Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32  kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns = 0;
113 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
114
115 static bool backwards_tsc_observed = false;
116
117 #define KVM_NR_SHARED_MSRS 16
118
119 struct kvm_shared_msrs_global {
120         int nr;
121         u32 msrs[KVM_NR_SHARED_MSRS];
122 };
123
124 struct kvm_shared_msrs {
125         struct user_return_notifier urn;
126         bool registered;
127         struct kvm_shared_msr_values {
128                 u64 host;
129                 u64 curr;
130         } values[KVM_NR_SHARED_MSRS];
131 };
132
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
134 static struct kvm_shared_msrs __percpu *shared_msrs;
135
136 struct kvm_stats_debugfs_item debugfs_entries[] = {
137         { "pf_fixed", VCPU_STAT(pf_fixed) },
138         { "pf_guest", VCPU_STAT(pf_guest) },
139         { "tlb_flush", VCPU_STAT(tlb_flush) },
140         { "invlpg", VCPU_STAT(invlpg) },
141         { "exits", VCPU_STAT(exits) },
142         { "io_exits", VCPU_STAT(io_exits) },
143         { "mmio_exits", VCPU_STAT(mmio_exits) },
144         { "signal_exits", VCPU_STAT(signal_exits) },
145         { "irq_window", VCPU_STAT(irq_window_exits) },
146         { "nmi_window", VCPU_STAT(nmi_window_exits) },
147         { "halt_exits", VCPU_STAT(halt_exits) },
148         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
149         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
150         { "hypercalls", VCPU_STAT(hypercalls) },
151         { "request_irq", VCPU_STAT(request_irq_exits) },
152         { "irq_exits", VCPU_STAT(irq_exits) },
153         { "host_state_reload", VCPU_STAT(host_state_reload) },
154         { "efer_reload", VCPU_STAT(efer_reload) },
155         { "fpu_reload", VCPU_STAT(fpu_reload) },
156         { "insn_emulation", VCPU_STAT(insn_emulation) },
157         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
158         { "irq_injections", VCPU_STAT(irq_injections) },
159         { "nmi_injections", VCPU_STAT(nmi_injections) },
160         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
161         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
162         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
163         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
164         { "mmu_flooded", VM_STAT(mmu_flooded) },
165         { "mmu_recycled", VM_STAT(mmu_recycled) },
166         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
167         { "mmu_unsync", VM_STAT(mmu_unsync) },
168         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
169         { "largepages", VM_STAT(lpages) },
170         { NULL }
171 };
172
173 u64 __read_mostly host_xcr0;
174
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
176
177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
178 {
179         int i;
180         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
181                 vcpu->arch.apf.gfns[i] = ~0;
182 }
183
184 static void kvm_on_user_return(struct user_return_notifier *urn)
185 {
186         unsigned slot;
187         struct kvm_shared_msrs *locals
188                 = container_of(urn, struct kvm_shared_msrs, urn);
189         struct kvm_shared_msr_values *values;
190
191         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
192                 values = &locals->values[slot];
193                 if (values->host != values->curr) {
194                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
195                         values->curr = values->host;
196                 }
197         }
198         locals->registered = false;
199         user_return_notifier_unregister(urn);
200 }
201
202 static void shared_msr_update(unsigned slot, u32 msr)
203 {
204         u64 value;
205         unsigned int cpu = smp_processor_id();
206         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
207
208         /* only read, and nobody should modify it at this time,
209          * so don't need lock */
210         if (slot >= shared_msrs_global.nr) {
211                 printk(KERN_ERR "kvm: invalid MSR slot!");
212                 return;
213         }
214         rdmsrl_safe(msr, &value);
215         smsr->values[slot].host = value;
216         smsr->values[slot].curr = value;
217 }
218
219 void kvm_define_shared_msr(unsigned slot, u32 msr)
220 {
221         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
222         if (slot >= shared_msrs_global.nr)
223                 shared_msrs_global.nr = slot + 1;
224         shared_msrs_global.msrs[slot] = msr;
225         /* we need ensured the shared_msr_global have been updated */
226         smp_wmb();
227 }
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
229
230 static void kvm_shared_msr_cpu_online(void)
231 {
232         unsigned i;
233
234         for (i = 0; i < shared_msrs_global.nr; ++i)
235                 shared_msr_update(i, shared_msrs_global.msrs[i]);
236 }
237
238 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
239 {
240         unsigned int cpu = smp_processor_id();
241         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242         int err;
243
244         if (((value ^ smsr->values[slot].curr) & mask) == 0)
245                 return 0;
246         smsr->values[slot].curr = value;
247         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
248         if (err)
249                 return 1;
250
251         if (!smsr->registered) {
252                 smsr->urn.on_user_return = kvm_on_user_return;
253                 user_return_notifier_register(&smsr->urn);
254                 smsr->registered = true;
255         }
256         return 0;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
259
260 static void drop_user_return_notifiers(void)
261 {
262         unsigned int cpu = smp_processor_id();
263         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
264
265         if (smsr->registered)
266                 kvm_on_user_return(&smsr->urn);
267 }
268
269 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
270 {
271         return vcpu->arch.apic_base;
272 }
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
274
275 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 {
277         u64 old_state = vcpu->arch.apic_base &
278                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
279         u64 new_state = msr_info->data &
280                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
282                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
283
284         if (!msr_info->host_initiated &&
285             ((msr_info->data & reserved_bits) != 0 ||
286              new_state == X2APIC_ENABLE ||
287              (new_state == MSR_IA32_APICBASE_ENABLE &&
288               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
289              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
290               old_state == 0)))
291                 return 1;
292
293         kvm_lapic_set_base(vcpu, msr_info->data);
294         return 0;
295 }
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
297
298 asmlinkage __visible void kvm_spurious_fault(void)
299 {
300         /* Fault while not rebooting.  We want the trace. */
301         BUG();
302 }
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
304
305 #define EXCPT_BENIGN            0
306 #define EXCPT_CONTRIBUTORY      1
307 #define EXCPT_PF                2
308
309 static int exception_class(int vector)
310 {
311         switch (vector) {
312         case PF_VECTOR:
313                 return EXCPT_PF;
314         case DE_VECTOR:
315         case TS_VECTOR:
316         case NP_VECTOR:
317         case SS_VECTOR:
318         case GP_VECTOR:
319                 return EXCPT_CONTRIBUTORY;
320         default:
321                 break;
322         }
323         return EXCPT_BENIGN;
324 }
325
326 #define EXCPT_FAULT             0
327 #define EXCPT_TRAP              1
328 #define EXCPT_ABORT             2
329 #define EXCPT_INTERRUPT         3
330
331 static int exception_type(int vector)
332 {
333         unsigned int mask;
334
335         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
336                 return EXCPT_INTERRUPT;
337
338         mask = 1 << vector;
339
340         /* #DB is trap, as instruction watchpoints are handled elsewhere */
341         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
342                 return EXCPT_TRAP;
343
344         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
345                 return EXCPT_ABORT;
346
347         /* Reserved exceptions will result in fault */
348         return EXCPT_FAULT;
349 }
350
351 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
352                 unsigned nr, bool has_error, u32 error_code,
353                 bool reinject)
354 {
355         u32 prev_nr;
356         int class1, class2;
357
358         kvm_make_request(KVM_REQ_EVENT, vcpu);
359
360         if (!vcpu->arch.exception.pending) {
361         queue:
362                 if (has_error && !is_protmode(vcpu))
363                         has_error = false;
364                 vcpu->arch.exception.pending = true;
365                 vcpu->arch.exception.has_error_code = has_error;
366                 vcpu->arch.exception.nr = nr;
367                 vcpu->arch.exception.error_code = error_code;
368                 vcpu->arch.exception.reinject = reinject;
369                 return;
370         }
371
372         /* to check exception */
373         prev_nr = vcpu->arch.exception.nr;
374         if (prev_nr == DF_VECTOR) {
375                 /* triple fault -> shutdown */
376                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
377                 return;
378         }
379         class1 = exception_class(prev_nr);
380         class2 = exception_class(nr);
381         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
382                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
383                 /* generate double fault per SDM Table 5-5 */
384                 vcpu->arch.exception.pending = true;
385                 vcpu->arch.exception.has_error_code = true;
386                 vcpu->arch.exception.nr = DF_VECTOR;
387                 vcpu->arch.exception.error_code = 0;
388         } else
389                 /* replace previous exception with a new one in a hope
390                    that instruction re-execution will regenerate lost
391                    exception */
392                 goto queue;
393 }
394
395 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
396 {
397         kvm_multiple_exception(vcpu, nr, false, 0, false);
398 }
399 EXPORT_SYMBOL_GPL(kvm_queue_exception);
400
401 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
402 {
403         kvm_multiple_exception(vcpu, nr, false, 0, true);
404 }
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
406
407 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
408 {
409         if (err)
410                 kvm_inject_gp(vcpu, 0);
411         else
412                 kvm_x86_ops->skip_emulated_instruction(vcpu);
413 }
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
415
416 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418         ++vcpu->stat.pf_guest;
419         vcpu->arch.cr2 = fault->address;
420         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
421 }
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
423
424 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
425 {
426         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
427                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
428         else
429                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
430
431         return fault->nested_page_fault;
432 }
433
434 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
435 {
436         atomic_inc(&vcpu->arch.nmi_queued);
437         kvm_make_request(KVM_REQ_NMI, vcpu);
438 }
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
440
441 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
442 {
443         kvm_multiple_exception(vcpu, nr, true, error_code, false);
444 }
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
446
447 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
448 {
449         kvm_multiple_exception(vcpu, nr, true, error_code, true);
450 }
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
452
453 /*
454  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
455  * a #GP and return false.
456  */
457 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
458 {
459         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
460                 return true;
461         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
462         return false;
463 }
464 EXPORT_SYMBOL_GPL(kvm_require_cpl);
465
466 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
467 {
468         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
469                 return true;
470
471         kvm_queue_exception(vcpu, UD_VECTOR);
472         return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_dr);
475
476 /*
477  * This function will be used to read from the physical memory of the currently
478  * running guest. The difference to kvm_read_guest_page is that this function
479  * can read from guest physical or from the guest's guest physical memory.
480  */
481 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
482                             gfn_t ngfn, void *data, int offset, int len,
483                             u32 access)
484 {
485         struct x86_exception exception;
486         gfn_t real_gfn;
487         gpa_t ngpa;
488
489         ngpa     = gfn_to_gpa(ngfn);
490         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
491         if (real_gfn == UNMAPPED_GVA)
492                 return -EFAULT;
493
494         real_gfn = gpa_to_gfn(real_gfn);
495
496         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
497 }
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
499
500 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
501                                void *data, int offset, int len, u32 access)
502 {
503         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
504                                        data, offset, len, access);
505 }
506
507 /*
508  * Load the pae pdptrs.  Return true is they are all valid.
509  */
510 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
511 {
512         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
513         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
514         int i;
515         int ret;
516         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
517
518         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
519                                       offset * sizeof(u64), sizeof(pdpte),
520                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
521         if (ret < 0) {
522                 ret = 0;
523                 goto out;
524         }
525         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
526                 if (is_present_gpte(pdpte[i]) &&
527                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
528                         ret = 0;
529                         goto out;
530                 }
531         }
532         ret = 1;
533
534         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
535         __set_bit(VCPU_EXREG_PDPTR,
536                   (unsigned long *)&vcpu->arch.regs_avail);
537         __set_bit(VCPU_EXREG_PDPTR,
538                   (unsigned long *)&vcpu->arch.regs_dirty);
539 out:
540
541         return ret;
542 }
543 EXPORT_SYMBOL_GPL(load_pdptrs);
544
545 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
546 {
547         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
548         bool changed = true;
549         int offset;
550         gfn_t gfn;
551         int r;
552
553         if (is_long_mode(vcpu) || !is_pae(vcpu))
554                 return false;
555
556         if (!test_bit(VCPU_EXREG_PDPTR,
557                       (unsigned long *)&vcpu->arch.regs_avail))
558                 return true;
559
560         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
561         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
562         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
563                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
564         if (r < 0)
565                 goto out;
566         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
567 out:
568
569         return changed;
570 }
571
572 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
573 {
574         unsigned long old_cr0 = kvm_read_cr0(vcpu);
575         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
576                                     X86_CR0_CD | X86_CR0_NW;
577
578         cr0 |= X86_CR0_ET;
579
580 #ifdef CONFIG_X86_64
581         if (cr0 & 0xffffffff00000000UL)
582                 return 1;
583 #endif
584
585         cr0 &= ~CR0_RESERVED_BITS;
586
587         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
588                 return 1;
589
590         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
591                 return 1;
592
593         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
594 #ifdef CONFIG_X86_64
595                 if ((vcpu->arch.efer & EFER_LME)) {
596                         int cs_db, cs_l;
597
598                         if (!is_pae(vcpu))
599                                 return 1;
600                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
601                         if (cs_l)
602                                 return 1;
603                 } else
604 #endif
605                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
606                                                  kvm_read_cr3(vcpu)))
607                         return 1;
608         }
609
610         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
611                 return 1;
612
613         kvm_x86_ops->set_cr0(vcpu, cr0);
614
615         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
616                 kvm_clear_async_pf_completion_queue(vcpu);
617                 kvm_async_pf_hash_reset(vcpu);
618         }
619
620         if ((cr0 ^ old_cr0) & update_bits)
621                 kvm_mmu_reset_context(vcpu);
622         return 0;
623 }
624 EXPORT_SYMBOL_GPL(kvm_set_cr0);
625
626 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
627 {
628         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
629 }
630 EXPORT_SYMBOL_GPL(kvm_lmsw);
631
632 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
633 {
634         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
635                         !vcpu->guest_xcr0_loaded) {
636                 /* kvm_set_xcr() also depends on this */
637                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
638                 vcpu->guest_xcr0_loaded = 1;
639         }
640 }
641
642 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
643 {
644         if (vcpu->guest_xcr0_loaded) {
645                 if (vcpu->arch.xcr0 != host_xcr0)
646                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
647                 vcpu->guest_xcr0_loaded = 0;
648         }
649 }
650
651 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
652 {
653         u64 xcr0 = xcr;
654         u64 old_xcr0 = vcpu->arch.xcr0;
655         u64 valid_bits;
656
657         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
658         if (index != XCR_XFEATURE_ENABLED_MASK)
659                 return 1;
660         if (!(xcr0 & XSTATE_FP))
661                 return 1;
662         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
663                 return 1;
664
665         /*
666          * Do not allow the guest to set bits that we do not support
667          * saving.  However, xcr0 bit 0 is always set, even if the
668          * emulated CPU does not support XSAVE (see fx_init).
669          */
670         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
671         if (xcr0 & ~valid_bits)
672                 return 1;
673
674         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
675                 return 1;
676
677         if (xcr0 & XSTATE_AVX512) {
678                 if (!(xcr0 & XSTATE_YMM))
679                         return 1;
680                 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
681                         return 1;
682         }
683         kvm_put_guest_xcr0(vcpu);
684         vcpu->arch.xcr0 = xcr0;
685
686         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
687                 kvm_update_cpuid(vcpu);
688         return 0;
689 }
690
691 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
692 {
693         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
694             __kvm_set_xcr(vcpu, index, xcr)) {
695                 kvm_inject_gp(vcpu, 0);
696                 return 1;
697         }
698         return 0;
699 }
700 EXPORT_SYMBOL_GPL(kvm_set_xcr);
701
702 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
703 {
704         unsigned long old_cr4 = kvm_read_cr4(vcpu);
705         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
706                                    X86_CR4_PAE | X86_CR4_SMEP;
707         if (cr4 & CR4_RESERVED_BITS)
708                 return 1;
709
710         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
711                 return 1;
712
713         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
714                 return 1;
715
716         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
717                 return 1;
718
719         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
720                 return 1;
721
722         if (is_long_mode(vcpu)) {
723                 if (!(cr4 & X86_CR4_PAE))
724                         return 1;
725         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
726                    && ((cr4 ^ old_cr4) & pdptr_bits)
727                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
728                                    kvm_read_cr3(vcpu)))
729                 return 1;
730
731         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
732                 if (!guest_cpuid_has_pcid(vcpu))
733                         return 1;
734
735                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
737                         return 1;
738         }
739
740         if (kvm_x86_ops->set_cr4(vcpu, cr4))
741                 return 1;
742
743         if (((cr4 ^ old_cr4) & pdptr_bits) ||
744             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
745                 kvm_mmu_reset_context(vcpu);
746
747         if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
748                 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
749
750         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
751                 kvm_update_cpuid(vcpu);
752
753         return 0;
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_cr4);
756
757 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
758 {
759 #ifdef CONFIG_X86_64
760         cr3 &= ~CR3_PCID_INVD;
761 #endif
762
763         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
764                 kvm_mmu_sync_roots(vcpu);
765                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
766                 return 0;
767         }
768
769         if (is_long_mode(vcpu)) {
770                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
771                         return 1;
772         } else if (is_pae(vcpu) && is_paging(vcpu) &&
773                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
774                 return 1;
775
776         vcpu->arch.cr3 = cr3;
777         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
778         kvm_mmu_new_cr3(vcpu);
779         return 0;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_cr3);
782
783 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
784 {
785         if (cr8 & CR8_RESERVED_BITS)
786                 return 1;
787         if (irqchip_in_kernel(vcpu->kvm))
788                 kvm_lapic_set_tpr(vcpu, cr8);
789         else
790                 vcpu->arch.cr8 = cr8;
791         return 0;
792 }
793 EXPORT_SYMBOL_GPL(kvm_set_cr8);
794
795 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
796 {
797         if (irqchip_in_kernel(vcpu->kvm))
798                 return kvm_lapic_get_cr8(vcpu);
799         else
800                 return vcpu->arch.cr8;
801 }
802 EXPORT_SYMBOL_GPL(kvm_get_cr8);
803
804 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
805 {
806         int i;
807
808         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
809                 for (i = 0; i < KVM_NR_DB_REGS; i++)
810                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
811                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
812         }
813 }
814
815 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
816 {
817         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
818                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
819 }
820
821 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
822 {
823         unsigned long dr7;
824
825         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
826                 dr7 = vcpu->arch.guest_debug_dr7;
827         else
828                 dr7 = vcpu->arch.dr7;
829         kvm_x86_ops->set_dr7(vcpu, dr7);
830         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
831         if (dr7 & DR7_BP_EN_MASK)
832                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
833 }
834
835 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
836 {
837         u64 fixed = DR6_FIXED_1;
838
839         if (!guest_cpuid_has_rtm(vcpu))
840                 fixed |= DR6_RTM;
841         return fixed;
842 }
843
844 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
845 {
846         switch (dr) {
847         case 0 ... 3:
848                 vcpu->arch.db[dr] = val;
849                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
850                         vcpu->arch.eff_db[dr] = val;
851                 break;
852         case 4:
853                 /* fall through */
854         case 6:
855                 if (val & 0xffffffff00000000ULL)
856                         return -1; /* #GP */
857                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
858                 kvm_update_dr6(vcpu);
859                 break;
860         case 5:
861                 /* fall through */
862         default: /* 7 */
863                 if (val & 0xffffffff00000000ULL)
864                         return -1; /* #GP */
865                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
866                 kvm_update_dr7(vcpu);
867                 break;
868         }
869
870         return 0;
871 }
872
873 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
874 {
875         if (__kvm_set_dr(vcpu, dr, val)) {
876                 kvm_inject_gp(vcpu, 0);
877                 return 1;
878         }
879         return 0;
880 }
881 EXPORT_SYMBOL_GPL(kvm_set_dr);
882
883 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
884 {
885         switch (dr) {
886         case 0 ... 3:
887                 *val = vcpu->arch.db[dr];
888                 break;
889         case 4:
890                 /* fall through */
891         case 6:
892                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
893                         *val = vcpu->arch.dr6;
894                 else
895                         *val = kvm_x86_ops->get_dr6(vcpu);
896                 break;
897         case 5:
898                 /* fall through */
899         default: /* 7 */
900                 *val = vcpu->arch.dr7;
901                 break;
902         }
903         return 0;
904 }
905 EXPORT_SYMBOL_GPL(kvm_get_dr);
906
907 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
908 {
909         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
910         u64 data;
911         int err;
912
913         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
914         if (err)
915                 return err;
916         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
917         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
918         return err;
919 }
920 EXPORT_SYMBOL_GPL(kvm_rdpmc);
921
922 /*
923  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
924  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
925  *
926  * This list is modified at module load time to reflect the
927  * capabilities of the host cpu. This capabilities test skips MSRs that are
928  * kvm-specific. Those are put in the beginning of the list.
929  */
930
931 #define KVM_SAVE_MSRS_BEGIN     12
932 static u32 msrs_to_save[] = {
933         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
934         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
935         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
936         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
937         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
938         MSR_KVM_PV_EOI_EN,
939         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
940         MSR_STAR,
941 #ifdef CONFIG_X86_64
942         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
943 #endif
944         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
945         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
946 };
947
948 static unsigned num_msrs_to_save;
949
950 static const u32 emulated_msrs[] = {
951         MSR_IA32_TSC_ADJUST,
952         MSR_IA32_TSCDEADLINE,
953         MSR_IA32_MISC_ENABLE,
954         MSR_IA32_MCG_STATUS,
955         MSR_IA32_MCG_CTL,
956 };
957
958 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
959 {
960         if (efer & efer_reserved_bits)
961                 return false;
962
963         if (efer & EFER_FFXSR) {
964                 struct kvm_cpuid_entry2 *feat;
965
966                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
967                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
968                         return false;
969         }
970
971         if (efer & EFER_SVME) {
972                 struct kvm_cpuid_entry2 *feat;
973
974                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
975                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
976                         return false;
977         }
978
979         return true;
980 }
981 EXPORT_SYMBOL_GPL(kvm_valid_efer);
982
983 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
984 {
985         u64 old_efer = vcpu->arch.efer;
986
987         if (!kvm_valid_efer(vcpu, efer))
988                 return 1;
989
990         if (is_paging(vcpu)
991             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
992                 return 1;
993
994         efer &= ~EFER_LMA;
995         efer |= vcpu->arch.efer & EFER_LMA;
996
997         kvm_x86_ops->set_efer(vcpu, efer);
998
999         /* Update reserved bits */
1000         if ((efer ^ old_efer) & EFER_NX)
1001                 kvm_mmu_reset_context(vcpu);
1002
1003         return 0;
1004 }
1005
1006 void kvm_enable_efer_bits(u64 mask)
1007 {
1008        efer_reserved_bits &= ~mask;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1011
1012 /*
1013  * Writes msr value into into the appropriate "register".
1014  * Returns 0 on success, non-0 otherwise.
1015  * Assumes vcpu_load() was already called.
1016  */
1017 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1018 {
1019         switch (msr->index) {
1020         case MSR_FS_BASE:
1021         case MSR_GS_BASE:
1022         case MSR_KERNEL_GS_BASE:
1023         case MSR_CSTAR:
1024         case MSR_LSTAR:
1025                 if (is_noncanonical_address(msr->data))
1026                         return 1;
1027                 break;
1028         case MSR_IA32_SYSENTER_EIP:
1029         case MSR_IA32_SYSENTER_ESP:
1030                 /*
1031                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1032                  * non-canonical address is written on Intel but not on
1033                  * AMD (which ignores the top 32-bits, because it does
1034                  * not implement 64-bit SYSENTER).
1035                  *
1036                  * 64-bit code should hence be able to write a non-canonical
1037                  * value on AMD.  Making the address canonical ensures that
1038                  * vmentry does not fail on Intel after writing a non-canonical
1039                  * value, and that something deterministic happens if the guest
1040                  * invokes 64-bit SYSENTER.
1041                  */
1042                 msr->data = get_canonical(msr->data);
1043         }
1044         return kvm_x86_ops->set_msr(vcpu, msr);
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_msr);
1047
1048 /*
1049  * Adapt set_msr() to msr_io()'s calling convention
1050  */
1051 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1052 {
1053         struct msr_data msr;
1054
1055         msr.data = *data;
1056         msr.index = index;
1057         msr.host_initiated = true;
1058         return kvm_set_msr(vcpu, &msr);
1059 }
1060
1061 #ifdef CONFIG_X86_64
1062 struct pvclock_gtod_data {
1063         seqcount_t      seq;
1064
1065         struct { /* extract of a clocksource struct */
1066                 int vclock_mode;
1067                 cycle_t cycle_last;
1068                 cycle_t mask;
1069                 u32     mult;
1070                 u32     shift;
1071         } clock;
1072
1073         u64             boot_ns;
1074         u64             nsec_base;
1075 };
1076
1077 static struct pvclock_gtod_data pvclock_gtod_data;
1078
1079 static void update_pvclock_gtod(struct timekeeper *tk)
1080 {
1081         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1082         u64 boot_ns;
1083
1084         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1085
1086         write_seqcount_begin(&vdata->seq);
1087
1088         /* copy pvclock gtod data */
1089         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1090         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1091         vdata->clock.mask               = tk->tkr_mono.mask;
1092         vdata->clock.mult               = tk->tkr_mono.mult;
1093         vdata->clock.shift              = tk->tkr_mono.shift;
1094
1095         vdata->boot_ns                  = boot_ns;
1096         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1097
1098         write_seqcount_end(&vdata->seq);
1099 }
1100 #endif
1101
1102 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1103 {
1104         /*
1105          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1106          * vcpu_enter_guest.  This function is only called from
1107          * the physical CPU that is running vcpu.
1108          */
1109         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1110 }
1111
1112 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1113 {
1114         int version;
1115         int r;
1116         struct pvclock_wall_clock wc;
1117         struct timespec boot;
1118
1119         if (!wall_clock)
1120                 return;
1121
1122         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1123         if (r)
1124                 return;
1125
1126         if (version & 1)
1127                 ++version;  /* first time write, random junk */
1128
1129         ++version;
1130
1131         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1132
1133         /*
1134          * The guest calculates current wall clock time by adding
1135          * system time (updated by kvm_guest_time_update below) to the
1136          * wall clock specified here.  guest system time equals host
1137          * system time for us, thus we must fill in host boot time here.
