Merge tag 'linux-kselftest-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32  kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns = 0;
113 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
114
115 static bool backwards_tsc_observed = false;
116
117 #define KVM_NR_SHARED_MSRS 16
118
119 struct kvm_shared_msrs_global {
120         int nr;
121         u32 msrs[KVM_NR_SHARED_MSRS];
122 };
123
124 struct kvm_shared_msrs {
125         struct user_return_notifier urn;
126         bool registered;
127         struct kvm_shared_msr_values {
128                 u64 host;
129                 u64 curr;
130         } values[KVM_NR_SHARED_MSRS];
131 };
132
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
134 static struct kvm_shared_msrs __percpu *shared_msrs;
135
136 struct kvm_stats_debugfs_item debugfs_entries[] = {
137         { "pf_fixed", VCPU_STAT(pf_fixed) },
138         { "pf_guest", VCPU_STAT(pf_guest) },
139         { "tlb_flush", VCPU_STAT(tlb_flush) },
140         { "invlpg", VCPU_STAT(invlpg) },
141         { "exits", VCPU_STAT(exits) },
142         { "io_exits", VCPU_STAT(io_exits) },
143         { "mmio_exits", VCPU_STAT(mmio_exits) },
144         { "signal_exits", VCPU_STAT(signal_exits) },
145         { "irq_window", VCPU_STAT(irq_window_exits) },
146         { "nmi_window", VCPU_STAT(nmi_window_exits) },
147         { "halt_exits", VCPU_STAT(halt_exits) },
148         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
149         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
150         { "hypercalls", VCPU_STAT(hypercalls) },
151         { "request_irq", VCPU_STAT(request_irq_exits) },
152         { "irq_exits", VCPU_STAT(irq_exits) },
153         { "host_state_reload", VCPU_STAT(host_state_reload) },
154         { "efer_reload", VCPU_STAT(efer_reload) },
155         { "fpu_reload", VCPU_STAT(fpu_reload) },
156         { "insn_emulation", VCPU_STAT(insn_emulation) },
157         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
158         { "irq_injections", VCPU_STAT(irq_injections) },
159         { "nmi_injections", VCPU_STAT(nmi_injections) },
160         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
161         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
162         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
163         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
164         { "mmu_flooded", VM_STAT(mmu_flooded) },
165         { "mmu_recycled", VM_STAT(mmu_recycled) },
166         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
167         { "mmu_unsync", VM_STAT(mmu_unsync) },
168         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
169         { "largepages", VM_STAT(lpages) },
170         { NULL }
171 };
172
173 u64 __read_mostly host_xcr0;
174
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
176
177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
178 {
179         int i;
180         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
181                 vcpu->arch.apf.gfns[i] = ~0;
182 }
183
184 static void kvm_on_user_return(struct user_return_notifier *urn)
185 {
186         unsigned slot;
187         struct kvm_shared_msrs *locals
188                 = container_of(urn, struct kvm_shared_msrs, urn);
189         struct kvm_shared_msr_values *values;
190
191         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
192                 values = &locals->values[slot];
193                 if (values->host != values->curr) {
194                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
195                         values->curr = values->host;
196                 }
197         }
198         locals->registered = false;
199         user_return_notifier_unregister(urn);
200 }
201
202 static void shared_msr_update(unsigned slot, u32 msr)
203 {
204         u64 value;
205         unsigned int cpu = smp_processor_id();
206         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
207
208         /* only read, and nobody should modify it at this time,
209          * so don't need lock */
210         if (slot >= shared_msrs_global.nr) {
211                 printk(KERN_ERR "kvm: invalid MSR slot!");
212                 return;
213         }
214         rdmsrl_safe(msr, &value);
215         smsr->values[slot].host = value;
216         smsr->values[slot].curr = value;
217 }
218
219 void kvm_define_shared_msr(unsigned slot, u32 msr)
220 {
221         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
222         if (slot >= shared_msrs_global.nr)
223                 shared_msrs_global.nr = slot + 1;
224         shared_msrs_global.msrs[slot] = msr;
225         /* we need ensured the shared_msr_global have been updated */
226         smp_wmb();
227 }
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
229
230 static void kvm_shared_msr_cpu_online(void)
231 {
232         unsigned i;
233
234         for (i = 0; i < shared_msrs_global.nr; ++i)
235                 shared_msr_update(i, shared_msrs_global.msrs[i]);
236 }
237
238 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
239 {
240         unsigned int cpu = smp_processor_id();
241         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242         int err;
243
244         if (((value ^ smsr->values[slot].curr) & mask) == 0)
245                 return 0;
246         smsr->values[slot].curr = value;
247         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
248         if (err)
249                 return 1;
250
251         if (!smsr->registered) {
252                 smsr->urn.on_user_return = kvm_on_user_return;
253                 user_return_notifier_register(&smsr->urn);
254                 smsr->registered = true;
255         }
256         return 0;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
259
260 static void drop_user_return_notifiers(void)
261 {
262         unsigned int cpu = smp_processor_id();
263         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
264
265         if (smsr->registered)
266                 kvm_on_user_return(&smsr->urn);
267 }
268
269 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
270 {
271         return vcpu->arch.apic_base;
272 }
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
274
275 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 {
277         u64 old_state = vcpu->arch.apic_base &
278                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
279         u64 new_state = msr_info->data &
280                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
282                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
283
284         if (!msr_info->host_initiated &&
285             ((msr_info->data & reserved_bits) != 0 ||
286              new_state == X2APIC_ENABLE ||
287              (new_state == MSR_IA32_APICBASE_ENABLE &&
288               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
289              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
290               old_state == 0)))
291                 return 1;
292
293         kvm_lapic_set_base(vcpu, msr_info->data);
294         return 0;
295 }
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
297
298 asmlinkage __visible void kvm_spurious_fault(void)
299 {
300         /* Fault while not rebooting.  We want the trace. */
301         BUG();
302 }
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
304
305 #define EXCPT_BENIGN            0
306 #define EXCPT_CONTRIBUTORY      1
307 #define EXCPT_PF                2
308
309 static int exception_class(int vector)
310 {
311         switch (vector) {
312         case PF_VECTOR:
313                 return EXCPT_PF;
314         case DE_VECTOR:
315         case TS_VECTOR:
316         case NP_VECTOR:
317         case SS_VECTOR:
318         case GP_VECTOR:
319                 return EXCPT_CONTRIBUTORY;
320         default:
321                 break;
322         }
323         return EXCPT_BENIGN;
324 }
325
326 #define EXCPT_FAULT             0
327 #define EXCPT_TRAP              1
328 #define EXCPT_ABORT             2
329 #define EXCPT_INTERRUPT         3
330
331 static int exception_type(int vector)
332 {
333         unsigned int mask;
334
335         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
336                 return EXCPT_INTERRUPT;
337
338         mask = 1 << vector;
339
340         /* #DB is trap, as instruction watchpoints are handled elsewhere */
341         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
342                 return EXCPT_TRAP;
343
344         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
345                 return EXCPT_ABORT;
346
347         /* Reserved exceptions will result in fault */
348         return EXCPT_FAULT;
349 }
350
351 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
352                 unsigned nr, bool has_error, u32 error_code,
353                 bool reinject)
354 {
355         u32 prev_nr;
356         int class1, class2;
357
358         kvm_make_request(KVM_REQ_EVENT, vcpu);
359
360         if (!vcpu->arch.exception.pending) {
361         queue:
362                 if (has_error && !is_protmode(vcpu))
363                         has_error = false;
364                 vcpu->arch.exception.pending = true;
365                 vcpu->arch.exception.has_error_code = has_error;
366                 vcpu->arch.exception.nr = nr;
367                 vcpu->arch.exception.error_code = error_code;
368                 vcpu->arch.exception.reinject = reinject;
369                 return;
370         }
371
372         /* to check exception */
373         prev_nr = vcpu->arch.exception.nr;
374         if (prev_nr == DF_VECTOR) {
375                 /* triple fault -> shutdown */
376                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
377                 return;
378         }
379         class1 = exception_class(prev_nr);
380         class2 = exception_class(nr);
381         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
382                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
383                 /* generate double fault per SDM Table 5-5 */
384                 vcpu->arch.exception.pending = true;
385                 vcpu->arch.exception.has_error_code = true;
386                 vcpu->arch.exception.nr = DF_VECTOR;
387                 vcpu->arch.exception.error_code = 0;
388         } else
389                 /* replace previous exception with a new one in a hope
390                    that instruction re-execution will regenerate lost
391                    exception */
392                 goto queue;
393 }
394
395 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
396 {
397         kvm_multiple_exception(vcpu, nr, false, 0, false);
398 }
399 EXPORT_SYMBOL_GPL(kvm_queue_exception);
400
401 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
402 {
403         kvm_multiple_exception(vcpu, nr, false, 0, true);
404 }
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
406
407 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
408 {
409         if (err)
410                 kvm_inject_gp(vcpu, 0);
411         else
412                 kvm_x86_ops->skip_emulated_instruction(vcpu);
413 }
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
415
416 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418         ++vcpu->stat.pf_guest;
419         vcpu->arch.cr2 = fault->address;
420         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
421 }
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
423
424 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
425 {
426         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
427                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
428         else
429                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
430
431         return fault->nested_page_fault;
432 }
433
434 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
435 {
436         atomic_inc(&vcpu->arch.nmi_queued);
437         kvm_make_request(KVM_REQ_NMI, vcpu);
438 }
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
440
441 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
442 {
443         kvm_multiple_exception(vcpu, nr, true, error_code, false);
444 }
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
446
447 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
448 {
449         kvm_multiple_exception(vcpu, nr, true, error_code, true);
450 }
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
452
453 /*
454  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
455  * a #GP and return false.
456  */
457 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
458 {
459         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
460                 return true;
461         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
462         return false;
463 }
464 EXPORT_SYMBOL_GPL(kvm_require_cpl);
465
466 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
467 {
468         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
469                 return true;
470
471         kvm_queue_exception(vcpu, UD_VECTOR);
472         return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_dr);
475
476 /*
477  * This function will be used to read from the physical memory of the currently
478  * running guest. The difference to kvm_read_guest_page is that this function
479  * can read from guest physical or from the guest's guest physical memory.
480  */
481 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
482                             gfn_t ngfn, void *data, int offset, int len,
483                             u32 access)
484 {
485         struct x86_exception exception;
486         gfn_t real_gfn;
487         gpa_t ngpa;
488
489         ngpa     = gfn_to_gpa(ngfn);
490         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
491         if (real_gfn == UNMAPPED_GVA)
492                 return -EFAULT;
493
494         real_gfn = gpa_to_gfn(real_gfn);
495
496         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
497 }
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
499
500 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
501                                void *data, int offset, int len, u32 access)
502 {
503         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
504                                        data, offset, len, access);
505 }
506
507 /*
508  * Load the pae pdptrs.  Return true is they are all valid.
509  */
510 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
511 {
512         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
513         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
514         int i;
515         int ret;
516         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
517
518         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
519                                       offset * sizeof(u64), sizeof(pdpte),
520                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
521         if (ret < 0) {
522                 ret = 0;
523                 goto out;
524         }
525         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
526                 if (is_present_gpte(pdpte[i]) &&
527                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
528                         ret = 0;
529                         goto out;
530                 }
531         }
532         ret = 1;
533
534         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
535         __set_bit(VCPU_EXREG_PDPTR,
536                   (unsigned long *)&vcpu->arch.regs_avail);
537         __set_bit(VCPU_EXREG_PDPTR,
538                   (unsigned long *)&vcpu->arch.regs_dirty);
539 out:
540
541         return ret;
542 }
543 EXPORT_SYMBOL_GPL(load_pdptrs);
544
545 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
546 {
547         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
548         bool changed = true;
549         int offset;
550         gfn_t gfn;
551         int r;
552
553         if (is_long_mode(vcpu) || !is_pae(vcpu))
554                 return false;
555
556         if (!test_bit(VCPU_EXREG_PDPTR,
557                       (unsigned long *)&vcpu->arch.regs_avail))
558                 return true;
559
560         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
561         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
562         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
563                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
564         if (r < 0)
565                 goto out;
566         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
567 out:
568
569         return changed;
570 }
571
572 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
573 {
574         unsigned long old_cr0 = kvm_read_cr0(vcpu);
575         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
576                                     X86_CR0_CD | X86_CR0_NW;
577
578         cr0 |= X86_CR0_ET;
579
580 #ifdef CONFIG_X86_64
581         if (cr0 & 0xffffffff00000000UL)
582                 return 1;
583 #endif
584
585         cr0 &= ~CR0_RESERVED_BITS;
586
587         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
588                 return 1;
589
590         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
591                 return 1;
592
593         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
594 #ifdef CONFIG_X86_64
595                 if ((vcpu->arch.efer & EFER_LME)) {
596                         int cs_db, cs_l;
597
598                         if (!is_pae(vcpu))
599                                 return 1;
600                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
601                         if (cs_l)
602                                 return 1;
603                 } else
604 #endif
605                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
606                                                  kvm_read_cr3(vcpu)))
607                         return 1;
608         }
609
610         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
611                 return 1;
612
613         kvm_x86_ops->set_cr0(vcpu, cr0);
614
615         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
616                 kvm_clear_async_pf_completion_queue(vcpu);
617                 kvm_async_pf_hash_reset(vcpu);
618         }
619
620         if ((cr0 ^ old_cr0) & update_bits)
621                 kvm_mmu_reset_context(vcpu);
622         return 0;
623 }
624 EXPORT_SYMBOL_GPL(kvm_set_cr0);
625
626 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
627 {
628         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
629 }
630 EXPORT_SYMBOL_GPL(kvm_lmsw);
631
632 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
633 {
634         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
635                         !vcpu->guest_xcr0_loaded) {
636                 /* kvm_set_xcr() also depends on this */
637                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
638                 vcpu->guest_xcr0_loaded = 1;
639         }
640 }
641
642 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
643 {
644         if (vcpu->guest_xcr0_loaded) {
645                 if (vcpu->arch.xcr0 != host_xcr0)
646                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
647                 vcpu->guest_xcr0_loaded = 0;
648         }
649 }
650
651 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
652 {
653         u64 xcr0 = xcr;
654         u64 old_xcr0 = vcpu->arch.xcr0;
655         u64 valid_bits;
656
657         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
658         if (index != XCR_XFEATURE_ENABLED_MASK)
659                 return 1;
660         if (!(xcr0 & XSTATE_FP))
661                 return 1;
662         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
663                 return 1;
664
665         /*
666          * Do not allow the guest to set bits that we do not support
667          * saving.  However, xcr0 bit 0 is always set, even if the
668          * emulated CPU does not support XSAVE (see fx_init).
669          */
670         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
671         if (xcr0 & ~valid_bits)
672                 return 1;
673
674         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
675                 return 1;
676
677         if (xcr0 & XSTATE_AVX512) {
678                 if (!(xcr0 & XSTATE_YMM))
679                         return 1;
680                 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
681                         return 1;
682         }
683         kvm_put_guest_xcr0(vcpu);
684         vcpu->arch.xcr0 = xcr0;
685
686         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
687                 kvm_update_cpuid(vcpu);
688         return 0;
689 }
690
691 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
692 {
693         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
694             __kvm_set_xcr(vcpu, index, xcr)) {
695                 kvm_inject_gp(vcpu, 0);
696                 return 1;
697         }
698         return 0;
699 }
700 EXPORT_SYMBOL_GPL(kvm_set_xcr);
701
702 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
703 {
704         unsigned long old_cr4 = kvm_read_cr4(vcpu);
705         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
706                                    X86_CR4_PAE | X86_CR4_SMEP;
707         if (cr4 & CR4_RESERVED_BITS)
708                 return 1;
709
710         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
711                 return 1;
712
713         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
714                 return 1;
715
716         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
717                 return 1;
718
719         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
720                 return 1;
721
722         if (is_long_mode(vcpu)) {
723                 if (!(cr4 & X86_CR4_PAE))
724                         return 1;
725         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
726                    && ((cr4 ^ old_cr4) & pdptr_bits)
727                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
728                                    kvm_read_cr3(vcpu)))
729                 return 1;
730
731         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
732                 if (!guest_cpuid_has_pcid(vcpu))
733                         return 1;
734
735                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
737                         return 1;
738         }
739
740         if (kvm_x86_ops->set_cr4(vcpu, cr4))
741                 return 1;
742
743         if (((cr4 ^ old_cr4) & pdptr_bits) ||
744             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
745                 kvm_mmu_reset_context(vcpu);
746
747         if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
748                 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
749
750         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
751                 kvm_update_cpuid(vcpu);
752
753         return 0;
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_cr4);
756
757 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
758 {
759 #ifdef CONFIG_X86_64
760         cr3 &= ~CR3_PCID_INVD;
761 #endif
762
763         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
764                 kvm_mmu_sync_roots(vcpu);
765                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
766                 return 0;
767         }
768
769         if (is_long_mode(vcpu)) {
770                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
771                         return 1;
772         } else if (is_pae(vcpu) && is_paging(vcpu) &&
773                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
774                 return 1;
775
776         vcpu->arch.cr3 = cr3;
777         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
778         kvm_mmu_new_cr3(vcpu);
779         return 0;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_cr3);
782
783 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
784 {
785         if (cr8 & CR8_RESERVED_BITS)
786                 return 1;
787         if (irqchip_in_kernel(vcpu->kvm))
788                 kvm_lapic_set_tpr(vcpu, cr8);
789         else
790                 vcpu->arch.cr8 = cr8;
791         return 0;
792 }
793 EXPORT_SYMBOL_GPL(kvm_set_cr8);
794
795 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
796 {
797         if (irqchip_in_kernel(vcpu->kvm))
798                 return kvm_lapic_get_cr8(vcpu);
799         else
800                 return vcpu->arch.cr8;
801 }
802 EXPORT_SYMBOL_GPL(kvm_get_cr8);
803
804 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
805 {
806         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
807                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
808 }
809
810 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
811 {
812         unsigned long dr7;
813
814         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
815                 dr7 = vcpu->arch.guest_debug_dr7;
816         else
817                 dr7 = vcpu->arch.dr7;
818         kvm_x86_ops->set_dr7(vcpu, dr7);
819         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
820         if (dr7 & DR7_BP_EN_MASK)
821                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
822 }
823
824 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
825 {
826         u64 fixed = DR6_FIXED_1;
827
828         if (!guest_cpuid_has_rtm(vcpu))
829                 fixed |= DR6_RTM;
830         return fixed;
831 }
832
833 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
834 {
835         switch (dr) {
836         case 0 ... 3:
837                 vcpu->arch.db[dr] = val;
838                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
839                         vcpu->arch.eff_db[dr] = val;
840                 break;
841         case 4:
842                 /* fall through */
843         case 6:
844                 if (val & 0xffffffff00000000ULL)
845                         return -1; /* #GP */
846                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
847                 kvm_update_dr6(vcpu);
848                 break;
849         case 5:
850                 /* fall through */
851         default: /* 7 */
852                 if (val & 0xffffffff00000000ULL)
853                         return -1; /* #GP */
854                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
855                 kvm_update_dr7(vcpu);
856                 break;
857         }
858
859         return 0;
860 }
861
862 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
863 {
864         if (__kvm_set_dr(vcpu, dr, val)) {
865                 kvm_inject_gp(vcpu, 0);
866                 return 1;
867         }
868         return 0;
869 }
870 EXPORT_SYMBOL_GPL(kvm_set_dr);
871
872 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
873 {
874         switch (dr) {
875         case 0 ... 3:
876                 *val = vcpu->arch.db[dr];
877                 break;
878         case 4:
879                 /* fall through */
880         case 6:
881                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
882                         *val = vcpu->arch.dr6;
883                 else
884                         *val = kvm_x86_ops->get_dr6(vcpu);
885                 break;
886         case 5:
887                 /* fall through */
888         default: /* 7 */
889                 *val = vcpu->arch.dr7;
890                 break;
891         }
892         return 0;
893 }
894 EXPORT_SYMBOL_GPL(kvm_get_dr);
895
896 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
897 {
898         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
899         u64 data;
900         int err;
901
902         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
903         if (err)
904                 return err;
905         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
906         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
907         return err;
908 }
909 EXPORT_SYMBOL_GPL(kvm_rdpmc);
910
911 /*
912  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
913  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
914  *
915  * This list is modified at module load time to reflect the
916  * capabilities of the host cpu. This capabilities test skips MSRs that are
917  * kvm-specific. Those are put in the beginning of the list.
918  */
919
920 #define KVM_SAVE_MSRS_BEGIN     12
921 static u32 msrs_to_save[] = {
922         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
923         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
924         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
925         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
926         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
927         MSR_KVM_PV_EOI_EN,
928         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
929         MSR_STAR,
930 #ifdef CONFIG_X86_64
931         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
932 #endif
933         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
934         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
935 };
936
937 static unsigned num_msrs_to_save;
938
939 static const u32 emulated_msrs[] = {
940         MSR_IA32_TSC_ADJUST,
941         MSR_IA32_TSCDEADLINE,
942         MSR_IA32_MISC_ENABLE,
943         MSR_IA32_MCG_STATUS,
944         MSR_IA32_MCG_CTL,
945 };
946
947 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
948 {
949         if (efer & efer_reserved_bits)
950                 return false;
951
952         if (efer & EFER_FFXSR) {
953                 struct kvm_cpuid_entry2 *feat;
954
955                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
956                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
957                         return false;
958         }
959
960         if (efer & EFER_SVME) {
961                 struct kvm_cpuid_entry2 *feat;
962
963                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
964                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
965                         return false;
966         }
967
968         return true;
969 }
970 EXPORT_SYMBOL_GPL(kvm_valid_efer);
971
972 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
973 {
974         u64 old_efer = vcpu->arch.efer;
975
976         if (!kvm_valid_efer(vcpu, efer))
977                 return 1;
978
979         if (is_paging(vcpu)
980             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
981                 return 1;
982
983         efer &= ~EFER_LMA;
984         efer |= vcpu->arch.efer & EFER_LMA;
985
986         kvm_x86_ops->set_efer(vcpu, efer);
987
988         /* Update reserved bits */
989         if ((efer ^ old_efer) & EFER_NX)
990                 kvm_mmu_reset_context(vcpu);
991
992         return 0;
993 }
994
995 void kvm_enable_efer_bits(u64 mask)
996 {
997        efer_reserved_bits &= ~mask;
998 }
999 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1000
1001 /*
1002  * Writes msr value into into the appropriate "register".
1003  * Returns 0 on success, non-0 otherwise.
1004  * Assumes vcpu_load() was already called.
1005  */
1006 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1007 {
1008         switch (msr->index) {
1009         case MSR_FS_BASE:
1010         case MSR_GS_BASE:
1011         case MSR_KERNEL_GS_BASE:
1012         case MSR_CSTAR:
1013         case MSR_LSTAR:
1014                 if (is_noncanonical_address(msr->data))
1015                         return 1;
1016                 break;
1017         case MSR_IA32_SYSENTER_EIP:
1018         case MSR_IA32_SYSENTER_ESP:
1019                 /*
1020                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1021                  * non-canonical address is written on Intel but not on
1022                  * AMD (which ignores the top 32-bits, because it does
1023                  * not implement 64-bit SYSENTER).
1024                  *
1025                  * 64-bit code should hence be able to write a non-canonical
1026                  * value on AMD.  Making the address canonical ensures that
1027                  * vmentry does not fail on Intel after writing a non-canonical
1028                  * value, and that something deterministic happens if the guest
1029                  * invokes 64-bit SYSENTER.
1030                  */
1031                 msr->data = get_canonical(msr->data);
1032         }
1033         return kvm_x86_ops->set_msr(vcpu, msr);
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_set_msr);
1036
1037 /*
1038  * Adapt set_msr() to msr_io()'s calling convention
1039  */
1040 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1041 {
1042         struct msr_data msr;
1043
1044         msr.data = *data;
1045         msr.index = index;
1046         msr.host_initiated = true;
1047         return kvm_set_msr(vcpu, &msr);
1048 }
1049
1050 #ifdef CONFIG_X86_64
1051 struct pvclock_gtod_data {
1052         seqcount_t      seq;
1053
1054         struct { /* extract of a clocksource struct */
1055                 int vclock_mode;
1056                 cycle_t cycle_last;
1057                 cycle_t mask;
1058                 u32     mult;
1059                 u32     shift;
1060         } clock;
1061
1062         u64             boot_ns;
1063         u64             nsec_base;
1064 };
1065
1066 static struct pvclock_gtod_data pvclock_gtod_data;
1067
1068 static void update_pvclock_gtod(struct timekeeper *tk)
1069 {
1070         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1071         u64 boot_ns;
1072
1073         boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot));
1074
1075         write_seqcount_begin(&vdata->seq);
1076
1077         /* copy pvclock gtod data */
1078         vdata->clock.vclock_mode        = tk->tkr.clock->archdata.vclock_mode;
1079         vdata->clock.cycle_last         = tk->tkr.cycle_last;
1080         vdata->clock.mask               = tk->tkr.mask;
1081         vdata->clock.mult               = tk->tkr.mult;
1082         vdata->clock.shift              = tk->tkr.shift;
1083
1084         vdata->boot_ns                  = boot_ns;
1085         vdata->nsec_base                = tk->tkr.xtime_nsec;
1086
1087         write_seqcount_end(&vdata->seq);
1088 }
1089 #endif
1090
1091 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1092 {
1093         /*
1094          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1095          * vcpu_enter_guest.  This function is only called from
1096          * the physical CPU that is running vcpu.
1097          */
1098         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1099 }
1100
1101 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1102 {
1103         int version;
1104         int r;
1105         struct pvclock_wall_clock wc;
1106         struct timespec boot;
1107
1108         if (!wall_clock)
1109                 return;
1110
1111         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1112         if (r)
1113                 return;
1114
1115         if (version & 1)
1116                 ++version;  /* first time write, random junk */
1117
1118         ++version;
1119
1120         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1121
1122         /*
1123          * The guest calculates current wall clock time by adding
1124          * system time (updated by kvm_guest_time_update below) to the
1125          * wall clock specified here.  guest system time equals host
1126          * system time for us, thus we must fill in host boot time here.
