Merge branches 'clk-renesas', 'clk-qcom', 'clk-mtk', 'clk-milbeaut' and 'clk-imx...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73
74 #define CREATE_TRACE_POINTS
75 #include "trace.h"
76
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81
82 #define emul_to_vcpu(ctxt) \
83         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84
85 /* EFER defaults:
86  * - enable syscall per default because its emulated by KVM
87  * - enable LME and LMA per default on 64 bit KVM
88  */
89 #ifdef CONFIG_X86_64
90 static
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 #else
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
94 #endif
95
96 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
97 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98
99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
100                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101
102 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
103 static void process_nmi(struct kvm_vcpu *vcpu);
104 static void enter_smm(struct kvm_vcpu *vcpu);
105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 static void store_regs(struct kvm_vcpu *vcpu);
107 static int sync_regs(struct kvm_vcpu *vcpu);
108
109 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
110 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111
112 static bool __read_mostly ignore_msrs = 0;
113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114
115 static bool __read_mostly report_ignored_msrs = true;
116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117
118 unsigned int min_timer_period_us = 200;
119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120
121 static bool __read_mostly kvmclock_periodic_sync = true;
122 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123
124 bool __read_mostly kvm_has_tsc_control;
125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
126 u32  __read_mostly kvm_max_guest_tsc_khz;
127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
128 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
130 u64  __read_mostly kvm_max_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
132 u64 __read_mostly kvm_default_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134
135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
136 static u32 __read_mostly tsc_tolerance_ppm = 250;
137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138
139 /*
140  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
141  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
142  * advancement entirely.  Any other value is used as-is and disables adaptive
143  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
144  */
145 static int __read_mostly lapic_timer_advance_ns = -1;
146 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
147
148 static bool __read_mostly vector_hashing = true;
149 module_param(vector_hashing, bool, S_IRUGO);
150
151 bool __read_mostly enable_vmware_backdoor = false;
152 module_param(enable_vmware_backdoor, bool, S_IRUGO);
153 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
154
155 static bool __read_mostly force_emulation_prefix = false;
156 module_param(force_emulation_prefix, bool, S_IRUGO);
157
158 #define KVM_NR_SHARED_MSRS 16
159
160 struct kvm_shared_msrs_global {
161         int nr;
162         u32 msrs[KVM_NR_SHARED_MSRS];
163 };
164
165 struct kvm_shared_msrs {
166         struct user_return_notifier urn;
167         bool registered;
168         struct kvm_shared_msr_values {
169                 u64 host;
170                 u64 curr;
171         } values[KVM_NR_SHARED_MSRS];
172 };
173
174 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
175 static struct kvm_shared_msrs __percpu *shared_msrs;
176
177 struct kvm_stats_debugfs_item debugfs_entries[] = {
178         { "pf_fixed", VCPU_STAT(pf_fixed) },
179         { "pf_guest", VCPU_STAT(pf_guest) },
180         { "tlb_flush", VCPU_STAT(tlb_flush) },
181         { "invlpg", VCPU_STAT(invlpg) },
182         { "exits", VCPU_STAT(exits) },
183         { "io_exits", VCPU_STAT(io_exits) },
184         { "mmio_exits", VCPU_STAT(mmio_exits) },
185         { "signal_exits", VCPU_STAT(signal_exits) },
186         { "irq_window", VCPU_STAT(irq_window_exits) },
187         { "nmi_window", VCPU_STAT(nmi_window_exits) },
188         { "halt_exits", VCPU_STAT(halt_exits) },
189         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
190         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
191         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
192         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
193         { "hypercalls", VCPU_STAT(hypercalls) },
194         { "request_irq", VCPU_STAT(request_irq_exits) },
195         { "irq_exits", VCPU_STAT(irq_exits) },
196         { "host_state_reload", VCPU_STAT(host_state_reload) },
197         { "fpu_reload", VCPU_STAT(fpu_reload) },
198         { "insn_emulation", VCPU_STAT(insn_emulation) },
199         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
200         { "irq_injections", VCPU_STAT(irq_injections) },
201         { "nmi_injections", VCPU_STAT(nmi_injections) },
202         { "req_event", VCPU_STAT(req_event) },
203         { "l1d_flush", VCPU_STAT(l1d_flush) },
204         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
205         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
206         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
207         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
208         { "mmu_flooded", VM_STAT(mmu_flooded) },
209         { "mmu_recycled", VM_STAT(mmu_recycled) },
210         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
211         { "mmu_unsync", VM_STAT(mmu_unsync) },
212         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
213         { "largepages", VM_STAT(lpages) },
214         { "max_mmu_page_hash_collisions",
215                 VM_STAT(max_mmu_page_hash_collisions) },
216         { NULL }
217 };
218
219 u64 __read_mostly host_xcr0;
220
221 struct kmem_cache *x86_fpu_cache;
222 EXPORT_SYMBOL_GPL(x86_fpu_cache);
223
224 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
225
226 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
227 {
228         int i;
229         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
230                 vcpu->arch.apf.gfns[i] = ~0;
231 }
232
233 static void kvm_on_user_return(struct user_return_notifier *urn)
234 {
235         unsigned slot;
236         struct kvm_shared_msrs *locals
237                 = container_of(urn, struct kvm_shared_msrs, urn);
238         struct kvm_shared_msr_values *values;
239         unsigned long flags;
240
241         /*
242          * Disabling irqs at this point since the following code could be
243          * interrupted and executed through kvm_arch_hardware_disable()
244          */
245         local_irq_save(flags);
246         if (locals->registered) {
247                 locals->registered = false;
248                 user_return_notifier_unregister(urn);
249         }
250         local_irq_restore(flags);
251         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
252                 values = &locals->values[slot];
253                 if (values->host != values->curr) {
254                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
255                         values->curr = values->host;
256                 }
257         }
258 }
259
260 static void shared_msr_update(unsigned slot, u32 msr)
261 {
262         u64 value;
263         unsigned int cpu = smp_processor_id();
264         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
265
266         /* only read, and nobody should modify it at this time,
267          * so don't need lock */
268         if (slot >= shared_msrs_global.nr) {
269                 printk(KERN_ERR "kvm: invalid MSR slot!");
270                 return;
271         }
272         rdmsrl_safe(msr, &value);
273         smsr->values[slot].host = value;
274         smsr->values[slot].curr = value;
275 }
276
277 void kvm_define_shared_msr(unsigned slot, u32 msr)
278 {
279         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
280         shared_msrs_global.msrs[slot] = msr;
281         if (slot >= shared_msrs_global.nr)
282                 shared_msrs_global.nr = slot + 1;
283 }
284 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
285
286 static void kvm_shared_msr_cpu_online(void)
287 {
288         unsigned i;
289
290         for (i = 0; i < shared_msrs_global.nr; ++i)
291                 shared_msr_update(i, shared_msrs_global.msrs[i]);
292 }
293
294 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
295 {
296         unsigned int cpu = smp_processor_id();
297         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298         int err;
299
300         if (((value ^ smsr->values[slot].curr) & mask) == 0)
301                 return 0;
302         smsr->values[slot].curr = value;
303         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
304         if (err)
305                 return 1;
306
307         if (!smsr->registered) {
308                 smsr->urn.on_user_return = kvm_on_user_return;
309                 user_return_notifier_register(&smsr->urn);
310                 smsr->registered = true;
311         }
312         return 0;
313 }
314 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
315
316 static void drop_user_return_notifiers(void)
317 {
318         unsigned int cpu = smp_processor_id();
319         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
320
321         if (smsr->registered)
322                 kvm_on_user_return(&smsr->urn);
323 }
324
325 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
326 {
327         return vcpu->arch.apic_base;
328 }
329 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
330
331 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
332 {
333         return kvm_apic_mode(kvm_get_apic_base(vcpu));
334 }
335 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
336
337 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
338 {
339         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
340         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
341         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
342                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
343
344         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
345                 return 1;
346         if (!msr_info->host_initiated) {
347                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
348                         return 1;
349                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
350                         return 1;
351         }
352
353         kvm_lapic_set_base(vcpu, msr_info->data);
354         return 0;
355 }
356 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
357
358 asmlinkage __visible void kvm_spurious_fault(void)
359 {
360         /* Fault while not rebooting.  We want the trace. */
361         BUG();
362 }
363 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
364
365 #define EXCPT_BENIGN            0
366 #define EXCPT_CONTRIBUTORY      1
367 #define EXCPT_PF                2
368
369 static int exception_class(int vector)
370 {
371         switch (vector) {
372         case PF_VECTOR:
373                 return EXCPT_PF;
374         case DE_VECTOR:
375         case TS_VECTOR:
376         case NP_VECTOR:
377         case SS_VECTOR:
378         case GP_VECTOR:
379                 return EXCPT_CONTRIBUTORY;
380         default:
381                 break;
382         }
383         return EXCPT_BENIGN;
384 }
385
386 #define EXCPT_FAULT             0
387 #define EXCPT_TRAP              1
388 #define EXCPT_ABORT             2
389 #define EXCPT_INTERRUPT         3
390
391 static int exception_type(int vector)
392 {
393         unsigned int mask;
394
395         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
396                 return EXCPT_INTERRUPT;
397
398         mask = 1 << vector;
399
400         /* #DB is trap, as instruction watchpoints are handled elsewhere */
401         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
402                 return EXCPT_TRAP;
403
404         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
405                 return EXCPT_ABORT;
406
407         /* Reserved exceptions will result in fault */
408         return EXCPT_FAULT;
409 }
410
411 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
412 {
413         unsigned nr = vcpu->arch.exception.nr;
414         bool has_payload = vcpu->arch.exception.has_payload;
415         unsigned long payload = vcpu->arch.exception.payload;
416
417         if (!has_payload)
418                 return;
419
420         switch (nr) {
421         case DB_VECTOR:
422                 /*
423                  * "Certain debug exceptions may clear bit 0-3.  The
424                  * remaining contents of the DR6 register are never
425                  * cleared by the processor".
426                  */
427                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
428                 /*
429                  * DR6.RTM is set by all #DB exceptions that don't clear it.
430                  */
431                 vcpu->arch.dr6 |= DR6_RTM;
432                 vcpu->arch.dr6 |= payload;
433                 /*
434                  * Bit 16 should be set in the payload whenever the #DB
435                  * exception should clear DR6.RTM. This makes the payload
436                  * compatible with the pending debug exceptions under VMX.
437                  * Though not currently documented in the SDM, this also
438                  * makes the payload compatible with the exit qualification
439                  * for #DB exceptions under VMX.
440                  */
441                 vcpu->arch.dr6 ^= payload & DR6_RTM;
442                 break;
443         case PF_VECTOR:
444                 vcpu->arch.cr2 = payload;
445                 break;
446         }
447
448         vcpu->arch.exception.has_payload = false;
449         vcpu->arch.exception.payload = 0;
450 }
451 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
452
453 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
454                 unsigned nr, bool has_error, u32 error_code,
455                 bool has_payload, unsigned long payload, bool reinject)
456 {
457         u32 prev_nr;
458         int class1, class2;
459
460         kvm_make_request(KVM_REQ_EVENT, vcpu);
461
462         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
463         queue:
464                 if (has_error && !is_protmode(vcpu))
465                         has_error = false;
466                 if (reinject) {
467                         /*
468                          * On vmentry, vcpu->arch.exception.pending is only
469                          * true if an event injection was blocked by
470                          * nested_run_pending.  In that case, however,
471                          * vcpu_enter_guest requests an immediate exit,
472                          * and the guest shouldn't proceed far enough to
473                          * need reinjection.
474                          */
475                         WARN_ON_ONCE(vcpu->arch.exception.pending);
476                         vcpu->arch.exception.injected = true;
477                         if (WARN_ON_ONCE(has_payload)) {
478                                 /*
479                                  * A reinjected event has already
480                                  * delivered its payload.
481                                  */
482                                 has_payload = false;
483                                 payload = 0;
484                         }
485                 } else {
486                         vcpu->arch.exception.pending = true;
487                         vcpu->arch.exception.injected = false;
488                 }
489                 vcpu->arch.exception.has_error_code = has_error;
490                 vcpu->arch.exception.nr = nr;
491                 vcpu->arch.exception.error_code = error_code;
492                 vcpu->arch.exception.has_payload = has_payload;
493                 vcpu->arch.exception.payload = payload;
494                 /*
495                  * In guest mode, payload delivery should be deferred,
496                  * so that the L1 hypervisor can intercept #PF before
497                  * CR2 is modified (or intercept #DB before DR6 is
498                  * modified under nVMX).  However, for ABI
499                  * compatibility with KVM_GET_VCPU_EVENTS and
500                  * KVM_SET_VCPU_EVENTS, we can't delay payload
501                  * delivery unless userspace has enabled this
502                  * functionality via the per-VM capability,
503                  * KVM_CAP_EXCEPTION_PAYLOAD.
504                  */
505                 if (!vcpu->kvm->arch.exception_payload_enabled ||
506                     !is_guest_mode(vcpu))
507                         kvm_deliver_exception_payload(vcpu);
508                 return;
509         }
510
511         /* to check exception */
512         prev_nr = vcpu->arch.exception.nr;
513         if (prev_nr == DF_VECTOR) {
514                 /* triple fault -> shutdown */
515                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
516                 return;
517         }
518         class1 = exception_class(prev_nr);
519         class2 = exception_class(nr);
520         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
521                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
522                 /*
523                  * Generate double fault per SDM Table 5-5.  Set
524                  * exception.pending = true so that the double fault
525                  * can trigger a nested vmexit.
526                  */
527                 vcpu->arch.exception.pending = true;
528                 vcpu->arch.exception.injected = false;
529                 vcpu->arch.exception.has_error_code = true;
530                 vcpu->arch.exception.nr = DF_VECTOR;
531                 vcpu->arch.exception.error_code = 0;
532                 vcpu->arch.exception.has_payload = false;
533                 vcpu->arch.exception.payload = 0;
534         } else
535                 /* replace previous exception with a new one in a hope
536                    that instruction re-execution will regenerate lost
537                    exception */
538                 goto queue;
539 }
540
541 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
542 {
543         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
544 }
545 EXPORT_SYMBOL_GPL(kvm_queue_exception);
546
547 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
548 {
549         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
550 }
551 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
552
553 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
554                                   unsigned long payload)
555 {
556         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
557 }
558
559 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
560                                     u32 error_code, unsigned long payload)
561 {
562         kvm_multiple_exception(vcpu, nr, true, error_code,
563                                true, payload, false);
564 }
565
566 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
567 {
568         if (err)
569                 kvm_inject_gp(vcpu, 0);
570         else
571                 return kvm_skip_emulated_instruction(vcpu);
572
573         return 1;
574 }
575 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
576
577 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
578 {
579         ++vcpu->stat.pf_guest;
580         vcpu->arch.exception.nested_apf =
581                 is_guest_mode(vcpu) && fault->async_page_fault;
582         if (vcpu->arch.exception.nested_apf) {
583                 vcpu->arch.apf.nested_apf_token = fault->address;
584                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
585         } else {
586                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
587                                         fault->address);
588         }
589 }
590 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
591
592 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
593 {
594         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
595                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
596         else
597                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
598
599         return fault->nested_page_fault;
600 }
601
602 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
603 {
604         atomic_inc(&vcpu->arch.nmi_queued);
605         kvm_make_request(KVM_REQ_NMI, vcpu);
606 }
607 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
608
609 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
610 {
611         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
612 }
613 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
614
615 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
616 {
617         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
618 }
619 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
620
621 /*
622  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
623  * a #GP and return false.
624  */
625 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
626 {
627         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
628                 return true;
629         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
630         return false;
631 }
632 EXPORT_SYMBOL_GPL(kvm_require_cpl);
633
634 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
635 {
636         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
637                 return true;
638
639         kvm_queue_exception(vcpu, UD_VECTOR);
640         return false;
641 }
642 EXPORT_SYMBOL_GPL(kvm_require_dr);
643
644 /*
645  * This function will be used to read from the physical memory of the currently
646  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
647  * can read from guest physical or from the guest's guest physical memory.
648  */
649 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
650                             gfn_t ngfn, void *data, int offset, int len,
651                             u32 access)
652 {
653         struct x86_exception exception;
654         gfn_t real_gfn;
655         gpa_t ngpa;
656
657         ngpa     = gfn_to_gpa(ngfn);
658         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
659         if (real_gfn == UNMAPPED_GVA)
660                 return -EFAULT;
661
662         real_gfn = gpa_to_gfn(real_gfn);
663
664         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
665 }
666 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
667
668 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
669                                void *data, int offset, int len, u32 access)
670 {
671         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
672                                        data, offset, len, access);
673 }
674
675 /*
676  * Load the pae pdptrs.  Return true is they are all valid.
677  */
678 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
679 {
680         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
681         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
682         int i;
683         int ret;
684         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
685
686         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
687                                       offset * sizeof(u64), sizeof(pdpte),
688                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
689         if (ret < 0) {
690                 ret = 0;
691                 goto out;
692         }
693         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
694                 if ((pdpte[i] & PT_PRESENT_MASK) &&
695                     (pdpte[i] &
696                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
697                         ret = 0;
698                         goto out;
699                 }
700         }
701         ret = 1;
702
703         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
704         __set_bit(VCPU_EXREG_PDPTR,
705                   (unsigned long *)&vcpu->arch.regs_avail);
706         __set_bit(VCPU_EXREG_PDPTR,
707                   (unsigned long *)&vcpu->arch.regs_dirty);
708 out:
709
710         return ret;
711 }
712 EXPORT_SYMBOL_GPL(load_pdptrs);
713
714 bool pdptrs_changed(struct kvm_vcpu *vcpu)
715 {
716         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
717         bool changed = true;
718         int offset;
719         gfn_t gfn;
720         int r;
721
722         if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
723                 return false;
724
725         if (!test_bit(VCPU_EXREG_PDPTR,
726                       (unsigned long *)&vcpu->arch.regs_avail))
727                 return true;
728
729         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
730         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
731         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
732                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
733         if (r < 0)
734                 goto out;
735         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
736 out:
737
738         return changed;
739 }
740 EXPORT_SYMBOL_GPL(pdptrs_changed);
741
742 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
743 {
744         unsigned long old_cr0 = kvm_read_cr0(vcpu);
745         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
746
747         cr0 |= X86_CR0_ET;
748
749 #ifdef CONFIG_X86_64
750         if (cr0 & 0xffffffff00000000UL)
751                 return 1;
752 #endif
753
754         cr0 &= ~CR0_RESERVED_BITS;
755
756         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
757                 return 1;
758
759         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
760                 return 1;
761
762         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
763 #ifdef CONFIG_X86_64
764                 if ((vcpu->arch.efer & EFER_LME)) {
765                         int cs_db, cs_l;
766
767                         if (!is_pae(vcpu))
768                                 return 1;
769                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
770                         if (cs_l)
771                                 return 1;
772                 } else
773 #endif
774                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775                                                  kvm_read_cr3(vcpu)))
776                         return 1;
777         }
778
779         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
780                 return 1;
781
782         kvm_x86_ops->set_cr0(vcpu, cr0);
783
784         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
785                 kvm_clear_async_pf_completion_queue(vcpu);
786                 kvm_async_pf_hash_reset(vcpu);
787         }
788
789         if ((cr0 ^ old_cr0) & update_bits)
790                 kvm_mmu_reset_context(vcpu);
791
792         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
793             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
794             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
795                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
796
797         return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr0);
800
801 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
802 {
803         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
804 }
805 EXPORT_SYMBOL_GPL(kvm_lmsw);
806
807 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
808 {
809         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
810                         !vcpu->guest_xcr0_loaded) {
811                 /* kvm_set_xcr() also depends on this */
812                 if (vcpu->arch.xcr0 != host_xcr0)
813                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
814                 vcpu->guest_xcr0_loaded = 1;
815         }
816 }
817 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
818
819 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
820 {
821         if (vcpu->guest_xcr0_loaded) {
822                 if (vcpu->arch.xcr0 != host_xcr0)
823                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
824                 vcpu->guest_xcr0_loaded = 0;
825         }
826 }
827 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
828
829 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
830 {
831         u64 xcr0 = xcr;
832         u64 old_xcr0 = vcpu->arch.xcr0;
833         u64 valid_bits;
834
835         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
836         if (index != XCR_XFEATURE_ENABLED_MASK)
837                 return 1;
838         if (!(xcr0 & XFEATURE_MASK_FP))
839                 return 1;
840         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
841                 return 1;
842
843         /*
844          * Do not allow the guest to set bits that we do not support
845          * saving.  However, xcr0 bit 0 is always set, even if the
846          * emulated CPU does not support XSAVE (see fx_init).
847          */
848         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
849         if (xcr0 & ~valid_bits)
850                 return 1;
851
852         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
853             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
854                 return 1;
855
856         if (xcr0 & XFEATURE_MASK_AVX512) {
857                 if (!(xcr0 & XFEATURE_MASK_YMM))
858                         return 1;
859                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
860                         return 1;
861         }
862         vcpu->arch.xcr0 = xcr0;
863
864         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
865                 kvm_update_cpuid(vcpu);
866         return 0;
867 }
868
869 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
870 {
871         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
872             __kvm_set_xcr(vcpu, index, xcr)) {
873                 kvm_inject_gp(vcpu, 0);
874                 return 1;
875         }
876         return 0;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_xcr);
879
880 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
881 {
882         unsigned long old_cr4 = kvm_read_cr4(vcpu);
883         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
884                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
885
886         if (cr4 & CR4_RESERVED_BITS)
887                 return 1;
888
889         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
890                 return 1;
891
892         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
893                 return 1;
894
895         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
896                 return 1;
897
898         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
899                 return 1;
900
901         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
902                 return 1;
903
904         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
905                 return 1;
906
907         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
908                 return 1;
909
910         if (is_long_mode(vcpu)) {
911                 if (!(cr4 & X86_CR4_PAE))
912                         return 1;
913         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
914                    && ((cr4 ^ old_cr4) & pdptr_bits)
915                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
916                                    kvm_read_cr3(vcpu)))
917                 return 1;
918
919         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
920                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
921                         return 1;
922
923                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
924                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
925                         return 1;
926         }
927
928         if (kvm_x86_ops->set_cr4(vcpu, cr4))
929                 return 1;
930
931         if (((cr4 ^ old_cr4) & pdptr_bits) ||
932             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
933                 kvm_mmu_reset_context(vcpu);
934
935         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
936                 kvm_update_cpuid(vcpu);
937
938         return 0;
939 }
940 EXPORT_SYMBOL_GPL(kvm_set_cr4);
941
942 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
943 {
944         bool skip_tlb_flush = false;
945 #ifdef CONFIG_X86_64
946         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
947
948         if (pcid_enabled) {
949                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
950                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
951         }
952 #endif
953
954         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
955                 if (!skip_tlb_flush) {
956                         kvm_mmu_sync_roots(vcpu);
957                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
958                 }
959                 return 0;
960         }
961
962         if (is_long_mode(vcpu) &&
963             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
964                 return 1;
965         else if (is_pae(vcpu) && is_paging(vcpu) &&
966                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
967                 return 1;
968
969         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
970         vcpu->arch.cr3 = cr3;
971         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
972
973         return 0;
974 }
975 EXPORT_SYMBOL_GPL(kvm_set_cr3);
976
977 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
978 {
979         if (cr8 & CR8_RESERVED_BITS)
980                 return 1;
981         if (lapic_in_kernel(vcpu))
982                 kvm_lapic_set_tpr(vcpu, cr8);
983         else
984                 vcpu->arch.cr8 = cr8;
985         return 0;
986 }
987 EXPORT_SYMBOL_GPL(kvm_set_cr8);
988
989 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
990 {
991         if (lapic_in_kernel(vcpu))
992                 return kvm_lapic_get_cr8(vcpu);
993         else
994                 return vcpu->arch.cr8;
995 }
996 EXPORT_SYMBOL_GPL(kvm_get_cr8);
997
998 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
999 {
1000         int i;
1001
1002         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1003                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1004                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1005                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1006         }
1007 }
1008
1009 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1010 {
1011         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1012                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1013 }
1014
1015 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1016 {
1017         unsigned long dr7;
1018
1019         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1020                 dr7 = vcpu->arch.guest_debug_dr7;
1021         else
1022                 dr7 = vcpu->arch.dr7;
1023         kvm_x86_ops->set_dr7(vcpu, dr7);
1024         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1025         if (dr7 & DR7_BP_EN_MASK)
1026                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1027 }
1028
1029 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1030 {
1031         u64 fixed = DR6_FIXED_1;
1032
1033         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1034                 fixed |= DR6_RTM;
1035         return fixed;
1036 }
1037
1038 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1039 {
1040         switch (dr) {
1041         case 0 ... 3:
1042                 vcpu->arch.db[dr] = val;
1043                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1044                         vcpu->arch.eff_db[dr] = val;
1045                 break;
1046         case 4:
1047                 /* fall through */
1048         case 6:
1049                 if (val & 0xffffffff00000000ULL)
1050                         return -1; /* #GP */
1051                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1052                 kvm_update_dr6(vcpu);
1053                 break;
1054         case 5:
1055                 /* fall through */
1056         default: /* 7 */
1057                 if (val & 0xffffffff00000000ULL)
1058                         return -1; /* #GP */
1059                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1060                 kvm_update_dr7(vcpu);
1061                 break;
1062         }
1063
1064         return 0;
1065 }
1066
1067 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1068 {
1069         if (__kvm_set_dr(vcpu, dr, val)) {
1070                 kvm_inject_gp(vcpu, 0);
1071                 return 1;
1072         }
1073         return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_set_dr);
1076
1077 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1078 {
1079         switch (dr) {
1080         case 0 ... 3:
1081                 *val = vcpu->arch.db[dr];
1082                 break;
1083         case 4:
1084                 /* fall through */
1085         case 6:
1086                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1087                         *val = vcpu->arch.dr6;
1088                 else
1089                         *val = kvm_x86_ops->get_dr6(vcpu);
1090                 break;
1091         case 5:
1092                 /* fall through */
1093         default: /* 7 */
1094                 *val = vcpu->arch.dr7;
1095                 break;
1096         }
1097         return 0;
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_get_dr);
1100
1101 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1102 {
1103         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1104         u64 data;
1105         int err;
1106
1107         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1108         if (err)
1109                 return err;
1110         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1111         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1112         return err;
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1115
1116 /*
1117  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1118  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1119  *
1120  * This list is modified at module load time to reflect the
1121  * capabilities of the host cpu. This capabilities test skips MSRs that are
1122  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1123  * may depend on host virtualization features rather than host cpu features.
1124  */
1125
1126 static u32 msrs_to_save[] = {
1127         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1128         MSR_STAR,
1129 #ifdef CONFIG_X86_64
1130         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1131 #endif
1132         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1133         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1134         MSR_IA32_SPEC_CTRL,
1135         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1136         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1137         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1138         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1139         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1140         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1141 };
1142
1143 static unsigned num_msrs_to_save;
1144
1145 static u32 emulated_msrs[] = {
1146         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1147         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1148         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1149         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1150         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1151         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1152         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1153         HV_X64_MSR_RESET,
1154         HV_X64_MSR_VP_INDEX,
1155         HV_X64_MSR_VP_RUNTIME,
1156         HV_X64_MSR_SCONTROL,
1157         HV_X64_MSR_STIMER0_CONFIG,
1158         HV_X64_MSR_VP_ASSIST_PAGE,
1159         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1160         HV_X64_MSR_TSC_EMULATION_STATUS,
1161
1162         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1163         MSR_KVM_PV_EOI_EN,
1164
1165         MSR_IA32_TSC_ADJUST,
1166         MSR_IA32_TSCDEADLINE,
1167         MSR_IA32_ARCH_CAPABILITIES,
1168         MSR_IA32_MISC_ENABLE,
1169         MSR_IA32_MCG_STATUS,
1170         MSR_IA32_MCG_CTL,
1171         MSR_IA32_MCG_EXT_CTL,
1172         MSR_IA32_SMBASE,
1173         MSR_SMI_COUNT,
1174         MSR_PLATFORM_INFO,
1175         MSR_MISC_FEATURES_ENABLES,
1176         MSR_AMD64_VIRT_SPEC_CTRL,
1177 };
1178
1179 static unsigned num_emulated_msrs;
1180
1181 /*
1182  * List of msr numbers which are used to expose MSR-based features that
1183  * can be used by a hypervisor to validate requested CPU features.
1184  */
1185 static u32 msr_based_features[] = {
1186         MSR_IA32_VMX_BASIC,
1187         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1188         MSR_IA32_VMX_PINBASED_CTLS,
1189         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1190         MSR_IA32_VMX_PROCBASED_CTLS,
1191         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1192         MSR_IA32_VMX_EXIT_CTLS,
1193         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1194         MSR_IA32_VMX_ENTRY_CTLS,
1195         MSR_IA32_VMX_MISC,
1196         MSR_IA32_VMX_CR0_FIXED0,
1197         MSR_IA32_VMX_CR0_FIXED1,
1198         MSR_IA32_VMX_CR4_FIXED0,
1199         MSR_IA32_VMX_CR4_FIXED1,
1200         MSR_IA32_VMX_VMCS_ENUM,
1201         MSR_IA32_VMX_PROCBASED_CTLS2,
1202         MSR_IA32_VMX_EPT_VPID_CAP,
1203         MSR_IA32_VMX_VMFUNC,
1204
1205         MSR_F10H_DECFG,
1206         MSR_IA32_UCODE_REV,
1207         MSR_IA32_ARCH_CAPABILITIES,
1208 };
1209
1210 static unsigned int num_msr_based_features;
1211
1212 u64 kvm_get_arch_capabilities(void)
1213 {
1214         u64 data;
1215
1216         rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1217
1218         /*
1219          * If we're doing cache flushes (either "always" or "cond")
1220          * we will do one whenever the guest does a vmlaunch/vmresume.
1221          * If an outer hypervisor is doing the cache flush for us
1222          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1223          * capability to the guest too, and if EPT is disabled we're not
1224          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1225          * require a nested hypervisor to do a flush of its own.
1226          */
1227         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1228                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1229
1230         return data;
1231 }
1232 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1233
1234 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1235 {
1236         switch (msr->index) {
1237         case MSR_IA32_ARCH_CAPABILITIES:
1238                 msr->data = kvm_get_arch_capabilities();
1239                 break;
1240         case MSR_IA32_UCODE_REV:
1241                 rdmsrl_safe(msr->index, &msr->data);
1242                 break;
1243         default:
1244                 if (kvm_x86_ops->get_msr_feature(msr))
1245                         return 1;
1246         }
1247         return 0;
1248 }
1249
1250 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1251 {
1252         struct kvm_msr_entry msr;
1253         int r;
1254
1255         msr.index = index;
1256         r = kvm_get_msr_feature(&msr);
1257         if (r)
1258                 return r;
1259
1260         *data = msr.data;
1261
1262         return 0;
1263 }
1264
1265 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1266 {
1267         if (efer & efer_reserved_bits)
1268                 return false;
1269
1270         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1271                         return false;
1272
1273         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1274                         return false;
1275
1276         return true;
1277 }
1278 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1279
1280 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1281 {
1282         u64 old_efer = vcpu->arch.efer;
1283
1284         if (!kvm_valid_efer(vcpu, efer))
1285                 return 1;
1286
1287         if (is_paging(vcpu)
1288             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1289                 return 1;
1290
1291         efer &= ~EFER_LMA;
1292         efer |= vcpu->arch.efer & EFER_LMA;
1293
1294         kvm_x86_ops->set_efer(vcpu, efer);
1295
1296         /* Update reserved bits */
1297         if ((efer ^ old_efer) & EFER_NX)
1298                 kvm_mmu_reset_context(vcpu);
1299
1300         return 0;
1301 }
1302
1303 void kvm_enable_efer_bits(u64 mask)
1304 {
1305        efer_reserved_bits &= ~mask;
1306 }
1307 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1308
1309 /*
1310  * Writes msr value into into the appropriate "register".
1311  * Returns 0 on success, non-0 otherwise.
1312  * Assumes vcpu_load() was already called.
1313  */
1314 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1315 {
1316         switch (msr->index) {
1317         case MSR_FS_BASE:
1318         case MSR_GS_BASE:
1319         case MSR_KERNEL_GS_BASE:
1320         case MSR_CSTAR:
1321         case MSR_LSTAR:
1322                 if (is_noncanonical_address(msr->data, vcpu))
1323                         return 1;
1324                 break;
1325         case MSR_IA32_SYSENTER_EIP:
1326         case MSR_IA32_SYSENTER_ESP:
1327                 /*
1328                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1329                  * non-canonical address is written on Intel but not on
1330                  * AMD (which ignores the top 32-bits, because it does
1331                  * not implement 64-bit SYSENTER).
1332                  *
1333                  * 64-bit code should hence be able to write a non-canonical
1334                  * value on AMD.  Making the address canonical ensures that
1335                  * vmentry does not fail on Intel after writing a non-canonical
1336                  * value, and that something deterministic happens if the guest
1337                  * invokes 64-bit SYSENTER.
