Merge tag 'tag-chrome-platform-fixes-for-v5.3-rc6' of git://git.kernel.org/pub/scm...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <clocksource/hyperv_timer.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /*
139  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
140  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
141  * advancement entirely.  Any other value is used as-is and disables adaptive
142  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
143  */
144 static int __read_mostly lapic_timer_advance_ns = -1;
145 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
146
147 static bool __read_mostly vector_hashing = true;
148 module_param(vector_hashing, bool, S_IRUGO);
149
150 bool __read_mostly enable_vmware_backdoor = false;
151 module_param(enable_vmware_backdoor, bool, S_IRUGO);
152 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
153
154 static bool __read_mostly force_emulation_prefix = false;
155 module_param(force_emulation_prefix, bool, S_IRUGO);
156
157 int __read_mostly pi_inject_timer = -1;
158 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
159
160 #define KVM_NR_SHARED_MSRS 16
161
162 struct kvm_shared_msrs_global {
163         int nr;
164         u32 msrs[KVM_NR_SHARED_MSRS];
165 };
166
167 struct kvm_shared_msrs {
168         struct user_return_notifier urn;
169         bool registered;
170         struct kvm_shared_msr_values {
171                 u64 host;
172                 u64 curr;
173         } values[KVM_NR_SHARED_MSRS];
174 };
175
176 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
177 static struct kvm_shared_msrs __percpu *shared_msrs;
178
179 struct kvm_stats_debugfs_item debugfs_entries[] = {
180         { "pf_fixed", VCPU_STAT(pf_fixed) },
181         { "pf_guest", VCPU_STAT(pf_guest) },
182         { "tlb_flush", VCPU_STAT(tlb_flush) },
183         { "invlpg", VCPU_STAT(invlpg) },
184         { "exits", VCPU_STAT(exits) },
185         { "io_exits", VCPU_STAT(io_exits) },
186         { "mmio_exits", VCPU_STAT(mmio_exits) },
187         { "signal_exits", VCPU_STAT(signal_exits) },
188         { "irq_window", VCPU_STAT(irq_window_exits) },
189         { "nmi_window", VCPU_STAT(nmi_window_exits) },
190         { "halt_exits", VCPU_STAT(halt_exits) },
191         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
192         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
193         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
194         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
195         { "hypercalls", VCPU_STAT(hypercalls) },
196         { "request_irq", VCPU_STAT(request_irq_exits) },
197         { "irq_exits", VCPU_STAT(irq_exits) },
198         { "host_state_reload", VCPU_STAT(host_state_reload) },
199         { "fpu_reload", VCPU_STAT(fpu_reload) },
200         { "insn_emulation", VCPU_STAT(insn_emulation) },
201         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
202         { "irq_injections", VCPU_STAT(irq_injections) },
203         { "nmi_injections", VCPU_STAT(nmi_injections) },
204         { "req_event", VCPU_STAT(req_event) },
205         { "l1d_flush", VCPU_STAT(l1d_flush) },
206         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
207         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
208         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
209         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
210         { "mmu_flooded", VM_STAT(mmu_flooded) },
211         { "mmu_recycled", VM_STAT(mmu_recycled) },
212         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
213         { "mmu_unsync", VM_STAT(mmu_unsync) },
214         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
215         { "largepages", VM_STAT(lpages) },
216         { "max_mmu_page_hash_collisions",
217                 VM_STAT(max_mmu_page_hash_collisions) },
218         { NULL }
219 };
220
221 u64 __read_mostly host_xcr0;
222
223 struct kmem_cache *x86_fpu_cache;
224 EXPORT_SYMBOL_GPL(x86_fpu_cache);
225
226 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
227
228 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
229 {
230         int i;
231         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
232                 vcpu->arch.apf.gfns[i] = ~0;
233 }
234
235 static void kvm_on_user_return(struct user_return_notifier *urn)
236 {
237         unsigned slot;
238         struct kvm_shared_msrs *locals
239                 = container_of(urn, struct kvm_shared_msrs, urn);
240         struct kvm_shared_msr_values *values;
241         unsigned long flags;
242
243         /*
244          * Disabling irqs at this point since the following code could be
245          * interrupted and executed through kvm_arch_hardware_disable()
246          */
247         local_irq_save(flags);
248         if (locals->registered) {
249                 locals->registered = false;
250                 user_return_notifier_unregister(urn);
251         }
252         local_irq_restore(flags);
253         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
254                 values = &locals->values[slot];
255                 if (values->host != values->curr) {
256                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
257                         values->curr = values->host;
258                 }
259         }
260 }
261
262 static void shared_msr_update(unsigned slot, u32 msr)
263 {
264         u64 value;
265         unsigned int cpu = smp_processor_id();
266         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
267
268         /* only read, and nobody should modify it at this time,
269          * so don't need lock */
270         if (slot >= shared_msrs_global.nr) {
271                 printk(KERN_ERR "kvm: invalid MSR slot!");
272                 return;
273         }
274         rdmsrl_safe(msr, &value);
275         smsr->values[slot].host = value;
276         smsr->values[slot].curr = value;
277 }
278
279 void kvm_define_shared_msr(unsigned slot, u32 msr)
280 {
281         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
282         shared_msrs_global.msrs[slot] = msr;
283         if (slot >= shared_msrs_global.nr)
284                 shared_msrs_global.nr = slot + 1;
285 }
286 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
287
288 static void kvm_shared_msr_cpu_online(void)
289 {
290         unsigned i;
291
292         for (i = 0; i < shared_msrs_global.nr; ++i)
293                 shared_msr_update(i, shared_msrs_global.msrs[i]);
294 }
295
296 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
297 {
298         unsigned int cpu = smp_processor_id();
299         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300         int err;
301
302         if (((value ^ smsr->values[slot].curr) & mask) == 0)
303                 return 0;
304         smsr->values[slot].curr = value;
305         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
306         if (err)
307                 return 1;
308
309         if (!smsr->registered) {
310                 smsr->urn.on_user_return = kvm_on_user_return;
311                 user_return_notifier_register(&smsr->urn);
312                 smsr->registered = true;
313         }
314         return 0;
315 }
316 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
317
318 static void drop_user_return_notifiers(void)
319 {
320         unsigned int cpu = smp_processor_id();
321         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322
323         if (smsr->registered)
324                 kvm_on_user_return(&smsr->urn);
325 }
326
327 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
328 {
329         return vcpu->arch.apic_base;
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
332
333 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
334 {
335         return kvm_apic_mode(kvm_get_apic_base(vcpu));
336 }
337 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
338
339 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
340 {
341         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
342         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
343         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
344                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
345
346         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
347                 return 1;
348         if (!msr_info->host_initiated) {
349                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
350                         return 1;
351                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
352                         return 1;
353         }
354
355         kvm_lapic_set_base(vcpu, msr_info->data);
356         return 0;
357 }
358 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
359
360 asmlinkage __visible void kvm_spurious_fault(void)
361 {
362         /* Fault while not rebooting.  We want the trace. */
363         BUG();
364 }
365 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
366
367 #define EXCPT_BENIGN            0
368 #define EXCPT_CONTRIBUTORY      1
369 #define EXCPT_PF                2
370
371 static int exception_class(int vector)
372 {
373         switch (vector) {
374         case PF_VECTOR:
375                 return EXCPT_PF;
376         case DE_VECTOR:
377         case TS_VECTOR:
378         case NP_VECTOR:
379         case SS_VECTOR:
380         case GP_VECTOR:
381                 return EXCPT_CONTRIBUTORY;
382         default:
383                 break;
384         }
385         return EXCPT_BENIGN;
386 }
387
388 #define EXCPT_FAULT             0
389 #define EXCPT_TRAP              1
390 #define EXCPT_ABORT             2
391 #define EXCPT_INTERRUPT         3
392
393 static int exception_type(int vector)
394 {
395         unsigned int mask;
396
397         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
398                 return EXCPT_INTERRUPT;
399
400         mask = 1 << vector;
401
402         /* #DB is trap, as instruction watchpoints are handled elsewhere */
403         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
404                 return EXCPT_TRAP;
405
406         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
407                 return EXCPT_ABORT;
408
409         /* Reserved exceptions will result in fault */
410         return EXCPT_FAULT;
411 }
412
413 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
414 {
415         unsigned nr = vcpu->arch.exception.nr;
416         bool has_payload = vcpu->arch.exception.has_payload;
417         unsigned long payload = vcpu->arch.exception.payload;
418
419         if (!has_payload)
420                 return;
421
422         switch (nr) {
423         case DB_VECTOR:
424                 /*
425                  * "Certain debug exceptions may clear bit 0-3.  The
426                  * remaining contents of the DR6 register are never
427                  * cleared by the processor".
428                  */
429                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
430                 /*
431                  * DR6.RTM is set by all #DB exceptions that don't clear it.
432                  */
433                 vcpu->arch.dr6 |= DR6_RTM;
434                 vcpu->arch.dr6 |= payload;
435                 /*
436                  * Bit 16 should be set in the payload whenever the #DB
437                  * exception should clear DR6.RTM. This makes the payload
438                  * compatible with the pending debug exceptions under VMX.
439                  * Though not currently documented in the SDM, this also
440                  * makes the payload compatible with the exit qualification
441                  * for #DB exceptions under VMX.
442                  */
443                 vcpu->arch.dr6 ^= payload & DR6_RTM;
444                 break;
445         case PF_VECTOR:
446                 vcpu->arch.cr2 = payload;
447                 break;
448         }
449
450         vcpu->arch.exception.has_payload = false;
451         vcpu->arch.exception.payload = 0;
452 }
453 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
454
455 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
456                 unsigned nr, bool has_error, u32 error_code,
457                 bool has_payload, unsigned long payload, bool reinject)
458 {
459         u32 prev_nr;
460         int class1, class2;
461
462         kvm_make_request(KVM_REQ_EVENT, vcpu);
463
464         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
465         queue:
466                 if (has_error && !is_protmode(vcpu))
467                         has_error = false;
468                 if (reinject) {
469                         /*
470                          * On vmentry, vcpu->arch.exception.pending is only
471                          * true if an event injection was blocked by
472                          * nested_run_pending.  In that case, however,
473                          * vcpu_enter_guest requests an immediate exit,
474                          * and the guest shouldn't proceed far enough to
475                          * need reinjection.
476                          */
477                         WARN_ON_ONCE(vcpu->arch.exception.pending);
478                         vcpu->arch.exception.injected = true;
479                         if (WARN_ON_ONCE(has_payload)) {
480                                 /*
481                                  * A reinjected event has already
482                                  * delivered its payload.
483                                  */
484                                 has_payload = false;
485                                 payload = 0;
486                         }
487                 } else {
488                         vcpu->arch.exception.pending = true;
489                         vcpu->arch.exception.injected = false;
490                 }
491                 vcpu->arch.exception.has_error_code = has_error;
492                 vcpu->arch.exception.nr = nr;
493                 vcpu->arch.exception.error_code = error_code;
494                 vcpu->arch.exception.has_payload = has_payload;
495                 vcpu->arch.exception.payload = payload;
496                 /*
497                  * In guest mode, payload delivery should be deferred,
498                  * so that the L1 hypervisor can intercept #PF before
499                  * CR2 is modified (or intercept #DB before DR6 is
500                  * modified under nVMX).  However, for ABI
501                  * compatibility with KVM_GET_VCPU_EVENTS and
502                  * KVM_SET_VCPU_EVENTS, we can't delay payload
503                  * delivery unless userspace has enabled this
504                  * functionality via the per-VM capability,
505                  * KVM_CAP_EXCEPTION_PAYLOAD.
506                  */
507                 if (!vcpu->kvm->arch.exception_payload_enabled ||
508                     !is_guest_mode(vcpu))
509                         kvm_deliver_exception_payload(vcpu);
510                 return;
511         }
512
513         /* to check exception */
514         prev_nr = vcpu->arch.exception.nr;
515         if (prev_nr == DF_VECTOR) {
516                 /* triple fault -> shutdown */
517                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
518                 return;
519         }
520         class1 = exception_class(prev_nr);
521         class2 = exception_class(nr);
522         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
523                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
524                 /*
525                  * Generate double fault per SDM Table 5-5.  Set
526                  * exception.pending = true so that the double fault
527                  * can trigger a nested vmexit.
528                  */
529                 vcpu->arch.exception.pending = true;
530                 vcpu->arch.exception.injected = false;
531                 vcpu->arch.exception.has_error_code = true;
532                 vcpu->arch.exception.nr = DF_VECTOR;
533                 vcpu->arch.exception.error_code = 0;
534                 vcpu->arch.exception.has_payload = false;
535                 vcpu->arch.exception.payload = 0;
536         } else
537                 /* replace previous exception with a new one in a hope
538                    that instruction re-execution will regenerate lost
539                    exception */
540                 goto queue;
541 }
542
543 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
544 {
545         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
546 }
547 EXPORT_SYMBOL_GPL(kvm_queue_exception);
548
549 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
550 {
551         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
552 }
553 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
554
555 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
556                                   unsigned long payload)
557 {
558         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
559 }
560
561 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
562                                     u32 error_code, unsigned long payload)
563 {
564         kvm_multiple_exception(vcpu, nr, true, error_code,
565                                true, payload, false);
566 }
567
568 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
569 {
570         if (err)
571                 kvm_inject_gp(vcpu, 0);
572         else
573                 return kvm_skip_emulated_instruction(vcpu);
574
575         return 1;
576 }
577 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
578
579 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
580 {
581         ++vcpu->stat.pf_guest;
582         vcpu->arch.exception.nested_apf =
583                 is_guest_mode(vcpu) && fault->async_page_fault;
584         if (vcpu->arch.exception.nested_apf) {
585                 vcpu->arch.apf.nested_apf_token = fault->address;
586                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
587         } else {
588                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
589                                         fault->address);
590         }
591 }
592 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
593
594 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
595 {
596         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
597                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
598         else
599                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
600
601         return fault->nested_page_fault;
602 }
603
604 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
605 {
606         atomic_inc(&vcpu->arch.nmi_queued);
607         kvm_make_request(KVM_REQ_NMI, vcpu);
608 }
609 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
610
611 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
612 {
613         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
614 }
615 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
616
617 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
618 {
619         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
620 }
621 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
622
623 /*
624  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
625  * a #GP and return false.
626  */
627 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
628 {
629         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
630                 return true;
631         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
632         return false;
633 }
634 EXPORT_SYMBOL_GPL(kvm_require_cpl);
635
636 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
637 {
638         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
639                 return true;
640
641         kvm_queue_exception(vcpu, UD_VECTOR);
642         return false;
643 }
644 EXPORT_SYMBOL_GPL(kvm_require_dr);
645
646 /*
647  * This function will be used to read from the physical memory of the currently
648  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
649  * can read from guest physical or from the guest's guest physical memory.
650  */
651 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
652                             gfn_t ngfn, void *data, int offset, int len,
653                             u32 access)
654 {
655         struct x86_exception exception;
656         gfn_t real_gfn;
657         gpa_t ngpa;
658
659         ngpa     = gfn_to_gpa(ngfn);
660         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
661         if (real_gfn == UNMAPPED_GVA)
662                 return -EFAULT;
663
664         real_gfn = gpa_to_gfn(real_gfn);
665
666         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
667 }
668 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
669
670 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
671                                void *data, int offset, int len, u32 access)
672 {
673         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
674                                        data, offset, len, access);
675 }
676
677 /*
678  * Load the pae pdptrs.  Return true is they are all valid.
679  */
680 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
681 {
682         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
683         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
684         int i;
685         int ret;
686         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
687
688         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
689                                       offset * sizeof(u64), sizeof(pdpte),
690                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
691         if (ret < 0) {
692                 ret = 0;
693                 goto out;
694         }
695         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
696                 if ((pdpte[i] & PT_PRESENT_MASK) &&
697                     (pdpte[i] &
698                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
699                         ret = 0;
700                         goto out;
701                 }
702         }
703         ret = 1;
704
705         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
706         __set_bit(VCPU_EXREG_PDPTR,
707                   (unsigned long *)&vcpu->arch.regs_avail);
708         __set_bit(VCPU_EXREG_PDPTR,
709                   (unsigned long *)&vcpu->arch.regs_dirty);
710 out:
711
712         return ret;
713 }
714 EXPORT_SYMBOL_GPL(load_pdptrs);
715
716 bool pdptrs_changed(struct kvm_vcpu *vcpu)
717 {
718         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
719         bool changed = true;
720         int offset;
721         gfn_t gfn;
722         int r;
723
724         if (!is_pae_paging(vcpu))
725                 return false;
726
727         if (!test_bit(VCPU_EXREG_PDPTR,
728                       (unsigned long *)&vcpu->arch.regs_avail))
729                 return true;
730
731         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
732         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
733         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
734                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
735         if (r < 0)
736                 goto out;
737         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
738 out:
739
740         return changed;
741 }
742 EXPORT_SYMBOL_GPL(pdptrs_changed);
743
744 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
745 {
746         unsigned long old_cr0 = kvm_read_cr0(vcpu);
747         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
748
749         cr0 |= X86_CR0_ET;
750
751 #ifdef CONFIG_X86_64
752         if (cr0 & 0xffffffff00000000UL)
753                 return 1;
754 #endif
755
756         cr0 &= ~CR0_RESERVED_BITS;
757
758         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
759                 return 1;
760
761         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
762                 return 1;
763
764         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
765 #ifdef CONFIG_X86_64
766                 if ((vcpu->arch.efer & EFER_LME)) {
767                         int cs_db, cs_l;
768
769                         if (!is_pae(vcpu))
770                                 return 1;
771                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
772                         if (cs_l)
773                                 return 1;
774                 } else
775 #endif
776                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
777                                                  kvm_read_cr3(vcpu)))
778                         return 1;
779         }
780
781         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
782                 return 1;
783
784         kvm_x86_ops->set_cr0(vcpu, cr0);
785
786         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
787                 kvm_clear_async_pf_completion_queue(vcpu);
788                 kvm_async_pf_hash_reset(vcpu);
789         }
790
791         if ((cr0 ^ old_cr0) & update_bits)
792                 kvm_mmu_reset_context(vcpu);
793
794         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
795             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
796             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
797                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
798
799         return 0;
800 }
801 EXPORT_SYMBOL_GPL(kvm_set_cr0);
802
803 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
804 {
805         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
806 }
807 EXPORT_SYMBOL_GPL(kvm_lmsw);
808
809 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
810 {
811         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
812                         !vcpu->guest_xcr0_loaded) {
813                 /* kvm_set_xcr() also depends on this */
814                 if (vcpu->arch.xcr0 != host_xcr0)
815                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
816                 vcpu->guest_xcr0_loaded = 1;
817         }
818 }
819 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
820
821 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
822 {
823         if (vcpu->guest_xcr0_loaded) {
824                 if (vcpu->arch.xcr0 != host_xcr0)
825                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
826                 vcpu->guest_xcr0_loaded = 0;
827         }
828 }
829 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
830
831 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
832 {
833         u64 xcr0 = xcr;
834         u64 old_xcr0 = vcpu->arch.xcr0;
835         u64 valid_bits;
836
837         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
838         if (index != XCR_XFEATURE_ENABLED_MASK)
839                 return 1;
840         if (!(xcr0 & XFEATURE_MASK_FP))
841                 return 1;
842         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
843                 return 1;
844
845         /*
846          * Do not allow the guest to set bits that we do not support
847          * saving.  However, xcr0 bit 0 is always set, even if the
848          * emulated CPU does not support XSAVE (see fx_init).
849          */
850         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
851         if (xcr0 & ~valid_bits)
852                 return 1;
853
854         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
855             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
856                 return 1;
857
858         if (xcr0 & XFEATURE_MASK_AVX512) {
859                 if (!(xcr0 & XFEATURE_MASK_YMM))
860                         return 1;
861                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
862                         return 1;
863         }
864         vcpu->arch.xcr0 = xcr0;
865
866         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
867                 kvm_update_cpuid(vcpu);
868         return 0;
869 }
870
871 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
872 {
873         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
874             __kvm_set_xcr(vcpu, index, xcr)) {
875                 kvm_inject_gp(vcpu, 0);
876                 return 1;
877         }
878         return 0;
879 }
880 EXPORT_SYMBOL_GPL(kvm_set_xcr);
881
882 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
883 {
884         unsigned long old_cr4 = kvm_read_cr4(vcpu);
885         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
886                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
887
888         if (cr4 & CR4_RESERVED_BITS)
889                 return 1;
890
891         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
892                 return 1;
893
894         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
895                 return 1;
896
897         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
898                 return 1;
899
900         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
901                 return 1;
902
903         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
904                 return 1;
905
906         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
907                 return 1;
908
909         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
910                 return 1;
911
912         if (is_long_mode(vcpu)) {
913                 if (!(cr4 & X86_CR4_PAE))
914                         return 1;
915         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
916                    && ((cr4 ^ old_cr4) & pdptr_bits)
917                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
918                                    kvm_read_cr3(vcpu)))
919                 return 1;
920
921         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
922                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
923                         return 1;
924
925                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
926                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
927                         return 1;
928         }
929
930         if (kvm_x86_ops->set_cr4(vcpu, cr4))
931                 return 1;
932
933         if (((cr4 ^ old_cr4) & pdptr_bits) ||
934             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
935                 kvm_mmu_reset_context(vcpu);
936
937         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
938                 kvm_update_cpuid(vcpu);
939
940         return 0;
941 }
942 EXPORT_SYMBOL_GPL(kvm_set_cr4);
943
944 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
945 {
946         bool skip_tlb_flush = false;
947 #ifdef CONFIG_X86_64
948         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
949
950         if (pcid_enabled) {
951                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
952                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
953         }
954 #endif
955
956         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
957                 if (!skip_tlb_flush) {
958                         kvm_mmu_sync_roots(vcpu);
959                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
960                 }
961                 return 0;
962         }
963
964         if (is_long_mode(vcpu) &&
965             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
966                 return 1;
967         else if (is_pae_paging(vcpu) &&
968                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
969                 return 1;
970
971         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
972         vcpu->arch.cr3 = cr3;
973         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
974
975         return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_set_cr3);
978
979 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
980 {
981         if (cr8 & CR8_RESERVED_BITS)
982                 return 1;
983         if (lapic_in_kernel(vcpu))
984                 kvm_lapic_set_tpr(vcpu, cr8);
985         else
986                 vcpu->arch.cr8 = cr8;
987         return 0;
988 }
989 EXPORT_SYMBOL_GPL(kvm_set_cr8);
990
991 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
992 {
993         if (lapic_in_kernel(vcpu))
994                 return kvm_lapic_get_cr8(vcpu);
995         else
996                 return vcpu->arch.cr8;
997 }
998 EXPORT_SYMBOL_GPL(kvm_get_cr8);
999
1000 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1001 {
1002         int i;
1003
1004         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1005                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1006                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1007                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1008         }
1009 }
1010
1011 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1012 {
1013         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1014                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1015 }
1016
1017 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1018 {
1019         unsigned long dr7;
1020
1021         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1022                 dr7 = vcpu->arch.guest_debug_dr7;
1023         else
1024                 dr7 = vcpu->arch.dr7;
1025         kvm_x86_ops->set_dr7(vcpu, dr7);
1026         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1027         if (dr7 & DR7_BP_EN_MASK)
1028                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1029 }
1030
1031 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1032 {
1033         u64 fixed = DR6_FIXED_1;
1034
1035         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1036                 fixed |= DR6_RTM;
1037         return fixed;
1038 }
1039
1040 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1041 {
1042         switch (dr) {
1043         case 0 ... 3:
1044                 vcpu->arch.db[dr] = val;
1045                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1046                         vcpu->arch.eff_db[dr] = val;
1047                 break;
1048         case 4:
1049                 /* fall through */
1050         case 6:
1051                 if (val & 0xffffffff00000000ULL)
1052                         return -1; /* #GP */
1053                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1054                 kvm_update_dr6(vcpu);
1055                 break;
1056         case 5:
1057                 /* fall through */
1058         default: /* 7 */
1059                 if (val & 0xffffffff00000000ULL)
1060                         return -1; /* #GP */
1061                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1062                 kvm_update_dr7(vcpu);
1063                 break;
1064         }
1065
1066         return 0;
1067 }
1068
1069 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1070 {
1071         if (__kvm_set_dr(vcpu, dr, val)) {
1072                 kvm_inject_gp(vcpu, 0);
1073                 return 1;
1074         }
1075         return 0;
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_set_dr);
1078
1079 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1080 {
1081         switch (dr) {
1082         case 0 ... 3:
1083                 *val = vcpu->arch.db[dr];
1084                 break;
1085         case 4:
1086                 /* fall through */
1087         case 6:
1088                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1089                         *val = vcpu->arch.dr6;
1090                 else
1091                         *val = kvm_x86_ops->get_dr6(vcpu);
1092                 break;
1093         case 5:
1094                 /* fall through */
1095         default: /* 7 */
1096                 *val = vcpu->arch.dr7;
1097                 break;
1098         }
1099         return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(kvm_get_dr);
1102
1103 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1104 {
1105         u32 ecx = kvm_rcx_read(vcpu);
1106         u64 data;
1107         int err;
1108
1109         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1110         if (err)
1111                 return err;
1112         kvm_rax_write(vcpu, (u32)data);
1113         kvm_rdx_write(vcpu, data >> 32);
1114         return err;
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1117
1118 /*
1119  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1120  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1121  *
1122  * This list is modified at module load time to reflect the
1123  * capabilities of the host cpu. This capabilities test skips MSRs that are
1124  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1125  * may depend on host virtualization features rather than host cpu features.
1126  */
1127
1128 static u32 msrs_to_save[] = {
1129         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1130         MSR_STAR,
1131 #ifdef CONFIG_X86_64
1132         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1133 #endif
1134         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1135         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1136         MSR_IA32_SPEC_CTRL,
1137         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1138         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1139         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1140         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1141         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1142         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1143 };
1144
1145 static unsigned num_msrs_to_save;
1146
1147 static u32 emulated_msrs[] = {
1148         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1149         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1150         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1151         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1152         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1153         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1154         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1155         HV_X64_MSR_RESET,
1156         HV_X64_MSR_VP_INDEX,
1157         HV_X64_MSR_VP_RUNTIME,
1158         HV_X64_MSR_SCONTROL,
1159         HV_X64_MSR_STIMER0_CONFIG,
1160         HV_X64_MSR_VP_ASSIST_PAGE,
1161         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1162         HV_X64_MSR_TSC_EMULATION_STATUS,
1163
1164         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1165         MSR_KVM_PV_EOI_EN,
1166
1167         MSR_IA32_TSC_ADJUST,
1168         MSR_IA32_TSCDEADLINE,
1169         MSR_IA32_ARCH_CAPABILITIES,
1170         MSR_IA32_MISC_ENABLE,
1171         MSR_IA32_MCG_STATUS,
1172         MSR_IA32_MCG_CTL,
1173         MSR_IA32_MCG_EXT_CTL,
1174         MSR_IA32_SMBASE,
1175         MSR_SMI_COUNT,
1176         MSR_PLATFORM_INFO,
1177         MSR_MISC_FEATURES_ENABLES,
1178         MSR_AMD64_VIRT_SPEC_CTRL,
1179         MSR_IA32_POWER_CTL,
1180
1181         /*
1182          * The following list leaves out MSRs whose values are determined
1183          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1184          * We always support the "true" VMX control MSRs, even if the host
1185          * processor does not, so I am putting these registers here rather
1186          * than in msrs_to_save.
1187          */
1188         MSR_IA32_VMX_BASIC,
1189         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1190         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1191         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1192         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1193         MSR_IA32_VMX_MISC,
1194         MSR_IA32_VMX_CR0_FIXED0,
1195         MSR_IA32_VMX_CR4_FIXED0,
1196         MSR_IA32_VMX_VMCS_ENUM,
1197         MSR_IA32_VMX_PROCBASED_CTLS2,
1198         MSR_IA32_VMX_EPT_VPID_CAP,
1199         MSR_IA32_VMX_VMFUNC,
1200
1201         MSR_K7_HWCR,
1202         MSR_KVM_POLL_CONTROL,
1203 };
1204
1205 static unsigned num_emulated_msrs;
1206
1207 /*
1208  * List of msr numbers which are used to expose MSR-based features that
1209  * can be used by a hypervisor to validate requested CPU features.
1210  */
1211 static u32 msr_based_features[] = {
1212         MSR_IA32_VMX_BASIC,
1213         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1214         MSR_IA32_VMX_PINBASED_CTLS,
1215         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1216         MSR_IA32_VMX_PROCBASED_CTLS,
1217         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1218         MSR_IA32_VMX_EXIT_CTLS,
1219         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1220         MSR_IA32_VMX_ENTRY_CTLS,
1221         MSR_IA32_VMX_MISC,
1222         MSR_IA32_VMX_CR0_FIXED0,
1223         MSR_IA32_VMX_CR0_FIXED1,
1224         MSR_IA32_VMX_CR4_FIXED0,
1225         MSR_IA32_VMX_CR4_FIXED1,
1226         MSR_IA32_VMX_VMCS_ENUM,
1227         MSR_IA32_VMX_PROCBASED_CTLS2,
1228         MSR_IA32_VMX_EPT_VPID_CAP,
1229         MSR_IA32_VMX_VMFUNC,
1230
1231         MSR_F10H_DECFG,
1232         MSR_IA32_UCODE_REV,
1233         MSR_IA32_ARCH_CAPABILITIES,
1234 };
1235
1236 static unsigned int num_msr_based_features;
1237
1238 static u64 kvm_get_arch_capabilities(void)
1239 {
1240         u64 data = 0;
1241
1242         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1243                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1244
1245         /*
1246          * If we're doing cache flushes (either "always" or "cond")
1247          * we will do one whenever the guest does a vmlaunch/vmresume.
1248          * If an outer hypervisor is doing the cache flush for us
1249          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1250          * capability to the guest too, and if EPT is disabled we're not
1251          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1252          * require a nested hypervisor to do a flush of its own.