1127          */
1128         getboottime(&boot);
1129
1130         if (kvm->arch.kvmclock_offset) {
1131                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1132                 boot = timespec_sub(boot, ts);
1133         }
1134         wc.sec = boot.tv_sec;
1135         wc.nsec = boot.tv_nsec;
1136         wc.version = version;
1137
1138         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1139
1140         version++;
1141         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1142 }
1143
1144 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1145 {
1146         uint32_t quotient, remainder;
1147
1148         /* Don't try to replace with do_div(), this one calculates
1149          * "(dividend << 32) / divisor" */
1150         __asm__ ( "divl %4"
1151                   : "=a" (quotient), "=d" (remainder)
1152                   : "0" (0), "1" (dividend), "r" (divisor) );
1153         return quotient;
1154 }
1155
1156 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1157                                s8 *pshift, u32 *pmultiplier)
1158 {
1159         uint64_t scaled64;
1160         int32_t  shift = 0;
1161         uint64_t tps64;
1162         uint32_t tps32;
1163
1164         tps64 = base_khz * 1000LL;
1165         scaled64 = scaled_khz * 1000LL;
1166         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1167                 tps64 >>= 1;
1168                 shift--;
1169         }
1170
1171         tps32 = (uint32_t)tps64;
1172         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1173                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1174                         scaled64 >>= 1;
1175                 else
1176                         tps32 <<= 1;
1177                 shift++;
1178         }
1179
1180         *pshift = shift;
1181         *pmultiplier = div_frac(scaled64, tps32);
1182
1183         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1184                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1185 }
1186
1187 static inline u64 get_kernel_ns(void)
1188 {
1189         return ktime_get_boot_ns();
1190 }
1191
1192 #ifdef CONFIG_X86_64
1193 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1194 #endif
1195
1196 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1197 static unsigned long max_tsc_khz;
1198
1199 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1200 {
1201         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1202                                    vcpu->arch.virtual_tsc_shift);
1203 }
1204
1205 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1206 {
1207         u64 v = (u64)khz * (1000000 + ppm);
1208         do_div(v, 1000000);
1209         return v;
1210 }
1211
1212 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1213 {
1214         u32 thresh_lo, thresh_hi;
1215         int use_scaling = 0;
1216
1217         /* tsc_khz can be zero if TSC calibration fails */
1218         if (this_tsc_khz == 0)
1219                 return;
1220
1221         /* Compute a scale to convert nanoseconds in TSC cycles */
1222         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1223                            &vcpu->arch.virtual_tsc_shift,
1224                            &vcpu->arch.virtual_tsc_mult);
1225         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1226
1227         /*
1228          * Compute the variation in TSC rate which is acceptable
1229          * within the range of tolerance and decide if the
1230          * rate being applied is within that bounds of the hardware
1231          * rate.  If so, no scaling or compensation need be done.
1232          */
1233         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1234         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1235         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1236                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1237                 use_scaling = 1;
1238         }
1239         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1240 }
1241
1242 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1243 {
1244         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1245                                       vcpu->arch.virtual_tsc_mult,
1246                                       vcpu->arch.virtual_tsc_shift);
1247         tsc += vcpu->arch.this_tsc_write;
1248         return tsc;
1249 }
1250
1251 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1252 {
1253 #ifdef CONFIG_X86_64
1254         bool vcpus_matched;
1255         struct kvm_arch *ka = &vcpu->kvm->arch;
1256         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1257
1258         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1259                          atomic_read(&vcpu->kvm->online_vcpus));
1260
1261         /*
1262          * Once the masterclock is enabled, always perform request in
1263          * order to update it.
1264          *
1265          * In order to enable masterclock, the host clocksource must be TSC
1266          * and the vcpus need to have matched TSCs.  When that happens,
1267          * perform request to enable masterclock.
1268          */
1269         if (ka->use_master_clock ||
1270             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1271                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1272
1273         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1274                             atomic_read(&vcpu->kvm->online_vcpus),
1275                             ka->use_master_clock, gtod->clock.vclock_mode);
1276 #endif
1277 }
1278
1279 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1280 {
1281         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1282         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1283 }
1284
1285 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1286 {
1287         struct kvm *kvm = vcpu->kvm;
1288         u64 offset, ns, elapsed;
1289         unsigned long flags;
1290         s64 usdiff;
1291         bool matched;
1292         bool already_matched;
1293         u64 data = msr->data;
1294
1295         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1296         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1297         ns = get_kernel_ns();
1298         elapsed = ns - kvm->arch.last_tsc_nsec;
1299
1300         if (vcpu->arch.virtual_tsc_khz) {
1301                 int faulted = 0;
1302
1303                 /* n.b - signed multiplication and division required */
1304                 usdiff = data - kvm->arch.last_tsc_write;
1305 #ifdef CONFIG_X86_64
1306                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1307 #else
1308                 /* do_div() only does unsigned */
1309                 asm("1: idivl %[divisor]\n"
1310                     "2: xor %%edx, %%edx\n"
1311                     "   movl $0, %[faulted]\n"
1312                     "3:\n"
1313                     ".section .fixup,\"ax\"\n"
1314                     "4: movl $1, %[faulted]\n"
1315                     "   jmp  3b\n"
1316                     ".previous\n"
1317
1318                 _ASM_EXTABLE(1b, 4b)
1319
1320                 : "=A"(usdiff), [faulted] "=r" (faulted)
1321                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1322
1323 #endif
1324                 do_div(elapsed, 1000);
1325                 usdiff -= elapsed;
1326                 if (usdiff < 0)
1327                         usdiff = -usdiff;
1328
1329                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1330                 if (faulted)
1331                         usdiff = USEC_PER_SEC;
1332         } else
1333                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1334
1335         /*
1336          * Special case: TSC write with a small delta (1 second) of virtual
1337          * cycle time against real time is interpreted as an attempt to
1338          * synchronize the CPU.
1339          *
1340          * For a reliable TSC, we can match TSC offsets, and for an unstable
1341          * TSC, we add elapsed time in this computation.  We could let the
1342          * compensation code attempt to catch up if we fall behind, but
1343          * it's better to try to match offsets from the beginning.
1344          */
1345         if (usdiff < USEC_PER_SEC &&
1346             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1347                 if (!check_tsc_unstable()) {
1348                         offset = kvm->arch.cur_tsc_offset;
1349                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1350                 } else {
1351                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1352                         data += delta;
1353                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1354                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1355                 }
1356                 matched = true;
1357                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1358         } else {
1359                 /*
1360                  * We split periods of matched TSC writes into generations.
1361                  * For each generation, we track the original measured
1362                  * nanosecond time, offset, and write, so if TSCs are in
1363                  * sync, we can match exact offset, and if not, we can match
1364                  * exact software computation in compute_guest_tsc()
1365                  *
1366                  * These values are tracked in kvm->arch.cur_xxx variables.
1367                  */
1368                 kvm->arch.cur_tsc_generation++;
1369                 kvm->arch.cur_tsc_nsec = ns;
1370                 kvm->arch.cur_tsc_write = data;
1371                 kvm->arch.cur_tsc_offset = offset;
1372                 matched = false;
1373                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1374                          kvm->arch.cur_tsc_generation, data);
1375         }
1376
1377         /*
1378          * We also track th most recent recorded KHZ, write and time to
1379          * allow the matching interval to be extended at each write.
1380          */
1381         kvm->arch.last_tsc_nsec = ns;
1382         kvm->arch.last_tsc_write = data;
1383         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1384
1385         vcpu->arch.last_guest_tsc = data;
1386
1387         /* Keep track of which generation this VCPU has synchronized to */
1388         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1389         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1390         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1391
1392         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1393                 update_ia32_tsc_adjust_msr(vcpu, offset);
1394         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1395         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1396
1397         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1398         if (!matched) {
1399                 kvm->arch.nr_vcpus_matched_tsc = 0;
1400         } else if (!already_matched) {
1401                 kvm->arch.nr_vcpus_matched_tsc++;
1402         }
1403
1404         kvm_track_tsc_matching(vcpu);
1405         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1406 }
1407
1408 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1409
1410 #ifdef CONFIG_X86_64
1411
1412 static cycle_t read_tsc(void)
1413 {
1414         cycle_t ret;
1415         u64 last;
1416
1417         /*
1418          * Empirically, a fence (of type that depends on the CPU)
1419          * before rdtsc is enough to ensure that rdtsc is ordered
1420          * with respect to loads.  The various CPU manuals are unclear
1421          * as to whether rdtsc can be reordered with later loads,
1422          * but no one has ever seen it happen.
1423          */
1424         rdtsc_barrier();
1425         ret = (cycle_t)vget_cycles();
1426
1427         last = pvclock_gtod_data.clock.cycle_last;
1428
1429         if (likely(ret >= last))
1430                 return ret;
1431
1432         /*
1433          * GCC likes to generate cmov here, but this branch is extremely
1434          * predictable (it's just a funciton of time and the likely is
1435          * very likely) and there's a data dependence, so force GCC
1436          * to generate a branch instead.  I don't barrier() because
1437          * we don't actually need a barrier, and if this function
1438          * ever gets inlined it will generate worse code.
1439          */
1440         asm volatile ("");
1441         return last;
1442 }
1443
1444 static inline u64 vgettsc(cycle_t *cycle_now)
1445 {
1446         long v;
1447         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1448
1449         *cycle_now = read_tsc();
1450
1451         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1452         return v * gtod->clock.mult;
1453 }
1454
1455 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1456 {
1457         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1458         unsigned long seq;
1459         int mode;
1460         u64 ns;
1461
1462         do {
1463                 seq = read_seqcount_begin(&gtod->seq);
1464                 mode = gtod->clock.vclock_mode;
1465                 ns = gtod->nsec_base;
1466                 ns += vgettsc(cycle_now);
1467                 ns >>= gtod->clock.shift;
1468                 ns += gtod->boot_ns;
1469         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1470         *t = ns;
1471
1472         return mode;
1473 }
1474
1475 /* returns true if host is using tsc clocksource */
1476 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1477 {
1478         /* checked again under seqlock below */
1479         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1480                 return false;
1481
1482         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1483 }
1484 #endif
1485
1486 /*
1487  *
1488  * Assuming a stable TSC across physical CPUS, and a stable TSC
1489  * across virtual CPUs, the following condition is possible.
1490  * Each numbered line represents an event visible to both
1491  * CPUs at the next numbered event.
1492  *
1493  * "timespecX" represents host monotonic time. "tscX" represents
1494  * RDTSC value.
1495  *
1496  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1497  *
1498  * 1.  read timespec0,tsc0
1499  * 2.                                   | timespec1 = timespec0 + N
1500  *                                      | tsc1 = tsc0 + M
1501  * 3. transition to guest               | transition to guest
1502  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1503  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1504  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1505  *
1506  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1507  *
1508  *      - ret0 < ret1
1509  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1510  *              ...
1511  *      - 0 < N - M => M < N
1512  *
1513  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1514  * always the case (the difference between two distinct xtime instances
1515  * might be smaller then the difference between corresponding TSC reads,
1516  * when updating guest vcpus pvclock areas).
1517  *
1518  * To avoid that problem, do not allow visibility of distinct
1519  * system_timestamp/tsc_timestamp values simultaneously: use a master
1520  * copy of host monotonic time values. Update that master copy
1521  * in lockstep.
1522  *
1523  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1524  *
1525  */
1526
1527 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1528 {
1529 #ifdef CONFIG_X86_64
1530         struct kvm_arch *ka = &kvm->arch;
1531         int vclock_mode;
1532         bool host_tsc_clocksource, vcpus_matched;
1533
1534         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1535                         atomic_read(&kvm->online_vcpus));
1536
1537         /*
1538          * If the host uses TSC clock, then passthrough TSC as stable
1539          * to the guest.
1540          */
1541         host_tsc_clocksource = kvm_get_time_and_clockread(
1542                                         &ka->master_kernel_ns,
1543                                         &ka->master_cycle_now);
1544
1545         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1546                                 && !backwards_tsc_observed
1547                                 && !ka->boot_vcpu_runs_old_kvmclock;
1548
1549         if (ka->use_master_clock)
1550                 atomic_set(&kvm_guest_has_master_clock, 1);
1551
1552         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1553         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1554                                         vcpus_matched);
1555 #endif
1556 }
1557
1558 static void kvm_gen_update_masterclock(struct kvm *kvm)
1559 {
1560 #ifdef CONFIG_X86_64
1561         int i;
1562         struct kvm_vcpu *vcpu;
1563         struct kvm_arch *ka = &kvm->arch;
1564
1565         spin_lock(&ka->pvclock_gtod_sync_lock);
1566         kvm_make_mclock_inprogress_request(kvm);
1567         /* no guest entries from this point */
1568         pvclock_update_vm_gtod_copy(kvm);
1569
1570         kvm_for_each_vcpu(i, vcpu, kvm)
1571                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1572
1573         /* guest entries allowed */
1574         kvm_for_each_vcpu(i, vcpu, kvm)
1575                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1576
1577         spin_unlock(&ka->pvclock_gtod_sync_lock);
1578 #endif
1579 }
1580
1581 static int kvm_guest_time_update(struct kvm_vcpu *v)
1582 {
1583         unsigned long flags, this_tsc_khz;
1584         struct kvm_vcpu_arch *vcpu = &v->arch;
1585         struct kvm_arch *ka = &v->kvm->arch;
1586         s64 kernel_ns;
1587         u64 tsc_timestamp, host_tsc;
1588         struct pvclock_vcpu_time_info guest_hv_clock;
1589         u8 pvclock_flags;
1590         bool use_master_clock;
1591
1592         kernel_ns = 0;
1593         host_tsc = 0;
1594
1595         /*
1596          * If the host uses TSC clock, then passthrough TSC as stable
1597          * to the guest.
1598          */
1599         spin_lock(&ka->pvclock_gtod_sync_lock);
1600         use_master_clock = ka->use_master_clock;
1601         if (use_master_clock) {
1602                 host_tsc = ka->master_cycle_now;
1603                 kernel_ns = ka->master_kernel_ns;
1604         }
1605         spin_unlock(&ka->pvclock_gtod_sync_lock);
1606
1607         /* Keep irq disabled to prevent changes to the clock */
1608         local_irq_save(flags);
1609         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1610         if (unlikely(this_tsc_khz == 0)) {
1611                 local_irq_restore(flags);
1612                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1613                 return 1;
1614         }
1615         if (!use_master_clock) {
1616                 host_tsc = native_read_tsc();
1617                 kernel_ns = get_kernel_ns();
1618         }
1619
1620         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1621
1622         /*
1623          * We may have to catch up the TSC to match elapsed wall clock
1624          * time for two reasons, even if kvmclock is used.
1625          *   1) CPU could have been running below the maximum TSC rate
1626          *   2) Broken TSC compensation resets the base at each VCPU
1627          *      entry to avoid unknown leaps of TSC even when running
1628          *      again on the same CPU.  This may cause apparent elapsed
1629          *      time to disappear, and the guest to stand still or run
1630          *      very slowly.
1631          */
1632         if (vcpu->tsc_catchup) {
1633                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1634                 if (tsc > tsc_timestamp) {
1635                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1636                         tsc_timestamp = tsc;
1637                 }
1638         }
1639
1640         local_irq_restore(flags);
1641
1642         if (!vcpu->pv_time_enabled)
1643                 return 0;
1644
1645         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1646                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1647                                    &vcpu->hv_clock.tsc_shift,
1648                                    &vcpu->hv_clock.tsc_to_system_mul);
1649                 vcpu->hw_tsc_khz = this_tsc_khz;
1650         }
1651
1652         /* With all the info we got, fill in the values */
1653         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1654         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1655         vcpu->last_guest_tsc = tsc_timestamp;
1656
1657         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1658                 &guest_hv_clock, sizeof(guest_hv_clock))))
1659                 return 0;
1660
1661         /*
1662          * The interface expects us to write an even number signaling that the
1663          * update is finished. Since the guest won't see the intermediate
1664          * state, we just increase by 2 at the end.
1665          */
1666         vcpu->hv_clock.version = guest_hv_clock.version + 2;
1667
1668         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1669         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1670
1671         if (vcpu->pvclock_set_guest_stopped_request) {
1672                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1673                 vcpu->pvclock_set_guest_stopped_request = false;
1674         }
1675
1676         /* If the host uses TSC clocksource, then it is stable */
1677         if (use_master_clock)
1678                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1679
1680         vcpu->hv_clock.flags = pvclock_flags;
1681
1682         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1683
1684         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1685                                 &vcpu->hv_clock,
1686                                 sizeof(vcpu->hv_clock));
1687         return 0;
1688 }
1689
1690 /*
1691  * kvmclock updates which are isolated to a given vcpu, such as
1692  * vcpu->cpu migration, should not allow system_timestamp from
1693  * the rest of the vcpus to remain static. Otherwise ntp frequency
1694  * correction applies to one vcpu's system_timestamp but not
1695  * the others.
1696  *
1697  * So in those cases, request a kvmclock update for all vcpus.
1698  * We need to rate-limit these requests though, as they can
1699  * considerably slow guests that have a large number of vcpus.
1700  * The time for a remote vcpu to update its kvmclock is bound
1701  * by the delay we use to rate-limit the updates.
1702  */
1703
1704 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1705
1706 static void kvmclock_update_fn(struct work_struct *work)
1707 {
1708         int i;
1709         struct delayed_work *dwork = to_delayed_work(work);
1710         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1711                                            kvmclock_update_work);
1712         struct kvm *kvm = container_of(ka, struct kvm, arch);
1713         struct kvm_vcpu *vcpu;
1714
1715         kvm_for_each_vcpu(i, vcpu, kvm) {
1716                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1717                 kvm_vcpu_kick(vcpu);
1718         }
1719 }
1720
1721 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1722 {
1723         struct kvm *kvm = v->kvm;
1724
1725         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1726         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1727                                         KVMCLOCK_UPDATE_DELAY);
1728 }
1729
1730 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1731
1732 static void kvmclock_sync_fn(struct work_struct *work)
1733 {
1734         struct delayed_work *dwork = to_delayed_work(work);
1735         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1736                                            kvmclock_sync_work);
1737         struct kvm *kvm = container_of(ka, struct kvm, arch);
1738
1739         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1740         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1741                                         KVMCLOCK_SYNC_PERIOD);
1742 }
1743
1744 static bool msr_mtrr_valid(unsigned msr)
1745 {
1746         switch (msr) {
1747         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1748         case MSR_MTRRfix64K_00000:
1749         case MSR_MTRRfix16K_80000:
1750         case MSR_MTRRfix16K_A0000:
1751         case MSR_MTRRfix4K_C0000:
1752         case MSR_MTRRfix4K_C8000:
1753         case MSR_MTRRfix4K_D0000:
1754         case MSR_MTRRfix4K_D8000:
1755         case MSR_MTRRfix4K_E0000:
1756         case MSR_MTRRfix4K_E8000:
1757         case MSR_MTRRfix4K_F0000:
1758         case MSR_MTRRfix4K_F8000:
1759         case MSR_MTRRdefType:
1760         case MSR_IA32_CR_PAT:
1761                 return true;
1762         case 0x2f8:
1763                 return true;
1764         }
1765         return false;
1766 }
1767
1768 static bool valid_pat_type(unsigned t)
1769 {
1770         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1771 }
1772
1773 static bool valid_mtrr_type(unsigned t)
1774 {
1775         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1776 }
1777
1778 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1779 {
1780         int i;
1781         u64 mask;
1782
1783         if (!msr_mtrr_valid(msr))
1784                 return false;
1785
1786         if (msr == MSR_IA32_CR_PAT) {
1787                 for (i = 0; i < 8; i++)
1788                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1789                                 return false;
1790                 return true;
1791         } else if (msr == MSR_MTRRdefType) {
1792                 if (data & ~0xcff)
1793                         return false;
1794                 return valid_mtrr_type(data & 0xff);
1795         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1796                 for (i = 0; i < 8 ; i++)
1797                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1798                                 return false;
1799                 return true;
1800         }
1801
1802         /* variable MTRRs */
1803         WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1804
1805         mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1806         if ((msr & 1) == 0) {
1807                 /* MTRR base */
1808                 if (!valid_mtrr_type(data & 0xff))
1809                         return false;
1810                 mask |= 0xf00;
1811         } else
1812                 /* MTRR mask */
1813                 mask |= 0x7ff;
1814         if (data & mask) {
1815                 kvm_inject_gp(vcpu, 0);
1816                 return false;
1817         }
1818
1819         return true;
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1822
1823 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1824 {
1825         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1826
1827         if (!kvm_mtrr_valid(vcpu, msr, data))
1828                 return 1;
1829
1830         if (msr == MSR_MTRRdefType) {
1831                 vcpu->arch.mtrr_state.def_type = data;
1832                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1833         } else if (msr == MSR_MTRRfix64K_00000)
1834                 p[0] = data;
1835         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1836                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1837         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1838                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1839         else if (msr == MSR_IA32_CR_PAT)
1840                 vcpu->arch.pat = data;
1841         else {  /* Variable MTRRs */
1842                 int idx, is_mtrr_mask;
1843                 u64 *pt;
1844
1845                 idx = (msr - 0x200) / 2;
1846                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1847                 if (!is_mtrr_mask)
1848                         pt =
1849                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1850                 else
1851                         pt =
1852                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1853                 *pt = data;
1854         }
1855
1856         kvm_mmu_reset_context(vcpu);
1857         return 0;
1858 }
1859
1860 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1861 {
1862         u64 mcg_cap = vcpu->arch.mcg_cap;
1863         unsigned bank_num = mcg_cap & 0xff;
1864
1865         switch (msr) {
1866         case MSR_IA32_MCG_STATUS:
1867                 vcpu->arch.mcg_status = data;
1868                 break;
1869         case MSR_IA32_MCG_CTL:
1870                 if (!(mcg_cap & MCG_CTL_P))
1871                         return 1;
1872                 if (data != 0 && data != ~(u64)0)
1873                         return -1;
1874                 vcpu->arch.mcg_ctl = data;
1875                 break;
1876         default:
1877                 if (msr >= MSR_IA32_MC0_CTL &&
1878                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1879                         u32 offset = msr - MSR_IA32_MC0_CTL;
1880                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1881                          * some Linux kernels though clear bit 10 in bank 4 to
1882                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1883                          * this to avoid an uncatched #GP in the guest
1884                          */
1885                         if ((offset & 0x3) == 0 &&
1886                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1887                                 return -1;
1888                         vcpu->arch.mce_banks[offset] = data;
1889                         break;
1890                 }
1891                 return 1;
1892         }
1893         return 0;
1894 }
1895
1896 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1897 {
1898         struct kvm *kvm = vcpu->kvm;
1899         int lm = is_long_mode(vcpu);
1900         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1901                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1902         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1903                 : kvm->arch.xen_hvm_config.blob_size_32;
1904         u32 page_num = data & ~PAGE_MASK;
1905         u64 page_addr = data & PAGE_MASK;
1906         u8 *page;
1907         int r;
1908
1909         r = -E2BIG;
1910         if (page_num >= blob_size)
1911                 goto out;
1912         r = -ENOMEM;
1913         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1914         if (IS_ERR(page)) {
1915                 r = PTR_ERR(page);
1916                 goto out;
1917         }
1918         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1919                 goto out_free;
1920         r = 0;
1921 out_free:
1922         kfree(page);
1923 out:
1924         return r;
1925 }
1926
1927 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1928 {
1929         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1930 }
1931
1932 static bool kvm_hv_msr_partition_wide(u32 msr)
1933 {
1934         bool r = false;
1935         switch (msr) {
1936         case HV_X64_MSR_GUEST_OS_ID:
1937         case HV_X64_MSR_HYPERCALL:
1938         case HV_X64_MSR_REFERENCE_TSC:
1939         case HV_X64_MSR_TIME_REF_COUNT:
1940                 r = true;
1941                 break;
1942         }
1943
1944         return r;
1945 }
1946
1947 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1948 {
1949         struct kvm *kvm = vcpu->kvm;
1950
1951         switch (msr) {
1952         case HV_X64_MSR_GUEST_OS_ID:
1953                 kvm->arch.hv_guest_os_id = data;
1954                 /* setting guest os id to zero disables hypercall page */
1955                 if (!kvm->arch.hv_guest_os_id)
1956                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1957                 break;
1958         case HV_X64_MSR_HYPERCALL: {
1959                 u64 gfn;
1960                 unsigned long addr;
1961                 u8 instructions[4];
1962
1963                 /* if guest os id is not set hypercall should remain disabled */
1964                 if (!kvm->arch.hv_guest_os_id)
1965                         break;
1966                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1967                         kvm->arch.hv_hypercall = data;
1968                         break;
1969                 }
1970                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1971                 addr = gfn_to_hva(kvm, gfn);
1972                 if (kvm_is_error_hva(addr))
1973                         return 1;
1974                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1975                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1976                 if (__copy_to_user((void __user *)addr, instructions, 4))
1977                         return 1;
1978                 kvm->arch.hv_hypercall = data;
1979                 mark_page_dirty(kvm, gfn);
1980                 break;
1981         }
1982         case HV_X64_MSR_REFERENCE_TSC: {
1983                 u64 gfn;
1984                 HV_REFERENCE_TSC_PAGE tsc_ref;
1985                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1986                 kvm->arch.hv_tsc_page = data;
1987                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1988                         break;
1989                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1990                 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1991                         &tsc_ref, sizeof(tsc_ref)))
1992                         return 1;
1993                 mark_page_dirty(kvm, gfn);
1994                 break;
1995         }
1996         default:
1997                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1998                             "data 0x%llx\n", msr, data);
1999                 return 1;
2000         }
2001         return 0;
2002 }
2003
2004 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2005 {
2006         switch (msr) {
2007         case HV_X64_MSR_APIC_ASSIST_PAGE: {
2008                 u64 gfn;
2009                 unsigned long addr;
2010
2011                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2012                         vcpu->arch.hv_vapic = data;
2013                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2014                                 return 1;
2015                         break;
2016                 }
2017                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2018                 addr = gfn_to_hva(vcpu->kvm, gfn);
2019                 if (kvm_is_error_hva(addr))
2020                         return 1;
2021                 if (__clear_user((void __user *)addr, PAGE_SIZE))
2022                         return 1;
2023                 vcpu->arch.hv_vapic = data;
2024                 mark_page_dirty(vcpu->kvm, gfn);
2025                 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2026                         return 1;
2027                 break;
2028         }
2029         case HV_X64_MSR_EOI:
2030                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2031         case HV_X64_MSR_ICR:
2032                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2033         case HV_X64_MSR_TPR:
2034                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2035         default:
2036                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2037                             "data 0x%llx\n", msr, data);
2038                 return 1;
2039         }
2040
2041         return 0;
2042 }
2043
2044 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2045 {
2046         gpa_t gpa = data & ~0x3f;
2047
2048         /* Bits 2:5 are reserved, Should be zero */
2049         if (data & 0x3c)
2050                 return 1;
2051
2052         vcpu->arch.apf.msr_val = data;
2053
2054         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2055                 kvm_clear_async_pf_completion_queue(vcpu);
2056                 kvm_async_pf_hash_reset(vcpu);
2057                 return 0;
2058         }
2059
2060         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2061                                         sizeof(u32)))
2062                 return 1;
2063
2064         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2065         kvm_async_pf_wakeup_all(vcpu);
2066         return 0;
2067 }
2068
2069 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2070 {
2071         vcpu->arch.pv_time_enabled = false;
2072 }
2073
2074 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2075 {
2076         u64 delta;
2077
2078         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2079                 return;
2080
2081         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2082         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2083         vcpu->arch.st.accum_steal = delta;
2084 }
2085
2086 static void record_steal_time(struct kvm_vcpu *vcpu)
2087 {
2088         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2089                 return;
2090
2091         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2092                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2093                 return;
2094
2095         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2096         vcpu->arch.st.steal.version += 2;
2097         vcpu->arch.st.accum_steal = 0;
2098
2099         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2100                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2101 }
2102
2103 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2104 {
2105         bool pr = false;
2106         u32 msr = msr_info->index;
2107         u64 data = msr_info->data;
2108
2109         switch (msr) {
2110         case MSR_AMD64_NB_CFG:
2111         case MSR_IA32_UCODE_REV:
2112         case MSR_IA32_UCODE_WRITE:
2113         case MSR_VM_HSAVE_PA:
2114         case MSR_AMD64_PATCH_LOADER:
2115         case MSR_AMD64_BU_CFG2:
2116                 break;
2117
2118         case MSR_EFER:
2119                 return set_efer(vcpu, data);
2120         case MSR_K7_HWCR:
2121                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2122                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2123                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2124                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2125                 if (data != 0) {
2126                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2127                                     data);
2128                         return 1;
2129                 }
2130                 break;
2131         case MSR_FAM10H_MMIO_CONF_BASE:
2132                 if (data != 0) {
2133                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2134                                     "0x%llx\n", data);
2135                         return 1;
2136                 }
2137                 break;
2138         case MSR_IA32_DEBUGCTLMSR:
2139                 if (!data) {
2140                         /* We support the non-activated case already */
2141                         break;
2142                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2143                         /* Values other than LBR and BTF are vendor-specific,
2144                            thus reserved and should throw a #GP */
2145                         return 1;
2146                 }
2147                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2148                             __func__, data);
2149                 break;
2150         case 0x200 ... 0x2ff:
2151                 return set_msr_mtrr(vcpu, msr, data);
2152         case MSR_IA32_APICBASE:
2153                 return kvm_set_apic_base(vcpu, msr_info);
2154         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2155                 return kvm_x2apic_msr_write(vcpu, msr, data);
2156         case MSR_IA32_TSCDEADLINE:
2157                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2158                 break;
2159         case MSR_IA32_TSC_ADJUST:
2160                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2161                         if (!msr_info->host_initiated) {
2162                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2163                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2164                         }
2165                         vcpu->arch.ia32_tsc_adjust_msr = data;
2166                 }
2167                 break;
2168         case MSR_IA32_MISC_ENABLE:
2169                 vcpu->arch.ia32_misc_enable_msr = data;
2170                 break;
2171         case MSR_KVM_WALL_CLOCK_NEW:
2172         case MSR_KVM_WALL_CLOCK:
2173                 vcpu->kvm->arch.wall_clock = data;
2174                 kvm_write_wall_clock(vcpu->kvm, data);
2175                 break;
2176         case MSR_KVM_SYSTEM_TIME_NEW:
2177         case MSR_KVM_SYSTEM_TIME: {
2178                 u64 gpa_offset;
2179                 struct kvm_arch *ka = &vcpu->kvm->arch;
2180
2181                 kvmclock_reset(vcpu);
2182
2183                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2184                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2185
2186                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2187                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2188                                         &vcpu->requests);
2189
2190                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2191                 }
2192
2193                 vcpu->arch.time = data;
2194                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2195
2196                 /* we verify if the enable bit is set... */
2197                 if (!(data & 1))
2198                         break;
2199
2200                 gpa_offset = data & ~(PAGE_MASK | 1);
2201
2202                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2203                      &vcpu->arch.pv_time, data & ~1ULL,
2204                      sizeof(struct pvclock_vcpu_time_info)))
2205                         vcpu->arch.pv_time_enabled = false;
2206                 else
2207                         vcpu->arch.pv_time_enabled = true;
2208
2209                 break;
2210         }
2211         case MSR_KVM_ASYNC_PF_EN:
2212                 if (kvm_pv_enable_async_pf(vcpu, data))
2213                         return 1;
2214                 break;
2215         case MSR_KVM_STEAL_TIME:
2216
2217                 if (unlikely(!sched_info_on()))
2218                         return 1;
2219
2220                 if (data & KVM_STEAL_RESERVED_MASK)
2221                         return 1;
2222
2223                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2224                                                 data & KVM_STEAL_VALID_BITS,
2225                                                 sizeof(struct kvm_steal_time)))
2226                         return 1;
2227
2228                 vcpu->arch.st.msr_val = data;
2229
2230                 if (!(data & KVM_MSR_ENABLED))
2231                         break;
2232
2233                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2234
2235                 preempt_disable();
2236                 accumulate_steal_time(vcpu);
2237                 preempt_enable();
2238
2239                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2240
2241                 break;
2242         case MSR_KVM_PV_EOI_EN:
2243                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2244                         return 1;
2245                 break;
2246
2247         case MSR_IA32_MCG_CTL:
2248         case MSR_IA32_MCG_STATUS:
2249         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2250                 return set_msr_mce(vcpu, msr, data);
2251
2252         /* Performance counters are not protected by a CPUID bit,
2253          * so we should check all of them in the generic path for the sake of
2254          * cross vendor migration.