1338                  */
1339                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1340         }
1341         return kvm_x86_ops->set_msr(vcpu, msr);
1342 }
1343 EXPORT_SYMBOL_GPL(kvm_set_msr);
1344
1345 /*
1346  * Adapt set_msr() to msr_io()'s calling convention
1347  */
1348 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1349 {
1350         struct msr_data msr;
1351         int r;
1352
1353         msr.index = index;
1354         msr.host_initiated = true;
1355         r = kvm_get_msr(vcpu, &msr);
1356         if (r)
1357                 return r;
1358
1359         *data = msr.data;
1360         return 0;
1361 }
1362
1363 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1364 {
1365         struct msr_data msr;
1366
1367         msr.data = *data;
1368         msr.index = index;
1369         msr.host_initiated = true;
1370         return kvm_set_msr(vcpu, &msr);
1371 }
1372
1373 #ifdef CONFIG_X86_64
1374 struct pvclock_gtod_data {
1375         seqcount_t      seq;
1376
1377         struct { /* extract of a clocksource struct */
1378                 int vclock_mode;
1379                 u64     cycle_last;
1380                 u64     mask;
1381                 u32     mult;
1382                 u32     shift;
1383         } clock;
1384
1385         u64             boot_ns;
1386         u64             nsec_base;
1387         u64             wall_time_sec;
1388 };
1389
1390 static struct pvclock_gtod_data pvclock_gtod_data;
1391
1392 static void update_pvclock_gtod(struct timekeeper *tk)
1393 {
1394         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1395         u64 boot_ns;
1396
1397         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1398
1399         write_seqcount_begin(&vdata->seq);
1400
1401         /* copy pvclock gtod data */
1402         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1403         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1404         vdata->clock.mask               = tk->tkr_mono.mask;
1405         vdata->clock.mult               = tk->tkr_mono.mult;
1406         vdata->clock.shift              = tk->tkr_mono.shift;
1407
1408         vdata->boot_ns                  = boot_ns;
1409         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1410
1411         vdata->wall_time_sec            = tk->xtime_sec;
1412
1413         write_seqcount_end(&vdata->seq);
1414 }
1415 #endif
1416
1417 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1418 {
1419         /*
1420          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1421          * vcpu_enter_guest.  This function is only called from
1422          * the physical CPU that is running vcpu.
1423          */
1424         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1425 }
1426
1427 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1428 {
1429         int version;
1430         int r;
1431         struct pvclock_wall_clock wc;
1432         struct timespec64 boot;
1433
1434         if (!wall_clock)
1435                 return;
1436
1437         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1438         if (r)
1439                 return;
1440
1441         if (version & 1)
1442                 ++version;  /* first time write, random junk */
1443
1444         ++version;
1445
1446         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1447                 return;
1448
1449         /*
1450          * The guest calculates current wall clock time by adding
1451          * system time (updated by kvm_guest_time_update below) to the
1452          * wall clock specified here.  guest system time equals host
1453          * system time for us, thus we must fill in host boot time here.
1454          */
1455         getboottime64(&boot);
1456
1457         if (kvm->arch.kvmclock_offset) {
1458                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1459                 boot = timespec64_sub(boot, ts);
1460         }
1461         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1462         wc.nsec = boot.tv_nsec;
1463         wc.version = version;
1464
1465         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1466
1467         version++;
1468         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1469 }
1470
1471 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1472 {
1473         do_shl32_div32(dividend, divisor);
1474         return dividend;
1475 }
1476
1477 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1478                                s8 *pshift, u32 *pmultiplier)
1479 {
1480         uint64_t scaled64;
1481         int32_t  shift = 0;
1482         uint64_t tps64;
1483         uint32_t tps32;
1484
1485         tps64 = base_hz;
1486         scaled64 = scaled_hz;
1487         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1488                 tps64 >>= 1;
1489                 shift--;
1490         }
1491
1492         tps32 = (uint32_t)tps64;
1493         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1494                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1495                         scaled64 >>= 1;
1496                 else
1497                         tps32 <<= 1;
1498                 shift++;
1499         }
1500
1501         *pshift = shift;
1502         *pmultiplier = div_frac(scaled64, tps32);
1503
1504         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1505                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1506 }
1507
1508 #ifdef CONFIG_X86_64
1509 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1510 #endif
1511
1512 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1513 static unsigned long max_tsc_khz;
1514
1515 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1516 {
1517         u64 v = (u64)khz * (1000000 + ppm);
1518         do_div(v, 1000000);
1519         return v;
1520 }
1521
1522 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1523 {
1524         u64 ratio;
1525
1526         /* Guest TSC same frequency as host TSC? */
1527         if (!scale) {
1528                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1529                 return 0;
1530         }
1531
1532         /* TSC scaling supported? */
1533         if (!kvm_has_tsc_control) {
1534                 if (user_tsc_khz > tsc_khz) {
1535                         vcpu->arch.tsc_catchup = 1;
1536                         vcpu->arch.tsc_always_catchup = 1;
1537                         return 0;
1538                 } else {
1539                         WARN(1, "user requested TSC rate below hardware speed\n");
1540                         return -1;
1541                 }
1542         }
1543
1544         /* TSC scaling required  - calculate ratio */
1545         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1546                                 user_tsc_khz, tsc_khz);
1547
1548         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1549                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1550                           user_tsc_khz);
1551                 return -1;
1552         }
1553
1554         vcpu->arch.tsc_scaling_ratio = ratio;
1555         return 0;
1556 }
1557
1558 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1559 {
1560         u32 thresh_lo, thresh_hi;
1561         int use_scaling = 0;
1562
1563         /* tsc_khz can be zero if TSC calibration fails */
1564         if (user_tsc_khz == 0) {
1565                 /* set tsc_scaling_ratio to a safe value */
1566                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1567                 return -1;
1568         }
1569
1570         /* Compute a scale to convert nanoseconds in TSC cycles */
1571         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1572                            &vcpu->arch.virtual_tsc_shift,
1573                            &vcpu->arch.virtual_tsc_mult);
1574         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1575
1576         /*
1577          * Compute the variation in TSC rate which is acceptable
1578          * within the range of tolerance and decide if the
1579          * rate being applied is within that bounds of the hardware
1580          * rate.  If so, no scaling or compensation need be done.
1581          */
1582         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1583         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1584         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1585                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1586                 use_scaling = 1;
1587         }
1588         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1589 }
1590
1591 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1592 {
1593         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1594                                       vcpu->arch.virtual_tsc_mult,
1595                                       vcpu->arch.virtual_tsc_shift);
1596         tsc += vcpu->arch.this_tsc_write;
1597         return tsc;
1598 }
1599
1600 static inline int gtod_is_based_on_tsc(int mode)
1601 {
1602         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1603 }
1604
1605 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1606 {
1607 #ifdef CONFIG_X86_64
1608         bool vcpus_matched;
1609         struct kvm_arch *ka = &vcpu->kvm->arch;
1610         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1611
1612         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1613                          atomic_read(&vcpu->kvm->online_vcpus));
1614
1615         /*
1616          * Once the masterclock is enabled, always perform request in
1617          * order to update it.
1618          *
1619          * In order to enable masterclock, the host clocksource must be TSC
1620          * and the vcpus need to have matched TSCs.  When that happens,
1621          * perform request to enable masterclock.
1622          */
1623         if (ka->use_master_clock ||
1624             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1625                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1626
1627         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1628                             atomic_read(&vcpu->kvm->online_vcpus),
1629                             ka->use_master_clock, gtod->clock.vclock_mode);
1630 #endif
1631 }
1632
1633 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1634 {
1635         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1636         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1637 }
1638
1639 /*
1640  * Multiply tsc by a fixed point number represented by ratio.
1641  *
1642  * The most significant 64-N bits (mult) of ratio represent the
1643  * integral part of the fixed point number; the remaining N bits
1644  * (frac) represent the fractional part, ie. ratio represents a fixed
1645  * point number (mult + frac * 2^(-N)).
1646  *
1647  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1648  */
1649 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1650 {
1651         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1652 }
1653
1654 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1655 {
1656         u64 _tsc = tsc;
1657         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1658
1659         if (ratio != kvm_default_tsc_scaling_ratio)
1660                 _tsc = __scale_tsc(ratio, tsc);
1661
1662         return _tsc;
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1665
1666 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1667 {
1668         u64 tsc;
1669
1670         tsc = kvm_scale_tsc(vcpu, rdtsc());
1671
1672         return target_tsc - tsc;
1673 }
1674
1675 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1676 {
1677         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1678
1679         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1682
1683 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1684 {
1685         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1686 }
1687
1688 static inline bool kvm_check_tsc_unstable(void)
1689 {
1690 #ifdef CONFIG_X86_64
1691         /*
1692          * TSC is marked unstable when we're running on Hyper-V,
1693          * 'TSC page' clocksource is good.
1694          */
1695         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1696                 return false;
1697 #endif
1698         return check_tsc_unstable();
1699 }
1700
1701 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1702 {
1703         struct kvm *kvm = vcpu->kvm;
1704         u64 offset, ns, elapsed;
1705         unsigned long flags;
1706         bool matched;
1707         bool already_matched;
1708         u64 data = msr->data;
1709         bool synchronizing = false;
1710
1711         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1712         offset = kvm_compute_tsc_offset(vcpu, data);
1713         ns = ktime_get_boot_ns();
1714         elapsed = ns - kvm->arch.last_tsc_nsec;
1715
1716         if (vcpu->arch.virtual_tsc_khz) {
1717                 if (data == 0 && msr->host_initiated) {
1718                         /*
1719                          * detection of vcpu initialization -- need to sync
1720                          * with other vCPUs. This particularly helps to keep
1721                          * kvm_clock stable after CPU hotplug
1722                          */
1723                         synchronizing = true;
1724                 } else {
1725                         u64 tsc_exp = kvm->arch.last_tsc_write +
1726                                                 nsec_to_cycles(vcpu, elapsed);
1727                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1728                         /*
1729                          * Special case: TSC write with a small delta (1 second)
1730                          * of virtual cycle time against real time is
1731                          * interpreted as an attempt to synchronize the CPU.
1732                          */
1733                         synchronizing = data < tsc_exp + tsc_hz &&
1734                                         data + tsc_hz > tsc_exp;
1735                 }
1736         }
1737
1738         /*
1739          * For a reliable TSC, we can match TSC offsets, and for an unstable
1740          * TSC, we add elapsed time in this computation.  We could let the
1741          * compensation code attempt to catch up if we fall behind, but
1742          * it's better to try to match offsets from the beginning.
1743          */
1744         if (synchronizing &&
1745             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1746                 if (!kvm_check_tsc_unstable()) {
1747                         offset = kvm->arch.cur_tsc_offset;
1748                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1749                 } else {
1750                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1751                         data += delta;
1752                         offset = kvm_compute_tsc_offset(vcpu, data);
1753                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1754                 }
1755                 matched = true;
1756                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1757         } else {
1758                 /*
1759                  * We split periods of matched TSC writes into generations.
1760                  * For each generation, we track the original measured
1761                  * nanosecond time, offset, and write, so if TSCs are in
1762                  * sync, we can match exact offset, and if not, we can match
1763                  * exact software computation in compute_guest_tsc()
1764                  *
1765                  * These values are tracked in kvm->arch.cur_xxx variables.
1766                  */
1767                 kvm->arch.cur_tsc_generation++;
1768                 kvm->arch.cur_tsc_nsec = ns;
1769                 kvm->arch.cur_tsc_write = data;
1770                 kvm->arch.cur_tsc_offset = offset;
1771                 matched = false;
1772                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1773                          kvm->arch.cur_tsc_generation, data);
1774         }
1775
1776         /*
1777          * We also track th most recent recorded KHZ, write and time to
1778          * allow the matching interval to be extended at each write.
1779          */
1780         kvm->arch.last_tsc_nsec = ns;
1781         kvm->arch.last_tsc_write = data;
1782         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1783
1784         vcpu->arch.last_guest_tsc = data;
1785
1786         /* Keep track of which generation this VCPU has synchronized to */
1787         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1788         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1789         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1790
1791         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1792                 update_ia32_tsc_adjust_msr(vcpu, offset);
1793
1794         kvm_vcpu_write_tsc_offset(vcpu, offset);
1795         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1796
1797         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1798         if (!matched) {
1799                 kvm->arch.nr_vcpus_matched_tsc = 0;
1800         } else if (!already_matched) {
1801                 kvm->arch.nr_vcpus_matched_tsc++;
1802         }
1803
1804         kvm_track_tsc_matching(vcpu);
1805         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1806 }
1807
1808 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1809
1810 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1811                                            s64 adjustment)
1812 {
1813         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1814         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1815 }
1816
1817 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1818 {
1819         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1820                 WARN_ON(adjustment < 0);
1821         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1822         adjust_tsc_offset_guest(vcpu, adjustment);
1823 }
1824
1825 #ifdef CONFIG_X86_64
1826
1827 static u64 read_tsc(void)
1828 {
1829         u64 ret = (u64)rdtsc_ordered();
1830         u64 last = pvclock_gtod_data.clock.cycle_last;
1831
1832         if (likely(ret >= last))
1833                 return ret;
1834
1835         /*
1836          * GCC likes to generate cmov here, but this branch is extremely
1837          * predictable (it's just a function of time and the likely is
1838          * very likely) and there's a data dependence, so force GCC
1839          * to generate a branch instead.  I don't barrier() because
1840          * we don't actually need a barrier, and if this function
1841          * ever gets inlined it will generate worse code.
1842          */
1843         asm volatile ("");
1844         return last;
1845 }
1846
1847 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1848 {
1849         long v;
1850         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1851         u64 tsc_pg_val;
1852
1853         switch (gtod->clock.vclock_mode) {
1854         case VCLOCK_HVCLOCK:
1855                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1856                                                   tsc_timestamp);
1857                 if (tsc_pg_val != U64_MAX) {
1858                         /* TSC page valid */
1859                         *mode = VCLOCK_HVCLOCK;
1860                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1861                                 gtod->clock.mask;
1862                 } else {
1863                         /* TSC page invalid */
1864                         *mode = VCLOCK_NONE;
1865                 }
1866                 break;
1867         case VCLOCK_TSC:
1868                 *mode = VCLOCK_TSC;
1869                 *tsc_timestamp = read_tsc();
1870                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1871                         gtod->clock.mask;
1872                 break;
1873         default:
1874                 *mode = VCLOCK_NONE;
1875         }
1876
1877         if (*mode == VCLOCK_NONE)
1878                 *tsc_timestamp = v = 0;
1879
1880         return v * gtod->clock.mult;
1881 }
1882
1883 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1884 {
1885         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1886         unsigned long seq;
1887         int mode;
1888         u64 ns;
1889
1890         do {
1891                 seq = read_seqcount_begin(&gtod->seq);
1892                 ns = gtod->nsec_base;
1893                 ns += vgettsc(tsc_timestamp, &mode);
1894                 ns >>= gtod->clock.shift;
1895                 ns += gtod->boot_ns;
1896         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1897         *t = ns;
1898
1899         return mode;
1900 }
1901
1902 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1903 {
1904         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1905         unsigned long seq;
1906         int mode;
1907         u64 ns;
1908
1909         do {
1910                 seq = read_seqcount_begin(&gtod->seq);
1911                 ts->tv_sec = gtod->wall_time_sec;
1912                 ns = gtod->nsec_base;
1913                 ns += vgettsc(tsc_timestamp, &mode);
1914                 ns >>= gtod->clock.shift;
1915         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1916
1917         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1918         ts->tv_nsec = ns;
1919
1920         return mode;
1921 }
1922
1923 /* returns true if host is using TSC based clocksource */
1924 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1925 {
1926         /* checked again under seqlock below */
1927         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1928                 return false;
1929
1930         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1931                                                       tsc_timestamp));
1932 }
1933
1934 /* returns true if host is using TSC based clocksource */
1935 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1936                                            u64 *tsc_timestamp)
1937 {
1938         /* checked again under seqlock below */
1939         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1940                 return false;
1941
1942         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1943 }
1944 #endif
1945
1946 /*
1947  *
1948  * Assuming a stable TSC across physical CPUS, and a stable TSC
1949  * across virtual CPUs, the following condition is possible.
1950  * Each numbered line represents an event visible to both
1951  * CPUs at the next numbered event.
1952  *
1953  * "timespecX" represents host monotonic time. "tscX" represents
1954  * RDTSC value.
1955  *
1956  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1957  *
1958  * 1.  read timespec0,tsc0
1959  * 2.                                   | timespec1 = timespec0 + N
1960  *                                      | tsc1 = tsc0 + M
1961  * 3. transition to guest               | transition to guest
1962  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1963  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1964  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1965  *
1966  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1967  *
1968  *      - ret0 < ret1
1969  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1970  *              ...
1971  *      - 0 < N - M => M < N
1972  *
1973  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1974  * always the case (the difference between two distinct xtime instances
1975  * might be smaller then the difference between corresponding TSC reads,
1976  * when updating guest vcpus pvclock areas).
1977  *
1978  * To avoid that problem, do not allow visibility of distinct
1979  * system_timestamp/tsc_timestamp values simultaneously: use a master
1980  * copy of host monotonic time values. Update that master copy
1981  * in lockstep.
1982  *
1983  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1984  *
1985  */
1986
1987 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1988 {
1989 #ifdef CONFIG_X86_64
1990         struct kvm_arch *ka = &kvm->arch;
1991         int vclock_mode;
1992         bool host_tsc_clocksource, vcpus_matched;
1993
1994         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1995                         atomic_read(&kvm->online_vcpus));
1996
1997         /*
1998          * If the host uses TSC clock, then passthrough TSC as stable
1999          * to the guest.
2000          */
2001         host_tsc_clocksource = kvm_get_time_and_clockread(
2002                                         &ka->master_kernel_ns,
2003                                         &ka->master_cycle_now);
2004
2005         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2006                                 && !ka->backwards_tsc_observed
2007                                 && !ka->boot_vcpu_runs_old_kvmclock;
2008
2009         if (ka->use_master_clock)
2010                 atomic_set(&kvm_guest_has_master_clock, 1);
2011
2012         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2013         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2014                                         vcpus_matched);
2015 #endif
2016 }
2017
2018 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2019 {
2020         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2021 }
2022
2023 static void kvm_gen_update_masterclock(struct kvm *kvm)
2024 {
2025 #ifdef CONFIG_X86_64
2026         int i;
2027         struct kvm_vcpu *vcpu;
2028         struct kvm_arch *ka = &kvm->arch;
2029
2030         spin_lock(&ka->pvclock_gtod_sync_lock);
2031         kvm_make_mclock_inprogress_request(kvm);
2032         /* no guest entries from this point */
2033         pvclock_update_vm_gtod_copy(kvm);
2034
2035         kvm_for_each_vcpu(i, vcpu, kvm)
2036                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2037
2038         /* guest entries allowed */
2039         kvm_for_each_vcpu(i, vcpu, kvm)
2040                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2041
2042         spin_unlock(&ka->pvclock_gtod_sync_lock);
2043 #endif
2044 }
2045
2046 u64 get_kvmclock_ns(struct kvm *kvm)
2047 {
2048         struct kvm_arch *ka = &kvm->arch;
2049         struct pvclock_vcpu_time_info hv_clock;
2050         u64 ret;
2051
2052         spin_lock(&ka->pvclock_gtod_sync_lock);
2053         if (!ka->use_master_clock) {
2054                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2055                 return ktime_get_boot_ns() + ka->kvmclock_offset;
2056         }
2057
2058         hv_clock.tsc_timestamp = ka->master_cycle_now;
2059         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2060         spin_unlock(&ka->pvclock_gtod_sync_lock);
2061
2062         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2063         get_cpu();
2064
2065         if (__this_cpu_read(cpu_tsc_khz)) {
2066                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2067                                    &hv_clock.tsc_shift,
2068                                    &hv_clock.tsc_to_system_mul);
2069                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2070         } else
2071                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2072
2073         put_cpu();
2074
2075         return ret;
2076 }
2077
2078 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2079 {
2080         struct kvm_vcpu_arch *vcpu = &v->arch;
2081         struct pvclock_vcpu_time_info guest_hv_clock;
2082
2083         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2084                 &guest_hv_clock, sizeof(guest_hv_clock))))
2085                 return;
2086
2087         /* This VCPU is paused, but it's legal for a guest to read another
2088          * VCPU's kvmclock, so we really have to follow the specification where
2089          * it says that version is odd if data is being modified, and even after
2090          * it is consistent.
2091          *
2092          * Version field updates must be kept separate.  This is because
2093          * kvm_write_guest_cached might use a "rep movs" instruction, and
2094          * writes within a string instruction are weakly ordered.  So there
2095          * are three writes overall.
2096          *
2097          * As a small optimization, only write the version field in the first
2098          * and third write.  The vcpu->pv_time cache is still valid, because the
2099          * version field is the first in the struct.
2100          */
2101         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2102
2103         if (guest_hv_clock.version & 1)
2104                 ++guest_hv_clock.version;  /* first time write, random junk */
2105
2106         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2107         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2108                                 &vcpu->hv_clock,
2109                                 sizeof(vcpu->hv_clock.version));
2110
2111         smp_wmb();
2112
2113         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2114         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2115
2116         if (vcpu->pvclock_set_guest_stopped_request) {
2117                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2118                 vcpu->pvclock_set_guest_stopped_request = false;
2119         }
2120
2121         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2122
2123         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2124                                 &vcpu->hv_clock,
2125                                 sizeof(vcpu->hv_clock));
2126
2127         smp_wmb();
2128
2129         vcpu->hv_clock.version++;
2130         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2131                                 &vcpu->hv_clock,
2132                                 sizeof(vcpu->hv_clock.version));
2133 }
2134
2135 static int kvm_guest_time_update(struct kvm_vcpu *v)
2136 {
2137         unsigned long flags, tgt_tsc_khz;
2138         struct kvm_vcpu_arch *vcpu = &v->arch;
2139         struct kvm_arch *ka = &v->kvm->arch;
2140         s64 kernel_ns;
2141         u64 tsc_timestamp, host_tsc;
2142         u8 pvclock_flags;
2143         bool use_master_clock;
2144
2145         kernel_ns = 0;
2146         host_tsc = 0;
2147
2148         /*
2149          * If the host uses TSC clock, then passthrough TSC as stable
2150          * to the guest.
2151          */
2152         spin_lock(&ka->pvclock_gtod_sync_lock);
2153         use_master_clock = ka->use_master_clock;
2154         if (use_master_clock) {
2155                 host_tsc = ka->master_cycle_now;
2156                 kernel_ns = ka->master_kernel_ns;
2157         }
2158         spin_unlock(&ka->pvclock_gtod_sync_lock);
2159
2160         /* Keep irq disabled to prevent changes to the clock */
2161         local_irq_save(flags);
2162         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2163         if (unlikely(tgt_tsc_khz == 0)) {
2164                 local_irq_restore(flags);
2165                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2166                 return 1;
2167         }
2168         if (!use_master_clock) {
2169                 host_tsc = rdtsc();
2170                 kernel_ns = ktime_get_boot_ns();
2171         }
2172
2173         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2174
2175         /*
2176          * We may have to catch up the TSC to match elapsed wall clock
2177          * time for two reasons, even if kvmclock is used.
2178          *   1) CPU could have been running below the maximum TSC rate
2179          *   2) Broken TSC compensation resets the base at each VCPU
2180          *      entry to avoid unknown leaps of TSC even when running
2181          *      again on the same CPU.  This may cause apparent elapsed
2182          *      time to disappear, and the guest to stand still or run
2183          *      very slowly.
2184          */
2185         if (vcpu->tsc_catchup) {
2186                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2187                 if (tsc > tsc_timestamp) {
2188                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2189                         tsc_timestamp = tsc;
2190                 }
2191         }
2192
2193         local_irq_restore(flags);
2194
2195         /* With all the info we got, fill in the values */
2196
2197         if (kvm_has_tsc_control)
2198                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2199
2200         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2201                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2202                                    &vcpu->hv_clock.tsc_shift,
2203                                    &vcpu->hv_clock.tsc_to_system_mul);
2204                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2205         }
2206
2207         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2208         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2209         vcpu->last_guest_tsc = tsc_timestamp;
2210
2211         /* If the host uses TSC clocksource, then it is stable */
2212         pvclock_flags = 0;
2213         if (use_master_clock)
2214                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2215
2216         vcpu->hv_clock.flags = pvclock_flags;
2217
2218         if (vcpu->pv_time_enabled)
2219                 kvm_setup_pvclock_page(v);
2220         if (v == kvm_get_vcpu(v->kvm, 0))
2221                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2222         return 0;
2223 }
2224
2225 /*
2226  * kvmclock updates which are isolated to a given vcpu, such as
2227  * vcpu->cpu migration, should not allow system_timestamp from
2228  * the rest of the vcpus to remain static. Otherwise ntp frequency
2229  * correction applies to one vcpu's system_timestamp but not
2230  * the others.
2231  *
2232  * So in those cases, request a kvmclock update for all vcpus.
2233  * We need to rate-limit these requests though, as they can
2234  * considerably slow guests that have a large number of vcpus.
2235  * The time for a remote vcpu to update its kvmclock is bound
2236  * by the delay we use to rate-limit the updates.
2237  */
2238
2239 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2240
2241 static void kvmclock_update_fn(struct work_struct *work)
2242 {
2243         int i;
2244         struct delayed_work *dwork = to_delayed_work(work);
2245         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2246                                            kvmclock_update_work);
2247         struct kvm *kvm = container_of(ka, struct kvm, arch);
2248         struct kvm_vcpu *vcpu;
2249
2250         kvm_for_each_vcpu(i, vcpu, kvm) {
2251                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2252                 kvm_vcpu_kick(vcpu);
2253         }
2254 }
2255
2256 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2257 {
2258         struct kvm *kvm = v->kvm;
2259
2260         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2261         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2262                                         KVMCLOCK_UPDATE_DELAY);
2263 }
2264
2265 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2266
2267 static void kvmclock_sync_fn(struct work_struct *work)
2268 {
2269         struct delayed_work *dwork = to_delayed_work(work);
2270         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2271                                            kvmclock_sync_work);
2272         struct kvm *kvm = container_of(ka, struct kvm, arch);
2273
2274         if (!kvmclock_periodic_sync)
2275                 return;
2276
2277         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2278         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2279                                         KVMCLOCK_SYNC_PERIOD);
2280 }
2281
2282 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2283 {
2284         u64 mcg_cap = vcpu->arch.mcg_cap;
2285         unsigned bank_num = mcg_cap & 0xff;
2286         u32 msr = msr_info->index;
2287         u64 data = msr_info->data;
2288
2289         switch (msr) {
2290         case MSR_IA32_MCG_STATUS:
2291                 vcpu->arch.mcg_status = data;
2292                 break;
2293         case MSR_IA32_MCG_CTL:
2294                 if (!(mcg_cap & MCG_CTL_P) &&
2295                     (data || !msr_info->host_initiated))
2296                         return 1;
2297                 if (data != 0 && data != ~(u64)0)
2298                         return 1;
2299                 vcpu->arch.mcg_ctl = data;
2300                 break;
2301         default:
2302                 if (msr >= MSR_IA32_MC0_CTL &&
2303                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2304                         u32 offset = msr - MSR_IA32_MC0_CTL;
2305                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2306                          * some Linux kernels though clear bit 10 in bank 4 to
2307                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2308                          * this to avoid an uncatched #GP in the guest
2309                          */
2310                         if ((offset & 0x3) == 0 &&
2311                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2312                                 return -1;
2313                         if (!msr_info->host_initiated &&
2314                                 (offset & 0x3) == 1 && data != 0)
2315                                 return -1;
2316                         vcpu->arch.mce_banks[offset] = data;
2317                         break;
2318                 }
2319                 return 1;
2320         }
2321         return 0;
2322 }
2323
2324 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2325 {
2326         struct kvm *kvm = vcpu->kvm;
2327         int lm = is_long_mode(vcpu);
2328         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2329                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2330         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2331                 : kvm->arch.xen_hvm_config.blob_size_32;
2332         u32 page_num = data & ~PAGE_MASK;
2333         u64 page_addr = data & PAGE_MASK;
2334         u8 *page;
2335         int r;
2336
2337         r = -E2BIG;
2338         if (page_num >= blob_size)
2339                 goto out;
2340         r = -ENOMEM;
2341         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2342         if (IS_ERR(page)) {
2343                 r = PTR_ERR(page);
2344                 goto out;
2345         }
2346         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2347                 goto out_free;
2348         r = 0;
2349 out_free:
2350         kfree(page);
2351 out:
2352         return r;
2353 }
2354
2355 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2356 {
2357         gpa_t gpa = data & ~0x3f;
2358
2359         /* Bits 3:5 are reserved, Should be zero */
2360         if (data & 0x38)
2361                 return 1;
2362
2363         vcpu->arch.apf.msr_val = data;
2364
2365         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2366                 kvm_clear_async_pf_completion_queue(vcpu);
2367                 kvm_async_pf_hash_reset(vcpu);
2368                 return 0;
2369         }
2370
2371         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2372                                         sizeof(u32)))
2373                 return 1;
2374
2375         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2376         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2377         kvm_async_pf_wakeup_all(vcpu);
2378         return 0;
2379 }
2380
2381 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2382 {
2383         vcpu->arch.pv_time_enabled = false;
2384 }
2385
2386 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2387 {
2388         ++vcpu->stat.tlb_flush;
2389         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2390 }
2391
2392 static void record_steal_time(struct kvm_vcpu *vcpu)
2393 {
2394         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2395                 return;
2396
2397         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2398                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2399                 return;
2400
2401         /*
2402          * Doing a TLB flush here, on the guest's behalf, can avoid
2403          * expensive IPIs.
2404          */
2405         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2406                 kvm_vcpu_flush_tlb(vcpu, false);
2407
2408         if (vcpu->arch.st.steal.version & 1)
2409                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2410
2411         vcpu->arch.st.steal.version += 1;
2412
2413         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2414                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2415
2416         smp_wmb();
2417
2418         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2419                 vcpu->arch.st.last_steal;
2420         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2421
2422         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2423                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2424
2425         smp_wmb();
2426
2427         vcpu->arch.st.steal.version += 1;
2428
2429         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2430                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2431 }
2432
2433 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2434 {
2435         bool pr = false;
2436         u32 msr = msr_info->index;
2437         u64 data = msr_info->data;
2438
2439         switch (msr) {
2440         case MSR_AMD64_NB_CFG:
2441         case MSR_IA32_UCODE_WRITE:
2442         case MSR_VM_HSAVE_PA:
2443         case MSR_AMD64_PATCH_LOADER:
2444         case MSR_AMD64_BU_CFG2:
2445         case MSR_AMD64_DC_CFG:
2446         case MSR_F15H_EX_CFG:
2447                 break;
2448
2449         case MSR_IA32_UCODE_REV:
2450                 if (msr_info->host_initiated)
2451                         vcpu->arch.microcode_version = data;
2452                 break;
2453         case MSR_IA32_ARCH_CAPABILITIES:
2454                 if (!msr_info->host_initiated)
2455                         return 1;
2456                 vcpu->arch.arch_capabilities = data;
2457                 break;
2458         case MSR_EFER:
2459                 return set_efer(vcpu, data);
2460         case MSR_K7_HWCR:
2461                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2462                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2463                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2464                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2465                 if (data != 0) {
2466                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2467                                     data);
2468                         return 1;
2469                 }
2470                 break;
2471         case MSR_FAM10H_MMIO_CONF_BASE:
2472                 if (data != 0) {
2473                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2474                                     "0x%llx\n", data);
2475                         return 1;
2476                 }
2477                 break;
2478         case MSR_IA32_DEBUGCTLMSR:
2479                 if (!data) {
2480                         /* We support the non-activated case already */
2481                         break;
2482                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2483                         /* Values other than LBR and BTF are vendor-specific,
2484                            thus reserved and should throw a #GP */
2485                         return 1;
2486                 }
2487                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2488                             __func__, data);
2489                 break;
2490         case 0x200 ... 0x2ff:
2491                 return kvm_mtrr_set_msr(vcpu, msr, data);
2492         case MSR_IA32_APICBASE:
2493                 return kvm_set_apic_base(vcpu, msr_info);
2494         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2495                 return kvm_x2apic_msr_write(vcpu, msr, data);
2496         case MSR_IA32_TSCDEADLINE:
2497                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2498                 break;
2499         case MSR_IA32_TSC_ADJUST:
2500                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2501                         if (!msr_info->host_initiated) {
2502                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2503                                 adjust_tsc_offset_guest(vcpu, adj);
2504                         }
2505                         vcpu->arch.ia32_tsc_adjust_msr = data;
2506                 }
2507                 break;
2508         case MSR_IA32_MISC_ENABLE:
2509                 vcpu->arch.ia32_misc_enable_msr = data;
2510                 break;
2511         case MSR_IA32_SMBASE:
2512                 if (!msr_info->host_initiated)
2513                         return 1;
2514                 vcpu->arch.smbase = data;
2515                 break;
2516         case MSR_IA32_TSC:
2517                 kvm_write_tsc(vcpu, msr_info);
2518                 break;
2519         case MSR_SMI_COUNT:
2520                 if (!msr_info->host_initiated)
2521                         return 1;
2522                 vcpu->arch.smi_count = data;
2523                 break;
2524         case MSR_KVM_WALL_CLOCK_NEW:
2525         case MSR_KVM_WALL_CLOCK:
2526                 vcpu->kvm->arch.wall_clock = data;
2527                 kvm_write_wall_clock(vcpu->kvm, data);
2528                 break;
2529         case MSR_KVM_SYSTEM_TIME_NEW:
2530         case MSR_KVM_SYSTEM_TIME: {
2531                 struct kvm_arch *ka = &vcpu->kvm->arch;
2532
2533                 kvmclock_reset(vcpu);
2534
2535                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2536                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2537
2538                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2539                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2540
2541                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2542                 }
2543
2544                 vcpu->arch.time = data;
2545                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2546
2547                 /* we verify if the enable bit is set... */
2548                 if (!(data & 1))
2549                         break;
2550
2551                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2552                      &vcpu->arch.pv_time, data & ~1ULL,
2553                      sizeof(struct pvclock_vcpu_time_info)))
2554                         vcpu->arch.pv_time_enabled = false;
2555                 else
2556                         vcpu->arch.pv_time_enabled = true;
2557
2558                 break;
2559         }
2560         case MSR_KVM_ASYNC_PF_EN:
2561                 if (kvm_pv_enable_async_pf(vcpu, data))
2562                         return 1;
2563                 break;
2564         case MSR_KVM_STEAL_TIME:
2565
2566                 if (unlikely(!sched_info_on()))
2567                         return 1;
2568
2569                 if (data & KVM_STEAL_RESERVED_MASK)
2570                         return 1;
2571
2572                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2573                                                 data & KVM_STEAL_VALID_BITS,
2574                                                 sizeof(struct kvm_steal_time)))
2575                         return 1;
2576
2577                 vcpu->arch.st.msr_val = data;
2578
2579                 if (!(data & KVM_MSR_ENABLED))
2580                         break;
2581
2582                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2583
2584                 break;
2585         case MSR_KVM_PV_EOI_EN:
2586                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2587                         return 1;
2588                 break;
2589
2590         case MSR_IA32_MCG_CTL:
2591         case MSR_IA32_MCG_STATUS:
2592         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2593                 return set_msr_mce(vcpu, msr_info);
2594
2595         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2596         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2597                 pr = true; /* fall through */
2598         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2599         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2600                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2601                         return kvm_pmu_set_msr(vcpu, msr_info);
2602
2603                 if (pr || data != 0)
2604                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2605                                     "0x%x data 0x%llx\n", msr, data);
2606                 break;
2607         case MSR_K7_CLK_CTL:
2608                 /*
2609                  * Ignore all writes to this no longer documented MSR.
