if (desc->g)
4898                 var.limit = (var.limit << 12) | 0xfff;
4899         var.type = desc->type;
4900         var.dpl = desc->dpl;
4901         var.db = desc->d;
4902         var.s = desc->s;
4903         var.l = desc->l;
4904         var.g = desc->g;
4905         var.avl = desc->avl;
4906         var.present = desc->p;
4907         var.unusable = !var.present;
4908         var.padding = 0;
4909
4910         kvm_set_segment(vcpu, &var, seg);
4911         return;
4912 }
4913
4914 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4915                             u32 msr_index, u64 *pdata)
4916 {
4917         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4918 }
4919
4920 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4921                             u32 msr_index, u64 data)
4922 {
4923         struct msr_data msr;
4924
4925         msr.data = data;
4926         msr.index = msr_index;
4927         msr.host_initiated = false;
4928         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4929 }
4930
4931 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4932                               u32 pmc)
4933 {
4934         return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4935 }
4936
4937 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4938                              u32 pmc, u64 *pdata)
4939 {
4940         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4941 }
4942
4943 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4944 {
4945         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4946 }
4947
4948 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4949 {
4950         preempt_disable();
4951         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4952         /*
4953          * CR0.TS may reference the host fpu state, not the guest fpu state,
4954          * so it may be clear at this point.
4955          */
4956         clts();
4957 }
4958
4959 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4960 {
4961         preempt_enable();
4962 }
4963
4964 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4965                               struct x86_instruction_info *info,
4966                               enum x86_intercept_stage stage)
4967 {
4968         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4969 }
4970
4971 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4972                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4973 {
4974         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4975 }
4976
4977 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4978 {
4979         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4980 }
4981
4982 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4983 {
4984         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4985 }
4986
4987 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4988 {
4989         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4990 }
4991
4992 static const struct x86_emulate_ops emulate_ops = {
4993         .read_gpr            = emulator_read_gpr,
4994         .write_gpr           = emulator_write_gpr,
4995         .read_std            = kvm_read_guest_virt_system,
4996         .write_std           = kvm_write_guest_virt_system,
4997         .fetch               = kvm_fetch_guest_virt,
4998         .read_emulated       = emulator_read_emulated,
4999         .write_emulated      = emulator_write_emulated,
5000         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5001         .invlpg              = emulator_invlpg,
5002         .pio_in_emulated     = emulator_pio_in_emulated,
5003         .pio_out_emulated    = emulator_pio_out_emulated,
5004         .get_segment         = emulator_get_segment,
5005         .set_segment         = emulator_set_segment,
5006         .get_cached_segment_base = emulator_get_cached_segment_base,
5007         .get_gdt             = emulator_get_gdt,
5008         .get_idt             = emulator_get_idt,
5009         .set_gdt             = emulator_set_gdt,
5010         .set_idt             = emulator_set_idt,
5011         .get_cr              = emulator_get_cr,
5012         .set_cr              = emulator_set_cr,
5013         .cpl                 = emulator_get_cpl,
5014         .get_dr              = emulator_get_dr,
5015         .set_dr              = emulator_set_dr,
5016         .set_msr             = emulator_set_msr,
5017         .get_msr             = emulator_get_msr,
5018         .check_pmc           = emulator_check_pmc,
5019         .read_pmc            = emulator_read_pmc,
5020         .halt                = emulator_halt,
5021         .wbinvd              = emulator_wbinvd,
5022         .fix_hypercall       = emulator_fix_hypercall,
5023         .get_fpu             = emulator_get_fpu,
5024         .put_fpu             = emulator_put_fpu,
5025         .intercept           = emulator_intercept,
5026         .get_cpuid           = emulator_get_cpuid,
5027         .set_nmi_mask        = emulator_set_nmi_mask,
5028 };
5029
5030 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5031 {
5032         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5033         /*
5034          * an sti; sti; sequence only disable interrupts for the first
5035          * instruction. So, if the last instruction, be it emulated or
5036          * not, left the system with the INT_STI flag enabled, it
5037          * means that the last instruction is an sti. We should not
5038          * leave the flag on in this case. The same goes for mov ss
5039          */
5040         if (int_shadow & mask)
5041                 mask = 0;
5042         if (unlikely(int_shadow || mask)) {
5043                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5044                 if (!mask)
5045                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5046         }
5047 }
5048
5049 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5050 {
5051         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5052         if (ctxt->exception.vector == PF_VECTOR)
5053                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5054
5055         if (ctxt->exception.error_code_valid)
5056                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5057                                       ctxt->exception.error_code);
5058         else
5059                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5060         return false;
5061 }
5062
5063 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5064 {
5065         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5066         int cs_db, cs_l;
5067
5068         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5069
5070         ctxt->eflags = kvm_get_rflags(vcpu);
5071         ctxt->eip = kvm_rip_read(vcpu);
5072         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5073                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5074                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5075                      cs_db                              ? X86EMUL_MODE_PROT32 :
5076                                                           X86EMUL_MODE_PROT16;
5077         ctxt->guest_mode = is_guest_mode(vcpu);
5078
5079         init_decode_cache(ctxt);
5080         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5081 }
5082
5083 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5084 {
5085         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5086         int ret;
5087
5088         init_emulate_ctxt(vcpu);
5089
5090         ctxt->op_bytes = 2;
5091         ctxt->ad_bytes = 2;
5092         ctxt->_eip = ctxt->eip + inc_eip;
5093         ret = emulate_int_real(ctxt, irq);
5094
5095         if (ret != X86EMUL_CONTINUE)
5096                 return EMULATE_FAIL;
5097
5098         ctxt->eip = ctxt->_eip;
5099         kvm_rip_write(vcpu, ctxt->eip);
5100         kvm_set_rflags(vcpu, ctxt->eflags);
5101
5102         if (irq == NMI_VECTOR)
5103                 vcpu->arch.nmi_pending = 0;
5104         else
5105                 vcpu->arch.interrupt.pending = false;
5106
5107         return EMULATE_DONE;
5108 }
5109 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5110
5111 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5112 {
5113         int r = EMULATE_DONE;
5114
5115         ++vcpu->stat.insn_emulation_fail;
5116         trace_kvm_emulate_insn_failed(vcpu);
5117         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5118                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5119                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5120                 vcpu->run->internal.ndata = 0;
5121                 r = EMULATE_FAIL;
5122         }
5123         kvm_queue_exception(vcpu, UD_VECTOR);
5124
5125         return r;
5126 }
5127
5128 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5129                                   bool write_fault_to_shadow_pgtable,
5130                                   int emulation_type)
5131 {
5132         gpa_t gpa = cr2;
5133         pfn_t pfn;
5134
5135         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5136                 return false;
5137
5138         if (!vcpu->arch.mmu.direct_map) {
5139                 /*
5140                  * Write permission should be allowed since only
5141                  * write access need to be emulated.
5142                  */
5143                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5144
5145                 /*
5146                  * If the mapping is invalid in guest, let cpu retry
5147                  * it to generate fault.
5148                  */
5149                 if (gpa == UNMAPPED_GVA)
5150                         return true;
5151         }
5152
5153         /*
5154          * Do not retry the unhandleable instruction if it faults on the
5155          * readonly host memory, otherwise it will goto a infinite loop:
5156          * retry instruction -> write #PF -> emulation fail -> retry
5157          * instruction -> ...
5158          */
5159         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5160
5161         /*
5162          * If the instruction failed on the error pfn, it can not be fixed,
5163          * report the error to userspace.
5164          */
5165         if (is_error_noslot_pfn(pfn))
5166                 return false;
5167
5168         kvm_release_pfn_clean(pfn);
5169
5170         /* The instructions are well-emulated on direct mmu. */
5171         if (vcpu->arch.mmu.direct_map) {
5172                 unsigned int indirect_shadow_pages;
5173
5174                 spin_lock(&vcpu->kvm->mmu_lock);
5175                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5176                 spin_unlock(&vcpu->kvm->mmu_lock);
5177
5178                 if (indirect_shadow_pages)
5179                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5180
5181                 return true;
5182         }
5183
5184         /*
5185          * if emulation was due to access to shadowed page table
5186          * and it failed try to unshadow page and re-enter the
5187          * guest to let CPU execute the instruction.
5188          */
5189         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5190
5191         /*
5192          * If the access faults on its page table, it can not
5193          * be fixed by unprotecting shadow page and it should
5194          * be reported to userspace.
5195          */
5196         return !write_fault_to_shadow_pgtable;
5197 }
5198
5199 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5200                               unsigned long cr2,  int emulation_type)
5201 {
5202         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5203         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5204
5205         last_retry_eip = vcpu->arch.last_retry_eip;
5206         last_retry_addr = vcpu->arch.last_retry_addr;
5207
5208         /*
5209          * If the emulation is caused by #PF and it is non-page_table
5210          * writing instruction, it means the VM-EXIT is caused by shadow
5211          * page protected, we can zap the shadow page and retry this
5212          * instruction directly.
5213          *
5214          * Note: if the guest uses a non-page-table modifying instruction
5215          * on the PDE that points to the instruction, then we will unmap
5216          * the instruction and go to an infinite loop. So, we cache the
5217          * last retried eip and the last fault address, if we meet the eip
5218          * and the address again, we can break out of the potential infinite
5219          * loop.
5220          */
5221         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5222
5223         if (!(emulation_type & EMULTYPE_RETRY))
5224                 return false;
5225
5226         if (x86_page_table_writing_insn(ctxt))
5227                 return false;
5228
5229         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5230                 return false;
5231
5232         vcpu->arch.last_retry_eip = ctxt->eip;
5233         vcpu->arch.last_retry_addr = cr2;
5234
5235         if (!vcpu->arch.mmu.direct_map)
5236                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5237
5238         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5239
5240         return true;
5241 }
5242
5243 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5244 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5245
5246 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5247                                 unsigned long *db)
5248 {
5249         u32 dr6 = 0;
5250         int i;
5251         u32 enable, rwlen;
5252
5253         enable = dr7;
5254         rwlen = dr7 >> 16;
5255         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5256                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5257                         dr6 |= (1 << i);
5258         return dr6;
5259 }
5260
5261 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5262 {
5263         struct kvm_run *kvm_run = vcpu->run;
5264
5265         /*
5266          * rflags is the old, "raw" value of the flags.  The new value has
5267          * not been saved yet.
5268          *
5269          * This is correct even for TF set by the guest, because "the
5270          * processor will not generate this exception after the instruction
5271          * that sets the TF flag".