2255          * Writing a zero into the event select MSRs disables them,
2256          * which we perfectly emulate ;-). Any other value should be at least
2257          * reported, some guests depend on them.
2258          */
2259         case MSR_K7_EVNTSEL0:
2260         case MSR_K7_EVNTSEL1:
2261         case MSR_K7_EVNTSEL2:
2262         case MSR_K7_EVNTSEL3:
2263                 if (data != 0)
2264                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2265                                     "0x%x data 0x%llx\n", msr, data);
2266                 break;
2267         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2268          * so we ignore writes to make it happy.
2269          */
2270         case MSR_K7_PERFCTR0:
2271         case MSR_K7_PERFCTR1:
2272         case MSR_K7_PERFCTR2:
2273         case MSR_K7_PERFCTR3:
2274                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2275                             "0x%x data 0x%llx\n", msr, data);
2276                 break;
2277         case MSR_P6_PERFCTR0:
2278         case MSR_P6_PERFCTR1:
2279                 pr = true;
2280         case MSR_P6_EVNTSEL0:
2281         case MSR_P6_EVNTSEL1:
2282                 if (kvm_pmu_msr(vcpu, msr))
2283                         return kvm_pmu_set_msr(vcpu, msr_info);
2284
2285                 if (pr || data != 0)
2286                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2287                                     "0x%x data 0x%llx\n", msr, data);
2288                 break;
2289         case MSR_K7_CLK_CTL:
2290                 /*
2291                  * Ignore all writes to this no longer documented MSR.
2292                  * Writes are only relevant for old K7 processors,
2293                  * all pre-dating SVM, but a recommended workaround from
2294                  * AMD for these chips. It is possible to specify the
2295                  * affected processor models on the command line, hence
2296                  * the need to ignore the workaround.
2297                  */
2298                 break;
2299         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2300                 if (kvm_hv_msr_partition_wide(msr)) {
2301                         int r;
2302                         mutex_lock(&vcpu->kvm->lock);
2303                         r = set_msr_hyperv_pw(vcpu, msr, data);
2304                         mutex_unlock(&vcpu->kvm->lock);
2305                         return r;
2306                 } else
2307                         return set_msr_hyperv(vcpu, msr, data);
2308                 break;
2309         case MSR_IA32_BBL_CR_CTL3:
2310                 /* Drop writes to this legacy MSR -- see rdmsr
2311                  * counterpart for further detail.
2312                  */
2313                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2314                 break;
2315         case MSR_AMD64_OSVW_ID_LENGTH:
2316                 if (!guest_cpuid_has_osvw(vcpu))
2317                         return 1;
2318                 vcpu->arch.osvw.length = data;
2319                 break;
2320         case MSR_AMD64_OSVW_STATUS:
2321                 if (!guest_cpuid_has_osvw(vcpu))
2322                         return 1;
2323                 vcpu->arch.osvw.status = data;
2324                 break;
2325         default:
2326                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2327                         return xen_hvm_config(vcpu, data);
2328                 if (kvm_pmu_msr(vcpu, msr))
2329                         return kvm_pmu_set_msr(vcpu, msr_info);
2330                 if (!ignore_msrs) {
2331                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2332                                     msr, data);
2333                         return 1;
2334                 } else {
2335                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2336                                     msr, data);
2337                         break;
2338                 }
2339         }
2340         return 0;
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2343
2344
2345 /*
2346  * Reads an msr value (of 'msr_index') into 'pdata'.
2347  * Returns 0 on success, non-0 otherwise.
2348  * Assumes vcpu_load() was already called.
2349  */
2350 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2351 {
2352         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2353 }
2354 EXPORT_SYMBOL_GPL(kvm_get_msr);
2355
2356 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2357 {
2358         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2359
2360         if (!msr_mtrr_valid(msr))
2361                 return 1;
2362
2363         if (msr == MSR_MTRRdefType)
2364                 *pdata = vcpu->arch.mtrr_state.def_type +
2365                          (vcpu->arch.mtrr_state.enabled << 10);
2366         else if (msr == MSR_MTRRfix64K_00000)
2367                 *pdata = p[0];
2368         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2369                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2370         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2371                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2372         else if (msr == MSR_IA32_CR_PAT)
2373                 *pdata = vcpu->arch.pat;
2374         else {  /* Variable MTRRs */
2375                 int idx, is_mtrr_mask;
2376                 u64 *pt;
2377
2378                 idx = (msr - 0x200) / 2;
2379                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2380                 if (!is_mtrr_mask)
2381                         pt =
2382                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2383                 else
2384                         pt =
2385                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2386                 *pdata = *pt;
2387         }
2388
2389         return 0;
2390 }
2391
2392 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2393 {
2394         u64 data;
2395         u64 mcg_cap = vcpu->arch.mcg_cap;
2396         unsigned bank_num = mcg_cap & 0xff;
2397
2398         switch (msr) {
2399         case MSR_IA32_P5_MC_ADDR:
2400         case MSR_IA32_P5_MC_TYPE:
2401                 data = 0;
2402                 break;
2403         case MSR_IA32_MCG_CAP:
2404                 data = vcpu->arch.mcg_cap;
2405                 break;
2406         case MSR_IA32_MCG_CTL:
2407                 if (!(mcg_cap & MCG_CTL_P))
2408                         return 1;
2409                 data = vcpu->arch.mcg_ctl;
2410                 break;
2411         case MSR_IA32_MCG_STATUS:
2412                 data = vcpu->arch.mcg_status;
2413                 break;
2414         default:
2415                 if (msr >= MSR_IA32_MC0_CTL &&
2416                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2417                         u32 offset = msr - MSR_IA32_MC0_CTL;
2418                         data = vcpu->arch.mce_banks[offset];
2419                         break;
2420                 }
2421                 return 1;
2422         }
2423         *pdata = data;
2424         return 0;
2425 }
2426
2427 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2428 {
2429         u64 data = 0;
2430         struct kvm *kvm = vcpu->kvm;
2431
2432         switch (msr) {
2433         case HV_X64_MSR_GUEST_OS_ID:
2434                 data = kvm->arch.hv_guest_os_id;
2435                 break;
2436         case HV_X64_MSR_HYPERCALL:
2437                 data = kvm->arch.hv_hypercall;
2438                 break;
2439         case HV_X64_MSR_TIME_REF_COUNT: {
2440                 data =
2441                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2442                 break;
2443         }
2444         case HV_X64_MSR_REFERENCE_TSC:
2445                 data = kvm->arch.hv_tsc_page;
2446                 break;
2447         default:
2448                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2449                 return 1;
2450         }
2451
2452         *pdata = data;
2453         return 0;
2454 }
2455
2456 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2457 {
2458         u64 data = 0;
2459
2460         switch (msr) {
2461         case HV_X64_MSR_VP_INDEX: {
2462                 int r;
2463                 struct kvm_vcpu *v;
2464                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2465                         if (v == vcpu) {
2466                                 data = r;
2467                                 break;
2468                         }
2469                 }
2470                 break;
2471         }
2472         case HV_X64_MSR_EOI:
2473                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2474         case HV_X64_MSR_ICR:
2475                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2476         case HV_X64_MSR_TPR:
2477                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2478         case HV_X64_MSR_APIC_ASSIST_PAGE:
2479                 data = vcpu->arch.hv_vapic;
2480                 break;
2481         default:
2482                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2483                 return 1;
2484         }
2485         *pdata = data;
2486         return 0;
2487 }
2488
2489 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2490 {
2491         u64 data;
2492
2493         switch (msr) {
2494         case MSR_IA32_PLATFORM_ID:
2495         case MSR_IA32_EBL_CR_POWERON:
2496         case MSR_IA32_DEBUGCTLMSR:
2497         case MSR_IA32_LASTBRANCHFROMIP:
2498         case MSR_IA32_LASTBRANCHTOIP:
2499         case MSR_IA32_LASTINTFROMIP:
2500         case MSR_IA32_LASTINTTOIP:
2501         case MSR_K8_SYSCFG:
2502         case MSR_K7_HWCR:
2503         case MSR_VM_HSAVE_PA:
2504         case MSR_K7_EVNTSEL0:
2505         case MSR_K7_EVNTSEL1:
2506         case MSR_K7_EVNTSEL2:
2507         case MSR_K7_EVNTSEL3:
2508         case MSR_K7_PERFCTR0:
2509         case MSR_K7_PERFCTR1:
2510         case MSR_K7_PERFCTR2:
2511         case MSR_K7_PERFCTR3:
2512         case MSR_K8_INT_PENDING_MSG:
2513         case MSR_AMD64_NB_CFG:
2514         case MSR_FAM10H_MMIO_CONF_BASE:
2515         case MSR_AMD64_BU_CFG2:
2516                 data = 0;
2517                 break;
2518         case MSR_P6_PERFCTR0:
2519         case MSR_P6_PERFCTR1:
2520         case MSR_P6_EVNTSEL0:
2521         case MSR_P6_EVNTSEL1:
2522                 if (kvm_pmu_msr(vcpu, msr))
2523                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2524                 data = 0;
2525                 break;
2526         case MSR_IA32_UCODE_REV:
2527                 data = 0x100000000ULL;
2528                 break;
2529         case MSR_MTRRcap:
2530                 data = 0x500 | KVM_NR_VAR_MTRR;
2531                 break;
2532         case 0x200 ... 0x2ff:
2533                 return get_msr_mtrr(vcpu, msr, pdata);
2534         case 0xcd: /* fsb frequency */
2535                 data = 3;
2536                 break;
2537                 /*
2538                  * MSR_EBC_FREQUENCY_ID
2539                  * Conservative value valid for even the basic CPU models.
2540                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2541                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2542                  * and 266MHz for model 3, or 4. Set Core Clock
2543                  * Frequency to System Bus Frequency Ratio to 1 (bits
2544                  * 31:24) even though these are only valid for CPU
2545                  * models > 2, however guests may end up dividing or
2546                  * multiplying by zero otherwise.
2547                  */
2548         case MSR_EBC_FREQUENCY_ID:
2549                 data = 1 << 24;
2550                 break;
2551         case MSR_IA32_APICBASE:
2552                 data = kvm_get_apic_base(vcpu);
2553                 break;
2554         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2555                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2556                 break;
2557         case MSR_IA32_TSCDEADLINE:
2558                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2559                 break;
2560         case MSR_IA32_TSC_ADJUST:
2561                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2562                 break;
2563         case MSR_IA32_MISC_ENABLE:
2564                 data = vcpu->arch.ia32_misc_enable_msr;
2565                 break;
2566         case MSR_IA32_PERF_STATUS:
2567                 /* TSC increment by tick */
2568                 data = 1000ULL;
2569                 /* CPU multiplier */
2570                 data |= (((uint64_t)4ULL) << 40);
2571                 break;
2572         case MSR_EFER:
2573                 data = vcpu->arch.efer;
2574                 break;
2575         case MSR_KVM_WALL_CLOCK:
2576         case MSR_KVM_WALL_CLOCK_NEW:
2577                 data = vcpu->kvm->arch.wall_clock;
2578                 break;
2579         case MSR_KVM_SYSTEM_TIME:
2580         case MSR_KVM_SYSTEM_TIME_NEW:
2581                 data = vcpu->arch.time;
2582                 break;
2583         case MSR_KVM_ASYNC_PF_EN:
2584                 data = vcpu->arch.apf.msr_val;
2585                 break;
2586         case MSR_KVM_STEAL_TIME:
2587                 data = vcpu->arch.st.msr_val;
2588                 break;
2589         case MSR_KVM_PV_EOI_EN:
2590                 data = vcpu->arch.pv_eoi.msr_val;
2591                 break;
2592         case MSR_IA32_P5_MC_ADDR:
2593         case MSR_IA32_P5_MC_TYPE:
2594         case MSR_IA32_MCG_CAP:
2595         case MSR_IA32_MCG_CTL:
2596         case MSR_IA32_MCG_STATUS:
2597         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2598                 return get_msr_mce(vcpu, msr, pdata);
2599         case MSR_K7_CLK_CTL:
2600                 /*
2601                  * Provide expected ramp-up count for K7. All other
2602                  * are set to zero, indicating minimum divisors for
2603                  * every field.
2604                  *
2605                  * This prevents guest kernels on AMD host with CPU
2606                  * type 6, model 8 and higher from exploding due to
2607                  * the rdmsr failing.
2608                  */
2609                 data = 0x20000000;
2610                 break;
2611         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2612                 if (kvm_hv_msr_partition_wide(msr)) {
2613                         int r;
2614                         mutex_lock(&vcpu->kvm->lock);
2615                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2616                         mutex_unlock(&vcpu->kvm->lock);
2617                         return r;
2618                 } else
2619                         return get_msr_hyperv(vcpu, msr, pdata);
2620                 break;
2621         case MSR_IA32_BBL_CR_CTL3:
2622                 /* This legacy MSR exists but isn't fully documented in current
2623                  * silicon.  It is however accessed by winxp in very narrow
2624                  * scenarios where it sets bit #19, itself documented as
2625                  * a "reserved" bit.  Best effort attempt to source coherent
2626                  * read data here should the balance of the register be
2627                  * interpreted by the guest:
2628                  *
2629                  * L2 cache control register 3: 64GB range, 256KB size,
2630                  * enabled, latency 0x1, configured
2631                  */
2632                 data = 0xbe702111;
2633                 break;
2634         case MSR_AMD64_OSVW_ID_LENGTH:
2635                 if (!guest_cpuid_has_osvw(vcpu))
2636                         return 1;
2637                 data = vcpu->arch.osvw.length;
2638                 break;
2639         case MSR_AMD64_OSVW_STATUS:
2640                 if (!guest_cpuid_has_osvw(vcpu))
2641                         return 1;
2642                 data = vcpu->arch.osvw.status;
2643                 break;
2644         default:
2645                 if (kvm_pmu_msr(vcpu, msr))
2646                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2647                 if (!ignore_msrs) {
2648                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2649                         return 1;
2650                 } else {
2651                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2652                         data = 0;
2653                 }
2654                 break;
2655         }
2656         *pdata = data;
2657         return 0;
2658 }
2659 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2660
2661 /*
2662  * Read or write a bunch of msrs. All parameters are kernel addresses.
2663  *
2664  * @return number of msrs set successfully.
2665  */
2666 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2667                     struct kvm_msr_entry *entries,
2668                     int (*do_msr)(struct kvm_vcpu *vcpu,
2669                                   unsigned index, u64 *data))
2670 {
2671         int i, idx;
2672
2673         idx = srcu_read_lock(&vcpu->kvm->srcu);
2674         for (i = 0; i < msrs->nmsrs; ++i)
2675                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2676                         break;
2677         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2678
2679         return i;
2680 }
2681
2682 /*
2683  * Read or write a bunch of msrs. Parameters are user addresses.
2684  *
2685  * @return number of msrs set successfully.
2686  */
2687 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2688                   int (*do_msr)(struct kvm_vcpu *vcpu,
2689                                 unsigned index, u64 *data),
2690                   int writeback)
2691 {
2692         struct kvm_msrs msrs;
2693         struct kvm_msr_entry *entries;
2694         int r, n;
2695         unsigned size;
2696
2697         r = -EFAULT;
2698         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2699                 goto out;
2700
2701         r = -E2BIG;
2702         if (msrs.nmsrs >= MAX_IO_MSRS)
2703                 goto out;
2704
2705         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2706         entries = memdup_user(user_msrs->entries, size);
2707         if (IS_ERR(entries)) {
2708                 r = PTR_ERR(entries);
2709                 goto out;
2710         }
2711
2712         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2713         if (r < 0)
2714                 goto out_free;
2715
2716         r = -EFAULT;
2717         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2718                 goto out_free;
2719
2720         r = n;
2721
2722 out_free:
2723         kfree(entries);
2724 out:
2725         return r;
2726 }
2727
2728 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2729 {
2730         int r;
2731
2732         switch (ext) {
2733         case KVM_CAP_IRQCHIP:
2734         case KVM_CAP_HLT:
2735         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2736         case KVM_CAP_SET_TSS_ADDR:
2737         case KVM_CAP_EXT_CPUID:
2738         case KVM_CAP_EXT_EMUL_CPUID:
2739         case KVM_CAP_CLOCKSOURCE:
2740         case KVM_CAP_PIT:
2741         case KVM_CAP_NOP_IO_DELAY:
2742         case KVM_CAP_MP_STATE:
2743         case KVM_CAP_SYNC_MMU:
2744         case KVM_CAP_USER_NMI:
2745         case KVM_CAP_REINJECT_CONTROL:
2746         case KVM_CAP_IRQ_INJECT_STATUS:
2747         case KVM_CAP_IOEVENTFD:
2748         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2749         case KVM_CAP_PIT2:
2750         case KVM_CAP_PIT_STATE2:
2751         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2752         case KVM_CAP_XEN_HVM:
2753         case KVM_CAP_ADJUST_CLOCK:
2754         case KVM_CAP_VCPU_EVENTS:
2755         case KVM_CAP_HYPERV:
2756         case KVM_CAP_HYPERV_VAPIC:
2757         case KVM_CAP_HYPERV_SPIN:
2758         case KVM_CAP_PCI_SEGMENT:
2759         case KVM_CAP_DEBUGREGS:
2760         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2761         case KVM_CAP_XSAVE:
2762         case KVM_CAP_ASYNC_PF:
2763         case KVM_CAP_GET_TSC_KHZ:
2764         case KVM_CAP_KVMCLOCK_CTRL:
2765         case KVM_CAP_READONLY_MEM:
2766         case KVM_CAP_HYPERV_TIME:
2767         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2768         case KVM_CAP_TSC_DEADLINE_TIMER:
2769 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2770         case KVM_CAP_ASSIGN_DEV_IRQ:
2771         case KVM_CAP_PCI_2_3:
2772 #endif
2773                 r = 1;
2774                 break;
2775         case KVM_CAP_COALESCED_MMIO:
2776                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2777                 break;
2778         case KVM_CAP_VAPIC:
2779                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2780                 break;
2781         case KVM_CAP_NR_VCPUS:
2782                 r = KVM_SOFT_MAX_VCPUS;
2783                 break;
2784         case KVM_CAP_MAX_VCPUS:
2785                 r = KVM_MAX_VCPUS;
2786                 break;
2787         case KVM_CAP_NR_MEMSLOTS:
2788                 r = KVM_USER_MEM_SLOTS;
2789                 break;
2790         case KVM_CAP_PV_MMU:    /* obsolete */
2791                 r = 0;
2792                 break;
2793 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2794         case KVM_CAP_IOMMU:
2795                 r = iommu_present(&pci_bus_type);
2796                 break;
2797 #endif
2798         case KVM_CAP_MCE:
2799                 r = KVM_MAX_MCE_BANKS;
2800                 break;
2801         case KVM_CAP_XCRS:
2802                 r = cpu_has_xsave;
2803                 break;
2804         case KVM_CAP_TSC_CONTROL:
2805                 r = kvm_has_tsc_control;
2806                 break;
2807         default:
2808                 r = 0;
2809                 break;
2810         }
2811         return r;
2812
2813 }
2814
2815 long kvm_arch_dev_ioctl(struct file *filp,
2816                         unsigned int ioctl, unsigned long arg)
2817 {
2818         void __user *argp = (void __user *)arg;
2819         long r;
2820
2821         switch (ioctl) {
2822         case KVM_GET_MSR_INDEX_LIST: {
2823                 struct kvm_msr_list __user *user_msr_list = argp;
2824                 struct kvm_msr_list msr_list;
2825                 unsigned n;
2826
2827                 r = -EFAULT;
2828                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2829                         goto out;
2830                 n = msr_list.nmsrs;
2831                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2832                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2833                         goto out;
2834                 r = -E2BIG;
2835                 if (n < msr_list.nmsrs)
2836                         goto out;
2837                 r = -EFAULT;
2838                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2839                                  num_msrs_to_save * sizeof(u32)))
2840                         goto out;
2841                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2842                                  &emulated_msrs,
2843                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2844                         goto out;
2845                 r = 0;
2846                 break;
2847         }
2848         case KVM_GET_SUPPORTED_CPUID:
2849         case KVM_GET_EMULATED_CPUID: {
2850                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2851                 struct kvm_cpuid2 cpuid;
2852
2853                 r = -EFAULT;
2854                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2855                         goto out;
2856
2857                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2858                                             ioctl);
2859                 if (r)
2860                         goto out;
2861
2862                 r = -EFAULT;
2863                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2864                         goto out;
2865                 r = 0;
2866                 break;
2867         }
2868         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2869                 u64 mce_cap;
2870
2871                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2872                 r = -EFAULT;
2873                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2874                         goto out;
2875                 r = 0;
2876                 break;
2877         }
2878         default:
2879                 r = -EINVAL;
2880         }
2881 out:
2882         return r;
2883 }
2884
2885 static void wbinvd_ipi(void *garbage)
2886 {
2887         wbinvd();
2888 }
2889
2890 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2891 {
2892         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2893 }
2894
2895 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2896 {
2897         /* Address WBINVD may be executed by guest */
2898         if (need_emulate_wbinvd(vcpu)) {
2899                 if (kvm_x86_ops->has_wbinvd_exit())
2900                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2901                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2902                         smp_call_function_single(vcpu->cpu,
2903                                         wbinvd_ipi, NULL, 1);
2904         }
2905
2906         kvm_x86_ops->vcpu_load(vcpu, cpu);
2907
2908         /* Apply any externally detected TSC adjustments (due to suspend) */
2909         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2910                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2911                 vcpu->arch.tsc_offset_adjustment = 0;
2912                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2913         }
2914
2915         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2916                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2917                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2918                 if (tsc_delta < 0)
2919                         mark_tsc_unstable("KVM discovered backwards TSC");
2920                 if (check_tsc_unstable()) {
2921                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2922                                                 vcpu->arch.last_guest_tsc);
2923                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2924                         vcpu->arch.tsc_catchup = 1;
2925                 }
2926                 /*
2927                  * On a host with synchronized TSC, there is no need to update
2928                  * kvmclock on vcpu->cpu migration
2929                  */
2930                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2931                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2932                 if (vcpu->cpu != cpu)
2933                         kvm_migrate_timers(vcpu);
2934                 vcpu->cpu = cpu;
2935         }
2936
2937         accumulate_steal_time(vcpu);
2938         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2939 }
2940
2941 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2942 {
2943         kvm_x86_ops->vcpu_put(vcpu);
2944         kvm_put_guest_fpu(vcpu);
2945         vcpu->arch.last_host_tsc = native_read_tsc();
2946 }
2947
2948 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2949                                     struct kvm_lapic_state *s)
2950 {
2951         kvm_x86_ops->sync_pir_to_irr(vcpu);
2952         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2953
2954         return 0;
2955 }
2956
2957 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2958                                     struct kvm_lapic_state *s)
2959 {
2960         kvm_apic_post_state_restore(vcpu, s);
2961         update_cr8_intercept(vcpu);
2962
2963         return 0;
2964 }
2965
2966 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2967                                     struct kvm_interrupt *irq)
2968 {
2969         if (irq->irq >= KVM_NR_INTERRUPTS)
2970                 return -EINVAL;
2971         if (irqchip_in_kernel(vcpu->kvm))
2972                 return -ENXIO;
2973
2974         kvm_queue_interrupt(vcpu, irq->irq, false);
2975         kvm_make_request(KVM_REQ_EVENT, vcpu);
2976
2977         return 0;
2978 }
2979
2980 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2981 {
2982         kvm_inject_nmi(vcpu);
2983
2984         return 0;
2985 }
2986
2987 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2988                                            struct kvm_tpr_access_ctl *tac)
2989 {
2990         if (tac->flags)
2991                 return -EINVAL;
2992         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2993         return 0;
2994 }
2995
2996 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2997                                         u64 mcg_cap)
2998 {
2999         int r;
3000         unsigned bank_num = mcg_cap & 0xff, bank;
3001
3002         r = -EINVAL;
3003         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3004                 goto out;
3005         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3006                 goto out;
3007         r = 0;
3008         vcpu->arch.mcg_cap = mcg_cap;
3009         /* Init IA32_MCG_CTL to all 1s */
3010         if (mcg_cap & MCG_CTL_P)
3011                 vcpu->arch.mcg_ctl = ~(u64)0;
3012         /* Init IA32_MCi_CTL to all 1s */
3013         for (bank = 0; bank < bank_num; bank++)
3014                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3015 out:
3016         return r;
3017 }
3018
3019 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3020                                       struct kvm_x86_mce *mce)
3021 {
3022         u64 mcg_cap = vcpu->arch.mcg_cap;
3023         unsigned bank_num = mcg_cap & 0xff;
3024         u64 *banks = vcpu->arch.mce_banks;
3025
3026         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3027                 return -EINVAL;
3028         /*
3029          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3030          * reporting is disabled
3031          */
3032         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3033             vcpu->arch.mcg_ctl != ~(u64)0)
3034                 return 0;
3035         banks += 4 * mce->bank;
3036         /*
3037          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3038          * reporting is disabled for the bank
3039          */
3040         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3041                 return 0;
3042         if (mce->status & MCI_STATUS_UC) {
3043                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3044                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3045                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3046                         return 0;
3047                 }
3048                 if (banks[1] & MCI_STATUS_VAL)
3049                         mce->status |= MCI_STATUS_OVER;
3050                 banks[2] = mce->addr;
3051                 banks[3] = mce->misc;
3052                 vcpu->arch.mcg_status = mce->mcg_status;
3053                 banks[1] = mce->status;
3054                 kvm_queue_exception(vcpu, MC_VECTOR);
3055         } else if (!(banks[1] & MCI_STATUS_VAL)
3056                    || !(banks[1] & MCI_STATUS_UC)) {
3057                 if (banks[1] & MCI_STATUS_VAL)
3058                         mce->status |= MCI_STATUS_OVER;
3059                 banks[2] = mce->addr;
3060                 banks[3] = mce->misc;
3061                 banks[1] = mce->status;
3062         } else
3063                 banks[1] |= MCI_STATUS_OVER;
3064         return 0;
3065 }
3066
3067 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3068                                                struct kvm_vcpu_events *events)
3069 {
3070         process_nmi(vcpu);
3071         events->exception.injected =
3072                 vcpu->arch.exception.pending &&
3073                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3074         events->exception.nr = vcpu->arch.exception.nr;
3075         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3076         events->exception.pad = 0;
3077         events->exception.error_code = vcpu->arch.exception.error_code;
3078
3079         events->interrupt.injected =
3080                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3081         events->interrupt.nr = vcpu->arch.interrupt.nr;
3082         events->interrupt.soft = 0;
3083         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3084
3085         events->nmi.injected = vcpu->arch.nmi_injected;
3086         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3087         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3088         events->nmi.pad = 0;
3089
3090         events->sipi_vector = 0; /* never valid when reporting to user space */
3091
3092         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3093                          | KVM_VCPUEVENT_VALID_SHADOW);
3094         memset(&events->reserved, 0, sizeof(events->reserved));
3095 }
3096
3097 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3098                                               struct kvm_vcpu_events *events)
3099 {
3100         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3101                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3102                               | KVM_VCPUEVENT_VALID_SHADOW))
3103                 return -EINVAL;
3104
3105         process_nmi(vcpu);
3106         vcpu->arch.exception.pending = events->exception.injected;
3107         vcpu->arch.exception.nr = events->exception.nr;
3108         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3109         vcpu->arch.exception.error_code = events->exception.error_code;
3110
3111         vcpu->arch.interrupt.pending = events->interrupt.injected;
3112         vcpu->arch.interrupt.nr = events->interrupt.nr;
3113         vcpu->arch.interrupt.soft = events->interrupt.soft;
3114         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3115                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3116                                                   events->interrupt.shadow);
3117
3118         vcpu->arch.nmi_injected = events->nmi.injected;
3119         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3120                 vcpu->arch.nmi_pending = events->nmi.pending;
3121         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3122
3123         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3124             kvm_vcpu_has_lapic(vcpu))
3125                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3126
3127         kvm_make_request(KVM_REQ_EVENT, vcpu);
3128
3129         return 0;
3130 }
3131
3132 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3133                                              struct kvm_debugregs *dbgregs)
3134 {
3135         unsigned long val;
3136
3137         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3138         kvm_get_dr(vcpu, 6, &val);
3139         dbgregs->dr6 = val;
3140         dbgregs->dr7 = vcpu->arch.dr7;
3141         dbgregs->flags = 0;
3142         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3143 }
3144
3145 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3146                                             struct kvm_debugregs *dbgregs)
3147 {
3148         if (dbgregs->flags)
3149                 return -EINVAL;
3150
3151         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3152         vcpu->arch.dr6 = dbgregs->dr6;
3153         kvm_update_dr6(vcpu);
3154         vcpu->arch.dr7 = dbgregs->dr7;
3155         kvm_update_dr7(vcpu);
3156
3157         return 0;
3158 }
3159
3160 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3161
3162 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3163 {
3164         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3165         u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3166         u64 valid;
3167
3168         /*
3169          * Copy legacy XSAVE area, to avoid complications with CPUID
3170          * leaves 0 and 1 in the loop below.