2610                  * Writes are only relevant for old K7 processors,
2611                  * all pre-dating SVM, but a recommended workaround from
2612                  * AMD for these chips. It is possible to specify the
2613                  * affected processor models on the command line, hence
2614                  * the need to ignore the workaround.
2615                  */
2616                 break;
2617         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2618         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2619         case HV_X64_MSR_CRASH_CTL:
2620         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2621         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2622         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2623         case HV_X64_MSR_TSC_EMULATION_STATUS:
2624                 return kvm_hv_set_msr_common(vcpu, msr, data,
2625                                              msr_info->host_initiated);
2626         case MSR_IA32_BBL_CR_CTL3:
2627                 /* Drop writes to this legacy MSR -- see rdmsr
2628                  * counterpart for further detail.
2629                  */
2630                 if (report_ignored_msrs)
2631                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2632                                 msr, data);
2633                 break;
2634         case MSR_AMD64_OSVW_ID_LENGTH:
2635                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2636                         return 1;
2637                 vcpu->arch.osvw.length = data;
2638                 break;
2639         case MSR_AMD64_OSVW_STATUS:
2640                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2641                         return 1;
2642                 vcpu->arch.osvw.status = data;
2643                 break;
2644         case MSR_PLATFORM_INFO:
2645                 if (!msr_info->host_initiated ||
2646                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2647                      cpuid_fault_enabled(vcpu)))
2648                         return 1;
2649                 vcpu->arch.msr_platform_info = data;
2650                 break;
2651         case MSR_MISC_FEATURES_ENABLES:
2652                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2653                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2654                      !supports_cpuid_fault(vcpu)))
2655                         return 1;
2656                 vcpu->arch.msr_misc_features_enables = data;
2657                 break;
2658         default:
2659                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2660                         return xen_hvm_config(vcpu, data);
2661                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2662                         return kvm_pmu_set_msr(vcpu, msr_info);
2663                 if (!ignore_msrs) {
2664                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2665                                     msr, data);
2666                         return 1;
2667                 } else {
2668                         if (report_ignored_msrs)
2669                                 vcpu_unimpl(vcpu,
2670                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2671                                         msr, data);
2672                         break;
2673                 }
2674         }
2675         return 0;
2676 }
2677 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2678
2679
2680 /*
2681  * Reads an msr value (of 'msr_index') into 'pdata'.
2682  * Returns 0 on success, non-0 otherwise.
2683  * Assumes vcpu_load() was already called.
2684  */
2685 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2686 {
2687         return kvm_x86_ops->get_msr(vcpu, msr);
2688 }
2689 EXPORT_SYMBOL_GPL(kvm_get_msr);
2690
2691 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2692 {
2693         u64 data;
2694         u64 mcg_cap = vcpu->arch.mcg_cap;
2695         unsigned bank_num = mcg_cap & 0xff;
2696
2697         switch (msr) {
2698         case MSR_IA32_P5_MC_ADDR:
2699         case MSR_IA32_P5_MC_TYPE:
2700                 data = 0;
2701                 break;
2702         case MSR_IA32_MCG_CAP:
2703                 data = vcpu->arch.mcg_cap;
2704                 break;
2705         case MSR_IA32_MCG_CTL:
2706                 if (!(mcg_cap & MCG_CTL_P) && !host)
2707                         return 1;
2708                 data = vcpu->arch.mcg_ctl;
2709                 break;
2710         case MSR_IA32_MCG_STATUS:
2711                 data = vcpu->arch.mcg_status;
2712                 break;
2713         default:
2714                 if (msr >= MSR_IA32_MC0_CTL &&
2715                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2716                         u32 offset = msr - MSR_IA32_MC0_CTL;
2717                         data = vcpu->arch.mce_banks[offset];
2718                         break;
2719                 }
2720                 return 1;
2721         }
2722         *pdata = data;
2723         return 0;
2724 }
2725
2726 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2727 {
2728         switch (msr_info->index) {
2729         case MSR_IA32_PLATFORM_ID:
2730         case MSR_IA32_EBL_CR_POWERON:
2731         case MSR_IA32_DEBUGCTLMSR:
2732         case MSR_IA32_LASTBRANCHFROMIP:
2733         case MSR_IA32_LASTBRANCHTOIP:
2734         case MSR_IA32_LASTINTFROMIP:
2735         case MSR_IA32_LASTINTTOIP:
2736         case MSR_K8_SYSCFG:
2737         case MSR_K8_TSEG_ADDR:
2738         case MSR_K8_TSEG_MASK:
2739         case MSR_K7_HWCR:
2740         case MSR_VM_HSAVE_PA:
2741         case MSR_K8_INT_PENDING_MSG:
2742         case MSR_AMD64_NB_CFG:
2743         case MSR_FAM10H_MMIO_CONF_BASE:
2744         case MSR_AMD64_BU_CFG2:
2745         case MSR_IA32_PERF_CTL:
2746         case MSR_AMD64_DC_CFG:
2747         case MSR_F15H_EX_CFG:
2748                 msr_info->data = 0;
2749                 break;
2750         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2751         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2752         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2753         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2754         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2755                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2756                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2757                 msr_info->data = 0;
2758                 break;
2759         case MSR_IA32_UCODE_REV:
2760                 msr_info->data = vcpu->arch.microcode_version;
2761                 break;
2762         case MSR_IA32_ARCH_CAPABILITIES:
2763                 if (!msr_info->host_initiated &&
2764                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2765                         return 1;
2766                 msr_info->data = vcpu->arch.arch_capabilities;
2767                 break;
2768         case MSR_IA32_TSC:
2769                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2770                 break;
2771         case MSR_MTRRcap:
2772         case 0x200 ... 0x2ff:
2773                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2774         case 0xcd: /* fsb frequency */
2775                 msr_info->data = 3;
2776                 break;
2777                 /*
2778                  * MSR_EBC_FREQUENCY_ID
2779                  * Conservative value valid for even the basic CPU models.
2780                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2781                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2782                  * and 266MHz for model 3, or 4. Set Core Clock
2783                  * Frequency to System Bus Frequency Ratio to 1 (bits
2784                  * 31:24) even though these are only valid for CPU
2785                  * models > 2, however guests may end up dividing or
2786                  * multiplying by zero otherwise.
2787                  */
2788         case MSR_EBC_FREQUENCY_ID:
2789                 msr_info->data = 1 << 24;
2790                 break;
2791         case MSR_IA32_APICBASE:
2792                 msr_info->data = kvm_get_apic_base(vcpu);
2793                 break;
2794         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2795                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2796                 break;
2797         case MSR_IA32_TSCDEADLINE:
2798                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2799                 break;
2800         case MSR_IA32_TSC_ADJUST:
2801                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2802                 break;
2803         case MSR_IA32_MISC_ENABLE:
2804                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2805                 break;
2806         case MSR_IA32_SMBASE:
2807                 if (!msr_info->host_initiated)
2808                         return 1;
2809                 msr_info->data = vcpu->arch.smbase;
2810                 break;
2811         case MSR_SMI_COUNT:
2812                 msr_info->data = vcpu->arch.smi_count;
2813                 break;
2814         case MSR_IA32_PERF_STATUS:
2815                 /* TSC increment by tick */
2816                 msr_info->data = 1000ULL;
2817                 /* CPU multiplier */
2818                 msr_info->data |= (((uint64_t)4ULL) << 40);
2819                 break;
2820         case MSR_EFER:
2821                 msr_info->data = vcpu->arch.efer;
2822                 break;
2823         case MSR_KVM_WALL_CLOCK:
2824         case MSR_KVM_WALL_CLOCK_NEW:
2825                 msr_info->data = vcpu->kvm->arch.wall_clock;
2826                 break;
2827         case MSR_KVM_SYSTEM_TIME:
2828         case MSR_KVM_SYSTEM_TIME_NEW:
2829                 msr_info->data = vcpu->arch.time;
2830                 break;
2831         case MSR_KVM_ASYNC_PF_EN:
2832                 msr_info->data = vcpu->arch.apf.msr_val;
2833                 break;
2834         case MSR_KVM_STEAL_TIME:
2835                 msr_info->data = vcpu->arch.st.msr_val;
2836                 break;
2837         case MSR_KVM_PV_EOI_EN:
2838                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2839                 break;
2840         case MSR_IA32_P5_MC_ADDR:
2841         case MSR_IA32_P5_MC_TYPE:
2842         case MSR_IA32_MCG_CAP:
2843         case MSR_IA32_MCG_CTL:
2844         case MSR_IA32_MCG_STATUS:
2845         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2846                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2847                                    msr_info->host_initiated);
2848         case MSR_K7_CLK_CTL:
2849                 /*
2850                  * Provide expected ramp-up count for K7. All other
2851                  * are set to zero, indicating minimum divisors for
2852                  * every field.
2853                  *
2854                  * This prevents guest kernels on AMD host with CPU
2855                  * type 6, model 8 and higher from exploding due to
2856                  * the rdmsr failing.
2857                  */
2858                 msr_info->data = 0x20000000;
2859                 break;
2860         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2861         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2862         case HV_X64_MSR_CRASH_CTL:
2863         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2864         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2865         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2866         case HV_X64_MSR_TSC_EMULATION_STATUS:
2867                 return kvm_hv_get_msr_common(vcpu,
2868                                              msr_info->index, &msr_info->data,
2869                                              msr_info->host_initiated);
2870                 break;
2871         case MSR_IA32_BBL_CR_CTL3:
2872                 /* This legacy MSR exists but isn't fully documented in current
2873                  * silicon.  It is however accessed by winxp in very narrow
2874                  * scenarios where it sets bit #19, itself documented as
2875                  * a "reserved" bit.  Best effort attempt to source coherent
2876                  * read data here should the balance of the register be
2877                  * interpreted by the guest:
2878                  *
2879                  * L2 cache control register 3: 64GB range, 256KB size,
2880                  * enabled, latency 0x1, configured
2881                  */
2882                 msr_info->data = 0xbe702111;
2883                 break;
2884         case MSR_AMD64_OSVW_ID_LENGTH:
2885                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2886                         return 1;
2887                 msr_info->data = vcpu->arch.osvw.length;
2888                 break;
2889         case MSR_AMD64_OSVW_STATUS:
2890                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2891                         return 1;
2892                 msr_info->data = vcpu->arch.osvw.status;
2893                 break;
2894         case MSR_PLATFORM_INFO:
2895                 if (!msr_info->host_initiated &&
2896                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2897                         return 1;
2898                 msr_info->data = vcpu->arch.msr_platform_info;
2899                 break;
2900         case MSR_MISC_FEATURES_ENABLES:
2901                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2902                 break;
2903         default:
2904                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2905                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2906                 if (!ignore_msrs) {
2907                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2908                                                msr_info->index);
2909                         return 1;
2910                 } else {
2911                         if (report_ignored_msrs)
2912                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2913                                         msr_info->index);
2914                         msr_info->data = 0;
2915                 }
2916                 break;
2917         }
2918         return 0;
2919 }
2920 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2921
2922 /*
2923  * Read or write a bunch of msrs. All parameters are kernel addresses.
2924  *
2925  * @return number of msrs set successfully.
2926  */
2927 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2928                     struct kvm_msr_entry *entries,
2929                     int (*do_msr)(struct kvm_vcpu *vcpu,
2930                                   unsigned index, u64 *data))
2931 {
2932         int i;
2933
2934         for (i = 0; i < msrs->nmsrs; ++i)
2935                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2936                         break;
2937
2938         return i;
2939 }
2940
2941 /*
2942  * Read or write a bunch of msrs. Parameters are user addresses.
2943  *
2944  * @return number of msrs set successfully.
2945  */
2946 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2947                   int (*do_msr)(struct kvm_vcpu *vcpu,
2948                                 unsigned index, u64 *data),
2949                   int writeback)
2950 {
2951         struct kvm_msrs msrs;
2952         struct kvm_msr_entry *entries;
2953         int r, n;
2954         unsigned size;
2955
2956         r = -EFAULT;
2957         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
2958                 goto out;
2959
2960         r = -E2BIG;
2961         if (msrs.nmsrs >= MAX_IO_MSRS)
2962                 goto out;
2963
2964         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2965         entries = memdup_user(user_msrs->entries, size);
2966         if (IS_ERR(entries)) {
2967                 r = PTR_ERR(entries);
2968                 goto out;
2969         }
2970
2971         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2972         if (r < 0)
2973                 goto out_free;
2974
2975         r = -EFAULT;
2976         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2977                 goto out_free;
2978
2979         r = n;
2980
2981 out_free:
2982         kfree(entries);
2983 out:
2984         return r;
2985 }
2986
2987 static inline bool kvm_can_mwait_in_guest(void)
2988 {
2989         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2990                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2991                 boot_cpu_has(X86_FEATURE_ARAT);
2992 }
2993
2994 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2995 {
2996         int r = 0;
2997
2998         switch (ext) {
2999         case KVM_CAP_IRQCHIP:
3000         case KVM_CAP_HLT:
3001         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3002         case KVM_CAP_SET_TSS_ADDR:
3003         case KVM_CAP_EXT_CPUID:
3004         case KVM_CAP_EXT_EMUL_CPUID:
3005         case KVM_CAP_CLOCKSOURCE:
3006         case KVM_CAP_PIT:
3007         case KVM_CAP_NOP_IO_DELAY:
3008         case KVM_CAP_MP_STATE:
3009         case KVM_CAP_SYNC_MMU:
3010         case KVM_CAP_USER_NMI:
3011         case KVM_CAP_REINJECT_CONTROL:
3012         case KVM_CAP_IRQ_INJECT_STATUS:
3013         case KVM_CAP_IOEVENTFD:
3014         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3015         case KVM_CAP_PIT2:
3016         case KVM_CAP_PIT_STATE2:
3017         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3018         case KVM_CAP_XEN_HVM:
3019         case KVM_CAP_VCPU_EVENTS:
3020         case KVM_CAP_HYPERV:
3021         case KVM_CAP_HYPERV_VAPIC:
3022         case KVM_CAP_HYPERV_SPIN:
3023         case KVM_CAP_HYPERV_SYNIC:
3024         case KVM_CAP_HYPERV_SYNIC2:
3025         case KVM_CAP_HYPERV_VP_INDEX:
3026         case KVM_CAP_HYPERV_EVENTFD:
3027         case KVM_CAP_HYPERV_TLBFLUSH:
3028         case KVM_CAP_HYPERV_SEND_IPI:
3029         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3030         case KVM_CAP_HYPERV_CPUID:
3031         case KVM_CAP_PCI_SEGMENT:
3032         case KVM_CAP_DEBUGREGS:
3033         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3034         case KVM_CAP_XSAVE:
3035         case KVM_CAP_ASYNC_PF:
3036         case KVM_CAP_GET_TSC_KHZ:
3037         case KVM_CAP_KVMCLOCK_CTRL:
3038         case KVM_CAP_READONLY_MEM:
3039         case KVM_CAP_HYPERV_TIME:
3040         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3041         case KVM_CAP_TSC_DEADLINE_TIMER:
3042         case KVM_CAP_DISABLE_QUIRKS:
3043         case KVM_CAP_SET_BOOT_CPU_ID:
3044         case KVM_CAP_SPLIT_IRQCHIP:
3045         case KVM_CAP_IMMEDIATE_EXIT:
3046         case KVM_CAP_GET_MSR_FEATURES:
3047         case KVM_CAP_MSR_PLATFORM_INFO:
3048         case KVM_CAP_EXCEPTION_PAYLOAD:
3049                 r = 1;
3050                 break;
3051         case KVM_CAP_SYNC_REGS:
3052                 r = KVM_SYNC_X86_VALID_FIELDS;
3053                 break;
3054         case KVM_CAP_ADJUST_CLOCK:
3055                 r = KVM_CLOCK_TSC_STABLE;
3056                 break;
3057         case KVM_CAP_X86_DISABLE_EXITS:
3058                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3059                 if(kvm_can_mwait_in_guest())
3060                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3061                 break;
3062         case KVM_CAP_X86_SMM:
3063                 /* SMBASE is usually relocated above 1M on modern chipsets,
3064                  * and SMM handlers might indeed rely on 4G segment limits,
3065                  * so do not report SMM to be available if real mode is
3066                  * emulated via vm86 mode.  Still, do not go to great lengths
3067                  * to avoid userspace's usage of the feature, because it is a
3068                  * fringe case that is not enabled except via specific settings
3069                  * of the module parameters.
3070                  */
3071                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3072                 break;
3073         case KVM_CAP_VAPIC:
3074                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3075                 break;
3076         case KVM_CAP_NR_VCPUS:
3077                 r = KVM_SOFT_MAX_VCPUS;
3078                 break;
3079         case KVM_CAP_MAX_VCPUS:
3080                 r = KVM_MAX_VCPUS;
3081                 break;
3082         case KVM_CAP_NR_MEMSLOTS:
3083                 r = KVM_USER_MEM_SLOTS;
3084                 break;
3085         case KVM_CAP_PV_MMU:    /* obsolete */
3086                 r = 0;
3087                 break;
3088         case KVM_CAP_MCE:
3089                 r = KVM_MAX_MCE_BANKS;
3090                 break;
3091         case KVM_CAP_XCRS:
3092                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3093                 break;
3094         case KVM_CAP_TSC_CONTROL:
3095                 r = kvm_has_tsc_control;
3096                 break;
3097         case KVM_CAP_X2APIC_API:
3098                 r = KVM_X2APIC_API_VALID_FLAGS;
3099                 break;
3100         case KVM_CAP_NESTED_STATE:
3101                 r = kvm_x86_ops->get_nested_state ?
3102                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3103                 break;
3104         default:
3105                 break;
3106         }
3107         return r;
3108
3109 }
3110
3111 long kvm_arch_dev_ioctl(struct file *filp,
3112                         unsigned int ioctl, unsigned long arg)
3113 {
3114         void __user *argp = (void __user *)arg;
3115         long r;
3116
3117         switch (ioctl) {
3118         case KVM_GET_MSR_INDEX_LIST: {
3119                 struct kvm_msr_list __user *user_msr_list = argp;
3120                 struct kvm_msr_list msr_list;
3121                 unsigned n;
3122
3123                 r = -EFAULT;
3124                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3125                         goto out;
3126                 n = msr_list.nmsrs;
3127                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3128                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3129                         goto out;
3130                 r = -E2BIG;
3131                 if (n < msr_list.nmsrs)
3132                         goto out;
3133                 r = -EFAULT;
3134                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3135                                  num_msrs_to_save * sizeof(u32)))
3136                         goto out;
3137                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3138                                  &emulated_msrs,
3139                                  num_emulated_msrs * sizeof(u32)))
3140                         goto out;
3141                 r = 0;
3142                 break;
3143         }
3144         case KVM_GET_SUPPORTED_CPUID:
3145         case KVM_GET_EMULATED_CPUID: {
3146                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3147                 struct kvm_cpuid2 cpuid;
3148
3149                 r = -EFAULT;
3150                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3151                         goto out;
3152
3153                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3154                                             ioctl);
3155                 if (r)
3156                         goto out;
3157
3158                 r = -EFAULT;
3159                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3160                         goto out;
3161                 r = 0;
3162                 break;
3163         }
3164         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3165                 r = -EFAULT;
3166                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3167                                  sizeof(kvm_mce_cap_supported)))
3168                         goto out;
3169                 r = 0;
3170                 break;
3171         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3172                 struct kvm_msr_list __user *user_msr_list = argp;
3173                 struct kvm_msr_list msr_list;
3174                 unsigned int n;
3175
3176                 r = -EFAULT;
3177                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3178                         goto out;
3179                 n = msr_list.nmsrs;
3180                 msr_list.nmsrs = num_msr_based_features;
3181                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3182                         goto out;
3183                 r = -E2BIG;
3184                 if (n < msr_list.nmsrs)
3185                         goto out;
3186                 r = -EFAULT;
3187                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3188                                  num_msr_based_features * sizeof(u32)))
3189                         goto out;
3190                 r = 0;
3191                 break;
3192         }
3193         case KVM_GET_MSRS:
3194                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3195                 break;
3196         }
3197         default:
3198                 r = -EINVAL;
3199         }
3200 out:
3201         return r;
3202 }
3203
3204 static void wbinvd_ipi(void *garbage)
3205 {
3206         wbinvd();
3207 }
3208
3209 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3210 {
3211         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3212 }
3213
3214 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3215 {
3216         /* Address WBINVD may be executed by guest */
3217         if (need_emulate_wbinvd(vcpu)) {
3218                 if (kvm_x86_ops->has_wbinvd_exit())
3219                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3220                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3221                         smp_call_function_single(vcpu->cpu,
3222                                         wbinvd_ipi, NULL, 1);
3223         }
3224
3225         kvm_x86_ops->vcpu_load(vcpu, cpu);
3226
3227         /* Apply any externally detected TSC adjustments (due to suspend) */
3228         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3229                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3230                 vcpu->arch.tsc_offset_adjustment = 0;
3231                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3232         }
3233
3234         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3235                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3236                                 rdtsc() - vcpu->arch.last_host_tsc;
3237                 if (tsc_delta < 0)
3238                         mark_tsc_unstable("KVM discovered backwards TSC");
3239
3240                 if (kvm_check_tsc_unstable()) {
3241                         u64 offset = kvm_compute_tsc_offset(vcpu,
3242                                                 vcpu->arch.last_guest_tsc);
3243                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3244                         vcpu->arch.tsc_catchup = 1;
3245                 }
3246
3247                 if (kvm_lapic_hv_timer_in_use(vcpu))
3248                         kvm_lapic_restart_hv_timer(vcpu);
3249
3250                 /*
3251                  * On a host with synchronized TSC, there is no need to update
3252                  * kvmclock on vcpu->cpu migration
3253                  */
3254                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3255                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3256                 if (vcpu->cpu != cpu)
3257                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3258                 vcpu->cpu = cpu;
3259         }
3260
3261         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3262 }
3263
3264 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3265 {
3266         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3267                 return;
3268
3269         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3270
3271         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3272                         &vcpu->arch.st.steal.preempted,
3273                         offsetof(struct kvm_steal_time, preempted),
3274                         sizeof(vcpu->arch.st.steal.preempted));
3275 }
3276
3277 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3278 {
3279         int idx;
3280
3281         if (vcpu->preempted)
3282                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3283
3284         /*
3285          * Disable page faults because we're in atomic context here.
3286          * kvm_write_guest_offset_cached() would call might_fault()
3287          * that relies on pagefault_disable() to tell if there's a
3288          * bug. NOTE: the write to guest memory may not go through if
3289          * during postcopy live migration or if there's heavy guest
3290          * paging.
3291          */
3292         pagefault_disable();
3293         /*
3294          * kvm_memslots() will be called by
3295          * kvm_write_guest_offset_cached() so take the srcu lock.
3296          */
3297         idx = srcu_read_lock(&vcpu->kvm->srcu);
3298         kvm_steal_time_set_preempted(vcpu);
3299         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3300         pagefault_enable();
3301         kvm_x86_ops->vcpu_put(vcpu);
3302         vcpu->arch.last_host_tsc = rdtsc();
3303         /*
3304          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3305          * on every vmexit, but if not, we might have a stale dr6 from the
3306          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3307          */
3308         set_debugreg(0, 6);
3309 }
3310
3311 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3312                                     struct kvm_lapic_state *s)
3313 {
3314         if (vcpu->arch.apicv_active)
3315                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3316
3317         return kvm_apic_get_state(vcpu, s);
3318 }
3319
3320 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3321                                     struct kvm_lapic_state *s)
3322 {
3323         int r;
3324
3325         r = kvm_apic_set_state(vcpu, s);
3326         if (r)
3327                 return r;
3328         update_cr8_intercept(vcpu);
3329
3330         return 0;
3331 }
3332
3333 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3334 {
3335         return (!lapic_in_kernel(vcpu) ||
3336                 kvm_apic_accept_pic_intr(vcpu));
3337 }
3338
3339 /*
3340  * if userspace requested an interrupt window, check that the
3341  * interrupt window is open.
3342  *
3343  * No need to exit to userspace if we already have an interrupt queued.
3344  */
3345 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3346 {
3347         return kvm_arch_interrupt_allowed(vcpu) &&
3348                 !kvm_cpu_has_interrupt(vcpu) &&
3349                 !kvm_event_needs_reinjection(vcpu) &&
3350                 kvm_cpu_accept_dm_intr(vcpu);
3351 }
3352
3353 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3354                                     struct kvm_interrupt *irq)
3355 {
3356         if (irq->irq >= KVM_NR_INTERRUPTS)
3357                 return -EINVAL;
3358
3359         if (!irqchip_in_kernel(vcpu->kvm)) {
3360                 kvm_queue_interrupt(vcpu, irq->irq, false);
3361                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3362                 return 0;
3363         }
3364
3365         /*
3366          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3367          * fail for in-kernel 8259.
3368          */
3369         if (pic_in_kernel(vcpu->kvm))
3370                 return -ENXIO;
3371
3372         if (vcpu->arch.pending_external_vector != -1)
3373                 return -EEXIST;
3374
3375         vcpu->arch.pending_external_vector = irq->irq;
3376         kvm_make_request(KVM_REQ_EVENT, vcpu);
3377         return 0;
3378 }
3379
3380 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3381 {
3382         kvm_inject_nmi(vcpu);
3383
3384         return 0;
3385 }
3386
3387 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3388 {
3389         kvm_make_request(KVM_REQ_SMI, vcpu);
3390
3391         return 0;
3392 }
3393
3394 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3395                                            struct kvm_tpr_access_ctl *tac)
3396 {
3397         if (tac->flags)
3398                 return -EINVAL;
3399         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3400         return 0;
3401 }
3402
3403 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3404                                         u64 mcg_cap)
3405 {
3406         int r;
3407         unsigned bank_num = mcg_cap & 0xff, bank;
3408
3409         r = -EINVAL;
3410         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3411                 goto out;
3412         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3413                 goto out;
3414         r = 0;
3415         vcpu->arch.mcg_cap = mcg_cap;
3416         /* Init IA32_MCG_CTL to all 1s */
3417         if (mcg_cap & MCG_CTL_P)
3418                 vcpu->arch.mcg_ctl = ~(u64)0;
3419         /* Init IA32_MCi_CTL to all 1s */
3420         for (bank = 0; bank < bank_num; bank++)
3421                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3422
3423         if (kvm_x86_ops->setup_mce)
3424                 kvm_x86_ops->setup_mce(vcpu);
3425 out:
3426         return r;
3427 }
3428
3429 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3430                                       struct kvm_x86_mce *mce)
3431 {
3432         u64 mcg_cap = vcpu->arch.mcg_cap;
3433         unsigned bank_num = mcg_cap & 0xff;
3434         u64 *banks = vcpu->arch.mce_banks;
3435
3436         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3437                 return -EINVAL;
3438         /*
3439          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3440          * reporting is disabled
3441          */
3442         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3443             vcpu->arch.mcg_ctl != ~(u64)0)
3444                 return 0;
3445         banks += 4 * mce->bank;
3446         /*
3447          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3448          * reporting is disabled for the bank
3449          */
3450         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3451                 return 0;
3452         if (mce->status & MCI_STATUS_UC) {
3453                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3454                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3455                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3456                         return 0;
3457                 }
3458                 if (banks[1] & MCI_STATUS_VAL)
3459                         mce->status |= MCI_STATUS_OVER;
3460                 banks[2] = mce->addr;
3461                 banks[3] = mce->misc;
3462                 vcpu->arch.mcg_status = mce->mcg_status;
3463                 banks[1] = mce->status;
3464                 kvm_queue_exception(vcpu, MC_VECTOR);
3465         } else if (!(banks[1] & MCI_STATUS_VAL)
3466                    || !(banks[1] & MCI_STATUS_UC)) {
3467                 if (banks[1] & MCI_STATUS_VAL)
3468                         mce->status |= MCI_STATUS_OVER;
3469                 banks[2] = mce->addr;
3470                 banks[3] = mce->misc;
3471                 banks[1] = mce->status;
3472         } else
3473                 banks[1] |= MCI_STATUS_OVER;
3474         return 0;
3475 }
3476
3477 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3478                                                struct kvm_vcpu_events *events)
3479 {
3480         process_nmi(vcpu);
3481
3482         /*
3483          * The API doesn't provide the instruction length for software
3484          * exceptions, so don't report them. As long as the guest RIP
3485          * isn't advanced, we should expect to encounter the exception
3486          * again.
3487          */
3488         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3489                 events->exception.injected = 0;
3490                 events->exception.pending = 0;
3491         } else {
3492                 events->exception.injected = vcpu->arch.exception.injected;
3493                 events->exception.pending = vcpu->arch.exception.pending;
3494                 /*
3495                  * For ABI compatibility, deliberately conflate
3496                  * pending and injected exceptions when
3497                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3498                  */
3499                 if (!vcpu->kvm->arch.exception_payload_enabled)
3500                         events->exception.injected |=
3501                                 vcpu->arch.exception.pending;
3502         }
3503         events->exception.nr = vcpu->arch.exception.nr;
3504         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3505         events->exception.error_code = vcpu->arch.exception.error_code;
3506         events->exception_has_payload = vcpu->arch.exception.has_payload;
3507         events->exception_payload = vcpu->arch.exception.payload;
3508
3509         events->interrupt.injected =
3510                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3511         events->interrupt.nr = vcpu->arch.interrupt.nr;
3512         events->interrupt.soft = 0;
3513         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3514
3515         events->nmi.injected = vcpu->arch.nmi_injected;
3516         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3517         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3518         events->nmi.pad = 0;
3519
3520         events->sipi_vector = 0; /* never valid when reporting to user space */
3521
3522         events->smi.smm = is_smm(vcpu);
3523         events->smi.pending = vcpu->arch.smi_pending;
3524         events->smi.smm_inside_nmi =
3525                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3526         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3527
3528         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3529                          | KVM_VCPUEVENT_VALID_SHADOW
3530                          | KVM_VCPUEVENT_VALID_SMM);
3531         if (vcpu->kvm->arch.exception_payload_enabled)
3532                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3533
3534         memset(&events->reserved, 0, sizeof(events->reserved));
3535 }
3536
3537 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3538
3539 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3540                                               struct kvm_vcpu_events *events)
3541 {
3542         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3543                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3544                               | KVM_VCPUEVENT_VALID_SHADOW
3545                               | KVM_VCPUEVENT_VALID_SMM
3546                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3547                 return -EINVAL;
3548
3549         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3550                 if (!vcpu->kvm->arch.exception_payload_enabled)
3551                         return -EINVAL;
3552                 if (events->exception.pending)
3553                         events->exception.injected = 0;
3554                 else
3555                         events->exception_has_payload = 0;
3556         } else {
3557                 events->exception.pending = 0;
3558                 events->exception_has_payload = 0;
3559         }
3560
3561         if ((events->exception.injected || events->exception.pending) &&
3562             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3563                 return -EINVAL;
3564
3565         /* INITs are latched while in SMM */
3566         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3567             (events->smi.smm || events->smi.pending) &&
3568             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3569                 return -EINVAL;
3570
3571         process_nmi(vcpu);
3572         vcpu->arch.exception.injected = events->exception.injected;
3573         vcpu->arch.exception.pending = events->exception.pending;
3574         vcpu->arch.exception.nr = events->exception.nr;
3575         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3576         vcpu->arch.exception.error_code = events->exception.error_code;
3577         vcpu->arch.exception.has_payload = events->exception_has_payload;
3578         vcpu->arch.exception.payload = events->exception_payload;
3579
3580         vcpu->arch.interrupt.injected = events->interrupt.injected;
3581         vcpu->arch.interrupt.nr = events->interrupt.nr;
3582         vcpu->arch.interrupt.soft = events->interrupt.soft;
3583         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3584                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3585                                                   events->interrupt.shadow);
3586
3587         vcpu->arch.nmi_injected = events->nmi.injected;
3588         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3589                 vcpu->arch.nmi_pending = events->nmi.pending;
3590         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3591
3592         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3593             lapic_in_kernel(vcpu))
3594                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3595
3596         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3597                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3598                         if (events->smi.smm)
3599                                 vcpu->arch.hflags |= HF_SMM_MASK;
3600                         else
3601                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3602                         kvm_smm_changed(vcpu);
3603                 }
3604
3605                 vcpu->arch.smi_pending = events->smi.pending;
3606
3607                 if (events->smi.smm) {
3608                         if (events->smi.smm_inside_nmi)
3609                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3610                         else
3611                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3612                         if (lapic_in_kernel(vcpu)) {
3613                                 if (events->smi.latched_init)
3614                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3615                                 else
3616                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3617                         }
3618                 }
3619         }
3620
3621         kvm_make_request(KVM_REQ_EVENT, vcpu);
3622
3623         return 0;
3624 }
3625
3626 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3627                                              struct kvm_debugregs *dbgregs)
3628 {
3629         unsigned long val;
3630
3631         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3632         kvm_get_dr(vcpu, 6, &val);
3633         dbgregs->dr6 = val;
3634         dbgregs->dr7 = vcpu->arch.dr7;
3635         dbgregs->flags = 0;
3636         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3637 }
3638
3639 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3640                                             struct kvm_debugregs *dbgregs)
3641 {
3642         if (dbgregs->flags)
3643                 return -EINVAL;
3644
3645         if (dbgregs->dr6 & ~0xffffffffull)
3646                 return -EINVAL;
3647         if (dbgregs->dr7 & ~0xffffffffull)
3648                 return -EINVAL;
3649
3650         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3651         kvm_update_dr0123(vcpu);
3652         vcpu->arch.dr6 = dbgregs->dr6;
3653         kvm_update_dr6(vcpu);
3654         vcpu->arch.dr7 = dbgregs->dr7;
3655         kvm_update_dr7(vcpu);
3656
3657         return 0;
3658 }
3659
3660 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3661
3662 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3663 {
3664         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3665         u64 xstate_bv = xsave->header.xfeatures;
3666         u64 valid;
3667
3668         /*
3669          * Copy legacy XSAVE area, to avoid complications with CPUID
3670          * leaves 0 and 1 in the loop below.