1138          */
1139         getboottime(&boot);
1140
1141         if (kvm->arch.kvmclock_offset) {
1142                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1143                 boot = timespec_sub(boot, ts);
1144         }
1145         wc.sec = boot.tv_sec;
1146         wc.nsec = boot.tv_nsec;
1147         wc.version = version;
1148
1149         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1150
1151         version++;
1152         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1153 }
1154
1155 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1156 {
1157         uint32_t quotient, remainder;
1158
1159         /* Don't try to replace with do_div(), this one calculates
1160          * "(dividend << 32) / divisor" */
1161         __asm__ ( "divl %4"
1162                   : "=a" (quotient), "=d" (remainder)
1163                   : "0" (0), "1" (dividend), "r" (divisor) );
1164         return quotient;
1165 }
1166
1167 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1168                                s8 *pshift, u32 *pmultiplier)
1169 {
1170         uint64_t scaled64;
1171         int32_t  shift = 0;
1172         uint64_t tps64;
1173         uint32_t tps32;
1174
1175         tps64 = base_khz * 1000LL;
1176         scaled64 = scaled_khz * 1000LL;
1177         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1178                 tps64 >>= 1;
1179                 shift--;
1180         }
1181
1182         tps32 = (uint32_t)tps64;
1183         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1184                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1185                         scaled64 >>= 1;
1186                 else
1187                         tps32 <<= 1;
1188                 shift++;
1189         }
1190
1191         *pshift = shift;
1192         *pmultiplier = div_frac(scaled64, tps32);
1193
1194         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1195                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1196 }
1197
1198 static inline u64 get_kernel_ns(void)
1199 {
1200         return ktime_get_boot_ns();
1201 }
1202
1203 #ifdef CONFIG_X86_64
1204 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1205 #endif
1206
1207 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1208 static unsigned long max_tsc_khz;
1209
1210 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1211 {
1212         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1213                                    vcpu->arch.virtual_tsc_shift);
1214 }
1215
1216 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1217 {
1218         u64 v = (u64)khz * (1000000 + ppm);
1219         do_div(v, 1000000);
1220         return v;
1221 }
1222
1223 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1224 {
1225         u32 thresh_lo, thresh_hi;
1226         int use_scaling = 0;
1227
1228         /* tsc_khz can be zero if TSC calibration fails */
1229         if (this_tsc_khz == 0)
1230                 return;
1231
1232         /* Compute a scale to convert nanoseconds in TSC cycles */
1233         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1234                            &vcpu->arch.virtual_tsc_shift,
1235                            &vcpu->arch.virtual_tsc_mult);
1236         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1237
1238         /*
1239          * Compute the variation in TSC rate which is acceptable
1240          * within the range of tolerance and decide if the
1241          * rate being applied is within that bounds of the hardware
1242          * rate.  If so, no scaling or compensation need be done.
1243          */
1244         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1245         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1246         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1247                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1248                 use_scaling = 1;
1249         }
1250         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1251 }
1252
1253 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1254 {
1255         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1256                                       vcpu->arch.virtual_tsc_mult,
1257                                       vcpu->arch.virtual_tsc_shift);
1258         tsc += vcpu->arch.this_tsc_write;
1259         return tsc;
1260 }
1261
1262 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1263 {
1264 #ifdef CONFIG_X86_64
1265         bool vcpus_matched;
1266         struct kvm_arch *ka = &vcpu->kvm->arch;
1267         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1268
1269         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1270                          atomic_read(&vcpu->kvm->online_vcpus));
1271
1272         /*
1273          * Once the masterclock is enabled, always perform request in
1274          * order to update it.
1275          *
1276          * In order to enable masterclock, the host clocksource must be TSC
1277          * and the vcpus need to have matched TSCs.  When that happens,
1278          * perform request to enable masterclock.
1279          */
1280         if (ka->use_master_clock ||
1281             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1282                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1283
1284         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1285                             atomic_read(&vcpu->kvm->online_vcpus),
1286                             ka->use_master_clock, gtod->clock.vclock_mode);
1287 #endif
1288 }
1289
1290 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1291 {
1292         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1293         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1294 }
1295
1296 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1297 {
1298         struct kvm *kvm = vcpu->kvm;
1299         u64 offset, ns, elapsed;
1300         unsigned long flags;
1301         s64 usdiff;
1302         bool matched;
1303         bool already_matched;
1304         u64 data = msr->data;
1305
1306         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1307         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1308         ns = get_kernel_ns();
1309         elapsed = ns - kvm->arch.last_tsc_nsec;
1310
1311         if (vcpu->arch.virtual_tsc_khz) {
1312                 int faulted = 0;
1313
1314                 /* n.b - signed multiplication and division required */
1315                 usdiff = data - kvm->arch.last_tsc_write;
1316 #ifdef CONFIG_X86_64
1317                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1318 #else
1319                 /* do_div() only does unsigned */
1320                 asm("1: idivl %[divisor]\n"
1321                     "2: xor %%edx, %%edx\n"
1322                     "   movl $0, %[faulted]\n"
1323                     "3:\n"
1324                     ".section .fixup,\"ax\"\n"
1325                     "4: movl $1, %[faulted]\n"
1326                     "   jmp  3b\n"
1327                     ".previous\n"
1328
1329                 _ASM_EXTABLE(1b, 4b)
1330
1331                 : "=A"(usdiff), [faulted] "=r" (faulted)
1332                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1333
1334 #endif
1335                 do_div(elapsed, 1000);
1336                 usdiff -= elapsed;
1337                 if (usdiff < 0)
1338                         usdiff = -usdiff;
1339
1340                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1341                 if (faulted)
1342                         usdiff = USEC_PER_SEC;
1343         } else
1344                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1345
1346         /*
1347          * Special case: TSC write with a small delta (1 second) of virtual
1348          * cycle time against real time is interpreted as an attempt to
1349          * synchronize the CPU.
1350          *
1351          * For a reliable TSC, we can match TSC offsets, and for an unstable
1352          * TSC, we add elapsed time in this computation.  We could let the
1353          * compensation code attempt to catch up if we fall behind, but
1354          * it's better to try to match offsets from the beginning.
1355          */
1356         if (usdiff < USEC_PER_SEC &&
1357             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1358                 if (!check_tsc_unstable()) {
1359                         offset = kvm->arch.cur_tsc_offset;
1360                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1361                 } else {
1362                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1363                         data += delta;
1364                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1365                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1366                 }
1367                 matched = true;
1368                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1369         } else {
1370                 /*
1371                  * We split periods of matched TSC writes into generations.
1372                  * For each generation, we track the original measured
1373                  * nanosecond time, offset, and write, so if TSCs are in
1374                  * sync, we can match exact offset, and if not, we can match
1375                  * exact software computation in compute_guest_tsc()
1376                  *
1377                  * These values are tracked in kvm->arch.cur_xxx variables.
1378                  */
1379                 kvm->arch.cur_tsc_generation++;
1380                 kvm->arch.cur_tsc_nsec = ns;
1381                 kvm->arch.cur_tsc_write = data;
1382                 kvm->arch.cur_tsc_offset = offset;
1383                 matched = false;
1384                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1385                          kvm->arch.cur_tsc_generation, data);
1386         }
1387
1388         /*
1389          * We also track th most recent recorded KHZ, write and time to
1390          * allow the matching interval to be extended at each write.
1391          */
1392         kvm->arch.last_tsc_nsec = ns;
1393         kvm->arch.last_tsc_write = data;
1394         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1395
1396         vcpu->arch.last_guest_tsc = data;
1397
1398         /* Keep track of which generation this VCPU has synchronized to */
1399         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1400         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1401         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1402
1403         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1404                 update_ia32_tsc_adjust_msr(vcpu, offset);
1405         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1406         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1407
1408         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1409         if (!matched) {
1410                 kvm->arch.nr_vcpus_matched_tsc = 0;
1411         } else if (!already_matched) {
1412                 kvm->arch.nr_vcpus_matched_tsc++;
1413         }
1414
1415         kvm_track_tsc_matching(vcpu);
1416         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1417 }
1418
1419 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1420
1421 #ifdef CONFIG_X86_64
1422
1423 static cycle_t read_tsc(void)
1424 {
1425         cycle_t ret;
1426         u64 last;
1427
1428         /*
1429          * Empirically, a fence (of type that depends on the CPU)
1430          * before rdtsc is enough to ensure that rdtsc is ordered
1431          * with respect to loads.  The various CPU manuals are unclear
1432          * as to whether rdtsc can be reordered with later loads,
1433          * but no one has ever seen it happen.
1434          */
1435         rdtsc_barrier();
1436         ret = (cycle_t)vget_cycles();
1437
1438         last = pvclock_gtod_data.clock.cycle_last;
1439
1440         if (likely(ret >= last))
1441                 return ret;
1442
1443         /*
1444          * GCC likes to generate cmov here, but this branch is extremely
1445          * predictable (it's just a funciton of time and the likely is
1446          * very likely) and there's a data dependence, so force GCC
1447          * to generate a branch instead.  I don't barrier() because
1448          * we don't actually need a barrier, and if this function
1449          * ever gets inlined it will generate worse code.
1450          */
1451         asm volatile ("");
1452         return last;
1453 }
1454
1455 static inline u64 vgettsc(cycle_t *cycle_now)
1456 {
1457         long v;
1458         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1459
1460         *cycle_now = read_tsc();
1461
1462         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1463         return v * gtod->clock.mult;
1464 }
1465
1466 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1467 {
1468         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1469         unsigned long seq;
1470         int mode;
1471         u64 ns;
1472
1473         do {
1474                 seq = read_seqcount_begin(&gtod->seq);
1475                 mode = gtod->clock.vclock_mode;
1476                 ns = gtod->nsec_base;
1477                 ns += vgettsc(cycle_now);
1478                 ns >>= gtod->clock.shift;
1479                 ns += gtod->boot_ns;
1480         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1481         *t = ns;
1482
1483         return mode;
1484 }
1485
1486 /* returns true if host is using tsc clocksource */
1487 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1488 {
1489         /* checked again under seqlock below */
1490         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1491                 return false;
1492
1493         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1494 }
1495 #endif
1496
1497 /*
1498  *
1499  * Assuming a stable TSC across physical CPUS, and a stable TSC
1500  * across virtual CPUs, the following condition is possible.
1501  * Each numbered line represents an event visible to both
1502  * CPUs at the next numbered event.
1503  *
1504  * "timespecX" represents host monotonic time. "tscX" represents
1505  * RDTSC value.
1506  *
1507  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1508  *
1509  * 1.  read timespec0,tsc0
1510  * 2.                                   | timespec1 = timespec0 + N
1511  *                                      | tsc1 = tsc0 + M
1512  * 3. transition to guest               | transition to guest
1513  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1514  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1515  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1516  *
1517  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1518  *
1519  *      - ret0 < ret1
1520  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1521  *              ...
1522  *      - 0 < N - M => M < N
1523  *
1524  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1525  * always the case (the difference between two distinct xtime instances
1526  * might be smaller then the difference between corresponding TSC reads,
1527  * when updating guest vcpus pvclock areas).
1528  *
1529  * To avoid that problem, do not allow visibility of distinct
1530  * system_timestamp/tsc_timestamp values simultaneously: use a master
1531  * copy of host monotonic time values. Update that master copy
1532  * in lockstep.
1533  *
1534  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1535  *
1536  */
1537
1538 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1539 {
1540 #ifdef CONFIG_X86_64
1541         struct kvm_arch *ka = &kvm->arch;
1542         int vclock_mode;
1543         bool host_tsc_clocksource, vcpus_matched;
1544
1545         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1546                         atomic_read(&kvm->online_vcpus));
1547
1548         /*
1549          * If the host uses TSC clock, then passthrough TSC as stable
1550          * to the guest.
1551          */
1552         host_tsc_clocksource = kvm_get_time_and_clockread(
1553                                         &ka->master_kernel_ns,
1554                                         &ka->master_cycle_now);
1555
1556         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1557                                 && !backwards_tsc_observed
1558                                 && !ka->boot_vcpu_runs_old_kvmclock;
1559
1560         if (ka->use_master_clock)
1561                 atomic_set(&kvm_guest_has_master_clock, 1);
1562
1563         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1564         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1565                                         vcpus_matched);
1566 #endif
1567 }
1568
1569 static void kvm_gen_update_masterclock(struct kvm *kvm)
1570 {
1571 #ifdef CONFIG_X86_64
1572         int i;
1573         struct kvm_vcpu *vcpu;
1574         struct kvm_arch *ka = &kvm->arch;
1575
1576         spin_lock(&ka->pvclock_gtod_sync_lock);
1577         kvm_make_mclock_inprogress_request(kvm);
1578         /* no guest entries from this point */
1579         pvclock_update_vm_gtod_copy(kvm);
1580
1581         kvm_for_each_vcpu(i, vcpu, kvm)
1582                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1583
1584         /* guest entries allowed */
1585         kvm_for_each_vcpu(i, vcpu, kvm)
1586                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1587
1588         spin_unlock(&ka->pvclock_gtod_sync_lock);
1589 #endif
1590 }
1591
1592 static int kvm_guest_time_update(struct kvm_vcpu *v)
1593 {
1594         unsigned long flags, this_tsc_khz;
1595         struct kvm_vcpu_arch *vcpu = &v->arch;
1596         struct kvm_arch *ka = &v->kvm->arch;
1597         s64 kernel_ns;
1598         u64 tsc_timestamp, host_tsc;
1599         struct pvclock_vcpu_time_info guest_hv_clock;
1600         u8 pvclock_flags;
1601         bool use_master_clock;
1602
1603         kernel_ns = 0;
1604         host_tsc = 0;
1605
1606         /*
1607          * If the host uses TSC clock, then passthrough TSC as stable
1608          * to the guest.
1609          */
1610         spin_lock(&ka->pvclock_gtod_sync_lock);
1611         use_master_clock = ka->use_master_clock;
1612         if (use_master_clock) {
1613                 host_tsc = ka->master_cycle_now;
1614                 kernel_ns = ka->master_kernel_ns;
1615         }
1616         spin_unlock(&ka->pvclock_gtod_sync_lock);
1617
1618         /* Keep irq disabled to prevent changes to the clock */
1619         local_irq_save(flags);
1620         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1621         if (unlikely(this_tsc_khz == 0)) {
1622                 local_irq_restore(flags);
1623                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1624                 return 1;
1625         }
1626         if (!use_master_clock) {
1627                 host_tsc = native_read_tsc();
1628                 kernel_ns = get_kernel_ns();
1629         }
1630
1631         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1632
1633         /*
1634          * We may have to catch up the TSC to match elapsed wall clock
1635          * time for two reasons, even if kvmclock is used.
1636          *   1) CPU could have been running below the maximum TSC rate
1637          *   2) Broken TSC compensation resets the base at each VCPU
1638          *      entry to avoid unknown leaps of TSC even when running
1639          *      again on the same CPU.  This may cause apparent elapsed
1640          *      time to disappear, and the guest to stand still or run
1641          *      very slowly.
1642          */
1643         if (vcpu->tsc_catchup) {
1644                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1645                 if (tsc > tsc_timestamp) {
1646                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1647                         tsc_timestamp = tsc;
1648                 }
1649         }
1650
1651         local_irq_restore(flags);
1652
1653         if (!vcpu->pv_time_enabled)
1654                 return 0;
1655
1656         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1657                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1658                                    &vcpu->hv_clock.tsc_shift,
1659                                    &vcpu->hv_clock.tsc_to_system_mul);
1660                 vcpu->hw_tsc_khz = this_tsc_khz;
1661         }
1662
1663         /* With all the info we got, fill in the values */
1664         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1665         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1666         vcpu->last_guest_tsc = tsc_timestamp;
1667
1668         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1669                 &guest_hv_clock, sizeof(guest_hv_clock))))
1670                 return 0;
1671
1672         /* This VCPU is paused, but it's legal for a guest to read another
1673          * VCPU's kvmclock, so we really have to follow the specification where
1674          * it says that version is odd if data is being modified, and even after
1675          * it is consistent.
1676          *
1677          * Version field updates must be kept separate.  This is because
1678          * kvm_write_guest_cached might use a "rep movs" instruction, and
1679          * writes within a string instruction are weakly ordered.  So there
1680          * are three writes overall.
1681          *
1682          * As a small optimization, only write the version field in the first
1683          * and third write.  The vcpu->pv_time cache is still valid, because the
1684          * version field is the first in the struct.
1685          */
1686         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1687
1688         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1689         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1690                                 &vcpu->hv_clock,
1691                                 sizeof(vcpu->hv_clock.version));
1692
1693         smp_wmb();
1694
1695         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1696         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1697
1698         if (vcpu->pvclock_set_guest_stopped_request) {
1699                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1700                 vcpu->pvclock_set_guest_stopped_request = false;
1701         }
1702
1703         /* If the host uses TSC clocksource, then it is stable */
1704         if (use_master_clock)
1705                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1706
1707         vcpu->hv_clock.flags = pvclock_flags;
1708
1709         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1710
1711         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1712                                 &vcpu->hv_clock,
1713                                 sizeof(vcpu->hv_clock));
1714
1715         smp_wmb();
1716
1717         vcpu->hv_clock.version++;
1718         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1719                                 &vcpu->hv_clock,
1720                                 sizeof(vcpu->hv_clock.version));
1721         return 0;
1722 }
1723
1724 /*
1725  * kvmclock updates which are isolated to a given vcpu, such as
1726  * vcpu->cpu migration, should not allow system_timestamp from
1727  * the rest of the vcpus to remain static. Otherwise ntp frequency
1728  * correction applies to one vcpu's system_timestamp but not
1729  * the others.
1730  *
1731  * So in those cases, request a kvmclock update for all vcpus.
1732  * We need to rate-limit these requests though, as they can
1733  * considerably slow guests that have a large number of vcpus.
1734  * The time for a remote vcpu to update its kvmclock is bound
1735  * by the delay we use to rate-limit the updates.
1736  */
1737
1738 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1739
1740 static void kvmclock_update_fn(struct work_struct *work)
1741 {
1742         int i;
1743         struct delayed_work *dwork = to_delayed_work(work);
1744         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1745                                            kvmclock_update_work);
1746         struct kvm *kvm = container_of(ka, struct kvm, arch);
1747         struct kvm_vcpu *vcpu;
1748
1749         kvm_for_each_vcpu(i, vcpu, kvm) {
1750                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1751                 kvm_vcpu_kick(vcpu);
1752         }
1753 }
1754
1755 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1756 {
1757         struct kvm *kvm = v->kvm;
1758
1759         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1760         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1761                                         KVMCLOCK_UPDATE_DELAY);
1762 }
1763
1764 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1765
1766 static void kvmclock_sync_fn(struct work_struct *work)
1767 {
1768         struct delayed_work *dwork = to_delayed_work(work);
1769         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1770                                            kvmclock_sync_work);
1771         struct kvm *kvm = container_of(ka, struct kvm, arch);
1772
1773         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1774         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1775                                         KVMCLOCK_SYNC_PERIOD);
1776 }
1777
1778 static bool msr_mtrr_valid(unsigned msr)
1779 {
1780         switch (msr) {
1781         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1782         case MSR_MTRRfix64K_00000:
1783         case MSR_MTRRfix16K_80000:
1784         case MSR_MTRRfix16K_A0000:
1785         case MSR_MTRRfix4K_C0000:
1786         case MSR_MTRRfix4K_C8000:
1787         case MSR_MTRRfix4K_D0000:
1788         case MSR_MTRRfix4K_D8000:
1789         case MSR_MTRRfix4K_E0000:
1790         case MSR_MTRRfix4K_E8000:
1791         case MSR_MTRRfix4K_F0000:
1792         case MSR_MTRRfix4K_F8000:
1793         case MSR_MTRRdefType:
1794         case MSR_IA32_CR_PAT:
1795                 return true;
1796         case 0x2f8:
1797                 return true;
1798         }
1799         return false;
1800 }
1801
1802 static bool valid_pat_type(unsigned t)
1803 {
1804         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1805 }
1806
1807 static bool valid_mtrr_type(unsigned t)
1808 {
1809         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1810 }
1811
1812 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1813 {
1814         int i;
1815         u64 mask;
1816
1817         if (!msr_mtrr_valid(msr))
1818                 return false;
1819
1820         if (msr == MSR_IA32_CR_PAT) {
1821                 for (i = 0; i < 8; i++)
1822                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1823                                 return false;
1824                 return true;
1825         } else if (msr == MSR_MTRRdefType) {
1826                 if (data & ~0xcff)
1827                         return false;
1828                 return valid_mtrr_type(data & 0xff);
1829         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1830                 for (i = 0; i < 8 ; i++)
1831                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1832                                 return false;
1833                 return true;
1834         }
1835
1836         /* variable MTRRs */
1837         WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1838
1839         mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1840         if ((msr & 1) == 0) {
1841                 /* MTRR base */
1842                 if (!valid_mtrr_type(data & 0xff))
1843                         return false;
1844                 mask |= 0xf00;
1845         } else
1846                 /* MTRR mask */
1847                 mask |= 0x7ff;
1848         if (data & mask) {
1849                 kvm_inject_gp(vcpu, 0);
1850                 return false;
1851         }
1852
1853         return true;
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1856
1857 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1858 {
1859         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1860
1861         if (!kvm_mtrr_valid(vcpu, msr, data))
1862                 return 1;
1863
1864         if (msr == MSR_MTRRdefType) {
1865                 vcpu->arch.mtrr_state.def_type = data;
1866                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1867         } else if (msr == MSR_MTRRfix64K_00000)
1868                 p[0] = data;
1869         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1870                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1871         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1872                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1873         else if (msr == MSR_IA32_CR_PAT)
1874                 vcpu->arch.pat = data;
1875         else {  /* Variable MTRRs */
1876                 int idx, is_mtrr_mask;
1877                 u64 *pt;
1878
1879                 idx = (msr - 0x200) / 2;
1880                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1881                 if (!is_mtrr_mask)
1882                         pt =
1883                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1884                 else
1885                         pt =
1886                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1887                 *pt = data;
1888         }
1889
1890         kvm_mmu_reset_context(vcpu);
1891         return 0;
1892 }
1893
1894 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1895 {
1896         u64 mcg_cap = vcpu->arch.mcg_cap;
1897         unsigned bank_num = mcg_cap & 0xff;
1898
1899         switch (msr) {
1900         case MSR_IA32_MCG_STATUS:
1901                 vcpu->arch.mcg_status = data;
1902                 break;
1903         case MSR_IA32_MCG_CTL:
1904                 if (!(mcg_cap & MCG_CTL_P))
1905                         return 1;
1906                 if (data != 0 && data != ~(u64)0)
1907                         return -1;
1908                 vcpu->arch.mcg_ctl = data;
1909                 break;
1910         default:
1911                 if (msr >= MSR_IA32_MC0_CTL &&
1912                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1913                         u32 offset = msr - MSR_IA32_MC0_CTL;
1914                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1915                          * some Linux kernels though clear bit 10 in bank 4 to
1916                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1917                          * this to avoid an uncatched #GP in the guest
1918                          */
1919                         if ((offset & 0x3) == 0 &&
1920                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1921                                 return -1;
1922                         vcpu->arch.mce_banks[offset] = data;
1923                         break;
1924                 }
1925                 return 1;
1926         }
1927         return 0;
1928 }
1929
1930 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1931 {
1932         struct kvm *kvm = vcpu->kvm;
1933         int lm = is_long_mode(vcpu);
1934         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1935                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1936         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1937                 : kvm->arch.xen_hvm_config.blob_size_32;
1938         u32 page_num = data & ~PAGE_MASK;
1939         u64 page_addr = data & PAGE_MASK;
1940         u8 *page;
1941         int r;
1942
1943         r = -E2BIG;
1944         if (page_num >= blob_size)
1945                 goto out;
1946         r = -ENOMEM;
1947         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1948         if (IS_ERR(page)) {
1949                 r = PTR_ERR(page);
1950                 goto out;
1951         }
1952         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1953                 goto out_free;
1954         r = 0;
1955 out_free:
1956         kfree(page);
1957 out:
1958         return r;
1959 }
1960
1961 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1962 {
1963         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1964 }
1965
1966 static bool kvm_hv_msr_partition_wide(u32 msr)
1967 {
1968         bool r = false;
1969         switch (msr) {
1970         case HV_X64_MSR_GUEST_OS_ID:
1971         case HV_X64_MSR_HYPERCALL:
1972         case HV_X64_MSR_REFERENCE_TSC:
1973         case HV_X64_MSR_TIME_REF_COUNT:
1974                 r = true;
1975                 break;
1976         }
1977
1978         return r;
1979 }
1980
1981 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1982 {
1983         struct kvm *kvm = vcpu->kvm;
1984
1985         switch (msr) {
1986         case HV_X64_MSR_GUEST_OS_ID:
1987                 kvm->arch.hv_guest_os_id = data;
1988                 /* setting guest os id to zero disables hypercall page */
1989                 if (!kvm->arch.hv_guest_os_id)
1990                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1991                 break;
1992         case HV_X64_MSR_HYPERCALL: {
1993                 u64 gfn;
1994                 unsigned long addr;
1995                 u8 instructions[4];
1996
1997                 /* if guest os id is not set hypercall should remain disabled */
1998                 if (!kvm->arch.hv_guest_os_id)
1999                         break;
2000                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
2001                         kvm->arch.hv_hypercall = data;
2002                         break;
2003                 }
2004                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
2005                 addr = gfn_to_hva(kvm, gfn);
2006                 if (kvm_is_error_hva(addr))
2007                         return 1;
2008                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
2009                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
2010                 if (__copy_to_user((void __user *)addr, instructions, 4))
2011                         return 1;
2012                 kvm->arch.hv_hypercall = data;
2013                 mark_page_dirty(kvm, gfn);
2014                 break;
2015         }
2016         case HV_X64_MSR_REFERENCE_TSC: {
2017                 u64 gfn;
2018                 HV_REFERENCE_TSC_PAGE tsc_ref;
2019                 memset(&tsc_ref, 0, sizeof(tsc_ref));
2020                 kvm->arch.hv_tsc_page = data;
2021                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
2022                         break;
2023                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
2024                 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
2025                         &tsc_ref, sizeof(tsc_ref)))
2026                         return 1;
2027                 mark_page_dirty(kvm, gfn);
2028                 break;
2029         }
2030         default:
2031                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2032                             "data 0x%llx\n", msr, data);
2033                 return 1;
2034         }
2035         return 0;
2036 }
2037
2038 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2039 {
2040         switch (msr) {
2041         case HV_X64_MSR_APIC_ASSIST_PAGE: {
2042                 u64 gfn;
2043                 unsigned long addr;
2044
2045                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2046                         vcpu->arch.hv_vapic = data;
2047                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2048                                 return 1;
2049                         break;
2050                 }
2051                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2052                 addr = gfn_to_hva(vcpu->kvm, gfn);
2053                 if (kvm_is_error_hva(addr))
2054                         return 1;
2055                 if (__clear_user((void __user *)addr, PAGE_SIZE))
2056                         return 1;
2057                 vcpu->arch.hv_vapic = data;
2058                 mark_page_dirty(vcpu->kvm, gfn);
2059                 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2060                         return 1;
2061                 break;
2062         }
2063         case HV_X64_MSR_EOI:
2064                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2065         case HV_X64_MSR_ICR:
2066                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2067         case HV_X64_MSR_TPR:
2068                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2069         default:
2070                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2071                             "data 0x%llx\n", msr, data);
2072                 return 1;
2073         }
2074
2075         return 0;
2076 }
2077
2078 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2079 {
2080         gpa_t gpa = data & ~0x3f;
2081
2082         /* Bits 2:5 are reserved, Should be zero */
2083         if (data & 0x3c)
2084                 return 1;
2085
2086         vcpu->arch.apf.msr_val = data;
2087
2088         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2089                 kvm_clear_async_pf_completion_queue(vcpu);
2090                 kvm_async_pf_hash_reset(vcpu);
2091                 return 0;
2092         }
2093
2094         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2095                                         sizeof(u32)))
2096                 return 1;
2097
2098         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2099         kvm_async_pf_wakeup_all(vcpu);
2100         return 0;
2101 }
2102
2103 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2104 {
2105         vcpu->arch.pv_time_enabled = false;
2106 }
2107
2108 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2109 {
2110         u64 delta;
2111
2112         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2113                 return;
2114
2115         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2116         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2117         vcpu->arch.st.accum_steal = delta;
2118 }
2119
2120 static void record_steal_time(struct kvm_vcpu *vcpu)
2121 {
2122         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2123                 return;
2124
2125         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2126                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2127                 return;
2128
2129         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2130         vcpu->arch.st.steal.version += 2;
2131         vcpu->arch.st.accum_steal = 0;
2132
2133         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2134                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2135 }
2136
2137 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2138 {
2139         bool pr = false;
2140         u32 msr = msr_info->index;
2141         u64 data = msr_info->data;
2142
2143         switch (msr) {
2144         case MSR_AMD64_NB_CFG:
2145         case MSR_IA32_UCODE_REV:
2146         case MSR_IA32_UCODE_WRITE:
2147         case MSR_VM_HSAVE_PA:
2148         case MSR_AMD64_PATCH_LOADER:
2149         case MSR_AMD64_BU_CFG2:
2150                 break;
2151
2152         case MSR_EFER:
2153                 return set_efer(vcpu, data);
2154         case MSR_K7_HWCR:
2155                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2156                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2157                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2158                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2159                 if (data != 0) {
2160                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2161                                     data);
2162                         return 1;
2163                 }
2164                 break;
2165         case MSR_FAM10H_MMIO_CONF_BASE:
2166                 if (data != 0) {
2167                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2168                                     "0x%llx\n", data);
2169                         return 1;
2170                 }
2171                 break;
2172         case MSR_IA32_DEBUGCTLMSR:
2173                 if (!data) {
2174                         /* We support the non-activated case already */
2175                         break;
2176                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2177                         /* Values other than LBR and BTF are vendor-specific,
2178                            thus reserved and should throw a #GP */
2179                         return 1;
2180                 }
2181                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2182                             __func__, data);
2183                 break;
2184         case 0x200 ... 0x2ff:
2185                 return set_msr_mtrr(vcpu, msr, data);
2186         case MSR_IA32_APICBASE:
2187                 return kvm_set_apic_base(vcpu, msr_info);
2188         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2189                 return kvm_x2apic_msr_write(vcpu, msr, data);
2190         case MSR_IA32_TSCDEADLINE:
2191                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2192                 break;
2193         case MSR_IA32_TSC_ADJUST:
2194                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2195                         if (!msr_info->host_initiated) {
2196                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2197                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2198                         }
2199                         vcpu->arch.ia32_tsc_adjust_msr = data;
2200                 }
2201                 break;
2202         case MSR_IA32_MISC_ENABLE:
2203                 vcpu->arch.ia32_misc_enable_msr = data;
2204                 break;
2205         case MSR_KVM_WALL_CLOCK_NEW:
2206         case MSR_KVM_WALL_CLOCK:
2207                 vcpu->kvm->arch.wall_clock = data;
2208                 kvm_write_wall_clock(vcpu->kvm, data);
2209                 break;
2210         case MSR_KVM_SYSTEM_TIME_NEW:
2211         case MSR_KVM_SYSTEM_TIME: {
2212                 u64 gpa_offset;
2213                 struct kvm_arch *ka = &vcpu->kvm->arch;
2214
2215                 kvmclock_reset(vcpu);
2216
2217                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2218                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2219
2220                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2221                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2222                                         &vcpu->requests);
2223
2224                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2225                 }
2226
2227                 vcpu->arch.time = data;
2228                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2229
2230                 /* we verify if the enable bit is set... */
2231                 if (!(data & 1))
2232                         break;
2233
2234                 gpa_offset = data & ~(PAGE_MASK | 1);
2235
2236                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2237                      &vcpu->arch.pv_time, data & ~1ULL,
2238                      sizeof(struct pvclock_vcpu_time_info)))
2239                         vcpu->arch.pv_time_enabled = false;
2240                 else
2241                         vcpu->arch.pv_time_enabled = true;
2242
2243                 break;
2244         }
2245         case MSR_KVM_ASYNC_PF_EN:
2246                 if (kvm_pv_enable_async_pf(vcpu, data))
2247                         return 1;
2248                 break;
2249         case MSR_KVM_STEAL_TIME:
2250
2251                 if (unlikely(!sched_info_on()))
2252                         return 1;
2253
2254                 if (data & KVM_STEAL_RESERVED_MASK)
2255                         return 1;
2256
2257                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2258                                                 data & KVM_STEAL_VALID_BITS,
2259                                                 sizeof(struct kvm_steal_time)))
2260                         return 1;
2261
2262                 vcpu->arch.st.msr_val = data;
2263
2264                 if (!(data & KVM_MSR_ENABLED))
2265                         break;
2266
2267                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2268
2269                 preempt_disable();
2270                 accumulate_steal_time(vcpu);
2271                 preempt_enable();
2272
2273                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2274
2275                 break;
2276         case MSR_KVM_PV_EOI_EN:
2277                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2278                         return 1;
2279                 break;
2280
2281         case MSR_IA32_MCG_CTL:
2282         case MSR_IA32_MCG_STATUS:
2283         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2284                 return set_msr_mce(vcpu, msr, data);
2285
2286         /* Performance counters are not protected by a CPUID bit,
2287          * so we should check all of them in the generic path for the sake of
2288          * cross vendor migration.