3171          */
3172         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3173
3174         /* Set XSTATE_BV */
3175         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3176
3177         /*
3178          * Copy each region from the possibly compacted offset to the
3179          * non-compacted offset.
3180          */
3181         valid = xstate_bv & ~XSTATE_FPSSE;
3182         while (valid) {
3183                 u64 feature = valid & -valid;
3184                 int index = fls64(feature) - 1;
3185                 void *src = get_xsave_addr(xsave, feature);
3186
3187                 if (src) {
3188                         u32 size, offset, ecx, edx;
3189                         cpuid_count(XSTATE_CPUID, index,
3190                                     &size, &offset, &ecx, &edx);
3191                         memcpy(dest + offset, src, size);
3192                 }
3193
3194                 valid -= feature;
3195         }
3196 }
3197
3198 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3199 {
3200         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3201         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3202         u64 valid;
3203
3204         /*
3205          * Copy legacy XSAVE area, to avoid complications with CPUID
3206          * leaves 0 and 1 in the loop below.
3207          */
3208         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3209
3210         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3211         xsave->xsave_hdr.xstate_bv = xstate_bv;
3212         if (cpu_has_xsaves)
3213                 xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3214
3215         /*
3216          * Copy each region from the non-compacted offset to the
3217          * possibly compacted offset.
3218          */
3219         valid = xstate_bv & ~XSTATE_FPSSE;
3220         while (valid) {
3221                 u64 feature = valid & -valid;
3222                 int index = fls64(feature) - 1;
3223                 void *dest = get_xsave_addr(xsave, feature);
3224
3225                 if (dest) {
3226                         u32 size, offset, ecx, edx;
3227                         cpuid_count(XSTATE_CPUID, index,
3228                                     &size, &offset, &ecx, &edx);
3229                         memcpy(dest, src + offset, size);
3230                 } else
3231                         WARN_ON_ONCE(1);
3232
3233                 valid -= feature;
3234         }
3235 }
3236
3237 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3238                                          struct kvm_xsave *guest_xsave)
3239 {
3240         if (cpu_has_xsave) {
3241                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3242                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3243         } else {
3244                 memcpy(guest_xsave->region,
3245                         &vcpu->arch.guest_fpu.state->fxsave,
3246                         sizeof(struct i387_fxsave_struct));
3247                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3248                         XSTATE_FPSSE;
3249         }
3250 }
3251
3252 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3253                                         struct kvm_xsave *guest_xsave)
3254 {
3255         u64 xstate_bv =
3256                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3257
3258         if (cpu_has_xsave) {
3259                 /*
3260                  * Here we allow setting states that are not present in
3261                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3262                  * with old userspace.
3263                  */
3264                 if (xstate_bv & ~kvm_supported_xcr0())
3265                         return -EINVAL;
3266                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3267         } else {
3268                 if (xstate_bv & ~XSTATE_FPSSE)
3269                         return -EINVAL;
3270                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3271                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3272         }
3273         return 0;
3274 }
3275
3276 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3277                                         struct kvm_xcrs *guest_xcrs)
3278 {
3279         if (!cpu_has_xsave) {
3280                 guest_xcrs->nr_xcrs = 0;
3281                 return;
3282         }
3283
3284         guest_xcrs->nr_xcrs = 1;
3285         guest_xcrs->flags = 0;
3286         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3287         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3288 }
3289
3290 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3291                                        struct kvm_xcrs *guest_xcrs)
3292 {
3293         int i, r = 0;
3294
3295         if (!cpu_has_xsave)
3296                 return -EINVAL;
3297
3298         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3299                 return -EINVAL;
3300
3301         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3302                 /* Only support XCR0 currently */
3303                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3304                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3305                                 guest_xcrs->xcrs[i].value);
3306                         break;
3307                 }
3308         if (r)
3309                 r = -EINVAL;
3310         return r;
3311 }
3312
3313 /*
3314  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3315  * stopped by the hypervisor.  This function will be called from the host only.
3316  * EINVAL is returned when the host attempts to set the flag for a guest that
3317  * does not support pv clocks.
3318  */
3319 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3320 {
3321         if (!vcpu->arch.pv_time_enabled)
3322                 return -EINVAL;
3323         vcpu->arch.pvclock_set_guest_stopped_request = true;
3324         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3325         return 0;
3326 }
3327
3328 long kvm_arch_vcpu_ioctl(struct file *filp,
3329                          unsigned int ioctl, unsigned long arg)
3330 {
3331         struct kvm_vcpu *vcpu = filp->private_data;
3332         void __user *argp = (void __user *)arg;
3333         int r;
3334         union {
3335                 struct kvm_lapic_state *lapic;
3336                 struct kvm_xsave *xsave;
3337                 struct kvm_xcrs *xcrs;
3338                 void *buffer;
3339         } u;
3340
3341         u.buffer = NULL;
3342         switch (ioctl) {
3343         case KVM_GET_LAPIC: {
3344                 r = -EINVAL;
3345                 if (!vcpu->arch.apic)
3346                         goto out;
3347                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3348
3349                 r = -ENOMEM;
3350                 if (!u.lapic)
3351                         goto out;
3352                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3353                 if (r)
3354                         goto out;
3355                 r = -EFAULT;
3356                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3357                         goto out;
3358                 r = 0;
3359                 break;
3360         }
3361         case KVM_SET_LAPIC: {
3362                 r = -EINVAL;
3363                 if (!vcpu->arch.apic)
3364                         goto out;
3365                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3366                 if (IS_ERR(u.lapic))
3367                         return PTR_ERR(u.lapic);
3368
3369                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3370                 break;
3371         }
3372         case KVM_INTERRUPT: {
3373                 struct kvm_interrupt irq;
3374
3375                 r = -EFAULT;
3376                 if (copy_from_user(&irq, argp, sizeof irq))
3377                         goto out;
3378                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3379                 break;
3380         }
3381         case KVM_NMI: {
3382                 r = kvm_vcpu_ioctl_nmi(vcpu);
3383                 break;
3384         }
3385         case KVM_SET_CPUID: {
3386                 struct kvm_cpuid __user *cpuid_arg = argp;
3387                 struct kvm_cpuid cpuid;
3388
3389                 r = -EFAULT;
3390                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3391                         goto out;
3392                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3393                 break;
3394         }
3395         case KVM_SET_CPUID2: {
3396                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3397                 struct kvm_cpuid2 cpuid;
3398
3399                 r = -EFAULT;
3400                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3401                         goto out;
3402                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3403                                               cpuid_arg->entries);
3404                 break;
3405         }
3406         case KVM_GET_CPUID2: {
3407                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3408                 struct kvm_cpuid2 cpuid;
3409
3410                 r = -EFAULT;
3411                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3412                         goto out;
3413                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3414                                               cpuid_arg->entries);
3415                 if (r)
3416                         goto out;
3417                 r = -EFAULT;
3418                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3419                         goto out;
3420                 r = 0;
3421                 break;
3422         }
3423         case KVM_GET_MSRS:
3424                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3425                 break;
3426         case KVM_SET_MSRS:
3427                 r = msr_io(vcpu, argp, do_set_msr, 0);
3428                 break;
3429         case KVM_TPR_ACCESS_REPORTING: {
3430                 struct kvm_tpr_access_ctl tac;
3431
3432                 r = -EFAULT;
3433                 if (copy_from_user(&tac, argp, sizeof tac))
3434                         goto out;
3435                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3436                 if (r)
3437                         goto out;
3438                 r = -EFAULT;
3439                 if (copy_to_user(argp, &tac, sizeof tac))
3440                         goto out;
3441                 r = 0;
3442                 break;
3443         };
3444         case KVM_SET_VAPIC_ADDR: {
3445                 struct kvm_vapic_addr va;
3446
3447                 r = -EINVAL;
3448                 if (!irqchip_in_kernel(vcpu->kvm))
3449                         goto out;
3450                 r = -EFAULT;
3451                 if (copy_from_user(&va, argp, sizeof va))
3452                         goto out;
3453                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3454                 break;
3455         }
3456         case KVM_X86_SETUP_MCE: {
3457                 u64 mcg_cap;
3458
3459                 r = -EFAULT;
3460                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3461                         goto out;
3462                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3463                 break;
3464         }
3465         case KVM_X86_SET_MCE: {
3466                 struct kvm_x86_mce mce;
3467
3468                 r = -EFAULT;
3469                 if (copy_from_user(&mce, argp, sizeof mce))
3470                         goto out;
3471                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3472                 break;
3473         }
3474         case KVM_GET_VCPU_EVENTS: {
3475                 struct kvm_vcpu_events events;
3476
3477                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3478
3479                 r = -EFAULT;
3480                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3481                         break;
3482                 r = 0;
3483                 break;
3484         }
3485         case KVM_SET_VCPU_EVENTS: {
3486                 struct kvm_vcpu_events events;
3487
3488                 r = -EFAULT;
3489                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3490                         break;
3491
3492                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3493                 break;
3494         }
3495         case KVM_GET_DEBUGREGS: {
3496                 struct kvm_debugregs dbgregs;
3497
3498                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3499
3500                 r = -EFAULT;
3501                 if (copy_to_user(argp, &dbgregs,
3502                                  sizeof(struct kvm_debugregs)))
3503                         break;
3504                 r = 0;
3505                 break;
3506         }
3507         case KVM_SET_DEBUGREGS: {
3508                 struct kvm_debugregs dbgregs;
3509
3510                 r = -EFAULT;
3511                 if (copy_from_user(&dbgregs, argp,
3512                                    sizeof(struct kvm_debugregs)))
3513                         break;
3514
3515                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3516                 break;
3517         }
3518         case KVM_GET_XSAVE: {
3519                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3520                 r = -ENOMEM;
3521                 if (!u.xsave)
3522                         break;
3523
3524                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3525
3526                 r = -EFAULT;
3527                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3528                         break;
3529                 r = 0;
3530                 break;
3531         }
3532         case KVM_SET_XSAVE: {
3533                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3534                 if (IS_ERR(u.xsave))
3535                         return PTR_ERR(u.xsave);
3536
3537                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3538                 break;
3539         }
3540         case KVM_GET_XCRS: {
3541                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3542                 r = -ENOMEM;
3543                 if (!u.xcrs)
3544                         break;
3545
3546                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3547
3548                 r = -EFAULT;
3549                 if (copy_to_user(argp, u.xcrs,
3550                                  sizeof(struct kvm_xcrs)))
3551                         break;
3552                 r = 0;
3553                 break;
3554         }
3555         case KVM_SET_XCRS: {
3556                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3557                 if (IS_ERR(u.xcrs))
3558                         return PTR_ERR(u.xcrs);
3559
3560                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3561                 break;
3562         }
3563         case KVM_SET_TSC_KHZ: {
3564                 u32 user_tsc_khz;
3565
3566                 r = -EINVAL;
3567                 user_tsc_khz = (u32)arg;
3568
3569                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3570                         goto out;
3571
3572                 if (user_tsc_khz == 0)
3573                         user_tsc_khz = tsc_khz;
3574
3575                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3576
3577                 r = 0;
3578                 goto out;
3579         }
3580         case KVM_GET_TSC_KHZ: {
3581                 r = vcpu->arch.virtual_tsc_khz;
3582                 goto out;
3583         }
3584         case KVM_KVMCLOCK_CTRL: {
3585                 r = kvm_set_guest_paused(vcpu);
3586                 goto out;
3587         }
3588         default:
3589                 r = -EINVAL;
3590         }
3591 out:
3592         kfree(u.buffer);
3593         return r;
3594 }
3595
3596 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3597 {
3598         return VM_FAULT_SIGBUS;
3599 }
3600
3601 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3602 {
3603         int ret;
3604
3605         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3606                 return -EINVAL;
3607         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3608         return ret;
3609 }
3610
3611 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3612                                               u64 ident_addr)
3613 {
3614         kvm->arch.ept_identity_map_addr = ident_addr;
3615         return 0;
3616 }
3617
3618 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3619                                           u32 kvm_nr_mmu_pages)
3620 {
3621         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3622                 return -EINVAL;
3623
3624         mutex_lock(&kvm->slots_lock);
3625
3626         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3627         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3628
3629         mutex_unlock(&kvm->slots_lock);
3630         return 0;
3631 }
3632
3633 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3634 {
3635         return kvm->arch.n_max_mmu_pages;
3636 }
3637
3638 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3639 {
3640         int r;
3641
3642         r = 0;
3643         switch (chip->chip_id) {
3644         case KVM_IRQCHIP_PIC_MASTER:
3645                 memcpy(&chip->chip.pic,
3646                         &pic_irqchip(kvm)->pics[0],
3647                         sizeof(struct kvm_pic_state));
3648                 break;
3649         case KVM_IRQCHIP_PIC_SLAVE:
3650                 memcpy(&chip->chip.pic,
3651                         &pic_irqchip(kvm)->pics[1],
3652                         sizeof(struct kvm_pic_state));
3653                 break;
3654         case KVM_IRQCHIP_IOAPIC:
3655                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3656                 break;
3657         default:
3658                 r = -EINVAL;
3659                 break;
3660         }
3661         return r;
3662 }
3663
3664 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3665 {
3666         int r;
3667
3668         r = 0;
3669         switch (chip->chip_id) {
3670         case KVM_IRQCHIP_PIC_MASTER:
3671                 spin_lock(&pic_irqchip(kvm)->lock);
3672                 memcpy(&pic_irqchip(kvm)->pics[0],
3673                         &chip->chip.pic,
3674                         sizeof(struct kvm_pic_state));
3675                 spin_unlock(&pic_irqchip(kvm)->lock);
3676                 break;
3677         case KVM_IRQCHIP_PIC_SLAVE:
3678                 spin_lock(&pic_irqchip(kvm)->lock);
3679                 memcpy(&pic_irqchip(kvm)->pics[1],
3680                         &chip->chip.pic,
3681                         sizeof(struct kvm_pic_state));
3682                 spin_unlock(&pic_irqchip(kvm)->lock);
3683                 break;
3684         case KVM_IRQCHIP_IOAPIC:
3685                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3686                 break;
3687         default:
3688                 r = -EINVAL;
3689                 break;
3690         }
3691         kvm_pic_update_irq(pic_irqchip(kvm));
3692         return r;
3693 }
3694
3695 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3696 {
3697         int r = 0;
3698
3699         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3700         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3701         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3702         return r;
3703 }
3704
3705 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3706 {
3707         int r = 0;
3708
3709         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3710         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3711         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3712         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3713         return r;
3714 }
3715
3716 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3717 {
3718         int r = 0;
3719
3720         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3721         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3722                 sizeof(ps->channels));
3723         ps->flags = kvm->arch.vpit->pit_state.flags;
3724         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3725         memset(&ps->reserved, 0, sizeof(ps->reserved));
3726         return r;
3727 }
3728
3729 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3730 {
3731         int r = 0, start = 0;
3732         u32 prev_legacy, cur_legacy;
3733         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3734         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3735         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3736         if (!prev_legacy && cur_legacy)
3737                 start = 1;
3738         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3739                sizeof(kvm->arch.vpit->pit_state.channels));
3740         kvm->arch.vpit->pit_state.flags = ps->flags;
3741         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3742         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3743         return r;
3744 }
3745
3746 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3747                                  struct kvm_reinject_control *control)
3748 {
3749         if (!kvm->arch.vpit)
3750                 return -ENXIO;
3751         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3752         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3753         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3754         return 0;
3755 }
3756
3757 /**
3758  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3759  * @kvm: kvm instance
3760  * @log: slot id and address to which we copy the log
3761  *
3762  * Steps 1-4 below provide general overview of dirty page logging. See
3763  * kvm_get_dirty_log_protect() function description for additional details.
3764  *
3765  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3766  * always flush the TLB (step 4) even if previous step failed  and the dirty
3767  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3768  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3769  * writes will be marked dirty for next log read.
3770  *
3771  *   1. Take a snapshot of the bit and clear it if needed.
3772  *   2. Write protect the corresponding page.
3773  *   3. Copy the snapshot to the userspace.
3774  *   4. Flush TLB's if needed.
3775  */
3776 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3777 {
3778         bool is_dirty = false;
3779         int r;
3780
3781         mutex_lock(&kvm->slots_lock);
3782
3783         /*
3784          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3785          */
3786         if (kvm_x86_ops->flush_log_dirty)
3787                 kvm_x86_ops->flush_log_dirty(kvm);
3788
3789         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3790
3791         /*
3792          * All the TLBs can be flushed out of mmu lock, see the comments in
3793          * kvm_mmu_slot_remove_write_access().
3794          */
3795         lockdep_assert_held(&kvm->slots_lock);
3796         if (is_dirty)
3797                 kvm_flush_remote_tlbs(kvm);
3798
3799         mutex_unlock(&kvm->slots_lock);
3800         return r;
3801 }
3802
3803 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3804                         bool line_status)
3805 {
3806         if (!irqchip_in_kernel(kvm))
3807                 return -ENXIO;
3808
3809         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3810                                         irq_event->irq, irq_event->level,
3811                                         line_status);
3812         return 0;
3813 }
3814
3815 long kvm_arch_vm_ioctl(struct file *filp,
3816                        unsigned int ioctl, unsigned long arg)
3817 {
3818         struct kvm *kvm = filp->private_data;
3819         void __user *argp = (void __user *)arg;
3820         int r = -ENOTTY;
3821         /*
3822          * This union makes it completely explicit to gcc-3.x
3823          * that these two variables' stack usage should be
3824          * combined, not added together.