3671          */
3672         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3673
3674         /* Set XSTATE_BV */
3675         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3676         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3677
3678         /*
3679          * Copy each region from the possibly compacted offset to the
3680          * non-compacted offset.
3681          */
3682         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3683         while (valid) {
3684                 u64 feature = valid & -valid;
3685                 int index = fls64(feature) - 1;
3686                 void *src = get_xsave_addr(xsave, feature);
3687
3688                 if (src) {
3689                         u32 size, offset, ecx, edx;
3690                         cpuid_count(XSTATE_CPUID, index,
3691                                     &size, &offset, &ecx, &edx);
3692                         if (feature == XFEATURE_MASK_PKRU)
3693                                 memcpy(dest + offset, &vcpu->arch.pkru,
3694                                        sizeof(vcpu->arch.pkru));
3695                         else
3696                                 memcpy(dest + offset, src, size);
3697
3698                 }
3699
3700                 valid -= feature;
3701         }
3702 }
3703
3704 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3705 {
3706         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3707         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3708         u64 valid;
3709
3710         /*
3711          * Copy legacy XSAVE area, to avoid complications with CPUID
3712          * leaves 0 and 1 in the loop below.
3713          */
3714         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3715
3716         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3717         xsave->header.xfeatures = xstate_bv;
3718         if (boot_cpu_has(X86_FEATURE_XSAVES))
3719                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3720
3721         /*
3722          * Copy each region from the non-compacted offset to the
3723          * possibly compacted offset.
3724          */
3725         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3726         while (valid) {
3727                 u64 feature = valid & -valid;
3728                 int index = fls64(feature) - 1;
3729                 void *dest = get_xsave_addr(xsave, feature);
3730
3731                 if (dest) {
3732                         u32 size, offset, ecx, edx;
3733                         cpuid_count(XSTATE_CPUID, index,
3734                                     &size, &offset, &ecx, &edx);
3735                         if (feature == XFEATURE_MASK_PKRU)
3736                                 memcpy(&vcpu->arch.pkru, src + offset,
3737                                        sizeof(vcpu->arch.pkru));
3738                         else
3739                                 memcpy(dest, src + offset, size);
3740                 }
3741
3742                 valid -= feature;
3743         }
3744 }
3745
3746 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3747                                          struct kvm_xsave *guest_xsave)
3748 {
3749         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3750                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3751                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3752         } else {
3753                 memcpy(guest_xsave->region,
3754                         &vcpu->arch.guest_fpu->state.fxsave,
3755                         sizeof(struct fxregs_state));
3756                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3757                         XFEATURE_MASK_FPSSE;
3758         }
3759 }
3760
3761 #define XSAVE_MXCSR_OFFSET 24
3762
3763 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3764                                         struct kvm_xsave *guest_xsave)
3765 {
3766         u64 xstate_bv =
3767                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3768         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3769
3770         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3771                 /*
3772                  * Here we allow setting states that are not present in
3773                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3774                  * with old userspace.
3775                  */
3776                 if (xstate_bv & ~kvm_supported_xcr0() ||
3777                         mxcsr & ~mxcsr_feature_mask)
3778                         return -EINVAL;
3779                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3780         } else {
3781                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3782                         mxcsr & ~mxcsr_feature_mask)
3783                         return -EINVAL;
3784                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3785                         guest_xsave->region, sizeof(struct fxregs_state));
3786         }
3787         return 0;
3788 }
3789
3790 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3791                                         struct kvm_xcrs *guest_xcrs)
3792 {
3793         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3794                 guest_xcrs->nr_xcrs = 0;
3795                 return;
3796         }
3797
3798         guest_xcrs->nr_xcrs = 1;
3799         guest_xcrs->flags = 0;
3800         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3801         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3802 }
3803
3804 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3805                                        struct kvm_xcrs *guest_xcrs)
3806 {
3807         int i, r = 0;
3808
3809         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3810                 return -EINVAL;
3811
3812         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3813                 return -EINVAL;
3814
3815         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3816                 /* Only support XCR0 currently */
3817                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3818                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3819                                 guest_xcrs->xcrs[i].value);
3820                         break;
3821                 }
3822         if (r)
3823                 r = -EINVAL;
3824         return r;
3825 }
3826
3827 /*
3828  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3829  * stopped by the hypervisor.  This function will be called from the host only.
3830  * EINVAL is returned when the host attempts to set the flag for a guest that
3831  * does not support pv clocks.
3832  */
3833 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3834 {
3835         if (!vcpu->arch.pv_time_enabled)
3836                 return -EINVAL;
3837         vcpu->arch.pvclock_set_guest_stopped_request = true;
3838         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3839         return 0;
3840 }
3841
3842 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3843                                      struct kvm_enable_cap *cap)
3844 {
3845         int r;
3846         uint16_t vmcs_version;
3847         void __user *user_ptr;
3848
3849         if (cap->flags)
3850                 return -EINVAL;
3851
3852         switch (cap->cap) {
3853         case KVM_CAP_HYPERV_SYNIC2:
3854                 if (cap->args[0])
3855                         return -EINVAL;
3856                 /* fall through */
3857
3858         case KVM_CAP_HYPERV_SYNIC:
3859                 if (!irqchip_in_kernel(vcpu->kvm))
3860                         return -EINVAL;
3861                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3862                                              KVM_CAP_HYPERV_SYNIC2);
3863         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3864                 if (!kvm_x86_ops->nested_enable_evmcs)
3865                         return -ENOTTY;
3866                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3867                 if (!r) {
3868                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3869                         if (copy_to_user(user_ptr, &vmcs_version,
3870                                          sizeof(vmcs_version)))
3871                                 r = -EFAULT;
3872                 }
3873                 return r;
3874
3875         default:
3876                 return -EINVAL;
3877         }
3878 }
3879
3880 long kvm_arch_vcpu_ioctl(struct file *filp,
3881                          unsigned int ioctl, unsigned long arg)
3882 {
3883         struct kvm_vcpu *vcpu = filp->private_data;
3884         void __user *argp = (void __user *)arg;
3885         int r;
3886         union {
3887                 struct kvm_lapic_state *lapic;
3888                 struct kvm_xsave *xsave;
3889                 struct kvm_xcrs *xcrs;
3890                 void *buffer;
3891         } u;
3892
3893         vcpu_load(vcpu);
3894
3895         u.buffer = NULL;
3896         switch (ioctl) {
3897         case KVM_GET_LAPIC: {
3898                 r = -EINVAL;
3899                 if (!lapic_in_kernel(vcpu))
3900                         goto out;
3901                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3902                                 GFP_KERNEL_ACCOUNT);
3903
3904                 r = -ENOMEM;
3905                 if (!u.lapic)
3906                         goto out;
3907                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3908                 if (r)
3909                         goto out;
3910                 r = -EFAULT;
3911                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3912                         goto out;
3913                 r = 0;
3914                 break;
3915         }
3916         case KVM_SET_LAPIC: {
3917                 r = -EINVAL;
3918                 if (!lapic_in_kernel(vcpu))
3919                         goto out;
3920                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3921                 if (IS_ERR(u.lapic)) {
3922                         r = PTR_ERR(u.lapic);
3923                         goto out_nofree;
3924                 }
3925
3926                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3927                 break;
3928         }
3929         case KVM_INTERRUPT: {
3930                 struct kvm_interrupt irq;
3931
3932                 r = -EFAULT;
3933                 if (copy_from_user(&irq, argp, sizeof(irq)))
3934                         goto out;
3935                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3936                 break;
3937         }
3938         case KVM_NMI: {
3939                 r = kvm_vcpu_ioctl_nmi(vcpu);
3940                 break;
3941         }
3942         case KVM_SMI: {
3943                 r = kvm_vcpu_ioctl_smi(vcpu);
3944                 break;
3945         }
3946         case KVM_SET_CPUID: {
3947                 struct kvm_cpuid __user *cpuid_arg = argp;
3948                 struct kvm_cpuid cpuid;
3949
3950                 r = -EFAULT;
3951                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3952                         goto out;
3953                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3954                 break;
3955         }
3956         case KVM_SET_CPUID2: {
3957                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3958                 struct kvm_cpuid2 cpuid;
3959
3960                 r = -EFAULT;
3961                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3962                         goto out;
3963                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3964                                               cpuid_arg->entries);
3965                 break;
3966         }
3967         case KVM_GET_CPUID2: {
3968                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3969                 struct kvm_cpuid2 cpuid;
3970
3971                 r = -EFAULT;
3972                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3973                         goto out;
3974                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3975                                               cpuid_arg->entries);
3976                 if (r)
3977                         goto out;
3978                 r = -EFAULT;
3979                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3980                         goto out;
3981                 r = 0;
3982                 break;
3983         }
3984         case KVM_GET_MSRS: {
3985                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3986                 r = msr_io(vcpu, argp, do_get_msr, 1);
3987                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3988                 break;
3989         }
3990         case KVM_SET_MSRS: {
3991                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3992                 r = msr_io(vcpu, argp, do_set_msr, 0);
3993                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3994                 break;
3995         }
3996         case KVM_TPR_ACCESS_REPORTING: {
3997                 struct kvm_tpr_access_ctl tac;
3998
3999                 r = -EFAULT;
4000                 if (copy_from_user(&tac, argp, sizeof(tac)))
4001                         goto out;
4002                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4003                 if (r)
4004                         goto out;
4005                 r = -EFAULT;
4006                 if (copy_to_user(argp, &tac, sizeof(tac)))
4007                         goto out;
4008                 r = 0;
4009                 break;
4010         };
4011         case KVM_SET_VAPIC_ADDR: {
4012                 struct kvm_vapic_addr va;
4013                 int idx;
4014
4015                 r = -EINVAL;
4016                 if (!lapic_in_kernel(vcpu))
4017                         goto out;
4018                 r = -EFAULT;
4019                 if (copy_from_user(&va, argp, sizeof(va)))
4020                         goto out;
4021                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4022                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4023                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4024                 break;
4025         }
4026         case KVM_X86_SETUP_MCE: {
4027                 u64 mcg_cap;
4028
4029                 r = -EFAULT;
4030                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4031                         goto out;
4032                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4033                 break;
4034         }
4035         case KVM_X86_SET_MCE: {
4036                 struct kvm_x86_mce mce;
4037
4038                 r = -EFAULT;
4039                 if (copy_from_user(&mce, argp, sizeof(mce)))
4040                         goto out;
4041                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4042                 break;
4043         }
4044         case KVM_GET_VCPU_EVENTS: {
4045                 struct kvm_vcpu_events events;
4046
4047                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4048
4049                 r = -EFAULT;
4050                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4051                         break;
4052                 r = 0;
4053                 break;
4054         }
4055         case KVM_SET_VCPU_EVENTS: {
4056                 struct kvm_vcpu_events events;
4057
4058                 r = -EFAULT;
4059                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4060                         break;
4061
4062                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4063                 break;
4064         }
4065         case KVM_GET_DEBUGREGS: {
4066                 struct kvm_debugregs dbgregs;
4067
4068                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4069
4070                 r = -EFAULT;
4071                 if (copy_to_user(argp, &dbgregs,
4072                                  sizeof(struct kvm_debugregs)))
4073                         break;
4074                 r = 0;
4075                 break;
4076         }
4077         case KVM_SET_DEBUGREGS: {
4078                 struct kvm_debugregs dbgregs;
4079
4080                 r = -EFAULT;
4081                 if (copy_from_user(&dbgregs, argp,
4082                                    sizeof(struct kvm_debugregs)))
4083                         break;
4084
4085                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4086                 break;
4087         }
4088         case KVM_GET_XSAVE: {
4089                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4090                 r = -ENOMEM;
4091                 if (!u.xsave)
4092                         break;
4093
4094                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4095
4096                 r = -EFAULT;
4097                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4098                         break;
4099                 r = 0;
4100                 break;
4101         }
4102         case KVM_SET_XSAVE: {
4103                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4104                 if (IS_ERR(u.xsave)) {
4105                         r = PTR_ERR(u.xsave);
4106                         goto out_nofree;
4107                 }
4108
4109                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4110                 break;
4111         }
4112         case KVM_GET_XCRS: {
4113                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4114                 r = -ENOMEM;
4115                 if (!u.xcrs)
4116                         break;
4117
4118                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4119
4120                 r = -EFAULT;
4121                 if (copy_to_user(argp, u.xcrs,
4122                                  sizeof(struct kvm_xcrs)))
4123                         break;
4124                 r = 0;
4125                 break;
4126         }
4127         case KVM_SET_XCRS: {
4128                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4129                 if (IS_ERR(u.xcrs)) {
4130                         r = PTR_ERR(u.xcrs);
4131                         goto out_nofree;
4132                 }
4133
4134                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4135                 break;
4136         }
4137         case KVM_SET_TSC_KHZ: {
4138                 u32 user_tsc_khz;
4139
4140                 r = -EINVAL;
4141                 user_tsc_khz = (u32)arg;
4142
4143                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4144                         goto out;
4145
4146                 if (user_tsc_khz == 0)
4147                         user_tsc_khz = tsc_khz;
4148
4149                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4150                         r = 0;
4151
4152                 goto out;
4153         }
4154         case KVM_GET_TSC_KHZ: {
4155                 r = vcpu->arch.virtual_tsc_khz;
4156                 goto out;
4157         }
4158         case KVM_KVMCLOCK_CTRL: {
4159                 r = kvm_set_guest_paused(vcpu);
4160                 goto out;
4161         }
4162         case KVM_ENABLE_CAP: {
4163                 struct kvm_enable_cap cap;
4164
4165                 r = -EFAULT;
4166                 if (copy_from_user(&cap, argp, sizeof(cap)))
4167                         goto out;
4168                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4169                 break;
4170         }
4171         case KVM_GET_NESTED_STATE: {
4172                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4173                 u32 user_data_size;
4174
4175                 r = -EINVAL;
4176                 if (!kvm_x86_ops->get_nested_state)
4177                         break;
4178
4179                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4180                 r = -EFAULT;
4181                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4182                         break;
4183
4184                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4185                                                   user_data_size);
4186                 if (r < 0)
4187                         break;
4188
4189                 if (r > user_data_size) {
4190                         if (put_user(r, &user_kvm_nested_state->size))
4191                                 r = -EFAULT;
4192                         else
4193                                 r = -E2BIG;
4194                         break;
4195                 }
4196
4197                 r = 0;
4198                 break;
4199         }
4200         case KVM_SET_NESTED_STATE: {
4201                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4202                 struct kvm_nested_state kvm_state;
4203
4204                 r = -EINVAL;
4205                 if (!kvm_x86_ops->set_nested_state)
4206                         break;
4207
4208                 r = -EFAULT;
4209                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4210                         break;
4211
4212                 r = -EINVAL;
4213                 if (kvm_state.size < sizeof(kvm_state))
4214                         break;
4215
4216                 if (kvm_state.flags &
4217                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4218                       | KVM_STATE_NESTED_EVMCS))
4219                         break;
4220
4221                 /* nested_run_pending implies guest_mode.  */
4222                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4223                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4224                         break;
4225
4226                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4227                 break;
4228         }
4229         case KVM_GET_SUPPORTED_HV_CPUID: {
4230                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4231                 struct kvm_cpuid2 cpuid;
4232
4233                 r = -EFAULT;
4234                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4235                         goto out;
4236
4237                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4238                                                 cpuid_arg->entries);
4239                 if (r)
4240                         goto out;
4241
4242                 r = -EFAULT;
4243                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4244                         goto out;
4245                 r = 0;
4246                 break;
4247         }
4248         default:
4249                 r = -EINVAL;
4250         }
4251 out:
4252         kfree(u.buffer);
4253 out_nofree:
4254         vcpu_put(vcpu);
4255         return r;
4256 }
4257
4258 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4259 {
4260         return VM_FAULT_SIGBUS;
4261 }
4262
4263 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4264 {
4265         int ret;
4266
4267         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4268                 return -EINVAL;
4269         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4270         return ret;
4271 }
4272
4273 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4274                                               u64 ident_addr)
4275 {
4276         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4277 }
4278
4279 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4280                                          unsigned long kvm_nr_mmu_pages)
4281 {
4282         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4283                 return -EINVAL;
4284
4285         mutex_lock(&kvm->slots_lock);
4286
4287         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4288         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4289
4290         mutex_unlock(&kvm->slots_lock);
4291         return 0;
4292 }
4293
4294 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4295 {
4296         return kvm->arch.n_max_mmu_pages;
4297 }
4298
4299 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4300 {
4301         struct kvm_pic *pic = kvm->arch.vpic;
4302         int r;
4303
4304         r = 0;
4305         switch (chip->chip_id) {
4306         case KVM_IRQCHIP_PIC_MASTER:
4307                 memcpy(&chip->chip.pic, &pic->pics[0],
4308                         sizeof(struct kvm_pic_state));
4309                 break;
4310         case KVM_IRQCHIP_PIC_SLAVE:
4311                 memcpy(&chip->chip.pic, &pic->pics[1],
4312                         sizeof(struct kvm_pic_state));
4313                 break;
4314         case KVM_IRQCHIP_IOAPIC:
4315                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4316                 break;
4317         default:
4318                 r = -EINVAL;
4319                 break;
4320         }
4321         return r;
4322 }
4323
4324 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4325 {
4326         struct kvm_pic *pic = kvm->arch.vpic;
4327         int r;
4328
4329         r = 0;
4330         switch (chip->chip_id) {
4331         case KVM_IRQCHIP_PIC_MASTER:
4332                 spin_lock(&pic->lock);
4333                 memcpy(&pic->pics[0], &chip->chip.pic,
4334                         sizeof(struct kvm_pic_state));
4335                 spin_unlock(&pic->lock);
4336                 break;
4337         case KVM_IRQCHIP_PIC_SLAVE:
4338                 spin_lock(&pic->lock);
4339                 memcpy(&pic->pics[1], &chip->chip.pic,
4340                         sizeof(struct kvm_pic_state));
4341                 spin_unlock(&pic->lock);
4342                 break;
4343         case KVM_IRQCHIP_IOAPIC:
4344                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4345                 break;
4346         default:
4347                 r = -EINVAL;
4348                 break;
4349         }
4350         kvm_pic_update_irq(pic);
4351         return r;
4352 }
4353
4354 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4355 {
4356         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4357
4358         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4359
4360         mutex_lock(&kps->lock);
4361         memcpy(ps, &kps->channels, sizeof(*ps));
4362         mutex_unlock(&kps->lock);
4363         return 0;
4364 }
4365
4366 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4367 {
4368         int i;
4369         struct kvm_pit *pit = kvm->arch.vpit;
4370
4371         mutex_lock(&pit->pit_state.lock);
4372         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4373         for (i = 0; i < 3; i++)
4374                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4375         mutex_unlock(&pit->pit_state.lock);
4376         return 0;
4377 }
4378
4379 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4380 {
4381         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4382         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4383                 sizeof(ps->channels));
4384         ps->flags = kvm->arch.vpit->pit_state.flags;
4385         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4386         memset(&ps->reserved, 0, sizeof(ps->reserved));
4387         return 0;
4388 }
4389
4390 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4391 {
4392         int start = 0;
4393         int i;
4394         u32 prev_legacy, cur_legacy;
4395         struct kvm_pit *pit = kvm->arch.vpit;
4396
4397         mutex_lock(&pit->pit_state.lock);
4398         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4399         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4400         if (!prev_legacy && cur_legacy)
4401                 start = 1;
4402         memcpy(&pit->pit_state.channels, &ps->channels,
4403                sizeof(pit->pit_state.channels));
4404         pit->pit_state.flags = ps->flags;
4405         for (i = 0; i < 3; i++)
4406                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4407                                    start && i == 0);
4408         mutex_unlock(&pit->pit_state.lock);
4409         return 0;
4410 }
4411
4412 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4413                                  struct kvm_reinject_control *control)
4414 {
4415         struct kvm_pit *pit = kvm->arch.vpit;
4416
4417         if (!pit)
4418                 return -ENXIO;
4419
4420         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4421          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4422          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4423          */
4424         mutex_lock(&pit->pit_state.lock);
4425         kvm_pit_set_reinject(pit, control->pit_reinject);
4426         mutex_unlock(&pit->pit_state.lock);
4427
4428         return 0;
4429 }
4430
4431 /**
4432  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4433  * @kvm: kvm instance
4434  * @log: slot id and address to which we copy the log
4435  *
4436  * Steps 1-4 below provide general overview of dirty page logging. See
4437  * kvm_get_dirty_log_protect() function description for additional details.
4438  *
4439  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4440  * always flush the TLB (step 4) even if previous step failed  and the dirty
4441  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4442  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4443  * writes will be marked dirty for next log read.
4444  *
4445  *   1. Take a snapshot of the bit and clear it if needed.
4446  *   2. Write protect the corresponding page.
4447  *   3. Copy the snapshot to the userspace.
4448  *   4. Flush TLB's if needed.
4449  */
4450 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4451 {
4452         bool flush = false;
4453         int r;
4454
4455         mutex_lock(&kvm->slots_lock);
4456
4457         /*
4458          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4459          */
4460         if (kvm_x86_ops->flush_log_dirty)
4461                 kvm_x86_ops->flush_log_dirty(kvm);
4462
4463         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4464
4465         /*
4466          * All the TLBs can be flushed out of mmu lock, see the comments in
4467          * kvm_mmu_slot_remove_write_access().
4468          */
4469         lockdep_assert_held(&kvm->slots_lock);
4470         if (flush)
4471                 kvm_flush_remote_tlbs(kvm);
4472
4473         mutex_unlock(&kvm->slots_lock);
4474         return r;
4475 }
4476
4477 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4478 {
4479         bool flush = false;
4480         int r;
4481
4482         mutex_lock(&kvm->slots_lock);
4483
4484         /*
4485          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4486          */
4487         if (kvm_x86_ops->flush_log_dirty)
4488                 kvm_x86_ops->flush_log_dirty(kvm);
4489
4490         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4491
4492         /*
4493          * All the TLBs can be flushed out of mmu lock, see the comments in
4494          * kvm_mmu_slot_remove_write_access().
4495          */
4496         lockdep_assert_held(&kvm->slots_lock);
4497         if (flush)
4498                 kvm_flush_remote_tlbs(kvm);
4499
4500         mutex_unlock(&kvm->slots_lock);
4501         return r;
4502 }
4503
4504 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4505                         bool line_status)
4506 {
4507         if (!irqchip_in_kernel(kvm))
4508                 return -ENXIO;
4509
4510         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4511                                         irq_event->irq, irq_event->level,
4512                                         line_status);
4513         return 0;
4514 }
4515
4516 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4517                             struct kvm_enable_cap *cap)
4518 {
4519         int r;
4520
4521         if (cap->flags)
4522                 return -EINVAL;
4523
4524         switch (cap->cap) {
4525         case KVM_CAP_DISABLE_QUIRKS:
4526                 kvm->arch.disabled_quirks = cap->args[0];
4527                 r = 0;
4528                 break;
4529         case KVM_CAP_SPLIT_IRQCHIP: {
4530                 mutex_lock(&kvm->lock);
4531                 r = -EINVAL;
4532                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4533                         goto split_irqchip_unlock;
4534                 r = -EEXIST;
4535                 if (irqchip_in_kernel(kvm))
4536                         goto split_irqchip_unlock;
4537                 if (kvm->created_vcpus)
4538                         goto split_irqchip_unlock;
4539                 r = kvm_setup_empty_irq_routing(kvm);
4540                 if (r)
4541                         goto split_irqchip_unlock;
4542                 /* Pairs with irqchip_in_kernel. */
4543                 smp_wmb();
4544                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4545                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4546                 r = 0;
4547 split_irqchip_unlock:
4548                 mutex_unlock(&kvm->lock);
4549                 break;
4550         }
4551         case KVM_CAP_X2APIC_API:
4552                 r = -EINVAL;
4553                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4554                         break;
4555
4556                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4557                         kvm->arch.x2apic_format = true;
4558                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4559                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4560
4561                 r = 0;
4562                 break;
4563         case KVM_CAP_X86_DISABLE_EXITS:
4564                 r = -EINVAL;
4565                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4566                         break;
4567
4568                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4569                         kvm_can_mwait_in_guest())
4570                         kvm->arch.mwait_in_guest = true;
4571                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4572                         kvm->arch.hlt_in_guest = true;
4573                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4574                         kvm->arch.pause_in_guest = true;
4575                 r = 0;
4576                 break;
4577         case KVM_CAP_MSR_PLATFORM_INFO:
4578                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4579                 r = 0;
4580                 break;
4581         case KVM_CAP_EXCEPTION_PAYLOAD:
4582                 kvm->arch.exception_payload_enabled = cap->args[0];
4583                 r = 0;
4584                 break;
4585         default:
4586                 r = -EINVAL;
4587                 break;
4588         }
4589         return r;
4590 }
4591
4592 long kvm_arch_vm_ioctl(struct file *filp,
4593                        unsigned int ioctl, unsigned long arg)
4594 {
4595         struct kvm *kvm = filp->private_data;
4596         void __user *argp = (void __user *)arg;
4597         int r = -ENOTTY;
4598         /*
4599          * This union makes it completely explicit to gcc-3.x
4600          * that these two variables' stack usage should be
4601          * combined, not added together.
4602          */
4603         union {
4604                 struct kvm_pit_state ps;
4605                 struct kvm_pit_state2 ps2;
4606                 struct kvm_pit_config pit_config;
4607         } u;
4608
4609         switch (ioctl) {
4610         case KVM_SET_TSS_ADDR:
4611                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4612                 break;
4613         case KVM_SET_IDENTITY_MAP_ADDR: {
4614                 u64 ident_addr;
4615
4616                 mutex_lock(&kvm->lock);
4617                 r = -EINVAL;
4618                 if (kvm->created_vcpus)
4619                         goto set_identity_unlock;
4620                 r = -EFAULT;
4621                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4622                         goto set_identity_unlock;
4623                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4624 set_identity_unlock:
4625                 mutex_unlock(&kvm->lock);
4626                 break;
4627         }
4628         case KVM_SET_NR_MMU_PAGES:
4629                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4630                 break;
4631         case KVM_GET_NR_MMU_PAGES:
4632                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4633                 break;
4634         case KVM_CREATE_IRQCHIP: {
4635                 mutex_lock(&kvm->lock);
4636
4637                 r = -EEXIST;
4638                 if (irqchip_in_kernel(kvm))
4639                         goto create_irqchip_unlock;
4640
4641                 r = -EINVAL;
4642                 if (kvm->created_vcpus)
4643                         goto create_irqchip_unlock;
4644
4645                 r = kvm_pic_init(kvm);
4646                 if (r)
4647                         goto create_irqchip_unlock;
4648
4649                 r = kvm_ioapic_init(kvm);
4650                 if (r) {
4651                         kvm_pic_destroy(kvm);
4652                         goto create_irqchip_unlock;
4653                 }
4654
4655                 r = kvm_setup_default_irq_routing(kvm);
4656                 if (r) {
4657                         kvm_ioapic_destroy(kvm);
4658                         kvm_pic_destroy(kvm);
4659                         goto create_irqchip_unlock;
4660                 }
4661                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4662                 smp_wmb();
4663                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4664         create_irqchip_unlock:
4665                 mutex_unlock(&kvm->lock);
4666                 break;
4667         }
4668         case KVM_CREATE_PIT:
4669                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4670                 goto create_pit;
4671         case KVM_CREATE_PIT2:
4672                 r = -EFAULT;
4673                 if (copy_from_user(&u.pit_config, argp,
4674                                    sizeof(struct kvm_pit_config)))
4675                         goto out;
4676         create_pit:
4677                 mutex_lock(&kvm->lock);
4678                 r = -EEXIST;
4679                 if (kvm->arch.vpit)
4680                         goto create_pit_unlock;
4681                 r = -ENOMEM;
4682                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4683                 if (kvm->arch.vpit)
4684                         r = 0;
4685         create_pit_unlock:
4686                 mutex_unlock(&kvm->lock);
4687                 break;
4688         case KVM_GET_IRQCHIP: {
4689                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4690                 struct kvm_irqchip *chip;
4691
4692                 chip = memdup_user(argp, sizeof(*chip));
4693                 if (IS_ERR(chip)) {
4694                         r = PTR_ERR(chip);
4695                         goto out;
4696                 }
4697
4698                 r = -ENXIO;
4699                 if (!irqchip_kernel(kvm))
4700                         goto get_irqchip_out;
4701                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4702                 if (r)
4703                         goto get_irqchip_out;
4704                 r = -EFAULT;
4705                 if (copy_to_user(argp, chip, sizeof(*chip)))
4706                         goto get_irqchip_out;
4707                 r = 0;
4708         get_irqchip_out:
4709                 kfree(chip);
4710                 break;
4711         }
4712         case KVM_SET_IRQCHIP: {
4713                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4714                 struct kvm_irqchip *chip;
4715
4716                 chip = memdup_user(argp, sizeof(*chip));
4717                 if (IS_ERR(chip)) {
4718                         r = PTR_ERR(chip);
4719                         goto out;
4720                 }
4721
4722                 r = -ENXIO;
4723                 if (!irqchip_kernel(kvm))
4724                         goto set_irqchip_out;
4725                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4726                 if (r)
4727                         goto set_irqchip_out;
4728                 r = 0;
4729         set_irqchip_out:
4730                 kfree(chip);
4731                 break;
4732         }
4733         case KVM_GET_PIT: {
4734                 r = -EFAULT;
4735                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4736                         goto out;
4737                 r = -ENXIO;
4738                 if (!kvm->arch.vpit)
4739                         goto out;
4740                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4741                 if (r)
4742                         goto out;
4743                 r = -EFAULT;
4744                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4745                         goto out;
4746                 r = 0;
4747                 break;
4748         }
4749         case KVM_SET_PIT: {
4750                 r = -EFAULT;
4751                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4752                         goto out;
4753                 r = -ENXIO;
4754                 if (!kvm->arch.vpit)
4755                         goto out;
4756                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4757                 break;
4758         }
4759         case KVM_GET_PIT2: {
4760                 r = -ENXIO;
4761                 if (!kvm->arch.vpit)
4762                         goto out;
4763                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4764                 if (r)
4765                         goto out;
4766                 r = -EFAULT;
4767                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4768                         goto out;
4769                 r = 0;
4770                 break;
4771         }
4772         case KVM_SET_PIT2: {
4773                 r = -EFAULT;
4774                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4775                         goto out;
4776                 r = -ENXIO;
4777                 if (!kvm->arch.vpit)
4778                         goto out;
4779                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4780                 break;
4781         }
4782         case KVM_REINJECT_CONTROL: {
4783                 struct kvm_reinject_control control;
4784                 r =  -EFAULT;
4785                 if (copy_from_user(&control, argp, sizeof(control)))
4786                         goto out;
4787                 r = kvm_vm_ioctl_reinject(kvm, &control);
4788                 break;
4789         }
4790         case KVM_SET_BOOT_CPU_ID:
4791                 r = 0;
4792                 mutex_lock(&kvm->lock);
4793                 if (kvm->created_vcpus)
4794                         r = -EBUSY;
4795                 else
4796                         kvm->arch.bsp_vcpu_id = arg;
4797                 mutex_unlock(&kvm->lock);
4798                 break;
4799         case KVM_XEN_HVM_CONFIG: {
4800                 struct kvm_xen_hvm_config xhc;
4801                 r = -EFAULT;
4802                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4803                         goto out;
4804                 r = -EINVAL;
4805                 if (xhc.flags)
4806                         goto out;
4807                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4808                 r = 0;
4809                 break;
4810         }
4811         case KVM_SET_CLOCK: {
4812                 struct kvm_clock_data user_ns;
4813                 u64 now_ns;
4814
4815                 r = -EFAULT;
4816                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4817                         goto out;
4818
4819                 r = -EINVAL;
4820                 if (user_ns.flags)
4821                         goto out;
4822
4823                 r = 0;
4824                 /*
4825                  * TODO: userspace has to take care of races with VCPU_RUN, so
4826                  * kvm_gen_update_masterclock() can be cut down to locked
4827                  * pvclock_update_vm_gtod_copy().