2289          * Writing a zero into the event select MSRs disables them,
2290          * which we perfectly emulate ;-). Any other value should be at least
2291          * reported, some guests depend on them.
2292          */
2293         case MSR_K7_EVNTSEL0:
2294         case MSR_K7_EVNTSEL1:
2295         case MSR_K7_EVNTSEL2:
2296         case MSR_K7_EVNTSEL3:
2297                 if (data != 0)
2298                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2299                                     "0x%x data 0x%llx\n", msr, data);
2300                 break;
2301         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2302          * so we ignore writes to make it happy.
2303          */
2304         case MSR_K7_PERFCTR0:
2305         case MSR_K7_PERFCTR1:
2306         case MSR_K7_PERFCTR2:
2307         case MSR_K7_PERFCTR3:
2308                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2309                             "0x%x data 0x%llx\n", msr, data);
2310                 break;
2311         case MSR_P6_PERFCTR0:
2312         case MSR_P6_PERFCTR1:
2313                 pr = true;
2314         case MSR_P6_EVNTSEL0:
2315         case MSR_P6_EVNTSEL1:
2316                 if (kvm_pmu_msr(vcpu, msr))
2317                         return kvm_pmu_set_msr(vcpu, msr_info);
2318
2319                 if (pr || data != 0)
2320                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2321                                     "0x%x data 0x%llx\n", msr, data);
2322                 break;
2323         case MSR_K7_CLK_CTL:
2324                 /*
2325                  * Ignore all writes to this no longer documented MSR.
2326                  * Writes are only relevant for old K7 processors,
2327                  * all pre-dating SVM, but a recommended workaround from
2328                  * AMD for these chips. It is possible to specify the
2329                  * affected processor models on the command line, hence
2330                  * the need to ignore the workaround.
2331                  */
2332                 break;
2333         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2334                 if (kvm_hv_msr_partition_wide(msr)) {
2335                         int r;
2336                         mutex_lock(&vcpu->kvm->lock);
2337                         r = set_msr_hyperv_pw(vcpu, msr, data);
2338                         mutex_unlock(&vcpu->kvm->lock);
2339                         return r;
2340                 } else
2341                         return set_msr_hyperv(vcpu, msr, data);
2342                 break;
2343         case MSR_IA32_BBL_CR_CTL3:
2344                 /* Drop writes to this legacy MSR -- see rdmsr
2345                  * counterpart for further detail.
2346                  */
2347                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2348                 break;
2349         case MSR_AMD64_OSVW_ID_LENGTH:
2350                 if (!guest_cpuid_has_osvw(vcpu))
2351                         return 1;
2352                 vcpu->arch.osvw.length = data;
2353                 break;
2354         case MSR_AMD64_OSVW_STATUS:
2355                 if (!guest_cpuid_has_osvw(vcpu))
2356                         return 1;
2357                 vcpu->arch.osvw.status = data;
2358                 break;
2359         default:
2360                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2361                         return xen_hvm_config(vcpu, data);
2362                 if (kvm_pmu_msr(vcpu, msr))
2363                         return kvm_pmu_set_msr(vcpu, msr_info);
2364                 if (!ignore_msrs) {
2365                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2366                                     msr, data);
2367                         return 1;
2368                 } else {
2369                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2370                                     msr, data);
2371                         break;
2372                 }
2373         }
2374         return 0;
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2377
2378
2379 /*
2380  * Reads an msr value (of 'msr_index') into 'pdata'.
2381  * Returns 0 on success, non-0 otherwise.
2382  * Assumes vcpu_load() was already called.
2383  */
2384 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2385 {
2386         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2387 }
2388 EXPORT_SYMBOL_GPL(kvm_get_msr);
2389
2390 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2391 {
2392         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2393
2394         if (!msr_mtrr_valid(msr))
2395                 return 1;
2396
2397         if (msr == MSR_MTRRdefType)
2398                 *pdata = vcpu->arch.mtrr_state.def_type +
2399                          (vcpu->arch.mtrr_state.enabled << 10);
2400         else if (msr == MSR_MTRRfix64K_00000)
2401                 *pdata = p[0];
2402         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2403                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2404         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2405                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2406         else if (msr == MSR_IA32_CR_PAT)
2407                 *pdata = vcpu->arch.pat;
2408         else {  /* Variable MTRRs */
2409                 int idx, is_mtrr_mask;
2410                 u64 *pt;
2411
2412                 idx = (msr - 0x200) / 2;
2413                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2414                 if (!is_mtrr_mask)
2415                         pt =
2416                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2417                 else
2418                         pt =
2419                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2420                 *pdata = *pt;
2421         }
2422
2423         return 0;
2424 }
2425
2426 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2427 {
2428         u64 data;
2429         u64 mcg_cap = vcpu->arch.mcg_cap;
2430         unsigned bank_num = mcg_cap & 0xff;
2431
2432         switch (msr) {
2433         case MSR_IA32_P5_MC_ADDR:
2434         case MSR_IA32_P5_MC_TYPE:
2435                 data = 0;
2436                 break;
2437         case MSR_IA32_MCG_CAP:
2438                 data = vcpu->arch.mcg_cap;
2439                 break;
2440         case MSR_IA32_MCG_CTL:
2441                 if (!(mcg_cap & MCG_CTL_P))
2442                         return 1;
2443                 data = vcpu->arch.mcg_ctl;
2444                 break;
2445         case MSR_IA32_MCG_STATUS:
2446                 data = vcpu->arch.mcg_status;
2447                 break;
2448         default:
2449                 if (msr >= MSR_IA32_MC0_CTL &&
2450                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2451                         u32 offset = msr - MSR_IA32_MC0_CTL;
2452                         data = vcpu->arch.mce_banks[offset];
2453                         break;
2454                 }
2455                 return 1;
2456         }
2457         *pdata = data;
2458         return 0;
2459 }
2460
2461 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2462 {
2463         u64 data = 0;
2464         struct kvm *kvm = vcpu->kvm;
2465
2466         switch (msr) {
2467         case HV_X64_MSR_GUEST_OS_ID:
2468                 data = kvm->arch.hv_guest_os_id;
2469                 break;
2470         case HV_X64_MSR_HYPERCALL:
2471                 data = kvm->arch.hv_hypercall;
2472                 break;
2473         case HV_X64_MSR_TIME_REF_COUNT: {
2474                 data =
2475                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2476                 break;
2477         }
2478         case HV_X64_MSR_REFERENCE_TSC:
2479                 data = kvm->arch.hv_tsc_page;
2480                 break;
2481         default:
2482                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2483                 return 1;
2484         }
2485
2486         *pdata = data;
2487         return 0;
2488 }
2489
2490 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2491 {
2492         u64 data = 0;
2493
2494         switch (msr) {
2495         case HV_X64_MSR_VP_INDEX: {
2496                 int r;
2497                 struct kvm_vcpu *v;
2498                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2499                         if (v == vcpu) {
2500                                 data = r;
2501                                 break;
2502                         }
2503                 }
2504                 break;
2505         }
2506         case HV_X64_MSR_EOI:
2507                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2508         case HV_X64_MSR_ICR:
2509                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2510         case HV_X64_MSR_TPR:
2511                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2512         case HV_X64_MSR_APIC_ASSIST_PAGE:
2513                 data = vcpu->arch.hv_vapic;
2514                 break;
2515         default:
2516                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2517                 return 1;
2518         }
2519         *pdata = data;
2520         return 0;
2521 }
2522
2523 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2524 {
2525         u64 data;
2526
2527         switch (msr) {
2528         case MSR_IA32_PLATFORM_ID:
2529         case MSR_IA32_EBL_CR_POWERON:
2530         case MSR_IA32_DEBUGCTLMSR:
2531         case MSR_IA32_LASTBRANCHFROMIP:
2532         case MSR_IA32_LASTBRANCHTOIP:
2533         case MSR_IA32_LASTINTFROMIP:
2534         case MSR_IA32_LASTINTTOIP:
2535         case MSR_K8_SYSCFG:
2536         case MSR_K7_HWCR:
2537         case MSR_VM_HSAVE_PA:
2538         case MSR_K7_EVNTSEL0:
2539         case MSR_K7_EVNTSEL1:
2540         case MSR_K7_EVNTSEL2:
2541         case MSR_K7_EVNTSEL3:
2542         case MSR_K7_PERFCTR0:
2543         case MSR_K7_PERFCTR1:
2544         case MSR_K7_PERFCTR2:
2545         case MSR_K7_PERFCTR3:
2546         case MSR_K8_INT_PENDING_MSG:
2547         case MSR_AMD64_NB_CFG:
2548         case MSR_FAM10H_MMIO_CONF_BASE:
2549         case MSR_AMD64_BU_CFG2:
2550                 data = 0;
2551                 break;
2552         case MSR_P6_PERFCTR0:
2553         case MSR_P6_PERFCTR1:
2554         case MSR_P6_EVNTSEL0:
2555         case MSR_P6_EVNTSEL1:
2556                 if (kvm_pmu_msr(vcpu, msr))
2557                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2558                 data = 0;
2559                 break;
2560         case MSR_IA32_UCODE_REV:
2561                 data = 0x100000000ULL;
2562                 break;
2563         case MSR_MTRRcap:
2564                 data = 0x500 | KVM_NR_VAR_MTRR;
2565                 break;
2566         case 0x200 ... 0x2ff:
2567                 return get_msr_mtrr(vcpu, msr, pdata);
2568         case 0xcd: /* fsb frequency */
2569                 data = 3;
2570                 break;
2571                 /*
2572                  * MSR_EBC_FREQUENCY_ID
2573                  * Conservative value valid for even the basic CPU models.
2574                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2575                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2576                  * and 266MHz for model 3, or 4. Set Core Clock
2577                  * Frequency to System Bus Frequency Ratio to 1 (bits
2578                  * 31:24) even though these are only valid for CPU
2579                  * models > 2, however guests may end up dividing or
2580                  * multiplying by zero otherwise.
2581                  */
2582         case MSR_EBC_FREQUENCY_ID:
2583                 data = 1 << 24;
2584                 break;
2585         case MSR_IA32_APICBASE:
2586                 data = kvm_get_apic_base(vcpu);
2587                 break;
2588         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2589                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2590                 break;
2591         case MSR_IA32_TSCDEADLINE:
2592                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2593                 break;
2594         case MSR_IA32_TSC_ADJUST:
2595                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2596                 break;
2597         case MSR_IA32_MISC_ENABLE:
2598                 data = vcpu->arch.ia32_misc_enable_msr;
2599                 break;
2600         case MSR_IA32_PERF_STATUS:
2601                 /* TSC increment by tick */
2602                 data = 1000ULL;
2603                 /* CPU multiplier */
2604                 data |= (((uint64_t)4ULL) << 40);
2605                 break;
2606         case MSR_EFER:
2607                 data = vcpu->arch.efer;
2608                 break;
2609         case MSR_KVM_WALL_CLOCK:
2610         case MSR_KVM_WALL_CLOCK_NEW:
2611                 data = vcpu->kvm->arch.wall_clock;
2612                 break;
2613         case MSR_KVM_SYSTEM_TIME:
2614         case MSR_KVM_SYSTEM_TIME_NEW:
2615                 data = vcpu->arch.time;
2616                 break;
2617         case MSR_KVM_ASYNC_PF_EN:
2618                 data = vcpu->arch.apf.msr_val;
2619                 break;
2620         case MSR_KVM_STEAL_TIME:
2621                 data = vcpu->arch.st.msr_val;
2622                 break;
2623         case MSR_KVM_PV_EOI_EN:
2624                 data = vcpu->arch.pv_eoi.msr_val;
2625                 break;
2626         case MSR_IA32_P5_MC_ADDR:
2627         case MSR_IA32_P5_MC_TYPE:
2628         case MSR_IA32_MCG_CAP:
2629         case MSR_IA32_MCG_CTL:
2630         case MSR_IA32_MCG_STATUS:
2631         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2632                 return get_msr_mce(vcpu, msr, pdata);
2633         case MSR_K7_CLK_CTL:
2634                 /*
2635                  * Provide expected ramp-up count for K7. All other
2636                  * are set to zero, indicating minimum divisors for
2637                  * every field.
2638                  *
2639                  * This prevents guest kernels on AMD host with CPU
2640                  * type 6, model 8 and higher from exploding due to
2641                  * the rdmsr failing.
2642                  */
2643                 data = 0x20000000;
2644                 break;
2645         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2646                 if (kvm_hv_msr_partition_wide(msr)) {
2647                         int r;
2648                         mutex_lock(&vcpu->kvm->lock);
2649                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2650                         mutex_unlock(&vcpu->kvm->lock);
2651                         return r;
2652                 } else
2653                         return get_msr_hyperv(vcpu, msr, pdata);
2654                 break;
2655         case MSR_IA32_BBL_CR_CTL3:
2656                 /* This legacy MSR exists but isn't fully documented in current
2657                  * silicon.  It is however accessed by winxp in very narrow
2658                  * scenarios where it sets bit #19, itself documented as
2659                  * a "reserved" bit.  Best effort attempt to source coherent
2660                  * read data here should the balance of the register be
2661                  * interpreted by the guest:
2662                  *
2663                  * L2 cache control register 3: 64GB range, 256KB size,
2664                  * enabled, latency 0x1, configured
2665                  */
2666                 data = 0xbe702111;
2667                 break;
2668         case MSR_AMD64_OSVW_ID_LENGTH:
2669                 if (!guest_cpuid_has_osvw(vcpu))
2670                         return 1;
2671                 data = vcpu->arch.osvw.length;
2672                 break;
2673         case MSR_AMD64_OSVW_STATUS:
2674                 if (!guest_cpuid_has_osvw(vcpu))
2675                         return 1;
2676                 data = vcpu->arch.osvw.status;
2677                 break;
2678         default:
2679                 if (kvm_pmu_msr(vcpu, msr))
2680                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2681                 if (!ignore_msrs) {
2682                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2683                         return 1;
2684                 } else {
2685                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2686                         data = 0;
2687                 }
2688                 break;
2689         }
2690         *pdata = data;
2691         return 0;
2692 }
2693 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2694
2695 /*
2696  * Read or write a bunch of msrs. All parameters are kernel addresses.
2697  *
2698  * @return number of msrs set successfully.
2699  */
2700 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2701                     struct kvm_msr_entry *entries,
2702                     int (*do_msr)(struct kvm_vcpu *vcpu,
2703                                   unsigned index, u64 *data))
2704 {
2705         int i, idx;
2706
2707         idx = srcu_read_lock(&vcpu->kvm->srcu);
2708         for (i = 0; i < msrs->nmsrs; ++i)
2709                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2710                         break;
2711         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2712
2713         return i;
2714 }
2715
2716 /*
2717  * Read or write a bunch of msrs. Parameters are user addresses.
2718  *
2719  * @return number of msrs set successfully.
2720  */
2721 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2722                   int (*do_msr)(struct kvm_vcpu *vcpu,
2723                                 unsigned index, u64 *data),
2724                   int writeback)
2725 {
2726         struct kvm_msrs msrs;
2727         struct kvm_msr_entry *entries;
2728         int r, n;
2729         unsigned size;
2730
2731         r = -EFAULT;
2732         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2733                 goto out;
2734
2735         r = -E2BIG;
2736         if (msrs.nmsrs >= MAX_IO_MSRS)
2737                 goto out;
2738
2739         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2740         entries = memdup_user(user_msrs->entries, size);
2741         if (IS_ERR(entries)) {
2742                 r = PTR_ERR(entries);
2743                 goto out;
2744         }
2745
2746         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2747         if (r < 0)
2748                 goto out_free;
2749
2750         r = -EFAULT;
2751         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2752                 goto out_free;
2753
2754         r = n;
2755
2756 out_free:
2757         kfree(entries);
2758 out:
2759         return r;
2760 }
2761
2762 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2763 {
2764         int r;
2765
2766         switch (ext) {
2767         case KVM_CAP_IRQCHIP:
2768         case KVM_CAP_HLT:
2769         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2770         case KVM_CAP_SET_TSS_ADDR:
2771         case KVM_CAP_EXT_CPUID:
2772         case KVM_CAP_EXT_EMUL_CPUID:
2773         case KVM_CAP_CLOCKSOURCE:
2774         case KVM_CAP_PIT:
2775         case KVM_CAP_NOP_IO_DELAY:
2776         case KVM_CAP_MP_STATE:
2777         case KVM_CAP_SYNC_MMU:
2778         case KVM_CAP_USER_NMI:
2779         case KVM_CAP_REINJECT_CONTROL:
2780         case KVM_CAP_IRQ_INJECT_STATUS:
2781         case KVM_CAP_IOEVENTFD:
2782         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2783         case KVM_CAP_PIT2:
2784         case KVM_CAP_PIT_STATE2:
2785         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2786         case KVM_CAP_XEN_HVM:
2787         case KVM_CAP_ADJUST_CLOCK:
2788         case KVM_CAP_VCPU_EVENTS:
2789         case KVM_CAP_HYPERV:
2790         case KVM_CAP_HYPERV_VAPIC:
2791         case KVM_CAP_HYPERV_SPIN:
2792         case KVM_CAP_PCI_SEGMENT:
2793         case KVM_CAP_DEBUGREGS:
2794         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2795         case KVM_CAP_XSAVE:
2796         case KVM_CAP_ASYNC_PF:
2797         case KVM_CAP_GET_TSC_KHZ:
2798         case KVM_CAP_KVMCLOCK_CTRL:
2799         case KVM_CAP_READONLY_MEM:
2800         case KVM_CAP_HYPERV_TIME:
2801         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2802         case KVM_CAP_TSC_DEADLINE_TIMER:
2803 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2804         case KVM_CAP_ASSIGN_DEV_IRQ:
2805         case KVM_CAP_PCI_2_3:
2806 #endif
2807                 r = 1;
2808                 break;
2809         case KVM_CAP_COALESCED_MMIO:
2810                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2811                 break;
2812         case KVM_CAP_VAPIC:
2813                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2814                 break;
2815         case KVM_CAP_NR_VCPUS:
2816                 r = KVM_SOFT_MAX_VCPUS;
2817                 break;
2818         case KVM_CAP_MAX_VCPUS:
2819                 r = KVM_MAX_VCPUS;
2820                 break;
2821         case KVM_CAP_NR_MEMSLOTS:
2822                 r = KVM_USER_MEM_SLOTS;
2823                 break;
2824         case KVM_CAP_PV_MMU:    /* obsolete */
2825                 r = 0;
2826                 break;
2827 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2828         case KVM_CAP_IOMMU:
2829                 r = iommu_present(&pci_bus_type);
2830                 break;
2831 #endif
2832         case KVM_CAP_MCE:
2833                 r = KVM_MAX_MCE_BANKS;
2834                 break;
2835         case KVM_CAP_XCRS:
2836                 r = cpu_has_xsave;
2837                 break;
2838         case KVM_CAP_TSC_CONTROL:
2839                 r = kvm_has_tsc_control;
2840                 break;
2841         default:
2842                 r = 0;
2843                 break;
2844         }
2845         return r;
2846
2847 }
2848
2849 long kvm_arch_dev_ioctl(struct file *filp,
2850                         unsigned int ioctl, unsigned long arg)
2851 {
2852         void __user *argp = (void __user *)arg;
2853         long r;
2854
2855         switch (ioctl) {
2856         case KVM_GET_MSR_INDEX_LIST: {
2857                 struct kvm_msr_list __user *user_msr_list = argp;
2858                 struct kvm_msr_list msr_list;
2859                 unsigned n;
2860
2861                 r = -EFAULT;
2862                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2863                         goto out;
2864                 n = msr_list.nmsrs;
2865                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2866                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2867                         goto out;
2868                 r = -E2BIG;
2869                 if (n < msr_list.nmsrs)
2870                         goto out;
2871                 r = -EFAULT;
2872                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2873                                  num_msrs_to_save * sizeof(u32)))
2874                         goto out;
2875                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2876                                  &emulated_msrs,
2877                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2878                         goto out;
2879                 r = 0;
2880                 break;
2881         }
2882         case KVM_GET_SUPPORTED_CPUID:
2883         case KVM_GET_EMULATED_CPUID: {
2884                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2885                 struct kvm_cpuid2 cpuid;
2886
2887                 r = -EFAULT;
2888                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2889                         goto out;
2890
2891                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2892                                             ioctl);
2893                 if (r)
2894                         goto out;
2895
2896                 r = -EFAULT;
2897                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2898                         goto out;
2899                 r = 0;
2900                 break;
2901         }
2902         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2903                 u64 mce_cap;
2904
2905                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2906                 r = -EFAULT;
2907                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2908                         goto out;
2909                 r = 0;
2910                 break;
2911         }
2912         default:
2913                 r = -EINVAL;
2914         }
2915 out:
2916         return r;
2917 }
2918
2919 static void wbinvd_ipi(void *garbage)
2920 {
2921         wbinvd();
2922 }
2923
2924 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2925 {
2926         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2927 }
2928
2929 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2930 {
2931         /* Address WBINVD may be executed by guest */
2932         if (need_emulate_wbinvd(vcpu)) {
2933                 if (kvm_x86_ops->has_wbinvd_exit())
2934                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2935                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2936                         smp_call_function_single(vcpu->cpu,
2937                                         wbinvd_ipi, NULL, 1);
2938         }
2939
2940         kvm_x86_ops->vcpu_load(vcpu, cpu);
2941
2942         /* Apply any externally detected TSC adjustments (due to suspend) */
2943         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2944                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2945                 vcpu->arch.tsc_offset_adjustment = 0;
2946                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2947         }
2948
2949         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2950                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2951                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2952                 if (tsc_delta < 0)
2953                         mark_tsc_unstable("KVM discovered backwards TSC");
2954                 if (check_tsc_unstable()) {
2955                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2956                                                 vcpu->arch.last_guest_tsc);
2957                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2958                         vcpu->arch.tsc_catchup = 1;
2959                 }
2960                 /*
2961                  * On a host with synchronized TSC, there is no need to update
2962                  * kvmclock on vcpu->cpu migration
2963                  */
2964                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2965                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2966                 if (vcpu->cpu != cpu)
2967                         kvm_migrate_timers(vcpu);
2968                 vcpu->cpu = cpu;
2969         }
2970
2971         accumulate_steal_time(vcpu);
2972         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2973 }
2974
2975 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2976 {
2977         kvm_x86_ops->vcpu_put(vcpu);
2978         kvm_put_guest_fpu(vcpu);
2979         vcpu->arch.last_host_tsc = native_read_tsc();
2980 }
2981
2982 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2983                                     struct kvm_lapic_state *s)
2984 {
2985         kvm_x86_ops->sync_pir_to_irr(vcpu);
2986         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2987
2988         return 0;
2989 }
2990
2991 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2992                                     struct kvm_lapic_state *s)
2993 {
2994         kvm_apic_post_state_restore(vcpu, s);
2995         update_cr8_intercept(vcpu);
2996
2997         return 0;
2998 }
2999
3000 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3001                                     struct kvm_interrupt *irq)
3002 {
3003         if (irq->irq >= KVM_NR_INTERRUPTS)
3004                 return -EINVAL;
3005         if (irqchip_in_kernel(vcpu->kvm))
3006                 return -ENXIO;
3007
3008         kvm_queue_interrupt(vcpu, irq->irq, false);
3009         kvm_make_request(KVM_REQ_EVENT, vcpu);
3010
3011         return 0;
3012 }
3013
3014 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3015 {
3016         kvm_inject_nmi(vcpu);
3017
3018         return 0;
3019 }
3020
3021 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3022                                            struct kvm_tpr_access_ctl *tac)
3023 {
3024         if (tac->flags)
3025                 return -EINVAL;
3026         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3027         return 0;
3028 }
3029
3030 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3031                                         u64 mcg_cap)
3032 {
3033         int r;
3034         unsigned bank_num = mcg_cap & 0xff, bank;
3035
3036         r = -EINVAL;
3037         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3038                 goto out;
3039         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3040                 goto out;
3041         r = 0;
3042         vcpu->arch.mcg_cap = mcg_cap;
3043         /* Init IA32_MCG_CTL to all 1s */
3044         if (mcg_cap & MCG_CTL_P)
3045                 vcpu->arch.mcg_ctl = ~(u64)0;
3046         /* Init IA32_MCi_CTL to all 1s */
3047         for (bank = 0; bank < bank_num; bank++)
3048                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3049 out:
3050         return r;
3051 }
3052
3053 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3054                                       struct kvm_x86_mce *mce)
3055 {
3056         u64 mcg_cap = vcpu->arch.mcg_cap;
3057         unsigned bank_num = mcg_cap & 0xff;
3058         u64 *banks = vcpu->arch.mce_banks;
3059
3060         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3061                 return -EINVAL;
3062         /*
3063          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3064          * reporting is disabled
3065          */
3066         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3067             vcpu->arch.mcg_ctl != ~(u64)0)
3068                 return 0;
3069         banks += 4 * mce->bank;
3070         /*
3071          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3072          * reporting is disabled for the bank
3073          */
3074         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3075                 return 0;
3076         if (mce->status & MCI_STATUS_UC) {
3077                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3078                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3079                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3080                         return 0;
3081                 }
3082                 if (banks[1] & MCI_STATUS_VAL)
3083                         mce->status |= MCI_STATUS_OVER;
3084                 banks[2] = mce->addr;
3085                 banks[3] = mce->misc;
3086                 vcpu->arch.mcg_status = mce->mcg_status;
3087                 banks[1] = mce->status;
3088                 kvm_queue_exception(vcpu, MC_VECTOR);
3089         } else if (!(banks[1] & MCI_STATUS_VAL)
3090                    || !(banks[1] & MCI_STATUS_UC)) {
3091                 if (banks[1] & MCI_STATUS_VAL)
3092                         mce->status |= MCI_STATUS_OVER;
3093                 banks[2] = mce->addr;
3094                 banks[3] = mce->misc;
3095                 banks[1] = mce->status;
3096         } else
3097                 banks[1] |= MCI_STATUS_OVER;
3098         return 0;
3099 }
3100
3101 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3102                                                struct kvm_vcpu_events *events)
3103 {
3104         process_nmi(vcpu);
3105         events->exception.injected =
3106                 vcpu->arch.exception.pending &&
3107                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3108         events->exception.nr = vcpu->arch.exception.nr;
3109         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3110         events->exception.pad = 0;
3111         events->exception.error_code = vcpu->arch.exception.error_code;
3112
3113         events->interrupt.injected =
3114                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3115         events->interrupt.nr = vcpu->arch.interrupt.nr;
3116         events->interrupt.soft = 0;
3117         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3118
3119         events->nmi.injected = vcpu->arch.nmi_injected;
3120         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3121         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3122         events->nmi.pad = 0;
3123
3124         events->sipi_vector = 0; /* never valid when reporting to user space */
3125
3126         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3127                          | KVM_VCPUEVENT_VALID_SHADOW);
3128         memset(&events->reserved, 0, sizeof(events->reserved));
3129 }
3130
3131 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3132                                               struct kvm_vcpu_events *events)
3133 {
3134         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3135                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3136                               | KVM_VCPUEVENT_VALID_SHADOW))
3137                 return -EINVAL;
3138
3139         process_nmi(vcpu);
3140         vcpu->arch.exception.pending = events->exception.injected;
3141         vcpu->arch.exception.nr = events->exception.nr;
3142         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3143         vcpu->arch.exception.error_code = events->exception.error_code;
3144
3145         vcpu->arch.interrupt.pending = events->interrupt.injected;
3146         vcpu->arch.interrupt.nr = events->interrupt.nr;
3147         vcpu->arch.interrupt.soft = events->interrupt.soft;
3148         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3149                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3150                                                   events->interrupt.shadow);
3151
3152         vcpu->arch.nmi_injected = events->nmi.injected;
3153         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3154                 vcpu->arch.nmi_pending = events->nmi.pending;
3155         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3156
3157         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3158             kvm_vcpu_has_lapic(vcpu))
3159                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3160
3161         kvm_make_request(KVM_REQ_EVENT, vcpu);
3162
3163         return 0;
3164 }
3165
3166 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3167                                              struct kvm_debugregs *dbgregs)
3168 {
3169         unsigned long val;
3170
3171         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3172         kvm_get_dr(vcpu, 6, &val);
3173         dbgregs->dr6 = val;
3174         dbgregs->dr7 = vcpu->arch.dr7;
3175         dbgregs->flags = 0;
3176         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3177 }
3178
3179 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3180                                             struct kvm_debugregs *dbgregs)
3181 {
3182         if (dbgregs->flags)
3183                 return -EINVAL;
3184
3185         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3186         kvm_update_dr0123(vcpu);
3187         vcpu->arch.dr6 = dbgregs->dr6;
3188         kvm_update_dr6(vcpu);
3189         vcpu->arch.dr7 = dbgregs->dr7;
3190         kvm_update_dr7(vcpu);
3191
3192         return 0;
3193 }
3194
3195 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3196
3197 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3198 {
3199         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3200         u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3201         u64 valid;
3202
3203         /*
3204          * Copy legacy XSAVE area, to avoid complications with CPUID
3205          * leaves 0 and 1 in the loop below.