3825          */
3826         union {
3827                 struct kvm_pit_state ps;
3828                 struct kvm_pit_state2 ps2;
3829                 struct kvm_pit_config pit_config;
3830         } u;
3831
3832         switch (ioctl) {
3833         case KVM_SET_TSS_ADDR:
3834                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3835                 break;
3836         case KVM_SET_IDENTITY_MAP_ADDR: {
3837                 u64 ident_addr;
3838
3839                 r = -EFAULT;
3840                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3841                         goto out;
3842                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3843                 break;
3844         }
3845         case KVM_SET_NR_MMU_PAGES:
3846                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3847                 break;
3848         case KVM_GET_NR_MMU_PAGES:
3849                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3850                 break;
3851         case KVM_CREATE_IRQCHIP: {
3852                 struct kvm_pic *vpic;
3853
3854                 mutex_lock(&kvm->lock);
3855                 r = -EEXIST;
3856                 if (kvm->arch.vpic)
3857                         goto create_irqchip_unlock;
3858                 r = -EINVAL;
3859                 if (atomic_read(&kvm->online_vcpus))
3860                         goto create_irqchip_unlock;
3861                 r = -ENOMEM;
3862                 vpic = kvm_create_pic(kvm);
3863                 if (vpic) {
3864                         r = kvm_ioapic_init(kvm);
3865                         if (r) {
3866                                 mutex_lock(&kvm->slots_lock);
3867                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3868                                                           &vpic->dev_master);
3869                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3870                                                           &vpic->dev_slave);
3871                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3872                                                           &vpic->dev_eclr);
3873                                 mutex_unlock(&kvm->slots_lock);
3874                                 kfree(vpic);
3875                                 goto create_irqchip_unlock;
3876                         }
3877                 } else
3878                         goto create_irqchip_unlock;
3879                 smp_wmb();
3880                 kvm->arch.vpic = vpic;
3881                 smp_wmb();
3882                 r = kvm_setup_default_irq_routing(kvm);
3883                 if (r) {
3884                         mutex_lock(&kvm->slots_lock);
3885                         mutex_lock(&kvm->irq_lock);
3886                         kvm_ioapic_destroy(kvm);
3887                         kvm_destroy_pic(kvm);
3888                         mutex_unlock(&kvm->irq_lock);
3889                         mutex_unlock(&kvm->slots_lock);
3890                 }
3891         create_irqchip_unlock:
3892                 mutex_unlock(&kvm->lock);
3893                 break;
3894         }
3895         case KVM_CREATE_PIT:
3896                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3897                 goto create_pit;
3898         case KVM_CREATE_PIT2:
3899                 r = -EFAULT;
3900                 if (copy_from_user(&u.pit_config, argp,
3901                                    sizeof(struct kvm_pit_config)))
3902                         goto out;
3903         create_pit:
3904                 mutex_lock(&kvm->slots_lock);
3905                 r = -EEXIST;
3906                 if (kvm->arch.vpit)
3907                         goto create_pit_unlock;
3908                 r = -ENOMEM;
3909                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3910                 if (kvm->arch.vpit)
3911                         r = 0;
3912         create_pit_unlock:
3913                 mutex_unlock(&kvm->slots_lock);
3914                 break;
3915         case KVM_GET_IRQCHIP: {
3916                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3917                 struct kvm_irqchip *chip;
3918
3919                 chip = memdup_user(argp, sizeof(*chip));
3920                 if (IS_ERR(chip)) {
3921                         r = PTR_ERR(chip);
3922                         goto out;
3923                 }
3924
3925                 r = -ENXIO;
3926                 if (!irqchip_in_kernel(kvm))
3927                         goto get_irqchip_out;
3928                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3929                 if (r)
3930                         goto get_irqchip_out;
3931                 r = -EFAULT;
3932                 if (copy_to_user(argp, chip, sizeof *chip))
3933                         goto get_irqchip_out;
3934                 r = 0;
3935         get_irqchip_out:
3936                 kfree(chip);
3937                 break;
3938         }
3939         case KVM_SET_IRQCHIP: {
3940                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3941                 struct kvm_irqchip *chip;
3942
3943                 chip = memdup_user(argp, sizeof(*chip));
3944                 if (IS_ERR(chip)) {
3945                         r = PTR_ERR(chip);
3946                         goto out;
3947                 }
3948
3949                 r = -ENXIO;
3950                 if (!irqchip_in_kernel(kvm))
3951                         goto set_irqchip_out;
3952                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3953                 if (r)
3954                         goto set_irqchip_out;
3955                 r = 0;
3956         set_irqchip_out:
3957                 kfree(chip);
3958                 break;
3959         }
3960         case KVM_GET_PIT: {
3961                 r = -EFAULT;
3962                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3963                         goto out;
3964                 r = -ENXIO;
3965                 if (!kvm->arch.vpit)
3966                         goto out;
3967                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3968                 if (r)
3969                         goto out;
3970                 r = -EFAULT;
3971                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3972                         goto out;
3973                 r = 0;
3974                 break;
3975         }
3976         case KVM_SET_PIT: {
3977                 r = -EFAULT;
3978                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3979                         goto out;
3980                 r = -ENXIO;
3981                 if (!kvm->arch.vpit)
3982                         goto out;
3983                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3984                 break;
3985         }
3986         case KVM_GET_PIT2: {
3987                 r = -ENXIO;
3988                 if (!kvm->arch.vpit)
3989                         goto out;
3990                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3991                 if (r)
3992                         goto out;
3993                 r = -EFAULT;
3994                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3995                         goto out;
3996                 r = 0;
3997                 break;
3998         }
3999         case KVM_SET_PIT2: {
4000                 r = -EFAULT;
4001                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4002                         goto out;
4003                 r = -ENXIO;
4004                 if (!kvm->arch.vpit)
4005                         goto out;
4006                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4007                 break;
4008         }
4009         case KVM_REINJECT_CONTROL: {
4010                 struct kvm_reinject_control control;
4011                 r =  -EFAULT;
4012                 if (copy_from_user(&control, argp, sizeof(control)))
4013                         goto out;
4014                 r = kvm_vm_ioctl_reinject(kvm, &control);
4015                 break;
4016         }
4017         case KVM_XEN_HVM_CONFIG: {
4018                 r = -EFAULT;
4019                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4020                                    sizeof(struct kvm_xen_hvm_config)))
4021                         goto out;
4022                 r = -EINVAL;
4023                 if (kvm->arch.xen_hvm_config.flags)
4024                         goto out;
4025                 r = 0;
4026                 break;
4027         }
4028         case KVM_SET_CLOCK: {
4029                 struct kvm_clock_data user_ns;
4030                 u64 now_ns;
4031                 s64 delta;
4032
4033                 r = -EFAULT;
4034                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4035                         goto out;
4036
4037                 r = -EINVAL;
4038                 if (user_ns.flags)
4039                         goto out;
4040
4041                 r = 0;
4042                 local_irq_disable();
4043                 now_ns = get_kernel_ns();
4044                 delta = user_ns.clock - now_ns;
4045                 local_irq_enable();
4046                 kvm->arch.kvmclock_offset = delta;
4047                 kvm_gen_update_masterclock(kvm);
4048                 break;
4049         }
4050         case KVM_GET_CLOCK: {
4051                 struct kvm_clock_data user_ns;
4052                 u64 now_ns;
4053
4054                 local_irq_disable();
4055                 now_ns = get_kernel_ns();
4056                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4057                 local_irq_enable();
4058                 user_ns.flags = 0;
4059                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4060
4061                 r = -EFAULT;
4062                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4063                         goto out;
4064                 r = 0;
4065                 break;
4066         }
4067
4068         default:
4069                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4070         }
4071 out:
4072         return r;
4073 }
4074
4075 static void kvm_init_msr_list(void)
4076 {
4077         u32 dummy[2];
4078         unsigned i, j;
4079
4080         /* skip the first msrs in the list. KVM-specific */
4081         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4082                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4083                         continue;
4084
4085                 /*
4086                  * Even MSRs that are valid in the host may not be exposed
4087                  * to the guests in some cases.  We could work around this
4088                  * in VMX with the generic MSR save/load machinery, but it
4089                  * is not really worthwhile since it will really only
4090                  * happen with nested virtualization.
4091                  */
4092                 switch (msrs_to_save[i]) {
4093                 case MSR_IA32_BNDCFGS:
4094                         if (!kvm_x86_ops->mpx_supported())
4095                                 continue;
4096                         break;
4097                 default:
4098                         break;
4099                 }
4100
4101                 if (j < i)
4102                         msrs_to_save[j] = msrs_to_save[i];
4103                 j++;
4104         }
4105         num_msrs_to_save = j;
4106 }
4107
4108 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4109                            const void *v)
4110 {
4111         int handled = 0;
4112         int n;
4113
4114         do {
4115                 n = min(len, 8);
4116                 if (!(vcpu->arch.apic &&
4117                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
4118                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4119                         break;
4120                 handled += n;
4121                 addr += n;
4122                 len -= n;
4123                 v += n;
4124         } while (len);
4125
4126         return handled;
4127 }
4128
4129 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4130 {
4131         int handled = 0;
4132         int n;
4133
4134         do {
4135                 n = min(len, 8);
4136                 if (!(vcpu->arch.apic &&
4137                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4138                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4139                         break;
4140                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4141                 handled += n;
4142                 addr += n;
4143                 len -= n;
4144                 v += n;
4145         } while (len);
4146
4147         return handled;
4148 }
4149
4150 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4151                         struct kvm_segment *var, int seg)
4152 {
4153         kvm_x86_ops->set_segment(vcpu, var, seg);
4154 }
4155
4156 void kvm_get_segment(struct kvm_vcpu *vcpu,
4157                      struct kvm_segment *var, int seg)
4158 {
4159         kvm_x86_ops->get_segment(vcpu, var, seg);
4160 }
4161
4162 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4163                            struct x86_exception *exception)
4164 {
4165         gpa_t t_gpa;
4166
4167         BUG_ON(!mmu_is_nested(vcpu));
4168
4169         /* NPT walks are always user-walks */
4170         access |= PFERR_USER_MASK;
4171         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4172
4173         return t_gpa;
4174 }
4175
4176 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4177                               struct x86_exception *exception)
4178 {
4179         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4180         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4181 }
4182
4183  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4184                                 struct x86_exception *exception)
4185 {
4186         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4187         access |= PFERR_FETCH_MASK;
4188         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4189 }
4190
4191 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4192                                struct x86_exception *exception)
4193 {
4194         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4195         access |= PFERR_WRITE_MASK;
4196         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4197 }
4198
4199 /* uses this to access any guest's mapped memory without checking CPL */
4200 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4201                                 struct x86_exception *exception)
4202 {
4203         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4204 }
4205
4206 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4207                                       struct kvm_vcpu *vcpu, u32 access,
4208                                       struct x86_exception *exception)
4209 {
4210         void *data = val;
4211         int r = X86EMUL_CONTINUE;
4212
4213         while (bytes) {
4214                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4215                                                             exception);
4216                 unsigned offset = addr & (PAGE_SIZE-1);
4217                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4218                 int ret;
4219
4220                 if (gpa == UNMAPPED_GVA)
4221                         return X86EMUL_PROPAGATE_FAULT;
4222                 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4223                                           offset, toread);
4224                 if (ret < 0) {
4225                         r = X86EMUL_IO_NEEDED;
4226                         goto out;
4227                 }
4228
4229                 bytes -= toread;
4230                 data += toread;
4231                 addr += toread;
4232         }
4233 out:
4234         return r;
4235 }
4236
4237 /* used for instruction fetching */
4238 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4239                                 gva_t addr, void *val, unsigned int bytes,
4240                                 struct x86_exception *exception)
4241 {
4242         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4243         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4244         unsigned offset;
4245         int ret;
4246
4247         /* Inline kvm_read_guest_virt_helper for speed.  */
4248         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4249                                                     exception);
4250         if (unlikely(gpa == UNMAPPED_GVA))
4251                 return X86EMUL_PROPAGATE_FAULT;
4252
4253         offset = addr & (PAGE_SIZE-1);
4254         if (WARN_ON(offset + bytes > PAGE_SIZE))
4255                 bytes = (unsigned)PAGE_SIZE - offset;
4256         ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4257                                   offset, bytes);
4258         if (unlikely(ret < 0))
4259                 return X86EMUL_IO_NEEDED;
4260
4261         return X86EMUL_CONTINUE;
4262 }
4263
4264 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4265                                gva_t addr, void *val, unsigned int bytes,
4266                                struct x86_exception *exception)
4267 {
4268         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4269         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4270
4271         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4272                                           exception);
4273 }
4274 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4275
4276 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4277                                       gva_t addr, void *val, unsigned int bytes,
4278                                       struct x86_exception *exception)
4279 {
4280         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4281         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4282 }
4283
4284 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4285                                        gva_t addr, void *val,
4286                                        unsigned int bytes,
4287                                        struct x86_exception *exception)
4288 {
4289         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4290         void *data = val;
4291         int r = X86EMUL_CONTINUE;
4292
4293         while (bytes) {
4294                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4295                                                              PFERR_WRITE_MASK,
4296                                                              exception);
4297                 unsigned offset = addr & (PAGE_SIZE-1);
4298                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4299                 int ret;
4300
4301                 if (gpa == UNMAPPED_GVA)
4302                         return X86EMUL_PROPAGATE_FAULT;
4303                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4304                 if (ret < 0) {
4305                         r = X86EMUL_IO_NEEDED;
4306                         goto out;
4307                 }
4308
4309                 bytes -= towrite;
4310                 data += towrite;
4311                 addr += towrite;
4312         }
4313 out:
4314         return r;
4315 }
4316 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4317
4318 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4319                                 gpa_t *gpa, struct x86_exception *exception,
4320                                 bool write)
4321 {
4322         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4323                 | (write ? PFERR_WRITE_MASK : 0);
4324
4325         if (vcpu_match_mmio_gva(vcpu, gva)
4326             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4327                                  vcpu->arch.access, access)) {
4328                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4329                                         (gva & (PAGE_SIZE - 1));
4330                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4331                 return 1;
4332         }
4333
4334         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4335
4336         if (*gpa == UNMAPPED_GVA)
4337                 return -1;
4338
4339         /* For APIC access vmexit */
4340         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4341                 return 1;
4342
4343         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4344                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4345                 return 1;
4346         }
4347
4348         return 0;
4349 }
4350
4351 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4352                         const void *val, int bytes)
4353 {
4354         int ret;
4355
4356         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4357         if (ret < 0)
4358                 return 0;
4359         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4360         return 1;
4361 }
4362
4363 struct read_write_emulator_ops {
4364         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4365                                   int bytes);
4366         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4367                                   void *val, int bytes);
4368         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4369                                int bytes, void *val);
4370         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4371                                     void *val, int bytes);
4372         bool write;
4373 };
4374
4375 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4376 {
4377         if (vcpu->mmio_read_completed) {
4378                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4379                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4380                 vcpu->mmio_read_completed = 0;
4381                 return 1;
4382         }
4383
4384         return 0;
4385 }
4386
4387 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4388                         void *val, int bytes)
4389 {
4390         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4391 }
4392
4393 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4394                          void *val, int bytes)
4395 {
4396         return emulator_write_phys(vcpu, gpa, val, bytes);
4397 }
4398
4399 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4400 {
4401         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4402         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4403 }
4404
4405 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4406                           void *val, int bytes)
4407 {
4408         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4409         return X86EMUL_IO_NEEDED;
4410 }
4411
4412 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4413                            void *val, int bytes)
4414 {
4415         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4416
4417         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4418         return X86EMUL_CONTINUE;
4419 }
4420
4421 static const struct read_write_emulator_ops read_emultor = {
4422         .read_write_prepare = read_prepare,
4423         .read_write_emulate = read_emulate,
4424         .read_write_mmio = vcpu_mmio_read,
4425         .read_write_exit_mmio = read_exit_mmio,
4426 };
4427
4428 static const struct read_write_emulator_ops write_emultor = {
4429         .read_write_emulate = write_emulate,
4430         .read_write_mmio = write_mmio,
4431         .read_write_exit_mmio = write_exit_mmio,
4432         .write = true,
4433 };
4434
4435 static int emulator_read_write_onepage(unsigned long addr, void *val,
4436                                        unsigned int bytes,
4437                                        struct x86_exception *exception,
4438                                        struct kvm_vcpu *vcpu,
4439                                        const struct read_write_emulator_ops *ops)
4440 {
4441         gpa_t gpa;
4442         int handled, ret;
4443         bool write = ops->write;
4444         struct kvm_mmio_fragment *frag;
4445
4446         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4447
4448         if (ret < 0)
4449                 return X86EMUL_PROPAGATE_FAULT;
4450
4451         /* For APIC access vmexit */
4452         if (ret)
4453                 goto mmio;
4454
4455         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4456                 return X86EMUL_CONTINUE;
4457
4458 mmio:
4459         /*
4460          * Is this MMIO handled locally?
4461          */
4462         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4463         if (handled == bytes)
4464                 return X86EMUL_CONTINUE;
4465
4466         gpa += handled;
4467         bytes -= handled;
4468         val += handled;
4469
4470         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4471         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4472         frag->gpa = gpa;
4473         frag->data = val;
4474         frag->len = bytes;
4475         return X86EMUL_CONTINUE;
4476 }
4477
4478 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4479                         void *val, unsigned int bytes,
4480                         struct x86_exception *exception,
4481                         const struct read_write_emulator_ops *ops)
4482 {
4483         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4484         gpa_t gpa;
4485         int rc;
4486
4487         if (ops->read_write_prepare &&
4488                   ops->read_write_prepare(vcpu, val, bytes))
4489                 return X86EMUL_CONTINUE;
4490
4491         vcpu->mmio_nr_fragments = 0;
4492
4493         /* Crossing a page boundary? */
4494         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4495                 int now;
4496
4497                 now = -addr & ~PAGE_MASK;
4498                 rc = emulator_read_write_onepage(addr, val, now, exception,
4499                                                  vcpu, ops);
4500
4501                 if (rc != X86EMUL_CONTINUE)
4502                         return rc;
4503                 addr += now;
4504                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4505                         addr = (u32)addr;
4506                 val += now;
4507                 bytes -= now;
4508         }
4509
4510         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4511                                          vcpu, ops);
4512         if (rc != X86EMUL_CONTINUE)
4513                 return rc;
4514
4515         if (!vcpu->mmio_nr_fragments)
4516                 return rc;
4517
4518         gpa = vcpu->mmio_fragments[0].gpa;
4519
4520         vcpu->mmio_needed = 1;
4521         vcpu->mmio_cur_fragment = 0;
4522
4523         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4524         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4525         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4526         vcpu->run->mmio.phys_addr = gpa;
4527
4528         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4529 }
4530
4531 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4532                                   unsigned long addr,
4533                                   void *val,
4534                                   unsigned int bytes,
4535                                   struct x86_exception *exception)
4536 {
4537         return emulator_read_write(ctxt, addr, val, bytes,
4538                                    exception, &read_emultor);
4539 }
4540
4541 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4542                             unsigned long addr,
4543                             const void *val,
4544                             unsigned int bytes,
4545                             struct x86_exception *exception)
4546 {
4547         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4548                                    exception, &write_emultor);
4549 }
4550
4551 #define CMPXCHG_TYPE(t, ptr, old, new) \
4552         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4553
4554 #ifdef CONFIG_X86_64
4555 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4556 #else
4557 #  define CMPXCHG64(ptr, old, new) \
4558         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4559 #endif
4560
4561 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4562                                      unsigned long addr,
4563                                      const void *old,
4564                                      const void *new,
4565                                      unsigned int bytes,
4566                                      struct x86_exception *exception)
4567 {
4568         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4569         gpa_t gpa;
4570         struct page *page;
4571         char *kaddr;
4572         bool exchanged;
4573
4574         /* guests cmpxchg8b have to be emulated atomically */
4575         if (bytes > 8 || (bytes & (bytes - 1)))
4576                 goto emul_write;
4577
4578         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4579
4580         if (gpa == UNMAPPED_GVA ||
4581             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4582                 goto emul_write;
4583
4584         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4585                 goto emul_write;
4586
4587         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4588         if (is_error_page(page))
4589                 goto emul_write;
4590
4591         kaddr = kmap_atomic(page);
4592         kaddr += offset_in_page(gpa);
4593         switch (bytes) {
4594         case 1:
4595                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4596                 break;
4597         case 2:
4598                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4599                 break;
4600         case 4:
4601                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4602                 break;
4603         case 8:
4604                 exchanged = CMPXCHG64(kaddr, old, new);
4605                 break;
4606         default:
4607                 BUG();
4608         }
4609         kunmap_atomic(kaddr);
4610         kvm_release_page_dirty(page);
4611
4612         if (!exchanged)
4613                 return X86EMUL_CMPXCHG_FAILED;
4614
4615         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4616         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4617
4618         return X86EMUL_CONTINUE;
4619
4620 emul_write:
4621         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4622
4623         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4624 }
4625
4626 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4627 {
4628         /* TODO: String I/O for in kernel device */
4629         int r;
4630
4631         if (vcpu->arch.pio.in)
4632                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4633                                     vcpu->arch.pio.size, pd);
4634         else
4635                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4636                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4637                                      pd);
4638         return r;
4639 }
4640
4641 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4642                                unsigned short port, void *val,
4643                                unsigned int count, bool in)
4644 {
4645         vcpu->arch.pio.port = port;
4646         vcpu->arch.pio.in = in;
4647         vcpu->arch.pio.count  = count;
4648         vcpu->arch.pio.size = size;
4649
4650         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4651                 vcpu->arch.pio.count = 0;
4652                 return 1;
4653         }
4654
4655         vcpu->run->exit_reason = KVM_EXIT_IO;
4656         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4657         vcpu->run->io.size = size;
4658         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4659         vcpu->run->io.count = count;
4660         vcpu->run->io.port = port;
4661
4662         return 0;
4663 }
4664
4665 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4666                                     int size, unsigned short port, void *val,
4667                                     unsigned int count)
4668 {
4669         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4670         int ret;
4671
4672         if (vcpu->arch.pio.count)
4673                 goto data_avail;
4674
4675         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4676         if (ret) {
4677 data_avail:
4678                 memcpy(val, vcpu->arch.pio_data, size * count);
4679                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4680                 vcpu->arch.pio.count = 0;
4681                 return 1;
4682         }
4683
4684         return 0;
4685 }
4686
4687 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4688                                      int size, unsigned short port,
4689                                      const void *val, unsigned int count)
4690 {
4691         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4692
4693         memcpy(vcpu->arch.pio_data, val, size * count);
4694         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4695         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4696 }
4697
4698 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4699 {
4700         return kvm_x86_ops->get_segment_base(vcpu, seg);
4701 }
4702
4703 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4704 {
4705         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4706 }
4707
4708 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4709 {
4710         if (!need_emulate_wbinvd(vcpu))
4711                 return X86EMUL_CONTINUE;
4712
4713         if (kvm_x86_ops->has_wbinvd_exit()) {
4714                 int cpu = get_cpu();
4715
4716                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4717                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4718                                 wbinvd_ipi, NULL, 1);
4719                 put_cpu();
4720                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4721         } else
4722                 wbinvd();
4723         return X86EMUL_CONTINUE;
4724 }
4725 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4726
4727 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4728 {
4729         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4730 }
4731
4732 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4733 {
4734         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4735 }
4736
4737 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4738 {
4739
4740         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4741 }
4742
4743 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4744 {
4745         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4746 }
4747
4748 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4749 {
4750         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4751         unsigned long value;
4752
4753         switch (cr) {
4754         case 0:
4755                 value = kvm_read_cr0(vcpu);
4756                 break;
4757         case 2:
4758                 value = vcpu->arch.cr2;
4759                 break;
4760         case 3:
4761                 value = kvm_read_cr3(vcpu);
4762                 break;
4763         case 4:
4764                 value = kvm_read_cr4(vcpu);
4765                 break;
4766         case 8:
4767                 value = kvm_get_cr8(vcpu);
4768                 break;
4769         default:
4770                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4771                 return 0;
4772         }
4773
4774         return value;
4775 }
4776
4777 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4778 {
4779         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4780         int res = 0;
4781
4782         switch (cr) {
4783         case 0:
4784                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4785                 break;
4786         case 2:
4787                 vcpu->arch.cr2 = val;
4788                 break;
4789         case 3:
4790                 res = kvm_set_cr3(vcpu, val);
4791                 break;
4792         case 4:
4793                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4794                 break;
4795         case 8:
4796                 res = kvm_set_cr8(vcpu, val);
4797                 break;
4798         default:
4799                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4800                 res = -1;
4801         }
4802
4803         return res;
4804 }
4805
4806 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4807 {
4808         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4809 }
4810
4811 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4812 {
4813         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4814 }
4815
4816 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4817 {
4818         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4819 }
4820
4821 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4822 {
4823         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4824 }
4825
4826 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4827 {
4828         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4829 }
4830
4831 static unsigned long emulator_get_cached_segment_base(
4832         struct x86_emulate_ctxt *ctxt, int seg)
4833 {
4834         return get_segment_base(emul_to_vcpu(ctxt), seg);
4835 }
4836
4837 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4838                                  struct desc_struct *desc, u32 *base3,
4839                                  int seg)
4840 {
4841         struct kvm_segment var;
4842
4843         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4844         *selector = var.selector;
4845
4846         if (var.unusable) {
4847                 memset(desc, 0, sizeof(*desc));
4848                 return false;
4849         }
4850
4851         if (var.g)
4852                 var.limit >>= 12;
4853         set_desc_limit(desc, var.limit);
4854         set_desc_base(desc, (unsigned long)var.base);
4855 #ifdef CONFIG_X86_64
4856         if (base3)
4857                 *base3 = var.base >> 32;
4858 #endif
4859         desc->type = var.type;
4860         desc->s = var.s;
4861         desc->dpl = var.dpl;
4862         desc->p = var.present;
4863         desc->avl = var.avl;
4864         desc->l = var.l;
4865         desc->d = var.db;
4866         desc->g = var.g;
4867
4868         return true;
4869 }
4870
4871 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4872                                  struct desc_struct *desc, u32 base3,
4873                                  int seg)
4874 {
4875         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4876         struct kvm_segment var;
4877
4878         var.selector = selector;
4879         var.base = get_desc_base(desc);
4880 #ifdef CONFIG_X86_64
4881         var.base |= ((u64)base3) << 32;
4882 #endif
4883         var.limit = get_desc_limit(desc);
4884         if (desc->g)
4885                 var.limit = (var.limit << 12) | 0xfff;
4886         var.type = desc->type;
4887         var.dpl = desc->dpl;
4888         var.db = desc->d;
4889         var.s = desc->s;
4890         var.l = desc->l;
4891         var.g = desc->g;
4892         var.avl = desc->avl;
4893         var.present = desc->p;
4894         var.unusable = !var.present;
4895         var.padding = 0;
4896
4897         kvm_set_segment(vcpu, &var, seg);
4898         return;
4899 }
4900
4901 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4902                             u32 msr_index, u64 *pdata)
4903 {
4904         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4905 }
4906
4907 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4908                             u32 msr_index, u64 data)
4909 {
4910         struct msr_data msr;
4911
4912         msr.data = data;
4913         msr.index = msr_index;
4914         msr.host_initiated = false;
4915         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4916 }
4917
4918 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4919                               u32 pmc)
4920 {
4921         return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4922 }
4923
4924 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4925                              u32 pmc, u64 *pdata)
4926 {
4927         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4928 }
4929
4930 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4931 {
4932         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4933 }
4934
4935 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4936 {
4937         preempt_disable();
4938         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4939         /*
4940          * CR0.TS may reference the host fpu state, not the guest fpu state,
4941          * so it may be clear at this point.