4828                  */
4829                 kvm_gen_update_masterclock(kvm);
4830                 now_ns = get_kvmclock_ns(kvm);
4831                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4832                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4833                 break;
4834         }
4835         case KVM_GET_CLOCK: {
4836                 struct kvm_clock_data user_ns;
4837                 u64 now_ns;
4838
4839                 now_ns = get_kvmclock_ns(kvm);
4840                 user_ns.clock = now_ns;
4841                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4842                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4843
4844                 r = -EFAULT;
4845                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4846                         goto out;
4847                 r = 0;
4848                 break;
4849         }
4850         case KVM_MEMORY_ENCRYPT_OP: {
4851                 r = -ENOTTY;
4852                 if (kvm_x86_ops->mem_enc_op)
4853                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4854                 break;
4855         }
4856         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4857                 struct kvm_enc_region region;
4858
4859                 r = -EFAULT;
4860                 if (copy_from_user(&region, argp, sizeof(region)))
4861                         goto out;
4862
4863                 r = -ENOTTY;
4864                 if (kvm_x86_ops->mem_enc_reg_region)
4865                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4866                 break;
4867         }
4868         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4869                 struct kvm_enc_region region;
4870
4871                 r = -EFAULT;
4872                 if (copy_from_user(&region, argp, sizeof(region)))
4873                         goto out;
4874
4875                 r = -ENOTTY;
4876                 if (kvm_x86_ops->mem_enc_unreg_region)
4877                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4878                 break;
4879         }
4880         case KVM_HYPERV_EVENTFD: {
4881                 struct kvm_hyperv_eventfd hvevfd;
4882
4883                 r = -EFAULT;
4884                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4885                         goto out;
4886                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4887                 break;
4888         }
4889         default:
4890                 r = -ENOTTY;
4891         }
4892 out:
4893         return r;
4894 }
4895
4896 static void kvm_init_msr_list(void)
4897 {
4898         u32 dummy[2];
4899         unsigned i, j;
4900
4901         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4902                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4903                         continue;
4904
4905                 /*
4906                  * Even MSRs that are valid in the host may not be exposed
4907                  * to the guests in some cases.
4908                  */
4909                 switch (msrs_to_save[i]) {
4910                 case MSR_IA32_BNDCFGS:
4911                         if (!kvm_mpx_supported())
4912                                 continue;
4913                         break;
4914                 case MSR_TSC_AUX:
4915                         if (!kvm_x86_ops->rdtscp_supported())
4916                                 continue;
4917                         break;
4918                 case MSR_IA32_RTIT_CTL:
4919                 case MSR_IA32_RTIT_STATUS:
4920                         if (!kvm_x86_ops->pt_supported())
4921                                 continue;
4922                         break;
4923                 case MSR_IA32_RTIT_CR3_MATCH:
4924                         if (!kvm_x86_ops->pt_supported() ||
4925                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
4926                                 continue;
4927                         break;
4928                 case MSR_IA32_RTIT_OUTPUT_BASE:
4929                 case MSR_IA32_RTIT_OUTPUT_MASK:
4930                         if (!kvm_x86_ops->pt_supported() ||
4931                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
4932                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
4933                                 continue;
4934                         break;
4935                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
4936                         if (!kvm_x86_ops->pt_supported() ||
4937                                 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
4938                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
4939                                 continue;
4940                         break;
4941                 }
4942                 default:
4943                         break;
4944                 }
4945
4946                 if (j < i)
4947                         msrs_to_save[j] = msrs_to_save[i];
4948                 j++;
4949         }
4950         num_msrs_to_save = j;
4951
4952         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4953                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4954                         continue;
4955
4956                 if (j < i)
4957                         emulated_msrs[j] = emulated_msrs[i];
4958                 j++;
4959         }
4960         num_emulated_msrs = j;
4961
4962         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4963                 struct kvm_msr_entry msr;
4964
4965                 msr.index = msr_based_features[i];
4966                 if (kvm_get_msr_feature(&msr))
4967                         continue;
4968
4969                 if (j < i)
4970                         msr_based_features[j] = msr_based_features[i];
4971                 j++;
4972         }
4973         num_msr_based_features = j;
4974 }
4975
4976 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4977                            const void *v)
4978 {
4979         int handled = 0;
4980         int n;
4981
4982         do {
4983                 n = min(len, 8);
4984                 if (!(lapic_in_kernel(vcpu) &&
4985                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4986                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4987                         break;
4988                 handled += n;
4989                 addr += n;
4990                 len -= n;
4991                 v += n;
4992         } while (len);
4993
4994         return handled;
4995 }
4996
4997 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4998 {
4999         int handled = 0;
5000         int n;
5001
5002         do {
5003                 n = min(len, 8);
5004                 if (!(lapic_in_kernel(vcpu) &&
5005                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5006                                          addr, n, v))
5007                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5008                         break;
5009                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5010                 handled += n;
5011                 addr += n;
5012                 len -= n;
5013                 v += n;
5014         } while (len);
5015
5016         return handled;
5017 }
5018
5019 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5020                         struct kvm_segment *var, int seg)
5021 {
5022         kvm_x86_ops->set_segment(vcpu, var, seg);
5023 }
5024
5025 void kvm_get_segment(struct kvm_vcpu *vcpu,
5026                      struct kvm_segment *var, int seg)
5027 {
5028         kvm_x86_ops->get_segment(vcpu, var, seg);
5029 }
5030
5031 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5032                            struct x86_exception *exception)
5033 {
5034         gpa_t t_gpa;
5035
5036         BUG_ON(!mmu_is_nested(vcpu));
5037
5038         /* NPT walks are always user-walks */
5039         access |= PFERR_USER_MASK;
5040         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5041
5042         return t_gpa;
5043 }
5044
5045 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5046                               struct x86_exception *exception)
5047 {
5048         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5049         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5050 }
5051
5052  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5053                                 struct x86_exception *exception)
5054 {
5055         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5056         access |= PFERR_FETCH_MASK;
5057         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5058 }
5059
5060 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5061                                struct x86_exception *exception)
5062 {
5063         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5064         access |= PFERR_WRITE_MASK;
5065         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5066 }
5067
5068 /* uses this to access any guest's mapped memory without checking CPL */
5069 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5070                                 struct x86_exception *exception)
5071 {
5072         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5073 }
5074
5075 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5076                                       struct kvm_vcpu *vcpu, u32 access,
5077                                       struct x86_exception *exception)
5078 {
5079         void *data = val;
5080         int r = X86EMUL_CONTINUE;
5081
5082         while (bytes) {
5083                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5084                                                             exception);
5085                 unsigned offset = addr & (PAGE_SIZE-1);
5086                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5087                 int ret;
5088
5089                 if (gpa == UNMAPPED_GVA)
5090                         return X86EMUL_PROPAGATE_FAULT;
5091                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5092                                                offset, toread);
5093                 if (ret < 0) {
5094                         r = X86EMUL_IO_NEEDED;
5095                         goto out;
5096                 }
5097
5098                 bytes -= toread;
5099                 data += toread;
5100                 addr += toread;
5101         }
5102 out:
5103         return r;
5104 }
5105
5106 /* used for instruction fetching */
5107 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5108                                 gva_t addr, void *val, unsigned int bytes,
5109                                 struct x86_exception *exception)
5110 {
5111         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5112         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5113         unsigned offset;
5114         int ret;
5115
5116         /* Inline kvm_read_guest_virt_helper for speed.  */
5117         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5118                                                     exception);
5119         if (unlikely(gpa == UNMAPPED_GVA))
5120                 return X86EMUL_PROPAGATE_FAULT;
5121
5122         offset = addr & (PAGE_SIZE-1);
5123         if (WARN_ON(offset + bytes > PAGE_SIZE))
5124                 bytes = (unsigned)PAGE_SIZE - offset;
5125         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5126                                        offset, bytes);
5127         if (unlikely(ret < 0))
5128                 return X86EMUL_IO_NEEDED;
5129
5130         return X86EMUL_CONTINUE;
5131 }
5132
5133 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5134                                gva_t addr, void *val, unsigned int bytes,
5135                                struct x86_exception *exception)
5136 {
5137         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5138
5139         /*
5140          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5141          * is returned, but our callers are not ready for that and they blindly
5142          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5143          * uninitialized kernel stack memory into cr2 and error code.
5144          */
5145         memset(exception, 0, sizeof(*exception));
5146         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5147                                           exception);
5148 }
5149 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5150
5151 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5152                              gva_t addr, void *val, unsigned int bytes,
5153                              struct x86_exception *exception, bool system)
5154 {
5155         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5156         u32 access = 0;
5157
5158         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5159                 access |= PFERR_USER_MASK;
5160
5161         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5162 }
5163
5164 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5165                 unsigned long addr, void *val, unsigned int bytes)
5166 {
5167         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5168         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5169
5170         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5171 }
5172
5173 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5174                                       struct kvm_vcpu *vcpu, u32 access,
5175                                       struct x86_exception *exception)
5176 {
5177         void *data = val;
5178         int r = X86EMUL_CONTINUE;
5179
5180         while (bytes) {
5181                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5182                                                              access,
5183                                                              exception);
5184                 unsigned offset = addr & (PAGE_SIZE-1);
5185                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5186                 int ret;
5187
5188                 if (gpa == UNMAPPED_GVA)
5189                         return X86EMUL_PROPAGATE_FAULT;
5190                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5191                 if (ret < 0) {
5192                         r = X86EMUL_IO_NEEDED;
5193                         goto out;
5194                 }
5195
5196                 bytes -= towrite;
5197                 data += towrite;
5198                 addr += towrite;
5199         }
5200 out:
5201         return r;
5202 }
5203
5204 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5205                               unsigned int bytes, struct x86_exception *exception,
5206                               bool system)
5207 {
5208         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5209         u32 access = PFERR_WRITE_MASK;
5210
5211         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5212                 access |= PFERR_USER_MASK;
5213
5214         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5215                                            access, exception);
5216 }
5217
5218 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5219                                 unsigned int bytes, struct x86_exception *exception)
5220 {
5221         /* kvm_write_guest_virt_system can pull in tons of pages. */
5222         vcpu->arch.l1tf_flush_l1d = true;
5223
5224         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5225                                            PFERR_WRITE_MASK, exception);
5226 }
5227 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5228
5229 int handle_ud(struct kvm_vcpu *vcpu)
5230 {
5231         int emul_type = EMULTYPE_TRAP_UD;
5232         enum emulation_result er;
5233         char sig[5]; /* ud2; .ascii "kvm" */
5234         struct x86_exception e;
5235
5236         if (force_emulation_prefix &&
5237             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5238                                 sig, sizeof(sig), &e) == 0 &&
5239             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5240                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5241                 emul_type = 0;
5242         }
5243
5244         er = kvm_emulate_instruction(vcpu, emul_type);
5245         if (er == EMULATE_USER_EXIT)
5246                 return 0;
5247         if (er != EMULATE_DONE)
5248                 kvm_queue_exception(vcpu, UD_VECTOR);
5249         return 1;
5250 }
5251 EXPORT_SYMBOL_GPL(handle_ud);
5252
5253 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5254                             gpa_t gpa, bool write)
5255 {
5256         /* For APIC access vmexit */
5257         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5258                 return 1;
5259
5260         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5261                 trace_vcpu_match_mmio(gva, gpa, write, true);
5262                 return 1;
5263         }
5264
5265         return 0;
5266 }
5267
5268 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5269                                 gpa_t *gpa, struct x86_exception *exception,
5270                                 bool write)
5271 {
5272         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5273                 | (write ? PFERR_WRITE_MASK : 0);
5274
5275         /*
5276          * currently PKRU is only applied to ept enabled guest so
5277          * there is no pkey in EPT page table for L1 guest or EPT
5278          * shadow page table for L2 guest.
5279          */
5280         if (vcpu_match_mmio_gva(vcpu, gva)
5281             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5282                                  vcpu->arch.access, 0, access)) {
5283                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5284                                         (gva & (PAGE_SIZE - 1));
5285                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5286                 return 1;
5287         }
5288
5289         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5290
5291         if (*gpa == UNMAPPED_GVA)
5292                 return -1;
5293
5294         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5295 }
5296
5297 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5298                         const void *val, int bytes)
5299 {
5300         int ret;
5301
5302         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5303         if (ret < 0)
5304                 return 0;
5305         kvm_page_track_write(vcpu, gpa, val, bytes);
5306         return 1;
5307 }
5308
5309 struct read_write_emulator_ops {
5310         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5311                                   int bytes);
5312         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5313                                   void *val, int bytes);
5314         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5315                                int bytes, void *val);
5316         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5317                                     void *val, int bytes);
5318         bool write;
5319 };
5320
5321 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5322 {
5323         if (vcpu->mmio_read_completed) {
5324                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5325                                vcpu->mmio_fragments[0].gpa, val);
5326                 vcpu->mmio_read_completed = 0;
5327                 return 1;
5328         }
5329
5330         return 0;
5331 }
5332
5333 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5334                         void *val, int bytes)
5335 {
5336         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5337 }
5338
5339 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5340                          void *val, int bytes)
5341 {
5342         return emulator_write_phys(vcpu, gpa, val, bytes);
5343 }
5344
5345 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5346 {
5347         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5348         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5349 }
5350
5351 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5352                           void *val, int bytes)
5353 {
5354         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5355         return X86EMUL_IO_NEEDED;
5356 }
5357
5358 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5359                            void *val, int bytes)
5360 {
5361         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5362
5363         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5364         return X86EMUL_CONTINUE;
5365 }
5366
5367 static const struct read_write_emulator_ops read_emultor = {
5368         .read_write_prepare = read_prepare,
5369         .read_write_emulate = read_emulate,
5370         .read_write_mmio = vcpu_mmio_read,
5371         .read_write_exit_mmio = read_exit_mmio,
5372 };
5373
5374 static const struct read_write_emulator_ops write_emultor = {
5375         .read_write_emulate = write_emulate,
5376         .read_write_mmio = write_mmio,
5377         .read_write_exit_mmio = write_exit_mmio,
5378         .write = true,
5379 };
5380
5381 static int emulator_read_write_onepage(unsigned long addr, void *val,
5382                                        unsigned int bytes,
5383                                        struct x86_exception *exception,
5384                                        struct kvm_vcpu *vcpu,
5385                                        const struct read_write_emulator_ops *ops)
5386 {
5387         gpa_t gpa;
5388         int handled, ret;
5389         bool write = ops->write;
5390         struct kvm_mmio_fragment *frag;
5391         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5392
5393         /*
5394          * If the exit was due to a NPF we may already have a GPA.
5395          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5396          * Note, this cannot be used on string operations since string
5397          * operation using rep will only have the initial GPA from the NPF
5398          * occurred.
5399          */
5400         if (vcpu->arch.gpa_available &&
5401             emulator_can_use_gpa(ctxt) &&
5402             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5403                 gpa = vcpu->arch.gpa_val;
5404                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5405         } else {
5406                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5407                 if (ret < 0)
5408                         return X86EMUL_PROPAGATE_FAULT;
5409         }
5410
5411         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5412                 return X86EMUL_CONTINUE;
5413
5414         /*
5415          * Is this MMIO handled locally?
5416          */
5417         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5418         if (handled == bytes)
5419                 return X86EMUL_CONTINUE;
5420
5421         gpa += handled;
5422         bytes -= handled;
5423         val += handled;
5424
5425         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5426         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5427         frag->gpa = gpa;
5428         frag->data = val;
5429         frag->len = bytes;
5430         return X86EMUL_CONTINUE;
5431 }
5432
5433 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5434                         unsigned long addr,
5435                         void *val, unsigned int bytes,
5436                         struct x86_exception *exception,
5437                         const struct read_write_emulator_ops *ops)
5438 {
5439         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5440         gpa_t gpa;
5441         int rc;
5442
5443         if (ops->read_write_prepare &&
5444                   ops->read_write_prepare(vcpu, val, bytes))
5445                 return X86EMUL_CONTINUE;
5446
5447         vcpu->mmio_nr_fragments = 0;
5448
5449         /* Crossing a page boundary? */
5450         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5451                 int now;
5452
5453                 now = -addr & ~PAGE_MASK;
5454                 rc = emulator_read_write_onepage(addr, val, now, exception,
5455                                                  vcpu, ops);
5456
5457                 if (rc != X86EMUL_CONTINUE)
5458                         return rc;
5459                 addr += now;
5460                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5461                         addr = (u32)addr;
5462                 val += now;
5463                 bytes -= now;
5464         }
5465
5466         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5467                                          vcpu, ops);
5468         if (rc != X86EMUL_CONTINUE)
5469                 return rc;
5470
5471         if (!vcpu->mmio_nr_fragments)
5472                 return rc;
5473
5474         gpa = vcpu->mmio_fragments[0].gpa;
5475
5476         vcpu->mmio_needed = 1;
5477         vcpu->mmio_cur_fragment = 0;
5478
5479         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5480         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5481         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5482         vcpu->run->mmio.phys_addr = gpa;
5483
5484         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5485 }
5486
5487 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5488                                   unsigned long addr,
5489                                   void *val,
5490                                   unsigned int bytes,
5491                                   struct x86_exception *exception)
5492 {
5493         return emulator_read_write(ctxt, addr, val, bytes,
5494                                    exception, &read_emultor);
5495 }
5496
5497 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5498                             unsigned long addr,
5499                             const void *val,
5500                             unsigned int bytes,
5501                             struct x86_exception *exception)
5502 {
5503         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5504                                    exception, &write_emultor);
5505 }
5506
5507 #define CMPXCHG_TYPE(t, ptr, old, new) \
5508         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5509
5510 #ifdef CONFIG_X86_64
5511 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5512 #else
5513 #  define CMPXCHG64(ptr, old, new) \
5514         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5515 #endif
5516
5517 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5518                                      unsigned long addr,
5519                                      const void *old,
5520                                      const void *new,
5521                                      unsigned int bytes,
5522                                      struct x86_exception *exception)
5523 {
5524         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5525         gpa_t gpa;
5526         struct page *page;
5527         char *kaddr;
5528         bool exchanged;
5529
5530         /* guests cmpxchg8b have to be emulated atomically */
5531         if (bytes > 8 || (bytes & (bytes - 1)))
5532                 goto emul_write;
5533
5534         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5535
5536         if (gpa == UNMAPPED_GVA ||
5537             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5538                 goto emul_write;
5539
5540         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5541                 goto emul_write;
5542
5543         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5544         if (is_error_page(page))
5545                 goto emul_write;
5546
5547         kaddr = kmap_atomic(page);
5548         kaddr += offset_in_page(gpa);
5549         switch (bytes) {
5550         case 1:
5551                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5552                 break;
5553         case 2:
5554                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5555                 break;
5556         case 4:
5557                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5558                 break;
5559         case 8:
5560                 exchanged = CMPXCHG64(kaddr, old, new);
5561                 break;
5562         default:
5563                 BUG();
5564         }
5565         kunmap_atomic(kaddr);
5566         kvm_release_page_dirty(page);
5567
5568         if (!exchanged)
5569                 return X86EMUL_CMPXCHG_FAILED;
5570
5571         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5572         kvm_page_track_write(vcpu, gpa, new, bytes);
5573
5574         return X86EMUL_CONTINUE;
5575
5576 emul_write:
5577         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5578
5579         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5580 }
5581
5582 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5583 {
5584         int r = 0, i;
5585
5586         for (i = 0; i < vcpu->arch.pio.count; i++) {
5587                 if (vcpu->arch.pio.in)
5588                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5589                                             vcpu->arch.pio.size, pd);
5590                 else
5591                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5592                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5593                                              pd);
5594                 if (r)
5595                         break;
5596                 pd += vcpu->arch.pio.size;
5597         }
5598         return r;
5599 }
5600
5601 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5602                                unsigned short port, void *val,
5603                                unsigned int count, bool in)
5604 {
5605         vcpu->arch.pio.port = port;
5606         vcpu->arch.pio.in = in;
5607         vcpu->arch.pio.count  = count;
5608         vcpu->arch.pio.size = size;
5609
5610         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5611                 vcpu->arch.pio.count = 0;
5612                 return 1;
5613         }
5614
5615         vcpu->run->exit_reason = KVM_EXIT_IO;
5616         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5617         vcpu->run->io.size = size;
5618         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5619         vcpu->run->io.count = count;
5620         vcpu->run->io.port = port;
5621
5622         return 0;
5623 }
5624
5625 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5626                                     int size, unsigned short port, void *val,
5627                                     unsigned int count)
5628 {
5629         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5630         int ret;
5631
5632         if (vcpu->arch.pio.count)
5633                 goto data_avail;
5634
5635         memset(vcpu->arch.pio_data, 0, size * count);
5636
5637         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5638         if (ret) {
5639 data_avail:
5640                 memcpy(val, vcpu->arch.pio_data, size * count);
5641                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5642                 vcpu->arch.pio.count = 0;
5643                 return 1;
5644         }
5645
5646         return 0;
5647 }
5648
5649 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5650                                      int size, unsigned short port,
5651                                      const void *val, unsigned int count)
5652 {
5653         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5654
5655         memcpy(vcpu->arch.pio_data, val, size * count);
5656         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5657         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5658 }
5659
5660 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5661 {
5662         return kvm_x86_ops->get_segment_base(vcpu, seg);
5663 }
5664
5665 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5666 {
5667         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5668 }
5669
5670 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5671 {
5672         if (!need_emulate_wbinvd(vcpu))
5673                 return X86EMUL_CONTINUE;
5674
5675         if (kvm_x86_ops->has_wbinvd_exit()) {
5676                 int cpu = get_cpu();
5677
5678                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5679                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5680                                 wbinvd_ipi, NULL, 1);
5681                 put_cpu();
5682                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5683         } else
5684                 wbinvd();
5685         return X86EMUL_CONTINUE;
5686 }
5687
5688 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5689 {
5690         kvm_emulate_wbinvd_noskip(vcpu);
5691         return kvm_skip_emulated_instruction(vcpu);
5692 }
5693 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5694
5695
5696
5697 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5698 {
5699         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5700 }
5701
5702 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5703                            unsigned long *dest)
5704 {
5705         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5706 }
5707
5708 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5709                            unsigned long value)
5710 {
5711
5712         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5713 }
5714
5715 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5716 {
5717         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5718 }
5719
5720 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5721 {
5722         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5723         unsigned long value;
5724
5725         switch (cr) {
5726         case 0:
5727                 value = kvm_read_cr0(vcpu);
5728                 break;
5729         case 2:
5730                 value = vcpu->arch.cr2;
5731                 break;
5732         case 3:
5733                 value = kvm_read_cr3(vcpu);
5734                 break;
5735         case 4:
5736                 value = kvm_read_cr4(vcpu);
5737                 break;
5738         case 8:
5739                 value = kvm_get_cr8(vcpu);
5740                 break;
5741         default:
5742                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5743                 return 0;
5744         }
5745
5746         return value;
5747 }
5748
5749 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5750 {
5751         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5752         int res = 0;
5753
5754         switch (cr) {
5755         case 0:
5756                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5757                 break;
5758         case 2:
5759                 vcpu->arch.cr2 = val;
5760                 break;
5761         case 3:
5762                 res = kvm_set_cr3(vcpu, val);
5763                 break;
5764         case 4:
5765                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5766                 break;
5767         case 8:
5768                 res = kvm_set_cr8(vcpu, val);
5769                 break;
5770         default:
5771                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5772                 res = -1;
5773         }
5774
5775         return res;
5776 }
5777
5778 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5779 {
5780         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5781 }
5782
5783 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5784 {
5785         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5786 }
5787
5788 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5789 {
5790         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5791 }
5792
5793 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5794 {
5795         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5796 }
5797
5798 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5799 {
5800         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5801 }
5802
5803 static unsigned long emulator_get_cached_segment_base(
5804         struct x86_emulate_ctxt *ctxt, int seg)
5805 {
5806         return get_segment_base(emul_to_vcpu(ctxt), seg);
5807 }
5808
5809 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5810                                  struct desc_struct *desc, u32 *base3,
5811                                  int seg)
5812 {
5813         struct kvm_segment var;
5814
5815         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5816         *selector = var.selector;
5817
5818         if (var.unusable) {
5819                 memset(desc, 0, sizeof(*desc));
5820                 if (base3)
5821                         *base3 = 0;
5822                 return false;
5823         }
5824
5825         if (var.g)
5826                 var.limit >>= 12;
5827         set_desc_limit(desc, var.limit);
5828         set_desc_base(desc, (unsigned long)var.base);
5829 #ifdef CONFIG_X86_64
5830         if (base3)
5831                 *base3 = var.base >> 32;
5832 #endif
5833         desc->type = var.type;
5834         desc->s = var.s;
5835         desc->dpl = var.dpl;
5836         desc->p = var.present;
5837         desc->avl = var.avl;
5838         desc->l = var.l;
5839         desc->d = var.db;
5840         desc->g = var.g;
5841
5842         return true;
5843 }
5844
5845 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5846                                  struct desc_struct *desc, u32 base3,
5847                                  int seg)
5848 {
5849         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5850         struct kvm_segment var;
5851
5852         var.selector = selector;
5853         var.base = get_desc_base(desc);
5854 #ifdef CONFIG_X86_64
5855         var.base |= ((u64)base3) << 32;
5856 #endif
5857         var.limit = get_desc_limit(desc);
5858         if (desc->g)
5859                 var.limit = (var.limit << 12) | 0xfff;
5860         var.type = desc->type;
5861         var.dpl = desc->dpl;
5862         var.db = desc->d;
5863         var.s = desc->s;
5864         var.l = desc->l;
5865         var.g = desc->g;
5866         var.avl = desc->avl;
5867         var.present = desc->p;
5868         var.unusable = !var.present;
5869         var.padding = 0;
5870
5871         kvm_set_segment(vcpu, &var, seg);
5872         return;
5873 }
5874
5875 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5876                             u32 msr_index, u64 *pdata)
5877 {
5878         struct msr_data msr;
5879         int r;
5880
5881         msr.index = msr_index;
5882         msr.host_initiated = false;
5883         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5884         if (r)
5885                 return r;
5886
5887         *pdata = msr.data;
5888         return 0;
5889 }
5890
5891 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5892                             u32 msr_index, u64 data)
5893 {
5894         struct msr_data msr;
5895
5896         msr.data = data;
5897         msr.index = msr_index;
5898         msr.host_initiated = false;
5899         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5900 }
5901
5902 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5903 {
5904         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5905
5906         return vcpu->arch.smbase;
5907 }
5908
5909 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5910 {
5911         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5912
5913         vcpu->arch.smbase = smbase;
5914 }
5915
5916 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5917                               u32 pmc)
5918 {
5919         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5920 }
5921
5922 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5923                              u32 pmc, u64 *pdata)
5924 {
5925         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5926 }
5927
5928 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5929 {
5930         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5931 }
5932
5933 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5934                               struct x86_instruction_info *info,
5935                               enum x86_intercept_stage stage)
5936 {
5937         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5938 }
5939
5940 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5941                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5942 {
5943         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5944 }
5945
5946 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5947 {
5948         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5949 }
5950
5951 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5952 {
5953         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5954 }
5955
5956 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5957 {
5958         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5959 }
5960
5961 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5962 {
5963         return emul_to_vcpu(ctxt)->arch.hflags;
5964 }
5965
5966 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5967 {
5968         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
5969 }
5970
5971 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
5972                                   const char *smstate)
5973 {
5974         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
5975 }
5976
5977 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
5978 {
5979         kvm_smm_changed(emul_to_vcpu(ctxt));
5980 }
5981
5982 static const struct x86_emulate_ops emulate_ops = {
5983         .read_gpr            = emulator_read_gpr,
5984         .write_gpr           = emulator_write_gpr,
5985         .read_std            = emulator_read_std,
5986         .write_std           = emulator_write_std,
5987         .read_phys           = kvm_read_guest_phys_system,
5988         .fetch               = kvm_fetch_guest_virt,
5989         .read_emulated       = emulator_read_emulated,
5990         .write_emulated      = emulator_write_emulated,
5991         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5992         .invlpg              = emulator_invlpg,
5993         .pio_in_emulated     = emulator_pio_in_emulated,
5994         .pio_out_emulated    = emulator_pio_out_emulated,
5995         .get_segment         = emulator_get_segment,
5996         .set_segment         = emulator_set_segment,
5997         .get_cached_segment_base = emulator_get_cached_segment_base,
5998         .get_gdt             = emulator_get_gdt,
5999         .get_idt             = emulator_get_idt,
6000         .set_gdt             = emulator_set_gdt,
6001         .set_idt             = emulator_set_idt,
6002         .get_cr              = emulator_get_cr,
6003         .set_cr              = emulator_set_cr,
6004         .cpl                 = emulator_get_cpl,
6005         .get_dr              = emulator_get_dr,
6006         .set_dr              = emulator_set_dr,
6007         .get_smbase          = emulator_get_smbase,
6008         .set_smbase          = emulator_set_smbase,
6009         .set_msr             = emulator_set_msr,
6010         .get_msr             = emulator_get_msr,
6011         .check_pmc           = emulator_check_pmc,
6012         .read_pmc            = emulator_read_pmc,
6013         .halt                = emulator_halt,
6014         .wbinvd              = emulator_wbinvd,
6015         .fix_hypercall       = emulator_fix_hypercall,
6016         .intercept           = emulator_intercept,
6017         .get_cpuid           = emulator_get_cpuid,
6018         .set_nmi_mask        = emulator_set_nmi_mask,
6019         .get_hflags          = emulator_get_hflags,
6020         .set_hflags          = emulator_set_hflags,
6021         .pre_leave_smm       = emulator_pre_leave_smm,
6022         .post_leave_smm      = emulator_post_leave_smm,
6023 };
6024
6025 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6026 {
6027         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6028         /*
6029          * an sti; sti; sequence only disable interrupts for the first
6030          * instruction. So, if the last instruction, be it emulated or
6031          * not, left the system with the INT_STI flag enabled, it
6032          * means that the last instruction is an sti. We should not
6033          * leave the flag on in this case. The same goes for mov ss
6034          */
6035         if (int_shadow & mask)
6036                 mask = 0;
6037         if (unlikely(int_shadow || mask)) {
6038                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6039                 if (!mask)
6040                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6041         }
6042 }
6043
6044 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6045 {
6046         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6047         if (ctxt->exception.vector == PF_VECTOR)
6048                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6049
6050         if (ctxt->exception.error_code_valid)
6051                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6052                                       ctxt->exception.error_code);
6053         else
6054                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6055         return false;
6056 }
6057
6058 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6059 {
6060         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6061         int cs_db, cs_l;
6062
6063         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6064
6065         ctxt->eflags = kvm_get_rflags(vcpu);
6066         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6067
6068         ctxt->eip = kvm_rip_read(vcpu);
6069         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6070                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6071                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6072                      cs_db                              ? X86EMUL_MODE_PROT32 :
6073                                                           X86EMUL_MODE_PROT16;
6074         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6075         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6076         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6077
6078         init_decode_cache(ctxt);
6079         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6080 }
6081
6082 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6083 {
6084         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6085         int ret;
6086
6087         init_emulate_ctxt(vcpu);
6088
6089         ctxt->op_bytes = 2;
6090         ctxt->ad_bytes = 2;
6091         ctxt->_eip = ctxt->eip + inc_eip;
6092         ret = emulate_int_real(ctxt, irq);
6093
6094         if (ret != X86EMUL_CONTINUE)
6095                 return EMULATE_FAIL;
6096
6097         ctxt->eip = ctxt->_eip;
6098         kvm_rip_write(vcpu, ctxt->eip);
6099         kvm_set_rflags(vcpu, ctxt->eflags);
6100
6101         return EMULATE_DONE;
6102 }
6103 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6104
6105 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6106 {
6107         int r = EMULATE_DONE;
6108
6109         ++vcpu->stat.insn_emulation_fail;
6110         trace_kvm_emulate_insn_failed(vcpu);
6111
6112         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6113                 return EMULATE_FAIL;
6114
6115         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6116                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6117                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6118                 vcpu->run->internal.ndata = 0;
6119                 r = EMULATE_USER_EXIT;
6120         }
6121
6122         kvm_queue_exception(vcpu, UD_VECTOR);
6123
6124         return r;
6125 }
6126
6127 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6128                                   bool write_fault_to_shadow_pgtable,
6129                                   int emulation_type)
6130 {
6131         gpa_t gpa = cr2;
6132         kvm_pfn_t pfn;
6133
6134         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6135                 return false;
6136
6137         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6138                 return false;
6139
6140         if (!vcpu->arch.mmu->direct_map) {
6141                 /*
6142                  * Write permission should be allowed since only
6143                  * write access need to be emulated.
6144                  */
6145                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6146
6147                 /*
6148                  * If the mapping is invalid in guest, let cpu retry
6149                  * it to generate fault.
6150                  */
6151                 if (gpa == UNMAPPED_GVA)
6152                         return true;
6153         }
6154
6155         /*
6156          * Do not retry the unhandleable instruction if it faults on the
6157          * readonly host memory, otherwise it will goto a infinite loop:
6158          * retry instruction -> write #PF -> emulation fail -> retry
6159          * instruction -> ...
6160          */
6161         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6162
6163         /*
6164          * If the instruction failed on the error pfn, it can not be fixed,
6165          * report the error to userspace.
6166          */
6167         if (is_error_noslot_pfn(pfn))
6168                 return false;
6169
6170         kvm_release_pfn_clean(pfn);
6171
6172         /* The instructions are well-emulated on direct mmu. */
6173         if (vcpu->arch.mmu->direct_map) {
6174                 unsigned int indirect_shadow_pages;
6175
6176                 spin_lock(&vcpu->kvm->mmu_lock);
6177                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6178                 spin_unlock(&vcpu->kvm->mmu_lock);
6179
6180                 if (indirect_shadow_pages)
6181                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6182
6183                 return true;
6184         }
6185
6186         /*
6187          * if emulation was due to access to shadowed page table
6188          * and it failed try to unshadow page and re-enter the
6189          * guest to let CPU execute the instruction.
6190          */
6191         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6192
6193         /*
6194          * If the access faults on its page table, it can not
6195          * be fixed by unprotecting shadow page and it should
6196          * be reported to userspace.
6197          */
6198         return !write_fault_to_shadow_pgtable;
6199 }
6200
6201 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6202                               unsigned long cr2,  int emulation_type)
6203 {
6204         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6205         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6206
6207         last_retry_eip = vcpu->arch.last_retry_eip;
6208         last_retry_addr = vcpu->arch.last_retry_addr;
6209
6210         /*
6211          * If the emulation is caused by #PF and it is non-page_table
6212          * writing instruction, it means the VM-EXIT is caused by shadow
6213          * page protected, we can zap the shadow page and retry this
6214          * instruction directly.
6215          *
6216          * Note: if the guest uses a non-page-table modifying instruction
6217          * on the PDE that points to the instruction, then we will unmap
6218          * the instruction and go to an infinite loop. So, we cache the
6219          * last retried eip and the last fault address, if we meet the eip
6220          * and the address again, we can break out of the potential infinite
6221          * loop.