5272          */
5273         if (unlikely(rflags & X86_EFLAGS_TF)) {
5274                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5275                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5276                                                   DR6_RTM;
5277                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5278                         kvm_run->debug.arch.exception = DB_VECTOR;
5279                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5280                         *r = EMULATE_USER_EXIT;
5281                 } else {
5282                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5283                         /*
5284                          * "Certain debug exceptions may clear bit 0-3.  The
5285                          * remaining contents of the DR6 register are never
5286                          * cleared by the processor".
5287                          */
5288                         vcpu->arch.dr6 &= ~15;
5289                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5290                         kvm_queue_exception(vcpu, DB_VECTOR);
5291                 }
5292         }
5293 }
5294
5295 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5296 {
5297         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5298             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5299                 struct kvm_run *kvm_run = vcpu->run;
5300                 unsigned long eip = kvm_get_linear_rip(vcpu);
5301                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5302                                            vcpu->arch.guest_debug_dr7,
5303                                            vcpu->arch.eff_db);
5304
5305                 if (dr6 != 0) {
5306                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5307                         kvm_run->debug.arch.pc = eip;
5308                         kvm_run->debug.arch.exception = DB_VECTOR;
5309                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5310                         *r = EMULATE_USER_EXIT;
5311                         return true;
5312                 }
5313         }
5314
5315         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5316             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5317                 unsigned long eip = kvm_get_linear_rip(vcpu);
5318                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5319                                            vcpu->arch.dr7,
5320                                            vcpu->arch.db);
5321
5322                 if (dr6 != 0) {
5323                         vcpu->arch.dr6 &= ~15;
5324                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5325                         kvm_queue_exception(vcpu, DB_VECTOR);
5326                         *r = EMULATE_DONE;
5327                         return true;
5328                 }
5329         }
5330
5331         return false;
5332 }
5333
5334 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5335                             unsigned long cr2,
5336                             int emulation_type,
5337                             void *insn,
5338                             int insn_len)
5339 {
5340         int r;
5341         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5342         bool writeback = true;
5343         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5344
5345         /*
5346          * Clear write_fault_to_shadow_pgtable here to ensure it is
5347          * never reused.
5348          */
5349         vcpu->arch.write_fault_to_shadow_pgtable = false;
5350         kvm_clear_exception_queue(vcpu);
5351
5352         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5353                 init_emulate_ctxt(vcpu);
5354
5355                 /*
5356                  * We will reenter on the same instruction since
5357                  * we do not set complete_userspace_io.  This does not
5358                  * handle watchpoints yet, those would be handled in
5359                  * the emulate_ops.
5360                  */
5361                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5362                         return r;
5363
5364                 ctxt->interruptibility = 0;
5365                 ctxt->have_exception = false;
5366                 ctxt->exception.vector = -1;
5367                 ctxt->perm_ok = false;
5368
5369                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5370
5371                 r = x86_decode_insn(ctxt, insn, insn_len);
5372
5373                 trace_kvm_emulate_insn_start(vcpu);
5374                 ++vcpu->stat.insn_emulation;
5375                 if (r != EMULATION_OK)  {
5376                         if (emulation_type & EMULTYPE_TRAP_UD)
5377                                 return EMULATE_FAIL;
5378                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5379                                                 emulation_type))
5380                                 return EMULATE_DONE;
5381                         if (emulation_type & EMULTYPE_SKIP)
5382                                 return EMULATE_FAIL;
5383                         return handle_emulation_failure(vcpu);
5384                 }
5385         }
5386
5387         if (emulation_type & EMULTYPE_SKIP) {
5388                 kvm_rip_write(vcpu, ctxt->_eip);
5389                 if (ctxt->eflags & X86_EFLAGS_RF)
5390                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5391                 return EMULATE_DONE;
5392         }
5393
5394         if (retry_instruction(ctxt, cr2, emulation_type))
5395                 return EMULATE_DONE;
5396
5397         /* this is needed for vmware backdoor interface to work since it
5398            changes registers values  during IO operation */
5399         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5400                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5401                 emulator_invalidate_register_cache(ctxt);
5402         }
5403
5404 restart:
5405         r = x86_emulate_insn(ctxt);
5406
5407         if (r == EMULATION_INTERCEPTED)
5408                 return EMULATE_DONE;
5409
5410         if (r == EMULATION_FAILED) {
5411                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5412                                         emulation_type))
5413                         return EMULATE_DONE;
5414
5415                 return handle_emulation_failure(vcpu);
5416         }
5417
5418         if (ctxt->have_exception) {
5419                 r = EMULATE_DONE;
5420                 if (inject_emulated_exception(vcpu))
5421                         return r;
5422         } else if (vcpu->arch.pio.count) {
5423                 if (!vcpu->arch.pio.in) {
5424                         /* FIXME: return into emulator if single-stepping.  */
5425                         vcpu->arch.pio.count = 0;
5426                 } else {
5427                         writeback = false;
5428                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5429                 }
5430                 r = EMULATE_USER_EXIT;
5431         } else if (vcpu->mmio_needed) {
5432                 if (!vcpu->mmio_is_write)
5433                         writeback = false;
5434                 r = EMULATE_USER_EXIT;
5435                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5436         } else if (r == EMULATION_RESTART)
5437                 goto restart;
5438         else
5439                 r = EMULATE_DONE;
5440
5441         if (writeback) {
5442                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5443                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5444                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5445                 kvm_rip_write(vcpu, ctxt->eip);
5446                 if (r == EMULATE_DONE)
5447                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5448                 if (!ctxt->have_exception ||
5449                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5450                         __kvm_set_rflags(vcpu, ctxt->eflags);
5451
5452                 /*
5453                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5454                  * do nothing, and it will be requested again as soon as
5455                  * the shadow expires.  But we still need to check here,
5456                  * because POPF has no interrupt shadow.
5457                  */
5458                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5459                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5460         } else
5461                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5462
5463         return r;
5464 }
5465 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5466
5467 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5468 {
5469         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5470         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5471                                             size, port, &val, 1);
5472         /* do not return to emulator after return from userspace */
5473         vcpu->arch.pio.count = 0;
5474         return ret;
5475 }
5476 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5477
5478 static void tsc_bad(void *info)
5479 {
5480         __this_cpu_write(cpu_tsc_khz, 0);
5481 }
5482
5483 static void tsc_khz_changed(void *data)
5484 {
5485         struct cpufreq_freqs *freq = data;
5486         unsigned long khz = 0;
5487
5488         if (data)
5489                 khz = freq->new;
5490         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5491                 khz = cpufreq_quick_get(raw_smp_processor_id());
5492         if (!khz)
5493                 khz = tsc_khz;
5494         __this_cpu_write(cpu_tsc_khz, khz);
5495 }
5496
5497 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5498                                      void *data)
5499 {
5500         struct cpufreq_freqs *freq = data;
5501         struct kvm *kvm;
5502         struct kvm_vcpu *vcpu;
5503         int i, send_ipi = 0;
5504
5505         /*
5506          * We allow guests to temporarily run on slowing clocks,
5507          * provided we notify them after, or to run on accelerating
5508          * clocks, provided we notify them before.  Thus time never
5509          * goes backwards.
5510          *
5511          * However, we have a problem.  We can't atomically update
5512          * the frequency of a given CPU from this function; it is
5513          * merely a notifier, which can be called from any CPU.
5514          * Changing the TSC frequency at arbitrary points in time
5515          * requires a recomputation of local variables related to
5516          * the TSC for each VCPU.  We must flag these local variables
5517          * to be updated and be sure the update takes place with the
5518          * new frequency before any guests proceed.
5519          *
5520          * Unfortunately, the combination of hotplug CPU and frequency
5521          * change creates an intractable locking scenario; the order
5522          * of when these callouts happen is undefined with respect to
5523          * CPU hotplug, and they can race with each other.  As such,
5524          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5525          * undefined; you can actually have a CPU frequency change take
5526          * place in between the computation of X and the setting of the
5527          * variable.  To protect against this problem, all updates of
5528          * the per_cpu tsc_khz variable are done in an interrupt
5529          * protected IPI, and all callers wishing to update the value
5530          * must wait for a synchronous IPI to complete (which is trivial
5531          * if the caller is on the CPU already).  This establishes the
5532          * necessary total order on variable updates.
5533          *
5534          * Note that because a guest time update may take place
5535          * anytime after the setting of the VCPU's request bit, the
5536          * correct TSC value must be set before the request.  However,
5537          * to ensure the update actually makes it to any guest which
5538          * starts running in hardware virtualization between the set
5539          * and the acquisition of the spinlock, we must also ping the
5540          * CPU after setting the request bit.
5541          *
5542          */
5543
5544         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5545                 return 0;
5546         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5547                 return 0;
5548
5549         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5550
5551         spin_lock(&kvm_lock);
5552         list_for_each_entry(kvm, &vm_list, vm_list) {
5553                 kvm_for_each_vcpu(i, vcpu, kvm) {
5554                         if (vcpu->cpu != freq->cpu)
5555                                 continue;
5556                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5557                         if (vcpu->cpu != smp_processor_id())
5558                                 send_ipi = 1;
5559                 }
5560         }
5561         spin_unlock(&kvm_lock);
5562
5563         if (freq->old < freq->new && send_ipi) {
5564                 /*
5565                  * We upscale the frequency.  Must make the guest
5566                  * doesn't see old kvmclock values while running with
5567                  * the new frequency, otherwise we risk the guest sees
5568                  * time go backwards.
5569                  *
5570                  * In case we update the frequency for another cpu
5571                  * (which might be in guest context) send an interrupt
5572                  * to kick the cpu out of guest context.  Next time
5573                  * guest context is entered kvmclock will be updated,
5574                  * so the guest will not see stale values.