4942          */
4943         clts();
4944 }
4945
4946 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4947 {
4948         preempt_enable();
4949 }
4950
4951 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4952                               struct x86_instruction_info *info,
4953                               enum x86_intercept_stage stage)
4954 {
4955         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4956 }
4957
4958 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4959                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4960 {
4961         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4962 }
4963
4964 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4965 {
4966         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4967 }
4968
4969 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4970 {
4971         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4972 }
4973
4974 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4975 {
4976         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4977 }
4978
4979 static const struct x86_emulate_ops emulate_ops = {
4980         .read_gpr            = emulator_read_gpr,
4981         .write_gpr           = emulator_write_gpr,
4982         .read_std            = kvm_read_guest_virt_system,
4983         .write_std           = kvm_write_guest_virt_system,
4984         .fetch               = kvm_fetch_guest_virt,
4985         .read_emulated       = emulator_read_emulated,
4986         .write_emulated      = emulator_write_emulated,
4987         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4988         .invlpg              = emulator_invlpg,
4989         .pio_in_emulated     = emulator_pio_in_emulated,
4990         .pio_out_emulated    = emulator_pio_out_emulated,
4991         .get_segment         = emulator_get_segment,
4992         .set_segment         = emulator_set_segment,
4993         .get_cached_segment_base = emulator_get_cached_segment_base,
4994         .get_gdt             = emulator_get_gdt,
4995         .get_idt             = emulator_get_idt,
4996         .set_gdt             = emulator_set_gdt,
4997         .set_idt             = emulator_set_idt,
4998         .get_cr              = emulator_get_cr,
4999         .set_cr              = emulator_set_cr,
5000         .cpl                 = emulator_get_cpl,
5001         .get_dr              = emulator_get_dr,
5002         .set_dr              = emulator_set_dr,
5003         .set_msr             = emulator_set_msr,
5004         .get_msr             = emulator_get_msr,
5005         .check_pmc           = emulator_check_pmc,
5006         .read_pmc            = emulator_read_pmc,
5007         .halt                = emulator_halt,
5008         .wbinvd              = emulator_wbinvd,
5009         .fix_hypercall       = emulator_fix_hypercall,
5010         .get_fpu             = emulator_get_fpu,
5011         .put_fpu             = emulator_put_fpu,
5012         .intercept           = emulator_intercept,
5013         .get_cpuid           = emulator_get_cpuid,
5014         .set_nmi_mask        = emulator_set_nmi_mask,
5015 };
5016
5017 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5018 {
5019         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5020         /*
5021          * an sti; sti; sequence only disable interrupts for the first
5022          * instruction. So, if the last instruction, be it emulated or
5023          * not, left the system with the INT_STI flag enabled, it
5024          * means that the last instruction is an sti. We should not
5025          * leave the flag on in this case. The same goes for mov ss
5026          */
5027         if (int_shadow & mask)
5028                 mask = 0;
5029         if (unlikely(int_shadow || mask)) {
5030                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5031                 if (!mask)
5032                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5033         }
5034 }
5035
5036 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5037 {
5038         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5039         if (ctxt->exception.vector == PF_VECTOR)
5040                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5041
5042         if (ctxt->exception.error_code_valid)
5043                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5044                                       ctxt->exception.error_code);
5045         else
5046                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5047         return false;
5048 }
5049
5050 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5051 {
5052         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5053         int cs_db, cs_l;
5054
5055         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5056
5057         ctxt->eflags = kvm_get_rflags(vcpu);
5058         ctxt->eip = kvm_rip_read(vcpu);
5059         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5060                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5061                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5062                      cs_db                              ? X86EMUL_MODE_PROT32 :
5063                                                           X86EMUL_MODE_PROT16;
5064         ctxt->guest_mode = is_guest_mode(vcpu);
5065
5066         init_decode_cache(ctxt);
5067         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5068 }
5069
5070 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5071 {
5072         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5073         int ret;
5074
5075         init_emulate_ctxt(vcpu);
5076
5077         ctxt->op_bytes = 2;
5078         ctxt->ad_bytes = 2;
5079         ctxt->_eip = ctxt->eip + inc_eip;
5080         ret = emulate_int_real(ctxt, irq);
5081
5082         if (ret != X86EMUL_CONTINUE)
5083                 return EMULATE_FAIL;
5084
5085         ctxt->eip = ctxt->_eip;
5086         kvm_rip_write(vcpu, ctxt->eip);
5087         kvm_set_rflags(vcpu, ctxt->eflags);
5088
5089         if (irq == NMI_VECTOR)
5090                 vcpu->arch.nmi_pending = 0;
5091         else
5092                 vcpu->arch.interrupt.pending = false;
5093
5094         return EMULATE_DONE;
5095 }
5096 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5097
5098 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5099 {
5100         int r = EMULATE_DONE;
5101
5102         ++vcpu->stat.insn_emulation_fail;
5103         trace_kvm_emulate_insn_failed(vcpu);
5104         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5105                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5106                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5107                 vcpu->run->internal.ndata = 0;
5108                 r = EMULATE_FAIL;
5109         }
5110         kvm_queue_exception(vcpu, UD_VECTOR);
5111
5112         return r;
5113 }
5114
5115 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5116                                   bool write_fault_to_shadow_pgtable,
5117                                   int emulation_type)
5118 {
5119         gpa_t gpa = cr2;
5120         pfn_t pfn;
5121
5122         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5123                 return false;
5124
5125         if (!vcpu->arch.mmu.direct_map) {
5126                 /*
5127                  * Write permission should be allowed since only
5128                  * write access need to be emulated.
5129                  */
5130                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5131
5132                 /*
5133                  * If the mapping is invalid in guest, let cpu retry
5134                  * it to generate fault.
5135                  */
5136                 if (gpa == UNMAPPED_GVA)
5137                         return true;
5138         }
5139
5140         /*
5141          * Do not retry the unhandleable instruction if it faults on the
5142          * readonly host memory, otherwise it will goto a infinite loop:
5143          * retry instruction -> write #PF -> emulation fail -> retry
5144          * instruction -> ...
5145          */
5146         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5147
5148         /*
5149          * If the instruction failed on the error pfn, it can not be fixed,
5150          * report the error to userspace.
5151          */
5152         if (is_error_noslot_pfn(pfn))
5153                 return false;
5154
5155         kvm_release_pfn_clean(pfn);
5156
5157         /* The instructions are well-emulated on direct mmu. */
5158         if (vcpu->arch.mmu.direct_map) {
5159                 unsigned int indirect_shadow_pages;
5160
5161                 spin_lock(&vcpu->kvm->mmu_lock);
5162                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5163                 spin_unlock(&vcpu->kvm->mmu_lock);
5164
5165                 if (indirect_shadow_pages)
5166                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5167
5168                 return true;
5169         }
5170
5171         /*
5172          * if emulation was due to access to shadowed page table
5173          * and it failed try to unshadow page and re-enter the
5174          * guest to let CPU execute the instruction.
5175          */
5176         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5177
5178         /*
5179          * If the access faults on its page table, it can not
5180          * be fixed by unprotecting shadow page and it should
5181          * be reported to userspace.
5182          */
5183         return !write_fault_to_shadow_pgtable;
5184 }
5185
5186 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5187                               unsigned long cr2,  int emulation_type)
5188 {
5189         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5190         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5191
5192         last_retry_eip = vcpu->arch.last_retry_eip;
5193         last_retry_addr = vcpu->arch.last_retry_addr;
5194
5195         /*
5196          * If the emulation is caused by #PF and it is non-page_table
5197          * writing instruction, it means the VM-EXIT is caused by shadow
5198          * page protected, we can zap the shadow page and retry this
5199          * instruction directly.
5200          *
5201          * Note: if the guest uses a non-page-table modifying instruction
5202          * on the PDE that points to the instruction, then we will unmap
5203          * the instruction and go to an infinite loop. So, we cache the
5204          * last retried eip and the last fault address, if we meet the eip
5205          * and the address again, we can break out of the potential infinite
5206          * loop.
5207          */
5208         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5209
5210         if (!(emulation_type & EMULTYPE_RETRY))
5211                 return false;
5212
5213         if (x86_page_table_writing_insn(ctxt))
5214                 return false;
5215
5216         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5217                 return false;
5218
5219         vcpu->arch.last_retry_eip = ctxt->eip;
5220         vcpu->arch.last_retry_addr = cr2;
5221
5222         if (!vcpu->arch.mmu.direct_map)
5223                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5224
5225         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5226
5227         return true;
5228 }
5229
5230 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5231 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5232
5233 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5234                                 unsigned long *db)
5235 {
5236         u32 dr6 = 0;
5237         int i;
5238         u32 enable, rwlen;
5239
5240         enable = dr7;
5241         rwlen = dr7 >> 16;
5242         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5243                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5244                         dr6 |= (1 << i);
5245         return dr6;
5246 }
5247
5248 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5249 {
5250         struct kvm_run *kvm_run = vcpu->run;
5251
5252         /*
5253          * rflags is the old, "raw" value of the flags.  The new value has
5254          * not been saved yet.
5255          *
5256          * This is correct even for TF set by the guest, because "the
5257          * processor will not generate this exception after the instruction
5258          * that sets the TF flag".
5259          */
5260         if (unlikely(rflags & X86_EFLAGS_TF)) {
5261                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5262                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5263                                                   DR6_RTM;
5264                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5265                         kvm_run->debug.arch.exception = DB_VECTOR;
5266                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5267                         *r = EMULATE_USER_EXIT;
5268                 } else {
5269                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5270                         /*
5271                          * "Certain debug exceptions may clear bit 0-3.  The
5272                          * remaining contents of the DR6 register are never
5273                          * cleared by the processor".
5274                          */
5275                         vcpu->arch.dr6 &= ~15;
5276                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5277                         kvm_queue_exception(vcpu, DB_VECTOR);
5278                 }
5279         }
5280 }
5281
5282 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5283 {
5284         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5285             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5286                 struct kvm_run *kvm_run = vcpu->run;
5287                 unsigned long eip = kvm_get_linear_rip(vcpu);
5288                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5289                                            vcpu->arch.guest_debug_dr7,
5290                                            vcpu->arch.eff_db);
5291
5292                 if (dr6 != 0) {
5293                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5294                         kvm_run->debug.arch.pc = eip;
5295                         kvm_run->debug.arch.exception = DB_VECTOR;
5296                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5297                         *r = EMULATE_USER_EXIT;
5298                         return true;
5299                 }
5300         }
5301
5302         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5303             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5304                 unsigned long eip = kvm_get_linear_rip(vcpu);
5305                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5306                                            vcpu->arch.dr7,
5307                                            vcpu->arch.db);
5308
5309                 if (dr6 != 0) {
5310                         vcpu->arch.dr6 &= ~15;
5311                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5312                         kvm_queue_exception(vcpu, DB_VECTOR);
5313                         *r = EMULATE_DONE;
5314                         return true;
5315                 }
5316         }
5317
5318         return false;
5319 }
5320
5321 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5322                             unsigned long cr2,
5323                             int emulation_type,
5324                             void *insn,
5325                             int insn_len)
5326 {
5327         int r;
5328         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5329         bool writeback = true;
5330         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5331
5332         /*
5333          * Clear write_fault_to_shadow_pgtable here to ensure it is
5334          * never reused.
5335          */
5336         vcpu->arch.write_fault_to_shadow_pgtable = false;
5337         kvm_clear_exception_queue(vcpu);
5338
5339         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5340                 init_emulate_ctxt(vcpu);
5341
5342                 /*
5343                  * We will reenter on the same instruction since
5344                  * we do not set complete_userspace_io.  This does not
5345                  * handle watchpoints yet, those would be handled in
5346                  * the emulate_ops.
5347                  */
5348                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5349                         return r;
5350
5351                 ctxt->interruptibility = 0;
5352                 ctxt->have_exception = false;
5353                 ctxt->exception.vector = -1;
5354                 ctxt->perm_ok = false;
5355
5356                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5357
5358                 r = x86_decode_insn(ctxt, insn, insn_len);
5359
5360                 trace_kvm_emulate_insn_start(vcpu);
5361                 ++vcpu->stat.insn_emulation;
5362                 if (r != EMULATION_OK)  {
5363                         if (emulation_type & EMULTYPE_TRAP_UD)
5364                                 return EMULATE_FAIL;
5365                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5366                                                 emulation_type))
5367                                 return EMULATE_DONE;
5368                         if (emulation_type & EMULTYPE_SKIP)
5369                                 return EMULATE_FAIL;
5370                         return handle_emulation_failure(vcpu);
5371                 }
5372         }
5373
5374         if (emulation_type & EMULTYPE_SKIP) {
5375                 kvm_rip_write(vcpu, ctxt->_eip);
5376                 if (ctxt->eflags & X86_EFLAGS_RF)
5377                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5378                 return EMULATE_DONE;
5379         }
5380
5381         if (retry_instruction(ctxt, cr2, emulation_type))
5382                 return EMULATE_DONE;
5383
5384         /* this is needed for vmware backdoor interface to work since it
5385            changes registers values  during IO operation */
5386         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5387                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5388                 emulator_invalidate_register_cache(ctxt);
5389         }
5390
5391 restart:
5392         r = x86_emulate_insn(ctxt);
5393
5394         if (r == EMULATION_INTERCEPTED)
5395                 return EMULATE_DONE;
5396
5397         if (r == EMULATION_FAILED) {
5398                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5399                                         emulation_type))
5400                         return EMULATE_DONE;
5401
5402                 return handle_emulation_failure(vcpu);
5403         }
5404
5405         if (ctxt->have_exception) {
5406                 r = EMULATE_DONE;
5407                 if (inject_emulated_exception(vcpu))
5408                         return r;
5409         } else if (vcpu->arch.pio.count) {
5410                 if (!vcpu->arch.pio.in) {
5411                         /* FIXME: return into emulator if single-stepping.  */
5412                         vcpu->arch.pio.count = 0;
5413                 } else {
5414                         writeback = false;
5415                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5416                 }
5417                 r = EMULATE_USER_EXIT;
5418         } else if (vcpu->mmio_needed) {
5419                 if (!vcpu->mmio_is_write)
5420                         writeback = false;
5421                 r = EMULATE_USER_EXIT;
5422                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5423         } else if (r == EMULATION_RESTART)
5424                 goto restart;
5425         else
5426                 r = EMULATE_DONE;
5427
5428         if (writeback) {
5429                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5430                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5431                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5432                 kvm_rip_write(vcpu, ctxt->eip);
5433                 if (r == EMULATE_DONE)
5434                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5435                 if (!ctxt->have_exception ||
5436                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5437                         __kvm_set_rflags(vcpu, ctxt->eflags);
5438
5439                 /*
5440                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5441                  * do nothing, and it will be requested again as soon as
5442                  * the shadow expires.  But we still need to check here,
5443                  * because POPF has no interrupt shadow.
5444                  */
5445                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5446                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5447         } else
5448                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5449
5450         return r;
5451 }
5452 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5453
5454 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5455 {
5456         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5457         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5458                                             size, port, &val, 1);
5459         /* do not return to emulator after return from userspace */
5460         vcpu->arch.pio.count = 0;
5461         return ret;
5462 }
5463 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5464
5465 static void tsc_bad(void *info)
5466 {
5467         __this_cpu_write(cpu_tsc_khz, 0);
5468 }
5469
5470 static void tsc_khz_changed(void *data)
5471 {
5472         struct cpufreq_freqs *freq = data;
5473         unsigned long khz = 0;
5474
5475         if (data)
5476                 khz = freq->new;
5477         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5478                 khz = cpufreq_quick_get(raw_smp_processor_id());
5479         if (!khz)
5480                 khz = tsc_khz;
5481         __this_cpu_write(cpu_tsc_khz, khz);
5482 }
5483
5484 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5485                                      void *data)
5486 {
5487         struct cpufreq_freqs *freq = data;
5488         struct kvm *kvm;
5489         struct kvm_vcpu *vcpu;
5490         int i, send_ipi = 0;
5491
5492         /*
5493          * We allow guests to temporarily run on slowing clocks,
5494          * provided we notify them after, or to run on accelerating
5495          * clocks, provided we notify them before.  Thus time never
5496          * goes backwards.
5497          *
5498          * However, we have a problem.  We can't atomically update
5499          * the frequency of a given CPU from this function; it is
5500          * merely a notifier, which can be called from any CPU.
5501          * Changing the TSC frequency at arbitrary points in time
5502          * requires a recomputation of local variables related to
5503          * the TSC for each VCPU.  We must flag these local variables
5504          * to be updated and be sure the update takes place with the
5505          * new frequency before any guests proceed.
5506          *
5507          * Unfortunately, the combination of hotplug CPU and frequency
5508          * change creates an intractable locking scenario; the order
5509          * of when these callouts happen is undefined with respect to
5510          * CPU hotplug, and they can race with each other.  As such,
5511          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5512          * undefined; you can actually have a CPU frequency change take
5513          * place in between the computation of X and the setting of the
5514          * variable.  To protect against this problem, all updates of
5515          * the per_cpu tsc_khz variable are done in an interrupt
5516          * protected IPI, and all callers wishing to update the value
5517          * must wait for a synchronous IPI to complete (which is trivial
5518          * if the caller is on the CPU already).  This establishes the
5519          * necessary total order on variable updates.
5520          *
5521          * Note that because a guest time update may take place
5522          * anytime after the setting of the VCPU's request bit, the
5523          * correct TSC value must be set before the request.  However,
5524          * to ensure the update actually makes it to any guest which
5525          * starts running in hardware virtualization between the set
5526          * and the acquisition of the spinlock, we must also ping the
5527          * CPU after setting the request bit.
5528          *
5529          */
5530
5531         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5532                 return 0;
5533         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5534                 return 0;
5535
5536         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5537
5538         spin_lock(&kvm_lock);
5539         list_for_each_entry(kvm, &vm_list, vm_list) {
5540                 kvm_for_each_vcpu(i, vcpu, kvm) {
5541                         if (vcpu->cpu != freq->cpu)
5542                                 continue;
5543                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5544                         if (vcpu->cpu != smp_processor_id())
5545                                 send_ipi = 1;
5546                 }
5547         }
5548         spin_unlock(&kvm_lock);
5549
5550         if (freq->old < freq->new && send_ipi) {
5551                 /*
5552                  * We upscale the frequency.  Must make the guest
5553                  * doesn't see old kvmclock values while running with
5554                  * the new frequency, otherwise we risk the guest sees
5555                  * time go backwards.
5556                  *
5557                  * In case we update the frequency for another cpu
5558                  * (which might be in guest context) send an interrupt
5559                  * to kick the cpu out of guest context.  Next time
5560                  * guest context is entered kvmclock will be updated,
5561                  * so the guest will not see stale values.
5562                  */
5563                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5564         }
5565         return 0;
5566 }
5567
5568 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5569         .notifier_call  = kvmclock_cpufreq_notifier
5570 };
5571
5572 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5573                                         unsigned long action, void *hcpu)
5574 {
5575         unsigned int cpu = (unsigned long)hcpu;
5576
5577         switch (action) {
5578                 case CPU_ONLINE:
5579                 case CPU_DOWN_FAILED:
5580                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5581                         break;
5582                 case CPU_DOWN_PREPARE:
5583                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5584                         break;
5585         }
5586         return NOTIFY_OK;
5587 }
5588
5589 static struct notifier_block kvmclock_cpu_notifier_block = {
5590         .notifier_call  = kvmclock_cpu_notifier,
5591         .priority = -INT_MAX
5592 };
5593
5594 static void kvm_timer_init(void)
5595 {
5596         int cpu;
5597
5598         max_tsc_khz = tsc_khz;
5599
5600         cpu_notifier_register_begin();
5601         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5602 #ifdef CONFIG_CPU_FREQ
5603                 struct cpufreq_policy policy;
5604                 memset(&policy, 0, sizeof(policy));
5605                 cpu = get_cpu();
5606                 cpufreq_get_policy(&policy, cpu);
5607                 if (policy.cpuinfo.max_freq)
5608                         max_tsc_khz = policy.cpuinfo.max_freq;
5609                 put_cpu();
5610 #endif
5611                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5612                                           CPUFREQ_TRANSITION_NOTIFIER);
5613         }
5614         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5615         for_each_online_cpu(cpu)
5616                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5617
5618         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5619         cpu_notifier_register_done();
5620
5621 }
5622
5623 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5624
5625 int kvm_is_in_guest(void)
5626 {
5627         return __this_cpu_read(current_vcpu) != NULL;
5628 }
5629
5630 static int kvm_is_user_mode(void)
5631 {
5632         int user_mode = 3;
5633
5634         if (__this_cpu_read(current_vcpu))
5635                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5636
5637         return user_mode != 0;
5638 }
5639
5640 static unsigned long kvm_get_guest_ip(void)
5641 {
5642         unsigned long ip = 0;
5643
5644         if (__this_cpu_read(current_vcpu))
5645                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5646
5647         return ip;
5648 }
5649
5650 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5651         .is_in_guest            = kvm_is_in_guest,
5652         .is_user_mode           = kvm_is_user_mode,
5653         .get_guest_ip           = kvm_get_guest_ip,
5654 };
5655
5656 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5657 {
5658         __this_cpu_write(current_vcpu, vcpu);
5659 }
5660 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5661
5662 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5663 {
5664         __this_cpu_write(current_vcpu, NULL);
5665 }
5666 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5667
5668 static void kvm_set_mmio_spte_mask(void)
5669 {
5670         u64 mask;
5671         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5672
5673         /*
5674          * Set the reserved bits and the present bit of an paging-structure
5675          * entry to generate page fault with PFER.RSV = 1.
5676          */
5677          /* Mask the reserved physical address bits. */
5678         mask = rsvd_bits(maxphyaddr, 51);
5679
5680         /* Bit 62 is always reserved for 32bit host. */
5681         mask |= 0x3ull << 62;
5682
5683         /* Set the present bit. */
5684         mask |= 1ull;
5685
5686 #ifdef CONFIG_X86_64
5687         /*
5688          * If reserved bit is not supported, clear the present bit to disable
5689          * mmio page fault.
5690          */
5691         if (maxphyaddr == 52)
5692                 mask &= ~1ull;
5693 #endif
5694
5695         kvm_mmu_set_mmio_spte_mask(mask);
5696 }
5697
5698 #ifdef CONFIG_X86_64
5699 static void pvclock_gtod_update_fn(struct work_struct *work)
5700 {
5701         struct kvm *kvm;
5702
5703         struct kvm_vcpu *vcpu;
5704         int i;
5705
5706         spin_lock(&kvm_lock);
5707         list_for_each_entry(kvm, &vm_list, vm_list)
5708                 kvm_for_each_vcpu(i, vcpu, kvm)
5709                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5710         atomic_set(&kvm_guest_has_master_clock, 0);
5711         spin_unlock(&kvm_lock);
5712 }
5713
5714 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5715
5716 /*
5717  * Notification about pvclock gtod data update.
5718  */
5719 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5720                                void *priv)
5721 {
5722         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5723         struct timekeeper *tk = priv;
5724
5725         update_pvclock_gtod(tk);
5726
5727         /* disable master clock if host does not trust, or does not
5728          * use, TSC clocksource
5729          */
5730         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5731             atomic_read(&kvm_guest_has_master_clock) != 0)
5732                 queue_work(system_long_wq, &pvclock_gtod_work);
5733
5734         return 0;
5735 }
5736
5737 static struct notifier_block pvclock_gtod_notifier = {
5738         .notifier_call = pvclock_gtod_notify,
5739 };
5740 #endif
5741
5742 int kvm_arch_init(void *opaque)
5743 {
5744         int r;
5745         struct kvm_x86_ops *ops = opaque;
5746
5747         if (kvm_x86_ops) {
5748                 printk(KERN_ERR "kvm: already loaded the other module\n");
5749                 r = -EEXIST;
5750                 goto out;
5751         }
5752
5753         if (!ops->cpu_has_kvm_support()) {
5754                 printk(KERN_ERR "kvm: no hardware support\n");
5755                 r = -EOPNOTSUPP;
5756                 goto out;
5757         }
5758         if (ops->disabled_by_bios()) {
5759                 printk(KERN_ERR "kvm: disabled by bios\n");
5760                 r = -EOPNOTSUPP;
5761                 goto out;
5762         }
5763
5764         r = -ENOMEM;
5765         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5766         if (!shared_msrs) {
5767                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5768                 goto out;
5769         }
5770
5771         r = kvm_mmu_module_init();
5772         if (r)
5773                 goto out_free_percpu;
5774
5775         kvm_set_mmio_spte_mask();
5776
5777         kvm_x86_ops = ops;
5778         kvm_init_msr_list();
5779
5780         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5781                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5782
5783         kvm_timer_init();
5784
5785         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5786
5787         if (cpu_has_xsave)
5788                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5789
5790         kvm_lapic_init();
5791 #ifdef CONFIG_X86_64
5792         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5793 #endif
5794
5795         return 0;
5796
5797 out_free_percpu:
5798         free_percpu(shared_msrs);
5799 out:
5800         return r;
5801 }
5802
5803 void kvm_arch_exit(void)
5804 {
5805         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5806
5807         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5808                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5809                                             CPUFREQ_TRANSITION_NOTIFIER);
5810         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5811 #ifdef CONFIG_X86_64
5812         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5813 #endif
5814         kvm_x86_ops = NULL;
5815         kvm_mmu_module_exit();
5816         free_percpu(shared_msrs);
5817 }
5818
5819 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5820 {
5821         ++vcpu->stat.halt_exits;
5822         if (irqchip_in_kernel(vcpu->kvm)) {
5823                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5824                 return 1;
5825         } else {
5826                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5827                 return 0;
5828         }
5829 }
5830 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5831
5832 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5833 {
5834         u64 param, ingpa, outgpa, ret;
5835         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5836         bool fast, longmode;
5837
5838         /*
5839          * hypercall generates UD from non zero cpl and real mode
5840          * per HYPER-V spec
5841          */
5842         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5843                 kvm_queue_exception(vcpu, UD_VECTOR);
5844                 return 0;
5845         }
5846
5847         longmode = is_64_bit_mode(vcpu);
5848
5849         if (!longmode) {
5850                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5851                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5852                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5853                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5854                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5855                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5856         }
5857 #ifdef CONFIG_X86_64
5858         else {
5859                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5860                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5861                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5862         }
5863 #endif
5864
5865         code = param & 0xffff;
5866         fast = (param >> 16) & 0x1;
5867         rep_cnt = (param >> 32) & 0xfff;
5868         rep_idx = (param >> 48) & 0xfff;
5869
5870         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5871
5872         switch (code) {
5873         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5874                 kvm_vcpu_on_spin(vcpu);
5875                 break;
5876         default:
5877                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5878                 break;
5879         }
5880
5881         ret = res | (((u64)rep_done & 0xfff) << 32);
5882         if (longmode) {
5883                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5884         } else {
5885                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5886                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5887         }
5888
5889         return 1;
5890 }
5891
5892 /*
5893  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5894  *
5895  * @apicid - apicid of vcpu to be kicked.
5896  */
5897 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5898 {
5899         struct kvm_lapic_irq lapic_irq;
5900
5901         lapic_irq.shorthand = 0;
5902         lapic_irq.dest_mode = 0;
5903         lapic_irq.dest_id = apicid;
5904
5905         lapic_irq.delivery_mode = APIC_DM_REMRD;
5906         kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5907 }
5908
5909 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5910 {
5911         unsigned long nr, a0, a1, a2, a3, ret;
5912         int op_64_bit, r = 1;
5913
5914         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5915                 return kvm_hv_hypercall(vcpu);
5916
5917         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5918         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5919         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5920         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5921         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5922
5923         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5924
5925         op_64_bit = is_64_bit_mode(vcpu);
5926         if (!op_64_bit) {
5927                 nr &= 0xFFFFFFFF;
5928                 a0 &= 0xFFFFFFFF;
5929                 a1 &= 0xFFFFFFFF;
5930                 a2 &= 0xFFFFFFFF;
5931                 a3 &= 0xFFFFFFFF;
5932         }
5933
5934         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5935                 ret = -KVM_EPERM;
5936                 goto out;
5937         }
5938
5939         switch (nr) {
5940         case KVM_HC_VAPIC_POLL_IRQ:
5941                 ret = 0;
5942                 break;
5943         case KVM_HC_KICK_CPU:
5944                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5945                 ret = 0;
5946                 break;
5947         default:
5948                 ret = -KVM_ENOSYS;
5949                 break;
5950         }
5951 out:
5952         if (!op_64_bit)
5953                 ret = (u32)ret;
5954         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5955         ++vcpu->stat.hypercalls;
5956         return r;
5957 }
5958 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5959
5960 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5961 {
5962         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5963         char instruction[3];
5964         unsigned long rip = kvm_rip_read(vcpu);
5965
5966         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5967
5968         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5969 }
5970
5971 /*
5972  * Check if userspace requested an interrupt window, and that the
5973  * interrupt window is open.