1253          */
1254         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1255                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1256
1257         return data;
1258 }
1259
1260 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1261 {
1262         switch (msr->index) {
1263         case MSR_IA32_ARCH_CAPABILITIES:
1264                 msr->data = kvm_get_arch_capabilities();
1265                 break;
1266         case MSR_IA32_UCODE_REV:
1267                 rdmsrl_safe(msr->index, &msr->data);
1268                 break;
1269         default:
1270                 if (kvm_x86_ops->get_msr_feature(msr))
1271                         return 1;
1272         }
1273         return 0;
1274 }
1275
1276 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1277 {
1278         struct kvm_msr_entry msr;
1279         int r;
1280
1281         msr.index = index;
1282         r = kvm_get_msr_feature(&msr);
1283         if (r)
1284                 return r;
1285
1286         *data = msr.data;
1287
1288         return 0;
1289 }
1290
1291 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1292 {
1293         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1294                 return false;
1295
1296         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1297                 return false;
1298
1299         if (efer & (EFER_LME | EFER_LMA) &&
1300             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1301                 return false;
1302
1303         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1304                 return false;
1305
1306         return true;
1307
1308 }
1309 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1310 {
1311         if (efer & efer_reserved_bits)
1312                 return false;
1313
1314         return __kvm_valid_efer(vcpu, efer);
1315 }
1316 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1317
1318 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1319 {
1320         u64 old_efer = vcpu->arch.efer;
1321         u64 efer = msr_info->data;
1322
1323         if (efer & efer_reserved_bits)
1324                 return 1;
1325
1326         if (!msr_info->host_initiated) {
1327                 if (!__kvm_valid_efer(vcpu, efer))
1328                         return 1;
1329
1330                 if (is_paging(vcpu) &&
1331                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1332                         return 1;
1333         }
1334
1335         efer &= ~EFER_LMA;
1336         efer |= vcpu->arch.efer & EFER_LMA;
1337
1338         kvm_x86_ops->set_efer(vcpu, efer);
1339
1340         /* Update reserved bits */
1341         if ((efer ^ old_efer) & EFER_NX)
1342                 kvm_mmu_reset_context(vcpu);
1343
1344         return 0;
1345 }
1346
1347 void kvm_enable_efer_bits(u64 mask)
1348 {
1349        efer_reserved_bits &= ~mask;
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1352
1353 /*
1354  * Writes msr value into into the appropriate "register".
1355  * Returns 0 on success, non-0 otherwise.
1356  * Assumes vcpu_load() was already called.
1357  */
1358 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1359 {
1360         switch (msr->index) {
1361         case MSR_FS_BASE:
1362         case MSR_GS_BASE:
1363         case MSR_KERNEL_GS_BASE:
1364         case MSR_CSTAR:
1365         case MSR_LSTAR:
1366                 if (is_noncanonical_address(msr->data, vcpu))
1367                         return 1;
1368                 break;
1369         case MSR_IA32_SYSENTER_EIP:
1370         case MSR_IA32_SYSENTER_ESP:
1371                 /*
1372                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1373                  * non-canonical address is written on Intel but not on
1374                  * AMD (which ignores the top 32-bits, because it does
1375                  * not implement 64-bit SYSENTER).
1376                  *
1377                  * 64-bit code should hence be able to write a non-canonical
1378                  * value on AMD.  Making the address canonical ensures that
1379                  * vmentry does not fail on Intel after writing a non-canonical
1380                  * value, and that something deterministic happens if the guest
1381                  * invokes 64-bit SYSENTER.
1382                  */
1383                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1384         }
1385         return kvm_x86_ops->set_msr(vcpu, msr);
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_set_msr);
1388
1389 /*
1390  * Adapt set_msr() to msr_io()'s calling convention
1391  */
1392 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1393 {
1394         struct msr_data msr;
1395         int r;
1396
1397         msr.index = index;
1398         msr.host_initiated = true;
1399         r = kvm_get_msr(vcpu, &msr);
1400         if (r)
1401                 return r;
1402
1403         *data = msr.data;
1404         return 0;
1405 }
1406
1407 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1408 {
1409         struct msr_data msr;
1410
1411         msr.data = *data;
1412         msr.index = index;
1413         msr.host_initiated = true;
1414         return kvm_set_msr(vcpu, &msr);
1415 }
1416
1417 #ifdef CONFIG_X86_64
1418 struct pvclock_gtod_data {
1419         seqcount_t      seq;
1420
1421         struct { /* extract of a clocksource struct */
1422                 int vclock_mode;
1423                 u64     cycle_last;
1424                 u64     mask;
1425                 u32     mult;
1426                 u32     shift;
1427         } clock;
1428
1429         u64             boot_ns;
1430         u64             nsec_base;
1431         u64             wall_time_sec;
1432 };
1433
1434 static struct pvclock_gtod_data pvclock_gtod_data;
1435
1436 static void update_pvclock_gtod(struct timekeeper *tk)
1437 {
1438         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1439         u64 boot_ns;
1440
1441         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1442
1443         write_seqcount_begin(&vdata->seq);
1444
1445         /* copy pvclock gtod data */
1446         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1447         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1448         vdata->clock.mask               = tk->tkr_mono.mask;
1449         vdata->clock.mult               = tk->tkr_mono.mult;
1450         vdata->clock.shift              = tk->tkr_mono.shift;
1451
1452         vdata->boot_ns                  = boot_ns;
1453         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1454
1455         vdata->wall_time_sec            = tk->xtime_sec;
1456
1457         write_seqcount_end(&vdata->seq);
1458 }
1459 #endif
1460
1461 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1462 {
1463         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1464         kvm_vcpu_kick(vcpu);
1465 }
1466
1467 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1468 {
1469         int version;
1470         int r;
1471         struct pvclock_wall_clock wc;
1472         struct timespec64 boot;
1473
1474         if (!wall_clock)
1475                 return;
1476
1477         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1478         if (r)
1479                 return;
1480
1481         if (version & 1)
1482                 ++version;  /* first time write, random junk */
1483
1484         ++version;
1485
1486         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1487                 return;
1488
1489         /*
1490          * The guest calculates current wall clock time by adding
1491          * system time (updated by kvm_guest_time_update below) to the
1492          * wall clock specified here.  guest system time equals host
1493          * system time for us, thus we must fill in host boot time here.
1494          */
1495         getboottime64(&boot);
1496
1497         if (kvm->arch.kvmclock_offset) {
1498                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1499                 boot = timespec64_sub(boot, ts);
1500         }
1501         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1502         wc.nsec = boot.tv_nsec;
1503         wc.version = version;
1504
1505         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1506
1507         version++;
1508         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1509 }
1510
1511 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1512 {
1513         do_shl32_div32(dividend, divisor);
1514         return dividend;
1515 }
1516
1517 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1518                                s8 *pshift, u32 *pmultiplier)
1519 {
1520         uint64_t scaled64;
1521         int32_t  shift = 0;
1522         uint64_t tps64;
1523         uint32_t tps32;
1524
1525         tps64 = base_hz;
1526         scaled64 = scaled_hz;
1527         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1528                 tps64 >>= 1;
1529                 shift--;
1530         }
1531
1532         tps32 = (uint32_t)tps64;
1533         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1534                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1535                         scaled64 >>= 1;
1536                 else
1537                         tps32 <<= 1;
1538                 shift++;
1539         }
1540
1541         *pshift = shift;
1542         *pmultiplier = div_frac(scaled64, tps32);
1543 }
1544
1545 #ifdef CONFIG_X86_64
1546 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1547 #endif
1548
1549 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1550 static unsigned long max_tsc_khz;
1551
1552 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1553 {
1554         u64 v = (u64)khz * (1000000 + ppm);
1555         do_div(v, 1000000);
1556         return v;
1557 }
1558
1559 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1560 {
1561         u64 ratio;
1562
1563         /* Guest TSC same frequency as host TSC? */
1564         if (!scale) {
1565                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1566                 return 0;
1567         }
1568
1569         /* TSC scaling supported? */
1570         if (!kvm_has_tsc_control) {
1571                 if (user_tsc_khz > tsc_khz) {
1572                         vcpu->arch.tsc_catchup = 1;
1573                         vcpu->arch.tsc_always_catchup = 1;
1574                         return 0;
1575                 } else {
1576                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1577                         return -1;
1578                 }
1579         }
1580
1581         /* TSC scaling required  - calculate ratio */
1582         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1583                                 user_tsc_khz, tsc_khz);
1584
1585         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1586                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1587                                     user_tsc_khz);
1588                 return -1;
1589         }
1590
1591         vcpu->arch.tsc_scaling_ratio = ratio;
1592         return 0;
1593 }
1594
1595 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1596 {
1597         u32 thresh_lo, thresh_hi;
1598         int use_scaling = 0;
1599
1600         /* tsc_khz can be zero if TSC calibration fails */
1601         if (user_tsc_khz == 0) {
1602                 /* set tsc_scaling_ratio to a safe value */
1603                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1604                 return -1;
1605         }
1606
1607         /* Compute a scale to convert nanoseconds in TSC cycles */
1608         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1609                            &vcpu->arch.virtual_tsc_shift,
1610                            &vcpu->arch.virtual_tsc_mult);
1611         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1612
1613         /*
1614          * Compute the variation in TSC rate which is acceptable
1615          * within the range of tolerance and decide if the
1616          * rate being applied is within that bounds of the hardware
1617          * rate.  If so, no scaling or compensation need be done.
1618          */
1619         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1620         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1621         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1622                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1623                 use_scaling = 1;
1624         }
1625         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1626 }
1627
1628 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1629 {
1630         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1631                                       vcpu->arch.virtual_tsc_mult,
1632                                       vcpu->arch.virtual_tsc_shift);
1633         tsc += vcpu->arch.this_tsc_write;
1634         return tsc;
1635 }
1636
1637 static inline int gtod_is_based_on_tsc(int mode)
1638 {
1639         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1640 }
1641
1642 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1643 {
1644 #ifdef CONFIG_X86_64
1645         bool vcpus_matched;
1646         struct kvm_arch *ka = &vcpu->kvm->arch;
1647         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1648
1649         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1650                          atomic_read(&vcpu->kvm->online_vcpus));
1651
1652         /*
1653          * Once the masterclock is enabled, always perform request in
1654          * order to update it.
1655          *
1656          * In order to enable masterclock, the host clocksource must be TSC
1657          * and the vcpus need to have matched TSCs.  When that happens,
1658          * perform request to enable masterclock.
1659          */
1660         if (ka->use_master_clock ||
1661             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1662                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1663
1664         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1665                             atomic_read(&vcpu->kvm->online_vcpus),
1666                             ka->use_master_clock, gtod->clock.vclock_mode);
1667 #endif
1668 }
1669
1670 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1671 {
1672         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1673         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1674 }
1675
1676 /*
1677  * Multiply tsc by a fixed point number represented by ratio.
1678  *
1679  * The most significant 64-N bits (mult) of ratio represent the
1680  * integral part of the fixed point number; the remaining N bits
1681  * (frac) represent the fractional part, ie. ratio represents a fixed
1682  * point number (mult + frac * 2^(-N)).
1683  *
1684  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1685  */
1686 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1687 {
1688         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1689 }
1690
1691 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1692 {
1693         u64 _tsc = tsc;
1694         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1695
1696         if (ratio != kvm_default_tsc_scaling_ratio)
1697                 _tsc = __scale_tsc(ratio, tsc);
1698
1699         return _tsc;
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1702
1703 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1704 {
1705         u64 tsc;
1706
1707         tsc = kvm_scale_tsc(vcpu, rdtsc());
1708
1709         return target_tsc - tsc;
1710 }
1711
1712 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1713 {
1714         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1715
1716         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1719
1720 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1721 {
1722         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1723 }
1724
1725 static inline bool kvm_check_tsc_unstable(void)
1726 {
1727 #ifdef CONFIG_X86_64
1728         /*
1729          * TSC is marked unstable when we're running on Hyper-V,
1730          * 'TSC page' clocksource is good.
1731          */
1732         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1733                 return false;
1734 #endif
1735         return check_tsc_unstable();
1736 }
1737
1738 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1739 {
1740         struct kvm *kvm = vcpu->kvm;
1741         u64 offset, ns, elapsed;
1742         unsigned long flags;
1743         bool matched;
1744         bool already_matched;
1745         u64 data = msr->data;
1746         bool synchronizing = false;
1747
1748         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1749         offset = kvm_compute_tsc_offset(vcpu, data);
1750         ns = ktime_get_boottime_ns();
1751         elapsed = ns - kvm->arch.last_tsc_nsec;
1752
1753         if (vcpu->arch.virtual_tsc_khz) {
1754                 if (data == 0 && msr->host_initiated) {
1755                         /*
1756                          * detection of vcpu initialization -- need to sync
1757                          * with other vCPUs. This particularly helps to keep
1758                          * kvm_clock stable after CPU hotplug
1759                          */
1760                         synchronizing = true;
1761                 } else {
1762                         u64 tsc_exp = kvm->arch.last_tsc_write +
1763                                                 nsec_to_cycles(vcpu, elapsed);
1764                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1765                         /*
1766                          * Special case: TSC write with a small delta (1 second)
1767                          * of virtual cycle time against real time is
1768                          * interpreted as an attempt to synchronize the CPU.
1769                          */
1770                         synchronizing = data < tsc_exp + tsc_hz &&
1771                                         data + tsc_hz > tsc_exp;
1772                 }
1773         }
1774
1775         /*
1776          * For a reliable TSC, we can match TSC offsets, and for an unstable
1777          * TSC, we add elapsed time in this computation.  We could let the
1778          * compensation code attempt to catch up if we fall behind, but
1779          * it's better to try to match offsets from the beginning.
1780          */
1781         if (synchronizing &&
1782             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1783                 if (!kvm_check_tsc_unstable()) {
1784                         offset = kvm->arch.cur_tsc_offset;
1785                 } else {
1786                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1787                         data += delta;
1788                         offset = kvm_compute_tsc_offset(vcpu, data);
1789                 }
1790                 matched = true;
1791                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1792         } else {
1793                 /*
1794                  * We split periods of matched TSC writes into generations.
1795                  * For each generation, we track the original measured
1796                  * nanosecond time, offset, and write, so if TSCs are in
1797                  * sync, we can match exact offset, and if not, we can match
1798                  * exact software computation in compute_guest_tsc()
1799                  *
1800                  * These values are tracked in kvm->arch.cur_xxx variables.
1801                  */
1802                 kvm->arch.cur_tsc_generation++;
1803                 kvm->arch.cur_tsc_nsec = ns;
1804                 kvm->arch.cur_tsc_write = data;
1805                 kvm->arch.cur_tsc_offset = offset;
1806                 matched = false;
1807         }
1808
1809         /*
1810          * We also track th most recent recorded KHZ, write and time to
1811          * allow the matching interval to be extended at each write.
1812          */
1813         kvm->arch.last_tsc_nsec = ns;
1814         kvm->arch.last_tsc_write = data;
1815         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1816
1817         vcpu->arch.last_guest_tsc = data;
1818
1819         /* Keep track of which generation this VCPU has synchronized to */
1820         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1821         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1822         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1823
1824         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1825                 update_ia32_tsc_adjust_msr(vcpu, offset);
1826
1827         kvm_vcpu_write_tsc_offset(vcpu, offset);
1828         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1829
1830         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1831         if (!matched) {
1832                 kvm->arch.nr_vcpus_matched_tsc = 0;
1833         } else if (!already_matched) {
1834                 kvm->arch.nr_vcpus_matched_tsc++;
1835         }
1836
1837         kvm_track_tsc_matching(vcpu);
1838         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1839 }
1840
1841 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1842
1843 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1844                                            s64 adjustment)
1845 {
1846         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1847         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1848 }
1849
1850 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1851 {
1852         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1853                 WARN_ON(adjustment < 0);
1854         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1855         adjust_tsc_offset_guest(vcpu, adjustment);
1856 }
1857
1858 #ifdef CONFIG_X86_64
1859
1860 static u64 read_tsc(void)
1861 {
1862         u64 ret = (u64)rdtsc_ordered();
1863         u64 last = pvclock_gtod_data.clock.cycle_last;
1864
1865         if (likely(ret >= last))
1866                 return ret;
1867
1868         /*
1869          * GCC likes to generate cmov here, but this branch is extremely
1870          * predictable (it's just a function of time and the likely is
1871          * very likely) and there's a data dependence, so force GCC
1872          * to generate a branch instead.  I don't barrier() because
1873          * we don't actually need a barrier, and if this function
1874          * ever gets inlined it will generate worse code.
1875          */
1876         asm volatile ("");
1877         return last;
1878 }
1879
1880 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1881 {
1882         long v;
1883         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1884         u64 tsc_pg_val;
1885
1886         switch (gtod->clock.vclock_mode) {
1887         case VCLOCK_HVCLOCK:
1888                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1889                                                   tsc_timestamp);
1890                 if (tsc_pg_val != U64_MAX) {
1891                         /* TSC page valid */
1892                         *mode = VCLOCK_HVCLOCK;
1893                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1894                                 gtod->clock.mask;
1895                 } else {
1896                         /* TSC page invalid */
1897                         *mode = VCLOCK_NONE;
1898                 }
1899                 break;
1900         case VCLOCK_TSC:
1901                 *mode = VCLOCK_TSC;
1902                 *tsc_timestamp = read_tsc();
1903                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1904                         gtod->clock.mask;
1905                 break;
1906         default:
1907                 *mode = VCLOCK_NONE;
1908         }
1909
1910         if (*mode == VCLOCK_NONE)
1911                 *tsc_timestamp = v = 0;
1912
1913         return v * gtod->clock.mult;
1914 }
1915
1916 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1917 {
1918         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1919         unsigned long seq;
1920         int mode;
1921         u64 ns;
1922
1923         do {
1924                 seq = read_seqcount_begin(&gtod->seq);
1925                 ns = gtod->nsec_base;
1926                 ns += vgettsc(tsc_timestamp, &mode);
1927                 ns >>= gtod->clock.shift;
1928                 ns += gtod->boot_ns;
1929         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1930         *t = ns;
1931
1932         return mode;
1933 }
1934
1935 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1936 {
1937         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1938         unsigned long seq;
1939         int mode;
1940         u64 ns;
1941
1942         do {
1943                 seq = read_seqcount_begin(&gtod->seq);
1944                 ts->tv_sec = gtod->wall_time_sec;
1945                 ns = gtod->nsec_base;
1946                 ns += vgettsc(tsc_timestamp, &mode);
1947                 ns >>= gtod->clock.shift;
1948         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1949
1950         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1951         ts->tv_nsec = ns;
1952
1953         return mode;
1954 }
1955
1956 /* returns true if host is using TSC based clocksource */
1957 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1958 {
1959         /* checked again under seqlock below */
1960         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1961                 return false;
1962
1963         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1964                                                       tsc_timestamp));
1965 }
1966
1967 /* returns true if host is using TSC based clocksource */
1968 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1969                                            u64 *tsc_timestamp)
1970 {
1971         /* checked again under seqlock below */
1972         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1973                 return false;
1974
1975         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1976 }
1977 #endif
1978
1979 /*
1980  *
1981  * Assuming a stable TSC across physical CPUS, and a stable TSC
1982  * across virtual CPUs, the following condition is possible.
1983  * Each numbered line represents an event visible to both
1984  * CPUs at the next numbered event.
1985  *
1986  * "timespecX" represents host monotonic time. "tscX" represents
1987  * RDTSC value.
1988  *
1989  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1990  *
1991  * 1.  read timespec0,tsc0
1992  * 2.                                   | timespec1 = timespec0 + N
1993  *                                      | tsc1 = tsc0 + M
1994  * 3. transition to guest               | transition to guest
1995  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1996  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1997  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1998  *
1999  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2000  *
2001  *      - ret0 < ret1
2002  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2003  *              ...
2004  *      - 0 < N - M => M < N
2005  *
2006  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2007  * always the case (the difference between two distinct xtime instances
2008  * might be smaller then the difference between corresponding TSC reads,
2009  * when updating guest vcpus pvclock areas).
2010  *
2011  * To avoid that problem, do not allow visibility of distinct
2012  * system_timestamp/tsc_timestamp values simultaneously: use a master
2013  * copy of host monotonic time values. Update that master copy
2014  * in lockstep.
2015  *
2016  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2017  *
2018  */
2019
2020 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2021 {
2022 #ifdef CONFIG_X86_64
2023         struct kvm_arch *ka = &kvm->arch;
2024         int vclock_mode;
2025         bool host_tsc_clocksource, vcpus_matched;
2026
2027         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2028                         atomic_read(&kvm->online_vcpus));
2029
2030         /*
2031          * If the host uses TSC clock, then passthrough TSC as stable
2032          * to the guest.
2033          */
2034         host_tsc_clocksource = kvm_get_time_and_clockread(
2035                                         &ka->master_kernel_ns,
2036                                         &ka->master_cycle_now);
2037
2038         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2039                                 && !ka->backwards_tsc_observed
2040                                 && !ka->boot_vcpu_runs_old_kvmclock;
2041
2042         if (ka->use_master_clock)
2043                 atomic_set(&kvm_guest_has_master_clock, 1);
2044
2045         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2046         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2047                                         vcpus_matched);
2048 #endif
2049 }
2050
2051 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2052 {
2053         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2054 }
2055
2056 static void kvm_gen_update_masterclock(struct kvm *kvm)
2057 {
2058 #ifdef CONFIG_X86_64
2059         int i;
2060         struct kvm_vcpu *vcpu;
2061         struct kvm_arch *ka = &kvm->arch;
2062
2063         spin_lock(&ka->pvclock_gtod_sync_lock);
2064         kvm_make_mclock_inprogress_request(kvm);
2065         /* no guest entries from this point */
2066         pvclock_update_vm_gtod_copy(kvm);
2067
2068         kvm_for_each_vcpu(i, vcpu, kvm)
2069                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2070
2071         /* guest entries allowed */
2072         kvm_for_each_vcpu(i, vcpu, kvm)
2073                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2074
2075         spin_unlock(&ka->pvclock_gtod_sync_lock);
2076 #endif
2077 }
2078
2079 u64 get_kvmclock_ns(struct kvm *kvm)
2080 {
2081         struct kvm_arch *ka = &kvm->arch;
2082         struct pvclock_vcpu_time_info hv_clock;
2083         u64 ret;
2084
2085         spin_lock(&ka->pvclock_gtod_sync_lock);
2086         if (!ka->use_master_clock) {
2087                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2088                 return ktime_get_boottime_ns() + ka->kvmclock_offset;
2089         }
2090
2091         hv_clock.tsc_timestamp = ka->master_cycle_now;
2092         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2093         spin_unlock(&ka->pvclock_gtod_sync_lock);
2094
2095         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2096         get_cpu();
2097
2098         if (__this_cpu_read(cpu_tsc_khz)) {
2099                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2100                                    &hv_clock.tsc_shift,
2101                                    &hv_clock.tsc_to_system_mul);
2102                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2103         } else
2104                 ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2105
2106         put_cpu();
2107
2108         return ret;
2109 }
2110
2111 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2112 {
2113         struct kvm_vcpu_arch *vcpu = &v->arch;
2114         struct pvclock_vcpu_time_info guest_hv_clock;
2115
2116         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2117                 &guest_hv_clock, sizeof(guest_hv_clock))))
2118                 return;
2119
2120         /* This VCPU is paused, but it's legal for a guest to read another
2121          * VCPU's kvmclock, so we really have to follow the specification where
2122          * it says that version is odd if data is being modified, and even after
2123          * it is consistent.
2124          *
2125          * Version field updates must be kept separate.  This is because
2126          * kvm_write_guest_cached might use a "rep movs" instruction, and
2127          * writes within a string instruction are weakly ordered.  So there
2128          * are three writes overall.
2129          *
2130          * As a small optimization, only write the version field in the first
2131          * and third write.  The vcpu->pv_time cache is still valid, because the
2132          * version field is the first in the struct.
2133          */
2134         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2135
2136         if (guest_hv_clock.version & 1)
2137                 ++guest_hv_clock.version;  /* first time write, random junk */
2138
2139         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2140         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2141                                 &vcpu->hv_clock,
2142                                 sizeof(vcpu->hv_clock.version));
2143
2144         smp_wmb();
2145
2146         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2147         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2148
2149         if (vcpu->pvclock_set_guest_stopped_request) {
2150                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2151                 vcpu->pvclock_set_guest_stopped_request = false;
2152         }
2153
2154         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2155
2156         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2157                                 &vcpu->hv_clock,
2158                                 sizeof(vcpu->hv_clock));
2159
2160         smp_wmb();
2161
2162         vcpu->hv_clock.version++;
2163         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2164                                 &vcpu->hv_clock,
2165                                 sizeof(vcpu->hv_clock.version));
2166 }
2167
2168 static int kvm_guest_time_update(struct kvm_vcpu *v)
2169 {
2170         unsigned long flags, tgt_tsc_khz;
2171         struct kvm_vcpu_arch *vcpu = &v->arch;
2172         struct kvm_arch *ka = &v->kvm->arch;
2173         s64 kernel_ns;
2174         u64 tsc_timestamp, host_tsc;
2175         u8 pvclock_flags;
2176         bool use_master_clock;
2177
2178         kernel_ns = 0;
2179         host_tsc = 0;
2180
2181         /*
2182          * If the host uses TSC clock, then passthrough TSC as stable
2183          * to the guest.
2184          */
2185         spin_lock(&ka->pvclock_gtod_sync_lock);
2186         use_master_clock = ka->use_master_clock;
2187         if (use_master_clock) {
2188                 host_tsc = ka->master_cycle_now;
2189                 kernel_ns = ka->master_kernel_ns;
2190         }
2191         spin_unlock(&ka->pvclock_gtod_sync_lock);
2192
2193         /* Keep irq disabled to prevent changes to the clock */
2194         local_irq_save(flags);
2195         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2196         if (unlikely(tgt_tsc_khz == 0)) {
2197                 local_irq_restore(flags);
2198                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2199                 return 1;
2200         }
2201         if (!use_master_clock) {
2202                 host_tsc = rdtsc();
2203                 kernel_ns = ktime_get_boottime_ns();
2204         }
2205
2206         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2207
2208         /*
2209          * We may have to catch up the TSC to match elapsed wall clock
2210          * time for two reasons, even if kvmclock is used.
2211          *   1) CPU could have been running below the maximum TSC rate
2212          *   2) Broken TSC compensation resets the base at each VCPU
2213          *      entry to avoid unknown leaps of TSC even when running
2214          *      again on the same CPU.  This may cause apparent elapsed
2215          *      time to disappear, and the guest to stand still or run
2216          *      very slowly.
2217          */
2218         if (vcpu->tsc_catchup) {
2219                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2220                 if (tsc > tsc_timestamp) {
2221                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2222                         tsc_timestamp = tsc;
2223                 }
2224         }
2225
2226         local_irq_restore(flags);
2227
2228         /* With all the info we got, fill in the values */
2229
2230         if (kvm_has_tsc_control)
2231                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2232
2233         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2234                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2235                                    &vcpu->hv_clock.tsc_shift,
2236                                    &vcpu->hv_clock.tsc_to_system_mul);
2237                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2238         }
2239
2240         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2241         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2242         vcpu->last_guest_tsc = tsc_timestamp;
2243
2244         /* If the host uses TSC clocksource, then it is stable */
2245         pvclock_flags = 0;
2246         if (use_master_clock)
2247                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2248
2249         vcpu->hv_clock.flags = pvclock_flags;
2250
2251         if (vcpu->pv_time_enabled)
2252                 kvm_setup_pvclock_page(v);
2253         if (v == kvm_get_vcpu(v->kvm, 0))
2254                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2255         return 0;
2256 }
2257
2258 /*
2259  * kvmclock updates which are isolated to a given vcpu, such as
2260  * vcpu->cpu migration, should not allow system_timestamp from
2261  * the rest of the vcpus to remain static. Otherwise ntp frequency
2262  * correction applies to one vcpu's system_timestamp but not
2263  * the others.
2264  *
2265  * So in those cases, request a kvmclock update for all vcpus.
2266  * We need to rate-limit these requests though, as they can
2267  * considerably slow guests that have a large number of vcpus.
2268  * The time for a remote vcpu to update its kvmclock is bound
2269  * by the delay we use to rate-limit the updates.