3206          */
3207         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3208
3209         /* Set XSTATE_BV */
3210         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3211
3212         /*
3213          * Copy each region from the possibly compacted offset to the
3214          * non-compacted offset.
3215          */
3216         valid = xstate_bv & ~XSTATE_FPSSE;
3217         while (valid) {
3218                 u64 feature = valid & -valid;
3219                 int index = fls64(feature) - 1;
3220                 void *src = get_xsave_addr(xsave, feature);
3221
3222                 if (src) {
3223                         u32 size, offset, ecx, edx;
3224                         cpuid_count(XSTATE_CPUID, index,
3225                                     &size, &offset, &ecx, &edx);
3226                         memcpy(dest + offset, src, size);
3227                 }
3228
3229                 valid -= feature;
3230         }
3231 }
3232
3233 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3234 {
3235         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3236         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3237         u64 valid;
3238
3239         /*
3240          * Copy legacy XSAVE area, to avoid complications with CPUID
3241          * leaves 0 and 1 in the loop below.
3242          */
3243         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3244
3245         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3246         xsave->xsave_hdr.xstate_bv = xstate_bv;
3247         if (cpu_has_xsaves)
3248                 xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3249
3250         /*
3251          * Copy each region from the non-compacted offset to the
3252          * possibly compacted offset.
3253          */
3254         valid = xstate_bv & ~XSTATE_FPSSE;
3255         while (valid) {
3256                 u64 feature = valid & -valid;
3257                 int index = fls64(feature) - 1;
3258                 void *dest = get_xsave_addr(xsave, feature);
3259
3260                 if (dest) {
3261                         u32 size, offset, ecx, edx;
3262                         cpuid_count(XSTATE_CPUID, index,
3263                                     &size, &offset, &ecx, &edx);
3264                         memcpy(dest, src + offset, size);
3265                 } else
3266                         WARN_ON_ONCE(1);
3267
3268                 valid -= feature;
3269         }
3270 }
3271
3272 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3273                                          struct kvm_xsave *guest_xsave)
3274 {
3275         if (cpu_has_xsave) {
3276                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3277                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3278         } else {
3279                 memcpy(guest_xsave->region,
3280                         &vcpu->arch.guest_fpu.state->fxsave,
3281                         sizeof(struct i387_fxsave_struct));
3282                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3283                         XSTATE_FPSSE;
3284         }
3285 }
3286
3287 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3288                                         struct kvm_xsave *guest_xsave)
3289 {
3290         u64 xstate_bv =
3291                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3292
3293         if (cpu_has_xsave) {
3294                 /*
3295                  * Here we allow setting states that are not present in
3296                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3297                  * with old userspace.
3298                  */
3299                 if (xstate_bv & ~kvm_supported_xcr0())
3300                         return -EINVAL;
3301                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3302         } else {
3303                 if (xstate_bv & ~XSTATE_FPSSE)
3304                         return -EINVAL;
3305                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3306                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3307         }
3308         return 0;
3309 }
3310
3311 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3312                                         struct kvm_xcrs *guest_xcrs)
3313 {
3314         if (!cpu_has_xsave) {
3315                 guest_xcrs->nr_xcrs = 0;
3316                 return;
3317         }
3318
3319         guest_xcrs->nr_xcrs = 1;
3320         guest_xcrs->flags = 0;
3321         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3322         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3323 }
3324
3325 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3326                                        struct kvm_xcrs *guest_xcrs)
3327 {
3328         int i, r = 0;
3329
3330         if (!cpu_has_xsave)
3331                 return -EINVAL;
3332
3333         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3334                 return -EINVAL;
3335
3336         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3337                 /* Only support XCR0 currently */
3338                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3339                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3340                                 guest_xcrs->xcrs[i].value);
3341                         break;
3342                 }
3343         if (r)
3344                 r = -EINVAL;
3345         return r;
3346 }
3347
3348 /*
3349  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3350  * stopped by the hypervisor.  This function will be called from the host only.
3351  * EINVAL is returned when the host attempts to set the flag for a guest that
3352  * does not support pv clocks.
3353  */
3354 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3355 {
3356         if (!vcpu->arch.pv_time_enabled)
3357                 return -EINVAL;
3358         vcpu->arch.pvclock_set_guest_stopped_request = true;
3359         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3360         return 0;
3361 }
3362
3363 long kvm_arch_vcpu_ioctl(struct file *filp,
3364                          unsigned int ioctl, unsigned long arg)
3365 {
3366         struct kvm_vcpu *vcpu = filp->private_data;
3367         void __user *argp = (void __user *)arg;
3368         int r;
3369         union {
3370                 struct kvm_lapic_state *lapic;
3371                 struct kvm_xsave *xsave;
3372                 struct kvm_xcrs *xcrs;
3373                 void *buffer;
3374         } u;
3375
3376         u.buffer = NULL;
3377         switch (ioctl) {
3378         case KVM_GET_LAPIC: {
3379                 r = -EINVAL;
3380                 if (!vcpu->arch.apic)
3381                         goto out;
3382                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3383
3384                 r = -ENOMEM;
3385                 if (!u.lapic)
3386                         goto out;
3387                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3388                 if (r)
3389                         goto out;
3390                 r = -EFAULT;
3391                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3392                         goto out;
3393                 r = 0;
3394                 break;
3395         }
3396         case KVM_SET_LAPIC: {
3397                 r = -EINVAL;
3398                 if (!vcpu->arch.apic)
3399                         goto out;
3400                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3401                 if (IS_ERR(u.lapic))
3402                         return PTR_ERR(u.lapic);
3403
3404                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3405                 break;
3406         }
3407         case KVM_INTERRUPT: {
3408                 struct kvm_interrupt irq;
3409
3410                 r = -EFAULT;
3411                 if (copy_from_user(&irq, argp, sizeof irq))
3412                         goto out;
3413                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3414                 break;
3415         }
3416         case KVM_NMI: {
3417                 r = kvm_vcpu_ioctl_nmi(vcpu);
3418                 break;
3419         }
3420         case KVM_SET_CPUID: {
3421                 struct kvm_cpuid __user *cpuid_arg = argp;
3422                 struct kvm_cpuid cpuid;
3423
3424                 r = -EFAULT;
3425                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3426                         goto out;
3427                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3428                 break;
3429         }
3430         case KVM_SET_CPUID2: {
3431                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3432                 struct kvm_cpuid2 cpuid;
3433
3434                 r = -EFAULT;
3435                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3436                         goto out;
3437                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3438                                               cpuid_arg->entries);
3439                 break;
3440         }
3441         case KVM_GET_CPUID2: {
3442                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3443                 struct kvm_cpuid2 cpuid;
3444
3445                 r = -EFAULT;
3446                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3447                         goto out;
3448                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3449                                               cpuid_arg->entries);
3450                 if (r)
3451                         goto out;
3452                 r = -EFAULT;
3453                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3454                         goto out;
3455                 r = 0;
3456                 break;
3457         }
3458         case KVM_GET_MSRS:
3459                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3460                 break;
3461         case KVM_SET_MSRS:
3462                 r = msr_io(vcpu, argp, do_set_msr, 0);
3463                 break;
3464         case KVM_TPR_ACCESS_REPORTING: {
3465                 struct kvm_tpr_access_ctl tac;
3466
3467                 r = -EFAULT;
3468                 if (copy_from_user(&tac, argp, sizeof tac))
3469                         goto out;
3470                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3471                 if (r)
3472                         goto out;
3473                 r = -EFAULT;
3474                 if (copy_to_user(argp, &tac, sizeof tac))
3475                         goto out;
3476                 r = 0;
3477                 break;
3478         };
3479         case KVM_SET_VAPIC_ADDR: {
3480                 struct kvm_vapic_addr va;
3481
3482                 r = -EINVAL;
3483                 if (!irqchip_in_kernel(vcpu->kvm))
3484                         goto out;
3485                 r = -EFAULT;
3486                 if (copy_from_user(&va, argp, sizeof va))
3487                         goto out;
3488                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3489                 break;
3490         }
3491         case KVM_X86_SETUP_MCE: {
3492                 u64 mcg_cap;
3493
3494                 r = -EFAULT;
3495                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3496                         goto out;
3497                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3498                 break;
3499         }
3500         case KVM_X86_SET_MCE: {
3501                 struct kvm_x86_mce mce;
3502
3503                 r = -EFAULT;
3504                 if (copy_from_user(&mce, argp, sizeof mce))
3505                         goto out;
3506                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3507                 break;
3508         }
3509         case KVM_GET_VCPU_EVENTS: {
3510                 struct kvm_vcpu_events events;
3511
3512                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3513
3514                 r = -EFAULT;
3515                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3516                         break;
3517                 r = 0;
3518                 break;
3519         }
3520         case KVM_SET_VCPU_EVENTS: {
3521                 struct kvm_vcpu_events events;
3522
3523                 r = -EFAULT;
3524                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3525                         break;
3526
3527                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3528                 break;
3529         }
3530         case KVM_GET_DEBUGREGS: {
3531                 struct kvm_debugregs dbgregs;
3532
3533                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3534
3535                 r = -EFAULT;
3536                 if (copy_to_user(argp, &dbgregs,
3537                                  sizeof(struct kvm_debugregs)))
3538                         break;
3539                 r = 0;
3540                 break;
3541         }
3542         case KVM_SET_DEBUGREGS: {
3543                 struct kvm_debugregs dbgregs;
3544
3545                 r = -EFAULT;
3546                 if (copy_from_user(&dbgregs, argp,
3547                                    sizeof(struct kvm_debugregs)))
3548                         break;
3549
3550                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3551                 break;
3552         }
3553         case KVM_GET_XSAVE: {
3554                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3555                 r = -ENOMEM;
3556                 if (!u.xsave)
3557                         break;
3558
3559                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3560
3561                 r = -EFAULT;
3562                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3563                         break;
3564                 r = 0;
3565                 break;
3566         }
3567         case KVM_SET_XSAVE: {
3568                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3569                 if (IS_ERR(u.xsave))
3570                         return PTR_ERR(u.xsave);
3571
3572                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3573                 break;
3574         }
3575         case KVM_GET_XCRS: {
3576                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3577                 r = -ENOMEM;
3578                 if (!u.xcrs)
3579                         break;
3580
3581                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3582
3583                 r = -EFAULT;
3584                 if (copy_to_user(argp, u.xcrs,
3585                                  sizeof(struct kvm_xcrs)))
3586                         break;
3587                 r = 0;
3588                 break;
3589         }
3590         case KVM_SET_XCRS: {
3591                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3592                 if (IS_ERR(u.xcrs))
3593                         return PTR_ERR(u.xcrs);
3594
3595                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3596                 break;
3597         }
3598         case KVM_SET_TSC_KHZ: {
3599                 u32 user_tsc_khz;
3600
3601                 r = -EINVAL;
3602                 user_tsc_khz = (u32)arg;
3603
3604                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3605                         goto out;
3606
3607                 if (user_tsc_khz == 0)
3608                         user_tsc_khz = tsc_khz;
3609
3610                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3611
3612                 r = 0;
3613                 goto out;
3614         }
3615         case KVM_GET_TSC_KHZ: {
3616                 r = vcpu->arch.virtual_tsc_khz;
3617                 goto out;
3618         }
3619         case KVM_KVMCLOCK_CTRL: {
3620                 r = kvm_set_guest_paused(vcpu);
3621                 goto out;
3622         }
3623         default:
3624                 r = -EINVAL;
3625         }
3626 out:
3627         kfree(u.buffer);
3628         return r;
3629 }
3630
3631 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3632 {
3633         return VM_FAULT_SIGBUS;
3634 }
3635
3636 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3637 {
3638         int ret;
3639
3640         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3641                 return -EINVAL;
3642         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3643         return ret;
3644 }
3645
3646 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3647                                               u64 ident_addr)
3648 {
3649         kvm->arch.ept_identity_map_addr = ident_addr;
3650         return 0;
3651 }
3652
3653 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3654                                           u32 kvm_nr_mmu_pages)
3655 {
3656         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3657                 return -EINVAL;
3658
3659         mutex_lock(&kvm->slots_lock);
3660
3661         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3662         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3663
3664         mutex_unlock(&kvm->slots_lock);
3665         return 0;
3666 }
3667
3668 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3669 {
3670         return kvm->arch.n_max_mmu_pages;
3671 }
3672
3673 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3674 {
3675         int r;
3676
3677         r = 0;
3678         switch (chip->chip_id) {
3679         case KVM_IRQCHIP_PIC_MASTER:
3680                 memcpy(&chip->chip.pic,
3681                         &pic_irqchip(kvm)->pics[0],
3682                         sizeof(struct kvm_pic_state));
3683                 break;
3684         case KVM_IRQCHIP_PIC_SLAVE:
3685                 memcpy(&chip->chip.pic,
3686                         &pic_irqchip(kvm)->pics[1],
3687                         sizeof(struct kvm_pic_state));
3688                 break;
3689         case KVM_IRQCHIP_IOAPIC:
3690                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3691                 break;
3692         default:
3693                 r = -EINVAL;
3694                 break;
3695         }
3696         return r;
3697 }
3698
3699 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3700 {
3701         int r;
3702
3703         r = 0;
3704         switch (chip->chip_id) {
3705         case KVM_IRQCHIP_PIC_MASTER:
3706                 spin_lock(&pic_irqchip(kvm)->lock);
3707                 memcpy(&pic_irqchip(kvm)->pics[0],
3708                         &chip->chip.pic,
3709                         sizeof(struct kvm_pic_state));
3710                 spin_unlock(&pic_irqchip(kvm)->lock);
3711                 break;
3712         case KVM_IRQCHIP_PIC_SLAVE:
3713                 spin_lock(&pic_irqchip(kvm)->lock);
3714                 memcpy(&pic_irqchip(kvm)->pics[1],
3715                         &chip->chip.pic,
3716                         sizeof(struct kvm_pic_state));
3717                 spin_unlock(&pic_irqchip(kvm)->lock);
3718                 break;
3719         case KVM_IRQCHIP_IOAPIC:
3720                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3721                 break;
3722         default:
3723                 r = -EINVAL;
3724                 break;
3725         }
3726         kvm_pic_update_irq(pic_irqchip(kvm));
3727         return r;
3728 }
3729
3730 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3731 {
3732         int r = 0;
3733
3734         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3735         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3736         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3737         return r;
3738 }
3739
3740 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3741 {
3742         int r = 0;
3743
3744         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3745         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3746         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3747         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3748         return r;
3749 }
3750
3751 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3752 {
3753         int r = 0;
3754
3755         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3756         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3757                 sizeof(ps->channels));
3758         ps->flags = kvm->arch.vpit->pit_state.flags;
3759         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3760         memset(&ps->reserved, 0, sizeof(ps->reserved));
3761         return r;
3762 }
3763
3764 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3765 {
3766         int r = 0, start = 0;
3767         u32 prev_legacy, cur_legacy;
3768         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3769         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3770         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3771         if (!prev_legacy && cur_legacy)
3772                 start = 1;
3773         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3774                sizeof(kvm->arch.vpit->pit_state.channels));
3775         kvm->arch.vpit->pit_state.flags = ps->flags;
3776         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3777         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3778         return r;
3779 }
3780
3781 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3782                                  struct kvm_reinject_control *control)
3783 {
3784         if (!kvm->arch.vpit)
3785                 return -ENXIO;
3786         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3787         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3788         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3789         return 0;
3790 }
3791
3792 /**
3793  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3794  * @kvm: kvm instance
3795  * @log: slot id and address to which we copy the log
3796  *
3797  * Steps 1-4 below provide general overview of dirty page logging. See
3798  * kvm_get_dirty_log_protect() function description for additional details.
3799  *
3800  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3801  * always flush the TLB (step 4) even if previous step failed  and the dirty
3802  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3803  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3804  * writes will be marked dirty for next log read.
3805  *
3806  *   1. Take a snapshot of the bit and clear it if needed.
3807  *   2. Write protect the corresponding page.
3808  *   3. Copy the snapshot to the userspace.
3809  *   4. Flush TLB's if needed.
3810  */
3811 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3812 {
3813         bool is_dirty = false;
3814         int r;
3815
3816         mutex_lock(&kvm->slots_lock);
3817
3818         /*
3819          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3820          */
3821         if (kvm_x86_ops->flush_log_dirty)
3822                 kvm_x86_ops->flush_log_dirty(kvm);
3823
3824         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3825
3826         /*
3827          * All the TLBs can be flushed out of mmu lock, see the comments in
3828          * kvm_mmu_slot_remove_write_access().
3829          */
3830         lockdep_assert_held(&kvm->slots_lock);
3831         if (is_dirty)
3832                 kvm_flush_remote_tlbs(kvm);
3833
3834         mutex_unlock(&kvm->slots_lock);
3835         return r;
3836 }
3837
3838 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3839                         bool line_status)
3840 {
3841         if (!irqchip_in_kernel(kvm))
3842                 return -ENXIO;
3843
3844         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3845                                         irq_event->irq, irq_event->level,
3846                                         line_status);
3847         return 0;
3848 }
3849
3850 long kvm_arch_vm_ioctl(struct file *filp,
3851                        unsigned int ioctl, unsigned long arg)
3852 {
3853         struct kvm *kvm = filp->private_data;
3854         void __user *argp = (void __user *)arg;
3855         int r = -ENOTTY;
3856         /*
3857          * This union makes it completely explicit to gcc-3.x
3858          * that these two variables' stack usage should be
3859          * combined, not added together.