5974  *
5975  * No need to exit to userspace if we already have an interrupt queued.
5976  */
5977 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5978 {
5979         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5980                 vcpu->run->request_interrupt_window &&
5981                 kvm_arch_interrupt_allowed(vcpu));
5982 }
5983
5984 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5985 {
5986         struct kvm_run *kvm_run = vcpu->run;
5987
5988         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5989         kvm_run->cr8 = kvm_get_cr8(vcpu);
5990         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5991         if (irqchip_in_kernel(vcpu->kvm))
5992                 kvm_run->ready_for_interrupt_injection = 1;
5993         else
5994                 kvm_run->ready_for_interrupt_injection =
5995                         kvm_arch_interrupt_allowed(vcpu) &&
5996                         !kvm_cpu_has_interrupt(vcpu) &&
5997                         !kvm_event_needs_reinjection(vcpu);
5998 }
5999
6000 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6001 {
6002         int max_irr, tpr;
6003
6004         if (!kvm_x86_ops->update_cr8_intercept)
6005                 return;
6006
6007         if (!vcpu->arch.apic)
6008                 return;
6009
6010         if (!vcpu->arch.apic->vapic_addr)
6011                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6012         else
6013                 max_irr = -1;
6014
6015         if (max_irr != -1)
6016                 max_irr >>= 4;
6017
6018         tpr = kvm_lapic_get_cr8(vcpu);
6019
6020         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6021 }
6022
6023 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6024 {
6025         int r;
6026
6027         /* try to reinject previous events if any */
6028         if (vcpu->arch.exception.pending) {
6029                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6030                                         vcpu->arch.exception.has_error_code,
6031                                         vcpu->arch.exception.error_code);
6032
6033                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6034                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6035                                              X86_EFLAGS_RF);
6036
6037                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6038                     (vcpu->arch.dr7 & DR7_GD)) {
6039                         vcpu->arch.dr7 &= ~DR7_GD;
6040                         kvm_update_dr7(vcpu);
6041                 }
6042
6043                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6044                                           vcpu->arch.exception.has_error_code,
6045                                           vcpu->arch.exception.error_code,
6046                                           vcpu->arch.exception.reinject);
6047                 return 0;
6048         }
6049
6050         if (vcpu->arch.nmi_injected) {
6051                 kvm_x86_ops->set_nmi(vcpu);
6052                 return 0;
6053         }
6054
6055         if (vcpu->arch.interrupt.pending) {
6056                 kvm_x86_ops->set_irq(vcpu);
6057                 return 0;
6058         }
6059
6060         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6061                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6062                 if (r != 0)
6063                         return r;
6064         }
6065
6066         /* try to inject new event if pending */
6067         if (vcpu->arch.nmi_pending) {
6068                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6069                         --vcpu->arch.nmi_pending;
6070                         vcpu->arch.nmi_injected = true;
6071                         kvm_x86_ops->set_nmi(vcpu);
6072                 }
6073         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6074                 /*
6075                  * Because interrupts can be injected asynchronously, we are
6076                  * calling check_nested_events again here to avoid a race condition.
6077                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6078                  * proposal and current concerns.  Perhaps we should be setting
6079                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6080                  */
6081                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6082                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6083                         if (r != 0)
6084                                 return r;
6085                 }
6086                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6087                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6088                                             false);
6089                         kvm_x86_ops->set_irq(vcpu);
6090                 }
6091         }
6092         return 0;
6093 }
6094
6095 static void process_nmi(struct kvm_vcpu *vcpu)
6096 {
6097         unsigned limit = 2;
6098
6099         /*
6100          * x86 is limited to one NMI running, and one NMI pending after it.
6101          * If an NMI is already in progress, limit further NMIs to just one.
6102          * Otherwise, allow two (and we'll inject the first one immediately).
6103          */
6104         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6105                 limit = 1;
6106
6107         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6108         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6109         kvm_make_request(KVM_REQ_EVENT, vcpu);
6110 }
6111
6112 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6113 {
6114         u64 eoi_exit_bitmap[4];
6115         u32 tmr[8];
6116
6117         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6118                 return;
6119
6120         memset(eoi_exit_bitmap, 0, 32);
6121         memset(tmr, 0, 32);
6122
6123         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6124         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6125         kvm_apic_update_tmr(vcpu, tmr);
6126 }
6127
6128 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6129 {
6130         ++vcpu->stat.tlb_flush;
6131         kvm_x86_ops->tlb_flush(vcpu);
6132 }
6133
6134 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6135 {
6136         struct page *page = NULL;
6137
6138         if (!irqchip_in_kernel(vcpu->kvm))
6139                 return;
6140
6141         if (!kvm_x86_ops->set_apic_access_page_addr)
6142                 return;
6143
6144         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6145         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6146
6147         /*
6148          * Do not pin apic access page in memory, the MMU notifier
6149          * will call us again if it is migrated or swapped out.
6150          */
6151         put_page(page);
6152 }
6153 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6154
6155 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6156                                            unsigned long address)
6157 {
6158         /*
6159          * The physical address of apic access page is stored in the VMCS.
6160          * Update it when it becomes invalid.
6161          */
6162         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6163                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6164 }
6165
6166 /*
6167  * Returns 1 to let __vcpu_run() continue the guest execution loop without
6168  * exiting to the userspace.  Otherwise, the value will be returned to the
6169  * userspace.
6170  */
6171 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6172 {
6173         int r;
6174         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6175                 vcpu->run->request_interrupt_window;
6176         bool req_immediate_exit = false;
6177
6178         if (vcpu->requests) {
6179                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6180                         kvm_mmu_unload(vcpu);
6181                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6182                         __kvm_migrate_timers(vcpu);
6183                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6184                         kvm_gen_update_masterclock(vcpu->kvm);
6185                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6186                         kvm_gen_kvmclock_update(vcpu);
6187                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6188                         r = kvm_guest_time_update(vcpu);
6189                         if (unlikely(r))
6190                                 goto out;
6191                 }
6192                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6193                         kvm_mmu_sync_roots(vcpu);
6194                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6195                         kvm_vcpu_flush_tlb(vcpu);
6196                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6197                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6198                         r = 0;
6199                         goto out;
6200                 }
6201                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6202                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6203                         r = 0;
6204                         goto out;
6205                 }
6206                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6207                         vcpu->fpu_active = 0;
6208                         kvm_x86_ops->fpu_deactivate(vcpu);
6209                 }
6210                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6211                         /* Page is swapped out. Do synthetic halt */
6212                         vcpu->arch.apf.halted = true;
6213                         r = 1;
6214                         goto out;
6215                 }
6216                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6217                         record_steal_time(vcpu);
6218                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6219                         process_nmi(vcpu);
6220                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6221                         kvm_handle_pmu_event(vcpu);
6222                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6223                         kvm_deliver_pmi(vcpu);
6224                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6225                         vcpu_scan_ioapic(vcpu);
6226                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6227                         kvm_vcpu_reload_apic_access_page(vcpu);
6228         }
6229
6230         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6231                 kvm_apic_accept_events(vcpu);
6232                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6233                         r = 1;
6234                         goto out;
6235                 }
6236
6237                 if (inject_pending_event(vcpu, req_int_win) != 0)
6238                         req_immediate_exit = true;
6239                 /* enable NMI/IRQ window open exits if needed */
6240                 else if (vcpu->arch.nmi_pending)
6241                         kvm_x86_ops->enable_nmi_window(vcpu);
6242                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6243                         kvm_x86_ops->enable_irq_window(vcpu);
6244
6245                 if (kvm_lapic_enabled(vcpu)) {
6246                         /*
6247                          * Update architecture specific hints for APIC
6248                          * virtual interrupt delivery.
6249                          */
6250                         if (kvm_x86_ops->hwapic_irr_update)
6251                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6252                                         kvm_lapic_find_highest_irr(vcpu));
6253                         update_cr8_intercept(vcpu);
6254                         kvm_lapic_sync_to_vapic(vcpu);
6255                 }
6256         }
6257
6258         r = kvm_mmu_reload(vcpu);
6259         if (unlikely(r)) {
6260                 goto cancel_injection;
6261         }
6262
6263         preempt_disable();
6264
6265         kvm_x86_ops->prepare_guest_switch(vcpu);
6266         if (vcpu->fpu_active)
6267                 kvm_load_guest_fpu(vcpu);
6268         kvm_load_guest_xcr0(vcpu);
6269
6270         vcpu->mode = IN_GUEST_MODE;
6271
6272         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6273
6274         /* We should set ->mode before check ->requests,
6275          * see the comment in make_all_cpus_request.
6276          */
6277         smp_mb__after_srcu_read_unlock();
6278
6279         local_irq_disable();
6280
6281         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6282             || need_resched() || signal_pending(current)) {
6283                 vcpu->mode = OUTSIDE_GUEST_MODE;
6284                 smp_wmb();
6285                 local_irq_enable();
6286                 preempt_enable();
6287                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6288                 r = 1;
6289                 goto cancel_injection;
6290         }
6291
6292         if (req_immediate_exit)
6293                 smp_send_reschedule(vcpu->cpu);
6294
6295         kvm_guest_enter();
6296
6297         if (unlikely(vcpu->arch.switch_db_regs)) {
6298                 set_debugreg(0, 7);
6299                 set_debugreg(vcpu->arch.eff_db[0], 0);
6300                 set_debugreg(vcpu->arch.eff_db[1], 1);
6301                 set_debugreg(vcpu->arch.eff_db[2], 2);
6302                 set_debugreg(vcpu->arch.eff_db[3], 3);
6303                 set_debugreg(vcpu->arch.dr6, 6);
6304         }
6305
6306         trace_kvm_entry(vcpu->vcpu_id);
6307         wait_lapic_expire(vcpu);
6308         kvm_x86_ops->run(vcpu);
6309
6310         /*
6311          * Do this here before restoring debug registers on the host.  And
6312          * since we do this before handling the vmexit, a DR access vmexit
6313          * can (a) read the correct value of the debug registers, (b) set
6314          * KVM_DEBUGREG_WONT_EXIT again.
6315          */
6316         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6317                 int i;
6318
6319                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6320                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6321                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6322                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6323         }
6324
6325         /*
6326          * If the guest has used debug registers, at least dr7
6327          * will be disabled while returning to the host.
6328          * If we don't have active breakpoints in the host, we don't
6329          * care about the messed up debug address registers. But if
6330          * we have some of them active, restore the old state.
6331          */
6332         if (hw_breakpoint_active())
6333                 hw_breakpoint_restore();
6334
6335         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6336                                                            native_read_tsc());
6337
6338         vcpu->mode = OUTSIDE_GUEST_MODE;
6339         smp_wmb();
6340
6341         /* Interrupt is enabled by handle_external_intr() */
6342         kvm_x86_ops->handle_external_intr(vcpu);
6343
6344         ++vcpu->stat.exits;
6345
6346         /*
6347          * We must have an instruction between local_irq_enable() and
6348          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6349          * the interrupt shadow.  The stat.exits increment will do nicely.
6350          * But we need to prevent reordering, hence this barrier():
6351          */
6352         barrier();
6353
6354         kvm_guest_exit();
6355
6356         preempt_enable();
6357
6358         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6359
6360         /*
6361          * Profile KVM exit RIPs:
6362          */
6363         if (unlikely(prof_on == KVM_PROFILING)) {
6364                 unsigned long rip = kvm_rip_read(vcpu);
6365                 profile_hit(KVM_PROFILING, (void *)rip);
6366         }
6367
6368         if (unlikely(vcpu->arch.tsc_always_catchup))
6369                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6370
6371         if (vcpu->arch.apic_attention)
6372                 kvm_lapic_sync_from_vapic(vcpu);
6373
6374         r = kvm_x86_ops->handle_exit(vcpu);
6375         return r;
6376
6377 cancel_injection:
6378         kvm_x86_ops->cancel_injection(vcpu);
6379         if (unlikely(vcpu->arch.apic_attention))
6380                 kvm_lapic_sync_from_vapic(vcpu);
6381 out:
6382         return r;
6383 }
6384
6385
6386 static int __vcpu_run(struct kvm_vcpu *vcpu)
6387 {
6388         int r;
6389         struct kvm *kvm = vcpu->kvm;
6390
6391         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6392
6393         r = 1;
6394         while (r > 0) {
6395                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6396                     !vcpu->arch.apf.halted)
6397                         r = vcpu_enter_guest(vcpu);
6398                 else {
6399                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6400                         kvm_vcpu_block(vcpu);
6401                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6402                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6403                                 kvm_apic_accept_events(vcpu);
6404                                 switch(vcpu->arch.mp_state) {
6405                                 case KVM_MP_STATE_HALTED:
6406                                         vcpu->arch.pv.pv_unhalted = false;
6407                                         vcpu->arch.mp_state =
6408                                                 KVM_MP_STATE_RUNNABLE;
6409                                 case KVM_MP_STATE_RUNNABLE:
6410                                         vcpu->arch.apf.halted = false;
6411                                         break;
6412                                 case KVM_MP_STATE_INIT_RECEIVED:
6413                                         break;
6414                                 default:
6415                                         r = -EINTR;
6416                                         break;
6417                                 }
6418                         }
6419                 }
6420
6421                 if (r <= 0)
6422                         break;
6423
6424                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6425                 if (kvm_cpu_has_pending_timer(vcpu))
6426                         kvm_inject_pending_timer_irqs(vcpu);
6427
6428                 if (dm_request_for_irq_injection(vcpu)) {
6429                         r = -EINTR;
6430                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6431                         ++vcpu->stat.request_irq_exits;
6432                 }
6433
6434                 kvm_check_async_pf_completion(vcpu);
6435
6436                 if (signal_pending(current)) {
6437                         r = -EINTR;
6438                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6439                         ++vcpu->stat.signal_exits;
6440                 }
6441                 if (need_resched()) {
6442                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6443                         cond_resched();
6444                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6445                 }
6446         }
6447
6448         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6449
6450         return r;
6451 }
6452
6453 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6454 {
6455         int r;
6456         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6457         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6458         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6459         if (r != EMULATE_DONE)
6460                 return 0;
6461         return 1;
6462 }
6463
6464 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6465 {
6466         BUG_ON(!vcpu->arch.pio.count);
6467
6468         return complete_emulated_io(vcpu);
6469 }
6470
6471 /*
6472  * Implements the following, as a state machine:
6473  *
6474  * read:
6475  *   for each fragment
6476  *     for each mmio piece in the fragment
6477  *       write gpa, len
6478  *       exit
6479  *       copy data
6480  *   execute insn
6481  *
6482  * write:
6483  *   for each fragment
6484  *     for each mmio piece in the fragment
6485  *       write gpa, len
6486  *       copy data
6487  *       exit
6488  */
6489 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6490 {
6491         struct kvm_run *run = vcpu->run;
6492         struct kvm_mmio_fragment *frag;
6493         unsigned len;
6494
6495         BUG_ON(!vcpu->mmio_needed);
6496
6497         /* Complete previous fragment */
6498         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6499         len = min(8u, frag->len);
6500         if (!vcpu->mmio_is_write)
6501                 memcpy(frag->data, run->mmio.data, len);
6502
6503         if (frag->len <= 8) {
6504                 /* Switch to the next fragment. */
6505                 frag++;
6506                 vcpu->mmio_cur_fragment++;
6507         } else {
6508                 /* Go forward to the next mmio piece. */
6509                 frag->data += len;
6510                 frag->gpa += len;
6511                 frag->len -= len;
6512         }
6513
6514         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6515                 vcpu->mmio_needed = 0;
6516
6517                 /* FIXME: return into emulator if single-stepping.  */
6518                 if (vcpu->mmio_is_write)
6519                         return 1;
6520                 vcpu->mmio_read_completed = 1;
6521                 return complete_emulated_io(vcpu);
6522         }
6523
6524         run->exit_reason = KVM_EXIT_MMIO;
6525         run->mmio.phys_addr = frag->gpa;
6526         if (vcpu->mmio_is_write)
6527                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6528         run->mmio.len = min(8u, frag->len);
6529         run->mmio.is_write = vcpu->mmio_is_write;
6530         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6531         return 0;
6532 }
6533
6534
6535 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6536 {
6537         int r;
6538         sigset_t sigsaved;
6539
6540         if (!tsk_used_math(current) && init_fpu(current))
6541                 return -ENOMEM;
6542
6543         if (vcpu->sigset_active)
6544                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6545
6546         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6547                 kvm_vcpu_block(vcpu);
6548                 kvm_apic_accept_events(vcpu);
6549                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6550                 r = -EAGAIN;
6551                 goto out;
6552         }
6553
6554         /* re-sync apic's tpr */
6555         if (!irqchip_in_kernel(vcpu->kvm)) {
6556                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6557                         r = -EINVAL;
6558                         goto out;
6559                 }
6560         }
6561
6562         if (unlikely(vcpu->arch.complete_userspace_io)) {
6563                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6564                 vcpu->arch.complete_userspace_io = NULL;
6565                 r = cui(vcpu);
6566                 if (r <= 0)
6567                         goto out;
6568         } else
6569                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6570
6571         r = __vcpu_run(vcpu);
6572
6573 out:
6574         post_kvm_run_save(vcpu);
6575         if (vcpu->sigset_active)
6576                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6577
6578         return r;
6579 }
6580
6581 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6582 {
6583         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6584                 /*
6585                  * We are here if userspace calls get_regs() in the middle of
6586                  * instruction emulation. Registers state needs to be copied
6587                  * back from emulation context to vcpu. Userspace shouldn't do
6588                  * that usually, but some bad designed PV devices (vmware
6589                  * backdoor interface) need this to work
6590                  */
6591                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6592                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6593         }
6594         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6595         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6596         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6597         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6598         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6599         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6600         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6601         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6602 #ifdef CONFIG_X86_64
6603         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6604         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6605         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6606         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6607         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6608         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6609         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6610         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6611 #endif
6612
6613         regs->rip = kvm_rip_read(vcpu);
6614         regs->rflags = kvm_get_rflags(vcpu);
6615
6616         return 0;
6617 }
6618
6619 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6620 {
6621         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6622         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6623
6624         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6625         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6626         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6627         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6628         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6629         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6630         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6631         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6632 #ifdef CONFIG_X86_64
6633         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6634         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6635         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6636         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6637         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6638         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6639         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6640         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6641 #endif
6642
6643         kvm_rip_write(vcpu, regs->rip);
6644         kvm_set_rflags(vcpu, regs->rflags);
6645
6646         vcpu->arch.exception.pending = false;
6647
6648         kvm_make_request(KVM_REQ_EVENT, vcpu);
6649
6650         return 0;
6651 }
6652
6653 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6654 {
6655         struct kvm_segment cs;
6656
6657         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6658         *db = cs.db;
6659         *l = cs.l;
6660 }
6661 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6662
6663 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6664                                   struct kvm_sregs *sregs)
6665 {
6666         struct desc_ptr dt;
6667
6668         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6669         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6670         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6671         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6672         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6673         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6674
6675         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6676         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6677
6678         kvm_x86_ops->get_idt(vcpu, &dt);
6679         sregs->idt.limit = dt.size;
6680         sregs->idt.base = dt.address;
6681         kvm_x86_ops->get_gdt(vcpu, &dt);
6682         sregs->gdt.limit = dt.size;
6683         sregs->gdt.base = dt.address;
6684
6685         sregs->cr0 = kvm_read_cr0(vcpu);
6686         sregs->cr2 = vcpu->arch.cr2;
6687         sregs->cr3 = kvm_read_cr3(vcpu);
6688         sregs->cr4 = kvm_read_cr4(vcpu);
6689         sregs->cr8 = kvm_get_cr8(vcpu);
6690         sregs->efer = vcpu->arch.efer;
6691         sregs->apic_base = kvm_get_apic_base(vcpu);
6692
6693         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6694
6695         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6696                 set_bit(vcpu->arch.interrupt.nr,
6697                         (unsigned long *)sregs->interrupt_bitmap);
6698
6699         return 0;
6700 }
6701
6702 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6703                                     struct kvm_mp_state *mp_state)
6704 {
6705         kvm_apic_accept_events(vcpu);
6706         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6707                                         vcpu->arch.pv.pv_unhalted)
6708                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6709         else
6710                 mp_state->mp_state = vcpu->arch.mp_state;
6711
6712         return 0;
6713 }
6714
6715 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6716                                     struct kvm_mp_state *mp_state)
6717 {
6718         if (!kvm_vcpu_has_lapic(vcpu) &&
6719             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6720                 return -EINVAL;
6721
6722         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6723                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6724                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6725         } else
6726                 vcpu->arch.mp_state = mp_state->mp_state;
6727         kvm_make_request(KVM_REQ_EVENT, vcpu);
6728         return 0;
6729 }
6730
6731 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6732                     int reason, bool has_error_code, u32 error_code)
6733 {
6734         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6735         int ret;
6736
6737         init_emulate_ctxt(vcpu);
6738
6739         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6740                                    has_error_code, error_code);
6741
6742         if (ret)
6743                 return EMULATE_FAIL;
6744
6745         kvm_rip_write(vcpu, ctxt->eip);
6746         kvm_set_rflags(vcpu, ctxt->eflags);
6747         kvm_make_request(KVM_REQ_EVENT, vcpu);
6748         return EMULATE_DONE;
6749 }
6750 EXPORT_SYMBOL_GPL(kvm_task_switch);
6751
6752 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6753                                   struct kvm_sregs *sregs)
6754 {
6755         struct msr_data apic_base_msr;
6756         int mmu_reset_needed = 0;
6757         int pending_vec, max_bits, idx;
6758         struct desc_ptr dt;
6759
6760         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6761                 return -EINVAL;
6762
6763         dt.size = sregs->idt.limit;
6764         dt.address = sregs->idt.base;
6765         kvm_x86_ops->set_idt(vcpu, &dt);
6766         dt.size = sregs->gdt.limit;
6767         dt.address = sregs->gdt.base;
6768         kvm_x86_ops->set_gdt(vcpu, &dt);
6769
6770         vcpu->arch.cr2 = sregs->cr2;
6771         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6772         vcpu->arch.cr3 = sregs->cr3;
6773         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6774
6775         kvm_set_cr8(vcpu, sregs->cr8);
6776
6777         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6778         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6779         apic_base_msr.data = sregs->apic_base;
6780         apic_base_msr.host_initiated = true;
6781         kvm_set_apic_base(vcpu, &apic_base_msr);
6782
6783         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6784         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6785         vcpu->arch.cr0 = sregs->cr0;
6786
6787         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6788         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6789         if (sregs->cr4 & X86_CR4_OSXSAVE)
6790                 kvm_update_cpuid(vcpu);
6791
6792         idx = srcu_read_lock(&vcpu->kvm->srcu);
6793         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6794                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6795                 mmu_reset_needed = 1;
6796         }
6797         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6798
6799         if (mmu_reset_needed)
6800                 kvm_mmu_reset_context(vcpu);
6801
6802         max_bits = KVM_NR_INTERRUPTS;
6803         pending_vec = find_first_bit(
6804                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6805         if (pending_vec < max_bits) {
6806                 kvm_queue_interrupt(vcpu, pending_vec, false);
6807                 pr_debug("Set back pending irq %d\n", pending_vec);
6808         }
6809
6810         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6811         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6812         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6813         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6814         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6815         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6816
6817         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6818         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6819
6820         update_cr8_intercept(vcpu);
6821
6822         /* Older userspace won't unhalt the vcpu on reset. */
6823         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6824             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6825             !is_protmode(vcpu))
6826                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6827
6828         kvm_make_request(KVM_REQ_EVENT, vcpu);
6829
6830         return 0;
6831 }
6832
6833 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6834                                         struct kvm_guest_debug *dbg)
6835 {
6836         unsigned long rflags;
6837         int i, r;
6838
6839         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6840                 r = -EBUSY;
6841                 if (vcpu->arch.exception.pending)
6842                         goto out;
6843                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6844                         kvm_queue_exception(vcpu, DB_VECTOR);
6845                 else
6846                         kvm_queue_exception(vcpu, BP_VECTOR);
6847         }
6848
6849         /*
6850          * Read rflags as long as potentially injected trace flags are still
6851          * filtered out.
6852          */
6853         rflags = kvm_get_rflags(vcpu);
6854
6855         vcpu->guest_debug = dbg->control;
6856         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6857                 vcpu->guest_debug = 0;
6858
6859         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6860                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6861                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6862                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6863         } else {
6864                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6865                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6866         }
6867         kvm_update_dr7(vcpu);
6868
6869         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6870                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6871                         get_segment_base(vcpu, VCPU_SREG_CS);
6872
6873         /*
6874          * Trigger an rflags update that will inject or remove the trace
6875          * flags.
6876          */
6877         kvm_set_rflags(vcpu, rflags);
6878
6879         kvm_x86_ops->update_db_bp_intercept(vcpu);
6880
6881         r = 0;
6882
6883 out:
6884
6885         return r;
6886 }
6887
6888 /*
6889  * Translate a guest virtual address to a guest physical address.
6890  */
6891 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6892                                     struct kvm_translation *tr)
6893 {
6894         unsigned long vaddr = tr->linear_address;
6895         gpa_t gpa;
6896         int idx;
6897
6898         idx = srcu_read_lock(&vcpu->kvm->srcu);
6899         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6900         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6901         tr->physical_address = gpa;
6902         tr->valid = gpa != UNMAPPED_GVA;
6903         tr->writeable = 1;
6904         tr->usermode = 0;
6905
6906         return 0;
6907 }
6908
6909 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6910 {
6911         struct i387_fxsave_struct *fxsave =
6912                         &vcpu->arch.guest_fpu.state->fxsave;
6913
6914         memcpy(fpu->fpr, fxsave->st_space, 128);
6915         fpu->fcw = fxsave->cwd;
6916         fpu->fsw = fxsave->swd;
6917         fpu->ftwx = fxsave->twd;
6918         fpu->last_opcode = fxsave->fop;
6919         fpu->last_ip = fxsave->rip;
6920         fpu->last_dp = fxsave->rdp;
6921         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6922
6923         return 0;
6924 }
6925
6926 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6927 {
6928         struct i387_fxsave_struct *fxsave =
6929                         &vcpu->arch.guest_fpu.state->fxsave;
6930
6931         memcpy(fxsave->st_space, fpu->fpr, 128);
6932         fxsave->cwd = fpu->fcw;
6933         fxsave->swd = fpu->fsw;
6934         fxsave->twd = fpu->ftwx;
6935         fxsave->fop = fpu->last_opcode;
6936         fxsave->rip = fpu->last_ip;
6937         fxsave->rdp = fpu->last_dp;
6938         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6939
6940         return 0;
6941 }
6942
6943 int fx_init(struct kvm_vcpu *vcpu)
6944 {
6945         int err;
6946
6947         err = fpu_alloc(&vcpu->arch.guest_fpu);
6948         if (err)
6949                 return err;
6950
6951         fpu_finit(&vcpu->arch.guest_fpu);
6952         if (cpu_has_xsaves)
6953                 vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
6954                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
6955
6956         /*
6957          * Ensure guest xcr0 is valid for loading
6958          */
6959         vcpu->arch.xcr0 = XSTATE_FP;
6960
6961         vcpu->arch.cr0 |= X86_CR0_ET;
6962
6963         return 0;
6964 }
6965 EXPORT_SYMBOL_GPL(fx_init);
6966
6967 static void fx_free(struct kvm_vcpu *vcpu)
6968 {
6969         fpu_free(&vcpu->arch.guest_fpu);
6970 }
6971
6972 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6973 {
6974         if (vcpu->guest_fpu_loaded)
6975                 return;
6976
6977         /*
6978          * Restore all possible states in the guest,
6979          * and assume host would use all available bits.