2270  */
2271
2272 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2273
2274 static void kvmclock_update_fn(struct work_struct *work)
2275 {
2276         int i;
2277         struct delayed_work *dwork = to_delayed_work(work);
2278         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2279                                            kvmclock_update_work);
2280         struct kvm *kvm = container_of(ka, struct kvm, arch);
2281         struct kvm_vcpu *vcpu;
2282
2283         kvm_for_each_vcpu(i, vcpu, kvm) {
2284                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2285                 kvm_vcpu_kick(vcpu);
2286         }
2287 }
2288
2289 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2290 {
2291         struct kvm *kvm = v->kvm;
2292
2293         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2294         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2295                                         KVMCLOCK_UPDATE_DELAY);
2296 }
2297
2298 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2299
2300 static void kvmclock_sync_fn(struct work_struct *work)
2301 {
2302         struct delayed_work *dwork = to_delayed_work(work);
2303         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2304                                            kvmclock_sync_work);
2305         struct kvm *kvm = container_of(ka, struct kvm, arch);
2306
2307         if (!kvmclock_periodic_sync)
2308                 return;
2309
2310         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2311         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2312                                         KVMCLOCK_SYNC_PERIOD);
2313 }
2314
2315 /*
2316  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2317  */
2318 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2319 {
2320         /* McStatusWrEn enabled? */
2321         if (guest_cpuid_is_amd(vcpu))
2322                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2323
2324         return false;
2325 }
2326
2327 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2328 {
2329         u64 mcg_cap = vcpu->arch.mcg_cap;
2330         unsigned bank_num = mcg_cap & 0xff;
2331         u32 msr = msr_info->index;
2332         u64 data = msr_info->data;
2333
2334         switch (msr) {
2335         case MSR_IA32_MCG_STATUS:
2336                 vcpu->arch.mcg_status = data;
2337                 break;
2338         case MSR_IA32_MCG_CTL:
2339                 if (!(mcg_cap & MCG_CTL_P) &&
2340                     (data || !msr_info->host_initiated))
2341                         return 1;
2342                 if (data != 0 && data != ~(u64)0)
2343                         return 1;
2344                 vcpu->arch.mcg_ctl = data;
2345                 break;
2346         default:
2347                 if (msr >= MSR_IA32_MC0_CTL &&
2348                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2349                         u32 offset = msr - MSR_IA32_MC0_CTL;
2350                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2351                          * some Linux kernels though clear bit 10 in bank 4 to
2352                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2353                          * this to avoid an uncatched #GP in the guest
2354                          */
2355                         if ((offset & 0x3) == 0 &&
2356                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2357                                 return -1;
2358
2359                         /* MCi_STATUS */
2360                         if (!msr_info->host_initiated &&
2361                             (offset & 0x3) == 1 && data != 0) {
2362                                 if (!can_set_mci_status(vcpu))
2363                                         return -1;
2364                         }
2365
2366                         vcpu->arch.mce_banks[offset] = data;
2367                         break;
2368                 }
2369                 return 1;
2370         }
2371         return 0;
2372 }
2373
2374 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2375 {
2376         struct kvm *kvm = vcpu->kvm;
2377         int lm = is_long_mode(vcpu);
2378         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2379                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2380         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2381                 : kvm->arch.xen_hvm_config.blob_size_32;
2382         u32 page_num = data & ~PAGE_MASK;
2383         u64 page_addr = data & PAGE_MASK;
2384         u8 *page;
2385         int r;
2386
2387         r = -E2BIG;
2388         if (page_num >= blob_size)
2389                 goto out;
2390         r = -ENOMEM;
2391         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2392         if (IS_ERR(page)) {
2393                 r = PTR_ERR(page);
2394                 goto out;
2395         }
2396         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2397                 goto out_free;
2398         r = 0;
2399 out_free:
2400         kfree(page);
2401 out:
2402         return r;
2403 }
2404
2405 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2406 {
2407         gpa_t gpa = data & ~0x3f;
2408
2409         /* Bits 3:5 are reserved, Should be zero */
2410         if (data & 0x38)
2411                 return 1;
2412
2413         vcpu->arch.apf.msr_val = data;
2414
2415         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2416                 kvm_clear_async_pf_completion_queue(vcpu);
2417                 kvm_async_pf_hash_reset(vcpu);
2418                 return 0;
2419         }
2420
2421         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2422                                         sizeof(u32)))
2423                 return 1;
2424
2425         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2426         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2427         kvm_async_pf_wakeup_all(vcpu);
2428         return 0;
2429 }
2430
2431 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2432 {
2433         vcpu->arch.pv_time_enabled = false;
2434 }
2435
2436 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2437 {
2438         ++vcpu->stat.tlb_flush;
2439         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2440 }
2441
2442 static void record_steal_time(struct kvm_vcpu *vcpu)
2443 {
2444         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2445                 return;
2446
2447         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2448                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2449                 return;
2450
2451         /*
2452          * Doing a TLB flush here, on the guest's behalf, can avoid
2453          * expensive IPIs.
2454          */
2455         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2456                 kvm_vcpu_flush_tlb(vcpu, false);
2457
2458         if (vcpu->arch.st.steal.version & 1)
2459                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2460
2461         vcpu->arch.st.steal.version += 1;
2462
2463         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2464                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2465
2466         smp_wmb();
2467
2468         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2469                 vcpu->arch.st.last_steal;
2470         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2471
2472         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2473                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2474
2475         smp_wmb();
2476
2477         vcpu->arch.st.steal.version += 1;
2478
2479         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2480                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2481 }
2482
2483 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2484 {
2485         bool pr = false;
2486         u32 msr = msr_info->index;
2487         u64 data = msr_info->data;
2488
2489         switch (msr) {
2490         case MSR_AMD64_NB_CFG:
2491         case MSR_IA32_UCODE_WRITE:
2492         case MSR_VM_HSAVE_PA:
2493         case MSR_AMD64_PATCH_LOADER:
2494         case MSR_AMD64_BU_CFG2:
2495         case MSR_AMD64_DC_CFG:
2496         case MSR_F15H_EX_CFG:
2497                 break;
2498
2499         case MSR_IA32_UCODE_REV:
2500                 if (msr_info->host_initiated)
2501                         vcpu->arch.microcode_version = data;
2502                 break;
2503         case MSR_IA32_ARCH_CAPABILITIES:
2504                 if (!msr_info->host_initiated)
2505                         return 1;
2506                 vcpu->arch.arch_capabilities = data;
2507                 break;
2508         case MSR_EFER:
2509                 return set_efer(vcpu, msr_info);
2510         case MSR_K7_HWCR:
2511                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2512                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2513                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2514
2515                 /* Handle McStatusWrEn */
2516                 if (data == BIT_ULL(18)) {
2517                         vcpu->arch.msr_hwcr = data;
2518                 } else if (data != 0) {
2519                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2520                                     data);
2521                         return 1;
2522                 }
2523                 break;
2524         case MSR_FAM10H_MMIO_CONF_BASE:
2525                 if (data != 0) {
2526                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2527                                     "0x%llx\n", data);
2528                         return 1;
2529                 }
2530                 break;
2531         case MSR_IA32_DEBUGCTLMSR:
2532                 if (!data) {
2533                         /* We support the non-activated case already */
2534                         break;
2535                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2536                         /* Values other than LBR and BTF are vendor-specific,
2537                            thus reserved and should throw a #GP */
2538                         return 1;
2539                 }
2540                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2541                             __func__, data);
2542                 break;
2543         case 0x200 ... 0x2ff:
2544                 return kvm_mtrr_set_msr(vcpu, msr, data);
2545         case MSR_IA32_APICBASE:
2546                 return kvm_set_apic_base(vcpu, msr_info);
2547         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2548                 return kvm_x2apic_msr_write(vcpu, msr, data);
2549         case MSR_IA32_TSCDEADLINE:
2550                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2551                 break;
2552         case MSR_IA32_TSC_ADJUST:
2553                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2554                         if (!msr_info->host_initiated) {
2555                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2556                                 adjust_tsc_offset_guest(vcpu, adj);
2557                         }
2558                         vcpu->arch.ia32_tsc_adjust_msr = data;
2559                 }
2560                 break;
2561         case MSR_IA32_MISC_ENABLE:
2562                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2563                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2564                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2565                                 return 1;
2566                         vcpu->arch.ia32_misc_enable_msr = data;
2567                         kvm_update_cpuid(vcpu);
2568                 } else {
2569                         vcpu->arch.ia32_misc_enable_msr = data;
2570                 }
2571                 break;
2572         case MSR_IA32_SMBASE:
2573                 if (!msr_info->host_initiated)
2574                         return 1;
2575                 vcpu->arch.smbase = data;
2576                 break;
2577         case MSR_IA32_POWER_CTL:
2578                 vcpu->arch.msr_ia32_power_ctl = data;
2579                 break;
2580         case MSR_IA32_TSC:
2581                 kvm_write_tsc(vcpu, msr_info);
2582                 break;
2583         case MSR_SMI_COUNT:
2584                 if (!msr_info->host_initiated)
2585                         return 1;
2586                 vcpu->arch.smi_count = data;
2587                 break;
2588         case MSR_KVM_WALL_CLOCK_NEW:
2589         case MSR_KVM_WALL_CLOCK:
2590                 vcpu->kvm->arch.wall_clock = data;
2591                 kvm_write_wall_clock(vcpu->kvm, data);
2592                 break;
2593         case MSR_KVM_SYSTEM_TIME_NEW:
2594         case MSR_KVM_SYSTEM_TIME: {
2595                 struct kvm_arch *ka = &vcpu->kvm->arch;
2596
2597                 kvmclock_reset(vcpu);
2598
2599                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2600                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2601
2602                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2603                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2604
2605                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2606                 }
2607
2608                 vcpu->arch.time = data;
2609                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2610
2611                 /* we verify if the enable bit is set... */
2612                 if (!(data & 1))
2613                         break;
2614
2615                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2616                      &vcpu->arch.pv_time, data & ~1ULL,
2617                      sizeof(struct pvclock_vcpu_time_info)))
2618                         vcpu->arch.pv_time_enabled = false;
2619                 else
2620                         vcpu->arch.pv_time_enabled = true;
2621
2622                 break;
2623         }
2624         case MSR_KVM_ASYNC_PF_EN:
2625                 if (kvm_pv_enable_async_pf(vcpu, data))
2626                         return 1;
2627                 break;
2628         case MSR_KVM_STEAL_TIME:
2629
2630                 if (unlikely(!sched_info_on()))
2631                         return 1;
2632
2633                 if (data & KVM_STEAL_RESERVED_MASK)
2634                         return 1;
2635
2636                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2637                                                 data & KVM_STEAL_VALID_BITS,
2638                                                 sizeof(struct kvm_steal_time)))
2639                         return 1;
2640
2641                 vcpu->arch.st.msr_val = data;
2642
2643                 if (!(data & KVM_MSR_ENABLED))
2644                         break;
2645
2646                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2647
2648                 break;
2649         case MSR_KVM_PV_EOI_EN:
2650                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2651                         return 1;
2652                 break;
2653
2654         case MSR_KVM_POLL_CONTROL:
2655                 /* only enable bit supported */
2656                 if (data & (-1ULL << 1))
2657                         return 1;
2658
2659                 vcpu->arch.msr_kvm_poll_control = data;
2660                 break;
2661
2662         case MSR_IA32_MCG_CTL:
2663         case MSR_IA32_MCG_STATUS:
2664         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2665                 return set_msr_mce(vcpu, msr_info);
2666
2667         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2668         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2669                 pr = true; /* fall through */
2670         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2671         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2672                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2673                         return kvm_pmu_set_msr(vcpu, msr_info);
2674
2675                 if (pr || data != 0)
2676                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2677                                     "0x%x data 0x%llx\n", msr, data);
2678                 break;
2679         case MSR_K7_CLK_CTL:
2680                 /*
2681                  * Ignore all writes to this no longer documented MSR.
2682                  * Writes are only relevant for old K7 processors,
2683                  * all pre-dating SVM, but a recommended workaround from
2684                  * AMD for these chips. It is possible to specify the
2685                  * affected processor models on the command line, hence
2686                  * the need to ignore the workaround.
2687                  */
2688                 break;
2689         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2690         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2691         case HV_X64_MSR_CRASH_CTL:
2692         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2693         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2694         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2695         case HV_X64_MSR_TSC_EMULATION_STATUS:
2696                 return kvm_hv_set_msr_common(vcpu, msr, data,
2697                                              msr_info->host_initiated);
2698         case MSR_IA32_BBL_CR_CTL3:
2699                 /* Drop writes to this legacy MSR -- see rdmsr
2700                  * counterpart for further detail.
2701                  */
2702                 if (report_ignored_msrs)
2703                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2704                                 msr, data);
2705                 break;
2706         case MSR_AMD64_OSVW_ID_LENGTH:
2707                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2708                         return 1;
2709                 vcpu->arch.osvw.length = data;
2710                 break;
2711         case MSR_AMD64_OSVW_STATUS:
2712                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2713                         return 1;
2714                 vcpu->arch.osvw.status = data;
2715                 break;
2716         case MSR_PLATFORM_INFO:
2717                 if (!msr_info->host_initiated ||
2718                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2719                      cpuid_fault_enabled(vcpu)))
2720                         return 1;
2721                 vcpu->arch.msr_platform_info = data;
2722                 break;
2723         case MSR_MISC_FEATURES_ENABLES:
2724                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2725                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2726                      !supports_cpuid_fault(vcpu)))
2727                         return 1;
2728                 vcpu->arch.msr_misc_features_enables = data;
2729                 break;
2730         default:
2731                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2732                         return xen_hvm_config(vcpu, data);
2733                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2734                         return kvm_pmu_set_msr(vcpu, msr_info);
2735                 if (!ignore_msrs) {
2736                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2737                                     msr, data);
2738                         return 1;
2739                 } else {
2740                         if (report_ignored_msrs)
2741                                 vcpu_unimpl(vcpu,
2742                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2743                                         msr, data);
2744                         break;
2745                 }
2746         }
2747         return 0;
2748 }
2749 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2750
2751
2752 /*
2753  * Reads an msr value (of 'msr_index') into 'pdata'.
2754  * Returns 0 on success, non-0 otherwise.
2755  * Assumes vcpu_load() was already called.
2756  */
2757 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2758 {
2759         return kvm_x86_ops->get_msr(vcpu, msr);
2760 }
2761 EXPORT_SYMBOL_GPL(kvm_get_msr);
2762
2763 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2764 {
2765         u64 data;
2766         u64 mcg_cap = vcpu->arch.mcg_cap;
2767         unsigned bank_num = mcg_cap & 0xff;
2768
2769         switch (msr) {
2770         case MSR_IA32_P5_MC_ADDR:
2771         case MSR_IA32_P5_MC_TYPE:
2772                 data = 0;
2773                 break;
2774         case MSR_IA32_MCG_CAP:
2775                 data = vcpu->arch.mcg_cap;
2776                 break;
2777         case MSR_IA32_MCG_CTL:
2778                 if (!(mcg_cap & MCG_CTL_P) && !host)
2779                         return 1;
2780                 data = vcpu->arch.mcg_ctl;
2781                 break;
2782         case MSR_IA32_MCG_STATUS:
2783                 data = vcpu->arch.mcg_status;
2784                 break;
2785         default:
2786                 if (msr >= MSR_IA32_MC0_CTL &&
2787                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2788                         u32 offset = msr - MSR_IA32_MC0_CTL;
2789                         data = vcpu->arch.mce_banks[offset];
2790                         break;
2791                 }
2792                 return 1;
2793         }
2794         *pdata = data;
2795         return 0;
2796 }
2797
2798 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2799 {
2800         switch (msr_info->index) {
2801         case MSR_IA32_PLATFORM_ID:
2802         case MSR_IA32_EBL_CR_POWERON:
2803         case MSR_IA32_DEBUGCTLMSR:
2804         case MSR_IA32_LASTBRANCHFROMIP:
2805         case MSR_IA32_LASTBRANCHTOIP:
2806         case MSR_IA32_LASTINTFROMIP:
2807         case MSR_IA32_LASTINTTOIP:
2808         case MSR_K8_SYSCFG:
2809         case MSR_K8_TSEG_ADDR:
2810         case MSR_K8_TSEG_MASK:
2811         case MSR_VM_HSAVE_PA:
2812         case MSR_K8_INT_PENDING_MSG:
2813         case MSR_AMD64_NB_CFG:
2814         case MSR_FAM10H_MMIO_CONF_BASE:
2815         case MSR_AMD64_BU_CFG2:
2816         case MSR_IA32_PERF_CTL:
2817         case MSR_AMD64_DC_CFG:
2818         case MSR_F15H_EX_CFG:
2819                 msr_info->data = 0;
2820                 break;
2821         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2822         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2823         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2824         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2825         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2826                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2827                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2828                 msr_info->data = 0;
2829                 break;
2830         case MSR_IA32_UCODE_REV:
2831                 msr_info->data = vcpu->arch.microcode_version;
2832                 break;
2833         case MSR_IA32_ARCH_CAPABILITIES:
2834                 if (!msr_info->host_initiated &&
2835                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2836                         return 1;
2837                 msr_info->data = vcpu->arch.arch_capabilities;
2838                 break;
2839         case MSR_IA32_POWER_CTL:
2840                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2841                 break;
2842         case MSR_IA32_TSC:
2843                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2844                 break;
2845         case MSR_MTRRcap:
2846         case 0x200 ... 0x2ff:
2847                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2848         case 0xcd: /* fsb frequency */
2849                 msr_info->data = 3;
2850                 break;
2851                 /*
2852                  * MSR_EBC_FREQUENCY_ID
2853                  * Conservative value valid for even the basic CPU models.
2854                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2855                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2856                  * and 266MHz for model 3, or 4. Set Core Clock
2857                  * Frequency to System Bus Frequency Ratio to 1 (bits
2858                  * 31:24) even though these are only valid for CPU
2859                  * models > 2, however guests may end up dividing or
2860                  * multiplying by zero otherwise.
2861                  */
2862         case MSR_EBC_FREQUENCY_ID:
2863                 msr_info->data = 1 << 24;
2864                 break;
2865         case MSR_IA32_APICBASE:
2866                 msr_info->data = kvm_get_apic_base(vcpu);
2867                 break;
2868         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2869                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2870                 break;
2871         case MSR_IA32_TSCDEADLINE:
2872                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2873                 break;
2874         case MSR_IA32_TSC_ADJUST:
2875                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2876                 break;
2877         case MSR_IA32_MISC_ENABLE:
2878                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2879                 break;
2880         case MSR_IA32_SMBASE:
2881                 if (!msr_info->host_initiated)
2882                         return 1;
2883                 msr_info->data = vcpu->arch.smbase;
2884                 break;
2885         case MSR_SMI_COUNT:
2886                 msr_info->data = vcpu->arch.smi_count;
2887                 break;
2888         case MSR_IA32_PERF_STATUS:
2889                 /* TSC increment by tick */
2890                 msr_info->data = 1000ULL;
2891                 /* CPU multiplier */
2892                 msr_info->data |= (((uint64_t)4ULL) << 40);
2893                 break;
2894         case MSR_EFER:
2895                 msr_info->data = vcpu->arch.efer;
2896                 break;
2897         case MSR_KVM_WALL_CLOCK:
2898         case MSR_KVM_WALL_CLOCK_NEW:
2899                 msr_info->data = vcpu->kvm->arch.wall_clock;
2900                 break;
2901         case MSR_KVM_SYSTEM_TIME:
2902         case MSR_KVM_SYSTEM_TIME_NEW:
2903                 msr_info->data = vcpu->arch.time;
2904                 break;
2905         case MSR_KVM_ASYNC_PF_EN:
2906                 msr_info->data = vcpu->arch.apf.msr_val;
2907                 break;
2908         case MSR_KVM_STEAL_TIME:
2909                 msr_info->data = vcpu->arch.st.msr_val;
2910                 break;
2911         case MSR_KVM_PV_EOI_EN:
2912                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2913                 break;
2914         case MSR_KVM_POLL_CONTROL:
2915                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
2916                 break;
2917         case MSR_IA32_P5_MC_ADDR:
2918         case MSR_IA32_P5_MC_TYPE:
2919         case MSR_IA32_MCG_CAP:
2920         case MSR_IA32_MCG_CTL:
2921         case MSR_IA32_MCG_STATUS:
2922         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2923                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2924                                    msr_info->host_initiated);
2925         case MSR_K7_CLK_CTL:
2926                 /*
2927                  * Provide expected ramp-up count for K7. All other
2928                  * are set to zero, indicating minimum divisors for
2929                  * every field.
2930                  *
2931                  * This prevents guest kernels on AMD host with CPU
2932                  * type 6, model 8 and higher from exploding due to
2933                  * the rdmsr failing.
2934                  */
2935                 msr_info->data = 0x20000000;
2936                 break;
2937         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2938         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2939         case HV_X64_MSR_CRASH_CTL:
2940         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2941         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2942         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2943         case HV_X64_MSR_TSC_EMULATION_STATUS:
2944                 return kvm_hv_get_msr_common(vcpu,
2945                                              msr_info->index, &msr_info->data,
2946                                              msr_info->host_initiated);
2947                 break;
2948         case MSR_IA32_BBL_CR_CTL3:
2949                 /* This legacy MSR exists but isn't fully documented in current
2950                  * silicon.  It is however accessed by winxp in very narrow
2951                  * scenarios where it sets bit #19, itself documented as
2952                  * a "reserved" bit.  Best effort attempt to source coherent
2953                  * read data here should the balance of the register be
2954                  * interpreted by the guest:
2955                  *
2956                  * L2 cache control register 3: 64GB range, 256KB size,
2957                  * enabled, latency 0x1, configured
2958                  */
2959                 msr_info->data = 0xbe702111;
2960                 break;
2961         case MSR_AMD64_OSVW_ID_LENGTH:
2962                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2963                         return 1;
2964                 msr_info->data = vcpu->arch.osvw.length;
2965                 break;
2966         case MSR_AMD64_OSVW_STATUS:
2967                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2968                         return 1;
2969                 msr_info->data = vcpu->arch.osvw.status;
2970                 break;
2971         case MSR_PLATFORM_INFO:
2972                 if (!msr_info->host_initiated &&
2973                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2974                         return 1;
2975                 msr_info->data = vcpu->arch.msr_platform_info;
2976                 break;
2977         case MSR_MISC_FEATURES_ENABLES:
2978                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2979                 break;
2980         case MSR_K7_HWCR:
2981                 msr_info->data = vcpu->arch.msr_hwcr;
2982                 break;
2983         default:
2984                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2985                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2986                 if (!ignore_msrs) {
2987                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2988                                                msr_info->index);
2989                         return 1;
2990                 } else {
2991                         if (report_ignored_msrs)
2992                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2993                                         msr_info->index);
2994                         msr_info->data = 0;
2995                 }
2996                 break;
2997         }
2998         return 0;
2999 }
3000 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3001
3002 /*
3003  * Read or write a bunch of msrs. All parameters are kernel addresses.
3004  *
3005  * @return number of msrs set successfully.
3006  */
3007 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3008                     struct kvm_msr_entry *entries,
3009                     int (*do_msr)(struct kvm_vcpu *vcpu,
3010                                   unsigned index, u64 *data))
3011 {
3012         int i;
3013
3014         for (i = 0; i < msrs->nmsrs; ++i)
3015                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3016                         break;
3017
3018         return i;
3019 }
3020
3021 /*
3022  * Read or write a bunch of msrs. Parameters are user addresses.
3023  *
3024  * @return number of msrs set successfully.
3025  */
3026 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3027                   int (*do_msr)(struct kvm_vcpu *vcpu,
3028                                 unsigned index, u64 *data),
3029                   int writeback)
3030 {
3031         struct kvm_msrs msrs;
3032         struct kvm_msr_entry *entries;
3033         int r, n;
3034         unsigned size;
3035
3036         r = -EFAULT;
3037         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3038                 goto out;
3039
3040         r = -E2BIG;
3041         if (msrs.nmsrs >= MAX_IO_MSRS)
3042                 goto out;
3043
3044         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3045         entries = memdup_user(user_msrs->entries, size);
3046         if (IS_ERR(entries)) {
3047                 r = PTR_ERR(entries);
3048                 goto out;
3049         }
3050
3051         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3052         if (r < 0)
3053                 goto out_free;
3054
3055         r = -EFAULT;
3056         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3057                 goto out_free;
3058
3059         r = n;
3060
3061 out_free:
3062         kfree(entries);
3063 out:
3064         return r;
3065 }
3066
3067 static inline bool kvm_can_mwait_in_guest(void)
3068 {
3069         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3070                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3071                 boot_cpu_has(X86_FEATURE_ARAT);
3072 }
3073
3074 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3075 {
3076         int r = 0;
3077
3078         switch (ext) {
3079         case KVM_CAP_IRQCHIP:
3080         case KVM_CAP_HLT:
3081         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3082         case KVM_CAP_SET_TSS_ADDR:
3083         case KVM_CAP_EXT_CPUID:
3084         case KVM_CAP_EXT_EMUL_CPUID:
3085         case KVM_CAP_CLOCKSOURCE:
3086         case KVM_CAP_PIT:
3087         case KVM_CAP_NOP_IO_DELAY:
3088         case KVM_CAP_MP_STATE:
3089         case KVM_CAP_SYNC_MMU:
3090         case KVM_CAP_USER_NMI:
3091         case KVM_CAP_REINJECT_CONTROL:
3092         case KVM_CAP_IRQ_INJECT_STATUS:
3093         case KVM_CAP_IOEVENTFD:
3094         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3095         case KVM_CAP_PIT2:
3096         case KVM_CAP_PIT_STATE2:
3097         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3098         case KVM_CAP_XEN_HVM:
3099         case KVM_CAP_VCPU_EVENTS:
3100         case KVM_CAP_HYPERV:
3101         case KVM_CAP_HYPERV_VAPIC:
3102         case KVM_CAP_HYPERV_SPIN:
3103         case KVM_CAP_HYPERV_SYNIC:
3104         case KVM_CAP_HYPERV_SYNIC2:
3105         case KVM_CAP_HYPERV_VP_INDEX:
3106         case KVM_CAP_HYPERV_EVENTFD:
3107         case KVM_CAP_HYPERV_TLBFLUSH:
3108         case KVM_CAP_HYPERV_SEND_IPI:
3109         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3110         case KVM_CAP_HYPERV_CPUID:
3111         case KVM_CAP_PCI_SEGMENT:
3112         case KVM_CAP_DEBUGREGS:
3113         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3114         case KVM_CAP_XSAVE:
3115         case KVM_CAP_ASYNC_PF:
3116         case KVM_CAP_GET_TSC_KHZ:
3117         case KVM_CAP_KVMCLOCK_CTRL:
3118         case KVM_CAP_READONLY_MEM:
3119         case KVM_CAP_HYPERV_TIME:
3120         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3121         case KVM_CAP_TSC_DEADLINE_TIMER:
3122         case KVM_CAP_DISABLE_QUIRKS:
3123         case KVM_CAP_SET_BOOT_CPU_ID:
3124         case KVM_CAP_SPLIT_IRQCHIP:
3125         case KVM_CAP_IMMEDIATE_EXIT:
3126         case KVM_CAP_PMU_EVENT_FILTER:
3127         case KVM_CAP_GET_MSR_FEATURES:
3128         case KVM_CAP_MSR_PLATFORM_INFO:
3129         case KVM_CAP_EXCEPTION_PAYLOAD:
3130                 r = 1;
3131                 break;
3132         case KVM_CAP_SYNC_REGS:
3133                 r = KVM_SYNC_X86_VALID_FIELDS;
3134                 break;
3135         case KVM_CAP_ADJUST_CLOCK:
3136                 r = KVM_CLOCK_TSC_STABLE;
3137                 break;
3138         case KVM_CAP_X86_DISABLE_EXITS:
3139                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3140                       KVM_X86_DISABLE_EXITS_CSTATE;
3141                 if(kvm_can_mwait_in_guest())
3142                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3143                 break;
3144         case KVM_CAP_X86_SMM:
3145                 /* SMBASE is usually relocated above 1M on modern chipsets,
3146                  * and SMM handlers might indeed rely on 4G segment limits,
3147                  * so do not report SMM to be available if real mode is
3148                  * emulated via vm86 mode.  Still, do not go to great lengths
3149                  * to avoid userspace's usage of the feature, because it is a
3150                  * fringe case that is not enabled except via specific settings
3151                  * of the module parameters.
3152                  */
3153                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3154                 break;
3155         case KVM_CAP_VAPIC:
3156                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3157                 break;
3158         case KVM_CAP_NR_VCPUS:
3159                 r = KVM_SOFT_MAX_VCPUS;
3160                 break;
3161         case KVM_CAP_MAX_VCPUS:
3162                 r = KVM_MAX_VCPUS;
3163                 break;
3164         case KVM_CAP_MAX_VCPU_ID:
3165                 r = KVM_MAX_VCPU_ID;
3166                 break;
3167         case KVM_CAP_PV_MMU:    /* obsolete */
3168                 r = 0;
3169                 break;
3170         case KVM_CAP_MCE:
3171                 r = KVM_MAX_MCE_BANKS;
3172                 break;
3173         case KVM_CAP_XCRS:
3174                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3175                 break;
3176         case KVM_CAP_TSC_CONTROL:
3177                 r = kvm_has_tsc_control;
3178                 break;
3179         case KVM_CAP_X2APIC_API:
3180                 r = KVM_X2APIC_API_VALID_FLAGS;
3181                 break;
3182         case KVM_CAP_NESTED_STATE:
3183                 r = kvm_x86_ops->get_nested_state ?
3184                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3185                 break;
3186         default:
3187                 break;
3188         }
3189         return r;
3190
3191 }
3192
3193 long kvm_arch_dev_ioctl(struct file *filp,
3194                         unsigned int ioctl, unsigned long arg)
3195 {
3196         void __user *argp = (void __user *)arg;
3197         long r;
3198
3199         switch (ioctl) {
3200         case KVM_GET_MSR_INDEX_LIST: {
3201                 struct kvm_msr_list __user *user_msr_list = argp;
3202                 struct kvm_msr_list msr_list;
3203                 unsigned n;
3204
3205                 r = -EFAULT;
3206                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3207                         goto out;
3208                 n = msr_list.nmsrs;
3209                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3210                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3211                         goto out;
3212                 r = -E2BIG;
3213                 if (n < msr_list.nmsrs)
3214                         goto out;
3215                 r = -EFAULT;
3216                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3217                                  num_msrs_to_save * sizeof(u32)))
3218                         goto out;
3219                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3220                                  &emulated_msrs,
3221                                  num_emulated_msrs * sizeof(u32)))
3222                         goto out;
3223                 r = 0;
3224                 break;
3225         }
3226         case KVM_GET_SUPPORTED_CPUID:
3227         case KVM_GET_EMULATED_CPUID: {
3228                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3229                 struct kvm_cpuid2 cpuid;
3230
3231                 r = -EFAULT;
3232                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3233                         goto out;
3234
3235                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3236                                             ioctl);
3237                 if (r)
3238                         goto out;
3239
3240                 r = -EFAULT;
3241                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3242                         goto out;
3243                 r = 0;
3244                 break;
3245         }
3246         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3247                 r = -EFAULT;
3248                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3249                                  sizeof(kvm_mce_cap_supported)))
3250                         goto out;
3251                 r = 0;
3252                 break;
3253         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3254                 struct kvm_msr_list __user *user_msr_list = argp;
3255                 struct kvm_msr_list msr_list;
3256                 unsigned int n;
3257
3258                 r = -EFAULT;
3259                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3260                         goto out;
3261                 n = msr_list.nmsrs;
3262                 msr_list.nmsrs = num_msr_based_features;
3263                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3264                         goto out;
3265                 r = -E2BIG;
3266                 if (n < msr_list.nmsrs)
3267                         goto out;
3268                 r = -EFAULT;
3269                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3270                                  num_msr_based_features * sizeof(u32)))
3271                         goto out;
3272                 r = 0;
3273                 break;
3274         }
3275         case KVM_GET_MSRS:
3276                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3277                 break;
3278         }
3279         default:
3280                 r = -EINVAL;
3281         }
3282 out:
3283         return r;
3284 }
3285
3286 static void wbinvd_ipi(void *garbage)
3287 {
3288         wbinvd();
3289 }
3290
3291 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3292 {
3293         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3294 }
3295
3296 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3297 {
3298         /* Address WBINVD may be executed by guest */
3299         if (need_emulate_wbinvd(vcpu)) {
3300                 if (kvm_x86_ops->has_wbinvd_exit())
3301                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3302                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3303                         smp_call_function_single(vcpu->cpu,
3304                                         wbinvd_ipi, NULL, 1);
3305         }
3306
3307         kvm_x86_ops->vcpu_load(vcpu, cpu);
3308
3309         fpregs_assert_state_consistent();
3310         if (test_thread_flag(TIF_NEED_FPU_LOAD))
3311                 switch_fpu_return();
3312
3313         /* Apply any externally detected TSC adjustments (due to suspend) */
3314         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3315                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3316                 vcpu->arch.tsc_offset_adjustment = 0;
3317                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3318         }
3319
3320         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3321                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3322                                 rdtsc() - vcpu->arch.last_host_tsc;
3323                 if (tsc_delta < 0)
3324                         mark_tsc_unstable("KVM discovered backwards TSC");
3325
3326                 if (kvm_check_tsc_unstable()) {
3327                         u64 offset = kvm_compute_tsc_offset(vcpu,
3328                                                 vcpu->arch.last_guest_tsc);
3329                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3330                         vcpu->arch.tsc_catchup = 1;
3331                 }
3332
3333                 if (kvm_lapic_hv_timer_in_use(vcpu))
3334                         kvm_lapic_restart_hv_timer(vcpu);
3335
3336                 /*
3337                  * On a host with synchronized TSC, there is no need to update
3338                  * kvmclock on vcpu->cpu migration
3339                  */
3340                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3341                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3342                 if (vcpu->cpu != cpu)
3343                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3344                 vcpu->cpu = cpu;
3345         }
3346
3347         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3348 }
3349
3350 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3351 {
3352         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3353                 return;
3354
3355         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3356
3357         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3358                         &vcpu->arch.st.steal.preempted,
3359                         offsetof(struct kvm_steal_time, preempted),
3360                         sizeof(vcpu->arch.st.steal.preempted));
3361 }
3362
3363 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3364 {
3365         int idx;
3366
3367         if (vcpu->preempted)
3368                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3369
3370         /*
3371          * Disable page faults because we're in atomic context here.