3860          */
3861         union {
3862                 struct kvm_pit_state ps;
3863                 struct kvm_pit_state2 ps2;
3864                 struct kvm_pit_config pit_config;
3865         } u;
3866
3867         switch (ioctl) {
3868         case KVM_SET_TSS_ADDR:
3869                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3870                 break;
3871         case KVM_SET_IDENTITY_MAP_ADDR: {
3872                 u64 ident_addr;
3873
3874                 r = -EFAULT;
3875                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3876                         goto out;
3877                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3878                 break;
3879         }
3880         case KVM_SET_NR_MMU_PAGES:
3881                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3882                 break;
3883         case KVM_GET_NR_MMU_PAGES:
3884                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3885                 break;
3886         case KVM_CREATE_IRQCHIP: {
3887                 struct kvm_pic *vpic;
3888
3889                 mutex_lock(&kvm->lock);
3890                 r = -EEXIST;
3891                 if (kvm->arch.vpic)
3892                         goto create_irqchip_unlock;
3893                 r = -EINVAL;
3894                 if (atomic_read(&kvm->online_vcpus))
3895                         goto create_irqchip_unlock;
3896                 r = -ENOMEM;
3897                 vpic = kvm_create_pic(kvm);
3898                 if (vpic) {
3899                         r = kvm_ioapic_init(kvm);
3900                         if (r) {
3901                                 mutex_lock(&kvm->slots_lock);
3902                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3903                                                           &vpic->dev_master);
3904                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3905                                                           &vpic->dev_slave);
3906                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3907                                                           &vpic->dev_eclr);
3908                                 mutex_unlock(&kvm->slots_lock);
3909                                 kfree(vpic);
3910                                 goto create_irqchip_unlock;
3911                         }
3912                 } else
3913                         goto create_irqchip_unlock;
3914                 smp_wmb();
3915                 kvm->arch.vpic = vpic;
3916                 smp_wmb();
3917                 r = kvm_setup_default_irq_routing(kvm);
3918                 if (r) {
3919                         mutex_lock(&kvm->slots_lock);
3920                         mutex_lock(&kvm->irq_lock);
3921                         kvm_ioapic_destroy(kvm);
3922                         kvm_destroy_pic(kvm);
3923                         mutex_unlock(&kvm->irq_lock);
3924                         mutex_unlock(&kvm->slots_lock);
3925                 }
3926         create_irqchip_unlock:
3927                 mutex_unlock(&kvm->lock);
3928                 break;
3929         }
3930         case KVM_CREATE_PIT:
3931                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3932                 goto create_pit;
3933         case KVM_CREATE_PIT2:
3934                 r = -EFAULT;
3935                 if (copy_from_user(&u.pit_config, argp,
3936                                    sizeof(struct kvm_pit_config)))
3937                         goto out;
3938         create_pit:
3939                 mutex_lock(&kvm->slots_lock);
3940                 r = -EEXIST;
3941                 if (kvm->arch.vpit)
3942                         goto create_pit_unlock;
3943                 r = -ENOMEM;
3944                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3945                 if (kvm->arch.vpit)
3946                         r = 0;
3947         create_pit_unlock:
3948                 mutex_unlock(&kvm->slots_lock);
3949                 break;
3950         case KVM_GET_IRQCHIP: {
3951                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3952                 struct kvm_irqchip *chip;
3953
3954                 chip = memdup_user(argp, sizeof(*chip));
3955                 if (IS_ERR(chip)) {
3956                         r = PTR_ERR(chip);
3957                         goto out;
3958                 }
3959
3960                 r = -ENXIO;
3961                 if (!irqchip_in_kernel(kvm))
3962                         goto get_irqchip_out;
3963                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3964                 if (r)
3965                         goto get_irqchip_out;
3966                 r = -EFAULT;
3967                 if (copy_to_user(argp, chip, sizeof *chip))
3968                         goto get_irqchip_out;
3969                 r = 0;
3970         get_irqchip_out:
3971                 kfree(chip);
3972                 break;
3973         }
3974         case KVM_SET_IRQCHIP: {
3975                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3976                 struct kvm_irqchip *chip;
3977
3978                 chip = memdup_user(argp, sizeof(*chip));
3979                 if (IS_ERR(chip)) {
3980                         r = PTR_ERR(chip);
3981                         goto out;
3982                 }
3983
3984                 r = -ENXIO;
3985                 if (!irqchip_in_kernel(kvm))
3986                         goto set_irqchip_out;
3987                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3988                 if (r)
3989                         goto set_irqchip_out;
3990                 r = 0;
3991         set_irqchip_out:
3992                 kfree(chip);
3993                 break;
3994         }
3995         case KVM_GET_PIT: {
3996                 r = -EFAULT;
3997                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3998                         goto out;
3999                 r = -ENXIO;
4000                 if (!kvm->arch.vpit)
4001                         goto out;
4002                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4003                 if (r)
4004                         goto out;
4005                 r = -EFAULT;
4006                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4007                         goto out;
4008                 r = 0;
4009                 break;
4010         }
4011         case KVM_SET_PIT: {
4012                 r = -EFAULT;
4013                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4014                         goto out;
4015                 r = -ENXIO;
4016                 if (!kvm->arch.vpit)
4017                         goto out;
4018                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4019                 break;
4020         }
4021         case KVM_GET_PIT2: {
4022                 r = -ENXIO;
4023                 if (!kvm->arch.vpit)
4024                         goto out;
4025                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4026                 if (r)
4027                         goto out;
4028                 r = -EFAULT;
4029                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4030                         goto out;
4031                 r = 0;
4032                 break;
4033         }
4034         case KVM_SET_PIT2: {
4035                 r = -EFAULT;
4036                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4037                         goto out;
4038                 r = -ENXIO;
4039                 if (!kvm->arch.vpit)
4040                         goto out;
4041                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4042                 break;
4043         }
4044         case KVM_REINJECT_CONTROL: {
4045                 struct kvm_reinject_control control;
4046                 r =  -EFAULT;
4047                 if (copy_from_user(&control, argp, sizeof(control)))
4048                         goto out;
4049                 r = kvm_vm_ioctl_reinject(kvm, &control);
4050                 break;
4051         }
4052         case KVM_XEN_HVM_CONFIG: {
4053                 r = -EFAULT;
4054                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4055                                    sizeof(struct kvm_xen_hvm_config)))
4056                         goto out;
4057                 r = -EINVAL;
4058                 if (kvm->arch.xen_hvm_config.flags)
4059                         goto out;
4060                 r = 0;
4061                 break;
4062         }
4063         case KVM_SET_CLOCK: {
4064                 struct kvm_clock_data user_ns;
4065                 u64 now_ns;
4066                 s64 delta;
4067
4068                 r = -EFAULT;
4069                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4070                         goto out;
4071
4072                 r = -EINVAL;
4073                 if (user_ns.flags)
4074                         goto out;
4075
4076                 r = 0;
4077                 local_irq_disable();
4078                 now_ns = get_kernel_ns();
4079                 delta = user_ns.clock - now_ns;
4080                 local_irq_enable();
4081                 kvm->arch.kvmclock_offset = delta;
4082                 kvm_gen_update_masterclock(kvm);
4083                 break;
4084         }
4085         case KVM_GET_CLOCK: {
4086                 struct kvm_clock_data user_ns;
4087                 u64 now_ns;
4088
4089                 local_irq_disable();
4090                 now_ns = get_kernel_ns();
4091                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4092                 local_irq_enable();
4093                 user_ns.flags = 0;
4094                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4095
4096                 r = -EFAULT;
4097                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4098                         goto out;
4099                 r = 0;
4100                 break;
4101         }
4102
4103         default:
4104                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4105         }
4106 out:
4107         return r;
4108 }
4109
4110 static void kvm_init_msr_list(void)
4111 {
4112         u32 dummy[2];
4113         unsigned i, j;
4114
4115         /* skip the first msrs in the list. KVM-specific */
4116         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4117                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4118                         continue;
4119
4120                 /*
4121                  * Even MSRs that are valid in the host may not be exposed
4122                  * to the guests in some cases.  We could work around this
4123                  * in VMX with the generic MSR save/load machinery, but it
4124                  * is not really worthwhile since it will really only
4125                  * happen with nested virtualization.
4126                  */
4127                 switch (msrs_to_save[i]) {
4128                 case MSR_IA32_BNDCFGS:
4129                         if (!kvm_x86_ops->mpx_supported())
4130                                 continue;
4131                         break;
4132                 default:
4133                         break;
4134                 }
4135
4136                 if (j < i)
4137                         msrs_to_save[j] = msrs_to_save[i];
4138                 j++;
4139         }
4140         num_msrs_to_save = j;
4141 }
4142
4143 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4144                            const void *v)
4145 {
4146         int handled = 0;
4147         int n;
4148
4149         do {
4150                 n = min(len, 8);
4151                 if (!(vcpu->arch.apic &&
4152                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4153                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4154                         break;
4155                 handled += n;
4156                 addr += n;
4157                 len -= n;
4158                 v += n;
4159         } while (len);
4160
4161         return handled;
4162 }
4163
4164 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4165 {
4166         int handled = 0;
4167         int n;
4168
4169         do {
4170                 n = min(len, 8);
4171                 if (!(vcpu->arch.apic &&
4172                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4173                                          addr, n, v))
4174                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4175                         break;
4176                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4177                 handled += n;
4178                 addr += n;
4179                 len -= n;
4180                 v += n;
4181         } while (len);
4182
4183         return handled;
4184 }
4185
4186 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4187                         struct kvm_segment *var, int seg)
4188 {
4189         kvm_x86_ops->set_segment(vcpu, var, seg);
4190 }
4191
4192 void kvm_get_segment(struct kvm_vcpu *vcpu,
4193                      struct kvm_segment *var, int seg)
4194 {
4195         kvm_x86_ops->get_segment(vcpu, var, seg);
4196 }
4197
4198 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4199                            struct x86_exception *exception)
4200 {
4201         gpa_t t_gpa;
4202
4203         BUG_ON(!mmu_is_nested(vcpu));
4204
4205         /* NPT walks are always user-walks */
4206         access |= PFERR_USER_MASK;
4207         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4208
4209         return t_gpa;
4210 }
4211
4212 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4213                               struct x86_exception *exception)
4214 {
4215         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4216         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4217 }
4218
4219  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4220                                 struct x86_exception *exception)
4221 {
4222         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4223         access |= PFERR_FETCH_MASK;
4224         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4225 }
4226
4227 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4228                                struct x86_exception *exception)
4229 {
4230         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4231         access |= PFERR_WRITE_MASK;
4232         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4233 }
4234
4235 /* uses this to access any guest's mapped memory without checking CPL */
4236 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4237                                 struct x86_exception *exception)
4238 {
4239         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4240 }
4241
4242 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4243                                       struct kvm_vcpu *vcpu, u32 access,
4244                                       struct x86_exception *exception)
4245 {
4246         void *data = val;
4247         int r = X86EMUL_CONTINUE;
4248
4249         while (bytes) {
4250                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4251                                                             exception);
4252                 unsigned offset = addr & (PAGE_SIZE-1);
4253                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4254                 int ret;
4255
4256                 if (gpa == UNMAPPED_GVA)
4257                         return X86EMUL_PROPAGATE_FAULT;
4258                 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4259                                           offset, toread);
4260                 if (ret < 0) {
4261                         r = X86EMUL_IO_NEEDED;
4262                         goto out;
4263                 }
4264
4265                 bytes -= toread;
4266                 data += toread;
4267                 addr += toread;
4268         }
4269 out:
4270         return r;
4271 }
4272
4273 /* used for instruction fetching */
4274 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4275                                 gva_t addr, void *val, unsigned int bytes,
4276                                 struct x86_exception *exception)
4277 {
4278         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4279         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4280         unsigned offset;
4281         int ret;
4282
4283         /* Inline kvm_read_guest_virt_helper for speed.  */
4284         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4285                                                     exception);
4286         if (unlikely(gpa == UNMAPPED_GVA))
4287                 return X86EMUL_PROPAGATE_FAULT;
4288
4289         offset = addr & (PAGE_SIZE-1);
4290         if (WARN_ON(offset + bytes > PAGE_SIZE))
4291                 bytes = (unsigned)PAGE_SIZE - offset;
4292         ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4293                                   offset, bytes);
4294         if (unlikely(ret < 0))
4295                 return X86EMUL_IO_NEEDED;
4296
4297         return X86EMUL_CONTINUE;
4298 }
4299
4300 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4301                                gva_t addr, void *val, unsigned int bytes,
4302                                struct x86_exception *exception)
4303 {
4304         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4305         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4306
4307         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4308                                           exception);
4309 }
4310 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4311
4312 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4313                                       gva_t addr, void *val, unsigned int bytes,
4314                                       struct x86_exception *exception)
4315 {
4316         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4317         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4318 }
4319
4320 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4321                                        gva_t addr, void *val,
4322                                        unsigned int bytes,
4323                                        struct x86_exception *exception)
4324 {
4325         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4326         void *data = val;
4327         int r = X86EMUL_CONTINUE;
4328
4329         while (bytes) {
4330                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4331                                                              PFERR_WRITE_MASK,
4332                                                              exception);
4333                 unsigned offset = addr & (PAGE_SIZE-1);
4334                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4335                 int ret;
4336
4337                 if (gpa == UNMAPPED_GVA)
4338                         return X86EMUL_PROPAGATE_FAULT;
4339                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4340                 if (ret < 0) {
4341                         r = X86EMUL_IO_NEEDED;
4342                         goto out;
4343                 }
4344
4345                 bytes -= towrite;
4346                 data += towrite;
4347                 addr += towrite;
4348         }
4349 out:
4350         return r;
4351 }
4352 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4353
4354 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4355                                 gpa_t *gpa, struct x86_exception *exception,
4356                                 bool write)
4357 {
4358         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4359                 | (write ? PFERR_WRITE_MASK : 0);
4360
4361         if (vcpu_match_mmio_gva(vcpu, gva)
4362             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4363                                  vcpu->arch.access, access)) {
4364                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4365                                         (gva & (PAGE_SIZE - 1));
4366                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4367                 return 1;
4368         }
4369
4370         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4371
4372         if (*gpa == UNMAPPED_GVA)
4373                 return -1;
4374
4375         /* For APIC access vmexit */
4376         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4377                 return 1;
4378
4379         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4380                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4381                 return 1;
4382         }
4383
4384         return 0;
4385 }
4386
4387 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4388                         const void *val, int bytes)
4389 {
4390         int ret;
4391
4392         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4393         if (ret < 0)
4394                 return 0;
4395         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4396         return 1;
4397 }
4398
4399 struct read_write_emulator_ops {
4400         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4401                                   int bytes);
4402         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4403                                   void *val, int bytes);
4404         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4405                                int bytes, void *val);
4406         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4407                                     void *val, int bytes);
4408         bool write;
4409 };
4410
4411 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4412 {
4413         if (vcpu->mmio_read_completed) {
4414                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4415                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4416                 vcpu->mmio_read_completed = 0;
4417                 return 1;
4418         }
4419
4420         return 0;
4421 }
4422
4423 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4424                         void *val, int bytes)
4425 {
4426         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4427 }
4428
4429 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4430                          void *val, int bytes)
4431 {
4432         return emulator_write_phys(vcpu, gpa, val, bytes);
4433 }
4434
4435 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4436 {
4437         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4438         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4439 }
4440
4441 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4442                           void *val, int bytes)
4443 {
4444         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4445         return X86EMUL_IO_NEEDED;
4446 }
4447
4448 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4449                            void *val, int bytes)
4450 {
4451         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4452
4453         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4454         return X86EMUL_CONTINUE;
4455 }
4456
4457 static const struct read_write_emulator_ops read_emultor = {
4458         .read_write_prepare = read_prepare,
4459         .read_write_emulate = read_emulate,
4460         .read_write_mmio = vcpu_mmio_read,
4461         .read_write_exit_mmio = read_exit_mmio,
4462 };
4463
4464 static const struct read_write_emulator_ops write_emultor = {
4465         .read_write_emulate = write_emulate,
4466         .read_write_mmio = write_mmio,
4467         .read_write_exit_mmio = write_exit_mmio,
4468         .write = true,
4469 };
4470
4471 static int emulator_read_write_onepage(unsigned long addr, void *val,
4472                                        unsigned int bytes,
4473                                        struct x86_exception *exception,
4474                                        struct kvm_vcpu *vcpu,
4475                                        const struct read_write_emulator_ops *ops)
4476 {
4477         gpa_t gpa;
4478         int handled, ret;
4479         bool write = ops->write;
4480         struct kvm_mmio_fragment *frag;
4481
4482         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4483
4484         if (ret < 0)
4485                 return X86EMUL_PROPAGATE_FAULT;
4486
4487         /* For APIC access vmexit */
4488         if (ret)
4489                 goto mmio;
4490
4491         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4492                 return X86EMUL_CONTINUE;
4493
4494 mmio:
4495         /*
4496          * Is this MMIO handled locally?
4497          */
4498         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4499         if (handled == bytes)
4500                 return X86EMUL_CONTINUE;
4501
4502         gpa += handled;
4503         bytes -= handled;
4504         val += handled;
4505
4506         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4507         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4508         frag->gpa = gpa;
4509         frag->data = val;
4510         frag->len = bytes;
4511         return X86EMUL_CONTINUE;
4512 }
4513
4514 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4515                         unsigned long addr,
4516                         void *val, unsigned int bytes,
4517                         struct x86_exception *exception,
4518                         const struct read_write_emulator_ops *ops)
4519 {
4520         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4521         gpa_t gpa;
4522         int rc;
4523
4524         if (ops->read_write_prepare &&
4525                   ops->read_write_prepare(vcpu, val, bytes))
4526                 return X86EMUL_CONTINUE;
4527
4528         vcpu->mmio_nr_fragments = 0;
4529
4530         /* Crossing a page boundary? */
4531         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4532                 int now;
4533
4534                 now = -addr & ~PAGE_MASK;
4535                 rc = emulator_read_write_onepage(addr, val, now, exception,
4536                                                  vcpu, ops);
4537
4538                 if (rc != X86EMUL_CONTINUE)
4539                         return rc;
4540                 addr += now;
4541                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4542                         addr = (u32)addr;
4543                 val += now;
4544                 bytes -= now;
4545         }
4546
4547         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4548                                          vcpu, ops);
4549         if (rc != X86EMUL_CONTINUE)
4550                 return rc;
4551
4552         if (!vcpu->mmio_nr_fragments)
4553                 return rc;
4554
4555         gpa = vcpu->mmio_fragments[0].gpa;
4556
4557         vcpu->mmio_needed = 1;
4558         vcpu->mmio_cur_fragment = 0;
4559
4560         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4561         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4562         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4563         vcpu->run->mmio.phys_addr = gpa;
4564
4565         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4566 }
4567
4568 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4569                                   unsigned long addr,
4570                                   void *val,
4571                                   unsigned int bytes,
4572                                   struct x86_exception *exception)
4573 {
4574         return emulator_read_write(ctxt, addr, val, bytes,
4575                                    exception, &read_emultor);
4576 }
4577
4578 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4579                             unsigned long addr,
4580                             const void *val,
4581                             unsigned int bytes,
4582                             struct x86_exception *exception)
4583 {
4584         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4585                                    exception, &write_emultor);
4586 }
4587
4588 #define CMPXCHG_TYPE(t, ptr, old, new) \
4589         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4590
4591 #ifdef CONFIG_X86_64
4592 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4593 #else
4594 #  define CMPXCHG64(ptr, old, new) \
4595         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4596 #endif
4597
4598 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4599                                      unsigned long addr,
4600                                      const void *old,
4601                                      const void *new,
4602                                      unsigned int bytes,
4603                                      struct x86_exception *exception)
4604 {
4605         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4606         gpa_t gpa;
4607         struct page *page;
4608         char *kaddr;
4609         bool exchanged;
4610
4611         /* guests cmpxchg8b have to be emulated atomically */
4612         if (bytes > 8 || (bytes & (bytes - 1)))
4613                 goto emul_write;
4614
4615         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4616
4617         if (gpa == UNMAPPED_GVA ||
4618             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4619                 goto emul_write;
4620
4621         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4622                 goto emul_write;
4623
4624         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4625         if (is_error_page(page))
4626                 goto emul_write;
4627
4628         kaddr = kmap_atomic(page);
4629         kaddr += offset_in_page(gpa);
4630         switch (bytes) {
4631         case 1:
4632                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4633                 break;
4634         case 2:
4635                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4636                 break;
4637         case 4:
4638                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4639                 break;
4640         case 8:
4641                 exchanged = CMPXCHG64(kaddr, old, new);
4642                 break;
4643         default:
4644                 BUG();
4645         }
4646         kunmap_atomic(kaddr);
4647         kvm_release_page_dirty(page);
4648
4649         if (!exchanged)
4650                 return X86EMUL_CMPXCHG_FAILED;
4651
4652         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4653         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4654
4655         return X86EMUL_CONTINUE;
4656
4657 emul_write:
4658         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4659
4660         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4661 }
4662
4663 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4664 {
4665         /* TODO: String I/O for in kernel device */
4666         int r;
4667
4668         if (vcpu->arch.pio.in)
4669                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4670                                     vcpu->arch.pio.size, pd);
4671         else
4672                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4673                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4674                                      pd);
4675         return r;
4676 }
4677
4678 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4679                                unsigned short port, void *val,
4680                                unsigned int count, bool in)
4681 {
4682         vcpu->arch.pio.port = port;
4683         vcpu->arch.pio.in = in;
4684         vcpu->arch.pio.count  = count;
4685         vcpu->arch.pio.size = size;
4686
4687         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4688                 vcpu->arch.pio.count = 0;
4689                 return 1;
4690         }
4691
4692         vcpu->run->exit_reason = KVM_EXIT_IO;
4693         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4694         vcpu->run->io.size = size;
4695         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4696         vcpu->run->io.count = count;
4697         vcpu->run->io.port = port;
4698
4699         return 0;
4700 }
4701
4702 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4703                                     int size, unsigned short port, void *val,
4704                                     unsigned int count)
4705 {
4706         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4707         int ret;
4708
4709         if (vcpu->arch.pio.count)
4710                 goto data_avail;
4711
4712         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4713         if (ret) {
4714 data_avail:
4715                 memcpy(val, vcpu->arch.pio_data, size * count);
4716                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4717                 vcpu->arch.pio.count = 0;
4718                 return 1;
4719         }
4720
4721         return 0;
4722 }
4723
4724 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4725                                      int size, unsigned short port,
4726                                      const void *val, unsigned int count)
4727 {
4728         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4729
4730         memcpy(vcpu->arch.pio_data, val, size * count);
4731         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4732         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4733 }
4734
4735 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4736 {
4737         return kvm_x86_ops->get_segment_base(vcpu, seg);
4738 }
4739
4740 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4741 {
4742         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4743 }
4744
4745 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4746 {
4747         if (!need_emulate_wbinvd(vcpu))
4748                 return X86EMUL_CONTINUE;
4749
4750         if (kvm_x86_ops->has_wbinvd_exit()) {
4751                 int cpu = get_cpu();
4752
4753                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4754                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4755                                 wbinvd_ipi, NULL, 1);
4756                 put_cpu();
4757                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4758         } else
4759                 wbinvd();
4760         return X86EMUL_CONTINUE;
4761 }
4762
4763 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4764 {
4765         kvm_x86_ops->skip_emulated_instruction(vcpu);
4766         return kvm_emulate_wbinvd_noskip(vcpu);
4767 }
4768 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4769
4770
4771
4772 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4773 {
4774         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4775 }
4776
4777 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4778                            unsigned long *dest)
4779 {
4780         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4781 }
4782
4783 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4784                            unsigned long value)
4785 {
4786
4787         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4788 }
4789
4790 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4791 {
4792         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4793 }
4794
4795 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4796 {
4797         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4798         unsigned long value;
4799
4800         switch (cr) {
4801         case 0:
4802                 value = kvm_read_cr0(vcpu);
4803                 break;
4804         case 2:
4805                 value = vcpu->arch.cr2;
4806                 break;
4807         case 3:
4808                 value = kvm_read_cr3(vcpu);
4809                 break;
4810         case 4:
4811                 value = kvm_read_cr4(vcpu);
4812                 break;
4813         case 8:
4814                 value = kvm_get_cr8(vcpu);
4815                 break;
4816         default:
4817                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4818                 return 0;
4819         }
4820
4821         return value;
4822 }
4823
4824 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4825 {
4826         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4827         int res = 0;
4828
4829         switch (cr) {
4830         case 0:
4831                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4832                 break;
4833         case 2:
4834                 vcpu->arch.cr2 = val;
4835                 break;
4836         case 3:
4837                 res = kvm_set_cr3(vcpu, val);
4838                 break;
4839         case 4:
4840                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4841                 break;
4842         case 8:
4843                 res = kvm_set_cr8(vcpu, val);
4844                 break;
4845         default:
4846                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4847                 res = -1;
4848         }
4849
4850         return res;
4851 }
4852
4853 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4854 {
4855         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4856 }
4857
4858 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4859 {
4860         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4861 }
4862
4863 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4864 {
4865         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4866 }
4867
4868 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4869 {
4870         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4871 }
4872
4873 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4874 {
4875         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4876 }
4877
4878 static unsigned long emulator_get_cached_segment_base(
4879         struct x86_emulate_ctxt *ctxt, int seg)
4880 {
4881         return get_segment_base(emul_to_vcpu(ctxt), seg);
4882 }
4883
4884 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4885                                  struct desc_struct *desc, u32 *base3,
4886                                  int seg)
4887 {
4888         struct kvm_segment var;
4889
4890         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4891         *selector = var.selector;
4892
4893         if (var.unusable) {
4894                 memset(desc, 0, sizeof(*desc));
4895                 return false;
4896         }
4897
4898         if (var.g)
4899                 var.limit >>= 12;
4900         set_desc_limit(desc, var.limit);
4901         set_desc_base(desc, (unsigned long)var.base);
4902 #ifdef CONFIG_X86_64
4903         if (base3)
4904                 *base3 = var.base >> 32;
4905 #endif
4906         desc->type = var.type;
4907         desc->s = var.s;
4908         desc->dpl = var.dpl;
4909         desc->p = var.present;
4910         desc->avl = var.avl;
4911         desc->l = var.l;
4912         desc->d = var.db;
4913         desc->g = var.g;
4914
4915         return true;
4916 }
4917
4918 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4919                                  struct desc_struct *desc, u32 base3,
4920                                  int seg)
4921 {
4922         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4923         struct kvm_segment var;
4924
4925         var.selector = selector;
4926         var.base = get_desc_base(desc);
4927 #ifdef CONFIG_X86_64
4928         var.base |= ((u64)base3) << 32;
4929 #endif
4930         var.limit = get_desc_limit(desc);
4931         if (desc->g)
4932                 var.limit = (var.limit << 12) | 0xfff;
4933         var.type = desc->type;
4934         var.dpl = desc->dpl;
4935         var.db = desc->d;
4936         var.s = desc->s;
4937         var.l = desc->l;
4938         var.g = desc->g;
4939         var.avl = desc->avl;
4940         var.present = desc->p;
4941         var.unusable = !var.present;
4942         var.padding = 0;
4943
4944         kvm_set_segment(vcpu, &var, seg);
4945         return;
4946 }
4947
4948 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4949                             u32 msr_index, u64 *pdata)
4950 {
4951         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4952 }
4953
4954 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4955                             u32 msr_index, u64 data)
4956 {
4957         struct msr_data msr;
4958
4959         msr.data = data;
4960         msr.index = msr_index;
4961         msr.host_initiated = false;
4962         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4963 }
4964
4965 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4966                               u32 pmc)
4967 {
4968         return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4969 }
4970
4971 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4972                              u32 pmc, u64 *pdata)
4973 {
4974         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4975 }
4976
4977 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4978 {
4979         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4980 }
4981
4982 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4983 {
4984         preempt_disable();
4985         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4986         /*
4987          * CR0.TS may reference the host fpu state, not the guest fpu state,
4988          * so it may be clear at this point.