6222          */
6223         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6224
6225         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6226                 return false;
6227
6228         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6229                 return false;
6230
6231         if (x86_page_table_writing_insn(ctxt))
6232                 return false;
6233
6234         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6235                 return false;
6236
6237         vcpu->arch.last_retry_eip = ctxt->eip;
6238         vcpu->arch.last_retry_addr = cr2;
6239
6240         if (!vcpu->arch.mmu->direct_map)
6241                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6242
6243         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6244
6245         return true;
6246 }
6247
6248 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6249 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6250
6251 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6252 {
6253         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6254                 /* This is a good place to trace that we are exiting SMM.  */
6255                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6256
6257                 /* Process a latched INIT or SMI, if any.  */
6258                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6259         }
6260
6261         kvm_mmu_reset_context(vcpu);
6262 }
6263
6264 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6265                                 unsigned long *db)
6266 {
6267         u32 dr6 = 0;
6268         int i;
6269         u32 enable, rwlen;
6270
6271         enable = dr7;
6272         rwlen = dr7 >> 16;
6273         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6274                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6275                         dr6 |= (1 << i);
6276         return dr6;
6277 }
6278
6279 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6280 {
6281         struct kvm_run *kvm_run = vcpu->run;
6282
6283         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6284                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6285                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6286                 kvm_run->debug.arch.exception = DB_VECTOR;
6287                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6288                 *r = EMULATE_USER_EXIT;
6289         } else {
6290                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6291         }
6292 }
6293
6294 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6295 {
6296         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6297         int r = EMULATE_DONE;
6298
6299         kvm_x86_ops->skip_emulated_instruction(vcpu);
6300
6301         /*
6302          * rflags is the old, "raw" value of the flags.  The new value has
6303          * not been saved yet.
6304          *
6305          * This is correct even for TF set by the guest, because "the
6306          * processor will not generate this exception after the instruction
6307          * that sets the TF flag".
6308          */
6309         if (unlikely(rflags & X86_EFLAGS_TF))
6310                 kvm_vcpu_do_singlestep(vcpu, &r);
6311         return r == EMULATE_DONE;
6312 }
6313 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6314
6315 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6316 {
6317         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6318             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6319                 struct kvm_run *kvm_run = vcpu->run;
6320                 unsigned long eip = kvm_get_linear_rip(vcpu);
6321                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6322                                            vcpu->arch.guest_debug_dr7,
6323                                            vcpu->arch.eff_db);
6324
6325                 if (dr6 != 0) {
6326                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6327                         kvm_run->debug.arch.pc = eip;
6328                         kvm_run->debug.arch.exception = DB_VECTOR;
6329                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6330                         *r = EMULATE_USER_EXIT;
6331                         return true;
6332                 }
6333         }
6334
6335         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6336             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6337                 unsigned long eip = kvm_get_linear_rip(vcpu);
6338                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6339                                            vcpu->arch.dr7,
6340                                            vcpu->arch.db);
6341
6342                 if (dr6 != 0) {
6343                         vcpu->arch.dr6 &= ~15;
6344                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6345                         kvm_queue_exception(vcpu, DB_VECTOR);
6346                         *r = EMULATE_DONE;
6347                         return true;
6348                 }
6349         }
6350
6351         return false;
6352 }
6353
6354 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6355 {
6356         switch (ctxt->opcode_len) {
6357         case 1:
6358                 switch (ctxt->b) {
6359                 case 0xe4:      /* IN */
6360                 case 0xe5:
6361                 case 0xec:
6362                 case 0xed:
6363                 case 0xe6:      /* OUT */
6364                 case 0xe7:
6365                 case 0xee:
6366                 case 0xef:
6367                 case 0x6c:      /* INS */
6368                 case 0x6d:
6369                 case 0x6e:      /* OUTS */
6370                 case 0x6f:
6371                         return true;
6372                 }
6373                 break;
6374         case 2:
6375                 switch (ctxt->b) {
6376                 case 0x33:      /* RDPMC */
6377                         return true;
6378                 }
6379                 break;
6380         }
6381
6382         return false;
6383 }
6384
6385 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6386                             unsigned long cr2,
6387                             int emulation_type,
6388                             void *insn,
6389                             int insn_len)
6390 {
6391         int r;
6392         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6393         bool writeback = true;
6394         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6395
6396         vcpu->arch.l1tf_flush_l1d = true;
6397
6398         /*
6399          * Clear write_fault_to_shadow_pgtable here to ensure it is
6400          * never reused.
6401          */
6402         vcpu->arch.write_fault_to_shadow_pgtable = false;
6403         kvm_clear_exception_queue(vcpu);
6404
6405         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6406                 init_emulate_ctxt(vcpu);
6407
6408                 /*
6409                  * We will reenter on the same instruction since
6410                  * we do not set complete_userspace_io.  This does not
6411                  * handle watchpoints yet, those would be handled in
6412                  * the emulate_ops.
6413                  */
6414                 if (!(emulation_type & EMULTYPE_SKIP) &&
6415                     kvm_vcpu_check_breakpoint(vcpu, &r))
6416                         return r;
6417
6418                 ctxt->interruptibility = 0;
6419                 ctxt->have_exception = false;
6420                 ctxt->exception.vector = -1;
6421                 ctxt->perm_ok = false;
6422
6423                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6424
6425                 r = x86_decode_insn(ctxt, insn, insn_len);
6426
6427                 trace_kvm_emulate_insn_start(vcpu);
6428                 ++vcpu->stat.insn_emulation;
6429                 if (r != EMULATION_OK)  {
6430                         if (emulation_type & EMULTYPE_TRAP_UD)
6431                                 return EMULATE_FAIL;
6432                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6433                                                 emulation_type))
6434                                 return EMULATE_DONE;
6435                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6436                                 return EMULATE_DONE;
6437                         if (emulation_type & EMULTYPE_SKIP)
6438                                 return EMULATE_FAIL;
6439                         return handle_emulation_failure(vcpu, emulation_type);
6440                 }
6441         }
6442
6443         if ((emulation_type & EMULTYPE_VMWARE) &&
6444             !is_vmware_backdoor_opcode(ctxt))
6445                 return EMULATE_FAIL;
6446
6447         if (emulation_type & EMULTYPE_SKIP) {
6448                 kvm_rip_write(vcpu, ctxt->_eip);
6449                 if (ctxt->eflags & X86_EFLAGS_RF)
6450                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6451                 return EMULATE_DONE;
6452         }
6453
6454         if (retry_instruction(ctxt, cr2, emulation_type))
6455                 return EMULATE_DONE;
6456
6457         /* this is needed for vmware backdoor interface to work since it
6458            changes registers values  during IO operation */
6459         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6460                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6461                 emulator_invalidate_register_cache(ctxt);
6462         }
6463
6464 restart:
6465         /* Save the faulting GPA (cr2) in the address field */
6466         ctxt->exception.address = cr2;
6467
6468         r = x86_emulate_insn(ctxt);
6469
6470         if (r == EMULATION_INTERCEPTED)
6471                 return EMULATE_DONE;
6472
6473         if (r == EMULATION_FAILED) {
6474                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6475                                         emulation_type))
6476                         return EMULATE_DONE;
6477
6478                 return handle_emulation_failure(vcpu, emulation_type);
6479         }
6480
6481         if (ctxt->have_exception) {
6482                 r = EMULATE_DONE;
6483                 if (inject_emulated_exception(vcpu))
6484                         return r;
6485         } else if (vcpu->arch.pio.count) {
6486                 if (!vcpu->arch.pio.in) {
6487                         /* FIXME: return into emulator if single-stepping.  */
6488                         vcpu->arch.pio.count = 0;
6489                 } else {
6490                         writeback = false;
6491                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6492                 }
6493                 r = EMULATE_USER_EXIT;
6494         } else if (vcpu->mmio_needed) {
6495                 if (!vcpu->mmio_is_write)
6496                         writeback = false;
6497                 r = EMULATE_USER_EXIT;
6498                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6499         } else if (r == EMULATION_RESTART)
6500                 goto restart;
6501         else
6502                 r = EMULATE_DONE;
6503
6504         if (writeback) {
6505                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6506                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6507                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6508                 kvm_rip_write(vcpu, ctxt->eip);
6509                 if (r == EMULATE_DONE && ctxt->tf)
6510                         kvm_vcpu_do_singlestep(vcpu, &r);
6511                 if (!ctxt->have_exception ||
6512                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6513                         __kvm_set_rflags(vcpu, ctxt->eflags);
6514
6515                 /*
6516                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6517                  * do nothing, and it will be requested again as soon as
6518                  * the shadow expires.  But we still need to check here,
6519                  * because POPF has no interrupt shadow.
6520                  */
6521                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6522                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6523         } else
6524                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6525
6526         return r;
6527 }
6528
6529 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6530 {
6531         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6532 }
6533 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6534
6535 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6536                                         void *insn, int insn_len)
6537 {
6538         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6539 }
6540 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6541
6542 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6543 {
6544         vcpu->arch.pio.count = 0;
6545         return 1;
6546 }
6547
6548 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6549 {
6550         vcpu->arch.pio.count = 0;
6551
6552         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6553                 return 1;
6554
6555         return kvm_skip_emulated_instruction(vcpu);
6556 }
6557
6558 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6559                             unsigned short port)
6560 {
6561         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6562         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6563                                             size, port, &val, 1);
6564         if (ret)
6565                 return ret;
6566
6567         /*
6568          * Workaround userspace that relies on old KVM behavior of %rip being
6569          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6570          */
6571         if (port == 0x7e &&
6572             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6573                 vcpu->arch.complete_userspace_io =
6574                         complete_fast_pio_out_port_0x7e;
6575                 kvm_skip_emulated_instruction(vcpu);
6576         } else {
6577                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6578                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6579         }
6580         return 0;
6581 }
6582
6583 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6584 {
6585         unsigned long val;
6586
6587         /* We should only ever be called with arch.pio.count equal to 1 */
6588         BUG_ON(vcpu->arch.pio.count != 1);
6589
6590         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6591                 vcpu->arch.pio.count = 0;
6592                 return 1;
6593         }
6594
6595         /* For size less than 4 we merge, else we zero extend */
6596         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6597                                         : 0;
6598
6599         /*
6600          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6601          * the copy and tracing
6602          */
6603         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6604                                  vcpu->arch.pio.port, &val, 1);
6605         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6606
6607         return kvm_skip_emulated_instruction(vcpu);
6608 }
6609
6610 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6611                            unsigned short port)
6612 {
6613         unsigned long val;
6614         int ret;
6615
6616         /* For size less than 4 we merge, else we zero extend */
6617         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6618
6619         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6620                                        &val, 1);
6621         if (ret) {
6622                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6623                 return ret;
6624         }
6625
6626         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6627         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6628
6629         return 0;
6630 }
6631
6632 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6633 {
6634         int ret;
6635
6636         if (in)
6637                 ret = kvm_fast_pio_in(vcpu, size, port);
6638         else
6639                 ret = kvm_fast_pio_out(vcpu, size, port);
6640         return ret && kvm_skip_emulated_instruction(vcpu);
6641 }
6642 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6643
6644 static int kvmclock_cpu_down_prep(unsigned int cpu)
6645 {
6646         __this_cpu_write(cpu_tsc_khz, 0);
6647         return 0;
6648 }
6649
6650 static void tsc_khz_changed(void *data)
6651 {
6652         struct cpufreq_freqs *freq = data;
6653         unsigned long khz = 0;
6654
6655         if (data)
6656                 khz = freq->new;
6657         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6658                 khz = cpufreq_quick_get(raw_smp_processor_id());
6659         if (!khz)
6660                 khz = tsc_khz;
6661         __this_cpu_write(cpu_tsc_khz, khz);
6662 }
6663
6664 #ifdef CONFIG_X86_64
6665 static void kvm_hyperv_tsc_notifier(void)
6666 {
6667         struct kvm *kvm;
6668         struct kvm_vcpu *vcpu;
6669         int cpu;
6670
6671         spin_lock(&kvm_lock);
6672         list_for_each_entry(kvm, &vm_list, vm_list)
6673                 kvm_make_mclock_inprogress_request(kvm);
6674
6675         hyperv_stop_tsc_emulation();
6676
6677         /* TSC frequency always matches when on Hyper-V */
6678         for_each_present_cpu(cpu)
6679                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6680         kvm_max_guest_tsc_khz = tsc_khz;
6681
6682         list_for_each_entry(kvm, &vm_list, vm_list) {
6683                 struct kvm_arch *ka = &kvm->arch;
6684
6685                 spin_lock(&ka->pvclock_gtod_sync_lock);
6686
6687                 pvclock_update_vm_gtod_copy(kvm);
6688
6689                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6690                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6691
6692                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6693                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6694
6695                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6696         }
6697         spin_unlock(&kvm_lock);
6698 }
6699 #endif
6700
6701 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6702                                      void *data)
6703 {
6704         struct cpufreq_freqs *freq = data;
6705         struct kvm *kvm;
6706         struct kvm_vcpu *vcpu;
6707         int i, send_ipi = 0;
6708
6709         /*
6710          * We allow guests to temporarily run on slowing clocks,
6711          * provided we notify them after, or to run on accelerating
6712          * clocks, provided we notify them before.  Thus time never
6713          * goes backwards.
6714          *
6715          * However, we have a problem.  We can't atomically update
6716          * the frequency of a given CPU from this function; it is
6717          * merely a notifier, which can be called from any CPU.
6718          * Changing the TSC frequency at arbitrary points in time
6719          * requires a recomputation of local variables related to
6720          * the TSC for each VCPU.  We must flag these local variables
6721          * to be updated and be sure the update takes place with the
6722          * new frequency before any guests proceed.
6723          *
6724          * Unfortunately, the combination of hotplug CPU and frequency
6725          * change creates an intractable locking scenario; the order
6726          * of when these callouts happen is undefined with respect to
6727          * CPU hotplug, and they can race with each other.  As such,
6728          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6729          * undefined; you can actually have a CPU frequency change take
6730          * place in between the computation of X and the setting of the
6731          * variable.  To protect against this problem, all updates of
6732          * the per_cpu tsc_khz variable are done in an interrupt
6733          * protected IPI, and all callers wishing to update the value
6734          * must wait for a synchronous IPI to complete (which is trivial
6735          * if the caller is on the CPU already).  This establishes the
6736          * necessary total order on variable updates.
6737          *
6738          * Note that because a guest time update may take place
6739          * anytime after the setting of the VCPU's request bit, the
6740          * correct TSC value must be set before the request.  However,
6741          * to ensure the update actually makes it to any guest which
6742          * starts running in hardware virtualization between the set
6743          * and the acquisition of the spinlock, we must also ping the
6744          * CPU after setting the request bit.
6745          *
6746          */
6747
6748         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6749                 return 0;
6750         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6751                 return 0;
6752
6753         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6754
6755         spin_lock(&kvm_lock);
6756         list_for_each_entry(kvm, &vm_list, vm_list) {
6757                 kvm_for_each_vcpu(i, vcpu, kvm) {
6758                         if (vcpu->cpu != freq->cpu)
6759                                 continue;
6760                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6761                         if (vcpu->cpu != smp_processor_id())
6762                                 send_ipi = 1;
6763                 }
6764         }
6765         spin_unlock(&kvm_lock);
6766
6767         if (freq->old < freq->new && send_ipi) {
6768                 /*
6769                  * We upscale the frequency.  Must make the guest
6770                  * doesn't see old kvmclock values while running with
6771                  * the new frequency, otherwise we risk the guest sees
6772                  * time go backwards.
6773                  *
6774                  * In case we update the frequency for another cpu
6775                  * (which might be in guest context) send an interrupt
6776                  * to kick the cpu out of guest context.  Next time
6777                  * guest context is entered kvmclock will be updated,
6778                  * so the guest will not see stale values.
6779                  */
6780                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6781         }
6782         return 0;
6783 }
6784
6785 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6786         .notifier_call  = kvmclock_cpufreq_notifier
6787 };
6788
6789 static int kvmclock_cpu_online(unsigned int cpu)
6790 {
6791         tsc_khz_changed(NULL);
6792         return 0;
6793 }
6794
6795 static void kvm_timer_init(void)
6796 {
6797         max_tsc_khz = tsc_khz;
6798
6799         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6800 #ifdef CONFIG_CPU_FREQ
6801                 struct cpufreq_policy policy;
6802                 int cpu;
6803
6804                 memset(&policy, 0, sizeof(policy));
6805                 cpu = get_cpu();
6806                 cpufreq_get_policy(&policy, cpu);
6807                 if (policy.cpuinfo.max_freq)
6808                         max_tsc_khz = policy.cpuinfo.max_freq;
6809                 put_cpu();
6810 #endif
6811                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6812                                           CPUFREQ_TRANSITION_NOTIFIER);
6813         }
6814         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6815
6816         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6817                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6818 }
6819
6820 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6821 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6822
6823 int kvm_is_in_guest(void)
6824 {
6825         return __this_cpu_read(current_vcpu) != NULL;
6826 }
6827
6828 static int kvm_is_user_mode(void)
6829 {
6830         int user_mode = 3;
6831
6832         if (__this_cpu_read(current_vcpu))
6833                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6834
6835         return user_mode != 0;
6836 }
6837
6838 static unsigned long kvm_get_guest_ip(void)
6839 {
6840         unsigned long ip = 0;
6841
6842         if (__this_cpu_read(current_vcpu))
6843                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6844
6845         return ip;
6846 }
6847
6848 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6849         .is_in_guest            = kvm_is_in_guest,
6850         .is_user_mode           = kvm_is_user_mode,
6851         .get_guest_ip           = kvm_get_guest_ip,
6852 };
6853
6854 static void kvm_set_mmio_spte_mask(void)
6855 {
6856         u64 mask;
6857         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6858
6859         /*
6860          * Set the reserved bits and the present bit of an paging-structure
6861          * entry to generate page fault with PFER.RSV = 1.
6862          */
6863
6864         /*
6865          * Mask the uppermost physical address bit, which would be reserved as
6866          * long as the supported physical address width is less than 52.
6867          */
6868         mask = 1ull << 51;
6869
6870         /* Set the present bit. */
6871         mask |= 1ull;
6872
6873         /*
6874          * If reserved bit is not supported, clear the present bit to disable
6875          * mmio page fault.
6876          */
6877         if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6878                 mask &= ~1ull;
6879
6880         kvm_mmu_set_mmio_spte_mask(mask, mask);
6881 }
6882
6883 #ifdef CONFIG_X86_64
6884 static void pvclock_gtod_update_fn(struct work_struct *work)
6885 {
6886         struct kvm *kvm;
6887
6888         struct kvm_vcpu *vcpu;
6889         int i;
6890
6891         spin_lock(&kvm_lock);
6892         list_for_each_entry(kvm, &vm_list, vm_list)
6893                 kvm_for_each_vcpu(i, vcpu, kvm)
6894                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6895         atomic_set(&kvm_guest_has_master_clock, 0);
6896         spin_unlock(&kvm_lock);
6897 }
6898
6899 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6900
6901 /*
6902  * Notification about pvclock gtod data update.
6903  */
6904 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6905                                void *priv)
6906 {
6907         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6908         struct timekeeper *tk = priv;
6909
6910         update_pvclock_gtod(tk);
6911
6912         /* disable master clock if host does not trust, or does not
6913          * use, TSC based clocksource.
6914          */
6915         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6916             atomic_read(&kvm_guest_has_master_clock) != 0)
6917                 queue_work(system_long_wq, &pvclock_gtod_work);
6918
6919         return 0;
6920 }
6921
6922 static struct notifier_block pvclock_gtod_notifier = {
6923         .notifier_call = pvclock_gtod_notify,
6924 };
6925 #endif
6926
6927 int kvm_arch_init(void *opaque)
6928 {
6929         int r;
6930         struct kvm_x86_ops *ops = opaque;
6931
6932         if (kvm_x86_ops) {
6933                 printk(KERN_ERR "kvm: already loaded the other module\n");
6934                 r = -EEXIST;
6935                 goto out;
6936         }
6937
6938         if (!ops->cpu_has_kvm_support()) {
6939                 printk(KERN_ERR "kvm: no hardware support\n");
6940                 r = -EOPNOTSUPP;
6941                 goto out;
6942         }
6943         if (ops->disabled_by_bios()) {
6944                 printk(KERN_ERR "kvm: disabled by bios\n");
6945                 r = -EOPNOTSUPP;
6946                 goto out;
6947         }
6948
6949         /*
6950          * KVM explicitly assumes that the guest has an FPU and
6951          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
6952          * vCPU's FPU state as a fxregs_state struct.
6953          */
6954         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
6955                 printk(KERN_ERR "kvm: inadequate fpu\n");
6956                 r = -EOPNOTSUPP;
6957                 goto out;
6958         }
6959
6960         r = -ENOMEM;
6961         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
6962                                           __alignof__(struct fpu), SLAB_ACCOUNT,
6963                                           NULL);
6964         if (!x86_fpu_cache) {
6965                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
6966                 goto out;
6967         }
6968
6969         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6970         if (!shared_msrs) {
6971                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6972                 goto out_free_x86_fpu_cache;
6973         }
6974
6975         r = kvm_mmu_module_init();
6976         if (r)
6977                 goto out_free_percpu;
6978
6979         kvm_set_mmio_spte_mask();
6980
6981         kvm_x86_ops = ops;
6982
6983         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6984                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6985                         PT_PRESENT_MASK, 0, sme_me_mask);
6986         kvm_timer_init();
6987
6988         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6989
6990         if (boot_cpu_has(X86_FEATURE_XSAVE))
6991                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6992
6993         kvm_lapic_init();
6994 #ifdef CONFIG_X86_64
6995         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6996
6997         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6998                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6999 #endif
7000
7001         return 0;
7002
7003 out_free_percpu:
7004         free_percpu(shared_msrs);
7005 out_free_x86_fpu_cache:
7006         kmem_cache_destroy(x86_fpu_cache);
7007 out:
7008         return r;
7009 }
7010
7011 void kvm_arch_exit(void)
7012 {
7013 #ifdef CONFIG_X86_64
7014         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7015                 clear_hv_tscchange_cb();
7016 #endif
7017         kvm_lapic_exit();
7018         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7019
7020         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7021                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7022                                             CPUFREQ_TRANSITION_NOTIFIER);
7023         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7024 #ifdef CONFIG_X86_64
7025         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7026 #endif
7027         kvm_x86_ops = NULL;
7028         kvm_mmu_module_exit();
7029         free_percpu(shared_msrs);
7030         kmem_cache_destroy(x86_fpu_cache);
7031 }
7032
7033 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7034 {
7035         ++vcpu->stat.halt_exits;
7036         if (lapic_in_kernel(vcpu)) {
7037                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7038                 return 1;
7039         } else {
7040                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7041                 return 0;
7042         }
7043 }
7044 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7045
7046 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7047 {
7048         int ret = kvm_skip_emulated_instruction(vcpu);
7049         /*
7050          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7051          * KVM_EXIT_DEBUG here.
7052          */
7053         return kvm_vcpu_halt(vcpu) && ret;
7054 }
7055 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7056
7057 #ifdef CONFIG_X86_64
7058 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7059                                 unsigned long clock_type)
7060 {
7061         struct kvm_clock_pairing clock_pairing;
7062         struct timespec64 ts;
7063         u64 cycle;
7064         int ret;
7065
7066         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7067                 return -KVM_EOPNOTSUPP;
7068
7069         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7070                 return -KVM_EOPNOTSUPP;
7071
7072         clock_pairing.sec = ts.tv_sec;
7073         clock_pairing.nsec = ts.tv_nsec;
7074         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7075         clock_pairing.flags = 0;
7076         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7077
7078         ret = 0;
7079         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7080                             sizeof(struct kvm_clock_pairing)))
7081                 ret = -KVM_EFAULT;
7082
7083         return ret;
7084 }
7085 #endif
7086
7087 /*
7088  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7089  *
7090  * @apicid - apicid of vcpu to be kicked.
7091  */
7092 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7093 {
7094         struct kvm_lapic_irq lapic_irq;
7095
7096         lapic_irq.shorthand = 0;
7097         lapic_irq.dest_mode = 0;
7098         lapic_irq.level = 0;
7099         lapic_irq.dest_id = apicid;
7100         lapic_irq.msi_redir_hint = false;
7101
7102         lapic_irq.delivery_mode = APIC_DM_REMRD;
7103         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7104 }
7105
7106 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7107 {
7108         if (!lapic_in_kernel(vcpu)) {
7109                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7110                 return;
7111         }
7112         if (!vcpu->arch.apicv_active)
7113                 return;
7114
7115         vcpu->arch.apicv_active = false;
7116         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7117 }
7118
7119 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7120 {
7121         unsigned long nr, a0, a1, a2, a3, ret;
7122         int op_64_bit;
7123
7124         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7125                 return kvm_hv_hypercall(vcpu);
7126
7127         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
7128         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
7129         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
7130         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
7131         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
7132
7133         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7134
7135         op_64_bit = is_64_bit_mode(vcpu);
7136         if (!op_64_bit) {
7137                 nr &= 0xFFFFFFFF;
7138                 a0 &= 0xFFFFFFFF;
7139                 a1 &= 0xFFFFFFFF;
7140                 a2 &= 0xFFFFFFFF;
7141                 a3 &= 0xFFFFFFFF;
7142         }
7143
7144         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7145                 ret = -KVM_EPERM;
7146                 goto out;
7147         }
7148
7149         switch (nr) {
7150         case KVM_HC_VAPIC_POLL_IRQ:
7151                 ret = 0;
7152                 break;
7153         case KVM_HC_KICK_CPU:
7154                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7155                 ret = 0;
7156                 break;
7157 #ifdef CONFIG_X86_64
7158         case KVM_HC_CLOCK_PAIRING:
7159                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7160                 break;
7161 #endif
7162         case KVM_HC_SEND_IPI:
7163                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7164                 break;
7165         default:
7166                 ret = -KVM_ENOSYS;
7167                 break;
7168         }
7169 out:
7170         if (!op_64_bit)
7171                 ret = (u32)ret;
7172         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
7173
7174         ++vcpu->stat.hypercalls;
7175         return kvm_skip_emulated_instruction(vcpu);
7176 }
7177 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7178
7179 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7180 {
7181         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7182         char instruction[3];
7183         unsigned long rip = kvm_rip_read(vcpu);
7184
7185         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7186
7187         return emulator_write_emulated(ctxt, rip, instruction, 3,
7188                 &ctxt->exception);
7189 }
7190
7191 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7192 {
7193         return vcpu->run->request_interrupt_window &&
7194                 likely(!pic_in_kernel(vcpu->kvm));
7195 }
7196
7197 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7198 {
7199         struct kvm_run *kvm_run = vcpu->run;
7200
7201         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7202         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7203         kvm_run->cr8 = kvm_get_cr8(vcpu);
7204         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7205         kvm_run->ready_for_interrupt_injection =
7206                 pic_in_kernel(vcpu->kvm) ||
7207                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7208 }
7209
7210 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7211 {
7212         int max_irr, tpr;
7213
7214         if (!kvm_x86_ops->update_cr8_intercept)
7215                 return;
7216
7217         if (!lapic_in_kernel(vcpu))
7218                 return;
7219
7220         if (vcpu->arch.apicv_active)
7221                 return;
7222
7223         if (!vcpu->arch.apic->vapic_addr)
7224                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7225         else
7226                 max_irr = -1;
7227
7228         if (max_irr != -1)
7229                 max_irr >>= 4;
7230
7231         tpr = kvm_lapic_get_cr8(vcpu);
7232
7233         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7234 }
7235
7236 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7237 {
7238         int r;
7239
7240         /* try to reinject previous events if any */
7241
7242         if (vcpu->arch.exception.injected)
7243                 kvm_x86_ops->queue_exception(vcpu);
7244         /*
7245          * Do not inject an NMI or interrupt if there is a pending
7246          * exception.  Exceptions and interrupts are recognized at
7247          * instruction boundaries, i.e. the start of an instruction.
7248          * Trap-like exceptions, e.g. #DB, have higher priority than
7249          * NMIs and interrupts, i.e. traps are recognized before an
7250          * NMI/interrupt that's pending on the same instruction.
7251          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7252          * priority, but are only generated (pended) during instruction
7253          * execution, i.e. a pending fault-like exception means the
7254          * fault occurred on the *previous* instruction and must be
7255          * serviced prior to recognizing any new events in order to
7256          * fully complete the previous instruction.
7257          */
7258         else if (!vcpu->arch.exception.pending) {
7259                 if (vcpu->arch.nmi_injected)
7260                         kvm_x86_ops->set_nmi(vcpu);
7261                 else if (vcpu->arch.interrupt.injected)
7262                         kvm_x86_ops->set_irq(vcpu);
7263         }
7264
7265         /*
7266          * Call check_nested_events() even if we reinjected a previous event
7267          * in order for caller to determine if it should require immediate-exit
7268          * from L2 to L1 due to pending L1 events which require exit
7269          * from L2 to L1.
7270          */
7271         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7272                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7273                 if (r != 0)
7274                         return r;
7275         }
7276
7277         /* try to inject new event if pending */
7278         if (vcpu->arch.exception.pending) {
7279                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7280                                         vcpu->arch.exception.has_error_code,
7281                                         vcpu->arch.exception.error_code);
7282
7283                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7284                 vcpu->arch.exception.pending = false;
7285                 vcpu->arch.exception.injected = true;
7286
7287                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7288                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7289                                              X86_EFLAGS_RF);
7290
7291                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7292                         /*
7293                          * This code assumes that nSVM doesn't use
7294                          * check_nested_events(). If it does, the
7295                          * DR6/DR7 changes should happen before L1
7296                          * gets a #VMEXIT for an intercepted #DB in
7297                          * L2.  (Under VMX, on the other hand, the
7298                          * DR6/DR7 changes should not happen in the
7299                          * event of a VM-exit to L1 for an intercepted
7300                          * #DB in L2.)
7301                          */
7302                         kvm_deliver_exception_payload(vcpu);
7303                         if (vcpu->arch.dr7 & DR7_GD) {
7304                                 vcpu->arch.dr7 &= ~DR7_GD;
7305                                 kvm_update_dr7(vcpu);
7306                         }
7307                 }
7308
7309                 kvm_x86_ops->queue_exception(vcpu);
7310         }
7311
7312         /* Don't consider new event if we re-injected an event */
7313         if (kvm_event_needs_reinjection(vcpu))
7314                 return 0;
7315
7316         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7317             kvm_x86_ops->smi_allowed(vcpu)) {
7318                 vcpu->arch.smi_pending = false;
7319                 ++vcpu->arch.smi_count;
7320                 enter_smm(vcpu);
7321         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7322                 --vcpu->arch.nmi_pending;
7323                 vcpu->arch.nmi_injected = true;
7324                 kvm_x86_ops->set_nmi(vcpu);
7325         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7326                 /*
7327                  * Because interrupts can be injected asynchronously, we are
7328                  * calling check_nested_events again here to avoid a race condition.
7329                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7330                  * proposal and current concerns.  Perhaps we should be setting
7331                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7332                  */
7333                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7334                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7335                         if (r != 0)
7336                                 return r;
7337                 }
7338                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7339                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7340                                             false);
7341                         kvm_x86_ops->set_irq(vcpu);
7342                 }
7343         }
7344
7345         return 0;
7346 }
7347
7348 static void process_nmi(struct kvm_vcpu *vcpu)
7349 {
7350         unsigned limit = 2;
7351
7352         /*
7353          * x86 is limited to one NMI running, and one NMI pending after it.
7354          * If an NMI is already in progress, limit further NMIs to just one.
7355          * Otherwise, allow two (and we'll inject the first one immediately).