5575                  */
5576                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5577         }
5578         return 0;
5579 }
5580
5581 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5582         .notifier_call  = kvmclock_cpufreq_notifier
5583 };
5584
5585 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5586                                         unsigned long action, void *hcpu)
5587 {
5588         unsigned int cpu = (unsigned long)hcpu;
5589
5590         switch (action) {
5591                 case CPU_ONLINE:
5592                 case CPU_DOWN_FAILED:
5593                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5594                         break;
5595                 case CPU_DOWN_PREPARE:
5596                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5597                         break;
5598         }
5599         return NOTIFY_OK;
5600 }
5601
5602 static struct notifier_block kvmclock_cpu_notifier_block = {
5603         .notifier_call  = kvmclock_cpu_notifier,
5604         .priority = -INT_MAX
5605 };
5606
5607 static void kvm_timer_init(void)
5608 {
5609         int cpu;
5610
5611         max_tsc_khz = tsc_khz;
5612
5613         cpu_notifier_register_begin();
5614         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5615 #ifdef CONFIG_CPU_FREQ
5616                 struct cpufreq_policy policy;
5617                 memset(&policy, 0, sizeof(policy));
5618                 cpu = get_cpu();
5619                 cpufreq_get_policy(&policy, cpu);
5620                 if (policy.cpuinfo.max_freq)
5621                         max_tsc_khz = policy.cpuinfo.max_freq;
5622                 put_cpu();
5623 #endif
5624                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5625                                           CPUFREQ_TRANSITION_NOTIFIER);
5626         }
5627         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5628         for_each_online_cpu(cpu)
5629                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5630
5631         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5632         cpu_notifier_register_done();
5633
5634 }
5635
5636 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5637
5638 int kvm_is_in_guest(void)
5639 {
5640         return __this_cpu_read(current_vcpu) != NULL;
5641 }
5642
5643 static int kvm_is_user_mode(void)
5644 {
5645         int user_mode = 3;
5646
5647         if (__this_cpu_read(current_vcpu))
5648                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5649
5650         return user_mode != 0;
5651 }
5652
5653 static unsigned long kvm_get_guest_ip(void)
5654 {
5655         unsigned long ip = 0;
5656
5657         if (__this_cpu_read(current_vcpu))
5658                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5659
5660         return ip;
5661 }
5662
5663 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5664         .is_in_guest            = kvm_is_in_guest,
5665         .is_user_mode           = kvm_is_user_mode,
5666         .get_guest_ip           = kvm_get_guest_ip,
5667 };
5668
5669 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5670 {
5671         __this_cpu_write(current_vcpu, vcpu);
5672 }
5673 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5674
5675 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5676 {
5677         __this_cpu_write(current_vcpu, NULL);
5678 }
5679 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5680
5681 static void kvm_set_mmio_spte_mask(void)
5682 {
5683         u64 mask;
5684         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5685
5686         /*
5687          * Set the reserved bits and the present bit of an paging-structure
5688          * entry to generate page fault with PFER.RSV = 1.
5689          */
5690          /* Mask the reserved physical address bits. */
5691         mask = rsvd_bits(maxphyaddr, 51);
5692
5693         /* Bit 62 is always reserved for 32bit host. */
5694         mask |= 0x3ull << 62;
5695
5696         /* Set the present bit. */
5697         mask |= 1ull;
5698
5699 #ifdef CONFIG_X86_64
5700         /*
5701          * If reserved bit is not supported, clear the present bit to disable
5702          * mmio page fault.
5703          */
5704         if (maxphyaddr == 52)
5705                 mask &= ~1ull;
5706 #endif
5707
5708         kvm_mmu_set_mmio_spte_mask(mask);
5709 }
5710
5711 #ifdef CONFIG_X86_64
5712 static void pvclock_gtod_update_fn(struct work_struct *work)
5713 {
5714         struct kvm *kvm;
5715
5716         struct kvm_vcpu *vcpu;
5717         int i;
5718
5719         spin_lock(&kvm_lock);
5720         list_for_each_entry(kvm, &vm_list, vm_list)
5721                 kvm_for_each_vcpu(i, vcpu, kvm)
5722                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5723         atomic_set(&kvm_guest_has_master_clock, 0);
5724         spin_unlock(&kvm_lock);
5725 }
5726
5727 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5728
5729 /*
5730  * Notification about pvclock gtod data update.
5731  */
5732 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5733                                void *priv)
5734 {
5735         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5736         struct timekeeper *tk = priv;
5737
5738         update_pvclock_gtod(tk);
5739
5740         /* disable master clock if host does not trust, or does not
5741          * use, TSC clocksource
5742          */
5743         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5744             atomic_read(&kvm_guest_has_master_clock) != 0)
5745                 queue_work(system_long_wq, &pvclock_gtod_work);
5746
5747         return 0;
5748 }
5749
5750 static struct notifier_block pvclock_gtod_notifier = {
5751         .notifier_call = pvclock_gtod_notify,
5752 };
5753 #endif
5754
5755 int kvm_arch_init(void *opaque)
5756 {
5757         int r;
5758         struct kvm_x86_ops *ops = opaque;
5759
5760         if (kvm_x86_ops) {
5761                 printk(KERN_ERR "kvm: already loaded the other module\n");
5762                 r = -EEXIST;
5763                 goto out;
5764         }
5765
5766         if (!ops->cpu_has_kvm_support()) {
5767                 printk(KERN_ERR "kvm: no hardware support\n");
5768                 r = -EOPNOTSUPP;
5769                 goto out;
5770         }
5771         if (ops->disabled_by_bios()) {
5772                 printk(KERN_ERR "kvm: disabled by bios\n");
5773                 r = -EOPNOTSUPP;
5774                 goto out;
5775         }
5776
5777         r = -ENOMEM;
5778         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5779         if (!shared_msrs) {
5780                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5781                 goto out;
5782         }
5783
5784         r = kvm_mmu_module_init();
5785         if (r)
5786                 goto out_free_percpu;
5787
5788         kvm_set_mmio_spte_mask();
5789
5790         kvm_x86_ops = ops;
5791         kvm_init_msr_list();
5792
5793         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5794                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5795
5796         kvm_timer_init();
5797
5798         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5799
5800         if (cpu_has_xsave)
5801                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5802
5803         kvm_lapic_init();
5804 #ifdef CONFIG_X86_64
5805         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5806 #endif
5807
5808         return 0;
5809
5810 out_free_percpu:
5811         free_percpu(shared_msrs);
5812 out:
5813         return r;
5814 }
5815
5816 void kvm_arch_exit(void)
5817 {
5818         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5819
5820         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5821                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5822                                             CPUFREQ_TRANSITION_NOTIFIER);
5823         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5824 #ifdef CONFIG_X86_64
5825         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5826 #endif
5827         kvm_x86_ops = NULL;
5828         kvm_mmu_module_exit();
5829         free_percpu(shared_msrs);
5830 }
5831
5832 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5833 {
5834         ++vcpu->stat.halt_exits;
5835         if (irqchip_in_kernel(vcpu->kvm)) {
5836                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5837                 return 1;
5838         } else {
5839                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5840                 return 0;
5841         }
5842 }
5843 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5844
5845 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5846 {
5847         kvm_x86_ops->skip_emulated_instruction(vcpu);
5848         return kvm_vcpu_halt(vcpu);
5849 }
5850 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5851
5852 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5853 {
5854         u64 param, ingpa, outgpa, ret;
5855         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5856         bool fast, longmode;
5857
5858         /*
5859          * hypercall generates UD from non zero cpl and real mode
5860          * per HYPER-V spec
5861          */
5862         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5863                 kvm_queue_exception(vcpu, UD_VECTOR);
5864                 return 0;
5865         }
5866
5867         longmode = is_64_bit_mode(vcpu);
5868
5869         if (!longmode) {
5870                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5871                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5872                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5873                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5874                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5875                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5876         }
5877 #ifdef CONFIG_X86_64
5878         else {
5879                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5880                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5881                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5882         }
5883 #endif
5884
5885         code = param & 0xffff;
5886         fast = (param >> 16) & 0x1;
5887         rep_cnt = (param >> 32) & 0xfff;
5888         rep_idx = (param >> 48) & 0xfff;
5889
5890         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5891
5892         switch (code) {
5893         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5894                 kvm_vcpu_on_spin(vcpu);
5895                 break;
5896         default:
5897                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5898                 break;
5899         }
5900
5901         ret = res | (((u64)rep_done & 0xfff) << 32);
5902         if (longmode) {
5903                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5904         } else {
5905                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5906                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5907         }
5908
5909         return 1;
5910 }
5911
5912 /*
5913  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5914  *
5915  * @apicid - apicid of vcpu to be kicked.
5916  */
5917 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5918 {
5919         struct kvm_lapic_irq lapic_irq;
5920
5921         lapic_irq.shorthand = 0;
5922         lapic_irq.dest_mode = 0;
5923         lapic_irq.dest_id = apicid;
5924
5925         lapic_irq.delivery_mode = APIC_DM_REMRD;
5926         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5927 }
5928
5929 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5930 {
5931         unsigned long nr, a0, a1, a2, a3, ret;
5932         int op_64_bit, r = 1;
5933
5934         kvm_x86_ops->skip_emulated_instruction(vcpu);
5935
5936         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5937                 return kvm_hv_hypercall(vcpu);
5938
5939         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5940         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5941         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5942         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5943         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5944
5945         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5946
5947         op_64_bit = is_64_bit_mode(vcpu);
5948         if (!op_64_bit) {
5949                 nr &= 0xFFFFFFFF;
5950                 a0 &= 0xFFFFFFFF;
5951                 a1 &= 0xFFFFFFFF;
5952                 a2 &= 0xFFFFFFFF;
5953                 a3 &= 0xFFFFFFFF;
5954         }
5955
5956         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5957                 ret = -KVM_EPERM;
5958                 goto out;
5959         }
5960
5961         switch (nr) {
5962         case KVM_HC_VAPIC_POLL_IRQ:
5963                 ret = 0;
5964                 break;
5965         case KVM_HC_KICK_CPU:
5966                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5967                 ret = 0;
5968                 break;
5969         default:
5970                 ret = -KVM_ENOSYS;
5971                 break;
5972         }
5973 out:
5974         if (!op_64_bit)
5975                 ret = (u32)ret;
5976         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5977         ++vcpu->stat.hypercalls;
5978         return r;
5979 }
5980 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5981
5982 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5983 {
5984         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5985         char instruction[3];
5986         unsigned long rip = kvm_rip_read(vcpu);
5987
5988         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5989
5990         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5991 }
5992
5993 /*
5994  * Check if userspace requested an interrupt window, and that the
5995  * interrupt window is open.
5996  *
5997  * No need to exit to userspace if we already have an interrupt queued.