4989          */
4990         clts();
4991 }
4992
4993 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4994 {
4995         preempt_enable();
4996 }
4997
4998 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4999                               struct x86_instruction_info *info,
5000                               enum x86_intercept_stage stage)
5001 {
5002         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5003 }
5004
5005 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5006                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5007 {
5008         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5009 }
5010
5011 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5012 {
5013         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5014 }
5015
5016 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5017 {
5018         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5019 }
5020
5021 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5022 {
5023         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5024 }
5025
5026 static const struct x86_emulate_ops emulate_ops = {
5027         .read_gpr            = emulator_read_gpr,
5028         .write_gpr           = emulator_write_gpr,
5029         .read_std            = kvm_read_guest_virt_system,
5030         .write_std           = kvm_write_guest_virt_system,
5031         .fetch               = kvm_fetch_guest_virt,
5032         .read_emulated       = emulator_read_emulated,
5033         .write_emulated      = emulator_write_emulated,
5034         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5035         .invlpg              = emulator_invlpg,
5036         .pio_in_emulated     = emulator_pio_in_emulated,
5037         .pio_out_emulated    = emulator_pio_out_emulated,
5038         .get_segment         = emulator_get_segment,
5039         .set_segment         = emulator_set_segment,
5040         .get_cached_segment_base = emulator_get_cached_segment_base,
5041         .get_gdt             = emulator_get_gdt,
5042         .get_idt             = emulator_get_idt,
5043         .set_gdt             = emulator_set_gdt,
5044         .set_idt             = emulator_set_idt,
5045         .get_cr              = emulator_get_cr,
5046         .set_cr              = emulator_set_cr,
5047         .cpl                 = emulator_get_cpl,
5048         .get_dr              = emulator_get_dr,
5049         .set_dr              = emulator_set_dr,
5050         .set_msr             = emulator_set_msr,
5051         .get_msr             = emulator_get_msr,
5052         .check_pmc           = emulator_check_pmc,
5053         .read_pmc            = emulator_read_pmc,
5054         .halt                = emulator_halt,
5055         .wbinvd              = emulator_wbinvd,
5056         .fix_hypercall       = emulator_fix_hypercall,
5057         .get_fpu             = emulator_get_fpu,
5058         .put_fpu             = emulator_put_fpu,
5059         .intercept           = emulator_intercept,
5060         .get_cpuid           = emulator_get_cpuid,
5061         .set_nmi_mask        = emulator_set_nmi_mask,
5062 };
5063
5064 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5065 {
5066         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5067         /*
5068          * an sti; sti; sequence only disable interrupts for the first
5069          * instruction. So, if the last instruction, be it emulated or
5070          * not, left the system with the INT_STI flag enabled, it
5071          * means that the last instruction is an sti. We should not
5072          * leave the flag on in this case. The same goes for mov ss
5073          */
5074         if (int_shadow & mask)
5075                 mask = 0;
5076         if (unlikely(int_shadow || mask)) {
5077                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5078                 if (!mask)
5079                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5080         }
5081 }
5082
5083 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5084 {
5085         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5086         if (ctxt->exception.vector == PF_VECTOR)
5087                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5088
5089         if (ctxt->exception.error_code_valid)
5090                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5091                                       ctxt->exception.error_code);
5092         else
5093                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5094         return false;
5095 }
5096
5097 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5098 {
5099         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5100         int cs_db, cs_l;
5101
5102         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5103
5104         ctxt->eflags = kvm_get_rflags(vcpu);
5105         ctxt->eip = kvm_rip_read(vcpu);
5106         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5107                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5108                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5109                      cs_db                              ? X86EMUL_MODE_PROT32 :
5110                                                           X86EMUL_MODE_PROT16;
5111         ctxt->guest_mode = is_guest_mode(vcpu);
5112
5113         init_decode_cache(ctxt);
5114         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5115 }
5116
5117 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5118 {
5119         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5120         int ret;
5121
5122         init_emulate_ctxt(vcpu);
5123
5124         ctxt->op_bytes = 2;
5125         ctxt->ad_bytes = 2;
5126         ctxt->_eip = ctxt->eip + inc_eip;
5127         ret = emulate_int_real(ctxt, irq);
5128
5129         if (ret != X86EMUL_CONTINUE)
5130                 return EMULATE_FAIL;
5131
5132         ctxt->eip = ctxt->_eip;
5133         kvm_rip_write(vcpu, ctxt->eip);
5134         kvm_set_rflags(vcpu, ctxt->eflags);
5135
5136         if (irq == NMI_VECTOR)
5137                 vcpu->arch.nmi_pending = 0;
5138         else
5139                 vcpu->arch.interrupt.pending = false;
5140
5141         return EMULATE_DONE;
5142 }
5143 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5144
5145 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5146 {
5147         int r = EMULATE_DONE;
5148
5149         ++vcpu->stat.insn_emulation_fail;
5150         trace_kvm_emulate_insn_failed(vcpu);
5151         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5152                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5153                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5154                 vcpu->run->internal.ndata = 0;
5155                 r = EMULATE_FAIL;
5156         }
5157         kvm_queue_exception(vcpu, UD_VECTOR);
5158
5159         return r;
5160 }
5161
5162 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5163                                   bool write_fault_to_shadow_pgtable,
5164                                   int emulation_type)
5165 {
5166         gpa_t gpa = cr2;
5167         pfn_t pfn;
5168
5169         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5170                 return false;
5171
5172         if (!vcpu->arch.mmu.direct_map) {
5173                 /*
5174                  * Write permission should be allowed since only
5175                  * write access need to be emulated.
5176                  */
5177                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5178
5179                 /*
5180                  * If the mapping is invalid in guest, let cpu retry
5181                  * it to generate fault.
5182                  */
5183                 if (gpa == UNMAPPED_GVA)
5184                         return true;
5185         }
5186
5187         /*
5188          * Do not retry the unhandleable instruction if it faults on the
5189          * readonly host memory, otherwise it will goto a infinite loop:
5190          * retry instruction -> write #PF -> emulation fail -> retry
5191          * instruction -> ...
5192          */
5193         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5194
5195         /*
5196          * If the instruction failed on the error pfn, it can not be fixed,
5197          * report the error to userspace.
5198          */
5199         if (is_error_noslot_pfn(pfn))
5200                 return false;
5201
5202         kvm_release_pfn_clean(pfn);
5203
5204         /* The instructions are well-emulated on direct mmu. */
5205         if (vcpu->arch.mmu.direct_map) {
5206                 unsigned int indirect_shadow_pages;
5207
5208                 spin_lock(&vcpu->kvm->mmu_lock);
5209                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5210                 spin_unlock(&vcpu->kvm->mmu_lock);
5211
5212                 if (indirect_shadow_pages)
5213                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5214
5215                 return true;
5216         }
5217
5218         /*
5219          * if emulation was due to access to shadowed page table
5220          * and it failed try to unshadow page and re-enter the
5221          * guest to let CPU execute the instruction.
5222          */
5223         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5224
5225         /*
5226          * If the access faults on its page table, it can not
5227          * be fixed by unprotecting shadow page and it should
5228          * be reported to userspace.
5229          */
5230         return !write_fault_to_shadow_pgtable;
5231 }
5232
5233 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5234                               unsigned long cr2,  int emulation_type)
5235 {
5236         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5237         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5238
5239         last_retry_eip = vcpu->arch.last_retry_eip;
5240         last_retry_addr = vcpu->arch.last_retry_addr;
5241
5242         /*
5243          * If the emulation is caused by #PF and it is non-page_table
5244          * writing instruction, it means the VM-EXIT is caused by shadow
5245          * page protected, we can zap the shadow page and retry this
5246          * instruction directly.
5247          *
5248          * Note: if the guest uses a non-page-table modifying instruction
5249          * on the PDE that points to the instruction, then we will unmap
5250          * the instruction and go to an infinite loop. So, we cache the
5251          * last retried eip and the last fault address, if we meet the eip
5252          * and the address again, we can break out of the potential infinite
5253          * loop.
5254          */
5255         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5256
5257         if (!(emulation_type & EMULTYPE_RETRY))
5258                 return false;
5259
5260         if (x86_page_table_writing_insn(ctxt))
5261                 return false;
5262
5263         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5264                 return false;
5265
5266         vcpu->arch.last_retry_eip = ctxt->eip;
5267         vcpu->arch.last_retry_addr = cr2;
5268
5269         if (!vcpu->arch.mmu.direct_map)
5270                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5271
5272         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5273
5274         return true;
5275 }
5276
5277 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5278 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5279
5280 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5281                                 unsigned long *db)
5282 {
5283         u32 dr6 = 0;
5284         int i;
5285         u32 enable, rwlen;
5286
5287         enable = dr7;
5288         rwlen = dr7 >> 16;
5289         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5290                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5291                         dr6 |= (1 << i);
5292         return dr6;
5293 }
5294
5295 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5296 {
5297         struct kvm_run *kvm_run = vcpu->run;
5298
5299         /*
5300          * rflags is the old, "raw" value of the flags.  The new value has
5301          * not been saved yet.
5302          *
5303          * This is correct even for TF set by the guest, because "the
5304          * processor will not generate this exception after the instruction
5305          * that sets the TF flag".
5306          */
5307         if (unlikely(rflags & X86_EFLAGS_TF)) {
5308                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5309                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5310                                                   DR6_RTM;
5311                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5312                         kvm_run->debug.arch.exception = DB_VECTOR;
5313                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5314                         *r = EMULATE_USER_EXIT;
5315                 } else {
5316                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5317                         /*
5318                          * "Certain debug exceptions may clear bit 0-3.  The
5319                          * remaining contents of the DR6 register are never
5320                          * cleared by the processor".
5321                          */
5322                         vcpu->arch.dr6 &= ~15;
5323                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5324                         kvm_queue_exception(vcpu, DB_VECTOR);
5325                 }
5326         }
5327 }
5328
5329 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5330 {
5331         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5332             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5333                 struct kvm_run *kvm_run = vcpu->run;
5334                 unsigned long eip = kvm_get_linear_rip(vcpu);
5335                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5336                                            vcpu->arch.guest_debug_dr7,
5337                                            vcpu->arch.eff_db);
5338
5339                 if (dr6 != 0) {
5340                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5341                         kvm_run->debug.arch.pc = eip;
5342                         kvm_run->debug.arch.exception = DB_VECTOR;
5343                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5344                         *r = EMULATE_USER_EXIT;
5345                         return true;
5346                 }
5347         }
5348
5349         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5350             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5351                 unsigned long eip = kvm_get_linear_rip(vcpu);
5352                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5353                                            vcpu->arch.dr7,
5354                                            vcpu->arch.db);
5355
5356                 if (dr6 != 0) {
5357                         vcpu->arch.dr6 &= ~15;
5358                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5359                         kvm_queue_exception(vcpu, DB_VECTOR);
5360                         *r = EMULATE_DONE;
5361                         return true;
5362                 }
5363         }
5364
5365         return false;
5366 }
5367
5368 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5369                             unsigned long cr2,
5370                             int emulation_type,
5371                             void *insn,
5372                             int insn_len)
5373 {
5374         int r;
5375         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5376         bool writeback = true;
5377         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5378
5379         /*
5380          * Clear write_fault_to_shadow_pgtable here to ensure it is
5381          * never reused.
5382          */
5383         vcpu->arch.write_fault_to_shadow_pgtable = false;
5384         kvm_clear_exception_queue(vcpu);
5385
5386         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5387                 init_emulate_ctxt(vcpu);
5388
5389                 /*
5390                  * We will reenter on the same instruction since
5391                  * we do not set complete_userspace_io.  This does not
5392                  * handle watchpoints yet, those would be handled in
5393                  * the emulate_ops.
5394                  */
5395                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5396                         return r;
5397
5398                 ctxt->interruptibility = 0;
5399                 ctxt->have_exception = false;
5400                 ctxt->exception.vector = -1;
5401                 ctxt->perm_ok = false;
5402
5403                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5404
5405                 r = x86_decode_insn(ctxt, insn, insn_len);
5406
5407                 trace_kvm_emulate_insn_start(vcpu);
5408                 ++vcpu->stat.insn_emulation;
5409                 if (r != EMULATION_OK)  {
5410                         if (emulation_type & EMULTYPE_TRAP_UD)
5411                                 return EMULATE_FAIL;
5412                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5413                                                 emulation_type))
5414                                 return EMULATE_DONE;
5415                         if (emulation_type & EMULTYPE_SKIP)
5416                                 return EMULATE_FAIL;
5417                         return handle_emulation_failure(vcpu);
5418                 }
5419         }
5420
5421         if (emulation_type & EMULTYPE_SKIP) {
5422                 kvm_rip_write(vcpu, ctxt->_eip);
5423                 if (ctxt->eflags & X86_EFLAGS_RF)
5424                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5425                 return EMULATE_DONE;
5426         }
5427
5428         if (retry_instruction(ctxt, cr2, emulation_type))
5429                 return EMULATE_DONE;
5430
5431         /* this is needed for vmware backdoor interface to work since it
5432            changes registers values  during IO operation */
5433         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5434                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5435                 emulator_invalidate_register_cache(ctxt);
5436         }
5437
5438 restart:
5439         r = x86_emulate_insn(ctxt);
5440
5441         if (r == EMULATION_INTERCEPTED)
5442                 return EMULATE_DONE;
5443
5444         if (r == EMULATION_FAILED) {
5445                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5446                                         emulation_type))
5447                         return EMULATE_DONE;
5448
5449                 return handle_emulation_failure(vcpu);
5450         }
5451
5452         if (ctxt->have_exception) {
5453                 r = EMULATE_DONE;
5454                 if (inject_emulated_exception(vcpu))
5455                         return r;
5456         } else if (vcpu->arch.pio.count) {
5457                 if (!vcpu->arch.pio.in) {
5458                         /* FIXME: return into emulator if single-stepping.  */
5459                         vcpu->arch.pio.count = 0;
5460                 } else {
5461                         writeback = false;
5462                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5463                 }
5464                 r = EMULATE_USER_EXIT;
5465         } else if (vcpu->mmio_needed) {
5466                 if (!vcpu->mmio_is_write)
5467                         writeback = false;
5468                 r = EMULATE_USER_EXIT;
5469                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5470         } else if (r == EMULATION_RESTART)
5471                 goto restart;
5472         else
5473                 r = EMULATE_DONE;
5474
5475         if (writeback) {
5476                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5477                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5478                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5479                 kvm_rip_write(vcpu, ctxt->eip);
5480                 if (r == EMULATE_DONE)
5481                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5482                 if (!ctxt->have_exception ||
5483                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5484                         __kvm_set_rflags(vcpu, ctxt->eflags);
5485
5486                 /*
5487                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5488                  * do nothing, and it will be requested again as soon as
5489                  * the shadow expires.  But we still need to check here,
5490                  * because POPF has no interrupt shadow.
5491                  */
5492                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5493                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5494         } else
5495                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5496
5497         return r;
5498 }
5499 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5500
5501 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5502 {
5503         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5504         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5505                                             size, port, &val, 1);
5506         /* do not return to emulator after return from userspace */
5507         vcpu->arch.pio.count = 0;
5508         return ret;
5509 }
5510 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5511
5512 static void tsc_bad(void *info)
5513 {
5514         __this_cpu_write(cpu_tsc_khz, 0);
5515 }
5516
5517 static void tsc_khz_changed(void *data)
5518 {
5519         struct cpufreq_freqs *freq = data;
5520         unsigned long khz = 0;
5521
5522         if (data)
5523                 khz = freq->new;
5524         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5525                 khz = cpufreq_quick_get(raw_smp_processor_id());
5526         if (!khz)
5527                 khz = tsc_khz;
5528         __this_cpu_write(cpu_tsc_khz, khz);
5529 }
5530
5531 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5532                                      void *data)
5533 {
5534         struct cpufreq_freqs *freq = data;
5535         struct kvm *kvm;
5536         struct kvm_vcpu *vcpu;
5537         int i, send_ipi = 0;
5538
5539         /*
5540          * We allow guests to temporarily run on slowing clocks,
5541          * provided we notify them after, or to run on accelerating
5542          * clocks, provided we notify them before.  Thus time never
5543          * goes backwards.
5544          *
5545          * However, we have a problem.  We can't atomically update
5546          * the frequency of a given CPU from this function; it is
5547          * merely a notifier, which can be called from any CPU.
5548          * Changing the TSC frequency at arbitrary points in time
5549          * requires a recomputation of local variables related to
5550          * the TSC for each VCPU.  We must flag these local variables
5551          * to be updated and be sure the update takes place with the
5552          * new frequency before any guests proceed.
5553          *
5554          * Unfortunately, the combination of hotplug CPU and frequency
5555          * change creates an intractable locking scenario; the order
5556          * of when these callouts happen is undefined with respect to
5557          * CPU hotplug, and they can race with each other.  As such,
5558          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5559          * undefined; you can actually have a CPU frequency change take
5560          * place in between the computation of X and the setting of the
5561          * variable.  To protect against this problem, all updates of
5562          * the per_cpu tsc_khz variable are done in an interrupt
5563          * protected IPI, and all callers wishing to update the value
5564          * must wait for a synchronous IPI to complete (which is trivial
5565          * if the caller is on the CPU already).  This establishes the
5566          * necessary total order on variable updates.
5567          *
5568          * Note that because a guest time update may take place
5569          * anytime after the setting of the VCPU's request bit, the
5570          * correct TSC value must be set before the request.  However,
5571          * to ensure the update actually makes it to any guest which
5572          * starts running in hardware virtualization between the set
5573          * and the acquisition of the spinlock, we must also ping the
5574          * CPU after setting the request bit.
5575          *
5576          */
5577
5578         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5579                 return 0;
5580         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5581                 return 0;
5582
5583         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5584
5585         spin_lock(&kvm_lock);
5586         list_for_each_entry(kvm, &vm_list, vm_list) {
5587                 kvm_for_each_vcpu(i, vcpu, kvm) {
5588                         if (vcpu->cpu != freq->cpu)
5589                                 continue;
5590                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5591                         if (vcpu->cpu != smp_processor_id())
5592                                 send_ipi = 1;
5593                 }
5594         }
5595         spin_unlock(&kvm_lock);
5596
5597         if (freq->old < freq->new && send_ipi) {
5598                 /*
5599                  * We upscale the frequency.  Must make the guest
5600                  * doesn't see old kvmclock values while running with
5601                  * the new frequency, otherwise we risk the guest sees
5602                  * time go backwards.
5603                  *
5604                  * In case we update the frequency for another cpu
5605                  * (which might be in guest context) send an interrupt
5606                  * to kick the cpu out of guest context.  Next time
5607                  * guest context is entered kvmclock will be updated,
5608                  * so the guest will not see stale values.
5609                  */
5610                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5611         }
5612         return 0;
5613 }
5614
5615 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5616         .notifier_call  = kvmclock_cpufreq_notifier
5617 };
5618
5619 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5620                                         unsigned long action, void *hcpu)
5621 {
5622         unsigned int cpu = (unsigned long)hcpu;
5623
5624         switch (action) {
5625                 case CPU_ONLINE:
5626                 case CPU_DOWN_FAILED:
5627                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5628                         break;
5629                 case CPU_DOWN_PREPARE:
5630                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5631                         break;
5632         }
5633         return NOTIFY_OK;
5634 }
5635
5636 static struct notifier_block kvmclock_cpu_notifier_block = {
5637         .notifier_call  = kvmclock_cpu_notifier,
5638         .priority = -INT_MAX
5639 };
5640
5641 static void kvm_timer_init(void)
5642 {
5643         int cpu;
5644
5645         max_tsc_khz = tsc_khz;
5646
5647         cpu_notifier_register_begin();
5648         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5649 #ifdef CONFIG_CPU_FREQ
5650                 struct cpufreq_policy policy;
5651                 memset(&policy, 0, sizeof(policy));
5652                 cpu = get_cpu();
5653                 cpufreq_get_policy(&policy, cpu);
5654                 if (policy.cpuinfo.max_freq)
5655                         max_tsc_khz = policy.cpuinfo.max_freq;
5656                 put_cpu();
5657 #endif
5658                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5659                                           CPUFREQ_TRANSITION_NOTIFIER);
5660         }
5661         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5662         for_each_online_cpu(cpu)
5663                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5664
5665         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5666         cpu_notifier_register_done();
5667
5668 }
5669
5670 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5671
5672 int kvm_is_in_guest(void)
5673 {
5674         return __this_cpu_read(current_vcpu) != NULL;
5675 }
5676
5677 static int kvm_is_user_mode(void)
5678 {
5679         int user_mode = 3;
5680
5681         if (__this_cpu_read(current_vcpu))
5682                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5683
5684         return user_mode != 0;
5685 }
5686
5687 static unsigned long kvm_get_guest_ip(void)
5688 {
5689         unsigned long ip = 0;
5690
5691         if (__this_cpu_read(current_vcpu))
5692                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5693
5694         return ip;
5695 }
5696
5697 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5698         .is_in_guest            = kvm_is_in_guest,
5699         .is_user_mode           = kvm_is_user_mode,
5700         .get_guest_ip           = kvm_get_guest_ip,
5701 };
5702
5703 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5704 {
5705         __this_cpu_write(current_vcpu, vcpu);
5706 }
5707 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5708
5709 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5710 {
5711         __this_cpu_write(current_vcpu, NULL);
5712 }
5713 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5714
5715 static void kvm_set_mmio_spte_mask(void)
5716 {
5717         u64 mask;
5718         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5719
5720         /*
5721          * Set the reserved bits and the present bit of an paging-structure
5722          * entry to generate page fault with PFER.RSV = 1.
5723          */
5724          /* Mask the reserved physical address bits. */
5725         mask = rsvd_bits(maxphyaddr, 51);
5726
5727         /* Bit 62 is always reserved for 32bit host. */
5728         mask |= 0x3ull << 62;
5729
5730         /* Set the present bit. */
5731         mask |= 1ull;
5732
5733 #ifdef CONFIG_X86_64
5734         /*
5735          * If reserved bit is not supported, clear the present bit to disable
5736          * mmio page fault.
5737          */
5738         if (maxphyaddr == 52)
5739                 mask &= ~1ull;
5740 #endif
5741
5742         kvm_mmu_set_mmio_spte_mask(mask);
5743 }
5744
5745 #ifdef CONFIG_X86_64
5746 static void pvclock_gtod_update_fn(struct work_struct *work)
5747 {
5748         struct kvm *kvm;
5749
5750         struct kvm_vcpu *vcpu;
5751         int i;
5752
5753         spin_lock(&kvm_lock);
5754         list_for_each_entry(kvm, &vm_list, vm_list)
5755                 kvm_for_each_vcpu(i, vcpu, kvm)
5756                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5757         atomic_set(&kvm_guest_has_master_clock, 0);
5758         spin_unlock(&kvm_lock);
5759 }
5760
5761 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5762
5763 /*
5764  * Notification about pvclock gtod data update.
5765  */
5766 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5767                                void *priv)
5768 {
5769         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5770         struct timekeeper *tk = priv;
5771
5772         update_pvclock_gtod(tk);
5773
5774         /* disable master clock if host does not trust, or does not
5775          * use, TSC clocksource
5776          */
5777         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5778             atomic_read(&kvm_guest_has_master_clock) != 0)
5779                 queue_work(system_long_wq, &pvclock_gtod_work);
5780
5781         return 0;
5782 }
5783
5784 static struct notifier_block pvclock_gtod_notifier = {
5785         .notifier_call = pvclock_gtod_notify,
5786 };
5787 #endif
5788
5789 int kvm_arch_init(void *opaque)
5790 {
5791         int r;
5792         struct kvm_x86_ops *ops = opaque;
5793
5794         if (kvm_x86_ops) {
5795                 printk(KERN_ERR "kvm: already loaded the other module\n");
5796                 r = -EEXIST;
5797                 goto out;
5798         }
5799
5800         if (!ops->cpu_has_kvm_support()) {
5801                 printk(KERN_ERR "kvm: no hardware support\n");
5802                 r = -EOPNOTSUPP;
5803                 goto out;
5804         }
5805         if (ops->disabled_by_bios()) {
5806                 printk(KERN_ERR "kvm: disabled by bios\n");
5807                 r = -EOPNOTSUPP;
5808                 goto out;
5809         }
5810
5811         r = -ENOMEM;
5812         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5813         if (!shared_msrs) {
5814                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5815                 goto out;
5816         }
5817
5818         r = kvm_mmu_module_init();
5819         if (r)
5820                 goto out_free_percpu;
5821
5822         kvm_set_mmio_spte_mask();
5823
5824         kvm_x86_ops = ops;
5825
5826         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5827                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5828
5829         kvm_timer_init();
5830
5831         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5832
5833         if (cpu_has_xsave)
5834                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5835
5836         kvm_lapic_init();
5837 #ifdef CONFIG_X86_64
5838         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5839 #endif
5840
5841         return 0;
5842
5843 out_free_percpu:
5844         free_percpu(shared_msrs);
5845 out:
5846         return r;
5847 }
5848
5849 void kvm_arch_exit(void)
5850 {
5851         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5852
5853         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5854                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5855                                             CPUFREQ_TRANSITION_NOTIFIER);
5856         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5857 #ifdef CONFIG_X86_64
5858         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5859 #endif
5860         kvm_x86_ops = NULL;
5861         kvm_mmu_module_exit();
5862         free_percpu(shared_msrs);
5863 }
5864
5865 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5866 {
5867         ++vcpu->stat.halt_exits;
5868         if (irqchip_in_kernel(vcpu->kvm)) {
5869                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5870                 return 1;
5871         } else {
5872                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5873                 return 0;
5874         }
5875 }
5876 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5877
5878 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5879 {
5880         kvm_x86_ops->skip_emulated_instruction(vcpu);
5881         return kvm_vcpu_halt(vcpu);
5882 }
5883 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5884
5885 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5886 {
5887         u64 param, ingpa, outgpa, ret;
5888         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5889         bool fast, longmode;
5890
5891         /*
5892          * hypercall generates UD from non zero cpl and real mode
5893          * per HYPER-V spec
5894          */
5895         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5896                 kvm_queue_exception(vcpu, UD_VECTOR);
5897                 return 0;
5898         }
5899
5900         longmode = is_64_bit_mode(vcpu);
5901
5902         if (!longmode) {
5903                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5904                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5905                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5906                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5907                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5908                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5909         }
5910 #ifdef CONFIG_X86_64
5911         else {
5912                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5913                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5914                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5915         }
5916 #endif
5917
5918         code = param & 0xffff;
5919         fast = (param >> 16) & 0x1;
5920         rep_cnt = (param >> 32) & 0xfff;
5921         rep_idx = (param >> 48) & 0xfff;
5922
5923         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5924
5925         switch (code) {
5926         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5927                 kvm_vcpu_on_spin(vcpu);
5928                 break;
5929         default:
5930                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5931                 break;
5932         }
5933
5934         ret = res | (((u64)rep_done & 0xfff) << 32);
5935         if (longmode) {
5936                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5937         } else {
5938                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5939                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5940         }
5941
5942         return 1;
5943 }
5944
5945 /*
5946  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5947  *
5948  * @apicid - apicid of vcpu to be kicked.
5949  */
5950 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5951 {
5952         struct kvm_lapic_irq lapic_irq;
5953
5954         lapic_irq.shorthand = 0;
5955         lapic_irq.dest_mode = 0;
5956         lapic_irq.dest_id = apicid;
5957
5958         lapic_irq.delivery_mode = APIC_DM_REMRD;
5959         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5960 }
5961
5962 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5963 {
5964         unsigned long nr, a0, a1, a2, a3, ret;
5965         int op_64_bit, r = 1;
5966
5967         kvm_x86_ops->skip_emulated_instruction(vcpu);
5968
5969         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5970                 return kvm_hv_hypercall(vcpu);
5971
5972         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5973         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5974         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5975         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5976         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5977
5978         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5979
5980         op_64_bit = is_64_bit_mode(vcpu);
5981         if (!op_64_bit) {
5982                 nr &= 0xFFFFFFFF;
5983                 a0 &= 0xFFFFFFFF;
5984                 a1 &= 0xFFFFFFFF;
5985                 a2 &= 0xFFFFFFFF;
5986                 a3 &= 0xFFFFFFFF;
5987         }
5988
5989         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5990                 ret = -KVM_EPERM;
5991                 goto out;
5992         }
5993
5994         switch (nr) {
5995         case KVM_HC_VAPIC_POLL_IRQ:
5996                 ret = 0;
5997                 break;
5998         case KVM_HC_KICK_CPU:
5999                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6000                 ret = 0;
6001                 break;
6002         default:
6003                 ret = -KVM_ENOSYS;
6004                 break;
6005         }
6006 out:
6007         if (!op_64_bit)
6008                 ret = (u32)ret;
6009         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6010         ++vcpu->stat.hypercalls;
6011         return r;
6012 }
6013 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6014
6015 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6016 {
6017         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6018         char instruction[3];
6019         unsigned long rip = kvm_rip_read(vcpu);
6020
6021         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6022
6023         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6024 }
6025
6026 /*
6027  * Check if userspace requested an interrupt window, and that the
6028  * interrupt window is open.
6029  *
6030  * No need to exit to userspace if we already have an interrupt queued.