6980          * Guest xcr0 would be loaded later.
6981          */
6982         kvm_put_guest_xcr0(vcpu);
6983         vcpu->guest_fpu_loaded = 1;
6984         __kernel_fpu_begin();
6985         fpu_restore_checking(&vcpu->arch.guest_fpu);
6986         trace_kvm_fpu(1);
6987 }
6988
6989 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6990 {
6991         kvm_put_guest_xcr0(vcpu);
6992
6993         if (!vcpu->guest_fpu_loaded)
6994                 return;
6995
6996         vcpu->guest_fpu_loaded = 0;
6997         fpu_save_init(&vcpu->arch.guest_fpu);
6998         __kernel_fpu_end();
6999         ++vcpu->stat.fpu_reload;
7000         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7001         trace_kvm_fpu(0);
7002 }
7003
7004 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7005 {
7006         kvmclock_reset(vcpu);
7007
7008         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7009         fx_free(vcpu);
7010         kvm_x86_ops->vcpu_free(vcpu);
7011 }
7012
7013 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7014                                                 unsigned int id)
7015 {
7016         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7017                 printk_once(KERN_WARNING
7018                 "kvm: SMP vm created on host with unstable TSC; "
7019                 "guest TSC will not be reliable\n");
7020         return kvm_x86_ops->vcpu_create(kvm, id);
7021 }
7022
7023 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7024 {
7025         int r;
7026
7027         vcpu->arch.mtrr_state.have_fixed = 1;
7028         r = vcpu_load(vcpu);
7029         if (r)
7030                 return r;
7031         kvm_vcpu_reset(vcpu);
7032         kvm_mmu_setup(vcpu);
7033         vcpu_put(vcpu);
7034
7035         return r;
7036 }
7037
7038 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7039 {
7040         struct msr_data msr;
7041         struct kvm *kvm = vcpu->kvm;
7042
7043         if (vcpu_load(vcpu))
7044                 return;
7045         msr.data = 0x0;
7046         msr.index = MSR_IA32_TSC;
7047         msr.host_initiated = true;
7048         kvm_write_tsc(vcpu, &msr);
7049         vcpu_put(vcpu);
7050
7051         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7052                                         KVMCLOCK_SYNC_PERIOD);
7053 }
7054
7055 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7056 {
7057         int r;
7058         vcpu->arch.apf.msr_val = 0;
7059
7060         r = vcpu_load(vcpu);
7061         BUG_ON(r);
7062         kvm_mmu_unload(vcpu);
7063         vcpu_put(vcpu);
7064
7065         fx_free(vcpu);
7066         kvm_x86_ops->vcpu_free(vcpu);
7067 }
7068
7069 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7070 {
7071         atomic_set(&vcpu->arch.nmi_queued, 0);
7072         vcpu->arch.nmi_pending = 0;
7073         vcpu->arch.nmi_injected = false;
7074         kvm_clear_interrupt_queue(vcpu);
7075         kvm_clear_exception_queue(vcpu);
7076
7077         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7078         vcpu->arch.dr6 = DR6_INIT;
7079         kvm_update_dr6(vcpu);
7080         vcpu->arch.dr7 = DR7_FIXED_1;
7081         kvm_update_dr7(vcpu);
7082
7083         kvm_make_request(KVM_REQ_EVENT, vcpu);
7084         vcpu->arch.apf.msr_val = 0;
7085         vcpu->arch.st.msr_val = 0;
7086
7087         kvmclock_reset(vcpu);
7088
7089         kvm_clear_async_pf_completion_queue(vcpu);
7090         kvm_async_pf_hash_reset(vcpu);
7091         vcpu->arch.apf.halted = false;
7092
7093         kvm_pmu_reset(vcpu);
7094
7095         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7096         vcpu->arch.regs_avail = ~0;
7097         vcpu->arch.regs_dirty = ~0;
7098
7099         kvm_x86_ops->vcpu_reset(vcpu);
7100 }
7101
7102 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7103 {
7104         struct kvm_segment cs;
7105
7106         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7107         cs.selector = vector << 8;
7108         cs.base = vector << 12;
7109         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7110         kvm_rip_write(vcpu, 0);
7111 }
7112
7113 int kvm_arch_hardware_enable(void)
7114 {
7115         struct kvm *kvm;
7116         struct kvm_vcpu *vcpu;
7117         int i;
7118         int ret;
7119         u64 local_tsc;
7120         u64 max_tsc = 0;
7121         bool stable, backwards_tsc = false;
7122
7123         kvm_shared_msr_cpu_online();
7124         ret = kvm_x86_ops->hardware_enable();
7125         if (ret != 0)
7126                 return ret;
7127
7128         local_tsc = native_read_tsc();
7129         stable = !check_tsc_unstable();
7130         list_for_each_entry(kvm, &vm_list, vm_list) {
7131                 kvm_for_each_vcpu(i, vcpu, kvm) {
7132                         if (!stable && vcpu->cpu == smp_processor_id())
7133                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7134                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7135                                 backwards_tsc = true;
7136                                 if (vcpu->arch.last_host_tsc > max_tsc)
7137                                         max_tsc = vcpu->arch.last_host_tsc;
7138                         }
7139                 }
7140         }
7141
7142         /*
7143          * Sometimes, even reliable TSCs go backwards.  This happens on
7144          * platforms that reset TSC during suspend or hibernate actions, but
7145          * maintain synchronization.  We must compensate.  Fortunately, we can
7146          * detect that condition here, which happens early in CPU bringup,
7147          * before any KVM threads can be running.  Unfortunately, we can't
7148          * bring the TSCs fully up to date with real time, as we aren't yet far
7149          * enough into CPU bringup that we know how much real time has actually
7150          * elapsed; our helper function, get_kernel_ns() will be using boot
7151          * variables that haven't been updated yet.
7152          *
7153          * So we simply find the maximum observed TSC above, then record the
7154          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7155          * the adjustment will be applied.  Note that we accumulate
7156          * adjustments, in case multiple suspend cycles happen before some VCPU
7157          * gets a chance to run again.  In the event that no KVM threads get a
7158          * chance to run, we will miss the entire elapsed period, as we'll have
7159          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7160          * loose cycle time.  This isn't too big a deal, since the loss will be
7161          * uniform across all VCPUs (not to mention the scenario is extremely
7162          * unlikely). It is possible that a second hibernate recovery happens
7163          * much faster than a first, causing the observed TSC here to be
7164          * smaller; this would require additional padding adjustment, which is
7165          * why we set last_host_tsc to the local tsc observed here.
7166          *
7167          * N.B. - this code below runs only on platforms with reliable TSC,
7168          * as that is the only way backwards_tsc is set above.  Also note
7169          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7170          * have the same delta_cyc adjustment applied if backwards_tsc
7171          * is detected.  Note further, this adjustment is only done once,
7172          * as we reset last_host_tsc on all VCPUs to stop this from being
7173          * called multiple times (one for each physical CPU bringup).
7174          *
7175          * Platforms with unreliable TSCs don't have to deal with this, they
7176          * will be compensated by the logic in vcpu_load, which sets the TSC to
7177          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7178          * guarantee that they stay in perfect synchronization.
7179          */
7180         if (backwards_tsc) {
7181                 u64 delta_cyc = max_tsc - local_tsc;
7182                 backwards_tsc_observed = true;
7183                 list_for_each_entry(kvm, &vm_list, vm_list) {
7184                         kvm_for_each_vcpu(i, vcpu, kvm) {
7185                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7186                                 vcpu->arch.last_host_tsc = local_tsc;
7187                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7188                         }
7189
7190                         /*
7191                          * We have to disable TSC offset matching.. if you were
7192                          * booting a VM while issuing an S4 host suspend....
7193                          * you may have some problem.  Solving this issue is
7194                          * left as an exercise to the reader.
7195                          */
7196                         kvm->arch.last_tsc_nsec = 0;
7197                         kvm->arch.last_tsc_write = 0;
7198                 }
7199
7200         }
7201         return 0;
7202 }
7203
7204 void kvm_arch_hardware_disable(void)
7205 {
7206         kvm_x86_ops->hardware_disable();
7207         drop_user_return_notifiers();
7208 }
7209
7210 int kvm_arch_hardware_setup(void)
7211 {
7212         return kvm_x86_ops->hardware_setup();
7213 }
7214
7215 void kvm_arch_hardware_unsetup(void)
7216 {
7217         kvm_x86_ops->hardware_unsetup();
7218 }
7219
7220 void kvm_arch_check_processor_compat(void *rtn)
7221 {
7222         kvm_x86_ops->check_processor_compatibility(rtn);
7223 }
7224
7225 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7226 {
7227         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7228 }
7229
7230 struct static_key kvm_no_apic_vcpu __read_mostly;
7231
7232 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7233 {
7234         struct page *page;
7235         struct kvm *kvm;
7236         int r;
7237
7238         BUG_ON(vcpu->kvm == NULL);
7239         kvm = vcpu->kvm;
7240
7241         vcpu->arch.pv.pv_unhalted = false;
7242         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7243         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7244                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7245         else
7246                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7247
7248         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7249         if (!page) {
7250                 r = -ENOMEM;
7251                 goto fail;
7252         }
7253         vcpu->arch.pio_data = page_address(page);
7254
7255         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7256
7257         r = kvm_mmu_create(vcpu);
7258         if (r < 0)
7259                 goto fail_free_pio_data;
7260
7261         if (irqchip_in_kernel(kvm)) {
7262                 r = kvm_create_lapic(vcpu);
7263                 if (r < 0)
7264                         goto fail_mmu_destroy;
7265         } else
7266                 static_key_slow_inc(&kvm_no_apic_vcpu);
7267
7268         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7269                                        GFP_KERNEL);
7270         if (!vcpu->arch.mce_banks) {
7271                 r = -ENOMEM;
7272                 goto fail_free_lapic;
7273         }
7274         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7275
7276         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7277                 r = -ENOMEM;
7278                 goto fail_free_mce_banks;
7279         }
7280
7281         r = fx_init(vcpu);
7282         if (r)
7283                 goto fail_free_wbinvd_dirty_mask;
7284
7285         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7286         vcpu->arch.pv_time_enabled = false;
7287
7288         vcpu->arch.guest_supported_xcr0 = 0;
7289         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7290
7291         kvm_async_pf_hash_reset(vcpu);
7292         kvm_pmu_init(vcpu);
7293
7294         return 0;
7295 fail_free_wbinvd_dirty_mask:
7296         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7297 fail_free_mce_banks:
7298         kfree(vcpu->arch.mce_banks);
7299 fail_free_lapic:
7300         kvm_free_lapic(vcpu);
7301 fail_mmu_destroy:
7302         kvm_mmu_destroy(vcpu);
7303 fail_free_pio_data:
7304         free_page((unsigned long)vcpu->arch.pio_data);
7305 fail:
7306         return r;
7307 }
7308
7309 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7310 {
7311         int idx;
7312
7313         kvm_pmu_destroy(vcpu);
7314         kfree(vcpu->arch.mce_banks);
7315         kvm_free_lapic(vcpu);
7316         idx = srcu_read_lock(&vcpu->kvm->srcu);
7317         kvm_mmu_destroy(vcpu);
7318         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7319         free_page((unsigned long)vcpu->arch.pio_data);
7320         if (!irqchip_in_kernel(vcpu->kvm))
7321                 static_key_slow_dec(&kvm_no_apic_vcpu);
7322 }
7323
7324 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7325 {
7326         kvm_x86_ops->sched_in(vcpu, cpu);
7327 }
7328
7329 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7330 {
7331         if (type)
7332                 return -EINVAL;
7333
7334         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7335         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7336         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7337         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7338         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7339
7340         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7341         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7342         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7343         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7344                 &kvm->arch.irq_sources_bitmap);
7345
7346         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7347         mutex_init(&kvm->arch.apic_map_lock);
7348         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7349
7350         pvclock_update_vm_gtod_copy(kvm);
7351
7352         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7353         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7354
7355         return 0;
7356 }
7357
7358 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7359 {
7360         int r;
7361         r = vcpu_load(vcpu);
7362         BUG_ON(r);
7363         kvm_mmu_unload(vcpu);
7364         vcpu_put(vcpu);
7365 }
7366
7367 static void kvm_free_vcpus(struct kvm *kvm)
7368 {
7369         unsigned int i;
7370         struct kvm_vcpu *vcpu;
7371
7372         /*
7373          * Unpin any mmu pages first.
7374          */
7375         kvm_for_each_vcpu(i, vcpu, kvm) {
7376                 kvm_clear_async_pf_completion_queue(vcpu);
7377                 kvm_unload_vcpu_mmu(vcpu);
7378         }
7379         kvm_for_each_vcpu(i, vcpu, kvm)
7380                 kvm_arch_vcpu_free(vcpu);
7381
7382         mutex_lock(&kvm->lock);
7383         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7384                 kvm->vcpus[i] = NULL;
7385
7386         atomic_set(&kvm->online_vcpus, 0);
7387         mutex_unlock(&kvm->lock);
7388 }
7389
7390 void kvm_arch_sync_events(struct kvm *kvm)
7391 {
7392         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7393         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7394         kvm_free_all_assigned_devices(kvm);
7395         kvm_free_pit(kvm);
7396 }
7397
7398 void kvm_arch_destroy_vm(struct kvm *kvm)
7399 {
7400         if (current->mm == kvm->mm) {
7401                 /*
7402                  * Free memory regions allocated on behalf of userspace,
7403                  * unless the the memory map has changed due to process exit
7404                  * or fd copying.
7405                  */
7406                 struct kvm_userspace_memory_region mem;
7407                 memset(&mem, 0, sizeof(mem));
7408                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7409                 kvm_set_memory_region(kvm, &mem);
7410
7411                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7412                 kvm_set_memory_region(kvm, &mem);
7413
7414                 mem.slot = TSS_PRIVATE_MEMSLOT;
7415                 kvm_set_memory_region(kvm, &mem);
7416         }
7417         kvm_iommu_unmap_guest(kvm);
7418         kfree(kvm->arch.vpic);
7419         kfree(kvm->arch.vioapic);
7420         kvm_free_vcpus(kvm);
7421         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7422 }
7423
7424 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7425                            struct kvm_memory_slot *dont)
7426 {
7427         int i;
7428
7429         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7430                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7431                         kvm_kvfree(free->arch.rmap[i]);
7432                         free->arch.rmap[i] = NULL;
7433                 }
7434                 if (i == 0)
7435                         continue;
7436
7437                 if (!dont || free->arch.lpage_info[i - 1] !=
7438                              dont->arch.lpage_info[i - 1]) {
7439                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7440                         free->arch.lpage_info[i - 1] = NULL;
7441                 }
7442         }
7443 }
7444
7445 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7446                             unsigned long npages)
7447 {
7448         int i;
7449
7450         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7451                 unsigned long ugfn;
7452                 int lpages;
7453                 int level = i + 1;
7454
7455                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7456                                       slot->base_gfn, level) + 1;
7457
7458                 slot->arch.rmap[i] =
7459                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7460                 if (!slot->arch.rmap[i])
7461                         goto out_free;
7462                 if (i == 0)
7463                         continue;
7464
7465                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7466                                         sizeof(*slot->arch.lpage_info[i - 1]));
7467                 if (!slot->arch.lpage_info[i - 1])
7468                         goto out_free;
7469
7470                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7471                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7472                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7473                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7474                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7475                 /*
7476                  * If the gfn and userspace address are not aligned wrt each
7477                  * other, or if explicitly asked to, disable large page
7478                  * support for this slot
7479                  */
7480                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7481                     !kvm_largepages_enabled()) {
7482                         unsigned long j;
7483
7484                         for (j = 0; j < lpages; ++j)
7485                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7486                 }
7487         }
7488
7489         return 0;
7490
7491 out_free:
7492         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7493                 kvm_kvfree(slot->arch.rmap[i]);
7494                 slot->arch.rmap[i] = NULL;
7495                 if (i == 0)
7496                         continue;
7497
7498                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7499                 slot->arch.lpage_info[i - 1] = NULL;
7500         }
7501         return -ENOMEM;
7502 }
7503
7504 void kvm_arch_memslots_updated(struct kvm *kvm)
7505 {
7506         /*
7507          * memslots->generation has been incremented.
7508          * mmio generation may have reached its maximum value.
7509          */
7510         kvm_mmu_invalidate_mmio_sptes(kvm);
7511 }
7512
7513 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7514                                 struct kvm_memory_slot *memslot,
7515                                 struct kvm_userspace_memory_region *mem,
7516                                 enum kvm_mr_change change)
7517 {
7518         /*
7519          * Only private memory slots need to be mapped here since
7520          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7521          */
7522         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7523                 unsigned long userspace_addr;
7524
7525                 /*
7526                  * MAP_SHARED to prevent internal slot pages from being moved
7527                  * by fork()/COW.
7528                  */
7529                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7530                                          PROT_READ | PROT_WRITE,
7531                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7532
7533                 if (IS_ERR((void *)userspace_addr))
7534                         return PTR_ERR((void *)userspace_addr);
7535
7536                 memslot->userspace_addr = userspace_addr;
7537         }
7538
7539         return 0;
7540 }
7541
7542 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7543                                      struct kvm_memory_slot *new)
7544 {
7545         /* Still write protect RO slot */
7546         if (new->flags & KVM_MEM_READONLY) {
7547                 kvm_mmu_slot_remove_write_access(kvm, new);
7548                 return;
7549         }
7550
7551         /*
7552          * Call kvm_x86_ops dirty logging hooks when they are valid.
7553          *
7554          * kvm_x86_ops->slot_disable_log_dirty is called when:
7555          *
7556          *  - KVM_MR_CREATE with dirty logging is disabled
7557          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7558          *
7559          * The reason is, in case of PML, we need to set D-bit for any slots
7560          * with dirty logging disabled in order to eliminate unnecessary GPA
7561          * logging in PML buffer (and potential PML buffer full VMEXT). This
7562          * guarantees leaving PML enabled during guest's lifetime won't have
7563          * any additonal overhead from PML when guest is running with dirty
7564          * logging disabled for memory slots.
7565          *
7566          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7567          * to dirty logging mode.
7568          *
7569          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7570          *
7571          * In case of write protect:
7572          *
7573          * Write protect all pages for dirty logging.
7574          *
7575          * All the sptes including the large sptes which point to this
7576          * slot are set to readonly. We can not create any new large
7577          * spte on this slot until the end of the logging.
7578          *
7579          * See the comments in fast_page_fault().
7580          */
7581         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7582                 if (kvm_x86_ops->slot_enable_log_dirty)
7583                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7584                 else
7585                         kvm_mmu_slot_remove_write_access(kvm, new);
7586         } else {
7587                 if (kvm_x86_ops->slot_disable_log_dirty)
7588                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7589         }
7590 }
7591
7592 void kvm_arch_commit_memory_region(struct kvm *kvm,
7593                                 struct kvm_userspace_memory_region *mem,
7594                                 const struct kvm_memory_slot *old,
7595                                 enum kvm_mr_change change)
7596 {
7597         struct kvm_memory_slot *new;
7598         int nr_mmu_pages = 0;
7599
7600         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7601                 int ret;
7602
7603                 ret = vm_munmap(old->userspace_addr,
7604                                 old->npages * PAGE_SIZE);
7605                 if (ret < 0)
7606                         printk(KERN_WARNING
7607                                "kvm_vm_ioctl_set_memory_region: "
7608                                "failed to munmap memory\n");
7609         }
7610
7611         if (!kvm->arch.n_requested_mmu_pages)
7612                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7613
7614         if (nr_mmu_pages)
7615                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7616
7617         /* It's OK to get 'new' slot here as it has already been installed */
7618         new = id_to_memslot(kvm->memslots, mem->slot);
7619
7620         /*
7621          * Set up write protection and/or dirty logging for the new slot.
7622          *
7623          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7624          * been zapped so no dirty logging staff is needed for old slot. For
7625          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7626          * new and it's also covered when dealing with the new slot.
7627          */
7628         if (change != KVM_MR_DELETE)
7629                 kvm_mmu_slot_apply_flags(kvm, new);
7630 }
7631
7632 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7633 {
7634         kvm_mmu_invalidate_zap_all_pages(kvm);
7635 }
7636
7637 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7638                                    struct kvm_memory_slot *slot)
7639 {
7640         kvm_mmu_invalidate_zap_all_pages(kvm);
7641 }
7642
7643 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7644 {
7645         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7646                 kvm_x86_ops->check_nested_events(vcpu, false);
7647
7648         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7649                 !vcpu->arch.apf.halted)
7650                 || !list_empty_careful(&vcpu->async_pf.done)
7651                 || kvm_apic_has_events(vcpu)
7652                 || vcpu->arch.pv.pv_unhalted
7653                 || atomic_read(&vcpu->arch.nmi_queued) ||
7654                 (kvm_arch_interrupt_allowed(vcpu) &&
7655                  kvm_cpu_has_interrupt(vcpu));
7656 }
7657
7658 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7659 {
7660         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7661 }
7662
7663 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7664 {
7665         return kvm_x86_ops->interrupt_allowed(vcpu);
7666 }
7667
7668 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7669 {
7670         if (is_64_bit_mode(vcpu))
7671                 return kvm_rip_read(vcpu);
7672         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7673                      kvm_rip_read(vcpu));
7674 }
7675 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7676
7677 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7678 {
7679         return kvm_get_linear_rip(vcpu) == linear_rip;
7680 }
7681 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7682
7683 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7684 {
7685         unsigned long rflags;
7686
7687         rflags = kvm_x86_ops->get_rflags(vcpu);
7688         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7689                 rflags &= ~X86_EFLAGS_TF;
7690         return rflags;
7691 }
7692 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7693
7694 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7695 {
7696         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7697             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7698                 rflags |= X86_EFLAGS_TF;
7699         kvm_x86_ops->set_rflags(vcpu, rflags);
7700 }
7701
7702 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7703 {
7704         __kvm_set_rflags(vcpu, rflags);
7705         kvm_make_request(KVM_REQ_EVENT, vcpu);
7706 }
7707 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7708
7709 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7710 {
7711         int r;
7712
7713         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7714               work->wakeup_all)
7715                 return;
7716
7717         r = kvm_mmu_reload(vcpu);
7718         if (unlikely(r))
7719                 return;
7720
7721         if (!vcpu->arch.mmu.direct_map &&
7722               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7723                 return;
7724
7725         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7726 }
7727
7728 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7729 {
7730         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7731 }
7732
7733 static inline u32 kvm_async_pf_next_probe(u32 key)
7734 {
7735         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7736 }
7737
7738 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7739 {
7740         u32 key = kvm_async_pf_hash_fn(gfn);
7741
7742         while (vcpu->arch.apf.gfns[key] != ~0)
7743                 key = kvm_async_pf_next_probe(key);
7744
7745         vcpu->arch.apf.gfns[key] = gfn;
7746 }
7747
7748 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7749 {
7750         int i;
7751         u32 key = kvm_async_pf_hash_fn(gfn);
7752
7753         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7754                      (vcpu->arch.apf.gfns[key] != gfn &&
7755                       vcpu->arch.apf.gfns[key] != ~0); i++)
7756                 key = kvm_async_pf_next_probe(key);
7757
7758         return key;
7759 }
7760
7761 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7762 {
7763         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7764 }
7765
7766 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7767 {
7768         u32 i, j, k;
7769
7770         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7771         while (true) {
7772                 vcpu->arch.apf.gfns[i] = ~0;
7773                 do {
7774                         j = kvm_async_pf_next_probe(j);
7775                         if (vcpu->arch.apf.gfns[j] == ~0)
7776                                 return;
7777                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7778                         /*
7779                          * k lies cyclically in ]i,j]
7780                          * |    i.k.j |
7781                          * |....j i.k.| or  |.k..j i...|
7782                          */
7783                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7784                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7785                 i = j;
7786         }
7787 }
7788
7789 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7790 {
7791
7792         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7793                                       sizeof(val));
7794 }
7795
7796 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7797                                      struct kvm_async_pf *work)
7798 {
7799         struct x86_exception fault;
7800
7801         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7802         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7803
7804         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7805             (vcpu->arch.apf.send_user_only &&
7806              kvm_x86_ops->get_cpl(vcpu) == 0))
7807                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7808         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7809                 fault.vector = PF_VECTOR;
7810                 fault.error_code_valid = true;
7811                 fault.error_code = 0;
7812                 fault.nested_page_fault = false;
7813                 fault.address = work->arch.token;
7814                 kvm_inject_page_fault(vcpu, &fault);
7815         }
7816 }
7817
7818 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7819                                  struct kvm_async_pf *work)
7820 {
7821         struct x86_exception fault;
7822
7823         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7824         if (work->wakeup_all)
7825                 work->arch.token = ~0; /* broadcast wakeup */
7826         else
7827                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7828
7829         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7830             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7831                 fault.vector = PF_VECTOR;
7832                 fault.error_code_valid = true;
7833                 fault.error_code = 0;
7834                 fault.nested_page_fault = false;
7835                 fault.address = work->arch.token;
7836                 kvm_inject_page_fault(vcpu, &fault);
7837         }
7838         vcpu->arch.apf.halted = false;
7839         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7840 }
7841
7842 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7843 {
7844         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7845                 return true;
7846         else
7847                 return !kvm_event_needs_reinjection(vcpu) &&
7848                         kvm_x86_ops->interrupt_allowed(vcpu);
7849 }
7850
7851 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7852 {
7853         atomic_inc(&kvm->arch.noncoherent_dma_count);
7854 }
7855 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7856
7857 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7858 {
7859         atomic_dec(&kvm->arch.noncoherent_dma_count);
7860 }
7861 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7862
7863 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7864 {
7865         return atomic_read(&kvm->arch.noncoherent_dma_count);
7866 }
7867 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7868
7869 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7870 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);