7356          */
7357         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7358                 limit = 1;
7359
7360         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7361         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7362         kvm_make_request(KVM_REQ_EVENT, vcpu);
7363 }
7364
7365 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7366 {
7367         u32 flags = 0;
7368         flags |= seg->g       << 23;
7369         flags |= seg->db      << 22;
7370         flags |= seg->l       << 21;
7371         flags |= seg->avl     << 20;
7372         flags |= seg->present << 15;
7373         flags |= seg->dpl     << 13;
7374         flags |= seg->s       << 12;
7375         flags |= seg->type    << 8;
7376         return flags;
7377 }
7378
7379 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7380 {
7381         struct kvm_segment seg;
7382         int offset;
7383
7384         kvm_get_segment(vcpu, &seg, n);
7385         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7386
7387         if (n < 3)
7388                 offset = 0x7f84 + n * 12;
7389         else
7390                 offset = 0x7f2c + (n - 3) * 12;
7391
7392         put_smstate(u32, buf, offset + 8, seg.base);
7393         put_smstate(u32, buf, offset + 4, seg.limit);
7394         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7395 }
7396
7397 #ifdef CONFIG_X86_64
7398 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7399 {
7400         struct kvm_segment seg;
7401         int offset;
7402         u16 flags;
7403
7404         kvm_get_segment(vcpu, &seg, n);
7405         offset = 0x7e00 + n * 16;
7406
7407         flags = enter_smm_get_segment_flags(&seg) >> 8;
7408         put_smstate(u16, buf, offset, seg.selector);
7409         put_smstate(u16, buf, offset + 2, flags);
7410         put_smstate(u32, buf, offset + 4, seg.limit);
7411         put_smstate(u64, buf, offset + 8, seg.base);
7412 }
7413 #endif
7414
7415 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7416 {
7417         struct desc_ptr dt;
7418         struct kvm_segment seg;
7419         unsigned long val;
7420         int i;
7421
7422         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7423         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7424         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7425         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7426
7427         for (i = 0; i < 8; i++)
7428                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7429
7430         kvm_get_dr(vcpu, 6, &val);
7431         put_smstate(u32, buf, 0x7fcc, (u32)val);
7432         kvm_get_dr(vcpu, 7, &val);
7433         put_smstate(u32, buf, 0x7fc8, (u32)val);
7434
7435         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7436         put_smstate(u32, buf, 0x7fc4, seg.selector);
7437         put_smstate(u32, buf, 0x7f64, seg.base);
7438         put_smstate(u32, buf, 0x7f60, seg.limit);
7439         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7440
7441         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7442         put_smstate(u32, buf, 0x7fc0, seg.selector);
7443         put_smstate(u32, buf, 0x7f80, seg.base);
7444         put_smstate(u32, buf, 0x7f7c, seg.limit);
7445         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7446
7447         kvm_x86_ops->get_gdt(vcpu, &dt);
7448         put_smstate(u32, buf, 0x7f74, dt.address);
7449         put_smstate(u32, buf, 0x7f70, dt.size);
7450
7451         kvm_x86_ops->get_idt(vcpu, &dt);
7452         put_smstate(u32, buf, 0x7f58, dt.address);
7453         put_smstate(u32, buf, 0x7f54, dt.size);
7454
7455         for (i = 0; i < 6; i++)
7456                 enter_smm_save_seg_32(vcpu, buf, i);
7457
7458         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7459
7460         /* revision id */
7461         put_smstate(u32, buf, 0x7efc, 0x00020000);
7462         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7463 }
7464
7465 #ifdef CONFIG_X86_64
7466 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7467 {
7468         struct desc_ptr dt;
7469         struct kvm_segment seg;
7470         unsigned long val;
7471         int i;
7472
7473         for (i = 0; i < 16; i++)
7474                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7475
7476         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7477         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7478
7479         kvm_get_dr(vcpu, 6, &val);
7480         put_smstate(u64, buf, 0x7f68, val);
7481         kvm_get_dr(vcpu, 7, &val);
7482         put_smstate(u64, buf, 0x7f60, val);
7483
7484         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7485         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7486         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7487
7488         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7489
7490         /* revision id */
7491         put_smstate(u32, buf, 0x7efc, 0x00020064);
7492
7493         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7494
7495         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7496         put_smstate(u16, buf, 0x7e90, seg.selector);
7497         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7498         put_smstate(u32, buf, 0x7e94, seg.limit);
7499         put_smstate(u64, buf, 0x7e98, seg.base);
7500
7501         kvm_x86_ops->get_idt(vcpu, &dt);
7502         put_smstate(u32, buf, 0x7e84, dt.size);
7503         put_smstate(u64, buf, 0x7e88, dt.address);
7504
7505         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7506         put_smstate(u16, buf, 0x7e70, seg.selector);
7507         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7508         put_smstate(u32, buf, 0x7e74, seg.limit);
7509         put_smstate(u64, buf, 0x7e78, seg.base);
7510
7511         kvm_x86_ops->get_gdt(vcpu, &dt);
7512         put_smstate(u32, buf, 0x7e64, dt.size);
7513         put_smstate(u64, buf, 0x7e68, dt.address);
7514
7515         for (i = 0; i < 6; i++)
7516                 enter_smm_save_seg_64(vcpu, buf, i);
7517 }
7518 #endif
7519
7520 static void enter_smm(struct kvm_vcpu *vcpu)
7521 {
7522         struct kvm_segment cs, ds;
7523         struct desc_ptr dt;
7524         char buf[512];
7525         u32 cr0;
7526
7527         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7528         memset(buf, 0, 512);
7529 #ifdef CONFIG_X86_64
7530         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7531                 enter_smm_save_state_64(vcpu, buf);
7532         else
7533 #endif
7534                 enter_smm_save_state_32(vcpu, buf);
7535
7536         /*
7537          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7538          * vCPU state (e.g. leave guest mode) after we've saved the state into
7539          * the SMM state-save area.
7540          */
7541         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7542
7543         vcpu->arch.hflags |= HF_SMM_MASK;
7544         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7545
7546         if (kvm_x86_ops->get_nmi_mask(vcpu))
7547                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7548         else
7549                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7550
7551         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7552         kvm_rip_write(vcpu, 0x8000);
7553
7554         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7555         kvm_x86_ops->set_cr0(vcpu, cr0);
7556         vcpu->arch.cr0 = cr0;
7557
7558         kvm_x86_ops->set_cr4(vcpu, 0);
7559
7560         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7561         dt.address = dt.size = 0;
7562         kvm_x86_ops->set_idt(vcpu, &dt);
7563
7564         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7565
7566         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7567         cs.base = vcpu->arch.smbase;
7568
7569         ds.selector = 0;
7570         ds.base = 0;
7571
7572         cs.limit    = ds.limit = 0xffffffff;
7573         cs.type     = ds.type = 0x3;
7574         cs.dpl      = ds.dpl = 0;
7575         cs.db       = ds.db = 0;
7576         cs.s        = ds.s = 1;
7577         cs.l        = ds.l = 0;
7578         cs.g        = ds.g = 1;
7579         cs.avl      = ds.avl = 0;
7580         cs.present  = ds.present = 1;
7581         cs.unusable = ds.unusable = 0;
7582         cs.padding  = ds.padding = 0;
7583
7584         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7585         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7586         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7587         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7588         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7589         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7590
7591 #ifdef CONFIG_X86_64
7592         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7593                 kvm_x86_ops->set_efer(vcpu, 0);
7594 #endif
7595
7596         kvm_update_cpuid(vcpu);
7597         kvm_mmu_reset_context(vcpu);
7598 }
7599
7600 static void process_smi(struct kvm_vcpu *vcpu)
7601 {
7602         vcpu->arch.smi_pending = true;
7603         kvm_make_request(KVM_REQ_EVENT, vcpu);
7604 }
7605
7606 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7607 {
7608         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7609 }
7610
7611 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7612 {
7613         if (!kvm_apic_present(vcpu))
7614                 return;
7615
7616         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7617
7618         if (irqchip_split(vcpu->kvm))
7619                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7620         else {
7621                 if (vcpu->arch.apicv_active)
7622                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7623                 if (ioapic_in_kernel(vcpu->kvm))
7624                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7625         }
7626
7627         if (is_guest_mode(vcpu))
7628                 vcpu->arch.load_eoi_exitmap_pending = true;
7629         else
7630                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7631 }
7632
7633 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7634 {
7635         u64 eoi_exit_bitmap[4];
7636
7637         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7638                 return;
7639
7640         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7641                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7642         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7643 }
7644
7645 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7646                 unsigned long start, unsigned long end,
7647                 bool blockable)
7648 {
7649         unsigned long apic_address;
7650
7651         /*
7652          * The physical address of apic access page is stored in the VMCS.
7653          * Update it when it becomes invalid.
7654          */
7655         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7656         if (start <= apic_address && apic_address < end)
7657                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7658
7659         return 0;
7660 }
7661
7662 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7663 {
7664         struct page *page = NULL;
7665
7666         if (!lapic_in_kernel(vcpu))
7667                 return;
7668
7669         if (!kvm_x86_ops->set_apic_access_page_addr)
7670                 return;
7671
7672         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7673         if (is_error_page(page))
7674                 return;
7675         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7676
7677         /*
7678          * Do not pin apic access page in memory, the MMU notifier
7679          * will call us again if it is migrated or swapped out.
7680          */
7681         put_page(page);
7682 }
7683 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7684
7685 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7686 {
7687         smp_send_reschedule(vcpu->cpu);
7688 }
7689 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7690
7691 /*
7692  * Returns 1 to let vcpu_run() continue the guest execution loop without
7693  * exiting to the userspace.  Otherwise, the value will be returned to the
7694  * userspace.
7695  */
7696 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7697 {
7698         int r;
7699         bool req_int_win =
7700                 dm_request_for_irq_injection(vcpu) &&
7701                 kvm_cpu_accept_dm_intr(vcpu);
7702
7703         bool req_immediate_exit = false;
7704
7705         if (kvm_request_pending(vcpu)) {
7706                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7707                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7708                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7709                         kvm_mmu_unload(vcpu);
7710                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7711                         __kvm_migrate_timers(vcpu);
7712                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7713                         kvm_gen_update_masterclock(vcpu->kvm);
7714                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7715                         kvm_gen_kvmclock_update(vcpu);
7716                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7717                         r = kvm_guest_time_update(vcpu);
7718                         if (unlikely(r))
7719                                 goto out;
7720                 }
7721                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7722                         kvm_mmu_sync_roots(vcpu);
7723                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7724                         kvm_mmu_load_cr3(vcpu);
7725                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7726                         kvm_vcpu_flush_tlb(vcpu, true);
7727                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7728                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7729                         r = 0;
7730                         goto out;
7731                 }
7732                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7733                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7734                         vcpu->mmio_needed = 0;
7735                         r = 0;
7736                         goto out;
7737                 }
7738                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7739                         /* Page is swapped out. Do synthetic halt */
7740                         vcpu->arch.apf.halted = true;
7741                         r = 1;
7742                         goto out;
7743                 }
7744                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7745                         record_steal_time(vcpu);
7746                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7747                         process_smi(vcpu);
7748                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7749                         process_nmi(vcpu);
7750                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7751                         kvm_pmu_handle_event(vcpu);
7752                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7753                         kvm_pmu_deliver_pmi(vcpu);
7754                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7755                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7756                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7757                                      vcpu->arch.ioapic_handled_vectors)) {
7758                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7759                                 vcpu->run->eoi.vector =
7760                                                 vcpu->arch.pending_ioapic_eoi;
7761                                 r = 0;
7762                                 goto out;
7763                         }
7764                 }
7765                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7766                         vcpu_scan_ioapic(vcpu);
7767                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7768                         vcpu_load_eoi_exitmap(vcpu);
7769                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7770                         kvm_vcpu_reload_apic_access_page(vcpu);
7771                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7772                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7773                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7774                         r = 0;
7775                         goto out;
7776                 }
7777                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7778                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7779                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7780                         r = 0;
7781                         goto out;
7782                 }
7783                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7784                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7785                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7786                         r = 0;
7787                         goto out;
7788                 }
7789
7790                 /*
7791                  * KVM_REQ_HV_STIMER has to be processed after
7792                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7793                  * depend on the guest clock being up-to-date
7794                  */
7795                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7796                         kvm_hv_process_stimers(vcpu);
7797         }
7798
7799         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7800                 ++vcpu->stat.req_event;
7801                 kvm_apic_accept_events(vcpu);
7802                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7803                         r = 1;
7804                         goto out;
7805                 }
7806
7807                 if (inject_pending_event(vcpu, req_int_win) != 0)
7808                         req_immediate_exit = true;
7809                 else {
7810                         /* Enable SMI/NMI/IRQ window open exits if needed.
7811                          *
7812                          * SMIs have three cases:
7813                          * 1) They can be nested, and then there is nothing to
7814                          *    do here because RSM will cause a vmexit anyway.
7815                          * 2) There is an ISA-specific reason why SMI cannot be
7816                          *    injected, and the moment when this changes can be
7817                          *    intercepted.
7818                          * 3) Or the SMI can be pending because
7819                          *    inject_pending_event has completed the injection
7820                          *    of an IRQ or NMI from the previous vmexit, and
7821                          *    then we request an immediate exit to inject the
7822                          *    SMI.
7823                          */
7824                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7825                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7826                                         req_immediate_exit = true;
7827                         if (vcpu->arch.nmi_pending)
7828                                 kvm_x86_ops->enable_nmi_window(vcpu);
7829                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7830                                 kvm_x86_ops->enable_irq_window(vcpu);
7831                         WARN_ON(vcpu->arch.exception.pending);
7832                 }
7833
7834                 if (kvm_lapic_enabled(vcpu)) {
7835                         update_cr8_intercept(vcpu);
7836                         kvm_lapic_sync_to_vapic(vcpu);
7837                 }
7838         }
7839
7840         r = kvm_mmu_reload(vcpu);
7841         if (unlikely(r)) {
7842                 goto cancel_injection;
7843         }
7844
7845         preempt_disable();
7846
7847         kvm_x86_ops->prepare_guest_switch(vcpu);
7848
7849         /*
7850          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7851          * IPI are then delayed after guest entry, which ensures that they
7852          * result in virtual interrupt delivery.
7853          */
7854         local_irq_disable();
7855         vcpu->mode = IN_GUEST_MODE;
7856
7857         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7858
7859         /*
7860          * 1) We should set ->mode before checking ->requests.  Please see
7861          * the comment in kvm_vcpu_exiting_guest_mode().
7862          *
7863          * 2) For APICv, we should set ->mode before checking PID.ON. This
7864          * pairs with the memory barrier implicit in pi_test_and_set_on
7865          * (see vmx_deliver_posted_interrupt).
7866          *
7867          * 3) This also orders the write to mode from any reads to the page
7868          * tables done while the VCPU is running.  Please see the comment
7869          * in kvm_flush_remote_tlbs.
7870          */
7871         smp_mb__after_srcu_read_unlock();
7872
7873         /*
7874          * This handles the case where a posted interrupt was
7875          * notified with kvm_vcpu_kick.
7876          */
7877         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7878                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7879
7880         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7881             || need_resched() || signal_pending(current)) {
7882                 vcpu->mode = OUTSIDE_GUEST_MODE;
7883                 smp_wmb();
7884                 local_irq_enable();
7885                 preempt_enable();
7886                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7887                 r = 1;
7888                 goto cancel_injection;
7889         }
7890
7891         if (req_immediate_exit) {
7892                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7893                 kvm_x86_ops->request_immediate_exit(vcpu);
7894         }
7895
7896         trace_kvm_entry(vcpu->vcpu_id);
7897         if (lapic_in_kernel(vcpu) &&
7898             vcpu->arch.apic->lapic_timer.timer_advance_ns)
7899                 wait_lapic_expire(vcpu);
7900         guest_enter_irqoff();
7901
7902         if (unlikely(vcpu->arch.switch_db_regs)) {
7903                 set_debugreg(0, 7);
7904                 set_debugreg(vcpu->arch.eff_db[0], 0);
7905                 set_debugreg(vcpu->arch.eff_db[1], 1);
7906                 set_debugreg(vcpu->arch.eff_db[2], 2);
7907                 set_debugreg(vcpu->arch.eff_db[3], 3);
7908                 set_debugreg(vcpu->arch.dr6, 6);
7909                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7910         }
7911
7912         kvm_x86_ops->run(vcpu);
7913
7914         /*
7915          * Do this here before restoring debug registers on the host.  And
7916          * since we do this before handling the vmexit, a DR access vmexit
7917          * can (a) read the correct value of the debug registers, (b) set
7918          * KVM_DEBUGREG_WONT_EXIT again.
7919          */
7920         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7921                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7922                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7923                 kvm_update_dr0123(vcpu);
7924                 kvm_update_dr6(vcpu);
7925                 kvm_update_dr7(vcpu);
7926                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7927         }
7928
7929         /*
7930          * If the guest has used debug registers, at least dr7
7931          * will be disabled while returning to the host.
7932          * If we don't have active breakpoints in the host, we don't
7933          * care about the messed up debug address registers. But if
7934          * we have some of them active, restore the old state.
7935          */
7936         if (hw_breakpoint_active())
7937                 hw_breakpoint_restore();
7938
7939         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7940
7941         vcpu->mode = OUTSIDE_GUEST_MODE;
7942         smp_wmb();
7943
7944         kvm_before_interrupt(vcpu);
7945         kvm_x86_ops->handle_external_intr(vcpu);
7946         kvm_after_interrupt(vcpu);
7947
7948         ++vcpu->stat.exits;
7949
7950         guest_exit_irqoff();
7951
7952         local_irq_enable();
7953         preempt_enable();
7954
7955         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7956
7957         /*
7958          * Profile KVM exit RIPs:
7959          */
7960         if (unlikely(prof_on == KVM_PROFILING)) {
7961                 unsigned long rip = kvm_rip_read(vcpu);
7962                 profile_hit(KVM_PROFILING, (void *)rip);
7963         }
7964
7965         if (unlikely(vcpu->arch.tsc_always_catchup))
7966                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7967
7968         if (vcpu->arch.apic_attention)
7969                 kvm_lapic_sync_from_vapic(vcpu);
7970
7971         vcpu->arch.gpa_available = false;
7972         r = kvm_x86_ops->handle_exit(vcpu);
7973         return r;
7974
7975 cancel_injection:
7976         kvm_x86_ops->cancel_injection(vcpu);
7977         if (unlikely(vcpu->arch.apic_attention))
7978                 kvm_lapic_sync_from_vapic(vcpu);
7979 out:
7980         return r;
7981 }
7982
7983 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7984 {
7985         if (!kvm_arch_vcpu_runnable(vcpu) &&
7986             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7987                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7988                 kvm_vcpu_block(vcpu);
7989                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7990
7991                 if (kvm_x86_ops->post_block)
7992                         kvm_x86_ops->post_block(vcpu);
7993
7994                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7995                         return 1;
7996         }
7997
7998         kvm_apic_accept_events(vcpu);
7999         switch(vcpu->arch.mp_state) {
8000         case KVM_MP_STATE_HALTED:
8001                 vcpu->arch.pv.pv_unhalted = false;
8002                 vcpu->arch.mp_state =
8003                         KVM_MP_STATE_RUNNABLE;
8004                 /* fall through */
8005         case KVM_MP_STATE_RUNNABLE:
8006                 vcpu->arch.apf.halted = false;
8007                 break;
8008         case KVM_MP_STATE_INIT_RECEIVED:
8009                 break;
8010         default:
8011                 return -EINTR;
8012                 break;
8013         }
8014         return 1;
8015 }
8016
8017 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8018 {
8019         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8020                 kvm_x86_ops->check_nested_events(vcpu, false);
8021
8022         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8023                 !vcpu->arch.apf.halted);
8024 }
8025
8026 static int vcpu_run(struct kvm_vcpu *vcpu)
8027 {
8028         int r;
8029         struct kvm *kvm = vcpu->kvm;
8030
8031         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8032         vcpu->arch.l1tf_flush_l1d = true;
8033
8034         for (;;) {
8035                 if (kvm_vcpu_running(vcpu)) {
8036                         r = vcpu_enter_guest(vcpu);
8037                 } else {
8038                         r = vcpu_block(kvm, vcpu);
8039                 }
8040
8041                 if (r <= 0)
8042                         break;
8043
8044                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8045                 if (kvm_cpu_has_pending_timer(vcpu))
8046                         kvm_inject_pending_timer_irqs(vcpu);
8047
8048                 if (dm_request_for_irq_injection(vcpu) &&
8049                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8050                         r = 0;
8051                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8052                         ++vcpu->stat.request_irq_exits;
8053                         break;
8054                 }
8055
8056                 kvm_check_async_pf_completion(vcpu);
8057
8058                 if (signal_pending(current)) {
8059                         r = -EINTR;
8060                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8061                         ++vcpu->stat.signal_exits;
8062                         break;
8063                 }
8064                 if (need_resched()) {
8065                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8066                         cond_resched();
8067                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8068                 }
8069         }
8070
8071         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8072
8073         return r;
8074 }
8075
8076 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8077 {
8078         int r;
8079         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8080         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8081         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8082         if (r != EMULATE_DONE)
8083                 return 0;
8084         return 1;
8085 }
8086
8087 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8088 {
8089         BUG_ON(!vcpu->arch.pio.count);
8090
8091         return complete_emulated_io(vcpu);
8092 }
8093
8094 /*
8095  * Implements the following, as a state machine:
8096  *
8097  * read:
8098  *   for each fragment
8099  *     for each mmio piece in the fragment
8100  *       write gpa, len
8101  *       exit
8102  *       copy data
8103  *   execute insn
8104  *
8105  * write:
8106  *   for each fragment
8107  *     for each mmio piece in the fragment
8108  *       write gpa, len
8109  *       copy data
8110  *       exit
8111  */
8112 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8113 {
8114         struct kvm_run *run = vcpu->run;
8115         struct kvm_mmio_fragment *frag;
8116         unsigned len;
8117
8118         BUG_ON(!vcpu->mmio_needed);
8119
8120         /* Complete previous fragment */
8121         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8122         len = min(8u, frag->len);
8123         if (!vcpu->mmio_is_write)
8124                 memcpy(frag->data, run->mmio.data, len);
8125
8126         if (frag->len <= 8) {
8127                 /* Switch to the next fragment. */
8128                 frag++;
8129                 vcpu->mmio_cur_fragment++;
8130         } else {
8131                 /* Go forward to the next mmio piece. */
8132                 frag->data += len;
8133                 frag->gpa += len;
8134                 frag->len -= len;
8135         }
8136
8137         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8138                 vcpu->mmio_needed = 0;
8139
8140                 /* FIXME: return into emulator if single-stepping.  */
8141                 if (vcpu->mmio_is_write)
8142                         return 1;
8143                 vcpu->mmio_read_completed = 1;
8144                 return complete_emulated_io(vcpu);
8145         }
8146
8147         run->exit_reason = KVM_EXIT_MMIO;
8148         run->mmio.phys_addr = frag->gpa;
8149         if (vcpu->mmio_is_write)
8150                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8151         run->mmio.len = min(8u, frag->len);
8152         run->mmio.is_write = vcpu->mmio_is_write;
8153         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8154         return 0;
8155 }
8156
8157 /* Swap (qemu) user FPU context for the guest FPU context. */
8158 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8159 {
8160         preempt_disable();
8161         copy_fpregs_to_fpstate(&current->thread.fpu);
8162         /* PKRU is separately restored in kvm_x86_ops->run.  */
8163         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8164                                 ~XFEATURE_MASK_PKRU);
8165         preempt_enable();
8166         trace_kvm_fpu(1);
8167 }
8168
8169 /* When vcpu_run ends, restore user space FPU context. */
8170 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8171 {
8172         preempt_disable();
8173         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8174         copy_kernel_to_fpregs(&current->thread.fpu.state);
8175         preempt_enable();
8176         ++vcpu->stat.fpu_reload;
8177         trace_kvm_fpu(0);
8178 }
8179
8180 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8181 {
8182         int r;
8183
8184         vcpu_load(vcpu);
8185         kvm_sigset_activate(vcpu);
8186         kvm_load_guest_fpu(vcpu);
8187
8188         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8189                 if (kvm_run->immediate_exit) {
8190                         r = -EINTR;
8191                         goto out;
8192                 }
8193                 kvm_vcpu_block(vcpu);
8194                 kvm_apic_accept_events(vcpu);
8195                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8196                 r = -EAGAIN;
8197                 if (signal_pending(current)) {
8198                         r = -EINTR;
8199                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8200                         ++vcpu->stat.signal_exits;
8201                 }
8202                 goto out;
8203         }
8204
8205         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8206                 r = -EINVAL;
8207                 goto out;
8208         }
8209
8210         if (vcpu->run->kvm_dirty_regs) {
8211                 r = sync_regs(vcpu);
8212                 if (r != 0)
8213                         goto out;
8214         }
8215
8216         /* re-sync apic's tpr */
8217         if (!lapic_in_kernel(vcpu)) {
8218                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8219                         r = -EINVAL;
8220                         goto out;
8221                 }
8222         }
8223
8224         if (unlikely(vcpu->arch.complete_userspace_io)) {
8225                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8226                 vcpu->arch.complete_userspace_io = NULL;
8227                 r = cui(vcpu);
8228                 if (r <= 0)
8229                         goto out;
8230         } else
8231                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8232
8233         if (kvm_run->immediate_exit)
8234                 r = -EINTR;
8235         else
8236                 r = vcpu_run(vcpu);
8237
8238 out:
8239         kvm_put_guest_fpu(vcpu);
8240         if (vcpu->run->kvm_valid_regs)
8241                 store_regs(vcpu);
8242         post_kvm_run_save(vcpu);
8243         kvm_sigset_deactivate(vcpu);
8244
8245         vcpu_put(vcpu);
8246         return r;
8247 }
8248
8249 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8250 {
8251         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8252                 /*
8253                  * We are here if userspace calls get_regs() in the middle of
8254                  * instruction emulation. Registers state needs to be copied
8255                  * back from emulation context to vcpu. Userspace shouldn't do
8256                  * that usually, but some bad designed PV devices (vmware
8257                  * backdoor interface) need this to work
8258                  */
8259                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8260                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8261         }
8262         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
8263         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
8264         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
8265         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
8266         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
8267         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
8268         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8269         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
8270 #ifdef CONFIG_X86_64
8271         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
8272         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
8273         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
8274         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
8275         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
8276         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
8277         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
8278         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
8279 #endif
8280
8281         regs->rip = kvm_rip_read(vcpu);
8282         regs->rflags = kvm_get_rflags(vcpu);
8283 }
8284
8285 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8286 {
8287         vcpu_load(vcpu);
8288         __get_regs(vcpu, regs);
8289         vcpu_put(vcpu);
8290         return 0;
8291 }
8292
8293 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8294 {
8295         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8296         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8297
8298         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
8299         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
8300         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
8301         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
8302         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
8303         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
8304         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
8305         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8306 #ifdef CONFIG_X86_64
8307         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8308         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8309         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8310         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8311         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8312         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8313         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8314         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8315 #endif
8316
8317         kvm_rip_write(vcpu, regs->rip);
8318         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8319
8320         vcpu->arch.exception.pending = false;
8321
8322         kvm_make_request(KVM_REQ_EVENT, vcpu);
8323 }
8324
8325 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8326 {
8327         vcpu_load(vcpu);
8328         __set_regs(vcpu, regs);
8329         vcpu_put(vcpu);
8330         return 0;
8331 }
8332
8333 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8334 {
8335         struct kvm_segment cs;
8336
8337         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8338         *db = cs.db;
8339         *l = cs.l;
8340 }
8341 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8342
8343 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8344 {
8345         struct desc_ptr dt;
8346
8347         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8348         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8349         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8350         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8351         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8352         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8353
8354         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8355         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8356
8357         kvm_x86_ops->get_idt(vcpu, &dt);
8358         sregs->idt.limit = dt.size;
8359         sregs->idt.base = dt.address;
8360         kvm_x86_ops->get_gdt(vcpu, &dt);
8361         sregs->gdt.limit = dt.size;
8362         sregs->gdt.base = dt.address;
8363
8364         sregs->cr0 = kvm_read_cr0(vcpu);
8365         sregs->cr2 = vcpu->arch.cr2;
8366         sregs->cr3 = kvm_read_cr3(vcpu);
8367         sregs->cr4 = kvm_read_cr4(vcpu);
8368         sregs->cr8 = kvm_get_cr8(vcpu);
8369         sregs->efer = vcpu->arch.efer;
8370         sregs->apic_base = kvm_get_apic_base(vcpu);
8371
8372         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8373
8374         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8375                 set_bit(vcpu->arch.interrupt.nr,
8376                         (unsigned long *)sregs->interrupt_bitmap);
8377 }
8378
8379 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8380                                   struct kvm_sregs *sregs)
8381 {
8382         vcpu_load(vcpu);
8383         __get_sregs(vcpu, sregs);
8384         vcpu_put(vcpu);
8385         return 0;
8386 }
8387
8388 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8389                                     struct kvm_mp_state *mp_state)
8390 {
8391         vcpu_load(vcpu);
8392
8393         kvm_apic_accept_events(vcpu);
8394         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8395                                         vcpu->arch.pv.pv_unhalted)
8396                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8397         else
8398                 mp_state->mp_state = vcpu->arch.mp_state;
8399
8400         vcpu_put(vcpu);
8401         return 0;
8402 }
8403
8404 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8405                                     struct kvm_mp_state *mp_state)
8406 {
8407         int ret = -EINVAL;
8408
8409         vcpu_load(vcpu);
8410
8411         if (!lapic_in_kernel(vcpu) &&
8412             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8413                 goto out;
8414
8415         /* INITs are latched while in SMM */
8416         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8417             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8418              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8419                 goto out;
8420
8421         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8422                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8423                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8424         } else
8425                 vcpu->arch.mp_state = mp_state->mp_state;
8426         kvm_make_request(KVM_REQ_EVENT, vcpu);
8427
8428         ret = 0;
8429 out:
8430         vcpu_put(vcpu);
8431         return ret;
8432 }
8433
8434 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8435                     int reason, bool has_error_code, u32 error_code)
8436 {
8437         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8438         int ret;
8439
8440         init_emulate_ctxt(vcpu);
8441
8442         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8443                                    has_error_code, error_code);
8444
8445         if (ret)
8446                 return EMULATE_FAIL;
8447
8448         kvm_rip_write(vcpu, ctxt->eip);
8449         kvm_set_rflags(vcpu, ctxt->eflags);
8450         kvm_make_request(KVM_REQ_EVENT, vcpu);
8451         return EMULATE_DONE;
8452 }
8453 EXPORT_SYMBOL_GPL(kvm_task_switch);
8454
8455 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8456 {
8457         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8458                         (sregs->cr4 & X86_CR4_OSXSAVE))
8459                 return  -EINVAL;
8460
8461         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8462                 /*
8463                  * When EFER.LME and CR0.PG are set, the processor is in
8464                  * 64-bit mode (though maybe in a 32-bit code segment).
8465                  * CR4.PAE and EFER.LMA must be set.
8466                  */
8467                 if (!(sregs->cr4 & X86_CR4_PAE)
8468                     || !(sregs->efer & EFER_LMA))
8469                         return -EINVAL;
8470         } else {
8471                 /*
8472                  * Not in 64-bit mode: EFER.LMA is clear and the code
8473                  * segment cannot be 64-bit.
8474                  */
8475                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8476                         return -EINVAL;
8477         }
8478
8479         return 0;
8480 }
8481
8482 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8483 {
8484         struct msr_data apic_base_msr;
8485         int mmu_reset_needed = 0;
8486         int cpuid_update_needed = 0;
8487         int pending_vec, max_bits, idx;
8488         struct desc_ptr dt;
8489         int ret = -EINVAL;
8490
8491         if (kvm_valid_sregs(vcpu, sregs))
8492                 goto out;
8493
8494         apic_base_msr.data = sregs->apic_base;
8495         apic_base_msr.host_initiated = true;
8496         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8497                 goto out;
8498
8499         dt.size = sregs->idt.limit;
8500         dt.address = sregs->idt.base;
8501         kvm_x86_ops->set_idt(vcpu, &dt);
8502         dt.size = sregs->gdt.limit;
8503         dt.address = sregs->gdt.base;
8504         kvm_x86_ops->set_gdt(vcpu, &dt);
8505
8506         vcpu->arch.cr2 = sregs->cr2;
8507         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8508         vcpu->arch.cr3 = sregs->cr3;
8509         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8510
8511         kvm_set_cr8(vcpu, sregs->cr8);
8512
8513         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8514         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8515
8516         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8517         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8518         vcpu->arch.cr0 = sregs->cr0;
8519
8520         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8521         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8522                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8523         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8524         if (cpuid_update_needed)
8525                 kvm_update_cpuid(vcpu);
8526
8527         idx = srcu_read_lock(&vcpu->kvm->srcu);
8528         if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8529                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8530                 mmu_reset_needed = 1;
8531         }
8532         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8533
8534         if (mmu_reset_needed)
8535                 kvm_mmu_reset_context(vcpu);
8536
8537         max_bits = KVM_NR_INTERRUPTS;
8538         pending_vec = find_first_bit(
8539                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8540         if (pending_vec < max_bits) {
8541                 kvm_queue_interrupt(vcpu, pending_vec, false);
8542                 pr_debug("Set back pending irq %d\n", pending_vec);
8543         }
8544
8545         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8546         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8547         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8548         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8549         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8550         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8551
8552         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8553         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8554
8555         update_cr8_intercept(vcpu);
8556
8557         /* Older userspace won't unhalt the vcpu on reset. */
8558         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8559             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8560             !is_protmode(vcpu))
8561                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8562
8563         kvm_make_request(KVM_REQ_EVENT, vcpu);
8564
8565         ret = 0;
8566 out:
8567         return ret;
8568 }
8569
8570 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8571                                   struct kvm_sregs *sregs)
8572 {
8573         int ret;
8574
8575         vcpu_load(vcpu);
8576         ret = __set_sregs(vcpu, sregs);
8577         vcpu_put(vcpu);
8578         return ret;
8579 }
8580
8581 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8582                                         struct kvm_guest_debug *dbg)
8583 {
8584         unsigned long rflags;
8585         int i, r;
8586
8587         vcpu_load(vcpu);
8588
8589         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8590                 r = -EBUSY;
8591                 if (vcpu->arch.exception.pending)
8592                         goto out;
8593                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8594                         kvm_queue_exception(vcpu, DB_VECTOR);
8595                 else
8596                         kvm_queue_exception(vcpu, BP_VECTOR);
8597         }
8598
8599         /*
8600          * Read rflags as long as potentially injected trace flags are still
8601          * filtered out.
8602          */
8603         rflags = kvm_get_rflags(vcpu);
8604
8605         vcpu->guest_debug = dbg->control;
8606         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8607                 vcpu->guest_debug = 0;
8608
8609         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8610                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8611                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8612                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8613         } else {
8614                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8615                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8616         }
8617         kvm_update_dr7(vcpu);
8618
8619         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8620                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8621                         get_segment_base(vcpu, VCPU_SREG_CS);
8622
8623         /*
8624          * Trigger an rflags update that will inject or remove the trace
8625          * flags.
8626          */
8627         kvm_set_rflags(vcpu, rflags);
8628
8629         kvm_x86_ops->update_bp_intercept(vcpu);
8630
8631         r = 0;
8632
8633 out:
8634         vcpu_put(vcpu);
8635         return r;
8636 }
8637
8638 /*
8639  * Translate a guest virtual address to a guest physical address.