3372          * kvm_write_guest_offset_cached() would call might_fault()
3373          * that relies on pagefault_disable() to tell if there's a
3374          * bug. NOTE: the write to guest memory may not go through if
3375          * during postcopy live migration or if there's heavy guest
3376          * paging.
3377          */
3378         pagefault_disable();
3379         /*
3380          * kvm_memslots() will be called by
3381          * kvm_write_guest_offset_cached() so take the srcu lock.
3382          */
3383         idx = srcu_read_lock(&vcpu->kvm->srcu);
3384         kvm_steal_time_set_preempted(vcpu);
3385         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3386         pagefault_enable();
3387         kvm_x86_ops->vcpu_put(vcpu);
3388         vcpu->arch.last_host_tsc = rdtsc();
3389         /*
3390          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3391          * on every vmexit, but if not, we might have a stale dr6 from the
3392          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3393          */
3394         set_debugreg(0, 6);
3395 }
3396
3397 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3398                                     struct kvm_lapic_state *s)
3399 {
3400         if (vcpu->arch.apicv_active)
3401                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3402
3403         return kvm_apic_get_state(vcpu, s);
3404 }
3405
3406 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3407                                     struct kvm_lapic_state *s)
3408 {
3409         int r;
3410
3411         r = kvm_apic_set_state(vcpu, s);
3412         if (r)
3413                 return r;
3414         update_cr8_intercept(vcpu);
3415
3416         return 0;
3417 }
3418
3419 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3420 {
3421         return (!lapic_in_kernel(vcpu) ||
3422                 kvm_apic_accept_pic_intr(vcpu));
3423 }
3424
3425 /*
3426  * if userspace requested an interrupt window, check that the
3427  * interrupt window is open.
3428  *
3429  * No need to exit to userspace if we already have an interrupt queued.
3430  */
3431 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3432 {
3433         return kvm_arch_interrupt_allowed(vcpu) &&
3434                 !kvm_cpu_has_interrupt(vcpu) &&
3435                 !kvm_event_needs_reinjection(vcpu) &&
3436                 kvm_cpu_accept_dm_intr(vcpu);
3437 }
3438
3439 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3440                                     struct kvm_interrupt *irq)
3441 {
3442         if (irq->irq >= KVM_NR_INTERRUPTS)
3443                 return -EINVAL;
3444
3445         if (!irqchip_in_kernel(vcpu->kvm)) {
3446                 kvm_queue_interrupt(vcpu, irq->irq, false);
3447                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3448                 return 0;
3449         }
3450
3451         /*
3452          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3453          * fail for in-kernel 8259.
3454          */
3455         if (pic_in_kernel(vcpu->kvm))
3456                 return -ENXIO;
3457
3458         if (vcpu->arch.pending_external_vector != -1)
3459                 return -EEXIST;
3460
3461         vcpu->arch.pending_external_vector = irq->irq;
3462         kvm_make_request(KVM_REQ_EVENT, vcpu);
3463         return 0;
3464 }
3465
3466 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3467 {
3468         kvm_inject_nmi(vcpu);
3469
3470         return 0;
3471 }
3472
3473 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3474 {
3475         kvm_make_request(KVM_REQ_SMI, vcpu);
3476
3477         return 0;
3478 }
3479
3480 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3481                                            struct kvm_tpr_access_ctl *tac)
3482 {
3483         if (tac->flags)
3484                 return -EINVAL;
3485         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3486         return 0;
3487 }
3488
3489 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3490                                         u64 mcg_cap)
3491 {
3492         int r;
3493         unsigned bank_num = mcg_cap & 0xff, bank;
3494
3495         r = -EINVAL;
3496         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3497                 goto out;
3498         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3499                 goto out;
3500         r = 0;
3501         vcpu->arch.mcg_cap = mcg_cap;
3502         /* Init IA32_MCG_CTL to all 1s */
3503         if (mcg_cap & MCG_CTL_P)
3504                 vcpu->arch.mcg_ctl = ~(u64)0;
3505         /* Init IA32_MCi_CTL to all 1s */
3506         for (bank = 0; bank < bank_num; bank++)
3507                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3508
3509         if (kvm_x86_ops->setup_mce)
3510                 kvm_x86_ops->setup_mce(vcpu);
3511 out:
3512         return r;
3513 }
3514
3515 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3516                                       struct kvm_x86_mce *mce)
3517 {
3518         u64 mcg_cap = vcpu->arch.mcg_cap;
3519         unsigned bank_num = mcg_cap & 0xff;
3520         u64 *banks = vcpu->arch.mce_banks;
3521
3522         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3523                 return -EINVAL;
3524         /*
3525          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3526          * reporting is disabled
3527          */
3528         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3529             vcpu->arch.mcg_ctl != ~(u64)0)
3530                 return 0;
3531         banks += 4 * mce->bank;
3532         /*
3533          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3534          * reporting is disabled for the bank
3535          */
3536         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3537                 return 0;
3538         if (mce->status & MCI_STATUS_UC) {
3539                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3540                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3541                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3542                         return 0;
3543                 }
3544                 if (banks[1] & MCI_STATUS_VAL)
3545                         mce->status |= MCI_STATUS_OVER;
3546                 banks[2] = mce->addr;
3547                 banks[3] = mce->misc;
3548                 vcpu->arch.mcg_status = mce->mcg_status;
3549                 banks[1] = mce->status;
3550                 kvm_queue_exception(vcpu, MC_VECTOR);
3551         } else if (!(banks[1] & MCI_STATUS_VAL)
3552                    || !(banks[1] & MCI_STATUS_UC)) {
3553                 if (banks[1] & MCI_STATUS_VAL)
3554                         mce->status |= MCI_STATUS_OVER;
3555                 banks[2] = mce->addr;
3556                 banks[3] = mce->misc;
3557                 banks[1] = mce->status;
3558         } else
3559                 banks[1] |= MCI_STATUS_OVER;
3560         return 0;
3561 }
3562
3563 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3564                                                struct kvm_vcpu_events *events)
3565 {
3566         process_nmi(vcpu);
3567
3568         /*
3569          * The API doesn't provide the instruction length for software
3570          * exceptions, so don't report them. As long as the guest RIP
3571          * isn't advanced, we should expect to encounter the exception
3572          * again.
3573          */
3574         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3575                 events->exception.injected = 0;
3576                 events->exception.pending = 0;
3577         } else {
3578                 events->exception.injected = vcpu->arch.exception.injected;
3579                 events->exception.pending = vcpu->arch.exception.pending;
3580                 /*
3581                  * For ABI compatibility, deliberately conflate
3582                  * pending and injected exceptions when
3583                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3584                  */
3585                 if (!vcpu->kvm->arch.exception_payload_enabled)
3586                         events->exception.injected |=
3587                                 vcpu->arch.exception.pending;
3588         }
3589         events->exception.nr = vcpu->arch.exception.nr;
3590         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3591         events->exception.error_code = vcpu->arch.exception.error_code;
3592         events->exception_has_payload = vcpu->arch.exception.has_payload;
3593         events->exception_payload = vcpu->arch.exception.payload;
3594
3595         events->interrupt.injected =
3596                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3597         events->interrupt.nr = vcpu->arch.interrupt.nr;
3598         events->interrupt.soft = 0;
3599         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3600
3601         events->nmi.injected = vcpu->arch.nmi_injected;
3602         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3603         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3604         events->nmi.pad = 0;
3605
3606         events->sipi_vector = 0; /* never valid when reporting to user space */
3607
3608         events->smi.smm = is_smm(vcpu);
3609         events->smi.pending = vcpu->arch.smi_pending;
3610         events->smi.smm_inside_nmi =
3611                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3612         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3613
3614         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3615                          | KVM_VCPUEVENT_VALID_SHADOW
3616                          | KVM_VCPUEVENT_VALID_SMM);
3617         if (vcpu->kvm->arch.exception_payload_enabled)
3618                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3619
3620         memset(&events->reserved, 0, sizeof(events->reserved));
3621 }
3622
3623 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3624
3625 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3626                                               struct kvm_vcpu_events *events)
3627 {
3628         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3629                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3630                               | KVM_VCPUEVENT_VALID_SHADOW
3631                               | KVM_VCPUEVENT_VALID_SMM
3632                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3633                 return -EINVAL;
3634
3635         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3636                 if (!vcpu->kvm->arch.exception_payload_enabled)
3637                         return -EINVAL;
3638                 if (events->exception.pending)
3639                         events->exception.injected = 0;
3640                 else
3641                         events->exception_has_payload = 0;
3642         } else {
3643                 events->exception.pending = 0;
3644                 events->exception_has_payload = 0;
3645         }
3646
3647         if ((events->exception.injected || events->exception.pending) &&
3648             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3649                 return -EINVAL;
3650
3651         /* INITs are latched while in SMM */
3652         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3653             (events->smi.smm || events->smi.pending) &&
3654             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3655                 return -EINVAL;
3656
3657         process_nmi(vcpu);
3658         vcpu->arch.exception.injected = events->exception.injected;
3659         vcpu->arch.exception.pending = events->exception.pending;
3660         vcpu->arch.exception.nr = events->exception.nr;
3661         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3662         vcpu->arch.exception.error_code = events->exception.error_code;
3663         vcpu->arch.exception.has_payload = events->exception_has_payload;
3664         vcpu->arch.exception.payload = events->exception_payload;
3665
3666         vcpu->arch.interrupt.injected = events->interrupt.injected;
3667         vcpu->arch.interrupt.nr = events->interrupt.nr;
3668         vcpu->arch.interrupt.soft = events->interrupt.soft;
3669         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3670                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3671                                                   events->interrupt.shadow);
3672
3673         vcpu->arch.nmi_injected = events->nmi.injected;
3674         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3675                 vcpu->arch.nmi_pending = events->nmi.pending;
3676         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3677
3678         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3679             lapic_in_kernel(vcpu))
3680                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3681
3682         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3683                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3684                         if (events->smi.smm)
3685                                 vcpu->arch.hflags |= HF_SMM_MASK;
3686                         else
3687                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3688                         kvm_smm_changed(vcpu);
3689                 }
3690
3691                 vcpu->arch.smi_pending = events->smi.pending;
3692
3693                 if (events->smi.smm) {
3694                         if (events->smi.smm_inside_nmi)
3695                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3696                         else
3697                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3698                         if (lapic_in_kernel(vcpu)) {
3699                                 if (events->smi.latched_init)
3700                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3701                                 else
3702                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3703                         }
3704                 }
3705         }
3706
3707         kvm_make_request(KVM_REQ_EVENT, vcpu);
3708
3709         return 0;
3710 }
3711
3712 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3713                                              struct kvm_debugregs *dbgregs)
3714 {
3715         unsigned long val;
3716
3717         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3718         kvm_get_dr(vcpu, 6, &val);
3719         dbgregs->dr6 = val;
3720         dbgregs->dr7 = vcpu->arch.dr7;
3721         dbgregs->flags = 0;
3722         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3723 }
3724
3725 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3726                                             struct kvm_debugregs *dbgregs)
3727 {
3728         if (dbgregs->flags)
3729                 return -EINVAL;
3730
3731         if (dbgregs->dr6 & ~0xffffffffull)
3732                 return -EINVAL;
3733         if (dbgregs->dr7 & ~0xffffffffull)
3734                 return -EINVAL;
3735
3736         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3737         kvm_update_dr0123(vcpu);
3738         vcpu->arch.dr6 = dbgregs->dr6;
3739         kvm_update_dr6(vcpu);
3740         vcpu->arch.dr7 = dbgregs->dr7;
3741         kvm_update_dr7(vcpu);
3742
3743         return 0;
3744 }
3745
3746 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3747
3748 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3749 {
3750         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3751         u64 xstate_bv = xsave->header.xfeatures;
3752         u64 valid;
3753
3754         /*
3755          * Copy legacy XSAVE area, to avoid complications with CPUID
3756          * leaves 0 and 1 in the loop below.
3757          */
3758         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3759
3760         /* Set XSTATE_BV */
3761         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3762         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3763
3764         /*
3765          * Copy each region from the possibly compacted offset to the
3766          * non-compacted offset.
3767          */
3768         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3769         while (valid) {
3770                 u64 xfeature_mask = valid & -valid;
3771                 int xfeature_nr = fls64(xfeature_mask) - 1;
3772                 void *src = get_xsave_addr(xsave, xfeature_nr);
3773
3774                 if (src) {
3775                         u32 size, offset, ecx, edx;
3776                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3777                                     &size, &offset, &ecx, &edx);
3778                         if (xfeature_nr == XFEATURE_PKRU)
3779                                 memcpy(dest + offset, &vcpu->arch.pkru,
3780                                        sizeof(vcpu->arch.pkru));
3781                         else
3782                                 memcpy(dest + offset, src, size);
3783
3784                 }
3785
3786                 valid -= xfeature_mask;
3787         }
3788 }
3789
3790 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3791 {
3792         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3793         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3794         u64 valid;
3795
3796         /*
3797          * Copy legacy XSAVE area, to avoid complications with CPUID
3798          * leaves 0 and 1 in the loop below.
3799          */
3800         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3801
3802         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3803         xsave->header.xfeatures = xstate_bv;
3804         if (boot_cpu_has(X86_FEATURE_XSAVES))
3805                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3806
3807         /*
3808          * Copy each region from the non-compacted offset to the
3809          * possibly compacted offset.
3810          */
3811         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3812         while (valid) {
3813                 u64 xfeature_mask = valid & -valid;
3814                 int xfeature_nr = fls64(xfeature_mask) - 1;
3815                 void *dest = get_xsave_addr(xsave, xfeature_nr);
3816
3817                 if (dest) {
3818                         u32 size, offset, ecx, edx;
3819                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3820                                     &size, &offset, &ecx, &edx);
3821                         if (xfeature_nr == XFEATURE_PKRU)
3822                                 memcpy(&vcpu->arch.pkru, src + offset,
3823                                        sizeof(vcpu->arch.pkru));
3824                         else
3825                                 memcpy(dest, src + offset, size);
3826                 }
3827
3828                 valid -= xfeature_mask;
3829         }
3830 }
3831
3832 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3833                                          struct kvm_xsave *guest_xsave)
3834 {
3835         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3836                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3837                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3838         } else {
3839                 memcpy(guest_xsave->region,
3840                         &vcpu->arch.guest_fpu->state.fxsave,
3841                         sizeof(struct fxregs_state));
3842                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3843                         XFEATURE_MASK_FPSSE;
3844         }
3845 }
3846
3847 #define XSAVE_MXCSR_OFFSET 24
3848
3849 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3850                                         struct kvm_xsave *guest_xsave)
3851 {
3852         u64 xstate_bv =
3853                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3854         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3855
3856         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3857                 /*
3858                  * Here we allow setting states that are not present in
3859                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3860                  * with old userspace.
3861                  */
3862                 if (xstate_bv & ~kvm_supported_xcr0() ||
3863                         mxcsr & ~mxcsr_feature_mask)
3864                         return -EINVAL;
3865                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3866         } else {
3867                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3868                         mxcsr & ~mxcsr_feature_mask)
3869                         return -EINVAL;
3870                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3871                         guest_xsave->region, sizeof(struct fxregs_state));
3872         }
3873         return 0;
3874 }
3875
3876 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3877                                         struct kvm_xcrs *guest_xcrs)
3878 {
3879         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3880                 guest_xcrs->nr_xcrs = 0;
3881                 return;
3882         }
3883
3884         guest_xcrs->nr_xcrs = 1;
3885         guest_xcrs->flags = 0;
3886         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3887         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3888 }
3889
3890 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3891                                        struct kvm_xcrs *guest_xcrs)
3892 {
3893         int i, r = 0;
3894
3895         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3896                 return -EINVAL;
3897
3898         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3899                 return -EINVAL;
3900
3901         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3902                 /* Only support XCR0 currently */
3903                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3904                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3905                                 guest_xcrs->xcrs[i].value);
3906                         break;
3907                 }
3908         if (r)
3909                 r = -EINVAL;
3910         return r;
3911 }
3912
3913 /*
3914  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3915  * stopped by the hypervisor.  This function will be called from the host only.
3916  * EINVAL is returned when the host attempts to set the flag for a guest that
3917  * does not support pv clocks.
3918  */
3919 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3920 {
3921         if (!vcpu->arch.pv_time_enabled)
3922                 return -EINVAL;
3923         vcpu->arch.pvclock_set_guest_stopped_request = true;
3924         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3925         return 0;
3926 }
3927
3928 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3929                                      struct kvm_enable_cap *cap)
3930 {
3931         int r;
3932         uint16_t vmcs_version;
3933         void __user *user_ptr;
3934
3935         if (cap->flags)
3936                 return -EINVAL;
3937
3938         switch (cap->cap) {
3939         case KVM_CAP_HYPERV_SYNIC2:
3940                 if (cap->args[0])
3941                         return -EINVAL;
3942                 /* fall through */
3943
3944         case KVM_CAP_HYPERV_SYNIC:
3945                 if (!irqchip_in_kernel(vcpu->kvm))
3946                         return -EINVAL;
3947                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3948                                              KVM_CAP_HYPERV_SYNIC2);
3949         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3950                 if (!kvm_x86_ops->nested_enable_evmcs)
3951                         return -ENOTTY;
3952                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3953                 if (!r) {
3954                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3955                         if (copy_to_user(user_ptr, &vmcs_version,
3956                                          sizeof(vmcs_version)))
3957                                 r = -EFAULT;
3958                 }
3959                 return r;
3960
3961         default:
3962                 return -EINVAL;
3963         }
3964 }
3965
3966 long kvm_arch_vcpu_ioctl(struct file *filp,
3967                          unsigned int ioctl, unsigned long arg)
3968 {
3969         struct kvm_vcpu *vcpu = filp->private_data;
3970         void __user *argp = (void __user *)arg;
3971         int r;
3972         union {
3973                 struct kvm_lapic_state *lapic;
3974                 struct kvm_xsave *xsave;
3975                 struct kvm_xcrs *xcrs;
3976                 void *buffer;
3977         } u;
3978
3979         vcpu_load(vcpu);
3980
3981         u.buffer = NULL;
3982         switch (ioctl) {
3983         case KVM_GET_LAPIC: {
3984                 r = -EINVAL;
3985                 if (!lapic_in_kernel(vcpu))
3986                         goto out;
3987                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3988                                 GFP_KERNEL_ACCOUNT);
3989
3990                 r = -ENOMEM;
3991                 if (!u.lapic)
3992                         goto out;
3993                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3994                 if (r)
3995                         goto out;
3996                 r = -EFAULT;
3997                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3998                         goto out;
3999                 r = 0;
4000                 break;
4001         }
4002         case KVM_SET_LAPIC: {
4003                 r = -EINVAL;
4004                 if (!lapic_in_kernel(vcpu))
4005                         goto out;
4006                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4007                 if (IS_ERR(u.lapic)) {
4008                         r = PTR_ERR(u.lapic);
4009                         goto out_nofree;
4010                 }
4011
4012                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4013                 break;
4014         }
4015         case KVM_INTERRUPT: {
4016                 struct kvm_interrupt irq;
4017
4018                 r = -EFAULT;
4019                 if (copy_from_user(&irq, argp, sizeof(irq)))
4020                         goto out;
4021                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4022                 break;
4023         }
4024         case KVM_NMI: {
4025                 r = kvm_vcpu_ioctl_nmi(vcpu);
4026                 break;
4027         }
4028         case KVM_SMI: {
4029                 r = kvm_vcpu_ioctl_smi(vcpu);
4030                 break;
4031         }
4032         case KVM_SET_CPUID: {
4033                 struct kvm_cpuid __user *cpuid_arg = argp;
4034                 struct kvm_cpuid cpuid;
4035
4036                 r = -EFAULT;
4037                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4038                         goto out;
4039                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4040                 break;
4041         }
4042         case KVM_SET_CPUID2: {
4043                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4044                 struct kvm_cpuid2 cpuid;
4045
4046                 r = -EFAULT;
4047                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4048                         goto out;
4049                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4050                                               cpuid_arg->entries);
4051                 break;
4052         }
4053         case KVM_GET_CPUID2: {
4054                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4055                 struct kvm_cpuid2 cpuid;
4056
4057                 r = -EFAULT;
4058                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4059                         goto out;
4060                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4061                                               cpuid_arg->entries);
4062                 if (r)
4063                         goto out;
4064                 r = -EFAULT;
4065                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4066                         goto out;
4067                 r = 0;
4068                 break;
4069         }
4070         case KVM_GET_MSRS: {
4071                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4072                 r = msr_io(vcpu, argp, do_get_msr, 1);
4073                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4074                 break;
4075         }
4076         case KVM_SET_MSRS: {
4077                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4078                 r = msr_io(vcpu, argp, do_set_msr, 0);
4079                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4080                 break;
4081         }
4082         case KVM_TPR_ACCESS_REPORTING: {
4083                 struct kvm_tpr_access_ctl tac;
4084
4085                 r = -EFAULT;
4086                 if (copy_from_user(&tac, argp, sizeof(tac)))
4087                         goto out;
4088                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4089                 if (r)
4090                         goto out;
4091                 r = -EFAULT;
4092                 if (copy_to_user(argp, &tac, sizeof(tac)))
4093                         goto out;
4094                 r = 0;
4095                 break;
4096         };
4097         case KVM_SET_VAPIC_ADDR: {
4098                 struct kvm_vapic_addr va;
4099                 int idx;
4100
4101                 r = -EINVAL;
4102                 if (!lapic_in_kernel(vcpu))
4103                         goto out;
4104                 r = -EFAULT;
4105                 if (copy_from_user(&va, argp, sizeof(va)))
4106                         goto out;
4107                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4108                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4109                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4110                 break;
4111         }
4112         case KVM_X86_SETUP_MCE: {
4113                 u64 mcg_cap;
4114
4115                 r = -EFAULT;
4116                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4117                         goto out;
4118                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4119                 break;
4120         }
4121         case KVM_X86_SET_MCE: {
4122                 struct kvm_x86_mce mce;
4123
4124                 r = -EFAULT;
4125                 if (copy_from_user(&mce, argp, sizeof(mce)))
4126                         goto out;
4127                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4128                 break;
4129         }
4130         case KVM_GET_VCPU_EVENTS: {
4131                 struct kvm_vcpu_events events;
4132
4133                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4134
4135                 r = -EFAULT;
4136                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4137                         break;
4138                 r = 0;
4139                 break;
4140         }
4141         case KVM_SET_VCPU_EVENTS: {
4142                 struct kvm_vcpu_events events;
4143
4144                 r = -EFAULT;
4145                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4146                         break;
4147
4148                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4149                 break;
4150         }
4151         case KVM_GET_DEBUGREGS: {
4152                 struct kvm_debugregs dbgregs;
4153
4154                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4155
4156                 r = -EFAULT;
4157                 if (copy_to_user(argp, &dbgregs,
4158                                  sizeof(struct kvm_debugregs)))
4159                         break;
4160                 r = 0;
4161                 break;
4162         }
4163         case KVM_SET_DEBUGREGS: {
4164                 struct kvm_debugregs dbgregs;
4165
4166                 r = -EFAULT;
4167                 if (copy_from_user(&dbgregs, argp,
4168                                    sizeof(struct kvm_debugregs)))
4169                         break;
4170
4171                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4172                 break;
4173         }
4174         case KVM_GET_XSAVE: {
4175                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4176                 r = -ENOMEM;
4177                 if (!u.xsave)
4178                         break;
4179
4180                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4181
4182                 r = -EFAULT;
4183                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4184                         break;
4185                 r = 0;
4186                 break;
4187         }
4188         case KVM_SET_XSAVE: {
4189                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4190                 if (IS_ERR(u.xsave)) {
4191                         r = PTR_ERR(u.xsave);
4192                         goto out_nofree;
4193                 }
4194
4195                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4196                 break;
4197         }
4198         case KVM_GET_XCRS: {
4199                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4200                 r = -ENOMEM;
4201                 if (!u.xcrs)
4202                         break;
4203
4204                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4205
4206                 r = -EFAULT;
4207                 if (copy_to_user(argp, u.xcrs,
4208                                  sizeof(struct kvm_xcrs)))
4209                         break;
4210                 r = 0;
4211                 break;
4212         }
4213         case KVM_SET_XCRS: {
4214                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4215                 if (IS_ERR(u.xcrs)) {
4216                         r = PTR_ERR(u.xcrs);
4217                         goto out_nofree;
4218                 }
4219
4220                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4221                 break;
4222         }
4223         case KVM_SET_TSC_KHZ: {
4224                 u32 user_tsc_khz;
4225
4226                 r = -EINVAL;
4227                 user_tsc_khz = (u32)arg;
4228
4229                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4230                         goto out;
4231
4232                 if (user_tsc_khz == 0)
4233                         user_tsc_khz = tsc_khz;
4234
4235                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4236                         r = 0;
4237
4238                 goto out;
4239         }
4240         case KVM_GET_TSC_KHZ: {
4241                 r = vcpu->arch.virtual_tsc_khz;
4242                 goto out;
4243         }
4244         case KVM_KVMCLOCK_CTRL: {
4245                 r = kvm_set_guest_paused(vcpu);
4246                 goto out;
4247         }
4248         case KVM_ENABLE_CAP: {
4249                 struct kvm_enable_cap cap;
4250
4251                 r = -EFAULT;
4252                 if (copy_from_user(&cap, argp, sizeof(cap)))
4253                         goto out;
4254                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4255                 break;
4256         }
4257         case KVM_GET_NESTED_STATE: {
4258                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4259                 u32 user_data_size;
4260
4261                 r = -EINVAL;
4262                 if (!kvm_x86_ops->get_nested_state)
4263                         break;
4264
4265                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4266                 r = -EFAULT;
4267                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4268                         break;
4269
4270                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4271                                                   user_data_size);
4272                 if (r < 0)
4273                         break;
4274
4275                 if (r > user_data_size) {
4276                         if (put_user(r, &user_kvm_nested_state->size))
4277                                 r = -EFAULT;
4278                         else
4279                                 r = -E2BIG;
4280                         break;
4281                 }
4282
4283                 r = 0;
4284                 break;
4285         }
4286         case KVM_SET_NESTED_STATE: {
4287                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4288                 struct kvm_nested_state kvm_state;
4289
4290                 r = -EINVAL;
4291                 if (!kvm_x86_ops->set_nested_state)
4292                         break;
4293
4294                 r = -EFAULT;
4295                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4296                         break;
4297
4298                 r = -EINVAL;
4299                 if (kvm_state.size < sizeof(kvm_state))
4300                         break;
4301
4302                 if (kvm_state.flags &
4303                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4304                       | KVM_STATE_NESTED_EVMCS))
4305                         break;
4306
4307                 /* nested_run_pending implies guest_mode.  */
4308                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4309                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4310                         break;
4311
4312                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4313                 break;
4314         }
4315         case KVM_GET_SUPPORTED_HV_CPUID: {
4316                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4317                 struct kvm_cpuid2 cpuid;
4318
4319                 r = -EFAULT;
4320                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4321                         goto out;
4322
4323                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4324                                                 cpuid_arg->entries);
4325                 if (r)
4326                         goto out;
4327
4328                 r = -EFAULT;
4329                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4330                         goto out;
4331                 r = 0;
4332                 break;
4333         }
4334         default:
4335                 r = -EINVAL;
4336         }
4337 out:
4338         kfree(u.buffer);
4339 out_nofree:
4340         vcpu_put(vcpu);
4341         return r;
4342 }
4343
4344 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4345 {
4346         return VM_FAULT_SIGBUS;
4347 }
4348
4349 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4350 {
4351         int ret;
4352
4353         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4354                 return -EINVAL;
4355         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4356         return ret;
4357 }
4358
4359 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4360                                               u64 ident_addr)
4361 {
4362         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4363 }
4364
4365 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4366                                          unsigned long kvm_nr_mmu_pages)
4367 {
4368         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4369                 return -EINVAL;
4370
4371         mutex_lock(&kvm->slots_lock);
4372
4373         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4374         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4375
4376         mutex_unlock(&kvm->slots_lock);
4377         return 0;
4378 }
4379
4380 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4381 {
4382         return kvm->arch.n_max_mmu_pages;
4383 }
4384
4385 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4386 {
4387         struct kvm_pic *pic = kvm->arch.vpic;
4388         int r;
4389
4390         r = 0;
4391         switch (chip->chip_id) {
4392         case KVM_IRQCHIP_PIC_MASTER:
4393                 memcpy(&chip->chip.pic, &pic->pics[0],
4394                         sizeof(struct kvm_pic_state));
4395                 break;
4396         case KVM_IRQCHIP_PIC_SLAVE:
4397                 memcpy(&chip->chip.pic, &pic->pics[1],
4398                         sizeof(struct kvm_pic_state));
4399                 break;
4400         case KVM_IRQCHIP_IOAPIC:
4401                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4402                 break;
4403         default:
4404                 r = -EINVAL;
4405                 break;
4406         }
4407         return r;
4408 }
4409
4410 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4411 {
4412         struct kvm_pic *pic = kvm->arch.vpic;
4413         int r;
4414
4415         r = 0;
4416         switch (chip->chip_id) {
4417         case KVM_IRQCHIP_PIC_MASTER:
4418                 spin_lock(&pic->lock);
4419                 memcpy(&pic->pics[0], &chip->chip.pic,
4420                         sizeof(struct kvm_pic_state));
4421                 spin_unlock(&pic->lock);
4422                 break;
4423         case KVM_IRQCHIP_PIC_SLAVE:
4424                 spin_lock(&pic->lock);
4425                 memcpy(&pic->pics[1], &chip->chip.pic,
4426                         sizeof(struct kvm_pic_state));
4427                 spin_unlock(&pic->lock);
4428                 break;
4429         case KVM_IRQCHIP_IOAPIC:
4430                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4431                 break;
4432         default:
4433                 r = -EINVAL;
4434                 break;
4435         }
4436         kvm_pic_update_irq(pic);
4437         return r;
4438 }
4439
4440 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4441 {
4442         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4443
4444         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4445
4446         mutex_lock(&kps->lock);
4447         memcpy(ps, &kps->channels, sizeof(*ps));
4448         mutex_unlock(&kps->lock);
4449         return 0;
4450 }
4451
4452 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4453 {
4454         int i;
4455         struct kvm_pit *pit = kvm->arch.vpit;
4456
4457         mutex_lock(&pit->pit_state.lock);
4458         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4459         for (i = 0; i < 3; i++)
4460                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4461         mutex_unlock(&pit->pit_state.lock);
4462         return 0;
4463 }
4464
4465 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4466 {
4467         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4468         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4469                 sizeof(ps->channels));
4470         ps->flags = kvm->arch.vpit->pit_state.flags;
4471         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4472         memset(&ps->reserved, 0, sizeof(ps->reserved));
4473         return 0;
4474 }
4475
4476 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4477 {
4478         int start = 0;
4479         int i;
4480         u32 prev_legacy, cur_legacy;
4481         struct kvm_pit *pit = kvm->arch.vpit;
4482
4483         mutex_lock(&pit->pit_state.lock);
4484         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4485         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4486         if (!prev_legacy && cur_legacy)
4487                 start = 1;
4488         memcpy(&pit->pit_state.channels, &ps->channels,
4489                sizeof(pit->pit_state.channels));
4490         pit->pit_state.flags = ps->flags;
4491         for (i = 0; i < 3; i++)
4492                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4493                                    start && i == 0);
4494         mutex_unlock(&pit->pit_state.lock);
4495         return 0;
4496 }
4497
4498 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4499                                  struct kvm_reinject_control *control)
4500 {
4501         struct kvm_pit *pit = kvm->arch.vpit;
4502
4503         if (!pit)
4504                 return -ENXIO;
4505
4506         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4507          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4508          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4509          */
4510         mutex_lock(&pit->pit_state.lock);
4511         kvm_pit_set_reinject(pit, control->pit_reinject);
4512         mutex_unlock(&pit->pit_state.lock);
4513
4514         return 0;
4515 }
4516
4517 /**
4518  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4519  * @kvm: kvm instance
4520  * @log: slot id and address to which we copy the log
4521  *
4522  * Steps 1-4 below provide general overview of dirty page logging. See
4523  * kvm_get_dirty_log_protect() function description for additional details.