6031  */
6032 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6033 {
6034         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6035                 vcpu->run->request_interrupt_window &&
6036                 kvm_arch_interrupt_allowed(vcpu));
6037 }
6038
6039 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6040 {
6041         struct kvm_run *kvm_run = vcpu->run;
6042
6043         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6044         kvm_run->cr8 = kvm_get_cr8(vcpu);
6045         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6046         if (irqchip_in_kernel(vcpu->kvm))
6047                 kvm_run->ready_for_interrupt_injection = 1;
6048         else
6049                 kvm_run->ready_for_interrupt_injection =
6050                         kvm_arch_interrupt_allowed(vcpu) &&
6051                         !kvm_cpu_has_interrupt(vcpu) &&
6052                         !kvm_event_needs_reinjection(vcpu);
6053 }
6054
6055 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6056 {
6057         int max_irr, tpr;
6058
6059         if (!kvm_x86_ops->update_cr8_intercept)
6060                 return;
6061
6062         if (!vcpu->arch.apic)
6063                 return;
6064
6065         if (!vcpu->arch.apic->vapic_addr)
6066                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6067         else
6068                 max_irr = -1;
6069
6070         if (max_irr != -1)
6071                 max_irr >>= 4;
6072
6073         tpr = kvm_lapic_get_cr8(vcpu);
6074
6075         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6076 }
6077
6078 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6079 {
6080         int r;
6081
6082         /* try to reinject previous events if any */
6083         if (vcpu->arch.exception.pending) {
6084                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6085                                         vcpu->arch.exception.has_error_code,
6086                                         vcpu->arch.exception.error_code);
6087
6088                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6089                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6090                                              X86_EFLAGS_RF);
6091
6092                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6093                     (vcpu->arch.dr7 & DR7_GD)) {
6094                         vcpu->arch.dr7 &= ~DR7_GD;
6095                         kvm_update_dr7(vcpu);
6096                 }
6097
6098                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6099                                           vcpu->arch.exception.has_error_code,
6100                                           vcpu->arch.exception.error_code,
6101                                           vcpu->arch.exception.reinject);
6102                 return 0;
6103         }
6104
6105         if (vcpu->arch.nmi_injected) {
6106                 kvm_x86_ops->set_nmi(vcpu);
6107                 return 0;
6108         }
6109
6110         if (vcpu->arch.interrupt.pending) {
6111                 kvm_x86_ops->set_irq(vcpu);
6112                 return 0;
6113         }
6114
6115         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6116                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6117                 if (r != 0)
6118                         return r;
6119         }
6120
6121         /* try to inject new event if pending */
6122         if (vcpu->arch.nmi_pending) {
6123                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6124                         --vcpu->arch.nmi_pending;
6125                         vcpu->arch.nmi_injected = true;
6126                         kvm_x86_ops->set_nmi(vcpu);
6127                 }
6128         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6129                 /*
6130                  * Because interrupts can be injected asynchronously, we are
6131                  * calling check_nested_events again here to avoid a race condition.
6132                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6133                  * proposal and current concerns.  Perhaps we should be setting
6134                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6135                  */
6136                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6137                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6138                         if (r != 0)
6139                                 return r;
6140                 }
6141                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6142                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6143                                             false);
6144                         kvm_x86_ops->set_irq(vcpu);
6145                 }
6146         }
6147         return 0;
6148 }
6149
6150 static void process_nmi(struct kvm_vcpu *vcpu)
6151 {
6152         unsigned limit = 2;
6153
6154         /*
6155          * x86 is limited to one NMI running, and one NMI pending after it.
6156          * If an NMI is already in progress, limit further NMIs to just one.
6157          * Otherwise, allow two (and we'll inject the first one immediately).
6158          */
6159         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6160                 limit = 1;
6161
6162         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6163         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6164         kvm_make_request(KVM_REQ_EVENT, vcpu);
6165 }
6166
6167 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6168 {
6169         u64 eoi_exit_bitmap[4];
6170         u32 tmr[8];
6171
6172         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6173                 return;
6174
6175         memset(eoi_exit_bitmap, 0, 32);
6176         memset(tmr, 0, 32);
6177
6178         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6179         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6180         kvm_apic_update_tmr(vcpu, tmr);
6181 }
6182
6183 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6184 {
6185         ++vcpu->stat.tlb_flush;
6186         kvm_x86_ops->tlb_flush(vcpu);
6187 }
6188
6189 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6190 {
6191         struct page *page = NULL;
6192
6193         if (!irqchip_in_kernel(vcpu->kvm))
6194                 return;
6195
6196         if (!kvm_x86_ops->set_apic_access_page_addr)
6197                 return;
6198
6199         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6200         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6201
6202         /*
6203          * Do not pin apic access page in memory, the MMU notifier
6204          * will call us again if it is migrated or swapped out.
6205          */
6206         put_page(page);
6207 }
6208 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6209
6210 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6211                                            unsigned long address)
6212 {
6213         /*
6214          * The physical address of apic access page is stored in the VMCS.
6215          * Update it when it becomes invalid.
6216          */
6217         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6218                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6219 }
6220
6221 /*
6222  * Returns 1 to let vcpu_run() continue the guest execution loop without
6223  * exiting to the userspace.  Otherwise, the value will be returned to the
6224  * userspace.
6225  */
6226 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6227 {
6228         int r;
6229         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6230                 vcpu->run->request_interrupt_window;
6231         bool req_immediate_exit = false;
6232
6233         if (vcpu->requests) {
6234                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6235                         kvm_mmu_unload(vcpu);
6236                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6237                         __kvm_migrate_timers(vcpu);
6238                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6239                         kvm_gen_update_masterclock(vcpu->kvm);
6240                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6241                         kvm_gen_kvmclock_update(vcpu);
6242                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6243                         r = kvm_guest_time_update(vcpu);
6244                         if (unlikely(r))
6245                                 goto out;
6246                 }
6247                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6248                         kvm_mmu_sync_roots(vcpu);
6249                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6250                         kvm_vcpu_flush_tlb(vcpu);
6251                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6252                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6253                         r = 0;
6254                         goto out;
6255                 }
6256                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6257                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6258                         r = 0;
6259                         goto out;
6260                 }
6261                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6262                         vcpu->fpu_active = 0;
6263                         kvm_x86_ops->fpu_deactivate(vcpu);
6264                 }
6265                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6266                         /* Page is swapped out. Do synthetic halt */
6267                         vcpu->arch.apf.halted = true;
6268                         r = 1;
6269                         goto out;
6270                 }
6271                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6272                         record_steal_time(vcpu);
6273                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6274                         process_nmi(vcpu);
6275                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6276                         kvm_handle_pmu_event(vcpu);
6277                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6278                         kvm_deliver_pmi(vcpu);
6279                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6280                         vcpu_scan_ioapic(vcpu);
6281                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6282                         kvm_vcpu_reload_apic_access_page(vcpu);
6283         }
6284
6285         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6286                 kvm_apic_accept_events(vcpu);
6287                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6288                         r = 1;
6289                         goto out;
6290                 }
6291
6292                 if (inject_pending_event(vcpu, req_int_win) != 0)
6293                         req_immediate_exit = true;
6294                 /* enable NMI/IRQ window open exits if needed */
6295                 else if (vcpu->arch.nmi_pending)
6296                         kvm_x86_ops->enable_nmi_window(vcpu);
6297                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6298                         kvm_x86_ops->enable_irq_window(vcpu);
6299
6300                 if (kvm_lapic_enabled(vcpu)) {
6301                         /*
6302                          * Update architecture specific hints for APIC
6303                          * virtual interrupt delivery.
6304                          */
6305                         if (kvm_x86_ops->hwapic_irr_update)
6306                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6307                                         kvm_lapic_find_highest_irr(vcpu));
6308                         update_cr8_intercept(vcpu);
6309                         kvm_lapic_sync_to_vapic(vcpu);
6310                 }
6311         }
6312
6313         r = kvm_mmu_reload(vcpu);
6314         if (unlikely(r)) {
6315                 goto cancel_injection;
6316         }
6317
6318         preempt_disable();
6319
6320         kvm_x86_ops->prepare_guest_switch(vcpu);
6321         if (vcpu->fpu_active)
6322                 kvm_load_guest_fpu(vcpu);
6323         kvm_load_guest_xcr0(vcpu);
6324
6325         vcpu->mode = IN_GUEST_MODE;
6326
6327         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6328
6329         /* We should set ->mode before check ->requests,
6330          * see the comment in make_all_cpus_request.
6331          */
6332         smp_mb__after_srcu_read_unlock();
6333
6334         local_irq_disable();
6335
6336         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6337             || need_resched() || signal_pending(current)) {
6338                 vcpu->mode = OUTSIDE_GUEST_MODE;
6339                 smp_wmb();
6340                 local_irq_enable();
6341                 preempt_enable();
6342                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6343                 r = 1;
6344                 goto cancel_injection;
6345         }
6346
6347         if (req_immediate_exit)
6348                 smp_send_reschedule(vcpu->cpu);
6349
6350         kvm_guest_enter();
6351
6352         if (unlikely(vcpu->arch.switch_db_regs)) {
6353                 set_debugreg(0, 7);
6354                 set_debugreg(vcpu->arch.eff_db[0], 0);
6355                 set_debugreg(vcpu->arch.eff_db[1], 1);
6356                 set_debugreg(vcpu->arch.eff_db[2], 2);
6357                 set_debugreg(vcpu->arch.eff_db[3], 3);
6358                 set_debugreg(vcpu->arch.dr6, 6);
6359                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6360         }
6361
6362         trace_kvm_entry(vcpu->vcpu_id);
6363         wait_lapic_expire(vcpu);
6364         kvm_x86_ops->run(vcpu);
6365
6366         /*
6367          * Do this here before restoring debug registers on the host.  And
6368          * since we do this before handling the vmexit, a DR access vmexit
6369          * can (a) read the correct value of the debug registers, (b) set
6370          * KVM_DEBUGREG_WONT_EXIT again.
6371          */
6372         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6373                 int i;
6374
6375                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6376                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6377                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6378                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6379         }
6380
6381         /*
6382          * If the guest has used debug registers, at least dr7
6383          * will be disabled while returning to the host.
6384          * If we don't have active breakpoints in the host, we don't
6385          * care about the messed up debug address registers. But if
6386          * we have some of them active, restore the old state.
6387          */
6388         if (hw_breakpoint_active())
6389                 hw_breakpoint_restore();
6390
6391         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6392                                                            native_read_tsc());
6393
6394         vcpu->mode = OUTSIDE_GUEST_MODE;
6395         smp_wmb();
6396
6397         /* Interrupt is enabled by handle_external_intr() */
6398         kvm_x86_ops->handle_external_intr(vcpu);
6399
6400         ++vcpu->stat.exits;
6401
6402         /*
6403          * We must have an instruction between local_irq_enable() and
6404          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6405          * the interrupt shadow.  The stat.exits increment will do nicely.
6406          * But we need to prevent reordering, hence this barrier():
6407          */
6408         barrier();
6409
6410         kvm_guest_exit();
6411
6412         preempt_enable();
6413
6414         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6415
6416         /*
6417          * Profile KVM exit RIPs:
6418          */
6419         if (unlikely(prof_on == KVM_PROFILING)) {
6420                 unsigned long rip = kvm_rip_read(vcpu);
6421                 profile_hit(KVM_PROFILING, (void *)rip);
6422         }
6423
6424         if (unlikely(vcpu->arch.tsc_always_catchup))
6425                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6426
6427         if (vcpu->arch.apic_attention)
6428                 kvm_lapic_sync_from_vapic(vcpu);
6429
6430         r = kvm_x86_ops->handle_exit(vcpu);
6431         return r;
6432
6433 cancel_injection:
6434         kvm_x86_ops->cancel_injection(vcpu);
6435         if (unlikely(vcpu->arch.apic_attention))
6436                 kvm_lapic_sync_from_vapic(vcpu);
6437 out:
6438         return r;
6439 }
6440
6441 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6442 {
6443         if (!kvm_arch_vcpu_runnable(vcpu)) {
6444                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6445                 kvm_vcpu_block(vcpu);
6446                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6447                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6448                         return 1;
6449         }
6450
6451         kvm_apic_accept_events(vcpu);
6452         switch(vcpu->arch.mp_state) {
6453         case KVM_MP_STATE_HALTED:
6454                 vcpu->arch.pv.pv_unhalted = false;
6455                 vcpu->arch.mp_state =
6456                         KVM_MP_STATE_RUNNABLE;
6457         case KVM_MP_STATE_RUNNABLE:
6458                 vcpu->arch.apf.halted = false;
6459                 break;
6460         case KVM_MP_STATE_INIT_RECEIVED:
6461                 break;
6462         default:
6463                 return -EINTR;
6464                 break;
6465         }
6466         return 1;
6467 }
6468
6469 static int vcpu_run(struct kvm_vcpu *vcpu)
6470 {
6471         int r;
6472         struct kvm *kvm = vcpu->kvm;
6473
6474         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6475
6476         for (;;) {
6477                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6478                     !vcpu->arch.apf.halted)
6479                         r = vcpu_enter_guest(vcpu);
6480                 else
6481                         r = vcpu_block(kvm, vcpu);
6482                 if (r <= 0)
6483                         break;
6484
6485                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6486                 if (kvm_cpu_has_pending_timer(vcpu))
6487                         kvm_inject_pending_timer_irqs(vcpu);
6488
6489                 if (dm_request_for_irq_injection(vcpu)) {
6490                         r = -EINTR;
6491                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6492                         ++vcpu->stat.request_irq_exits;
6493                         break;
6494                 }
6495
6496                 kvm_check_async_pf_completion(vcpu);
6497
6498                 if (signal_pending(current)) {
6499                         r = -EINTR;
6500                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6501                         ++vcpu->stat.signal_exits;
6502                         break;
6503                 }
6504                 if (need_resched()) {
6505                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6506                         cond_resched();
6507                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6508                 }
6509         }
6510
6511         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6512
6513         return r;
6514 }
6515
6516 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6517 {
6518         int r;
6519         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6520         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6521         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6522         if (r != EMULATE_DONE)
6523                 return 0;
6524         return 1;
6525 }
6526
6527 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6528 {
6529         BUG_ON(!vcpu->arch.pio.count);
6530
6531         return complete_emulated_io(vcpu);
6532 }
6533
6534 /*
6535  * Implements the following, as a state machine:
6536  *
6537  * read:
6538  *   for each fragment
6539  *     for each mmio piece in the fragment
6540  *       write gpa, len
6541  *       exit
6542  *       copy data
6543  *   execute insn
6544  *
6545  * write:
6546  *   for each fragment
6547  *     for each mmio piece in the fragment
6548  *       write gpa, len
6549  *       copy data
6550  *       exit
6551  */
6552 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6553 {
6554         struct kvm_run *run = vcpu->run;
6555         struct kvm_mmio_fragment *frag;
6556         unsigned len;
6557
6558         BUG_ON(!vcpu->mmio_needed);
6559
6560         /* Complete previous fragment */
6561         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6562         len = min(8u, frag->len);
6563         if (!vcpu->mmio_is_write)
6564                 memcpy(frag->data, run->mmio.data, len);
6565
6566         if (frag->len <= 8) {
6567                 /* Switch to the next fragment. */
6568                 frag++;
6569                 vcpu->mmio_cur_fragment++;
6570         } else {
6571                 /* Go forward to the next mmio piece. */
6572                 frag->data += len;
6573                 frag->gpa += len;
6574                 frag->len -= len;
6575         }
6576
6577         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6578                 vcpu->mmio_needed = 0;
6579
6580                 /* FIXME: return into emulator if single-stepping.  */
6581                 if (vcpu->mmio_is_write)
6582                         return 1;
6583                 vcpu->mmio_read_completed = 1;
6584                 return complete_emulated_io(vcpu);
6585         }
6586
6587         run->exit_reason = KVM_EXIT_MMIO;
6588         run->mmio.phys_addr = frag->gpa;
6589         if (vcpu->mmio_is_write)
6590                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6591         run->mmio.len = min(8u, frag->len);
6592         run->mmio.is_write = vcpu->mmio_is_write;
6593         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6594         return 0;
6595 }
6596
6597
6598 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6599 {
6600         int r;
6601         sigset_t sigsaved;
6602
6603         if (!tsk_used_math(current) && init_fpu(current))
6604                 return -ENOMEM;
6605
6606         if (vcpu->sigset_active)
6607                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6608
6609         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6610                 kvm_vcpu_block(vcpu);
6611                 kvm_apic_accept_events(vcpu);
6612                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6613                 r = -EAGAIN;
6614                 goto out;
6615         }
6616
6617         /* re-sync apic's tpr */
6618         if (!irqchip_in_kernel(vcpu->kvm)) {
6619                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6620                         r = -EINVAL;
6621                         goto out;
6622                 }
6623         }
6624
6625         if (unlikely(vcpu->arch.complete_userspace_io)) {
6626                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6627                 vcpu->arch.complete_userspace_io = NULL;
6628                 r = cui(vcpu);
6629                 if (r <= 0)
6630                         goto out;
6631         } else
6632                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6633
6634         r = vcpu_run(vcpu);
6635
6636 out:
6637         post_kvm_run_save(vcpu);
6638         if (vcpu->sigset_active)
6639                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6640
6641         return r;
6642 }
6643
6644 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6645 {
6646         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6647                 /*
6648                  * We are here if userspace calls get_regs() in the middle of
6649                  * instruction emulation. Registers state needs to be copied
6650                  * back from emulation context to vcpu. Userspace shouldn't do
6651                  * that usually, but some bad designed PV devices (vmware
6652                  * backdoor interface) need this to work
6653                  */
6654                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6655                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6656         }
6657         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6658         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6659         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6660         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6661         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6662         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6663         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6664         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6665 #ifdef CONFIG_X86_64
6666         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6667         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6668         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6669         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6670         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6671         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6672         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6673         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6674 #endif
6675
6676         regs->rip = kvm_rip_read(vcpu);
6677         regs->rflags = kvm_get_rflags(vcpu);
6678
6679         return 0;
6680 }
6681
6682 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6683 {
6684         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6685         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6686
6687         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6688         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6689         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6690         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6691         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6692         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6693         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6694         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6695 #ifdef CONFIG_X86_64
6696         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6697         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6698         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6699         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6700         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6701         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6702         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6703         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6704 #endif
6705
6706         kvm_rip_write(vcpu, regs->rip);
6707         kvm_set_rflags(vcpu, regs->rflags);
6708
6709         vcpu->arch.exception.pending = false;
6710
6711         kvm_make_request(KVM_REQ_EVENT, vcpu);
6712
6713         return 0;
6714 }
6715
6716 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6717 {
6718         struct kvm_segment cs;
6719
6720         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6721         *db = cs.db;
6722         *l = cs.l;
6723 }
6724 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6725
6726 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6727                                   struct kvm_sregs *sregs)
6728 {
6729         struct desc_ptr dt;
6730
6731         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6732         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6733         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6734         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6735         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6736         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6737
6738         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6739         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6740
6741         kvm_x86_ops->get_idt(vcpu, &dt);
6742         sregs->idt.limit = dt.size;
6743         sregs->idt.base = dt.address;
6744         kvm_x86_ops->get_gdt(vcpu, &dt);
6745         sregs->gdt.limit = dt.size;
6746         sregs->gdt.base = dt.address;
6747
6748         sregs->cr0 = kvm_read_cr0(vcpu);
6749         sregs->cr2 = vcpu->arch.cr2;
6750         sregs->cr3 = kvm_read_cr3(vcpu);
6751         sregs->cr4 = kvm_read_cr4(vcpu);
6752         sregs->cr8 = kvm_get_cr8(vcpu);
6753         sregs->efer = vcpu->arch.efer;
6754         sregs->apic_base = kvm_get_apic_base(vcpu);
6755
6756         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6757
6758         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6759                 set_bit(vcpu->arch.interrupt.nr,
6760                         (unsigned long *)sregs->interrupt_bitmap);
6761
6762         return 0;
6763 }
6764
6765 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6766                                     struct kvm_mp_state *mp_state)
6767 {
6768         kvm_apic_accept_events(vcpu);
6769         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6770                                         vcpu->arch.pv.pv_unhalted)
6771                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6772         else
6773                 mp_state->mp_state = vcpu->arch.mp_state;
6774
6775         return 0;
6776 }
6777
6778 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6779                                     struct kvm_mp_state *mp_state)
6780 {
6781         if (!kvm_vcpu_has_lapic(vcpu) &&
6782             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6783                 return -EINVAL;
6784
6785         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6786                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6787                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6788         } else
6789                 vcpu->arch.mp_state = mp_state->mp_state;
6790         kvm_make_request(KVM_REQ_EVENT, vcpu);
6791         return 0;
6792 }
6793
6794 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6795                     int reason, bool has_error_code, u32 error_code)
6796 {
6797         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6798         int ret;
6799
6800         init_emulate_ctxt(vcpu);
6801
6802         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6803                                    has_error_code, error_code);
6804
6805         if (ret)
6806                 return EMULATE_FAIL;
6807
6808         kvm_rip_write(vcpu, ctxt->eip);
6809         kvm_set_rflags(vcpu, ctxt->eflags);
6810         kvm_make_request(KVM_REQ_EVENT, vcpu);
6811         return EMULATE_DONE;
6812 }
6813 EXPORT_SYMBOL_GPL(kvm_task_switch);
6814
6815 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6816                                   struct kvm_sregs *sregs)
6817 {
6818         struct msr_data apic_base_msr;
6819         int mmu_reset_needed = 0;
6820         int pending_vec, max_bits, idx;
6821         struct desc_ptr dt;
6822
6823         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6824                 return -EINVAL;
6825
6826         dt.size = sregs->idt.limit;
6827         dt.address = sregs->idt.base;
6828         kvm_x86_ops->set_idt(vcpu, &dt);
6829         dt.size = sregs->gdt.limit;
6830         dt.address = sregs->gdt.base;
6831         kvm_x86_ops->set_gdt(vcpu, &dt);
6832
6833         vcpu->arch.cr2 = sregs->cr2;
6834         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6835         vcpu->arch.cr3 = sregs->cr3;
6836         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6837
6838         kvm_set_cr8(vcpu, sregs->cr8);
6839
6840         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6841         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6842         apic_base_msr.data = sregs->apic_base;
6843         apic_base_msr.host_initiated = true;
6844         kvm_set_apic_base(vcpu, &apic_base_msr);
6845
6846         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6847         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6848         vcpu->arch.cr0 = sregs->cr0;
6849
6850         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6851         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6852         if (sregs->cr4 & X86_CR4_OSXSAVE)
6853                 kvm_update_cpuid(vcpu);
6854
6855         idx = srcu_read_lock(&vcpu->kvm->srcu);
6856         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6857                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6858                 mmu_reset_needed = 1;
6859         }
6860         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6861
6862         if (mmu_reset_needed)
6863                 kvm_mmu_reset_context(vcpu);
6864
6865         max_bits = KVM_NR_INTERRUPTS;
6866         pending_vec = find_first_bit(
6867                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6868         if (pending_vec < max_bits) {
6869                 kvm_queue_interrupt(vcpu, pending_vec, false);
6870                 pr_debug("Set back pending irq %d\n", pending_vec);
6871         }
6872
6873         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6874         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6875         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6876         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6877         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6878         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6879
6880         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6881         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6882
6883         update_cr8_intercept(vcpu);
6884
6885         /* Older userspace won't unhalt the vcpu on reset. */
6886         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6887             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6888             !is_protmode(vcpu))
6889                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6890
6891         kvm_make_request(KVM_REQ_EVENT, vcpu);
6892
6893         return 0;
6894 }
6895
6896 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6897                                         struct kvm_guest_debug *dbg)
6898 {
6899         unsigned long rflags;
6900         int i, r;
6901
6902         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6903                 r = -EBUSY;
6904                 if (vcpu->arch.exception.pending)
6905                         goto out;
6906                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6907                         kvm_queue_exception(vcpu, DB_VECTOR);
6908                 else
6909                         kvm_queue_exception(vcpu, BP_VECTOR);
6910         }
6911
6912         /*
6913          * Read rflags as long as potentially injected trace flags are still
6914          * filtered out.
6915          */
6916         rflags = kvm_get_rflags(vcpu);
6917
6918         vcpu->guest_debug = dbg->control;
6919         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6920                 vcpu->guest_debug = 0;
6921
6922         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6923                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6924                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6925                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6926         } else {
6927                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6928                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6929         }
6930         kvm_update_dr7(vcpu);
6931
6932         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6933                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6934                         get_segment_base(vcpu, VCPU_SREG_CS);
6935
6936         /*
6937          * Trigger an rflags update that will inject or remove the trace
6938          * flags.
6939          */
6940         kvm_set_rflags(vcpu, rflags);
6941
6942         kvm_x86_ops->update_db_bp_intercept(vcpu);
6943
6944         r = 0;
6945
6946 out:
6947
6948         return r;
6949 }
6950
6951 /*
6952  * Translate a guest virtual address to a guest physical address.
6953  */
6954 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6955                                     struct kvm_translation *tr)
6956 {
6957         unsigned long vaddr = tr->linear_address;
6958         gpa_t gpa;
6959         int idx;
6960
6961         idx = srcu_read_lock(&vcpu->kvm->srcu);
6962         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6963         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6964         tr->physical_address = gpa;
6965         tr->valid = gpa != UNMAPPED_GVA;
6966         tr->writeable = 1;
6967         tr->usermode = 0;
6968
6969         return 0;
6970 }
6971
6972 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6973 {
6974         struct i387_fxsave_struct *fxsave =
6975                         &vcpu->arch.guest_fpu.state->fxsave;
6976
6977         memcpy(fpu->fpr, fxsave->st_space, 128);
6978         fpu->fcw = fxsave->cwd;
6979         fpu->fsw = fxsave->swd;
6980         fpu->ftwx = fxsave->twd;
6981         fpu->last_opcode = fxsave->fop;
6982         fpu->last_ip = fxsave->rip;
6983         fpu->last_dp = fxsave->rdp;
6984         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6985
6986         return 0;
6987 }
6988
6989 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6990 {
6991         struct i387_fxsave_struct *fxsave =
6992                         &vcpu->arch.guest_fpu.state->fxsave;
6993
6994         memcpy(fxsave->st_space, fpu->fpr, 128);
6995         fxsave->cwd = fpu->fcw;
6996         fxsave->swd = fpu->fsw;
6997         fxsave->twd = fpu->ftwx;
6998         fxsave->fop = fpu->last_opcode;
6999         fxsave->rip = fpu->last_ip;
7000         fxsave->rdp = fpu->last_dp;
7001         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7002
7003         return 0;
7004 }
7005
7006 int fx_init(struct kvm_vcpu *vcpu)
7007 {
7008         int err;
7009
7010         err = fpu_alloc(&vcpu->arch.guest_fpu);
7011         if (err)
7012                 return err;
7013
7014         fpu_finit(&vcpu->arch.guest_fpu);
7015         if (cpu_has_xsaves)
7016                 vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
7017                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7018
7019         /*
7020          * Ensure guest xcr0 is valid for loading
7021          */
7022         vcpu->arch.xcr0 = XSTATE_FP;
7023
7024         vcpu->arch.cr0 |= X86_CR0_ET;
7025
7026         return 0;
7027 }
7028 EXPORT_SYMBOL_GPL(fx_init);
7029
7030 static void fx_free(struct kvm_vcpu *vcpu)
7031 {
7032         fpu_free(&vcpu->arch.guest_fpu);
7033 }
7034
7035 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7036 {
7037         if (vcpu->guest_fpu_loaded)
7038                 return;
7039
7040         /*
7041          * Restore all possible states in the guest,
7042          * and assume host would use all available bits.