5998  */
5999 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6000 {
6001         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6002                 vcpu->run->request_interrupt_window &&
6003                 kvm_arch_interrupt_allowed(vcpu));
6004 }
6005
6006 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6007 {
6008         struct kvm_run *kvm_run = vcpu->run;
6009
6010         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6011         kvm_run->cr8 = kvm_get_cr8(vcpu);
6012         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6013         if (irqchip_in_kernel(vcpu->kvm))
6014                 kvm_run->ready_for_interrupt_injection = 1;
6015         else
6016                 kvm_run->ready_for_interrupt_injection =
6017                         kvm_arch_interrupt_allowed(vcpu) &&
6018                         !kvm_cpu_has_interrupt(vcpu) &&
6019                         !kvm_event_needs_reinjection(vcpu);
6020 }
6021
6022 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6023 {
6024         int max_irr, tpr;
6025
6026         if (!kvm_x86_ops->update_cr8_intercept)
6027                 return;
6028
6029         if (!vcpu->arch.apic)
6030                 return;
6031
6032         if (!vcpu->arch.apic->vapic_addr)
6033                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6034         else
6035                 max_irr = -1;
6036
6037         if (max_irr != -1)
6038                 max_irr >>= 4;
6039
6040         tpr = kvm_lapic_get_cr8(vcpu);
6041
6042         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6043 }
6044
6045 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6046 {
6047         int r;
6048
6049         /* try to reinject previous events if any */
6050         if (vcpu->arch.exception.pending) {
6051                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6052                                         vcpu->arch.exception.has_error_code,
6053                                         vcpu->arch.exception.error_code);
6054
6055                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6056                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6057                                              X86_EFLAGS_RF);
6058
6059                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6060                     (vcpu->arch.dr7 & DR7_GD)) {
6061                         vcpu->arch.dr7 &= ~DR7_GD;
6062                         kvm_update_dr7(vcpu);
6063                 }
6064
6065                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6066                                           vcpu->arch.exception.has_error_code,
6067                                           vcpu->arch.exception.error_code,
6068                                           vcpu->arch.exception.reinject);
6069                 return 0;
6070         }
6071
6072         if (vcpu->arch.nmi_injected) {
6073                 kvm_x86_ops->set_nmi(vcpu);
6074                 return 0;
6075         }
6076
6077         if (vcpu->arch.interrupt.pending) {
6078                 kvm_x86_ops->set_irq(vcpu);
6079                 return 0;
6080         }
6081
6082         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6083                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6084                 if (r != 0)
6085                         return r;
6086         }
6087
6088         /* try to inject new event if pending */
6089         if (vcpu->arch.nmi_pending) {
6090                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6091                         --vcpu->arch.nmi_pending;
6092                         vcpu->arch.nmi_injected = true;
6093                         kvm_x86_ops->set_nmi(vcpu);
6094                 }
6095         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6096                 /*
6097                  * Because interrupts can be injected asynchronously, we are
6098                  * calling check_nested_events again here to avoid a race condition.
6099                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6100                  * proposal and current concerns.  Perhaps we should be setting
6101                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6102                  */
6103                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6104                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6105                         if (r != 0)
6106                                 return r;
6107                 }
6108                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6109                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6110                                             false);
6111                         kvm_x86_ops->set_irq(vcpu);
6112                 }
6113         }
6114         return 0;
6115 }
6116
6117 static void process_nmi(struct kvm_vcpu *vcpu)
6118 {
6119         unsigned limit = 2;
6120
6121         /*
6122          * x86 is limited to one NMI running, and one NMI pending after it.
6123          * If an NMI is already in progress, limit further NMIs to just one.
6124          * Otherwise, allow two (and we'll inject the first one immediately).
6125          */
6126         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6127                 limit = 1;
6128
6129         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6130         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6131         kvm_make_request(KVM_REQ_EVENT, vcpu);
6132 }
6133
6134 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6135 {
6136         u64 eoi_exit_bitmap[4];
6137         u32 tmr[8];
6138
6139         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6140                 return;
6141
6142         memset(eoi_exit_bitmap, 0, 32);
6143         memset(tmr, 0, 32);
6144
6145         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6146         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6147         kvm_apic_update_tmr(vcpu, tmr);
6148 }
6149
6150 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6151 {
6152         ++vcpu->stat.tlb_flush;
6153         kvm_x86_ops->tlb_flush(vcpu);
6154 }
6155
6156 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6157 {
6158         struct page *page = NULL;
6159
6160         if (!irqchip_in_kernel(vcpu->kvm))
6161                 return;
6162
6163         if (!kvm_x86_ops->set_apic_access_page_addr)
6164                 return;
6165
6166         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6167         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6168
6169         /*
6170          * Do not pin apic access page in memory, the MMU notifier
6171          * will call us again if it is migrated or swapped out.
6172          */
6173         put_page(page);
6174 }
6175 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6176
6177 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6178                                            unsigned long address)
6179 {
6180         /*
6181          * The physical address of apic access page is stored in the VMCS.
6182          * Update it when it becomes invalid.
6183          */
6184         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6185                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6186 }
6187
6188 /*
6189  * Returns 1 to let __vcpu_run() continue the guest execution loop without
6190  * exiting to the userspace.  Otherwise, the value will be returned to the
6191  * userspace.
6192  */
6193 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6194 {
6195         int r;
6196         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6197                 vcpu->run->request_interrupt_window;
6198         bool req_immediate_exit = false;
6199
6200         if (vcpu->requests) {
6201                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6202                         kvm_mmu_unload(vcpu);
6203                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6204                         __kvm_migrate_timers(vcpu);
6205                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6206                         kvm_gen_update_masterclock(vcpu->kvm);
6207                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6208                         kvm_gen_kvmclock_update(vcpu);
6209                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6210                         r = kvm_guest_time_update(vcpu);
6211                         if (unlikely(r))
6212                                 goto out;
6213                 }
6214                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6215                         kvm_mmu_sync_roots(vcpu);
6216                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6217                         kvm_vcpu_flush_tlb(vcpu);
6218                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6219                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6220                         r = 0;
6221                         goto out;
6222                 }
6223                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6224                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6225                         r = 0;
6226                         goto out;
6227                 }
6228                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6229                         vcpu->fpu_active = 0;
6230                         kvm_x86_ops->fpu_deactivate(vcpu);
6231                 }
6232                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6233                         /* Page is swapped out. Do synthetic halt */
6234                         vcpu->arch.apf.halted = true;
6235                         r = 1;
6236                         goto out;
6237                 }
6238                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6239                         record_steal_time(vcpu);
6240                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6241                         process_nmi(vcpu);
6242                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6243                         kvm_handle_pmu_event(vcpu);
6244                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6245                         kvm_deliver_pmi(vcpu);
6246                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6247                         vcpu_scan_ioapic(vcpu);
6248                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6249                         kvm_vcpu_reload_apic_access_page(vcpu);
6250         }
6251
6252         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6253                 kvm_apic_accept_events(vcpu);
6254                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6255                         r = 1;
6256                         goto out;
6257                 }
6258
6259                 if (inject_pending_event(vcpu, req_int_win) != 0)
6260                         req_immediate_exit = true;
6261                 /* enable NMI/IRQ window open exits if needed */
6262                 else if (vcpu->arch.nmi_pending)
6263                         kvm_x86_ops->enable_nmi_window(vcpu);
6264                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6265                         kvm_x86_ops->enable_irq_window(vcpu);
6266
6267                 if (kvm_lapic_enabled(vcpu)) {
6268                         /*
6269                          * Update architecture specific hints for APIC
6270                          * virtual interrupt delivery.
6271                          */
6272                         if (kvm_x86_ops->hwapic_irr_update)
6273                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6274                                         kvm_lapic_find_highest_irr(vcpu));
6275                         update_cr8_intercept(vcpu);
6276                         kvm_lapic_sync_to_vapic(vcpu);
6277                 }
6278         }
6279
6280         r = kvm_mmu_reload(vcpu);
6281         if (unlikely(r)) {
6282                 goto cancel_injection;
6283         }
6284
6285         preempt_disable();
6286
6287         kvm_x86_ops->prepare_guest_switch(vcpu);
6288         if (vcpu->fpu_active)
6289                 kvm_load_guest_fpu(vcpu);
6290         kvm_load_guest_xcr0(vcpu);
6291
6292         vcpu->mode = IN_GUEST_MODE;
6293
6294         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6295
6296         /* We should set ->mode before check ->requests,
6297          * see the comment in make_all_cpus_request.
6298          */
6299         smp_mb__after_srcu_read_unlock();
6300
6301         local_irq_disable();
6302
6303         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6304             || need_resched() || signal_pending(current)) {
6305                 vcpu->mode = OUTSIDE_GUEST_MODE;
6306                 smp_wmb();
6307                 local_irq_enable();
6308                 preempt_enable();
6309                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6310                 r = 1;
6311                 goto cancel_injection;
6312         }
6313
6314         if (req_immediate_exit)
6315                 smp_send_reschedule(vcpu->cpu);
6316
6317         kvm_guest_enter();
6318
6319         if (unlikely(vcpu->arch.switch_db_regs)) {
6320                 set_debugreg(0, 7);
6321                 set_debugreg(vcpu->arch.eff_db[0], 0);
6322                 set_debugreg(vcpu->arch.eff_db[1], 1);
6323                 set_debugreg(vcpu->arch.eff_db[2], 2);
6324                 set_debugreg(vcpu->arch.eff_db[3], 3);
6325                 set_debugreg(vcpu->arch.dr6, 6);
6326         }
6327
6328         trace_kvm_entry(vcpu->vcpu_id);
6329         wait_lapic_expire(vcpu);
6330         kvm_x86_ops->run(vcpu);
6331
6332         /*
6333          * Do this here before restoring debug registers on the host.  And
6334          * since we do this before handling the vmexit, a DR access vmexit
6335          * can (a) read the correct value of the debug registers, (b) set
6336          * KVM_DEBUGREG_WONT_EXIT again.
6337          */
6338         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6339                 int i;
6340
6341                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6342                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6343                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6344                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6345         }
6346
6347         /*
6348          * If the guest has used debug registers, at least dr7
6349          * will be disabled while returning to the host.
6350          * If we don't have active breakpoints in the host, we don't
6351          * care about the messed up debug address registers. But if
6352          * we have some of them active, restore the old state.
6353          */
6354         if (hw_breakpoint_active())
6355                 hw_breakpoint_restore();
6356
6357         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6358                                                            native_read_tsc());
6359
6360         vcpu->mode = OUTSIDE_GUEST_MODE;
6361         smp_wmb();
6362
6363         /* Interrupt is enabled by handle_external_intr() */
6364         kvm_x86_ops->handle_external_intr(vcpu);
6365
6366         ++vcpu->stat.exits;
6367
6368         /*
6369          * We must have an instruction between local_irq_enable() and
6370          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6371          * the interrupt shadow.  The stat.exits increment will do nicely.