4524  *
4525  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4526  * always flush the TLB (step 4) even if previous step failed  and the dirty
4527  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4528  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4529  * writes will be marked dirty for next log read.
4530  *
4531  *   1. Take a snapshot of the bit and clear it if needed.
4532  *   2. Write protect the corresponding page.
4533  *   3. Copy the snapshot to the userspace.
4534  *   4. Flush TLB's if needed.
4535  */
4536 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4537 {
4538         bool flush = false;
4539         int r;
4540
4541         mutex_lock(&kvm->slots_lock);
4542
4543         /*
4544          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4545          */
4546         if (kvm_x86_ops->flush_log_dirty)
4547                 kvm_x86_ops->flush_log_dirty(kvm);
4548
4549         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4550
4551         /*
4552          * All the TLBs can be flushed out of mmu lock, see the comments in
4553          * kvm_mmu_slot_remove_write_access().
4554          */
4555         lockdep_assert_held(&kvm->slots_lock);
4556         if (flush)
4557                 kvm_flush_remote_tlbs(kvm);
4558
4559         mutex_unlock(&kvm->slots_lock);
4560         return r;
4561 }
4562
4563 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4564 {
4565         bool flush = false;
4566         int r;
4567
4568         mutex_lock(&kvm->slots_lock);
4569
4570         /*
4571          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4572          */
4573         if (kvm_x86_ops->flush_log_dirty)
4574                 kvm_x86_ops->flush_log_dirty(kvm);
4575
4576         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4577
4578         /*
4579          * All the TLBs can be flushed out of mmu lock, see the comments in
4580          * kvm_mmu_slot_remove_write_access().
4581          */
4582         lockdep_assert_held(&kvm->slots_lock);
4583         if (flush)
4584                 kvm_flush_remote_tlbs(kvm);
4585
4586         mutex_unlock(&kvm->slots_lock);
4587         return r;
4588 }
4589
4590 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4591                         bool line_status)
4592 {
4593         if (!irqchip_in_kernel(kvm))
4594                 return -ENXIO;
4595
4596         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4597                                         irq_event->irq, irq_event->level,
4598                                         line_status);
4599         return 0;
4600 }
4601
4602 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4603                             struct kvm_enable_cap *cap)
4604 {
4605         int r;
4606
4607         if (cap->flags)
4608                 return -EINVAL;
4609
4610         switch (cap->cap) {
4611         case KVM_CAP_DISABLE_QUIRKS:
4612                 kvm->arch.disabled_quirks = cap->args[0];
4613                 r = 0;
4614                 break;
4615         case KVM_CAP_SPLIT_IRQCHIP: {
4616                 mutex_lock(&kvm->lock);
4617                 r = -EINVAL;
4618                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4619                         goto split_irqchip_unlock;
4620                 r = -EEXIST;
4621                 if (irqchip_in_kernel(kvm))
4622                         goto split_irqchip_unlock;
4623                 if (kvm->created_vcpus)
4624                         goto split_irqchip_unlock;
4625                 r = kvm_setup_empty_irq_routing(kvm);
4626                 if (r)
4627                         goto split_irqchip_unlock;
4628                 /* Pairs with irqchip_in_kernel. */
4629                 smp_wmb();
4630                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4631                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4632                 r = 0;
4633 split_irqchip_unlock:
4634                 mutex_unlock(&kvm->lock);
4635                 break;
4636         }
4637         case KVM_CAP_X2APIC_API:
4638                 r = -EINVAL;
4639                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4640                         break;
4641
4642                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4643                         kvm->arch.x2apic_format = true;
4644                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4645                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4646
4647                 r = 0;
4648                 break;
4649         case KVM_CAP_X86_DISABLE_EXITS:
4650                 r = -EINVAL;
4651                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4652                         break;
4653
4654                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4655                         kvm_can_mwait_in_guest())
4656                         kvm->arch.mwait_in_guest = true;
4657                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4658                         kvm->arch.hlt_in_guest = true;
4659                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4660                         kvm->arch.pause_in_guest = true;
4661                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4662                         kvm->arch.cstate_in_guest = true;
4663                 r = 0;
4664                 break;
4665         case KVM_CAP_MSR_PLATFORM_INFO:
4666                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4667                 r = 0;
4668                 break;
4669         case KVM_CAP_EXCEPTION_PAYLOAD:
4670                 kvm->arch.exception_payload_enabled = cap->args[0];
4671                 r = 0;
4672                 break;
4673         default:
4674                 r = -EINVAL;
4675                 break;
4676         }
4677         return r;
4678 }
4679
4680 long kvm_arch_vm_ioctl(struct file *filp,
4681                        unsigned int ioctl, unsigned long arg)
4682 {
4683         struct kvm *kvm = filp->private_data;
4684         void __user *argp = (void __user *)arg;
4685         int r = -ENOTTY;
4686         /*
4687          * This union makes it completely explicit to gcc-3.x
4688          * that these two variables' stack usage should be
4689          * combined, not added together.
4690          */
4691         union {
4692                 struct kvm_pit_state ps;
4693                 struct kvm_pit_state2 ps2;
4694                 struct kvm_pit_config pit_config;
4695         } u;
4696
4697         switch (ioctl) {
4698         case KVM_SET_TSS_ADDR:
4699                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4700                 break;
4701         case KVM_SET_IDENTITY_MAP_ADDR: {
4702                 u64 ident_addr;
4703
4704                 mutex_lock(&kvm->lock);
4705                 r = -EINVAL;
4706                 if (kvm->created_vcpus)
4707                         goto set_identity_unlock;
4708                 r = -EFAULT;
4709                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4710                         goto set_identity_unlock;
4711                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4712 set_identity_unlock:
4713                 mutex_unlock(&kvm->lock);
4714                 break;
4715         }
4716         case KVM_SET_NR_MMU_PAGES:
4717                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4718                 break;
4719         case KVM_GET_NR_MMU_PAGES:
4720                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4721                 break;
4722         case KVM_CREATE_IRQCHIP: {
4723                 mutex_lock(&kvm->lock);
4724
4725                 r = -EEXIST;
4726                 if (irqchip_in_kernel(kvm))
4727                         goto create_irqchip_unlock;
4728
4729                 r = -EINVAL;
4730                 if (kvm->created_vcpus)
4731                         goto create_irqchip_unlock;
4732
4733                 r = kvm_pic_init(kvm);
4734                 if (r)
4735                         goto create_irqchip_unlock;
4736
4737                 r = kvm_ioapic_init(kvm);
4738                 if (r) {
4739                         kvm_pic_destroy(kvm);
4740                         goto create_irqchip_unlock;
4741                 }
4742
4743                 r = kvm_setup_default_irq_routing(kvm);
4744                 if (r) {
4745                         kvm_ioapic_destroy(kvm);
4746                         kvm_pic_destroy(kvm);
4747                         goto create_irqchip_unlock;
4748                 }
4749                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4750                 smp_wmb();
4751                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4752         create_irqchip_unlock:
4753                 mutex_unlock(&kvm->lock);
4754                 break;
4755         }
4756         case KVM_CREATE_PIT:
4757                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4758                 goto create_pit;
4759         case KVM_CREATE_PIT2:
4760                 r = -EFAULT;
4761                 if (copy_from_user(&u.pit_config, argp,
4762                                    sizeof(struct kvm_pit_config)))
4763                         goto out;
4764         create_pit:
4765                 mutex_lock(&kvm->lock);
4766                 r = -EEXIST;
4767                 if (kvm->arch.vpit)
4768                         goto create_pit_unlock;
4769                 r = -ENOMEM;
4770                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4771                 if (kvm->arch.vpit)
4772                         r = 0;
4773         create_pit_unlock:
4774                 mutex_unlock(&kvm->lock);
4775                 break;
4776         case KVM_GET_IRQCHIP: {
4777                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4778                 struct kvm_irqchip *chip;
4779
4780                 chip = memdup_user(argp, sizeof(*chip));
4781                 if (IS_ERR(chip)) {
4782                         r = PTR_ERR(chip);
4783                         goto out;
4784                 }
4785
4786                 r = -ENXIO;
4787                 if (!irqchip_kernel(kvm))
4788                         goto get_irqchip_out;
4789                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4790                 if (r)
4791                         goto get_irqchip_out;
4792                 r = -EFAULT;
4793                 if (copy_to_user(argp, chip, sizeof(*chip)))
4794                         goto get_irqchip_out;
4795                 r = 0;
4796         get_irqchip_out:
4797                 kfree(chip);
4798                 break;
4799         }
4800         case KVM_SET_IRQCHIP: {
4801                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4802                 struct kvm_irqchip *chip;
4803
4804                 chip = memdup_user(argp, sizeof(*chip));
4805                 if (IS_ERR(chip)) {
4806                         r = PTR_ERR(chip);
4807                         goto out;
4808                 }
4809
4810                 r = -ENXIO;
4811                 if (!irqchip_kernel(kvm))
4812                         goto set_irqchip_out;
4813                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4814                 if (r)
4815                         goto set_irqchip_out;
4816                 r = 0;
4817         set_irqchip_out:
4818                 kfree(chip);
4819                 break;
4820         }
4821         case KVM_GET_PIT: {
4822                 r = -EFAULT;
4823                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4824                         goto out;
4825                 r = -ENXIO;
4826                 if (!kvm->arch.vpit)
4827                         goto out;
4828                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4829                 if (r)
4830                         goto out;
4831                 r = -EFAULT;
4832                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4833                         goto out;
4834                 r = 0;
4835                 break;
4836         }
4837         case KVM_SET_PIT: {
4838                 r = -EFAULT;
4839                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4840                         goto out;
4841                 r = -ENXIO;
4842                 if (!kvm->arch.vpit)
4843                         goto out;
4844                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4845                 break;
4846         }
4847         case KVM_GET_PIT2: {
4848                 r = -ENXIO;
4849                 if (!kvm->arch.vpit)
4850                         goto out;
4851                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4852                 if (r)
4853                         goto out;
4854                 r = -EFAULT;
4855                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4856                         goto out;
4857                 r = 0;
4858                 break;
4859         }
4860         case KVM_SET_PIT2: {
4861                 r = -EFAULT;
4862                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4863                         goto out;
4864                 r = -ENXIO;
4865                 if (!kvm->arch.vpit)
4866                         goto out;
4867                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4868                 break;
4869         }
4870         case KVM_REINJECT_CONTROL: {
4871                 struct kvm_reinject_control control;
4872                 r =  -EFAULT;
4873                 if (copy_from_user(&control, argp, sizeof(control)))
4874                         goto out;
4875                 r = kvm_vm_ioctl_reinject(kvm, &control);
4876                 break;
4877         }
4878         case KVM_SET_BOOT_CPU_ID:
4879                 r = 0;
4880                 mutex_lock(&kvm->lock);
4881                 if (kvm->created_vcpus)
4882                         r = -EBUSY;
4883                 else
4884                         kvm->arch.bsp_vcpu_id = arg;
4885                 mutex_unlock(&kvm->lock);
4886                 break;
4887         case KVM_XEN_HVM_CONFIG: {
4888                 struct kvm_xen_hvm_config xhc;
4889                 r = -EFAULT;
4890                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4891                         goto out;
4892                 r = -EINVAL;
4893                 if (xhc.flags)
4894                         goto out;
4895                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4896                 r = 0;
4897                 break;
4898         }
4899         case KVM_SET_CLOCK: {
4900                 struct kvm_clock_data user_ns;
4901                 u64 now_ns;
4902
4903                 r = -EFAULT;
4904                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4905                         goto out;
4906
4907                 r = -EINVAL;
4908                 if (user_ns.flags)
4909                         goto out;
4910
4911                 r = 0;
4912                 /*
4913                  * TODO: userspace has to take care of races with VCPU_RUN, so
4914                  * kvm_gen_update_masterclock() can be cut down to locked
4915                  * pvclock_update_vm_gtod_copy().
4916                  */
4917                 kvm_gen_update_masterclock(kvm);
4918                 now_ns = get_kvmclock_ns(kvm);
4919                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4920                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4921                 break;
4922         }
4923         case KVM_GET_CLOCK: {
4924                 struct kvm_clock_data user_ns;
4925                 u64 now_ns;
4926
4927                 now_ns = get_kvmclock_ns(kvm);
4928                 user_ns.clock = now_ns;
4929                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4930                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4931
4932                 r = -EFAULT;
4933                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4934                         goto out;
4935                 r = 0;
4936                 break;
4937         }
4938         case KVM_MEMORY_ENCRYPT_OP: {
4939                 r = -ENOTTY;
4940                 if (kvm_x86_ops->mem_enc_op)
4941                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4942                 break;
4943         }
4944         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4945                 struct kvm_enc_region region;
4946
4947                 r = -EFAULT;
4948                 if (copy_from_user(&region, argp, sizeof(region)))
4949                         goto out;
4950
4951                 r = -ENOTTY;
4952                 if (kvm_x86_ops->mem_enc_reg_region)
4953                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4954                 break;
4955         }
4956         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4957                 struct kvm_enc_region region;
4958
4959                 r = -EFAULT;
4960                 if (copy_from_user(&region, argp, sizeof(region)))
4961                         goto out;
4962
4963                 r = -ENOTTY;
4964                 if (kvm_x86_ops->mem_enc_unreg_region)
4965                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4966                 break;
4967         }
4968         case KVM_HYPERV_EVENTFD: {
4969                 struct kvm_hyperv_eventfd hvevfd;
4970
4971                 r = -EFAULT;
4972                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4973                         goto out;
4974                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4975                 break;
4976         }
4977         case KVM_SET_PMU_EVENT_FILTER:
4978                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
4979                 break;
4980         default:
4981                 r = -ENOTTY;
4982         }
4983 out:
4984         return r;
4985 }
4986
4987 static void kvm_init_msr_list(void)
4988 {
4989         u32 dummy[2];
4990         unsigned i, j;
4991
4992         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4993                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4994                         continue;
4995
4996                 /*
4997                  * Even MSRs that are valid in the host may not be exposed
4998                  * to the guests in some cases.
4999                  */
5000                 switch (msrs_to_save[i]) {
5001                 case MSR_IA32_BNDCFGS:
5002                         if (!kvm_mpx_supported())
5003                                 continue;
5004                         break;
5005                 case MSR_TSC_AUX:
5006                         if (!kvm_x86_ops->rdtscp_supported())
5007                                 continue;
5008                         break;
5009                 case MSR_IA32_RTIT_CTL:
5010                 case MSR_IA32_RTIT_STATUS:
5011                         if (!kvm_x86_ops->pt_supported())
5012                                 continue;
5013                         break;
5014                 case MSR_IA32_RTIT_CR3_MATCH:
5015                         if (!kvm_x86_ops->pt_supported() ||
5016                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5017                                 continue;
5018                         break;
5019                 case MSR_IA32_RTIT_OUTPUT_BASE:
5020                 case MSR_IA32_RTIT_OUTPUT_MASK:
5021                         if (!kvm_x86_ops->pt_supported() ||
5022                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5023                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5024                                 continue;
5025                         break;
5026                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5027                         if (!kvm_x86_ops->pt_supported() ||
5028                                 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
5029                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5030                                 continue;
5031                         break;
5032                 }
5033                 default:
5034                         break;
5035                 }
5036
5037                 if (j < i)
5038                         msrs_to_save[j] = msrs_to_save[i];
5039                 j++;
5040         }
5041         num_msrs_to_save = j;
5042
5043         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
5044                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
5045                         continue;
5046
5047                 if (j < i)
5048                         emulated_msrs[j] = emulated_msrs[i];
5049                 j++;
5050         }
5051         num_emulated_msrs = j;
5052
5053         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5054                 struct kvm_msr_entry msr;
5055
5056                 msr.index = msr_based_features[i];
5057                 if (kvm_get_msr_feature(&msr))
5058                         continue;
5059
5060                 if (j < i)
5061                         msr_based_features[j] = msr_based_features[i];
5062                 j++;
5063         }
5064         num_msr_based_features = j;
5065 }
5066
5067 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5068                            const void *v)
5069 {
5070         int handled = 0;
5071         int n;
5072
5073         do {
5074                 n = min(len, 8);
5075                 if (!(lapic_in_kernel(vcpu) &&
5076                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5077                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5078                         break;
5079                 handled += n;
5080                 addr += n;
5081                 len -= n;
5082                 v += n;
5083         } while (len);
5084
5085         return handled;
5086 }
5087
5088 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5089 {
5090         int handled = 0;
5091         int n;
5092
5093         do {
5094                 n = min(len, 8);
5095                 if (!(lapic_in_kernel(vcpu) &&
5096                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5097                                          addr, n, v))
5098                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5099                         break;
5100                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5101                 handled += n;
5102                 addr += n;
5103                 len -= n;
5104                 v += n;
5105         } while (len);
5106
5107         return handled;
5108 }
5109
5110 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5111                         struct kvm_segment *var, int seg)
5112 {
5113         kvm_x86_ops->set_segment(vcpu, var, seg);
5114 }
5115
5116 void kvm_get_segment(struct kvm_vcpu *vcpu,
5117                      struct kvm_segment *var, int seg)
5118 {
5119         kvm_x86_ops->get_segment(vcpu, var, seg);
5120 }
5121
5122 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5123                            struct x86_exception *exception)
5124 {
5125         gpa_t t_gpa;
5126
5127         BUG_ON(!mmu_is_nested(vcpu));
5128
5129         /* NPT walks are always user-walks */
5130         access |= PFERR_USER_MASK;
5131         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5132
5133         return t_gpa;
5134 }
5135
5136 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5137                               struct x86_exception *exception)
5138 {
5139         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5140         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5141 }
5142
5143  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5144                                 struct x86_exception *exception)
5145 {
5146         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5147         access |= PFERR_FETCH_MASK;
5148         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5149 }
5150
5151 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5152                                struct x86_exception *exception)
5153 {
5154         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5155         access |= PFERR_WRITE_MASK;
5156         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5157 }
5158
5159 /* uses this to access any guest's mapped memory without checking CPL */
5160 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5161                                 struct x86_exception *exception)
5162 {
5163         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5164 }
5165
5166 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5167                                       struct kvm_vcpu *vcpu, u32 access,
5168                                       struct x86_exception *exception)
5169 {
5170         void *data = val;
5171         int r = X86EMUL_CONTINUE;
5172
5173         while (bytes) {
5174                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5175                                                             exception);
5176                 unsigned offset = addr & (PAGE_SIZE-1);
5177                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5178                 int ret;
5179
5180                 if (gpa == UNMAPPED_GVA)
5181                         return X86EMUL_PROPAGATE_FAULT;
5182                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5183                                                offset, toread);
5184                 if (ret < 0) {
5185                         r = X86EMUL_IO_NEEDED;
5186                         goto out;
5187                 }
5188
5189                 bytes -= toread;
5190                 data += toread;
5191                 addr += toread;
5192         }
5193 out:
5194         return r;
5195 }
5196
5197 /* used for instruction fetching */
5198 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5199                                 gva_t addr, void *val, unsigned int bytes,
5200                                 struct x86_exception *exception)
5201 {
5202         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5203         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5204         unsigned offset;
5205         int ret;
5206
5207         /* Inline kvm_read_guest_virt_helper for speed.  */
5208         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5209                                                     exception);
5210         if (unlikely(gpa == UNMAPPED_GVA))
5211                 return X86EMUL_PROPAGATE_FAULT;
5212
5213         offset = addr & (PAGE_SIZE-1);
5214         if (WARN_ON(offset + bytes > PAGE_SIZE))
5215                 bytes = (unsigned)PAGE_SIZE - offset;
5216         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5217                                        offset, bytes);
5218         if (unlikely(ret < 0))
5219                 return X86EMUL_IO_NEEDED;
5220
5221         return X86EMUL_CONTINUE;
5222 }
5223
5224 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5225                                gva_t addr, void *val, unsigned int bytes,
5226                                struct x86_exception *exception)
5227 {
5228         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5229
5230         /*
5231          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5232          * is returned, but our callers are not ready for that and they blindly
5233          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5234          * uninitialized kernel stack memory into cr2 and error code.
5235          */
5236         memset(exception, 0, sizeof(*exception));
5237         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5238                                           exception);
5239 }
5240 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5241
5242 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5243                              gva_t addr, void *val, unsigned int bytes,
5244                              struct x86_exception *exception, bool system)
5245 {
5246         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5247         u32 access = 0;
5248
5249         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5250                 access |= PFERR_USER_MASK;
5251
5252         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5253 }
5254
5255 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5256                 unsigned long addr, void *val, unsigned int bytes)
5257 {
5258         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5259         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5260
5261         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5262 }
5263
5264 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5265                                       struct kvm_vcpu *vcpu, u32 access,
5266                                       struct x86_exception *exception)
5267 {
5268         void *data = val;
5269         int r = X86EMUL_CONTINUE;
5270
5271         while (bytes) {
5272                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5273                                                              access,
5274                                                              exception);
5275                 unsigned offset = addr & (PAGE_SIZE-1);
5276                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5277                 int ret;
5278
5279                 if (gpa == UNMAPPED_GVA)
5280                         return X86EMUL_PROPAGATE_FAULT;
5281                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5282                 if (ret < 0) {
5283                         r = X86EMUL_IO_NEEDED;
5284                         goto out;
5285                 }
5286
5287                 bytes -= towrite;
5288                 data += towrite;
5289                 addr += towrite;
5290         }
5291 out:
5292         return r;
5293 }
5294
5295 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5296                               unsigned int bytes, struct x86_exception *exception,
5297                               bool system)
5298 {
5299         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5300         u32 access = PFERR_WRITE_MASK;
5301
5302         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5303                 access |= PFERR_USER_MASK;
5304
5305         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5306                                            access, exception);
5307 }
5308
5309 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5310                                 unsigned int bytes, struct x86_exception *exception)
5311 {
5312         /* kvm_write_guest_virt_system can pull in tons of pages. */
5313         vcpu->arch.l1tf_flush_l1d = true;
5314
5315         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5316                                            PFERR_WRITE_MASK, exception);
5317 }
5318 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5319
5320 int handle_ud(struct kvm_vcpu *vcpu)
5321 {
5322         int emul_type = EMULTYPE_TRAP_UD;
5323         enum emulation_result er;
5324         char sig[5]; /* ud2; .ascii "kvm" */
5325         struct x86_exception e;
5326
5327         if (force_emulation_prefix &&
5328             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5329                                 sig, sizeof(sig), &e) == 0 &&
5330             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5331                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5332                 emul_type = 0;
5333         }
5334
5335         er = kvm_emulate_instruction(vcpu, emul_type);
5336         if (er == EMULATE_USER_EXIT)
5337                 return 0;
5338         if (er != EMULATE_DONE)
5339                 kvm_queue_exception(vcpu, UD_VECTOR);
5340         return 1;
5341 }
5342 EXPORT_SYMBOL_GPL(handle_ud);
5343
5344 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5345                             gpa_t gpa, bool write)
5346 {
5347         /* For APIC access vmexit */
5348         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5349                 return 1;
5350
5351         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5352                 trace_vcpu_match_mmio(gva, gpa, write, true);
5353                 return 1;
5354         }
5355
5356         return 0;
5357 }
5358
5359 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5360                                 gpa_t *gpa, struct x86_exception *exception,
5361                                 bool write)
5362 {
5363         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5364                 | (write ? PFERR_WRITE_MASK : 0);
5365
5366         /*
5367          * currently PKRU is only applied to ept enabled guest so
5368          * there is no pkey in EPT page table for L1 guest or EPT
5369          * shadow page table for L2 guest.
5370          */
5371         if (vcpu_match_mmio_gva(vcpu, gva)
5372             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5373                                  vcpu->arch.access, 0, access)) {
5374                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5375                                         (gva & (PAGE_SIZE - 1));
5376                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5377                 return 1;
5378         }
5379
5380         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5381
5382         if (*gpa == UNMAPPED_GVA)
5383                 return -1;
5384
5385         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5386 }
5387
5388 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5389                         const void *val, int bytes)
5390 {
5391         int ret;
5392
5393         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5394         if (ret < 0)
5395                 return 0;
5396         kvm_page_track_write(vcpu, gpa, val, bytes);
5397         return 1;
5398 }
5399
5400 struct read_write_emulator_ops {
5401         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5402                                   int bytes);
5403         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5404                                   void *val, int bytes);
5405         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5406                                int bytes, void *val);
5407         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5408                                     void *val, int bytes);
5409         bool write;
5410 };
5411
5412 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5413 {
5414         if (vcpu->mmio_read_completed) {
5415                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5416                                vcpu->mmio_fragments[0].gpa, val);
5417                 vcpu->mmio_read_completed = 0;
5418                 return 1;
5419         }
5420
5421         return 0;
5422 }
5423
5424 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5425                         void *val, int bytes)
5426 {
5427         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5428 }
5429
5430 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5431                          void *val, int bytes)
5432 {
5433         return emulator_write_phys(vcpu, gpa, val, bytes);
5434 }
5435
5436 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5437 {
5438         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5439         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5440 }
5441
5442 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5443                           void *val, int bytes)
5444 {
5445         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5446         return X86EMUL_IO_NEEDED;
5447 }
5448
5449 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5450                            void *val, int bytes)
5451 {
5452         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5453
5454         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5455         return X86EMUL_CONTINUE;
5456 }
5457
5458 static const struct read_write_emulator_ops read_emultor = {
5459         .read_write_prepare = read_prepare,
5460         .read_write_emulate = read_emulate,
5461         .read_write_mmio = vcpu_mmio_read,
5462         .read_write_exit_mmio = read_exit_mmio,
5463 };
5464
5465 static const struct read_write_emulator_ops write_emultor = {
5466         .read_write_emulate = write_emulate,
5467         .read_write_mmio = write_mmio,
5468         .read_write_exit_mmio = write_exit_mmio,
5469         .write = true,
5470 };
5471
5472 static int emulator_read_write_onepage(unsigned long addr, void *val,
5473                                        unsigned int bytes,
5474                                        struct x86_exception *exception,
5475                                        struct kvm_vcpu *vcpu,
5476                                        const struct read_write_emulator_ops *ops)
5477 {
5478         gpa_t gpa;
5479         int handled, ret;
5480         bool write = ops->write;
5481         struct kvm_mmio_fragment *frag;
5482         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5483
5484         /*
5485          * If the exit was due to a NPF we may already have a GPA.