8640  */
8641 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8642                                     struct kvm_translation *tr)
8643 {
8644         unsigned long vaddr = tr->linear_address;
8645         gpa_t gpa;
8646         int idx;
8647
8648         vcpu_load(vcpu);
8649
8650         idx = srcu_read_lock(&vcpu->kvm->srcu);
8651         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8652         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8653         tr->physical_address = gpa;
8654         tr->valid = gpa != UNMAPPED_GVA;
8655         tr->writeable = 1;
8656         tr->usermode = 0;
8657
8658         vcpu_put(vcpu);
8659         return 0;
8660 }
8661
8662 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8663 {
8664         struct fxregs_state *fxsave;
8665
8666         vcpu_load(vcpu);
8667
8668         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8669         memcpy(fpu->fpr, fxsave->st_space, 128);
8670         fpu->fcw = fxsave->cwd;
8671         fpu->fsw = fxsave->swd;
8672         fpu->ftwx = fxsave->twd;
8673         fpu->last_opcode = fxsave->fop;
8674         fpu->last_ip = fxsave->rip;
8675         fpu->last_dp = fxsave->rdp;
8676         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8677
8678         vcpu_put(vcpu);
8679         return 0;
8680 }
8681
8682 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8683 {
8684         struct fxregs_state *fxsave;
8685
8686         vcpu_load(vcpu);
8687
8688         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8689
8690         memcpy(fxsave->st_space, fpu->fpr, 128);
8691         fxsave->cwd = fpu->fcw;
8692         fxsave->swd = fpu->fsw;
8693         fxsave->twd = fpu->ftwx;
8694         fxsave->fop = fpu->last_opcode;
8695         fxsave->rip = fpu->last_ip;
8696         fxsave->rdp = fpu->last_dp;
8697         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8698
8699         vcpu_put(vcpu);
8700         return 0;
8701 }
8702
8703 static void store_regs(struct kvm_vcpu *vcpu)
8704 {
8705         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8706
8707         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8708                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8709
8710         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8711                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8712
8713         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8714                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8715                                 vcpu, &vcpu->run->s.regs.events);
8716 }
8717
8718 static int sync_regs(struct kvm_vcpu *vcpu)
8719 {
8720         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8721                 return -EINVAL;
8722
8723         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8724                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8725                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8726         }
8727         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8728                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8729                         return -EINVAL;
8730                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8731         }
8732         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8733                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8734                                 vcpu, &vcpu->run->s.regs.events))
8735                         return -EINVAL;
8736                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8737         }
8738
8739         return 0;
8740 }
8741
8742 static void fx_init(struct kvm_vcpu *vcpu)
8743 {
8744         fpstate_init(&vcpu->arch.guest_fpu->state);
8745         if (boot_cpu_has(X86_FEATURE_XSAVES))
8746                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8747                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8748
8749         /*
8750          * Ensure guest xcr0 is valid for loading
8751          */
8752         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8753
8754         vcpu->arch.cr0 |= X86_CR0_ET;
8755 }
8756
8757 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8758 {
8759         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8760
8761         kvmclock_reset(vcpu);
8762
8763         kvm_x86_ops->vcpu_free(vcpu);
8764         free_cpumask_var(wbinvd_dirty_mask);
8765 }
8766
8767 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8768                                                 unsigned int id)
8769 {
8770         struct kvm_vcpu *vcpu;
8771
8772         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8773                 printk_once(KERN_WARNING
8774                 "kvm: SMP vm created on host with unstable TSC; "
8775                 "guest TSC will not be reliable\n");
8776
8777         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8778
8779         return vcpu;
8780 }
8781
8782 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8783 {
8784         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8785         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8786         kvm_vcpu_mtrr_init(vcpu);
8787         vcpu_load(vcpu);
8788         kvm_vcpu_reset(vcpu, false);
8789         kvm_init_mmu(vcpu, false);
8790         vcpu_put(vcpu);
8791         return 0;
8792 }
8793
8794 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8795 {
8796         struct msr_data msr;
8797         struct kvm *kvm = vcpu->kvm;
8798
8799         kvm_hv_vcpu_postcreate(vcpu);
8800
8801         if (mutex_lock_killable(&vcpu->mutex))
8802                 return;
8803         vcpu_load(vcpu);
8804         msr.data = 0x0;
8805         msr.index = MSR_IA32_TSC;
8806         msr.host_initiated = true;
8807         kvm_write_tsc(vcpu, &msr);
8808         vcpu_put(vcpu);
8809         mutex_unlock(&vcpu->mutex);
8810
8811         if (!kvmclock_periodic_sync)
8812                 return;
8813
8814         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8815                                         KVMCLOCK_SYNC_PERIOD);
8816 }
8817
8818 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8819 {
8820         vcpu->arch.apf.msr_val = 0;
8821
8822         vcpu_load(vcpu);
8823         kvm_mmu_unload(vcpu);
8824         vcpu_put(vcpu);
8825
8826         kvm_x86_ops->vcpu_free(vcpu);
8827 }
8828
8829 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8830 {
8831         kvm_lapic_reset(vcpu, init_event);
8832
8833         vcpu->arch.hflags = 0;
8834
8835         vcpu->arch.smi_pending = 0;
8836         vcpu->arch.smi_count = 0;
8837         atomic_set(&vcpu->arch.nmi_queued, 0);
8838         vcpu->arch.nmi_pending = 0;
8839         vcpu->arch.nmi_injected = false;
8840         kvm_clear_interrupt_queue(vcpu);
8841         kvm_clear_exception_queue(vcpu);
8842         vcpu->arch.exception.pending = false;
8843
8844         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8845         kvm_update_dr0123(vcpu);
8846         vcpu->arch.dr6 = DR6_INIT;
8847         kvm_update_dr6(vcpu);
8848         vcpu->arch.dr7 = DR7_FIXED_1;
8849         kvm_update_dr7(vcpu);
8850
8851         vcpu->arch.cr2 = 0;
8852
8853         kvm_make_request(KVM_REQ_EVENT, vcpu);
8854         vcpu->arch.apf.msr_val = 0;
8855         vcpu->arch.st.msr_val = 0;
8856
8857         kvmclock_reset(vcpu);
8858
8859         kvm_clear_async_pf_completion_queue(vcpu);
8860         kvm_async_pf_hash_reset(vcpu);
8861         vcpu->arch.apf.halted = false;
8862
8863         if (kvm_mpx_supported()) {
8864                 void *mpx_state_buffer;
8865
8866                 /*
8867                  * To avoid have the INIT path from kvm_apic_has_events() that be
8868                  * called with loaded FPU and does not let userspace fix the state.
8869                  */
8870                 if (init_event)
8871                         kvm_put_guest_fpu(vcpu);
8872                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8873                                         XFEATURE_MASK_BNDREGS);
8874                 if (mpx_state_buffer)
8875                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8876                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8877                                         XFEATURE_MASK_BNDCSR);
8878                 if (mpx_state_buffer)
8879                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8880                 if (init_event)
8881                         kvm_load_guest_fpu(vcpu);
8882         }
8883
8884         if (!init_event) {
8885                 kvm_pmu_reset(vcpu);
8886                 vcpu->arch.smbase = 0x30000;
8887
8888                 vcpu->arch.msr_misc_features_enables = 0;
8889
8890                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8891         }
8892
8893         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8894         vcpu->arch.regs_avail = ~0;
8895         vcpu->arch.regs_dirty = ~0;
8896
8897         vcpu->arch.ia32_xss = 0;
8898
8899         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8900 }
8901
8902 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8903 {
8904         struct kvm_segment cs;
8905
8906         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8907         cs.selector = vector << 8;
8908         cs.base = vector << 12;
8909         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8910         kvm_rip_write(vcpu, 0);
8911 }
8912
8913 int kvm_arch_hardware_enable(void)
8914 {
8915         struct kvm *kvm;
8916         struct kvm_vcpu *vcpu;
8917         int i;
8918         int ret;
8919         u64 local_tsc;
8920         u64 max_tsc = 0;
8921         bool stable, backwards_tsc = false;
8922
8923         kvm_shared_msr_cpu_online();
8924         ret = kvm_x86_ops->hardware_enable();
8925         if (ret != 0)
8926                 return ret;
8927
8928         local_tsc = rdtsc();
8929         stable = !kvm_check_tsc_unstable();
8930         list_for_each_entry(kvm, &vm_list, vm_list) {
8931                 kvm_for_each_vcpu(i, vcpu, kvm) {
8932                         if (!stable && vcpu->cpu == smp_processor_id())
8933                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8934                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8935                                 backwards_tsc = true;
8936                                 if (vcpu->arch.last_host_tsc > max_tsc)
8937                                         max_tsc = vcpu->arch.last_host_tsc;
8938                         }
8939                 }
8940         }
8941
8942         /*
8943          * Sometimes, even reliable TSCs go backwards.  This happens on
8944          * platforms that reset TSC during suspend or hibernate actions, but
8945          * maintain synchronization.  We must compensate.  Fortunately, we can
8946          * detect that condition here, which happens early in CPU bringup,
8947          * before any KVM threads can be running.  Unfortunately, we can't
8948          * bring the TSCs fully up to date with real time, as we aren't yet far
8949          * enough into CPU bringup that we know how much real time has actually
8950          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8951          * variables that haven't been updated yet.
8952          *
8953          * So we simply find the maximum observed TSC above, then record the
8954          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8955          * the adjustment will be applied.  Note that we accumulate
8956          * adjustments, in case multiple suspend cycles happen before some VCPU
8957          * gets a chance to run again.  In the event that no KVM threads get a
8958          * chance to run, we will miss the entire elapsed period, as we'll have
8959          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8960          * loose cycle time.  This isn't too big a deal, since the loss will be
8961          * uniform across all VCPUs (not to mention the scenario is extremely
8962          * unlikely). It is possible that a second hibernate recovery happens
8963          * much faster than a first, causing the observed TSC here to be
8964          * smaller; this would require additional padding adjustment, which is
8965          * why we set last_host_tsc to the local tsc observed here.
8966          *
8967          * N.B. - this code below runs only on platforms with reliable TSC,
8968          * as that is the only way backwards_tsc is set above.  Also note
8969          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8970          * have the same delta_cyc adjustment applied if backwards_tsc
8971          * is detected.  Note further, this adjustment is only done once,
8972          * as we reset last_host_tsc on all VCPUs to stop this from being
8973          * called multiple times (one for each physical CPU bringup).
8974          *
8975          * Platforms with unreliable TSCs don't have to deal with this, they
8976          * will be compensated by the logic in vcpu_load, which sets the TSC to
8977          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8978          * guarantee that they stay in perfect synchronization.
8979          */
8980         if (backwards_tsc) {
8981                 u64 delta_cyc = max_tsc - local_tsc;
8982                 list_for_each_entry(kvm, &vm_list, vm_list) {
8983                         kvm->arch.backwards_tsc_observed = true;
8984                         kvm_for_each_vcpu(i, vcpu, kvm) {
8985                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8986                                 vcpu->arch.last_host_tsc = local_tsc;
8987                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8988                         }
8989
8990                         /*
8991                          * We have to disable TSC offset matching.. if you were
8992                          * booting a VM while issuing an S4 host suspend....
8993                          * you may have some problem.  Solving this issue is
8994                          * left as an exercise to the reader.
8995                          */
8996                         kvm->arch.last_tsc_nsec = 0;
8997                         kvm->arch.last_tsc_write = 0;
8998                 }
8999
9000         }
9001         return 0;
9002 }
9003
9004 void kvm_arch_hardware_disable(void)
9005 {
9006         kvm_x86_ops->hardware_disable();
9007         drop_user_return_notifiers();
9008 }
9009
9010 int kvm_arch_hardware_setup(void)
9011 {
9012         int r;
9013
9014         r = kvm_x86_ops->hardware_setup();
9015         if (r != 0)
9016                 return r;
9017
9018         if (kvm_has_tsc_control) {
9019                 /*
9020                  * Make sure the user can only configure tsc_khz values that
9021                  * fit into a signed integer.
9022                  * A min value is not calculated because it will always
9023                  * be 1 on all machines.
9024                  */
9025                 u64 max = min(0x7fffffffULL,
9026                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9027                 kvm_max_guest_tsc_khz = max;
9028
9029                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9030         }
9031
9032         kvm_init_msr_list();
9033         return 0;
9034 }
9035
9036 void kvm_arch_hardware_unsetup(void)
9037 {
9038         kvm_x86_ops->hardware_unsetup();
9039 }
9040
9041 void kvm_arch_check_processor_compat(void *rtn)
9042 {
9043         kvm_x86_ops->check_processor_compatibility(rtn);
9044 }
9045
9046 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9047 {
9048         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9049 }
9050 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9051
9052 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9053 {
9054         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9055 }
9056
9057 struct static_key kvm_no_apic_vcpu __read_mostly;
9058 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9059
9060 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9061 {
9062         struct page *page;
9063         int r;
9064
9065         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9066         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9067                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9068         else
9069                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9070
9071         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9072         if (!page) {
9073                 r = -ENOMEM;
9074                 goto fail;
9075         }
9076         vcpu->arch.pio_data = page_address(page);
9077
9078         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9079
9080         r = kvm_mmu_create(vcpu);
9081         if (r < 0)
9082                 goto fail_free_pio_data;
9083
9084         if (irqchip_in_kernel(vcpu->kvm)) {
9085                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9086                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9087                 if (r < 0)
9088                         goto fail_mmu_destroy;
9089         } else
9090                 static_key_slow_inc(&kvm_no_apic_vcpu);
9091
9092         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9093                                        GFP_KERNEL_ACCOUNT);
9094         if (!vcpu->arch.mce_banks) {
9095                 r = -ENOMEM;
9096                 goto fail_free_lapic;
9097         }
9098         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9099
9100         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9101                                 GFP_KERNEL_ACCOUNT)) {
9102                 r = -ENOMEM;
9103                 goto fail_free_mce_banks;
9104         }
9105
9106         fx_init(vcpu);
9107
9108         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9109
9110         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9111
9112         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9113
9114         kvm_async_pf_hash_reset(vcpu);
9115         kvm_pmu_init(vcpu);
9116
9117         vcpu->arch.pending_external_vector = -1;
9118         vcpu->arch.preempted_in_kernel = false;
9119
9120         kvm_hv_vcpu_init(vcpu);
9121
9122         return 0;
9123
9124 fail_free_mce_banks:
9125         kfree(vcpu->arch.mce_banks);
9126 fail_free_lapic:
9127         kvm_free_lapic(vcpu);
9128 fail_mmu_destroy:
9129         kvm_mmu_destroy(vcpu);
9130 fail_free_pio_data:
9131         free_page((unsigned long)vcpu->arch.pio_data);
9132 fail:
9133         return r;
9134 }
9135
9136 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9137 {
9138         int idx;
9139
9140         kvm_hv_vcpu_uninit(vcpu);
9141         kvm_pmu_destroy(vcpu);
9142         kfree(vcpu->arch.mce_banks);
9143         kvm_free_lapic(vcpu);
9144         idx = srcu_read_lock(&vcpu->kvm->srcu);
9145         kvm_mmu_destroy(vcpu);
9146         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9147         free_page((unsigned long)vcpu->arch.pio_data);
9148         if (!lapic_in_kernel(vcpu))
9149                 static_key_slow_dec(&kvm_no_apic_vcpu);
9150 }
9151
9152 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9153 {
9154         vcpu->arch.l1tf_flush_l1d = true;
9155         kvm_x86_ops->sched_in(vcpu, cpu);
9156 }
9157
9158 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9159 {
9160         if (type)
9161                 return -EINVAL;
9162
9163         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9164         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9165         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9166         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9167
9168         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9169         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9170         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9171         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9172                 &kvm->arch.irq_sources_bitmap);
9173
9174         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9175         mutex_init(&kvm->arch.apic_map_lock);
9176         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9177
9178         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9179         pvclock_update_vm_gtod_copy(kvm);
9180
9181         kvm->arch.guest_can_read_msr_platform_info = true;
9182
9183         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9184         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9185
9186         kvm_hv_init_vm(kvm);
9187         kvm_page_track_init(kvm);
9188         kvm_mmu_init_vm(kvm);
9189
9190         if (kvm_x86_ops->vm_init)
9191                 return kvm_x86_ops->vm_init(kvm);
9192
9193         return 0;
9194 }
9195
9196 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9197 {
9198         vcpu_load(vcpu);
9199         kvm_mmu_unload(vcpu);
9200         vcpu_put(vcpu);
9201 }
9202
9203 static void kvm_free_vcpus(struct kvm *kvm)
9204 {
9205         unsigned int i;
9206         struct kvm_vcpu *vcpu;
9207
9208         /*
9209          * Unpin any mmu pages first.
9210          */
9211         kvm_for_each_vcpu(i, vcpu, kvm) {
9212                 kvm_clear_async_pf_completion_queue(vcpu);
9213                 kvm_unload_vcpu_mmu(vcpu);
9214         }
9215         kvm_for_each_vcpu(i, vcpu, kvm)
9216                 kvm_arch_vcpu_free(vcpu);
9217
9218         mutex_lock(&kvm->lock);
9219         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9220                 kvm->vcpus[i] = NULL;
9221
9222         atomic_set(&kvm->online_vcpus, 0);
9223         mutex_unlock(&kvm->lock);
9224 }
9225
9226 void kvm_arch_sync_events(struct kvm *kvm)
9227 {
9228         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9229         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9230         kvm_free_pit(kvm);
9231 }
9232
9233 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9234 {
9235         int i, r;
9236         unsigned long hva;
9237         struct kvm_memslots *slots = kvm_memslots(kvm);
9238         struct kvm_memory_slot *slot, old;
9239
9240         /* Called with kvm->slots_lock held.  */
9241         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9242                 return -EINVAL;
9243
9244         slot = id_to_memslot(slots, id);
9245         if (size) {
9246                 if (slot->npages)
9247                         return -EEXIST;
9248
9249                 /*
9250                  * MAP_SHARED to prevent internal slot pages from being moved
9251                  * by fork()/COW.
9252                  */
9253                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9254                               MAP_SHARED | MAP_ANONYMOUS, 0);
9255                 if (IS_ERR((void *)hva))
9256                         return PTR_ERR((void *)hva);
9257         } else {
9258                 if (!slot->npages)
9259                         return 0;
9260
9261                 hva = 0;
9262         }
9263
9264         old = *slot;
9265         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9266                 struct kvm_userspace_memory_region m;
9267
9268                 m.slot = id | (i << 16);
9269                 m.flags = 0;
9270                 m.guest_phys_addr = gpa;
9271                 m.userspace_addr = hva;
9272                 m.memory_size = size;
9273                 r = __kvm_set_memory_region(kvm, &m);
9274                 if (r < 0)
9275                         return r;
9276         }
9277
9278         if (!size)
9279                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9280
9281         return 0;
9282 }
9283 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9284
9285 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9286 {
9287         int r;
9288
9289         mutex_lock(&kvm->slots_lock);
9290         r = __x86_set_memory_region(kvm, id, gpa, size);
9291         mutex_unlock(&kvm->slots_lock);
9292
9293         return r;
9294 }
9295 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9296
9297 void kvm_arch_destroy_vm(struct kvm *kvm)
9298 {
9299         if (current->mm == kvm->mm) {
9300                 /*
9301                  * Free memory regions allocated on behalf of userspace,
9302                  * unless the the memory map has changed due to process exit
9303                  * or fd copying.
9304                  */
9305                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9306                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9307                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9308         }
9309         if (kvm_x86_ops->vm_destroy)
9310                 kvm_x86_ops->vm_destroy(kvm);
9311         kvm_pic_destroy(kvm);
9312         kvm_ioapic_destroy(kvm);
9313         kvm_free_vcpus(kvm);
9314         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9315         kvm_mmu_uninit_vm(kvm);
9316         kvm_page_track_cleanup(kvm);
9317         kvm_hv_destroy_vm(kvm);
9318 }
9319
9320 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9321                            struct kvm_memory_slot *dont)
9322 {
9323         int i;
9324
9325         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9326                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9327                         kvfree(free->arch.rmap[i]);
9328                         free->arch.rmap[i] = NULL;
9329                 }
9330                 if (i == 0)
9331                         continue;
9332
9333                 if (!dont || free->arch.lpage_info[i - 1] !=
9334                              dont->arch.lpage_info[i - 1]) {
9335                         kvfree(free->arch.lpage_info[i - 1]);
9336                         free->arch.lpage_info[i - 1] = NULL;
9337                 }
9338         }
9339
9340         kvm_page_track_free_memslot(free, dont);
9341 }
9342
9343 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9344                             unsigned long npages)
9345 {
9346         int i;
9347
9348         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9349                 struct kvm_lpage_info *linfo;
9350                 unsigned long ugfn;
9351                 int lpages;
9352                 int level = i + 1;
9353
9354                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9355                                       slot->base_gfn, level) + 1;
9356
9357                 slot->arch.rmap[i] =
9358                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9359                                  GFP_KERNEL_ACCOUNT);
9360                 if (!slot->arch.rmap[i])
9361                         goto out_free;
9362                 if (i == 0)
9363                         continue;
9364
9365                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9366                 if (!linfo)
9367                         goto out_free;
9368
9369                 slot->arch.lpage_info[i - 1] = linfo;
9370
9371                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9372                         linfo[0].disallow_lpage = 1;
9373                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9374                         linfo[lpages - 1].disallow_lpage = 1;
9375                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9376                 /*
9377                  * If the gfn and userspace address are not aligned wrt each
9378                  * other, or if explicitly asked to, disable large page
9379                  * support for this slot
9380                  */
9381                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9382                     !kvm_largepages_enabled()) {
9383                         unsigned long j;
9384
9385                         for (j = 0; j < lpages; ++j)
9386                                 linfo[j].disallow_lpage = 1;
9387                 }
9388         }
9389
9390         if (kvm_page_track_create_memslot(slot, npages))
9391                 goto out_free;
9392
9393         return 0;
9394
9395 out_free:
9396         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9397                 kvfree(slot->arch.rmap[i]);
9398                 slot->arch.rmap[i] = NULL;
9399                 if (i == 0)
9400                         continue;
9401
9402                 kvfree(slot->arch.lpage_info[i - 1]);
9403                 slot->arch.lpage_info[i - 1] = NULL;
9404         }
9405         return -ENOMEM;
9406 }
9407
9408 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9409 {
9410         /*
9411          * memslots->generation has been incremented.
9412          * mmio generation may have reached its maximum value.
9413          */
9414         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9415 }
9416
9417 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9418                                 struct kvm_memory_slot *memslot,
9419                                 const struct kvm_userspace_memory_region *mem,
9420                                 enum kvm_mr_change change)
9421 {
9422         return 0;
9423 }
9424
9425 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9426                                      struct kvm_memory_slot *new)
9427 {
9428         /* Still write protect RO slot */
9429         if (new->flags & KVM_MEM_READONLY) {
9430                 kvm_mmu_slot_remove_write_access(kvm, new);
9431                 return;
9432         }
9433
9434         /*
9435          * Call kvm_x86_ops dirty logging hooks when they are valid.
9436          *
9437          * kvm_x86_ops->slot_disable_log_dirty is called when:
9438          *
9439          *  - KVM_MR_CREATE with dirty logging is disabled
9440          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9441          *
9442          * The reason is, in case of PML, we need to set D-bit for any slots
9443          * with dirty logging disabled in order to eliminate unnecessary GPA
9444          * logging in PML buffer (and potential PML buffer full VMEXT). This
9445          * guarantees leaving PML enabled during guest's lifetime won't have
9446          * any additional overhead from PML when guest is running with dirty
9447          * logging disabled for memory slots.
9448          *
9449          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9450          * to dirty logging mode.
9451          *
9452          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9453          *
9454          * In case of write protect:
9455          *
9456          * Write protect all pages for dirty logging.
9457          *
9458          * All the sptes including the large sptes which point to this
9459          * slot are set to readonly. We can not create any new large
9460          * spte on this slot until the end of the logging.
9461          *
9462          * See the comments in fast_page_fault().
9463          */
9464         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9465                 if (kvm_x86_ops->slot_enable_log_dirty)
9466                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9467                 else
9468                         kvm_mmu_slot_remove_write_access(kvm, new);
9469         } else {
9470                 if (kvm_x86_ops->slot_disable_log_dirty)
9471                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9472         }
9473 }
9474
9475 void kvm_arch_commit_memory_region(struct kvm *kvm,
9476                                 const struct kvm_userspace_memory_region *mem,
9477                                 const struct kvm_memory_slot *old,
9478                                 const struct kvm_memory_slot *new,
9479                                 enum kvm_mr_change change)
9480 {
9481         if (!kvm->arch.n_requested_mmu_pages)
9482                 kvm_mmu_change_mmu_pages(kvm,
9483                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9484
9485         /*
9486          * Dirty logging tracks sptes in 4k granularity, meaning that large
9487          * sptes have to be split.  If live migration is successful, the guest
9488          * in the source machine will be destroyed and large sptes will be
9489          * created in the destination. However, if the guest continues to run
9490          * in the source machine (for example if live migration fails), small
9491          * sptes will remain around and cause bad performance.
9492          *
9493          * Scan sptes if dirty logging has been stopped, dropping those
9494          * which can be collapsed into a single large-page spte.  Later
9495          * page faults will create the large-page sptes.
9496          */
9497         if ((change != KVM_MR_DELETE) &&
9498                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9499                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9500                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9501
9502         /*
9503          * Set up write protection and/or dirty logging for the new slot.
9504          *
9505          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9506          * been zapped so no dirty logging staff is needed for old slot. For
9507          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9508          * new and it's also covered when dealing with the new slot.
9509          *
9510          * FIXME: const-ify all uses of struct kvm_memory_slot.
9511          */
9512         if (change != KVM_MR_DELETE)
9513                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9514 }
9515
9516 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9517 {
9518         kvm_mmu_zap_all(kvm);
9519 }
9520
9521 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9522                                    struct kvm_memory_slot *slot)
9523 {
9524         kvm_page_track_flush_slot(kvm, slot);
9525 }
9526
9527 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9528 {
9529         return (is_guest_mode(vcpu) &&
9530                         kvm_x86_ops->guest_apic_has_interrupt &&
9531                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9532 }
9533
9534 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9535 {
9536         if (!list_empty_careful(&vcpu->async_pf.done))
9537                 return true;
9538
9539         if (kvm_apic_has_events(vcpu))
9540                 return true;
9541
9542         if (vcpu->arch.pv.pv_unhalted)
9543                 return true;
9544
9545         if (vcpu->arch.exception.pending)
9546                 return true;
9547
9548         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9549             (vcpu->arch.nmi_pending &&
9550              kvm_x86_ops->nmi_allowed(vcpu)))
9551                 return true;
9552
9553         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9554             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9555                 return true;
9556
9557         if (kvm_arch_interrupt_allowed(vcpu) &&
9558             (kvm_cpu_has_interrupt(vcpu) ||
9559             kvm_guest_apic_has_interrupt(vcpu)))
9560                 return true;
9561
9562         if (kvm_hv_has_stimer_pending(vcpu))
9563                 return true;
9564
9565         return false;
9566 }
9567
9568 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9569 {
9570         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9571 }
9572
9573 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9574 {
9575         return vcpu->arch.preempted_in_kernel;
9576 }
9577
9578 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9579 {
9580         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9581 }
9582
9583 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9584 {
9585         return kvm_x86_ops->interrupt_allowed(vcpu);
9586 }
9587
9588 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9589 {
9590         if (is_64_bit_mode(vcpu))
9591                 return kvm_rip_read(vcpu);
9592         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9593                      kvm_rip_read(vcpu));
9594 }
9595 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9596
9597 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9598 {
9599         return kvm_get_linear_rip(vcpu) == linear_rip;
9600 }
9601 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9602
9603 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9604 {
9605         unsigned long rflags;
9606
9607         rflags = kvm_x86_ops->get_rflags(vcpu);
9608         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9609                 rflags &= ~X86_EFLAGS_TF;
9610         return rflags;
9611 }
9612 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9613
9614 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9615 {
9616         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9617             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9618                 rflags |= X86_EFLAGS_TF;
9619         kvm_x86_ops->set_rflags(vcpu, rflags);
9620 }
9621
9622 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9623 {
9624         __kvm_set_rflags(vcpu, rflags);
9625         kvm_make_request(KVM_REQ_EVENT, vcpu);
9626 }
9627 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9628
9629 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9630 {
9631         int r;
9632
9633         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9634               work->wakeup_all)
9635                 return;
9636
9637         r = kvm_mmu_reload(vcpu);
9638         if (unlikely(r))
9639                 return;
9640
9641         if (!vcpu->arch.mmu->direct_map &&
9642               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9643                 return;
9644
9645         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9646 }
9647
9648 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9649 {
9650         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9651 }
9652
9653 static inline u32 kvm_async_pf_next_probe(u32 key)
9654 {
9655         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9656 }
9657
9658 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9659 {
9660         u32 key = kvm_async_pf_hash_fn(gfn);
9661
9662         while (vcpu->arch.apf.gfns[key] != ~0)
9663                 key = kvm_async_pf_next_probe(key);
9664
9665         vcpu->arch.apf.gfns[key] = gfn;
9666 }
9667
9668 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9669 {
9670         int i;
9671         u32 key = kvm_async_pf_hash_fn(gfn);
9672
9673         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9674                      (vcpu->arch.apf.gfns[key] != gfn &&
9675                       vcpu->arch.apf.gfns[key] != ~0); i++)
9676                 key = kvm_async_pf_next_probe(key);
9677
9678         return key;
9679 }
9680
9681 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9682 {
9683         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9684 }
9685
9686 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9687 {
9688         u32 i, j, k;
9689
9690         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9691         while (true) {
9692                 vcpu->arch.apf.gfns[i] = ~0;
9693                 do {
9694                         j = kvm_async_pf_next_probe(j);
9695                         if (vcpu->arch.apf.gfns[j] == ~0)
9696                                 return;
9697                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9698                         /*
9699                          * k lies cyclically in ]i,j]
9700                          * |    i.k.j |
9701                          * |....j i.k.| or  |.k..j i...|
9702                          */
9703                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9704                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9705                 i = j;
9706         }
9707 }
9708
9709 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9710 {
9711
9712         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9713                                       sizeof(val));
9714 }
9715
9716 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9717 {
9718
9719         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9720                                       sizeof(u32));
9721 }
9722
9723 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9724                                      struct kvm_async_pf *work)
9725 {
9726         struct x86_exception fault;
9727
9728         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9729         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9730
9731         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9732             (vcpu->arch.apf.send_user_only &&
9733              kvm_x86_ops->get_cpl(vcpu) == 0))
9734                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9735         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9736                 fault.vector = PF_VECTOR;
9737                 fault.error_code_valid = true;
9738                 fault.error_code = 0;
9739                 fault.nested_page_fault = false;
9740                 fault.address = work->arch.token;
9741                 fault.async_page_fault = true;
9742                 kvm_inject_page_fault(vcpu, &fault);
9743         }
9744 }
9745
9746 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9747                                  struct kvm_async_pf *work)
9748 {
9749         struct x86_exception fault;
9750         u32 val;
9751
9752         if (work->wakeup_all)
9753                 work->arch.token = ~0; /* broadcast wakeup */
9754         else
9755                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9756         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9757
9758         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9759             !apf_get_user(vcpu, &val)) {
9760                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9761                     vcpu->arch.exception.pending &&
9762                     vcpu->arch.exception.nr == PF_VECTOR &&
9763                     !apf_put_user(vcpu, 0)) {
9764                         vcpu->arch.exception.injected = false;
9765                         vcpu->arch.exception.pending = false;
9766                         vcpu->arch.exception.nr = 0;
9767                         vcpu->arch.exception.has_error_code = false;
9768                         vcpu->arch.exception.error_code = 0;
9769                         vcpu->arch.exception.has_payload = false;
9770                         vcpu->arch.exception.payload = 0;
9771                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9772                         fault.vector = PF_VECTOR;
9773                         fault.error_code_valid = true;
9774                         fault.error_code = 0;
9775                         fault.nested_page_fault = false;
9776                         fault.address = work->arch.token;
9777                         fault.async_page_fault = true;
9778                         kvm_inject_page_fault(vcpu, &fault);
9779                 }
9780         }
9781         vcpu->arch.apf.halted = false;
9782         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9783 }
9784
9785 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9786 {
9787         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9788                 return true;
9789         else
9790                 return kvm_can_do_async_pf(vcpu);
9791 }
9792
9793 void kvm_arch_start_assignment(struct kvm *kvm)
9794 {
9795         atomic_inc(&kvm->arch.assigned_device_count);
9796 }
9797 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9798
9799 void kvm_arch_end_assignment(struct kvm *kvm)
9800 {
9801         atomic_dec(&kvm->arch.assigned_device_count);
9802 }
9803 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9804
9805 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9806 {
9807         return atomic_read(&kvm->arch.assigned_device_count);
9808 }
9809 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9810
9811 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9812 {
9813         atomic_inc(&kvm->arch.noncoherent_dma_count);
9814 }
9815 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9816
9817 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9818 {
9819         atomic_dec(&kvm->arch.noncoherent_dma_count);
9820 }
9821 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9822
9823 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9824 {
9825         return atomic_read(&kvm->arch.noncoherent_dma_count);
9826 }
9827 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9828
9829 bool kvm_arch_has_irq_bypass(void)
9830 {
9831         return kvm_x86_ops->update_pi_irte != NULL;
9832 }
9833
9834 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9835                                       struct irq_bypass_producer *prod)
9836 {
9837         struct kvm_kernel_irqfd *irqfd =
9838                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9839
9840         irqfd->producer = prod;
9841
9842         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9843                                            prod->irq, irqfd->gsi, 1);
9844 }
9845
9846 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9847                                       struct irq_bypass_producer *prod)
9848 {
9849         int ret;
9850         struct kvm_kernel_irqfd *irqfd =
9851                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9852
9853         WARN_ON(irqfd->producer != prod);
9854         irqfd->producer = NULL;
9855
9856         /*
9857          * When producer of consumer is unregistered, we change back to
9858          * remapped mode, so we can re-use the current implementation
9859          * when the irq is masked/disabled or the consumer side (KVM
9860          * int this case doesn't want to receive the interrupts.
9861         */
9862         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9863         if (ret)
9864                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9865                        " fails: %d\n", irqfd->consumer.token, ret);
9866 }
9867
9868 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9869                                    uint32_t guest_irq, bool set)
9870 {
9871         if (!kvm_x86_ops->update_pi_irte)
9872                 return -EINVAL;
9873
9874         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9875 }
9876
9877 bool kvm_vector_hashing_enabled(void)
9878 {
9879         return vector_hashing;
9880 }
9881 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9882
9883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);