6372          * But we need to prevent reordering, hence this barrier():
6373          */
6374         barrier();
6375
6376         kvm_guest_exit();
6377
6378         preempt_enable();
6379
6380         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6381
6382         /*
6383          * Profile KVM exit RIPs:
6384          */
6385         if (unlikely(prof_on == KVM_PROFILING)) {
6386                 unsigned long rip = kvm_rip_read(vcpu);
6387                 profile_hit(KVM_PROFILING, (void *)rip);
6388         }
6389
6390         if (unlikely(vcpu->arch.tsc_always_catchup))
6391                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6392
6393         if (vcpu->arch.apic_attention)
6394                 kvm_lapic_sync_from_vapic(vcpu);
6395
6396         r = kvm_x86_ops->handle_exit(vcpu);
6397         return r;
6398
6399 cancel_injection:
6400         kvm_x86_ops->cancel_injection(vcpu);
6401         if (unlikely(vcpu->arch.apic_attention))
6402                 kvm_lapic_sync_from_vapic(vcpu);
6403 out:
6404         return r;
6405 }
6406
6407
6408 static int __vcpu_run(struct kvm_vcpu *vcpu)
6409 {
6410         int r;
6411         struct kvm *kvm = vcpu->kvm;
6412
6413         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6414
6415         r = 1;
6416         while (r > 0) {
6417                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6418                     !vcpu->arch.apf.halted)
6419                         r = vcpu_enter_guest(vcpu);
6420                 else {
6421                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6422                         kvm_vcpu_block(vcpu);
6423                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6424                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6425                                 kvm_apic_accept_events(vcpu);
6426                                 switch(vcpu->arch.mp_state) {
6427                                 case KVM_MP_STATE_HALTED:
6428                                         vcpu->arch.pv.pv_unhalted = false;
6429                                         vcpu->arch.mp_state =
6430                                                 KVM_MP_STATE_RUNNABLE;
6431                                 case KVM_MP_STATE_RUNNABLE:
6432                                         vcpu->arch.apf.halted = false;
6433                                         break;
6434                                 case KVM_MP_STATE_INIT_RECEIVED:
6435                                         break;
6436                                 default:
6437                                         r = -EINTR;
6438                                         break;
6439                                 }
6440                         }
6441                 }
6442
6443                 if (r <= 0)
6444                         break;
6445
6446                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6447                 if (kvm_cpu_has_pending_timer(vcpu))
6448                         kvm_inject_pending_timer_irqs(vcpu);
6449
6450                 if (dm_request_for_irq_injection(vcpu)) {
6451                         r = -EINTR;
6452                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6453                         ++vcpu->stat.request_irq_exits;
6454                 }
6455
6456                 kvm_check_async_pf_completion(vcpu);
6457
6458                 if (signal_pending(current)) {
6459                         r = -EINTR;
6460                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6461                         ++vcpu->stat.signal_exits;
6462                 }
6463                 if (need_resched()) {
6464                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6465                         cond_resched();
6466                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6467                 }
6468         }
6469
6470         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6471
6472         return r;
6473 }
6474
6475 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6476 {
6477         int r;
6478         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6479         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6480         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6481         if (r != EMULATE_DONE)
6482                 return 0;
6483         return 1;
6484 }
6485
6486 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6487 {
6488         BUG_ON(!vcpu->arch.pio.count);
6489
6490         return complete_emulated_io(vcpu);
6491 }
6492
6493 /*
6494  * Implements the following, as a state machine:
6495  *
6496  * read:
6497  *   for each fragment
6498  *     for each mmio piece in the fragment
6499  *       write gpa, len
6500  *       exit
6501  *       copy data
6502  *   execute insn
6503  *
6504  * write:
6505  *   for each fragment
6506  *     for each mmio piece in the fragment
6507  *       write gpa, len
6508  *       copy data
6509  *       exit
6510  */
6511 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6512 {
6513         struct kvm_run *run = vcpu->run;
6514         struct kvm_mmio_fragment *frag;
6515         unsigned len;
6516
6517         BUG_ON(!vcpu->mmio_needed);
6518
6519         /* Complete previous fragment */
6520         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6521         len = min(8u, frag->len);
6522         if (!vcpu->mmio_is_write)
6523                 memcpy(frag->data, run->mmio.data, len);
6524
6525         if (frag->len <= 8) {
6526                 /* Switch to the next fragment. */
6527                 frag++;
6528                 vcpu->mmio_cur_fragment++;
6529         } else {
6530                 /* Go forward to the next mmio piece. */
6531                 frag->data += len;
6532                 frag->gpa += len;
6533                 frag->len -= len;
6534         }
6535
6536         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6537                 vcpu->mmio_needed = 0;
6538
6539                 /* FIXME: return into emulator if single-stepping.  */
6540                 if (vcpu->mmio_is_write)
6541                         return 1;
6542                 vcpu->mmio_read_completed = 1;
6543                 return complete_emulated_io(vcpu);
6544         }
6545
6546         run->exit_reason = KVM_EXIT_MMIO;
6547         run->mmio.phys_addr = frag->gpa;
6548         if (vcpu->mmio_is_write)
6549                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6550         run->mmio.len = min(8u, frag->len);
6551         run->mmio.is_write = vcpu->mmio_is_write;
6552         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6553         return 0;
6554 }
6555
6556
6557 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6558 {
6559         int r;
6560         sigset_t sigsaved;
6561
6562         if (!tsk_used_math(current) && init_fpu(current))
6563                 return -ENOMEM;
6564
6565         if (vcpu->sigset_active)
6566                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6567
6568         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6569                 kvm_vcpu_block(vcpu);
6570                 kvm_apic_accept_events(vcpu);
6571                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6572                 r = -EAGAIN;
6573                 goto out;
6574         }
6575
6576         /* re-sync apic's tpr */
6577         if (!irqchip_in_kernel(vcpu->kvm)) {
6578                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6579                         r = -EINVAL;
6580                         goto out;
6581                 }
6582         }
6583
6584         if (unlikely(vcpu->arch.complete_userspace_io)) {
6585                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6586                 vcpu->arch.complete_userspace_io = NULL;
6587                 r = cui(vcpu);
6588                 if (r <= 0)
6589                         goto out;
6590         } else
6591                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6592
6593         r = __vcpu_run(vcpu);
6594
6595 out:
6596         post_kvm_run_save(vcpu);
6597         if (vcpu->sigset_active)
6598                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6599
6600         return r;
6601 }
6602
6603 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6604 {
6605         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6606                 /*
6607                  * We are here if userspace calls get_regs() in the middle of
6608                  * instruction emulation. Registers state needs to be copied
6609                  * back from emulation context to vcpu. Userspace shouldn't do
6610                  * that usually, but some bad designed PV devices (vmware
6611                  * backdoor interface) need this to work
6612                  */
6613                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6614                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6615         }
6616         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6617         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6618         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6619         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6620         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6621         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6622         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6623         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6624 #ifdef CONFIG_X86_64
6625         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6626         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6627         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6628         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6629         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6630         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6631         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6632         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6633 #endif
6634
6635         regs->rip = kvm_rip_read(vcpu);
6636         regs->rflags = kvm_get_rflags(vcpu);
6637
6638         return 0;
6639 }
6640
6641 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6642 {
6643         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6644         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6645
6646         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6647         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6648         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6649         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6650         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6651         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6652         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6653         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6654 #ifdef CONFIG_X86_64
6655         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6656         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6657         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6658         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6659         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6660         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6661         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6662         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6663 #endif
6664
6665         kvm_rip_write(vcpu, regs->rip);
6666         kvm_set_rflags(vcpu, regs->rflags);
6667
6668         vcpu->arch.exception.pending = false;
6669
6670         kvm_make_request(KVM_REQ_EVENT, vcpu);
6671
6672         return 0;
6673 }
6674
6675 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6676 {
6677         struct kvm_segment cs;
6678
6679         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6680         *db = cs.db;
6681         *l = cs.l;
6682 }
6683 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6684
6685 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6686                                   struct kvm_sregs *sregs)
6687 {
6688         struct desc_ptr dt;
6689
6690         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6691         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6692         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6693         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6694         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6695         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6696
6697         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6698         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6699
6700         kvm_x86_ops->get_idt(vcpu, &dt);
6701         sregs->idt.limit = dt.size;
6702         sregs->idt.base = dt.address;
6703         kvm_x86_ops->get_gdt(vcpu, &dt);
6704         sregs->gdt.limit = dt.size;
6705         sregs->gdt.base = dt.address;
6706
6707         sregs->cr0 = kvm_read_cr0(vcpu);
6708         sregs->cr2 = vcpu->arch.cr2;
6709         sregs->cr3 = kvm_read_cr3(vcpu);
6710         sregs->cr4 = kvm_read_cr4(vcpu);
6711         sregs->cr8 = kvm_get_cr8(vcpu);
6712         sregs->efer = vcpu->arch.efer;
6713         sregs->apic_base = kvm_get_apic_base(vcpu);
6714
6715         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6716
6717         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6718                 set_bit(vcpu->arch.interrupt.nr,
6719                         (unsigned long *)sregs->interrupt_bitmap);
6720
6721         return 0;
6722 }
6723
6724 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6725                                     struct kvm_mp_state *mp_state)
6726 {
6727         kvm_apic_accept_events(vcpu);
6728         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6729                                         vcpu->arch.pv.pv_unhalted)
6730                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6731         else
6732                 mp_state->mp_state = vcpu->arch.mp_state;
6733
6734         return 0;
6735 }
6736
6737 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6738                                     struct kvm_mp_state *mp_state)
6739 {
6740         if (!kvm_vcpu_has_lapic(vcpu) &&
6741             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6742                 return -EINVAL;
6743
6744         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6745                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6746                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6747         } else
6748                 vcpu->arch.mp_state = mp_state->mp_state;
6749         kvm_make_request(KVM_REQ_EVENT, vcpu);
6750         return 0;
6751 }
6752
6753 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6754                     int reason, bool has_error_code, u32 error_code)
6755 {
6756         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6757         int ret;
6758
6759         init_emulate_ctxt(vcpu);
6760
6761         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6762                                    has_error_code, error_code);
6763
6764         if (ret)
6765                 return EMULATE_FAIL;
6766
6767         kvm_rip_write(vcpu, ctxt->eip);
6768         kvm_set_rflags(vcpu, ctxt->eflags);
6769         kvm_make_request(KVM_REQ_EVENT, vcpu);
6770         return EMULATE_DONE;
6771 }
6772 EXPORT_SYMBOL_GPL(kvm_task_switch);
6773
6774 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6775                                   struct kvm_sregs *sregs)
6776 {
6777         struct msr_data apic_base_msr;
6778         int mmu_reset_needed = 0;
6779         int pending_vec, max_bits, idx;
6780         struct desc_ptr dt;
6781
6782         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6783                 return -EINVAL;
6784
6785         dt.size = sregs->idt.limit;
6786         dt.address = sregs->idt.base;
6787         kvm_x86_ops->set_idt(vcpu, &dt);
6788         dt.size = sregs->gdt.limit;
6789         dt.address = sregs->gdt.base;
6790         kvm_x86_ops->set_gdt(vcpu, &dt);
6791
6792         vcpu->arch.cr2 = sregs->cr2;
6793         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6794         vcpu->arch.cr3 = sregs->cr3;
6795         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6796
6797         kvm_set_cr8(vcpu, sregs->cr8);
6798
6799         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6800         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6801         apic_base_msr.data = sregs->apic_base;
6802         apic_base_msr.host_initiated = true;
6803         kvm_set_apic_base(vcpu, &apic_base_msr);
6804
6805         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6806         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6807         vcpu->arch.cr0 = sregs->cr0;
6808
6809         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6810         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6811         if (sregs->cr4 & X86_CR4_OSXSAVE)
6812                 kvm_update_cpuid(vcpu);
6813
6814         idx = srcu_read_lock(&vcpu->kvm->srcu);
6815         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6816                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6817                 mmu_reset_needed = 1;
6818         }
6819         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6820
6821         if (mmu_reset_needed)
6822                 kvm_mmu_reset_context(vcpu);
6823
6824         max_bits = KVM_NR_INTERRUPTS;
6825         pending_vec = find_first_bit(
6826                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6827         if (pending_vec < max_bits) {
6828                 kvm_queue_interrupt(vcpu, pending_vec, false);
6829                 pr_debug("Set back pending irq %d\n", pending_vec);
6830         }
6831
6832         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6833         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6834         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6835         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6836         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6837         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6838
6839         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6840         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6841
6842         update_cr8_intercept(vcpu);
6843
6844         /* Older userspace won't unhalt the vcpu on reset. */
6845         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6846             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6847             !is_protmode(vcpu))
6848                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6849
6850         kvm_make_request(KVM_REQ_EVENT, vcpu);
6851
6852         return 0;
6853 }
6854
6855 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6856                                         struct kvm_guest_debug *dbg)
6857 {
6858         unsigned long rflags;
6859         int i, r;
6860
6861         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6862                 r = -EBUSY;
6863                 if (vcpu->arch.exception.pending)
6864                         goto out;
6865                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6866                         kvm_queue_exception(vcpu, DB_VECTOR);
6867                 else
6868                         kvm_queue_exception(vcpu, BP_VECTOR);
6869         }
6870
6871         /*
6872          * Read rflags as long as potentially injected trace flags are still
6873          * filtered out.