5486          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5487          * Note, this cannot be used on string operations since string
5488          * operation using rep will only have the initial GPA from the NPF
5489          * occurred.
5490          */
5491         if (vcpu->arch.gpa_available &&
5492             emulator_can_use_gpa(ctxt) &&
5493             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5494                 gpa = vcpu->arch.gpa_val;
5495                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5496         } else {
5497                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5498                 if (ret < 0)
5499                         return X86EMUL_PROPAGATE_FAULT;
5500         }
5501
5502         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5503                 return X86EMUL_CONTINUE;
5504
5505         /*
5506          * Is this MMIO handled locally?
5507          */
5508         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5509         if (handled == bytes)
5510                 return X86EMUL_CONTINUE;
5511
5512         gpa += handled;
5513         bytes -= handled;
5514         val += handled;
5515
5516         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5517         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5518         frag->gpa = gpa;
5519         frag->data = val;
5520         frag->len = bytes;
5521         return X86EMUL_CONTINUE;
5522 }
5523
5524 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5525                         unsigned long addr,
5526                         void *val, unsigned int bytes,
5527                         struct x86_exception *exception,
5528                         const struct read_write_emulator_ops *ops)
5529 {
5530         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5531         gpa_t gpa;
5532         int rc;
5533
5534         if (ops->read_write_prepare &&
5535                   ops->read_write_prepare(vcpu, val, bytes))
5536                 return X86EMUL_CONTINUE;
5537
5538         vcpu->mmio_nr_fragments = 0;
5539
5540         /* Crossing a page boundary? */
5541         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5542                 int now;
5543
5544                 now = -addr & ~PAGE_MASK;
5545                 rc = emulator_read_write_onepage(addr, val, now, exception,
5546                                                  vcpu, ops);
5547
5548                 if (rc != X86EMUL_CONTINUE)
5549                         return rc;
5550                 addr += now;
5551                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5552                         addr = (u32)addr;
5553                 val += now;
5554                 bytes -= now;
5555         }
5556
5557         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5558                                          vcpu, ops);
5559         if (rc != X86EMUL_CONTINUE)
5560                 return rc;
5561
5562         if (!vcpu->mmio_nr_fragments)
5563                 return rc;
5564
5565         gpa = vcpu->mmio_fragments[0].gpa;
5566
5567         vcpu->mmio_needed = 1;
5568         vcpu->mmio_cur_fragment = 0;
5569
5570         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5571         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5572         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5573         vcpu->run->mmio.phys_addr = gpa;
5574
5575         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5576 }
5577
5578 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5579                                   unsigned long addr,
5580                                   void *val,
5581                                   unsigned int bytes,
5582                                   struct x86_exception *exception)
5583 {
5584         return emulator_read_write(ctxt, addr, val, bytes,
5585                                    exception, &read_emultor);
5586 }
5587
5588 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5589                             unsigned long addr,
5590                             const void *val,
5591                             unsigned int bytes,
5592                             struct x86_exception *exception)
5593 {
5594         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5595                                    exception, &write_emultor);
5596 }
5597
5598 #define CMPXCHG_TYPE(t, ptr, old, new) \
5599         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5600
5601 #ifdef CONFIG_X86_64
5602 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5603 #else
5604 #  define CMPXCHG64(ptr, old, new) \
5605         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5606 #endif
5607
5608 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5609                                      unsigned long addr,
5610                                      const void *old,
5611                                      const void *new,
5612                                      unsigned int bytes,
5613                                      struct x86_exception *exception)
5614 {
5615         struct kvm_host_map map;
5616         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5617         gpa_t gpa;
5618         char *kaddr;
5619         bool exchanged;
5620
5621         /* guests cmpxchg8b have to be emulated atomically */
5622         if (bytes > 8 || (bytes & (bytes - 1)))
5623                 goto emul_write;
5624
5625         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5626
5627         if (gpa == UNMAPPED_GVA ||
5628             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5629                 goto emul_write;
5630
5631         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5632                 goto emul_write;
5633
5634         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5635                 goto emul_write;
5636
5637         kaddr = map.hva + offset_in_page(gpa);
5638
5639         switch (bytes) {
5640         case 1:
5641                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5642                 break;
5643         case 2:
5644                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5645                 break;
5646         case 4:
5647                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5648                 break;
5649         case 8:
5650                 exchanged = CMPXCHG64(kaddr, old, new);
5651                 break;
5652         default:
5653                 BUG();
5654         }
5655
5656         kvm_vcpu_unmap(vcpu, &map, true);
5657
5658         if (!exchanged)
5659                 return X86EMUL_CMPXCHG_FAILED;
5660
5661         kvm_page_track_write(vcpu, gpa, new, bytes);
5662
5663         return X86EMUL_CONTINUE;
5664
5665 emul_write:
5666         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5667
5668         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5669 }
5670
5671 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5672 {
5673         int r = 0, i;
5674
5675         for (i = 0; i < vcpu->arch.pio.count; i++) {
5676                 if (vcpu->arch.pio.in)
5677                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5678                                             vcpu->arch.pio.size, pd);
5679                 else
5680                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5681                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5682                                              pd);
5683                 if (r)
5684                         break;
5685                 pd += vcpu->arch.pio.size;
5686         }
5687         return r;
5688 }
5689
5690 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5691                                unsigned short port, void *val,
5692                                unsigned int count, bool in)
5693 {
5694         vcpu->arch.pio.port = port;
5695         vcpu->arch.pio.in = in;
5696         vcpu->arch.pio.count  = count;
5697         vcpu->arch.pio.size = size;
5698
5699         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5700                 vcpu->arch.pio.count = 0;
5701                 return 1;
5702         }
5703
5704         vcpu->run->exit_reason = KVM_EXIT_IO;
5705         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5706         vcpu->run->io.size = size;
5707         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5708         vcpu->run->io.count = count;
5709         vcpu->run->io.port = port;
5710
5711         return 0;
5712 }
5713
5714 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5715                                     int size, unsigned short port, void *val,
5716                                     unsigned int count)
5717 {
5718         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5719         int ret;
5720
5721         if (vcpu->arch.pio.count)
5722                 goto data_avail;
5723
5724         memset(vcpu->arch.pio_data, 0, size * count);
5725
5726         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5727         if (ret) {
5728 data_avail:
5729                 memcpy(val, vcpu->arch.pio_data, size * count);
5730                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5731                 vcpu->arch.pio.count = 0;
5732                 return 1;
5733         }
5734
5735         return 0;
5736 }
5737
5738 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5739                                      int size, unsigned short port,
5740                                      const void *val, unsigned int count)
5741 {
5742         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5743
5744         memcpy(vcpu->arch.pio_data, val, size * count);
5745         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5746         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5747 }
5748
5749 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5750 {
5751         return kvm_x86_ops->get_segment_base(vcpu, seg);
5752 }
5753
5754 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5755 {
5756         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5757 }
5758
5759 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5760 {
5761         if (!need_emulate_wbinvd(vcpu))
5762                 return X86EMUL_CONTINUE;
5763
5764         if (kvm_x86_ops->has_wbinvd_exit()) {
5765                 int cpu = get_cpu();
5766
5767                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5768                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5769                                 wbinvd_ipi, NULL, 1);
5770                 put_cpu();
5771                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5772         } else
5773                 wbinvd();
5774         return X86EMUL_CONTINUE;
5775 }
5776
5777 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5778 {
5779         kvm_emulate_wbinvd_noskip(vcpu);
5780         return kvm_skip_emulated_instruction(vcpu);
5781 }
5782 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5783
5784
5785
5786 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5787 {
5788         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5789 }
5790
5791 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5792                            unsigned long *dest)
5793 {
5794         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5795 }
5796
5797 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5798                            unsigned long value)
5799 {
5800
5801         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5802 }
5803
5804 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5805 {
5806         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5807 }
5808
5809 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5810 {
5811         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5812         unsigned long value;
5813
5814         switch (cr) {
5815         case 0:
5816                 value = kvm_read_cr0(vcpu);
5817                 break;
5818         case 2:
5819                 value = vcpu->arch.cr2;
5820                 break;
5821         case 3:
5822                 value = kvm_read_cr3(vcpu);
5823                 break;
5824         case 4:
5825                 value = kvm_read_cr4(vcpu);
5826                 break;
5827         case 8:
5828                 value = kvm_get_cr8(vcpu);
5829                 break;
5830         default:
5831                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5832                 return 0;
5833         }
5834
5835         return value;
5836 }
5837
5838 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5839 {
5840         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5841         int res = 0;
5842
5843         switch (cr) {
5844         case 0:
5845                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5846                 break;
5847         case 2:
5848                 vcpu->arch.cr2 = val;
5849                 break;
5850         case 3:
5851                 res = kvm_set_cr3(vcpu, val);
5852                 break;
5853         case 4:
5854                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5855                 break;
5856         case 8:
5857                 res = kvm_set_cr8(vcpu, val);
5858                 break;
5859         default:
5860                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5861                 res = -1;
5862         }
5863
5864         return res;
5865 }
5866
5867 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5868 {
5869         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5870 }
5871
5872 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5873 {
5874         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5875 }
5876
5877 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5878 {
5879         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5880 }
5881
5882 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5883 {
5884         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5885 }
5886
5887 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5888 {
5889         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5890 }
5891
5892 static unsigned long emulator_get_cached_segment_base(
5893         struct x86_emulate_ctxt *ctxt, int seg)
5894 {
5895         return get_segment_base(emul_to_vcpu(ctxt), seg);
5896 }
5897
5898 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5899                                  struct desc_struct *desc, u32 *base3,
5900                                  int seg)
5901 {
5902         struct kvm_segment var;
5903
5904         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5905         *selector = var.selector;
5906
5907         if (var.unusable) {
5908                 memset(desc, 0, sizeof(*desc));
5909                 if (base3)
5910                         *base3 = 0;
5911                 return false;
5912         }
5913
5914         if (var.g)
5915                 var.limit >>= 12;
5916         set_desc_limit(desc, var.limit);
5917         set_desc_base(desc, (unsigned long)var.base);
5918 #ifdef CONFIG_X86_64
5919         if (base3)
5920                 *base3 = var.base >> 32;
5921 #endif
5922         desc->type = var.type;
5923         desc->s = var.s;
5924         desc->dpl = var.dpl;
5925         desc->p = var.present;
5926         desc->avl = var.avl;
5927         desc->l = var.l;
5928         desc->d = var.db;
5929         desc->g = var.g;
5930
5931         return true;
5932 }
5933
5934 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5935                                  struct desc_struct *desc, u32 base3,
5936                                  int seg)
5937 {
5938         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5939         struct kvm_segment var;
5940
5941         var.selector = selector;
5942         var.base = get_desc_base(desc);
5943 #ifdef CONFIG_X86_64
5944         var.base |= ((u64)base3) << 32;
5945 #endif
5946         var.limit = get_desc_limit(desc);
5947         if (desc->g)
5948                 var.limit = (var.limit << 12) | 0xfff;
5949         var.type = desc->type;
5950         var.dpl = desc->dpl;
5951         var.db = desc->d;
5952         var.s = desc->s;
5953         var.l = desc->l;
5954         var.g = desc->g;
5955         var.avl = desc->avl;
5956         var.present = desc->p;
5957         var.unusable = !var.present;
5958         var.padding = 0;
5959
5960         kvm_set_segment(vcpu, &var, seg);
5961         return;
5962 }
5963
5964 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5965                             u32 msr_index, u64 *pdata)
5966 {
5967         struct msr_data msr;
5968         int r;
5969
5970         msr.index = msr_index;
5971         msr.host_initiated = false;
5972         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5973         if (r)
5974                 return r;
5975
5976         *pdata = msr.data;
5977         return 0;
5978 }
5979
5980 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5981                             u32 msr_index, u64 data)
5982 {
5983         struct msr_data msr;
5984
5985         msr.data = data;
5986         msr.index = msr_index;
5987         msr.host_initiated = false;
5988         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5989 }
5990
5991 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5992 {
5993         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5994
5995         return vcpu->arch.smbase;
5996 }
5997
5998 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5999 {
6000         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6001
6002         vcpu->arch.smbase = smbase;
6003 }
6004
6005 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6006                               u32 pmc)
6007 {
6008         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
6009 }
6010
6011 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6012                              u32 pmc, u64 *pdata)
6013 {
6014         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6015 }
6016
6017 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6018 {
6019         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6020 }
6021
6022 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6023                               struct x86_instruction_info *info,
6024                               enum x86_intercept_stage stage)
6025 {
6026         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6027 }
6028
6029 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6030                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6031 {
6032         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6033 }
6034
6035 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6036 {
6037         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6038 }
6039
6040 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6041 {
6042         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6043 }
6044
6045 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6046 {
6047         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6048 }
6049
6050 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6051 {
6052         return emul_to_vcpu(ctxt)->arch.hflags;
6053 }
6054
6055 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6056 {
6057         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6058 }
6059
6060 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6061                                   const char *smstate)
6062 {
6063         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6064 }
6065
6066 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6067 {
6068         kvm_smm_changed(emul_to_vcpu(ctxt));
6069 }
6070
6071 static const struct x86_emulate_ops emulate_ops = {
6072         .read_gpr            = emulator_read_gpr,
6073         .write_gpr           = emulator_write_gpr,
6074         .read_std            = emulator_read_std,
6075         .write_std           = emulator_write_std,
6076         .read_phys           = kvm_read_guest_phys_system,
6077         .fetch               = kvm_fetch_guest_virt,
6078         .read_emulated       = emulator_read_emulated,
6079         .write_emulated      = emulator_write_emulated,
6080         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6081         .invlpg              = emulator_invlpg,
6082         .pio_in_emulated     = emulator_pio_in_emulated,
6083         .pio_out_emulated    = emulator_pio_out_emulated,
6084         .get_segment         = emulator_get_segment,
6085         .set_segment         = emulator_set_segment,
6086         .get_cached_segment_base = emulator_get_cached_segment_base,
6087         .get_gdt             = emulator_get_gdt,
6088         .get_idt             = emulator_get_idt,
6089         .set_gdt             = emulator_set_gdt,
6090         .set_idt             = emulator_set_idt,
6091         .get_cr              = emulator_get_cr,
6092         .set_cr              = emulator_set_cr,
6093         .cpl                 = emulator_get_cpl,
6094         .get_dr              = emulator_get_dr,
6095         .set_dr              = emulator_set_dr,
6096         .get_smbase          = emulator_get_smbase,
6097         .set_smbase          = emulator_set_smbase,
6098         .set_msr             = emulator_set_msr,
6099         .get_msr             = emulator_get_msr,
6100         .check_pmc           = emulator_check_pmc,
6101         .read_pmc            = emulator_read_pmc,
6102         .halt                = emulator_halt,
6103         .wbinvd              = emulator_wbinvd,
6104         .fix_hypercall       = emulator_fix_hypercall,
6105         .intercept           = emulator_intercept,
6106         .get_cpuid           = emulator_get_cpuid,
6107         .set_nmi_mask        = emulator_set_nmi_mask,
6108         .get_hflags          = emulator_get_hflags,
6109         .set_hflags          = emulator_set_hflags,
6110         .pre_leave_smm       = emulator_pre_leave_smm,
6111         .post_leave_smm      = emulator_post_leave_smm,
6112 };
6113
6114 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6115 {
6116         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6117         /*
6118          * an sti; sti; sequence only disable interrupts for the first
6119          * instruction. So, if the last instruction, be it emulated or
6120          * not, left the system with the INT_STI flag enabled, it
6121          * means that the last instruction is an sti. We should not
6122          * leave the flag on in this case. The same goes for mov ss
6123          */
6124         if (int_shadow & mask)
6125                 mask = 0;
6126         if (unlikely(int_shadow || mask)) {
6127                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6128                 if (!mask)
6129                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6130         }
6131 }
6132
6133 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6134 {
6135         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6136         if (ctxt->exception.vector == PF_VECTOR)
6137                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6138
6139         if (ctxt->exception.error_code_valid)
6140                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6141                                       ctxt->exception.error_code);
6142         else
6143                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6144         return false;
6145 }
6146
6147 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6148 {
6149         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6150         int cs_db, cs_l;
6151
6152         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6153
6154         ctxt->eflags = kvm_get_rflags(vcpu);
6155         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6156
6157         ctxt->eip = kvm_rip_read(vcpu);
6158         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6159                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6160                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6161                      cs_db                              ? X86EMUL_MODE_PROT32 :
6162                                                           X86EMUL_MODE_PROT16;
6163         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6164         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6165         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6166
6167         init_decode_cache(ctxt);
6168         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6169 }
6170
6171 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6172 {
6173         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6174         int ret;
6175
6176         init_emulate_ctxt(vcpu);
6177
6178         ctxt->op_bytes = 2;
6179         ctxt->ad_bytes = 2;
6180         ctxt->_eip = ctxt->eip + inc_eip;
6181         ret = emulate_int_real(ctxt, irq);
6182
6183         if (ret != X86EMUL_CONTINUE)
6184                 return EMULATE_FAIL;
6185
6186         ctxt->eip = ctxt->_eip;
6187         kvm_rip_write(vcpu, ctxt->eip);
6188         kvm_set_rflags(vcpu, ctxt->eflags);
6189
6190         return EMULATE_DONE;
6191 }
6192 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6193
6194 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6195 {
6196         int r = EMULATE_DONE;
6197
6198         ++vcpu->stat.insn_emulation_fail;
6199         trace_kvm_emulate_insn_failed(vcpu);
6200
6201         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6202                 return EMULATE_FAIL;
6203
6204         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6205                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6206                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6207                 vcpu->run->internal.ndata = 0;
6208                 r = EMULATE_USER_EXIT;
6209         }
6210
6211         kvm_queue_exception(vcpu, UD_VECTOR);
6212
6213         return r;
6214 }
6215
6216 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6217                                   bool write_fault_to_shadow_pgtable,
6218                                   int emulation_type)
6219 {
6220         gpa_t gpa = cr2;
6221         kvm_pfn_t pfn;
6222
6223         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6224                 return false;
6225
6226         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6227                 return false;
6228
6229         if (!vcpu->arch.mmu->direct_map) {
6230                 /*
6231                  * Write permission should be allowed since only
6232                  * write access need to be emulated.
6233                  */
6234                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6235
6236                 /*
6237                  * If the mapping is invalid in guest, let cpu retry
6238                  * it to generate fault.
6239                  */
6240                 if (gpa == UNMAPPED_GVA)
6241                         return true;
6242         }
6243
6244         /*
6245          * Do not retry the unhandleable instruction if it faults on the
6246          * readonly host memory, otherwise it will goto a infinite loop:
6247          * retry instruction -> write #PF -> emulation fail -> retry
6248          * instruction -> ...
6249          */
6250         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6251
6252         /*
6253          * If the instruction failed on the error pfn, it can not be fixed,
6254          * report the error to userspace.
6255          */
6256         if (is_error_noslot_pfn(pfn))
6257                 return false;
6258
6259         kvm_release_pfn_clean(pfn);
6260
6261         /* The instructions are well-emulated on direct mmu. */
6262         if (vcpu->arch.mmu->direct_map) {
6263                 unsigned int indirect_shadow_pages;
6264
6265                 spin_lock(&vcpu->kvm->mmu_lock);
6266                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6267                 spin_unlock(&vcpu->kvm->mmu_lock);
6268
6269                 if (indirect_shadow_pages)
6270                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6271
6272                 return true;
6273         }
6274
6275         /*
6276          * if emulation was due to access to shadowed page table
6277          * and it failed try to unshadow page and re-enter the
6278          * guest to let CPU execute the instruction.
6279          */
6280         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6281
6282         /*
6283          * If the access faults on its page table, it can not
6284          * be fixed by unprotecting shadow page and it should
6285          * be reported to userspace.
6286          */
6287         return !write_fault_to_shadow_pgtable;
6288 }
6289
6290 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6291                               unsigned long cr2,  int emulation_type)
6292 {
6293         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6294         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6295
6296         last_retry_eip = vcpu->arch.last_retry_eip;
6297         last_retry_addr = vcpu->arch.last_retry_addr;
6298
6299         /*
6300          * If the emulation is caused by #PF and it is non-page_table
6301          * writing instruction, it means the VM-EXIT is caused by shadow
6302          * page protected, we can zap the shadow page and retry this
6303          * instruction directly.
6304          *
6305          * Note: if the guest uses a non-page-table modifying instruction
6306          * on the PDE that points to the instruction, then we will unmap
6307          * the instruction and go to an infinite loop. So, we cache the
6308          * last retried eip and the last fault address, if we meet the eip
6309          * and the address again, we can break out of the potential infinite
6310          * loop.
6311          */
6312         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6313
6314         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6315                 return false;
6316
6317         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6318                 return false;
6319
6320         if (x86_page_table_writing_insn(ctxt))
6321                 return false;
6322
6323         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6324                 return false;
6325
6326         vcpu->arch.last_retry_eip = ctxt->eip;
6327         vcpu->arch.last_retry_addr = cr2;
6328
6329         if (!vcpu->arch.mmu->direct_map)
6330                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6331
6332         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6333
6334         return true;
6335 }
6336
6337 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6338 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6339
6340 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6341 {
6342         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6343                 /* This is a good place to trace that we are exiting SMM.  */
6344                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6345
6346                 /* Process a latched INIT or SMI, if any.  */
6347                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6348         }
6349
6350         kvm_mmu_reset_context(vcpu);
6351 }
6352
6353 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6354                                 unsigned long *db)
6355 {
6356         u32 dr6 = 0;
6357         int i;
6358         u32 enable, rwlen;
6359
6360         enable = dr7;
6361         rwlen = dr7 >> 16;
6362         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6363                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6364                         dr6 |= (1 << i);
6365         return dr6;
6366 }
6367
6368 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6369 {
6370         struct kvm_run *kvm_run = vcpu->run;
6371
6372         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6373                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6374                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6375                 kvm_run->debug.arch.exception = DB_VECTOR;
6376                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6377                 *r = EMULATE_USER_EXIT;
6378         } else {
6379                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6380         }
6381 }
6382
6383 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6384 {
6385         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6386         int r = EMULATE_DONE;
6387
6388         kvm_x86_ops->skip_emulated_instruction(vcpu);
6389
6390         /*
6391          * rflags is the old, "raw" value of the flags.  The new value has
6392          * not been saved yet.
6393          *
6394          * This is correct even for TF set by the guest, because "the
6395          * processor will not generate this exception after the instruction
6396          * that sets the TF flag".
6397          */
6398         if (unlikely(rflags & X86_EFLAGS_TF))
6399                 kvm_vcpu_do_singlestep(vcpu, &r);
6400         return r == EMULATE_DONE;
6401 }
6402 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6403
6404 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6405 {
6406         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6407             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6408                 struct kvm_run *kvm_run = vcpu->run;
6409                 unsigned long eip = kvm_get_linear_rip(vcpu);
6410                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6411                                            vcpu->arch.guest_debug_dr7,
6412                                            vcpu->arch.eff_db);
6413
6414                 if (dr6 != 0) {
6415                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6416                         kvm_run->debug.arch.pc = eip;
6417                         kvm_run->debug.arch.exception = DB_VECTOR;
6418                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6419                         *r = EMULATE_USER_EXIT;
6420                         return true;
6421                 }
6422         }
6423
6424         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6425             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6426                 unsigned long eip = kvm_get_linear_rip(vcpu);
6427                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6428                                            vcpu->arch.dr7,
6429                                            vcpu->arch.db);
6430
6431                 if (dr6 != 0) {
6432                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6433                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6434                         kvm_queue_exception(vcpu, DB_VECTOR);
6435                         *r = EMULATE_DONE;
6436                         return true;
6437                 }
6438         }
6439
6440         return false;
6441 }
6442
6443 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6444 {
6445         switch (ctxt->opcode_len) {
6446         case 1:
6447                 switch (ctxt->b) {
6448                 case 0xe4:      /* IN */
6449                 case 0xe5:
6450                 case 0xec:
6451                 case 0xed:
6452                 case 0xe6:      /* OUT */
6453                 case 0xe7:
6454                 case 0xee:
6455                 case 0xef:
6456                 case 0x6c:      /* INS */
6457                 case 0x6d:
6458                 case 0x6e:      /* OUTS */
6459                 case 0x6f:
6460                         return true;
6461                 }
6462                 break;
6463         case 2:
6464                 switch (ctxt->b) {
6465                 case 0x33:      /* RDPMC */
6466                         return true;
6467                 }
6468                 break;
6469         }
6470
6471         return false;
6472 }
6473
6474 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6475                             unsigned long cr2,
6476                             int emulation_type,
6477                             void *insn,
6478                             int insn_len)
6479 {
6480         int r;
6481         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6482         bool writeback = true;
6483         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6484
6485         vcpu->arch.l1tf_flush_l1d = true;
6486
6487         /*
6488          * Clear write_fault_to_shadow_pgtable here to ensure it is
6489          * never reused.
6490          */
6491         vcpu->arch.write_fault_to_shadow_pgtable = false;
6492         kvm_clear_exception_queue(vcpu);
6493
6494         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6495                 init_emulate_ctxt(vcpu);
6496
6497                 /*
6498                  * We will reenter on the same instruction since
6499                  * we do not set complete_userspace_io.  This does not
6500                  * handle watchpoints yet, those would be handled in
6501                  * the emulate_ops.
6502                  */
6503                 if (!(emulation_type & EMULTYPE_SKIP) &&
6504                     kvm_vcpu_check_breakpoint(vcpu, &r))
6505                         return r;
6506
6507                 ctxt->interruptibility = 0;
6508                 ctxt->have_exception = false;
6509                 ctxt->exception.vector = -1;
6510                 ctxt->perm_ok = false;
6511
6512                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6513
6514                 r = x86_decode_insn(ctxt, insn, insn_len);
6515
6516                 trace_kvm_emulate_insn_start(vcpu);
6517                 ++vcpu->stat.insn_emulation;
6518                 if (r != EMULATION_OK)  {
6519                         if (emulation_type & EMULTYPE_TRAP_UD)
6520                                 return EMULATE_FAIL;
6521                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6522                                                 emulation_type))
6523                                 return EMULATE_DONE;
6524                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6525                                 return EMULATE_DONE;
6526                         if (emulation_type & EMULTYPE_SKIP)
6527                                 return EMULATE_FAIL;
6528                         return handle_emulation_failure(vcpu, emulation_type);
6529                 }
6530         }
6531
6532         if ((emulation_type & EMULTYPE_VMWARE) &&
6533             !is_vmware_backdoor_opcode(ctxt))
6534                 return EMULATE_FAIL;
6535
6536         if (emulation_type & EMULTYPE_SKIP) {
6537                 kvm_rip_write(vcpu, ctxt->_eip);
6538                 if (ctxt->eflags & X86_EFLAGS_RF)
6539                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6540                 return EMULATE_DONE;
6541         }
6542
6543         if (retry_instruction(ctxt, cr2, emulation_type))
6544                 return EMULATE_DONE;
6545
6546         /* this is needed for vmware backdoor interface to work since it
6547            changes registers values  during IO operation */
6548         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6549                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6550                 emulator_invalidate_register_cache(ctxt);
6551         }
6552
6553 restart:
6554         /* Save the faulting GPA (cr2) in the address field */
6555         ctxt->exception.address = cr2;
6556
6557         r = x86_emulate_insn(ctxt);
6558
6559         if (r == EMULATION_INTERCEPTED)
6560                 return EMULATE_DONE;
6561
6562         if (r == EMULATION_FAILED) {
6563                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6564                                         emulation_type))
6565                         return EMULATE_DONE;
6566
6567                 return handle_emulation_failure(vcpu, emulation_type);
6568         }
6569
6570         if (ctxt->have_exception) {
6571                 r = EMULATE_DONE;
6572                 if (inject_emulated_exception(vcpu))
6573                         return r;
6574         } else if (vcpu->arch.pio.count) {
6575                 if (!vcpu->arch.pio.in) {
6576                         /* FIXME: return into emulator if single-stepping.  */
6577                         vcpu->arch.pio.count = 0;
6578                 } else {
6579                         writeback = false;
6580                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6581                 }
6582                 r = EMULATE_USER_EXIT;
6583         } else if (vcpu->mmio_needed) {
6584                 if (!vcpu->mmio_is_write)
6585                         writeback = false;
6586                 r = EMULATE_USER_EXIT;
6587                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6588         } else if (r == EMULATION_RESTART)
6589                 goto restart;
6590         else
6591                 r = EMULATE_DONE;
6592
6593         if (writeback) {
6594                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6595                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6596                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6597                 kvm_rip_write(vcpu, ctxt->eip);
6598                 if (r == EMULATE_DONE && ctxt->tf)
6599                         kvm_vcpu_do_singlestep(vcpu, &r);
6600                 if (!ctxt->have_exception ||
6601                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6602                         __kvm_set_rflags(vcpu, ctxt->eflags);
6603
6604                 /*
6605                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6606                  * do nothing, and it will be requested again as soon as
6607                  * the shadow expires.  But we still need to check here,
6608                  * because POPF has no interrupt shadow.