7043          * Guest xcr0 would be loaded later.
7044          */
7045         kvm_put_guest_xcr0(vcpu);
7046         vcpu->guest_fpu_loaded = 1;
7047         __kernel_fpu_begin();
7048         fpu_restore_checking(&vcpu->arch.guest_fpu);
7049         trace_kvm_fpu(1);
7050 }
7051
7052 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7053 {
7054         kvm_put_guest_xcr0(vcpu);
7055
7056         if (!vcpu->guest_fpu_loaded)
7057                 return;
7058
7059         vcpu->guest_fpu_loaded = 0;
7060         fpu_save_init(&vcpu->arch.guest_fpu);
7061         __kernel_fpu_end();
7062         ++vcpu->stat.fpu_reload;
7063         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7064         trace_kvm_fpu(0);
7065 }
7066
7067 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7068 {
7069         kvmclock_reset(vcpu);
7070
7071         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7072         fx_free(vcpu);
7073         kvm_x86_ops->vcpu_free(vcpu);
7074 }
7075
7076 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7077                                                 unsigned int id)
7078 {
7079         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7080                 printk_once(KERN_WARNING
7081                 "kvm: SMP vm created on host with unstable TSC; "
7082                 "guest TSC will not be reliable\n");
7083         return kvm_x86_ops->vcpu_create(kvm, id);
7084 }
7085
7086 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7087 {
7088         int r;
7089
7090         vcpu->arch.mtrr_state.have_fixed = 1;
7091         r = vcpu_load(vcpu);
7092         if (r)
7093                 return r;
7094         kvm_vcpu_reset(vcpu);
7095         kvm_mmu_setup(vcpu);
7096         vcpu_put(vcpu);
7097
7098         return r;
7099 }
7100
7101 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7102 {
7103         struct msr_data msr;
7104         struct kvm *kvm = vcpu->kvm;
7105
7106         if (vcpu_load(vcpu))
7107                 return;
7108         msr.data = 0x0;
7109         msr.index = MSR_IA32_TSC;
7110         msr.host_initiated = true;
7111         kvm_write_tsc(vcpu, &msr);
7112         vcpu_put(vcpu);
7113
7114         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7115                                         KVMCLOCK_SYNC_PERIOD);
7116 }
7117
7118 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7119 {
7120         int r;
7121         vcpu->arch.apf.msr_val = 0;
7122
7123         r = vcpu_load(vcpu);
7124         BUG_ON(r);
7125         kvm_mmu_unload(vcpu);
7126         vcpu_put(vcpu);
7127
7128         fx_free(vcpu);
7129         kvm_x86_ops->vcpu_free(vcpu);
7130 }
7131
7132 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7133 {
7134         atomic_set(&vcpu->arch.nmi_queued, 0);
7135         vcpu->arch.nmi_pending = 0;
7136         vcpu->arch.nmi_injected = false;
7137         kvm_clear_interrupt_queue(vcpu);
7138         kvm_clear_exception_queue(vcpu);
7139
7140         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7141         kvm_update_dr0123(vcpu);
7142         vcpu->arch.dr6 = DR6_INIT;
7143         kvm_update_dr6(vcpu);
7144         vcpu->arch.dr7 = DR7_FIXED_1;
7145         kvm_update_dr7(vcpu);
7146
7147         vcpu->arch.cr2 = 0;
7148
7149         kvm_make_request(KVM_REQ_EVENT, vcpu);
7150         vcpu->arch.apf.msr_val = 0;
7151         vcpu->arch.st.msr_val = 0;
7152
7153         kvmclock_reset(vcpu);
7154
7155         kvm_clear_async_pf_completion_queue(vcpu);
7156         kvm_async_pf_hash_reset(vcpu);
7157         vcpu->arch.apf.halted = false;
7158
7159         kvm_pmu_reset(vcpu);
7160
7161         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7162         vcpu->arch.regs_avail = ~0;
7163         vcpu->arch.regs_dirty = ~0;
7164
7165         kvm_x86_ops->vcpu_reset(vcpu);
7166 }
7167
7168 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7169 {
7170         struct kvm_segment cs;
7171
7172         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7173         cs.selector = vector << 8;
7174         cs.base = vector << 12;
7175         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7176         kvm_rip_write(vcpu, 0);
7177 }
7178
7179 int kvm_arch_hardware_enable(void)
7180 {
7181         struct kvm *kvm;
7182         struct kvm_vcpu *vcpu;
7183         int i;
7184         int ret;
7185         u64 local_tsc;
7186         u64 max_tsc = 0;
7187         bool stable, backwards_tsc = false;
7188
7189         kvm_shared_msr_cpu_online();
7190         ret = kvm_x86_ops->hardware_enable();
7191         if (ret != 0)
7192                 return ret;
7193
7194         local_tsc = native_read_tsc();
7195         stable = !check_tsc_unstable();
7196         list_for_each_entry(kvm, &vm_list, vm_list) {
7197                 kvm_for_each_vcpu(i, vcpu, kvm) {
7198                         if (!stable && vcpu->cpu == smp_processor_id())
7199                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7200                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7201                                 backwards_tsc = true;
7202                                 if (vcpu->arch.last_host_tsc > max_tsc)
7203                                         max_tsc = vcpu->arch.last_host_tsc;
7204                         }
7205                 }
7206         }
7207
7208         /*
7209          * Sometimes, even reliable TSCs go backwards.  This happens on
7210          * platforms that reset TSC during suspend or hibernate actions, but
7211          * maintain synchronization.  We must compensate.  Fortunately, we can
7212          * detect that condition here, which happens early in CPU bringup,
7213          * before any KVM threads can be running.  Unfortunately, we can't
7214          * bring the TSCs fully up to date with real time, as we aren't yet far
7215          * enough into CPU bringup that we know how much real time has actually
7216          * elapsed; our helper function, get_kernel_ns() will be using boot
7217          * variables that haven't been updated yet.
7218          *
7219          * So we simply find the maximum observed TSC above, then record the
7220          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7221          * the adjustment will be applied.  Note that we accumulate
7222          * adjustments, in case multiple suspend cycles happen before some VCPU
7223          * gets a chance to run again.  In the event that no KVM threads get a
7224          * chance to run, we will miss the entire elapsed period, as we'll have
7225          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7226          * loose cycle time.  This isn't too big a deal, since the loss will be
7227          * uniform across all VCPUs (not to mention the scenario is extremely
7228          * unlikely). It is possible that a second hibernate recovery happens
7229          * much faster than a first, causing the observed TSC here to be
7230          * smaller; this would require additional padding adjustment, which is
7231          * why we set last_host_tsc to the local tsc observed here.
7232          *
7233          * N.B. - this code below runs only on platforms with reliable TSC,
7234          * as that is the only way backwards_tsc is set above.  Also note
7235          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7236          * have the same delta_cyc adjustment applied if backwards_tsc
7237          * is detected.  Note further, this adjustment is only done once,
7238          * as we reset last_host_tsc on all VCPUs to stop this from being
7239          * called multiple times (one for each physical CPU bringup).
7240          *
7241          * Platforms with unreliable TSCs don't have to deal with this, they
7242          * will be compensated by the logic in vcpu_load, which sets the TSC to
7243          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7244          * guarantee that they stay in perfect synchronization.
7245          */
7246         if (backwards_tsc) {
7247                 u64 delta_cyc = max_tsc - local_tsc;
7248                 backwards_tsc_observed = true;
7249                 list_for_each_entry(kvm, &vm_list, vm_list) {
7250                         kvm_for_each_vcpu(i, vcpu, kvm) {
7251                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7252                                 vcpu->arch.last_host_tsc = local_tsc;
7253                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7254                         }
7255
7256                         /*
7257                          * We have to disable TSC offset matching.. if you were
7258                          * booting a VM while issuing an S4 host suspend....
7259                          * you may have some problem.  Solving this issue is
7260                          * left as an exercise to the reader.
7261                          */
7262                         kvm->arch.last_tsc_nsec = 0;
7263                         kvm->arch.last_tsc_write = 0;
7264                 }
7265
7266         }
7267         return 0;
7268 }
7269
7270 void kvm_arch_hardware_disable(void)
7271 {
7272         kvm_x86_ops->hardware_disable();
7273         drop_user_return_notifiers();
7274 }
7275
7276 int kvm_arch_hardware_setup(void)
7277 {
7278         int r;
7279
7280         r = kvm_x86_ops->hardware_setup();
7281         if (r != 0)
7282                 return r;
7283
7284         kvm_init_msr_list();
7285         return 0;
7286 }
7287
7288 void kvm_arch_hardware_unsetup(void)
7289 {
7290         kvm_x86_ops->hardware_unsetup();
7291 }
7292
7293 void kvm_arch_check_processor_compat(void *rtn)
7294 {
7295         kvm_x86_ops->check_processor_compatibility(rtn);
7296 }
7297
7298 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7299 {
7300         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7301 }
7302
7303 struct static_key kvm_no_apic_vcpu __read_mostly;
7304
7305 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7306 {
7307         struct page *page;
7308         struct kvm *kvm;
7309         int r;
7310
7311         BUG_ON(vcpu->kvm == NULL);
7312         kvm = vcpu->kvm;
7313
7314         vcpu->arch.pv.pv_unhalted = false;
7315         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7316         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7317                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7318         else
7319                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7320
7321         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7322         if (!page) {
7323                 r = -ENOMEM;
7324                 goto fail;
7325         }
7326         vcpu->arch.pio_data = page_address(page);
7327
7328         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7329
7330         r = kvm_mmu_create(vcpu);
7331         if (r < 0)
7332                 goto fail_free_pio_data;
7333
7334         if (irqchip_in_kernel(kvm)) {
7335                 r = kvm_create_lapic(vcpu);
7336                 if (r < 0)
7337                         goto fail_mmu_destroy;
7338         } else
7339                 static_key_slow_inc(&kvm_no_apic_vcpu);
7340
7341         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7342                                        GFP_KERNEL);
7343         if (!vcpu->arch.mce_banks) {
7344                 r = -ENOMEM;
7345                 goto fail_free_lapic;
7346         }
7347         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7348
7349         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7350                 r = -ENOMEM;
7351                 goto fail_free_mce_banks;
7352         }
7353
7354         r = fx_init(vcpu);
7355         if (r)
7356                 goto fail_free_wbinvd_dirty_mask;
7357
7358         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7359         vcpu->arch.pv_time_enabled = false;
7360
7361         vcpu->arch.guest_supported_xcr0 = 0;
7362         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7363
7364         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7365
7366         kvm_async_pf_hash_reset(vcpu);
7367         kvm_pmu_init(vcpu);
7368
7369         return 0;
7370 fail_free_wbinvd_dirty_mask:
7371         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7372 fail_free_mce_banks:
7373         kfree(vcpu->arch.mce_banks);
7374 fail_free_lapic:
7375         kvm_free_lapic(vcpu);
7376 fail_mmu_destroy:
7377         kvm_mmu_destroy(vcpu);
7378 fail_free_pio_data:
7379         free_page((unsigned long)vcpu->arch.pio_data);
7380 fail:
7381         return r;
7382 }
7383
7384 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7385 {
7386         int idx;
7387
7388         kvm_pmu_destroy(vcpu);
7389         kfree(vcpu->arch.mce_banks);
7390         kvm_free_lapic(vcpu);
7391         idx = srcu_read_lock(&vcpu->kvm->srcu);
7392         kvm_mmu_destroy(vcpu);
7393         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7394         free_page((unsigned long)vcpu->arch.pio_data);
7395         if (!irqchip_in_kernel(vcpu->kvm))
7396                 static_key_slow_dec(&kvm_no_apic_vcpu);
7397 }
7398
7399 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7400 {
7401         kvm_x86_ops->sched_in(vcpu, cpu);
7402 }
7403
7404 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7405 {
7406         if (type)
7407                 return -EINVAL;
7408
7409         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7410         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7411         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7412         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7413         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7414
7415         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7416         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7417         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7418         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7419                 &kvm->arch.irq_sources_bitmap);
7420
7421         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7422         mutex_init(&kvm->arch.apic_map_lock);
7423         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7424
7425         pvclock_update_vm_gtod_copy(kvm);
7426
7427         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7428         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7429
7430         return 0;
7431 }
7432
7433 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7434 {
7435         int r;
7436         r = vcpu_load(vcpu);
7437         BUG_ON(r);
7438         kvm_mmu_unload(vcpu);
7439         vcpu_put(vcpu);
7440 }
7441
7442 static void kvm_free_vcpus(struct kvm *kvm)
7443 {
7444         unsigned int i;
7445         struct kvm_vcpu *vcpu;
7446
7447         /*
7448          * Unpin any mmu pages first.
7449          */
7450         kvm_for_each_vcpu(i, vcpu, kvm) {
7451                 kvm_clear_async_pf_completion_queue(vcpu);
7452                 kvm_unload_vcpu_mmu(vcpu);
7453         }
7454         kvm_for_each_vcpu(i, vcpu, kvm)
7455                 kvm_arch_vcpu_free(vcpu);
7456
7457         mutex_lock(&kvm->lock);
7458         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7459                 kvm->vcpus[i] = NULL;
7460
7461         atomic_set(&kvm->online_vcpus, 0);
7462         mutex_unlock(&kvm->lock);
7463 }
7464
7465 void kvm_arch_sync_events(struct kvm *kvm)
7466 {
7467         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7468         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7469         kvm_free_all_assigned_devices(kvm);
7470         kvm_free_pit(kvm);
7471 }
7472
7473 void kvm_arch_destroy_vm(struct kvm *kvm)
7474 {
7475         if (current->mm == kvm->mm) {
7476                 /*
7477                  * Free memory regions allocated on behalf of userspace,
7478                  * unless the the memory map has changed due to process exit
7479                  * or fd copying.
7480                  */
7481                 struct kvm_userspace_memory_region mem;
7482                 memset(&mem, 0, sizeof(mem));
7483                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7484                 kvm_set_memory_region(kvm, &mem);
7485
7486                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7487                 kvm_set_memory_region(kvm, &mem);
7488
7489                 mem.slot = TSS_PRIVATE_MEMSLOT;
7490                 kvm_set_memory_region(kvm, &mem);
7491         }
7492         kvm_iommu_unmap_guest(kvm);
7493         kfree(kvm->arch.vpic);
7494         kfree(kvm->arch.vioapic);
7495         kvm_free_vcpus(kvm);
7496         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7497 }
7498
7499 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7500                            struct kvm_memory_slot *dont)
7501 {
7502         int i;
7503
7504         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7505                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7506                         kvfree(free->arch.rmap[i]);
7507                         free->arch.rmap[i] = NULL;
7508                 }
7509                 if (i == 0)
7510                         continue;
7511
7512                 if (!dont || free->arch.lpage_info[i - 1] !=
7513                              dont->arch.lpage_info[i - 1]) {
7514                         kvfree(free->arch.lpage_info[i - 1]);
7515                         free->arch.lpage_info[i - 1] = NULL;
7516                 }
7517         }
7518 }
7519
7520 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7521                             unsigned long npages)
7522 {
7523         int i;
7524
7525         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7526                 unsigned long ugfn;
7527                 int lpages;
7528                 int level = i + 1;
7529
7530                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7531                                       slot->base_gfn, level) + 1;
7532
7533                 slot->arch.rmap[i] =
7534                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7535                 if (!slot->arch.rmap[i])
7536                         goto out_free;
7537                 if (i == 0)
7538                         continue;
7539
7540                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7541                                         sizeof(*slot->arch.lpage_info[i - 1]));
7542                 if (!slot->arch.lpage_info[i - 1])
7543                         goto out_free;
7544
7545                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7546                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7547                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7548                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7549                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7550                 /*
7551                  * If the gfn and userspace address are not aligned wrt each
7552                  * other, or if explicitly asked to, disable large page
7553                  * support for this slot
7554                  */
7555                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7556                     !kvm_largepages_enabled()) {
7557                         unsigned long j;
7558
7559                         for (j = 0; j < lpages; ++j)
7560                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7561                 }
7562         }
7563
7564         return 0;
7565
7566 out_free:
7567         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7568                 kvfree(slot->arch.rmap[i]);
7569                 slot->arch.rmap[i] = NULL;
7570                 if (i == 0)
7571                         continue;
7572
7573                 kvfree(slot->arch.lpage_info[i - 1]);
7574                 slot->arch.lpage_info[i - 1] = NULL;
7575         }
7576         return -ENOMEM;
7577 }
7578
7579 void kvm_arch_memslots_updated(struct kvm *kvm)
7580 {
7581         /*
7582          * memslots->generation has been incremented.
7583          * mmio generation may have reached its maximum value.
7584          */
7585         kvm_mmu_invalidate_mmio_sptes(kvm);
7586 }
7587
7588 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7589                                 struct kvm_memory_slot *memslot,
7590                                 struct kvm_userspace_memory_region *mem,
7591                                 enum kvm_mr_change change)
7592 {
7593         /*
7594          * Only private memory slots need to be mapped here since
7595          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7596          */
7597         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7598                 unsigned long userspace_addr;
7599
7600                 /*
7601                  * MAP_SHARED to prevent internal slot pages from being moved
7602                  * by fork()/COW.
7603                  */
7604                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7605                                          PROT_READ | PROT_WRITE,
7606                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7607
7608                 if (IS_ERR((void *)userspace_addr))
7609                         return PTR_ERR((void *)userspace_addr);
7610
7611                 memslot->userspace_addr = userspace_addr;
7612         }
7613
7614         return 0;
7615 }
7616
7617 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7618                                      struct kvm_memory_slot *new)
7619 {
7620         /* Still write protect RO slot */
7621         if (new->flags & KVM_MEM_READONLY) {
7622                 kvm_mmu_slot_remove_write_access(kvm, new);
7623                 return;
7624         }
7625
7626         /*
7627          * Call kvm_x86_ops dirty logging hooks when they are valid.
7628          *
7629          * kvm_x86_ops->slot_disable_log_dirty is called when:
7630          *
7631          *  - KVM_MR_CREATE with dirty logging is disabled
7632          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7633          *
7634          * The reason is, in case of PML, we need to set D-bit for any slots
7635          * with dirty logging disabled in order to eliminate unnecessary GPA
7636          * logging in PML buffer (and potential PML buffer full VMEXT). This
7637          * guarantees leaving PML enabled during guest's lifetime won't have
7638          * any additonal overhead from PML when guest is running with dirty
7639          * logging disabled for memory slots.
7640          *
7641          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7642          * to dirty logging mode.
7643          *
7644          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7645          *
7646          * In case of write protect:
7647          *
7648          * Write protect all pages for dirty logging.
7649          *
7650          * All the sptes including the large sptes which point to this
7651          * slot are set to readonly. We can not create any new large
7652          * spte on this slot until the end of the logging.
7653          *
7654          * See the comments in fast_page_fault().
7655          */
7656         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7657                 if (kvm_x86_ops->slot_enable_log_dirty)
7658                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7659                 else
7660                         kvm_mmu_slot_remove_write_access(kvm, new);
7661         } else {
7662                 if (kvm_x86_ops->slot_disable_log_dirty)
7663                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7664         }
7665 }
7666
7667 void kvm_arch_commit_memory_region(struct kvm *kvm,
7668                                 struct kvm_userspace_memory_region *mem,
7669                                 const struct kvm_memory_slot *old,
7670                                 enum kvm_mr_change change)
7671 {
7672         struct kvm_memory_slot *new;
7673         int nr_mmu_pages = 0;
7674
7675         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7676                 int ret;
7677
7678                 ret = vm_munmap(old->userspace_addr,
7679                                 old->npages * PAGE_SIZE);
7680                 if (ret < 0)
7681                         printk(KERN_WARNING
7682                                "kvm_vm_ioctl_set_memory_region: "
7683                                "failed to munmap memory\n");
7684         }
7685
7686         if (!kvm->arch.n_requested_mmu_pages)
7687                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7688
7689         if (nr_mmu_pages)
7690                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7691
7692         /* It's OK to get 'new' slot here as it has already been installed */
7693         new = id_to_memslot(kvm->memslots, mem->slot);
7694
7695         /*
7696          * Dirty logging tracks sptes in 4k granularity, meaning that large
7697          * sptes have to be split.  If live migration is successful, the guest
7698          * in the source machine will be destroyed and large sptes will be
7699          * created in the destination. However, if the guest continues to run
7700          * in the source machine (for example if live migration fails), small
7701          * sptes will remain around and cause bad performance.
7702          *
7703          * Scan sptes if dirty logging has been stopped, dropping those
7704          * which can be collapsed into a single large-page spte.  Later
7705          * page faults will create the large-page sptes.
7706          */
7707         if ((change != KVM_MR_DELETE) &&
7708                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7709                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7710                 kvm_mmu_zap_collapsible_sptes(kvm, new);
7711
7712         /*
7713          * Set up write protection and/or dirty logging for the new slot.
7714          *
7715          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7716          * been zapped so no dirty logging staff is needed for old slot. For
7717          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7718          * new and it's also covered when dealing with the new slot.
7719          */
7720         if (change != KVM_MR_DELETE)
7721                 kvm_mmu_slot_apply_flags(kvm, new);
7722 }
7723
7724 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7725 {
7726         kvm_mmu_invalidate_zap_all_pages(kvm);
7727 }
7728
7729 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7730                                    struct kvm_memory_slot *slot)
7731 {
7732         kvm_mmu_invalidate_zap_all_pages(kvm);
7733 }
7734
7735 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7736 {
7737         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7738                 kvm_x86_ops->check_nested_events(vcpu, false);
7739
7740         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7741                 !vcpu->arch.apf.halted)
7742                 || !list_empty_careful(&vcpu->async_pf.done)
7743                 || kvm_apic_has_events(vcpu)
7744                 || vcpu->arch.pv.pv_unhalted
7745                 || atomic_read(&vcpu->arch.nmi_queued) ||
7746                 (kvm_arch_interrupt_allowed(vcpu) &&
7747                  kvm_cpu_has_interrupt(vcpu));
7748 }
7749
7750 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7751 {
7752         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7753 }
7754
7755 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7756 {
7757         return kvm_x86_ops->interrupt_allowed(vcpu);
7758 }
7759
7760 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7761 {
7762         if (is_64_bit_mode(vcpu))
7763                 return kvm_rip_read(vcpu);
7764         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7765                      kvm_rip_read(vcpu));
7766 }
7767 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7768
7769 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7770 {
7771         return kvm_get_linear_rip(vcpu) == linear_rip;
7772 }
7773 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7774
7775 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7776 {
7777         unsigned long rflags;
7778
7779         rflags = kvm_x86_ops->get_rflags(vcpu);
7780         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7781                 rflags &= ~X86_EFLAGS_TF;
7782         return rflags;
7783 }
7784 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7785
7786 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7787 {
7788         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7789             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7790                 rflags |= X86_EFLAGS_TF;
7791         kvm_x86_ops->set_rflags(vcpu, rflags);
7792 }
7793
7794 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7795 {
7796         __kvm_set_rflags(vcpu, rflags);
7797         kvm_make_request(KVM_REQ_EVENT, vcpu);
7798 }
7799 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7800
7801 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7802 {
7803         int r;
7804
7805         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7806               work->wakeup_all)
7807                 return;
7808
7809         r = kvm_mmu_reload(vcpu);
7810         if (unlikely(r))
7811                 return;
7812
7813         if (!vcpu->arch.mmu.direct_map &&
7814               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7815                 return;
7816
7817         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7818 }
7819
7820 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7821 {
7822         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7823 }
7824
7825 static inline u32 kvm_async_pf_next_probe(u32 key)
7826 {
7827         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7828 }
7829
7830 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7831 {
7832         u32 key = kvm_async_pf_hash_fn(gfn);
7833
7834         while (vcpu->arch.apf.gfns[key] != ~0)
7835                 key = kvm_async_pf_next_probe(key);
7836
7837         vcpu->arch.apf.gfns[key] = gfn;
7838 }
7839
7840 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7841 {
7842         int i;
7843         u32 key = kvm_async_pf_hash_fn(gfn);
7844
7845         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7846                      (vcpu->arch.apf.gfns[key] != gfn &&
7847                       vcpu->arch.apf.gfns[key] != ~0); i++)
7848                 key = kvm_async_pf_next_probe(key);
7849
7850         return key;
7851 }
7852
7853 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7854 {
7855         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7856 }
7857
7858 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7859 {
7860         u32 i, j, k;
7861
7862         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7863         while (true) {
7864                 vcpu->arch.apf.gfns[i] = ~0;
7865                 do {
7866                         j = kvm_async_pf_next_probe(j);
7867                         if (vcpu->arch.apf.gfns[j] == ~0)
7868                                 return;
7869                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7870                         /*
7871                          * k lies cyclically in ]i,j]
7872                          * |    i.k.j |
7873                          * |....j i.k.| or  |.k..j i...|
7874                          */
7875                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7876                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7877                 i = j;
7878         }
7879 }
7880
7881 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7882 {
7883
7884         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7885                                       sizeof(val));
7886 }
7887
7888 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7889                                      struct kvm_async_pf *work)
7890 {
7891         struct x86_exception fault;
7892
7893         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7894         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7895
7896         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7897             (vcpu->arch.apf.send_user_only &&
7898              kvm_x86_ops->get_cpl(vcpu) == 0))
7899                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7900         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7901                 fault.vector = PF_VECTOR;
7902                 fault.error_code_valid = true;
7903                 fault.error_code = 0;
7904                 fault.nested_page_fault = false;
7905                 fault.address = work->arch.token;
7906                 kvm_inject_page_fault(vcpu, &fault);
7907         }
7908 }
7909
7910 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7911                                  struct kvm_async_pf *work)
7912 {
7913         struct x86_exception fault;
7914
7915         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7916         if (work->wakeup_all)
7917                 work->arch.token = ~0; /* broadcast wakeup */
7918         else
7919                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7920
7921         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7922             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7923                 fault.vector = PF_VECTOR;
7924                 fault.error_code_valid = true;
7925                 fault.error_code = 0;
7926                 fault.nested_page_fault = false;
7927                 fault.address = work->arch.token;
7928                 kvm_inject_page_fault(vcpu, &fault);
7929         }
7930         vcpu->arch.apf.halted = false;
7931         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7932 }
7933
7934 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7935 {
7936         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7937                 return true;
7938         else
7939                 return !kvm_event_needs_reinjection(vcpu) &&
7940                         kvm_x86_ops->interrupt_allowed(vcpu);
7941 }
7942
7943 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7944 {
7945         atomic_inc(&kvm->arch.noncoherent_dma_count);
7946 }
7947 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7948
7949 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7950 {
7951         atomic_dec(&kvm->arch.noncoherent_dma_count);
7952 }
7953 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7954
7955 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7956 {
7957         return atomic_read(&kvm->arch.noncoherent_dma_count);
7958 }
7959 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7960
7961 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);