6874          */
6875         rflags = kvm_get_rflags(vcpu);
6876
6877         vcpu->guest_debug = dbg->control;
6878         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6879                 vcpu->guest_debug = 0;
6880
6881         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6882                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6883                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6884                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6885         } else {
6886                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6887                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6888         }
6889         kvm_update_dr7(vcpu);
6890
6891         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6892                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6893                         get_segment_base(vcpu, VCPU_SREG_CS);
6894
6895         /*
6896          * Trigger an rflags update that will inject or remove the trace
6897          * flags.
6898          */
6899         kvm_set_rflags(vcpu, rflags);
6900
6901         kvm_x86_ops->update_db_bp_intercept(vcpu);
6902
6903         r = 0;
6904
6905 out:
6906
6907         return r;
6908 }
6909
6910 /*
6911  * Translate a guest virtual address to a guest physical address.
6912  */
6913 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6914                                     struct kvm_translation *tr)
6915 {
6916         unsigned long vaddr = tr->linear_address;
6917         gpa_t gpa;
6918         int idx;
6919
6920         idx = srcu_read_lock(&vcpu->kvm->srcu);
6921         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6922         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6923         tr->physical_address = gpa;
6924         tr->valid = gpa != UNMAPPED_GVA;
6925         tr->writeable = 1;
6926         tr->usermode = 0;
6927
6928         return 0;
6929 }
6930
6931 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6932 {
6933         struct i387_fxsave_struct *fxsave =
6934                         &vcpu->arch.guest_fpu.state->fxsave;
6935
6936         memcpy(fpu->fpr, fxsave->st_space, 128);
6937         fpu->fcw = fxsave->cwd;
6938         fpu->fsw = fxsave->swd;
6939         fpu->ftwx = fxsave->twd;
6940         fpu->last_opcode = fxsave->fop;
6941         fpu->last_ip = fxsave->rip;
6942         fpu->last_dp = fxsave->rdp;
6943         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6944
6945         return 0;
6946 }
6947
6948 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6949 {
6950         struct i387_fxsave_struct *fxsave =
6951                         &vcpu->arch.guest_fpu.state->fxsave;
6952
6953         memcpy(fxsave->st_space, fpu->fpr, 128);
6954         fxsave->cwd = fpu->fcw;
6955         fxsave->swd = fpu->fsw;
6956         fxsave->twd = fpu->ftwx;
6957         fxsave->fop = fpu->last_opcode;
6958         fxsave->rip = fpu->last_ip;
6959         fxsave->rdp = fpu->last_dp;
6960         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6961
6962         return 0;
6963 }
6964
6965 int fx_init(struct kvm_vcpu *vcpu)
6966 {
6967         int err;
6968
6969         err = fpu_alloc(&vcpu->arch.guest_fpu);
6970         if (err)
6971                 return err;
6972
6973         fpu_finit(&vcpu->arch.guest_fpu);
6974         if (cpu_has_xsaves)
6975                 vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
6976                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
6977
6978         /*
6979          * Ensure guest xcr0 is valid for loading
6980          */
6981         vcpu->arch.xcr0 = XSTATE_FP;
6982
6983         vcpu->arch.cr0 |= X86_CR0_ET;
6984
6985         return 0;
6986 }
6987 EXPORT_SYMBOL_GPL(fx_init);
6988
6989 static void fx_free(struct kvm_vcpu *vcpu)
6990 {
6991         fpu_free(&vcpu->arch.guest_fpu);
6992 }
6993
6994 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6995 {
6996         if (vcpu->guest_fpu_loaded)
6997                 return;
6998
6999         /*
7000          * Restore all possible states in the guest,
7001          * and assume host would use all available bits.
7002          * Guest xcr0 would be loaded later.
7003          */
7004         kvm_put_guest_xcr0(vcpu);
7005         vcpu->guest_fpu_loaded = 1;
7006         __kernel_fpu_begin();
7007         fpu_restore_checking(&vcpu->arch.guest_fpu);
7008         trace_kvm_fpu(1);
7009 }
7010
7011 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7012 {
7013         kvm_put_guest_xcr0(vcpu);
7014
7015         if (!vcpu->guest_fpu_loaded)
7016                 return;
7017
7018         vcpu->guest_fpu_loaded = 0;
7019         fpu_save_init(&vcpu->arch.guest_fpu);
7020         __kernel_fpu_end();
7021         ++vcpu->stat.fpu_reload;
7022         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7023         trace_kvm_fpu(0);
7024 }
7025
7026 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7027 {
7028         kvmclock_reset(vcpu);
7029
7030         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7031         fx_free(vcpu);
7032         kvm_x86_ops->vcpu_free(vcpu);
7033 }
7034
7035 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7036                                                 unsigned int id)
7037 {
7038         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7039                 printk_once(KERN_WARNING
7040                 "kvm: SMP vm created on host with unstable TSC; "
7041                 "guest TSC will not be reliable\n");
7042         return kvm_x86_ops->vcpu_create(kvm, id);
7043 }
7044
7045 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7046 {
7047         int r;
7048
7049         vcpu->arch.mtrr_state.have_fixed = 1;
7050         r = vcpu_load(vcpu);
7051         if (r)
7052                 return r;
7053         kvm_vcpu_reset(vcpu);
7054         kvm_mmu_setup(vcpu);
7055         vcpu_put(vcpu);
7056
7057         return r;
7058 }
7059
7060 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7061 {
7062         struct msr_data msr;
7063         struct kvm *kvm = vcpu->kvm;
7064
7065         if (vcpu_load(vcpu))
7066                 return;
7067         msr.data = 0x0;
7068         msr.index = MSR_IA32_TSC;
7069         msr.host_initiated = true;
7070         kvm_write_tsc(vcpu, &msr);
7071         vcpu_put(vcpu);
7072
7073         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7074                                         KVMCLOCK_SYNC_PERIOD);
7075 }
7076
7077 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7078 {
7079         int r;
7080         vcpu->arch.apf.msr_val = 0;
7081
7082         r = vcpu_load(vcpu);
7083         BUG_ON(r);
7084         kvm_mmu_unload(vcpu);
7085         vcpu_put(vcpu);
7086
7087         fx_free(vcpu);
7088         kvm_x86_ops->vcpu_free(vcpu);
7089 }
7090
7091 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7092 {
7093         atomic_set(&vcpu->arch.nmi_queued, 0);
7094         vcpu->arch.nmi_pending = 0;
7095         vcpu->arch.nmi_injected = false;
7096         kvm_clear_interrupt_queue(vcpu);
7097         kvm_clear_exception_queue(vcpu);
7098
7099         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7100         vcpu->arch.dr6 = DR6_INIT;
7101         kvm_update_dr6(vcpu);
7102         vcpu->arch.dr7 = DR7_FIXED_1;
7103         kvm_update_dr7(vcpu);
7104
7105         kvm_make_request(KVM_REQ_EVENT, vcpu);
7106         vcpu->arch.apf.msr_val = 0;
7107         vcpu->arch.st.msr_val = 0;
7108
7109         kvmclock_reset(vcpu);
7110
7111         kvm_clear_async_pf_completion_queue(vcpu);
7112         kvm_async_pf_hash_reset(vcpu);
7113         vcpu->arch.apf.halted = false;
7114
7115         kvm_pmu_reset(vcpu);
7116
7117         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7118         vcpu->arch.regs_avail = ~0;
7119         vcpu->arch.regs_dirty = ~0;
7120
7121         kvm_x86_ops->vcpu_reset(vcpu);
7122 }
7123
7124 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7125 {
7126         struct kvm_segment cs;
7127
7128         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7129         cs.selector = vector << 8;
7130         cs.base = vector << 12;
7131         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7132         kvm_rip_write(vcpu, 0);
7133 }
7134
7135 int kvm_arch_hardware_enable(void)
7136 {
7137         struct kvm *kvm;
7138         struct kvm_vcpu *vcpu;
7139         int i;
7140         int ret;
7141         u64 local_tsc;
7142         u64 max_tsc = 0;
7143         bool stable, backwards_tsc = false;
7144
7145         kvm_shared_msr_cpu_online();
7146         ret = kvm_x86_ops->hardware_enable();
7147         if (ret != 0)
7148                 return ret;
7149
7150         local_tsc = native_read_tsc();
7151         stable = !check_tsc_unstable();
7152         list_for_each_entry(kvm, &vm_list, vm_list) {
7153                 kvm_for_each_vcpu(i, vcpu, kvm) {
7154                         if (!stable && vcpu->cpu == smp_processor_id())
7155                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7156                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7157                                 backwards_tsc = true;
7158                                 if (vcpu->arch.last_host_tsc > max_tsc)
7159                                         max_tsc = vcpu->arch.last_host_tsc;
7160                         }
7161                 }
7162         }
7163
7164         /*
7165          * Sometimes, even reliable TSCs go backwards.  This happens on
7166          * platforms that reset TSC during suspend or hibernate actions, but
7167          * maintain synchronization.  We must compensate.  Fortunately, we can
7168          * detect that condition here, which happens early in CPU bringup,
7169          * before any KVM threads can be running.  Unfortunately, we can't
7170          * bring the TSCs fully up to date with real time, as we aren't yet far
7171          * enough into CPU bringup that we know how much real time has actually
7172          * elapsed; our helper function, get_kernel_ns() will be using boot
7173          * variables that haven't been updated yet.