6609                  */
6610                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6611                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6612         } else
6613                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6614
6615         return r;
6616 }
6617
6618 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6619 {
6620         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6621 }
6622 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6623
6624 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6625                                         void *insn, int insn_len)
6626 {
6627         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6628 }
6629 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6630
6631 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6632 {
6633         vcpu->arch.pio.count = 0;
6634         return 1;
6635 }
6636
6637 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6638 {
6639         vcpu->arch.pio.count = 0;
6640
6641         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6642                 return 1;
6643
6644         return kvm_skip_emulated_instruction(vcpu);
6645 }
6646
6647 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6648                             unsigned short port)
6649 {
6650         unsigned long val = kvm_rax_read(vcpu);
6651         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6652                                             size, port, &val, 1);
6653         if (ret)
6654                 return ret;
6655
6656         /*
6657          * Workaround userspace that relies on old KVM behavior of %rip being
6658          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6659          */
6660         if (port == 0x7e &&
6661             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6662                 vcpu->arch.complete_userspace_io =
6663                         complete_fast_pio_out_port_0x7e;
6664                 kvm_skip_emulated_instruction(vcpu);
6665         } else {
6666                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6667                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6668         }
6669         return 0;
6670 }
6671
6672 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6673 {
6674         unsigned long val;
6675
6676         /* We should only ever be called with arch.pio.count equal to 1 */
6677         BUG_ON(vcpu->arch.pio.count != 1);
6678
6679         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6680                 vcpu->arch.pio.count = 0;
6681                 return 1;
6682         }
6683
6684         /* For size less than 4 we merge, else we zero extend */
6685         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6686
6687         /*
6688          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6689          * the copy and tracing
6690          */
6691         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6692                                  vcpu->arch.pio.port, &val, 1);
6693         kvm_rax_write(vcpu, val);
6694
6695         return kvm_skip_emulated_instruction(vcpu);
6696 }
6697
6698 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6699                            unsigned short port)
6700 {
6701         unsigned long val;
6702         int ret;
6703
6704         /* For size less than 4 we merge, else we zero extend */
6705         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6706
6707         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6708                                        &val, 1);
6709         if (ret) {
6710                 kvm_rax_write(vcpu, val);
6711                 return ret;
6712         }
6713
6714         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6715         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6716
6717         return 0;
6718 }
6719
6720 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6721 {
6722         int ret;
6723
6724         if (in)
6725                 ret = kvm_fast_pio_in(vcpu, size, port);
6726         else
6727                 ret = kvm_fast_pio_out(vcpu, size, port);
6728         return ret && kvm_skip_emulated_instruction(vcpu);
6729 }
6730 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6731
6732 static int kvmclock_cpu_down_prep(unsigned int cpu)
6733 {
6734         __this_cpu_write(cpu_tsc_khz, 0);
6735         return 0;
6736 }
6737
6738 static void tsc_khz_changed(void *data)
6739 {
6740         struct cpufreq_freqs *freq = data;
6741         unsigned long khz = 0;
6742
6743         if (data)
6744                 khz = freq->new;
6745         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6746                 khz = cpufreq_quick_get(raw_smp_processor_id());
6747         if (!khz)
6748                 khz = tsc_khz;
6749         __this_cpu_write(cpu_tsc_khz, khz);
6750 }
6751
6752 #ifdef CONFIG_X86_64
6753 static void kvm_hyperv_tsc_notifier(void)
6754 {
6755         struct kvm *kvm;
6756         struct kvm_vcpu *vcpu;
6757         int cpu;
6758
6759         mutex_lock(&kvm_lock);
6760         list_for_each_entry(kvm, &vm_list, vm_list)
6761                 kvm_make_mclock_inprogress_request(kvm);
6762
6763         hyperv_stop_tsc_emulation();
6764
6765         /* TSC frequency always matches when on Hyper-V */
6766         for_each_present_cpu(cpu)
6767                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6768         kvm_max_guest_tsc_khz = tsc_khz;
6769
6770         list_for_each_entry(kvm, &vm_list, vm_list) {
6771                 struct kvm_arch *ka = &kvm->arch;
6772
6773                 spin_lock(&ka->pvclock_gtod_sync_lock);
6774
6775                 pvclock_update_vm_gtod_copy(kvm);
6776
6777                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6778                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6779
6780                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6781                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6782
6783                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6784         }
6785         mutex_unlock(&kvm_lock);
6786 }
6787 #endif
6788
6789 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6790 {
6791         struct kvm *kvm;
6792         struct kvm_vcpu *vcpu;
6793         int i, send_ipi = 0;
6794
6795         /*
6796          * We allow guests to temporarily run on slowing clocks,
6797          * provided we notify them after, or to run on accelerating
6798          * clocks, provided we notify them before.  Thus time never
6799          * goes backwards.
6800          *
6801          * However, we have a problem.  We can't atomically update
6802          * the frequency of a given CPU from this function; it is
6803          * merely a notifier, which can be called from any CPU.
6804          * Changing the TSC frequency at arbitrary points in time
6805          * requires a recomputation of local variables related to
6806          * the TSC for each VCPU.  We must flag these local variables
6807          * to be updated and be sure the update takes place with the
6808          * new frequency before any guests proceed.
6809          *
6810          * Unfortunately, the combination of hotplug CPU and frequency
6811          * change creates an intractable locking scenario; the order
6812          * of when these callouts happen is undefined with respect to
6813          * CPU hotplug, and they can race with each other.  As such,
6814          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6815          * undefined; you can actually have a CPU frequency change take
6816          * place in between the computation of X and the setting of the
6817          * variable.  To protect against this problem, all updates of
6818          * the per_cpu tsc_khz variable are done in an interrupt
6819          * protected IPI, and all callers wishing to update the value
6820          * must wait for a synchronous IPI to complete (which is trivial
6821          * if the caller is on the CPU already).  This establishes the
6822          * necessary total order on variable updates.
6823          *
6824          * Note that because a guest time update may take place
6825          * anytime after the setting of the VCPU's request bit, the
6826          * correct TSC value must be set before the request.  However,
6827          * to ensure the update actually makes it to any guest which
6828          * starts running in hardware virtualization between the set
6829          * and the acquisition of the spinlock, we must also ping the
6830          * CPU after setting the request bit.
6831          *
6832          */
6833
6834         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6835
6836         mutex_lock(&kvm_lock);
6837         list_for_each_entry(kvm, &vm_list, vm_list) {
6838                 kvm_for_each_vcpu(i, vcpu, kvm) {
6839                         if (vcpu->cpu != cpu)
6840                                 continue;
6841                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6842                         if (vcpu->cpu != raw_smp_processor_id())
6843                                 send_ipi = 1;
6844                 }
6845         }
6846         mutex_unlock(&kvm_lock);
6847
6848         if (freq->old < freq->new && send_ipi) {
6849                 /*
6850                  * We upscale the frequency.  Must make the guest
6851                  * doesn't see old kvmclock values while running with
6852                  * the new frequency, otherwise we risk the guest sees
6853                  * time go backwards.
6854                  *
6855                  * In case we update the frequency for another cpu
6856                  * (which might be in guest context) send an interrupt
6857                  * to kick the cpu out of guest context.  Next time
6858                  * guest context is entered kvmclock will be updated,
6859                  * so the guest will not see stale values.
6860                  */
6861                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6862         }
6863 }
6864
6865 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6866                                      void *data)
6867 {
6868         struct cpufreq_freqs *freq = data;
6869         int cpu;
6870
6871         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6872                 return 0;
6873         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6874                 return 0;
6875
6876         for_each_cpu(cpu, freq->policy->cpus)
6877                 __kvmclock_cpufreq_notifier(freq, cpu);
6878
6879         return 0;
6880 }
6881
6882 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6883         .notifier_call  = kvmclock_cpufreq_notifier
6884 };
6885
6886 static int kvmclock_cpu_online(unsigned int cpu)
6887 {
6888         tsc_khz_changed(NULL);
6889         return 0;
6890 }
6891
6892 static void kvm_timer_init(void)
6893 {
6894         max_tsc_khz = tsc_khz;
6895
6896         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6897 #ifdef CONFIG_CPU_FREQ
6898                 struct cpufreq_policy policy;
6899                 int cpu;
6900
6901                 memset(&policy, 0, sizeof(policy));
6902                 cpu = get_cpu();
6903                 cpufreq_get_policy(&policy, cpu);
6904                 if (policy.cpuinfo.max_freq)
6905                         max_tsc_khz = policy.cpuinfo.max_freq;
6906                 put_cpu();
6907 #endif
6908                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6909                                           CPUFREQ_TRANSITION_NOTIFIER);
6910         }
6911
6912         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6913                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6914 }
6915
6916 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6917 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6918
6919 int kvm_is_in_guest(void)
6920 {
6921         return __this_cpu_read(current_vcpu) != NULL;
6922 }
6923
6924 static int kvm_is_user_mode(void)
6925 {
6926         int user_mode = 3;
6927
6928         if (__this_cpu_read(current_vcpu))
6929                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6930
6931         return user_mode != 0;
6932 }
6933
6934 static unsigned long kvm_get_guest_ip(void)
6935 {
6936         unsigned long ip = 0;
6937
6938         if (__this_cpu_read(current_vcpu))
6939                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6940
6941         return ip;
6942 }
6943
6944 static void kvm_handle_intel_pt_intr(void)
6945 {
6946         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
6947
6948         kvm_make_request(KVM_REQ_PMI, vcpu);
6949         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
6950                         (unsigned long *)&vcpu->arch.pmu.global_status);
6951 }
6952
6953 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6954         .is_in_guest            = kvm_is_in_guest,
6955         .is_user_mode           = kvm_is_user_mode,
6956         .get_guest_ip           = kvm_get_guest_ip,
6957         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
6958 };
6959
6960 #ifdef CONFIG_X86_64
6961 static void pvclock_gtod_update_fn(struct work_struct *work)
6962 {
6963         struct kvm *kvm;
6964
6965         struct kvm_vcpu *vcpu;
6966         int i;
6967
6968         mutex_lock(&kvm_lock);
6969         list_for_each_entry(kvm, &vm_list, vm_list)
6970                 kvm_for_each_vcpu(i, vcpu, kvm)
6971                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6972         atomic_set(&kvm_guest_has_master_clock, 0);
6973         mutex_unlock(&kvm_lock);
6974 }
6975
6976 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6977
6978 /*
6979  * Notification about pvclock gtod data update.
6980  */
6981 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6982                                void *priv)
6983 {
6984         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6985         struct timekeeper *tk = priv;
6986
6987         update_pvclock_gtod(tk);
6988
6989         /* disable master clock if host does not trust, or does not
6990          * use, TSC based clocksource.
6991          */
6992         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6993             atomic_read(&kvm_guest_has_master_clock) != 0)
6994                 queue_work(system_long_wq, &pvclock_gtod_work);
6995
6996         return 0;
6997 }
6998
6999 static struct notifier_block pvclock_gtod_notifier = {
7000         .notifier_call = pvclock_gtod_notify,
7001 };
7002 #endif
7003
7004 int kvm_arch_init(void *opaque)
7005 {
7006         int r;
7007         struct kvm_x86_ops *ops = opaque;
7008
7009         if (kvm_x86_ops) {
7010                 printk(KERN_ERR "kvm: already loaded the other module\n");
7011                 r = -EEXIST;
7012                 goto out;
7013         }
7014
7015         if (!ops->cpu_has_kvm_support()) {
7016                 printk(KERN_ERR "kvm: no hardware support\n");
7017                 r = -EOPNOTSUPP;
7018                 goto out;
7019         }
7020         if (ops->disabled_by_bios()) {
7021                 printk(KERN_ERR "kvm: disabled by bios\n");
7022                 r = -EOPNOTSUPP;
7023                 goto out;
7024         }
7025
7026         /*
7027          * KVM explicitly assumes that the guest has an FPU and
7028          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7029          * vCPU's FPU state as a fxregs_state struct.
7030          */
7031         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7032                 printk(KERN_ERR "kvm: inadequate fpu\n");
7033                 r = -EOPNOTSUPP;
7034                 goto out;
7035         }
7036
7037         r = -ENOMEM;
7038         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7039                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7040                                           NULL);
7041         if (!x86_fpu_cache) {
7042                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7043                 goto out;
7044         }
7045
7046         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7047         if (!shared_msrs) {
7048                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7049                 goto out_free_x86_fpu_cache;
7050         }
7051
7052         r = kvm_mmu_module_init();
7053         if (r)
7054                 goto out_free_percpu;
7055
7056         kvm_x86_ops = ops;
7057
7058         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7059                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7060                         PT_PRESENT_MASK, 0, sme_me_mask);
7061         kvm_timer_init();
7062
7063         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7064
7065         if (boot_cpu_has(X86_FEATURE_XSAVE))
7066                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7067
7068         kvm_lapic_init();
7069         if (pi_inject_timer == -1)
7070                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7071 #ifdef CONFIG_X86_64
7072         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7073
7074         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7075                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7076 #endif
7077
7078         return 0;
7079
7080 out_free_percpu:
7081         free_percpu(shared_msrs);
7082 out_free_x86_fpu_cache:
7083         kmem_cache_destroy(x86_fpu_cache);
7084 out:
7085         return r;
7086 }
7087
7088 void kvm_arch_exit(void)
7089 {
7090 #ifdef CONFIG_X86_64
7091         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7092                 clear_hv_tscchange_cb();
7093 #endif
7094         kvm_lapic_exit();
7095         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7096
7097         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7098                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7099                                             CPUFREQ_TRANSITION_NOTIFIER);
7100         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7101 #ifdef CONFIG_X86_64
7102         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7103 #endif
7104         kvm_x86_ops = NULL;
7105         kvm_mmu_module_exit();
7106         free_percpu(shared_msrs);
7107         kmem_cache_destroy(x86_fpu_cache);
7108 }
7109
7110 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7111 {
7112         ++vcpu->stat.halt_exits;
7113         if (lapic_in_kernel(vcpu)) {
7114                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7115                 return 1;
7116         } else {
7117                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7118                 return 0;
7119         }
7120 }
7121 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7122
7123 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7124 {
7125         int ret = kvm_skip_emulated_instruction(vcpu);
7126         /*
7127          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7128          * KVM_EXIT_DEBUG here.
7129          */
7130         return kvm_vcpu_halt(vcpu) && ret;
7131 }
7132 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7133
7134 #ifdef CONFIG_X86_64
7135 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7136                                 unsigned long clock_type)
7137 {
7138         struct kvm_clock_pairing clock_pairing;
7139         struct timespec64 ts;
7140         u64 cycle;
7141         int ret;
7142
7143         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7144                 return -KVM_EOPNOTSUPP;
7145
7146         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7147                 return -KVM_EOPNOTSUPP;
7148
7149         clock_pairing.sec = ts.tv_sec;
7150         clock_pairing.nsec = ts.tv_nsec;
7151         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7152         clock_pairing.flags = 0;
7153         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7154
7155         ret = 0;
7156         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7157                             sizeof(struct kvm_clock_pairing)))
7158                 ret = -KVM_EFAULT;
7159
7160         return ret;
7161 }
7162 #endif
7163
7164 /*
7165  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7166  *
7167  * @apicid - apicid of vcpu to be kicked.
7168  */
7169 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7170 {
7171         struct kvm_lapic_irq lapic_irq;
7172
7173         lapic_irq.shorthand = 0;
7174         lapic_irq.dest_mode = 0;
7175         lapic_irq.level = 0;
7176         lapic_irq.dest_id = apicid;
7177         lapic_irq.msi_redir_hint = false;
7178
7179         lapic_irq.delivery_mode = APIC_DM_REMRD;
7180         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7181 }
7182
7183 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7184 {
7185         if (!lapic_in_kernel(vcpu)) {
7186                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7187                 return;
7188         }
7189         if (!vcpu->arch.apicv_active)
7190                 return;
7191
7192         vcpu->arch.apicv_active = false;
7193         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7194 }
7195
7196 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7197 {
7198         struct kvm_vcpu *target = NULL;
7199         struct kvm_apic_map *map;
7200
7201         rcu_read_lock();
7202         map = rcu_dereference(kvm->arch.apic_map);
7203
7204         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7205                 target = map->phys_map[dest_id]->vcpu;
7206
7207         rcu_read_unlock();
7208
7209         if (target && READ_ONCE(target->ready))
7210                 kvm_vcpu_yield_to(target);
7211 }
7212
7213 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7214 {
7215         unsigned long nr, a0, a1, a2, a3, ret;
7216         int op_64_bit;
7217
7218         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7219                 return kvm_hv_hypercall(vcpu);
7220
7221         nr = kvm_rax_read(vcpu);
7222         a0 = kvm_rbx_read(vcpu);
7223         a1 = kvm_rcx_read(vcpu);
7224         a2 = kvm_rdx_read(vcpu);
7225         a3 = kvm_rsi_read(vcpu);
7226
7227         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7228
7229         op_64_bit = is_64_bit_mode(vcpu);
7230         if (!op_64_bit) {
7231                 nr &= 0xFFFFFFFF;
7232                 a0 &= 0xFFFFFFFF;
7233                 a1 &= 0xFFFFFFFF;
7234                 a2 &= 0xFFFFFFFF;
7235                 a3 &= 0xFFFFFFFF;
7236         }
7237
7238         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7239                 ret = -KVM_EPERM;
7240                 goto out;
7241         }
7242
7243         switch (nr) {
7244         case KVM_HC_VAPIC_POLL_IRQ:
7245                 ret = 0;
7246                 break;
7247         case KVM_HC_KICK_CPU:
7248                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7249                 kvm_sched_yield(vcpu->kvm, a1);
7250                 ret = 0;
7251                 break;
7252 #ifdef CONFIG_X86_64
7253         case KVM_HC_CLOCK_PAIRING:
7254                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7255                 break;
7256 #endif
7257         case KVM_HC_SEND_IPI:
7258                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7259                 break;
7260         case KVM_HC_SCHED_YIELD:
7261                 kvm_sched_yield(vcpu->kvm, a0);
7262                 ret = 0;
7263                 break;
7264         default:
7265                 ret = -KVM_ENOSYS;
7266                 break;
7267         }
7268 out:
7269         if (!op_64_bit)
7270                 ret = (u32)ret;
7271         kvm_rax_write(vcpu, ret);
7272
7273         ++vcpu->stat.hypercalls;
7274         return kvm_skip_emulated_instruction(vcpu);
7275 }
7276 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7277
7278 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7279 {
7280         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7281         char instruction[3];
7282         unsigned long rip = kvm_rip_read(vcpu);
7283
7284         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7285
7286         return emulator_write_emulated(ctxt, rip, instruction, 3,
7287                 &ctxt->exception);
7288 }
7289
7290 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7291 {
7292         return vcpu->run->request_interrupt_window &&
7293                 likely(!pic_in_kernel(vcpu->kvm));
7294 }
7295
7296 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7297 {
7298         struct kvm_run *kvm_run = vcpu->run;
7299
7300         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7301         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7302         kvm_run->cr8 = kvm_get_cr8(vcpu);
7303         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7304         kvm_run->ready_for_interrupt_injection =
7305                 pic_in_kernel(vcpu->kvm) ||
7306                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7307 }
7308
7309 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7310 {
7311         int max_irr, tpr;
7312
7313         if (!kvm_x86_ops->update_cr8_intercept)
7314                 return;
7315
7316         if (!lapic_in_kernel(vcpu))
7317                 return;
7318
7319         if (vcpu->arch.apicv_active)
7320                 return;
7321
7322         if (!vcpu->arch.apic->vapic_addr)
7323                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7324         else
7325                 max_irr = -1;
7326
7327         if (max_irr != -1)
7328                 max_irr >>= 4;
7329
7330         tpr = kvm_lapic_get_cr8(vcpu);
7331
7332         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7333 }
7334
7335 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7336 {
7337         int r;
7338
7339         /* try to reinject previous events if any */
7340
7341         if (vcpu->arch.exception.injected)
7342                 kvm_x86_ops->queue_exception(vcpu);
7343         /*
7344          * Do not inject an NMI or interrupt if there is a pending
7345          * exception.  Exceptions and interrupts are recognized at
7346          * instruction boundaries, i.e. the start of an instruction.
7347          * Trap-like exceptions, e.g. #DB, have higher priority than
7348          * NMIs and interrupts, i.e. traps are recognized before an
7349          * NMI/interrupt that's pending on the same instruction.
7350          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7351          * priority, but are only generated (pended) during instruction
7352          * execution, i.e. a pending fault-like exception means the
7353          * fault occurred on the *previous* instruction and must be
7354          * serviced prior to recognizing any new events in order to
7355          * fully complete the previous instruction.
7356          */
7357         else if (!vcpu->arch.exception.pending) {
7358                 if (vcpu->arch.nmi_injected)
7359                         kvm_x86_ops->set_nmi(vcpu);
7360                 else if (vcpu->arch.interrupt.injected)
7361                         kvm_x86_ops->set_irq(vcpu);
7362         }
7363
7364         /*
7365          * Call check_nested_events() even if we reinjected a previous event
7366          * in order for caller to determine if it should require immediate-exit
7367          * from L2 to L1 due to pending L1 events which require exit
7368          * from L2 to L1.
7369          */
7370         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7371                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7372                 if (r != 0)
7373                         return r;
7374         }
7375
7376         /* try to inject new event if pending */
7377         if (vcpu->arch.exception.pending) {
7378                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7379                                         vcpu->arch.exception.has_error_code,
7380                                         vcpu->arch.exception.error_code);
7381
7382                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7383                 vcpu->arch.exception.pending = false;
7384                 vcpu->arch.exception.injected = true;
7385
7386                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7387                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7388                                              X86_EFLAGS_RF);
7389
7390                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7391                         /*
7392                          * This code assumes that nSVM doesn't use
7393                          * check_nested_events(). If it does, the
7394                          * DR6/DR7 changes should happen before L1
7395                          * gets a #VMEXIT for an intercepted #DB in
7396                          * L2.  (Under VMX, on the other hand, the
7397                          * DR6/DR7 changes should not happen in the
7398                          * event of a VM-exit to L1 for an intercepted
7399                          * #DB in L2.)
7400                          */
7401                         kvm_deliver_exception_payload(vcpu);
7402                         if (vcpu->arch.dr7 & DR7_GD) {
7403                                 vcpu->arch.dr7 &= ~DR7_GD;
7404                                 kvm_update_dr7(vcpu);
7405                         }
7406                 }
7407
7408                 kvm_x86_ops->queue_exception(vcpu);
7409         }
7410
7411         /* Don't consider new event if we re-injected an event */
7412         if (kvm_event_needs_reinjection(vcpu))
7413                 return 0;
7414
7415         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7416             kvm_x86_ops->smi_allowed(vcpu)) {
7417                 vcpu->arch.smi_pending = false;
7418                 ++vcpu->arch.smi_count;
7419                 enter_smm(vcpu);
7420         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7421                 --vcpu->arch.nmi_pending;
7422                 vcpu->arch.nmi_injected = true;
7423                 kvm_x86_ops->set_nmi(vcpu);
7424         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7425                 /*
7426                  * Because interrupts can be injected asynchronously, we are
7427                  * calling check_nested_events again here to avoid a race condition.
7428                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7429                  * proposal and current concerns.  Perhaps we should be setting
7430                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7431                  */
7432                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7433                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7434                         if (r != 0)
7435                                 return r;
7436                 }
7437                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7438                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7439                                             false);
7440                         kvm_x86_ops->set_irq(vcpu);
7441                 }
7442         }
7443
7444         return 0;
7445 }
7446
7447 static void process_nmi(struct kvm_vcpu *vcpu)
7448 {
7449         unsigned limit = 2;
7450
7451         /*
7452          * x86 is limited to one NMI running, and one NMI pending after it.
7453          * If an NMI is already in progress, limit further NMIs to just one.
7454          * Otherwise, allow two (and we'll inject the first one immediately).
7455          */
7456         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7457                 limit = 1;
7458
7459         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7460         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7461         kvm_make_request(KVM_REQ_EVENT, vcpu);
7462 }
7463
7464 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7465 {
7466         u32 flags = 0;
7467         flags |= seg->g       << 23;
7468         flags |= seg->db      << 22;
7469         flags |= seg->l       << 21;
7470         flags |= seg->avl     << 20;
7471         flags |= seg->present << 15;
7472         flags |= seg->dpl     << 13;
7473         flags |= seg->s       << 12;
7474         flags |= seg->type    << 8;
7475         return flags;
7476 }
7477
7478 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7479 {
7480         struct kvm_segment seg;
7481         int offset;
7482
7483         kvm_get_segment(vcpu, &seg, n);
7484         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7485
7486         if (n < 3)
7487                 offset = 0x7f84 + n * 12;
7488         else
7489                 offset = 0x7f2c + (n - 3) * 12;
7490
7491         put_smstate(u32, buf, offset + 8, seg.base);
7492         put_smstate(u32, buf, offset + 4, seg.limit);
7493         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7494 }
7495
7496 #ifdef CONFIG_X86_64
7497 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7498 {
7499         struct kvm_segment seg;
7500         int offset;
7501         u16 flags;
7502
7503         kvm_get_segment(vcpu, &seg, n);
7504         offset = 0x7e00 + n * 16;
7505
7506         flags = enter_smm_get_segment_flags(&seg) >> 8;
7507         put_smstate(u16, buf, offset, seg.selector);
7508         put_smstate(u16, buf, offset + 2, flags);
7509         put_smstate(u32, buf, offset + 4, seg.limit);
7510         put_smstate(u64, buf, offset + 8, seg.base);
7511 }
7512 #endif
7513
7514 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7515 {
7516         struct desc_ptr dt;
7517         struct kvm_segment seg;
7518         unsigned long val;
7519         int i;
7520
7521         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7522         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7523         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7524         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7525
7526         for (i = 0; i < 8; i++)
7527                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7528
7529         kvm_get_dr(vcpu, 6, &val);
7530         put_smstate(u32, buf, 0x7fcc, (u32)val);
7531         kvm_get_dr(vcpu, 7, &val);
7532         put_smstate(u32, buf, 0x7fc8, (u32)val);
7533
7534         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7535         put_smstate(u32, buf, 0x7fc4, seg.selector);
7536         put_smstate(u32, buf, 0x7f64, seg.base);
7537         put_smstate(u32, buf, 0x7f60, seg.limit);
7538         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7539
7540         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7541         put_smstate(u32, buf, 0x7fc0, seg.selector);
7542         put_smstate(u32, buf, 0x7f80, seg.base);
7543         put_smstate(u32, buf, 0x7f7c, seg.limit);
7544         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7545
7546         kvm_x86_ops->get_gdt(vcpu, &dt);
7547         put_smstate(u32, buf, 0x7f74, dt.address);
7548         put_smstate(u32, buf, 0x7f70, dt.size);
7549
7550         kvm_x86_ops->get_idt(vcpu, &dt);
7551         put_smstate(u32, buf, 0x7f58, dt.address);
7552         put_smstate(u32, buf, 0x7f54, dt.size);
7553
7554         for (i = 0; i < 6; i++)
7555                 enter_smm_save_seg_32(vcpu, buf, i);
7556
7557         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7558
7559         /* revision id */
7560         put_smstate(u32, buf, 0x7efc, 0x00020000);
7561         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7562 }
7563
7564 #ifdef CONFIG_X86_64
7565 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7566 {
7567         struct desc_ptr dt;
7568         struct kvm_segment seg;
7569         unsigned long val;
7570         int i;
7571
7572         for (i = 0; i < 16; i++)
7573                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7574
7575         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7576         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7577
7578         kvm_get_dr(vcpu, 6, &val);
7579         put_smstate(u64, buf, 0x7f68, val);
7580         kvm_get_dr(vcpu, 7, &val);
7581         put_smstate(u64, buf, 0x7f60, val);
7582
7583         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7584         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7585         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7586
7587         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7588
7589         /* revision id */
7590         put_smstate(u32, buf, 0x7efc, 0x00020064);
7591
7592         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7593
7594         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7595         put_smstate(u16, buf, 0x7e90, seg.selector);
7596         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7597         put_smstate(u32, buf, 0x7e94, seg.limit);
7598         put_smstate(u64, buf, 0x7e98, seg.base);
7599
7600         kvm_x86_ops->get_idt(vcpu, &dt);
7601         put_smstate(u32, buf, 0x7e84, dt.size);
7602         put_smstate(u64, buf, 0x7e88, dt.address);
7603
7604         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7605         put_smstate(u16, buf, 0x7e70, seg.selector);
7606         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7607         put_smstate(u32, buf, 0x7e74, seg.limit);
7608         put_smstate(u64, buf, 0x7e78, seg.base);
7609
7610         kvm_x86_ops->get_gdt(vcpu, &dt);
7611         put_smstate(u32, buf, 0x7e64, dt.size);
7612         put_smstate(u64, buf, 0x7e68, dt.address);
7613
7614         for (i = 0; i < 6; i++)
7615                 enter_smm_save_seg_64(vcpu, buf, i);
7616 }
7617 #endif
7618
7619 static void enter_smm(struct kvm_vcpu *vcpu)
7620 {
7621         struct kvm_segment cs, ds;
7622         struct desc_ptr dt;
7623         char buf[512];
7624         u32 cr0;
7625
7626         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7627         memset(buf, 0, 512);
7628 #ifdef CONFIG_X86_64
7629         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7630                 enter_smm_save_state_64(vcpu, buf);
7631         else
7632 #endif
7633                 enter_smm_save_state_32(vcpu, buf);
7634
7635         /*
7636          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7637          * vCPU state (e.g. leave guest mode) after we've saved the state into
7638          * the SMM state-save area.