7174          *
7175          * So we simply find the maximum observed TSC above, then record the
7176          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7177          * the adjustment will be applied.  Note that we accumulate
7178          * adjustments, in case multiple suspend cycles happen before some VCPU
7179          * gets a chance to run again.  In the event that no KVM threads get a
7180          * chance to run, we will miss the entire elapsed period, as we'll have
7181          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7182          * loose cycle time.  This isn't too big a deal, since the loss will be
7183          * uniform across all VCPUs (not to mention the scenario is extremely
7184          * unlikely). It is possible that a second hibernate recovery happens
7185          * much faster than a first, causing the observed TSC here to be
7186          * smaller; this would require additional padding adjustment, which is
7187          * why we set last_host_tsc to the local tsc observed here.
7188          *
7189          * N.B. - this code below runs only on platforms with reliable TSC,
7190          * as that is the only way backwards_tsc is set above.  Also note
7191          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7192          * have the same delta_cyc adjustment applied if backwards_tsc
7193          * is detected.  Note further, this adjustment is only done once,
7194          * as we reset last_host_tsc on all VCPUs to stop this from being
7195          * called multiple times (one for each physical CPU bringup).
7196          *
7197          * Platforms with unreliable TSCs don't have to deal with this, they
7198          * will be compensated by the logic in vcpu_load, which sets the TSC to
7199          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7200          * guarantee that they stay in perfect synchronization.
7201          */
7202         if (backwards_tsc) {
7203                 u64 delta_cyc = max_tsc - local_tsc;
7204                 backwards_tsc_observed = true;
7205                 list_for_each_entry(kvm, &vm_list, vm_list) {
7206                         kvm_for_each_vcpu(i, vcpu, kvm) {
7207                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7208                                 vcpu->arch.last_host_tsc = local_tsc;
7209                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7210                         }
7211
7212                         /*
7213                          * We have to disable TSC offset matching.. if you were
7214                          * booting a VM while issuing an S4 host suspend....
7215                          * you may have some problem.  Solving this issue is
7216                          * left as an exercise to the reader.
7217                          */
7218                         kvm->arch.last_tsc_nsec = 0;
7219                         kvm->arch.last_tsc_write = 0;
7220                 }
7221
7222         }
7223         return 0;
7224 }
7225
7226 void kvm_arch_hardware_disable(void)
7227 {
7228         kvm_x86_ops->hardware_disable();
7229         drop_user_return_notifiers();
7230 }
7231
7232 int kvm_arch_hardware_setup(void)
7233 {
7234         return kvm_x86_ops->hardware_setup();
7235 }
7236
7237 void kvm_arch_hardware_unsetup(void)
7238 {
7239         kvm_x86_ops->hardware_unsetup();
7240 }
7241
7242 void kvm_arch_check_processor_compat(void *rtn)
7243 {
7244         kvm_x86_ops->check_processor_compatibility(rtn);
7245 }
7246
7247 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7248 {
7249         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7250 }
7251
7252 struct static_key kvm_no_apic_vcpu __read_mostly;
7253
7254 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7255 {
7256         struct page *page;
7257         struct kvm *kvm;
7258         int r;
7259
7260         BUG_ON(vcpu->kvm == NULL);
7261         kvm = vcpu->kvm;
7262
7263         vcpu->arch.pv.pv_unhalted = false;
7264         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7265         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7266                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7267         else
7268                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7269
7270         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7271         if (!page) {
7272                 r = -ENOMEM;
7273                 goto fail;
7274         }
7275         vcpu->arch.pio_data = page_address(page);
7276
7277         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7278
7279         r = kvm_mmu_create(vcpu);
7280         if (r < 0)
7281                 goto fail_free_pio_data;
7282
7283         if (irqchip_in_kernel(kvm)) {
7284                 r = kvm_create_lapic(vcpu);
7285                 if (r < 0)
7286                         goto fail_mmu_destroy;
7287         } else
7288                 static_key_slow_inc(&kvm_no_apic_vcpu);
7289
7290         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7291                                        GFP_KERNEL);
7292         if (!vcpu->arch.mce_banks) {
7293                 r = -ENOMEM;
7294                 goto fail_free_lapic;
7295         }
7296         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7297
7298         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7299                 r = -ENOMEM;
7300                 goto fail_free_mce_banks;
7301         }
7302
7303         r = fx_init(vcpu);
7304         if (r)
7305                 goto fail_free_wbinvd_dirty_mask;
7306
7307         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7308         vcpu->arch.pv_time_enabled = false;
7309
7310         vcpu->arch.guest_supported_xcr0 = 0;
7311         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7312
7313         kvm_async_pf_hash_reset(vcpu);
7314         kvm_pmu_init(vcpu);
7315
7316         return 0;
7317 fail_free_wbinvd_dirty_mask:
7318         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7319 fail_free_mce_banks:
7320         kfree(vcpu->arch.mce_banks);
7321 fail_free_lapic:
7322         kvm_free_lapic(vcpu);
7323 fail_mmu_destroy:
7324         kvm_mmu_destroy(vcpu);
7325 fail_free_pio_data:
7326         free_page((unsigned long)vcpu->arch.pio_data);
7327 fail:
7328         return r;
7329 }
7330
7331 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7332 {
7333         int idx;
7334
7335         kvm_pmu_destroy(vcpu);
7336         kfree(vcpu->arch.mce_banks);
7337         kvm_free_lapic(vcpu);
7338         idx = srcu_read_lock(&vcpu->kvm->srcu);
7339         kvm_mmu_destroy(vcpu);
7340         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7341         free_page((unsigned long)vcpu->arch.pio_data);
7342         if (!irqchip_in_kernel(vcpu->kvm))
7343                 static_key_slow_dec(&kvm_no_apic_vcpu);
7344 }
7345
7346 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7347 {
7348         kvm_x86_ops->sched_in(vcpu, cpu);
7349 }
7350
7351 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7352 {
7353         if (type)
7354                 return -EINVAL;
7355
7356         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7357         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7358         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7359         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7360         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7361
7362         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7363         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7364         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7365         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7366                 &kvm->arch.irq_sources_bitmap);
7367
7368         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7369         mutex_init(&kvm->arch.apic_map_lock);
7370         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7371
7372         pvclock_update_vm_gtod_copy(kvm);
7373
7374         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7375         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7376
7377         return 0;
7378 }
7379
7380 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7381 {
7382         int r;
7383         r = vcpu_load(vcpu);
7384         BUG_ON(r);
7385         kvm_mmu_unload(vcpu);
7386         vcpu_put(vcpu);
7387 }
7388
7389 static void kvm_free_vcpus(struct kvm *kvm)
7390 {
7391         unsigned int i;
7392         struct kvm_vcpu *vcpu;
7393
7394         /*
7395          * Unpin any mmu pages first.
7396          */
7397         kvm_for_each_vcpu(i, vcpu, kvm) {
7398                 kvm_clear_async_pf_completion_queue(vcpu);
7399                 kvm_unload_vcpu_mmu(vcpu);
7400         }
7401         kvm_for_each_vcpu(i, vcpu, kvm)
7402                 kvm_arch_vcpu_free(vcpu);
7403
7404         mutex_lock(&kvm->lock);
7405         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7406                 kvm->vcpus[i] = NULL;
7407
7408         atomic_set(&kvm->online_vcpus, 0);
7409         mutex_unlock(&kvm->lock);
7410 }
7411
7412 void kvm_arch_sync_events(struct kvm *kvm)
7413 {
7414         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7415         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7416         kvm_free_all_assigned_devices(kvm);
7417         kvm_free_pit(kvm);
7418 }
7419
7420 void kvm_arch_destroy_vm(struct kvm *kvm)
7421 {
7422         if (current->mm == kvm->mm) {
7423                 /*
7424                  * Free memory regions allocated on behalf of userspace,
7425                  * unless the the memory map has changed due to process exit
7426                  * or fd copying.
7427                  */
7428                 struct kvm_userspace_memory_region mem;
7429                 memset(&mem, 0, sizeof(mem));
7430                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7431                 kvm_set_memory_region(kvm, &mem);
7432
7433                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7434                 kvm_set_memory_region(kvm, &mem);
7435
7436                 mem.slot = TSS_PRIVATE_MEMSLOT;
7437                 kvm_set_memory_region(kvm, &mem);
7438         }
7439         kvm_iommu_unmap_guest(kvm);
7440         kfree(kvm->arch.vpic);
7441         kfree(kvm->arch.vioapic);
7442         kvm_free_vcpus(kvm);
7443         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7444 }
7445
7446 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7447                            struct kvm_memory_slot *dont)
7448 {
7449         int i;
7450
7451         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7452                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7453                         kvfree(free->arch.rmap[i]);
7454                         free->arch.rmap[i] = NULL;
7455                 }
7456                 if (i == 0)
7457                         continue;
7458
7459                 if (!dont || free->arch.lpage_info[i - 1] !=
7460                              dont->arch.lpage_info[i - 1]) {
7461                         kvfree(free->arch.lpage_info[i - 1]);
7462                         free->arch.lpage_info[i - 1] = NULL;
7463                 }
7464         }
7465 }
7466
7467 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7468                             unsigned long npages)
7469 {
7470         int i;
7471
7472         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7473                 unsigned long ugfn;
7474                 int lpages;
7475                 int level = i + 1;
7476
7477                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7478                                       slot->base_gfn, level) + 1;
7479
7480                 slot->arch.rmap[i] =
7481                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7482                 if (!slot->arch.rmap[i])
7483                         goto out_free;
7484                 if (i == 0)
7485                         continue;
7486
7487                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7488                                         sizeof(*slot->arch.lpage_info[i - 1]));
7489                 if (!slot->arch.lpage_info[i - 1])
7490                         goto out_free;
7491
7492                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7493                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7494                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7495                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7496                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7497                 /*
7498                  * If the gfn and userspace address are not aligned wrt each
7499                  * other, or if explicitly asked to, disable large page
7500                  * support for this slot
7501                  */
7502                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7503                     !kvm_largepages_enabled()) {
7504                         unsigned long j;
7505
7506                         for (j = 0; j < lpages; ++j)
7507                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7508                 }
7509         }
7510
7511         return 0;
7512
7513 out_free:
7514         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7515                 kvfree(slot->arch.rmap[i]);
7516                 slot->arch.rmap[i] = NULL;
7517                 if (i == 0)
7518                         continue;
7519
7520                 kvfree(slot->arch.lpage_info[i - 1]);
7521                 slot->arch.lpage_info[i - 1] = NULL;
7522         }
7523         return -ENOMEM;
7524 }
7525
7526 void kvm_arch_memslots_updated(struct kvm *kvm)
7527 {
7528         /*
7529          * memslots->generation has been incremented.
7530          * mmio generation may have reached its maximum value.
7531          */
7532         kvm_mmu_invalidate_mmio_sptes(kvm);
7533 }
7534
7535 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7536                                 struct kvm_memory_slot *memslot,
7537                                 struct kvm_userspace_memory_region *mem,
7538                                 enum kvm_mr_change change)
7539 {
7540         /*
7541          * Only private memory slots need to be mapped here since
7542          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7543          */
7544         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7545                 unsigned long userspace_addr;
7546
7547                 /*
7548                  * MAP_SHARED to prevent internal slot pages from being moved
7549                  * by fork()/COW.
7550                  */
7551                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7552                                          PROT_READ | PROT_WRITE,
7553                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7554
7555                 if (IS_ERR((void *)userspace_addr))
7556                         return PTR_ERR((void *)userspace_addr);
7557
7558                 memslot->userspace_addr = userspace_addr;
7559         }
7560
7561         return 0;
7562 }
7563
7564 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7565                                      struct kvm_memory_slot *new)
7566 {
7567         /* Still write protect RO slot */
7568         if (new->flags & KVM_MEM_READONLY) {
7569                 kvm_mmu_slot_remove_write_access(kvm, new);
7570                 return;
7571         }
7572
7573         /*
7574          * Call kvm_x86_ops dirty logging hooks when they are valid.
7575          *
7576          * kvm_x86_ops->slot_disable_log_dirty is called when:
7577          *
7578          *  - KVM_MR_CREATE with dirty logging is disabled
7579          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7580          *
7581          * The reason is, in case of PML, we need to set D-bit for any slots
7582          * with dirty logging disabled in order to eliminate unnecessary GPA
7583          * logging in PML buffer (and potential PML buffer full VMEXT). This
7584          * guarantees leaving PML enabled during guest's lifetime won't have
7585          * any additonal overhead from PML when guest is running with dirty
7586          * logging disabled for memory slots.
7587          *
7588          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7589          * to dirty logging mode.
7590          *
7591          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7592          *
7593          * In case of write protect:
7594          *
7595          * Write protect all pages for dirty logging.
7596          *
7597          * All the sptes including the large sptes which point to this
7598          * slot are set to readonly. We can not create any new large
7599          * spte on this slot until the end of the logging.
7600          *
7601          * See the comments in fast_page_fault().
7602          */
7603         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7604                 if (kvm_x86_ops->slot_enable_log_dirty)
7605                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7606                 else
7607                         kvm_mmu_slot_remove_write_access(kvm, new);
7608         } else {
7609                 if (kvm_x86_ops->slot_disable_log_dirty)
7610                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7611         }
7612 }
7613
7614 void kvm_arch_commit_memory_region(struct kvm *kvm,
7615                                 struct kvm_userspace_memory_region *mem,
7616                                 const struct kvm_memory_slot *old,
7617                                 enum kvm_mr_change change)
7618 {
7619         struct kvm_memory_slot *new;
7620         int nr_mmu_pages = 0;
7621
7622         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7623                 int ret;
7624
7625                 ret = vm_munmap(old->userspace_addr,
7626                                 old->npages * PAGE_SIZE);
7627                 if (ret < 0)
7628                         printk(KERN_WARNING
7629                                "kvm_vm_ioctl_set_memory_region: "
7630                                "failed to munmap memory\n");
7631         }
7632
7633         if (!kvm->arch.n_requested_mmu_pages)
7634                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7635
7636         if (nr_mmu_pages)
7637                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7638
7639         /* It's OK to get 'new' slot here as it has already been installed */
7640         new = id_to_memslot(kvm->memslots, mem->slot);
7641
7642         /*
7643          * Set up write protection and/or dirty logging for the new slot.
7644          *
7645          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7646          * been zapped so no dirty logging staff is needed for old slot. For
7647          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7648          * new and it's also covered when dealing with the new slot.
7649          */
7650         if (change != KVM_MR_DELETE)
7651                 kvm_mmu_slot_apply_flags(kvm, new);
7652 }
7653
7654 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7655 {
7656         kvm_mmu_invalidate_zap_all_pages(kvm);
7657 }
7658
7659 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7660                                    struct kvm_memory_slot *slot)
7661 {
7662         kvm_mmu_invalidate_zap_all_pages(kvm);
7663 }
7664
7665 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7666 {
7667         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7668                 kvm_x86_ops->check_nested_events(vcpu, false);
7669
7670         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7671                 !vcpu->arch.apf.halted)
7672                 || !list_empty_careful(&vcpu->async_pf.done)
7673                 || kvm_apic_has_events(vcpu)
7674                 || vcpu->arch.pv.pv_unhalted
7675                 || atomic_read(&vcpu->arch.nmi_queued) ||
7676                 (kvm_arch_interrupt_allowed(vcpu) &&
7677                  kvm_cpu_has_interrupt(vcpu));
7678 }
7679
7680 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7681 {
7682         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7683 }
7684
7685 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7686 {
7687         return kvm_x86_ops->interrupt_allowed(vcpu);
7688 }
7689
7690 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7691 {
7692         if (is_64_bit_mode(vcpu))
7693                 return kvm_rip_read(vcpu);
7694         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7695                      kvm_rip_read(vcpu));
7696 }
7697 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7698
7699 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7700 {
7701         return kvm_get_linear_rip(vcpu) == linear_rip;
7702 }
7703 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7704
7705 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7706 {
7707         unsigned long rflags;
7708
7709         rflags = kvm_x86_ops->get_rflags(vcpu);
7710         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7711                 rflags &= ~X86_EFLAGS_TF;
7712         return rflags;
7713 }
7714 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7715
7716 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7717 {
7718         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7719             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7720                 rflags |= X86_EFLAGS_TF;
7721         kvm_x86_ops->set_rflags(vcpu, rflags);
7722 }
7723
7724 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7725 {
7726         __kvm_set_rflags(vcpu, rflags);
7727         kvm_make_request(KVM_REQ_EVENT, vcpu);
7728 }
7729 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7730
7731 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7732 {
7733         int r;
7734
7735         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7736               work->wakeup_all)
7737                 return;
7738
7739         r = kvm_mmu_reload(vcpu);
7740         if (unlikely(r))
7741                 return;
7742
7743         if (!vcpu->arch.mmu.direct_map &&
7744               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7745                 return;
7746
7747         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7748 }
7749
7750 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7751 {
7752         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7753 }
7754
7755 static inline u32 kvm_async_pf_next_probe(u32 key)
7756 {
7757         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7758 }
7759
7760 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7761 {
7762         u32 key = kvm_async_pf_hash_fn(gfn);
7763
7764         while (vcpu->arch.apf.gfns[key] != ~0)
7765                 key = kvm_async_pf_next_probe(key);
7766
7767         vcpu->arch.apf.gfns[key] = gfn;
7768 }
7769
7770 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7771 {
7772         int i;
7773         u32 key = kvm_async_pf_hash_fn(gfn);
7774
7775         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7776                      (vcpu->arch.apf.gfns[key] != gfn &&
7777                       vcpu->arch.apf.gfns[key] != ~0); i++)
7778                 key = kvm_async_pf_next_probe(key);
7779
7780         return key;
7781 }
7782
7783 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7784 {
7785         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7786 }
7787
7788 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7789 {
7790         u32 i, j, k;
7791
7792         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7793         while (true) {
7794                 vcpu->arch.apf.gfns[i] = ~0;
7795                 do {
7796                         j = kvm_async_pf_next_probe(j);
7797                         if (vcpu->arch.apf.gfns[j] == ~0)
7798                                 return;
7799                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7800                         /*
7801                          * k lies cyclically in ]i,j]
7802                          * |    i.k.j |
7803                          * |....j i.k.| or  |.k..j i...|
7804                          */
7805                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7806                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7807                 i = j;
7808         }
7809 }
7810
7811 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7812 {
7813
7814         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7815                                       sizeof(val));
7816 }
7817
7818 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7819                                      struct kvm_async_pf *work)
7820 {
7821         struct x86_exception fault;
7822
7823         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7824         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7825
7826         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7827             (vcpu->arch.apf.send_user_only &&
7828              kvm_x86_ops->get_cpl(vcpu) == 0))
7829                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7830         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7831                 fault.vector = PF_VECTOR;
7832                 fault.error_code_valid = true;
7833                 fault.error_code = 0;
7834                 fault.nested_page_fault = false;
7835                 fault.address = work->arch.token;
7836                 kvm_inject_page_fault(vcpu, &fault);
7837         }
7838 }
7839
7840 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7841                                  struct kvm_async_pf *work)
7842 {
7843         struct x86_exception fault;
7844
7845         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7846         if (work->wakeup_all)
7847                 work->arch.token = ~0; /* broadcast wakeup */
7848         else
7849                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7850
7851         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7852             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7853                 fault.vector = PF_VECTOR;
7854                 fault.error_code_valid = true;
7855                 fault.error_code = 0;
7856                 fault.nested_page_fault = false;
7857                 fault.address = work->arch.token;
7858                 kvm_inject_page_fault(vcpu, &fault);
7859         }
7860         vcpu->arch.apf.halted = false;
7861         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7862 }
7863
7864 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7865 {
7866         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7867                 return true;
7868         else
7869                 return !kvm_event_needs_reinjection(vcpu) &&
7870                         kvm_x86_ops->interrupt_allowed(vcpu);
7871 }
7872
7873 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7874 {
7875         atomic_inc(&kvm->arch.noncoherent_dma_count);
7876 }
7877 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7878
7879 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7880 {
7881         atomic_dec(&kvm->arch.noncoherent_dma_count);
7882 }
7883 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7884
7885 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7886 {
7887         return atomic_read(&kvm->arch.noncoherent_dma_count);
7888 }
7889 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7890
7891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7903 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7904 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7905 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);