7639          */
7640         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7641
7642         vcpu->arch.hflags |= HF_SMM_MASK;
7643         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7644
7645         if (kvm_x86_ops->get_nmi_mask(vcpu))
7646                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7647         else
7648                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7649
7650         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7651         kvm_rip_write(vcpu, 0x8000);
7652
7653         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7654         kvm_x86_ops->set_cr0(vcpu, cr0);
7655         vcpu->arch.cr0 = cr0;
7656
7657         kvm_x86_ops->set_cr4(vcpu, 0);
7658
7659         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7660         dt.address = dt.size = 0;
7661         kvm_x86_ops->set_idt(vcpu, &dt);
7662
7663         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7664
7665         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7666         cs.base = vcpu->arch.smbase;
7667
7668         ds.selector = 0;
7669         ds.base = 0;
7670
7671         cs.limit    = ds.limit = 0xffffffff;
7672         cs.type     = ds.type = 0x3;
7673         cs.dpl      = ds.dpl = 0;
7674         cs.db       = ds.db = 0;
7675         cs.s        = ds.s = 1;
7676         cs.l        = ds.l = 0;
7677         cs.g        = ds.g = 1;
7678         cs.avl      = ds.avl = 0;
7679         cs.present  = ds.present = 1;
7680         cs.unusable = ds.unusable = 0;
7681         cs.padding  = ds.padding = 0;
7682
7683         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7684         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7685         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7686         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7687         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7688         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7689
7690 #ifdef CONFIG_X86_64
7691         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7692                 kvm_x86_ops->set_efer(vcpu, 0);
7693 #endif
7694
7695         kvm_update_cpuid(vcpu);
7696         kvm_mmu_reset_context(vcpu);
7697 }
7698
7699 static void process_smi(struct kvm_vcpu *vcpu)
7700 {
7701         vcpu->arch.smi_pending = true;
7702         kvm_make_request(KVM_REQ_EVENT, vcpu);
7703 }
7704
7705 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7706 {
7707         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7708 }
7709
7710 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7711 {
7712         if (!kvm_apic_present(vcpu))
7713                 return;
7714
7715         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7716
7717         if (irqchip_split(vcpu->kvm))
7718                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7719         else {
7720                 if (vcpu->arch.apicv_active)
7721                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7722                 if (ioapic_in_kernel(vcpu->kvm))
7723                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7724         }
7725
7726         if (is_guest_mode(vcpu))
7727                 vcpu->arch.load_eoi_exitmap_pending = true;
7728         else
7729                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7730 }
7731
7732 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7733 {
7734         u64 eoi_exit_bitmap[4];
7735
7736         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7737                 return;
7738
7739         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7740                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7741         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7742 }
7743
7744 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7745                 unsigned long start, unsigned long end,
7746                 bool blockable)
7747 {
7748         unsigned long apic_address;
7749
7750         /*
7751          * The physical address of apic access page is stored in the VMCS.
7752          * Update it when it becomes invalid.
7753          */
7754         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7755         if (start <= apic_address && apic_address < end)
7756                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7757
7758         return 0;
7759 }
7760
7761 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7762 {
7763         struct page *page = NULL;
7764
7765         if (!lapic_in_kernel(vcpu))
7766                 return;
7767
7768         if (!kvm_x86_ops->set_apic_access_page_addr)
7769                 return;
7770
7771         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7772         if (is_error_page(page))
7773                 return;
7774         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7775
7776         /*
7777          * Do not pin apic access page in memory, the MMU notifier
7778          * will call us again if it is migrated or swapped out.
7779          */
7780         put_page(page);
7781 }
7782 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7783
7784 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7785 {
7786         smp_send_reschedule(vcpu->cpu);
7787 }
7788 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7789
7790 /*
7791  * Returns 1 to let vcpu_run() continue the guest execution loop without
7792  * exiting to the userspace.  Otherwise, the value will be returned to the
7793  * userspace.
7794  */
7795 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7796 {
7797         int r;
7798         bool req_int_win =
7799                 dm_request_for_irq_injection(vcpu) &&
7800                 kvm_cpu_accept_dm_intr(vcpu);
7801
7802         bool req_immediate_exit = false;
7803
7804         if (kvm_request_pending(vcpu)) {
7805                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7806                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7807                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7808                         kvm_mmu_unload(vcpu);
7809                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7810                         __kvm_migrate_timers(vcpu);
7811                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7812                         kvm_gen_update_masterclock(vcpu->kvm);
7813                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7814                         kvm_gen_kvmclock_update(vcpu);
7815                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7816                         r = kvm_guest_time_update(vcpu);
7817                         if (unlikely(r))
7818                                 goto out;
7819                 }
7820                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7821                         kvm_mmu_sync_roots(vcpu);
7822                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7823                         kvm_mmu_load_cr3(vcpu);
7824                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7825                         kvm_vcpu_flush_tlb(vcpu, true);
7826                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7827                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7828                         r = 0;
7829                         goto out;
7830                 }
7831                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7832                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7833                         vcpu->mmio_needed = 0;
7834                         r = 0;
7835                         goto out;
7836                 }
7837                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7838                         /* Page is swapped out. Do synthetic halt */
7839                         vcpu->arch.apf.halted = true;
7840                         r = 1;
7841                         goto out;
7842                 }
7843                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7844                         record_steal_time(vcpu);
7845                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7846                         process_smi(vcpu);
7847                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7848                         process_nmi(vcpu);
7849                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7850                         kvm_pmu_handle_event(vcpu);
7851                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7852                         kvm_pmu_deliver_pmi(vcpu);
7853                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7854                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7855                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7856                                      vcpu->arch.ioapic_handled_vectors)) {
7857                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7858                                 vcpu->run->eoi.vector =
7859                                                 vcpu->arch.pending_ioapic_eoi;
7860                                 r = 0;
7861                                 goto out;
7862                         }
7863                 }
7864                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7865                         vcpu_scan_ioapic(vcpu);
7866                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7867                         vcpu_load_eoi_exitmap(vcpu);
7868                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7869                         kvm_vcpu_reload_apic_access_page(vcpu);
7870                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7871                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7872                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7873                         r = 0;
7874                         goto out;
7875                 }
7876                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7877                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7878                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7879                         r = 0;
7880                         goto out;
7881                 }
7882                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7883                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7884                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7885                         r = 0;
7886                         goto out;
7887                 }
7888
7889                 /*
7890                  * KVM_REQ_HV_STIMER has to be processed after
7891                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7892                  * depend on the guest clock being up-to-date
7893                  */
7894                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7895                         kvm_hv_process_stimers(vcpu);
7896         }
7897
7898         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7899                 ++vcpu->stat.req_event;
7900                 kvm_apic_accept_events(vcpu);
7901                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7902                         r = 1;
7903                         goto out;
7904                 }
7905
7906                 if (inject_pending_event(vcpu, req_int_win) != 0)
7907                         req_immediate_exit = true;
7908                 else {
7909                         /* Enable SMI/NMI/IRQ window open exits if needed.
7910                          *
7911                          * SMIs have three cases:
7912                          * 1) They can be nested, and then there is nothing to
7913                          *    do here because RSM will cause a vmexit anyway.
7914                          * 2) There is an ISA-specific reason why SMI cannot be
7915                          *    injected, and the moment when this changes can be
7916                          *    intercepted.
7917                          * 3) Or the SMI can be pending because
7918                          *    inject_pending_event has completed the injection
7919                          *    of an IRQ or NMI from the previous vmexit, and
7920                          *    then we request an immediate exit to inject the
7921                          *    SMI.
7922                          */
7923                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7924                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7925                                         req_immediate_exit = true;
7926                         if (vcpu->arch.nmi_pending)
7927                                 kvm_x86_ops->enable_nmi_window(vcpu);
7928                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7929                                 kvm_x86_ops->enable_irq_window(vcpu);
7930                         WARN_ON(vcpu->arch.exception.pending);
7931                 }
7932
7933                 if (kvm_lapic_enabled(vcpu)) {
7934                         update_cr8_intercept(vcpu);
7935                         kvm_lapic_sync_to_vapic(vcpu);
7936                 }
7937         }
7938
7939         r = kvm_mmu_reload(vcpu);
7940         if (unlikely(r)) {
7941                 goto cancel_injection;
7942         }
7943
7944         preempt_disable();
7945
7946         kvm_x86_ops->prepare_guest_switch(vcpu);
7947
7948         /*
7949          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7950          * IPI are then delayed after guest entry, which ensures that they
7951          * result in virtual interrupt delivery.
7952          */
7953         local_irq_disable();
7954         vcpu->mode = IN_GUEST_MODE;
7955
7956         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7957
7958         /*
7959          * 1) We should set ->mode before checking ->requests.  Please see
7960          * the comment in kvm_vcpu_exiting_guest_mode().
7961          *
7962          * 2) For APICv, we should set ->mode before checking PID.ON. This
7963          * pairs with the memory barrier implicit in pi_test_and_set_on
7964          * (see vmx_deliver_posted_interrupt).
7965          *
7966          * 3) This also orders the write to mode from any reads to the page
7967          * tables done while the VCPU is running.  Please see the comment
7968          * in kvm_flush_remote_tlbs.
7969          */
7970         smp_mb__after_srcu_read_unlock();
7971
7972         /*
7973          * This handles the case where a posted interrupt was
7974          * notified with kvm_vcpu_kick.
7975          */
7976         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7977                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7978
7979         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7980             || need_resched() || signal_pending(current)) {
7981                 vcpu->mode = OUTSIDE_GUEST_MODE;
7982                 smp_wmb();
7983                 local_irq_enable();
7984                 preempt_enable();
7985                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7986                 r = 1;
7987                 goto cancel_injection;
7988         }
7989
7990         if (req_immediate_exit) {
7991                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7992                 kvm_x86_ops->request_immediate_exit(vcpu);
7993         }
7994
7995         trace_kvm_entry(vcpu->vcpu_id);
7996         guest_enter_irqoff();
7997
7998         /* The preempt notifier should have taken care of the FPU already.  */
7999         WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8000
8001         if (unlikely(vcpu->arch.switch_db_regs)) {
8002                 set_debugreg(0, 7);
8003                 set_debugreg(vcpu->arch.eff_db[0], 0);
8004                 set_debugreg(vcpu->arch.eff_db[1], 1);
8005                 set_debugreg(vcpu->arch.eff_db[2], 2);
8006                 set_debugreg(vcpu->arch.eff_db[3], 3);
8007                 set_debugreg(vcpu->arch.dr6, 6);
8008                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8009         }
8010
8011         kvm_x86_ops->run(vcpu);
8012
8013         /*
8014          * Do this here before restoring debug registers on the host.  And
8015          * since we do this before handling the vmexit, a DR access vmexit
8016          * can (a) read the correct value of the debug registers, (b) set
8017          * KVM_DEBUGREG_WONT_EXIT again.
8018          */
8019         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8020                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8021                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8022                 kvm_update_dr0123(vcpu);
8023                 kvm_update_dr6(vcpu);
8024                 kvm_update_dr7(vcpu);
8025                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8026         }
8027
8028         /*
8029          * If the guest has used debug registers, at least dr7
8030          * will be disabled while returning to the host.
8031          * If we don't have active breakpoints in the host, we don't
8032          * care about the messed up debug address registers. But if
8033          * we have some of them active, restore the old state.
8034          */
8035         if (hw_breakpoint_active())
8036                 hw_breakpoint_restore();
8037
8038         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8039
8040         vcpu->mode = OUTSIDE_GUEST_MODE;
8041         smp_wmb();
8042
8043         kvm_x86_ops->handle_exit_irqoff(vcpu);
8044
8045         /*
8046          * Consume any pending interrupts, including the possible source of
8047          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8048          * An instruction is required after local_irq_enable() to fully unblock
8049          * interrupts on processors that implement an interrupt shadow, the
8050          * stat.exits increment will do nicely.
8051          */
8052         kvm_before_interrupt(vcpu);
8053         local_irq_enable();
8054         ++vcpu->stat.exits;
8055         local_irq_disable();
8056         kvm_after_interrupt(vcpu);
8057
8058         guest_exit_irqoff();
8059         if (lapic_in_kernel(vcpu)) {
8060                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8061                 if (delta != S64_MIN) {
8062                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8063                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8064                 }
8065         }
8066
8067         local_irq_enable();
8068         preempt_enable();
8069
8070         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8071
8072         /*
8073          * Profile KVM exit RIPs:
8074          */
8075         if (unlikely(prof_on == KVM_PROFILING)) {
8076                 unsigned long rip = kvm_rip_read(vcpu);
8077                 profile_hit(KVM_PROFILING, (void *)rip);
8078         }
8079
8080         if (unlikely(vcpu->arch.tsc_always_catchup))
8081                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8082
8083         if (vcpu->arch.apic_attention)
8084                 kvm_lapic_sync_from_vapic(vcpu);
8085
8086         vcpu->arch.gpa_available = false;
8087         r = kvm_x86_ops->handle_exit(vcpu);
8088         return r;
8089
8090 cancel_injection:
8091         kvm_x86_ops->cancel_injection(vcpu);
8092         if (unlikely(vcpu->arch.apic_attention))
8093                 kvm_lapic_sync_from_vapic(vcpu);
8094 out:
8095         return r;
8096 }
8097
8098 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8099 {
8100         if (!kvm_arch_vcpu_runnable(vcpu) &&
8101             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8102                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8103                 kvm_vcpu_block(vcpu);
8104                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8105
8106                 if (kvm_x86_ops->post_block)
8107                         kvm_x86_ops->post_block(vcpu);
8108
8109                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8110                         return 1;
8111         }
8112
8113         kvm_apic_accept_events(vcpu);
8114         switch(vcpu->arch.mp_state) {
8115         case KVM_MP_STATE_HALTED:
8116                 vcpu->arch.pv.pv_unhalted = false;
8117                 vcpu->arch.mp_state =
8118                         KVM_MP_STATE_RUNNABLE;
8119                 /* fall through */
8120         case KVM_MP_STATE_RUNNABLE:
8121                 vcpu->arch.apf.halted = false;
8122                 break;
8123         case KVM_MP_STATE_INIT_RECEIVED:
8124                 break;
8125         default:
8126                 return -EINTR;
8127                 break;
8128         }
8129         return 1;
8130 }
8131
8132 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8133 {
8134         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8135                 kvm_x86_ops->check_nested_events(vcpu, false);
8136
8137         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8138                 !vcpu->arch.apf.halted);
8139 }
8140
8141 static int vcpu_run(struct kvm_vcpu *vcpu)
8142 {
8143         int r;
8144         struct kvm *kvm = vcpu->kvm;
8145
8146         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8147         vcpu->arch.l1tf_flush_l1d = true;
8148
8149         for (;;) {
8150                 if (kvm_vcpu_running(vcpu)) {
8151                         r = vcpu_enter_guest(vcpu);
8152                 } else {
8153                         r = vcpu_block(kvm, vcpu);
8154                 }
8155
8156                 if (r <= 0)
8157                         break;
8158
8159                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8160                 if (kvm_cpu_has_pending_timer(vcpu))
8161                         kvm_inject_pending_timer_irqs(vcpu);
8162
8163                 if (dm_request_for_irq_injection(vcpu) &&
8164                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8165                         r = 0;
8166                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8167                         ++vcpu->stat.request_irq_exits;
8168                         break;
8169                 }
8170
8171                 kvm_check_async_pf_completion(vcpu);
8172
8173                 if (signal_pending(current)) {
8174                         r = -EINTR;
8175                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8176                         ++vcpu->stat.signal_exits;
8177                         break;
8178                 }
8179                 if (need_resched()) {
8180                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8181                         cond_resched();
8182                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8183                 }
8184         }
8185
8186         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8187
8188         return r;
8189 }
8190
8191 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8192 {
8193         int r;
8194         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8195         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8196         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8197         if (r != EMULATE_DONE)
8198                 return 0;
8199         return 1;
8200 }
8201
8202 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8203 {
8204         BUG_ON(!vcpu->arch.pio.count);
8205
8206         return complete_emulated_io(vcpu);
8207 }
8208
8209 /*
8210  * Implements the following, as a state machine:
8211  *
8212  * read:
8213  *   for each fragment
8214  *     for each mmio piece in the fragment
8215  *       write gpa, len
8216  *       exit
8217  *       copy data
8218  *   execute insn
8219  *
8220  * write:
8221  *   for each fragment
8222  *     for each mmio piece in the fragment
8223  *       write gpa, len
8224  *       copy data
8225  *       exit
8226  */
8227 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8228 {
8229         struct kvm_run *run = vcpu->run;
8230         struct kvm_mmio_fragment *frag;
8231         unsigned len;
8232
8233         BUG_ON(!vcpu->mmio_needed);
8234
8235         /* Complete previous fragment */
8236         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8237         len = min(8u, frag->len);
8238         if (!vcpu->mmio_is_write)
8239                 memcpy(frag->data, run->mmio.data, len);
8240
8241         if (frag->len <= 8) {
8242                 /* Switch to the next fragment. */
8243                 frag++;
8244                 vcpu->mmio_cur_fragment++;
8245         } else {
8246                 /* Go forward to the next mmio piece. */
8247                 frag->data += len;
8248                 frag->gpa += len;
8249                 frag->len -= len;
8250         }
8251
8252         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8253                 vcpu->mmio_needed = 0;
8254
8255                 /* FIXME: return into emulator if single-stepping.  */
8256                 if (vcpu->mmio_is_write)
8257                         return 1;
8258                 vcpu->mmio_read_completed = 1;
8259                 return complete_emulated_io(vcpu);
8260         }
8261
8262         run->exit_reason = KVM_EXIT_MMIO;
8263         run->mmio.phys_addr = frag->gpa;
8264         if (vcpu->mmio_is_write)
8265                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8266         run->mmio.len = min(8u, frag->len);
8267         run->mmio.is_write = vcpu->mmio_is_write;
8268         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8269         return 0;
8270 }
8271
8272 /* Swap (qemu) user FPU context for the guest FPU context. */
8273 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8274 {
8275         fpregs_lock();
8276
8277         copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8278         /* PKRU is separately restored in kvm_x86_ops->run.  */
8279         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8280                                 ~XFEATURE_MASK_PKRU);
8281
8282         fpregs_mark_activate();
8283         fpregs_unlock();
8284
8285         trace_kvm_fpu(1);
8286 }
8287
8288 /* When vcpu_run ends, restore user space FPU context. */
8289 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8290 {
8291         fpregs_lock();
8292
8293         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8294         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8295
8296         fpregs_mark_activate();
8297         fpregs_unlock();
8298
8299         ++vcpu->stat.fpu_reload;
8300         trace_kvm_fpu(0);
8301 }
8302
8303 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8304 {
8305         int r;
8306
8307         vcpu_load(vcpu);
8308         kvm_sigset_activate(vcpu);
8309         kvm_load_guest_fpu(vcpu);
8310
8311         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8312                 if (kvm_run->immediate_exit) {
8313                         r = -EINTR;
8314                         goto out;
8315                 }
8316                 kvm_vcpu_block(vcpu);
8317                 kvm_apic_accept_events(vcpu);
8318                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8319                 r = -EAGAIN;
8320                 if (signal_pending(current)) {
8321                         r = -EINTR;
8322                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8323                         ++vcpu->stat.signal_exits;
8324                 }
8325                 goto out;
8326         }
8327
8328         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8329                 r = -EINVAL;
8330                 goto out;
8331         }
8332
8333         if (vcpu->run->kvm_dirty_regs) {
8334                 r = sync_regs(vcpu);
8335                 if (r != 0)
8336                         goto out;
8337         }
8338
8339         /* re-sync apic's tpr */
8340         if (!lapic_in_kernel(vcpu)) {
8341                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8342                         r = -EINVAL;
8343                         goto out;
8344                 }
8345         }
8346
8347         if (unlikely(vcpu->arch.complete_userspace_io)) {
8348                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8349                 vcpu->arch.complete_userspace_io = NULL;
8350                 r = cui(vcpu);
8351                 if (r <= 0)
8352                         goto out;
8353         } else
8354                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8355
8356         if (kvm_run->immediate_exit)
8357                 r = -EINTR;
8358         else
8359                 r = vcpu_run(vcpu);
8360
8361 out:
8362         kvm_put_guest_fpu(vcpu);
8363         if (vcpu->run->kvm_valid_regs)
8364                 store_regs(vcpu);
8365         post_kvm_run_save(vcpu);
8366         kvm_sigset_deactivate(vcpu);
8367
8368         vcpu_put(vcpu);
8369         return r;
8370 }
8371
8372 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8373 {
8374         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8375                 /*
8376                  * We are here if userspace calls get_regs() in the middle of
8377                  * instruction emulation. Registers state needs to be copied
8378                  * back from emulation context to vcpu. Userspace shouldn't do
8379                  * that usually, but some bad designed PV devices (vmware
8380                  * backdoor interface) need this to work
8381                  */
8382                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8383                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8384         }
8385         regs->rax = kvm_rax_read(vcpu);
8386         regs->rbx = kvm_rbx_read(vcpu);
8387         regs->rcx = kvm_rcx_read(vcpu);
8388         regs->rdx = kvm_rdx_read(vcpu);
8389         regs->rsi = kvm_rsi_read(vcpu);
8390         regs->rdi = kvm_rdi_read(vcpu);
8391         regs->rsp = kvm_rsp_read(vcpu);
8392         regs->rbp = kvm_rbp_read(vcpu);
8393 #ifdef CONFIG_X86_64
8394         regs->r8 = kvm_r8_read(vcpu);
8395         regs->r9 = kvm_r9_read(vcpu);
8396         regs->r10 = kvm_r10_read(vcpu);
8397         regs->r11 = kvm_r11_read(vcpu);
8398         regs->r12 = kvm_r12_read(vcpu);
8399         regs->r13 = kvm_r13_read(vcpu);
8400         regs->r14 = kvm_r14_read(vcpu);
8401         regs->r15 = kvm_r15_read(vcpu);
8402 #endif
8403
8404         regs->rip = kvm_rip_read(vcpu);
8405         regs->rflags = kvm_get_rflags(vcpu);
8406 }
8407
8408 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8409 {
8410         vcpu_load(vcpu);
8411         __get_regs(vcpu, regs);
8412         vcpu_put(vcpu);
8413         return 0;
8414 }
8415
8416 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8417 {
8418         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8419         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8420
8421         kvm_rax_write(vcpu, regs->rax);
8422         kvm_rbx_write(vcpu, regs->rbx);
8423         kvm_rcx_write(vcpu, regs->rcx);
8424         kvm_rdx_write(vcpu, regs->rdx);
8425         kvm_rsi_write(vcpu, regs->rsi);
8426         kvm_rdi_write(vcpu, regs->rdi);
8427         kvm_rsp_write(vcpu, regs->rsp);
8428         kvm_rbp_write(vcpu, regs->rbp);
8429 #ifdef CONFIG_X86_64
8430         kvm_r8_write(vcpu, regs->r8);
8431         kvm_r9_write(vcpu, regs->r9);
8432         kvm_r10_write(vcpu, regs->r10);
8433         kvm_r11_write(vcpu, regs->r11);
8434         kvm_r12_write(vcpu, regs->r12);
8435         kvm_r13_write(vcpu, regs->r13);
8436         kvm_r14_write(vcpu, regs->r14);
8437         kvm_r15_write(vcpu, regs->r15);
8438 #endif
8439
8440         kvm_rip_write(vcpu, regs->rip);
8441         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8442
8443         vcpu->arch.exception.pending = false;
8444
8445         kvm_make_request(KVM_REQ_EVENT, vcpu);
8446 }
8447
8448 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8449 {
8450         vcpu_load(vcpu);
8451         __set_regs(vcpu, regs);
8452         vcpu_put(vcpu);
8453         return 0;
8454 }
8455
8456 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8457 {
8458         struct kvm_segment cs;
8459
8460         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8461         *db = cs.db;
8462         *l = cs.l;
8463 }
8464 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8465
8466 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8467 {
8468         struct desc_ptr dt;
8469
8470         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8471         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8472         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8473         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8474         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8475         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8476
8477         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8478         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8479
8480         kvm_x86_ops->get_idt(vcpu, &dt);
8481         sregs->idt.limit = dt.size;
8482         sregs->idt.base = dt.address;
8483         kvm_x86_ops->get_gdt(vcpu, &dt);
8484         sregs->gdt.limit = dt.size;
8485         sregs->gdt.base = dt.address;
8486
8487         sregs->cr0 = kvm_read_cr0(vcpu);
8488         sregs->cr2 = vcpu->arch.cr2;
8489         sregs->cr3 = kvm_read_cr3(vcpu);
8490         sregs->cr4 = kvm_read_cr4(vcpu);
8491         sregs->cr8 = kvm_get_cr8(vcpu);
8492         sregs->efer = vcpu->arch.efer;
8493         sregs->apic_base = kvm_get_apic_base(vcpu);
8494
8495         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8496
8497         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8498                 set_bit(vcpu->arch.interrupt.nr,
8499                         (unsigned long *)sregs->interrupt_bitmap);
8500 }
8501
8502 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8503                                   struct kvm_sregs *sregs)
8504 {
8505         vcpu_load(vcpu);
8506         __get_sregs(vcpu, sregs);
8507         vcpu_put(vcpu);
8508         return 0;
8509 }
8510
8511 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8512                                     struct kvm_mp_state *mp_state)
8513 {
8514         vcpu_load(vcpu);
8515
8516         kvm_apic_accept_events(vcpu);
8517         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8518                                         vcpu->arch.pv.pv_unhalted)
8519                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8520         else
8521                 mp_state->mp_state = vcpu->arch.mp_state;
8522
8523         vcpu_put(vcpu);
8524         return 0;
8525 }
8526
8527 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8528                                     struct kvm_mp_state *mp_state)
8529 {
8530         int ret = -EINVAL;
8531
8532         vcpu_load(vcpu);
8533
8534         if (!lapic_in_kernel(vcpu) &&
8535             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8536                 goto out;
8537
8538         /* INITs are latched while in SMM */
8539         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8540             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8541              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8542                 goto out;
8543
8544         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8545                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8546                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8547         } else
8548                 vcpu->arch.mp_state = mp_state->mp_state;
8549         kvm_make_request(KVM_REQ_EVENT, vcpu);
8550
8551         ret = 0;
8552 out:
8553         vcpu_put(vcpu);
8554         return ret;
8555 }
8556
8557 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8558                     int reason, bool has_error_code, u32 error_code)
8559 {
8560         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8561         int ret;
8562
8563         init_emulate_ctxt(vcpu);
8564
8565         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8566                                    has_error_code, error_code);
8567
8568         if (ret)
8569                 return EMULATE_FAIL;
8570
8571         kvm_rip_write(vcpu, ctxt->eip);
8572         kvm_set_rflags(vcpu, ctxt->eflags);
8573         kvm_make_request(KVM_REQ_EVENT, vcpu);
8574         return EMULATE_DONE;
8575 }
8576 EXPORT_SYMBOL_GPL(kvm_task_switch);
8577
8578 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8579 {
8580         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8581                         (sregs->cr4 & X86_CR4_OSXSAVE))
8582                 return  -EINVAL;
8583
8584         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8585                 /*
8586                  * When EFER.LME and CR0.PG are set, the processor is in
8587                  * 64-bit mode (though maybe in a 32-bit code segment).
8588                  * CR4.PAE and EFER.LMA must be set.
8589                  */
8590                 if (!(sregs->cr4 & X86_CR4_PAE)
8591                     || !(sregs->efer & EFER_LMA))
8592                         return -EINVAL;
8593         } else {
8594                 /*
8595                  * Not in 64-bit mode: EFER.LMA is clear and the code
8596                  * segment cannot be 64-bit.
8597                  */
8598                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8599                         return -EINVAL;
8600         }
8601
8602         return 0;
8603 }
8604
8605 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8606 {
8607         struct msr_data apic_base_msr;
8608         int mmu_reset_needed = 0;
8609         int cpuid_update_needed = 0;
8610         int pending_vec, max_bits, idx;
8611         struct desc_ptr dt;
8612         int ret = -EINVAL;
8613
8614         if (kvm_valid_sregs(vcpu, sregs))
8615                 goto out;
8616
8617         apic_base_msr.data = sregs->apic_base;
8618         apic_base_msr.host_initiated = true;
8619         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8620                 goto out;
8621
8622         dt.size = sregs->idt.limit;
8623         dt.address = sregs->idt.base;
8624         kvm_x86_ops->set_idt(vcpu, &dt);
8625         dt.size = sregs->gdt.limit;
8626         dt.address = sregs->gdt.base;
8627         kvm_x86_ops->set_gdt(vcpu, &dt);
8628
8629         vcpu->arch.cr2 = sregs->cr2;
8630         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8631         vcpu->arch.cr3 = sregs->cr3;
8632         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8633
8634         kvm_set_cr8(vcpu, sregs->cr8);
8635
8636         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8637         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8638
8639         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8640         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8641         vcpu->arch.cr0 = sregs->cr0;
8642
8643         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8644         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8645                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8646         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8647         if (cpuid_update_needed)
8648                 kvm_update_cpuid(vcpu);
8649
8650         idx = srcu_read_lock(&vcpu->kvm->srcu);
8651         if (is_pae_paging(vcpu)) {
8652                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8653                 mmu_reset_needed = 1;
8654         }
8655         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8656
8657         if (mmu_reset_needed)
8658                 kvm_mmu_reset_context(vcpu);
8659
8660         max_bits = KVM_NR_INTERRUPTS;
8661         pending_vec = find_first_bit(
8662                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8663         if (pending_vec < max_bits) {
8664                 kvm_queue_interrupt(vcpu, pending_vec, false);
8665                 pr_debug("Set back pending irq %d\n", pending_vec);
8666         }
8667
8668         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8669         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8670         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8671         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8672         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8673         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8674
8675         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8676         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8677
8678         update_cr8_intercept(vcpu);
8679
8680         /* Older userspace won't unhalt the vcpu on reset. */
8681         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8682             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8683             !is_protmode(vcpu))
8684                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8685
8686         kvm_make_request(KVM_REQ_EVENT, vcpu);
8687
8688         ret = 0;
8689 out:
8690         return ret;
8691 }
8692
8693 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8694                                   struct kvm_sregs *sregs)
8695 {
8696         int ret;
8697
8698         vcpu_load(vcpu);
8699         ret = __set_sregs(vcpu, sregs);
8700         vcpu_put(vcpu);
8701         return ret;
8702 }
8703
8704 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8705                                         struct kvm_guest_debug *dbg)
8706 {
8707         unsigned long rflags;
8708         int i, r;
8709
8710         vcpu_load(vcpu);
8711
8712         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8713                 r = -EBUSY;
8714                 if (vcpu->arch.exception.pending)
8715                         goto out;
8716                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8717                         kvm_queue_exception(vcpu, DB_VECTOR);
8718                 else
8719                         kvm_queue_exception(vcpu, BP_VECTOR);
8720         }
8721
8722         /*
8723          * Read rflags as long as potentially injected trace flags are still
8724          * filtered out.
8725          */
8726         rflags = kvm_get_rflags(vcpu);
8727
8728         vcpu->guest_debug = dbg->control;
8729         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8730                 vcpu->guest_debug = 0;
8731
8732         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8733                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8734                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8735                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8736         } else {
8737                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8738                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8739         }
8740         kvm_update_dr7(vcpu);
8741
8742         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8743                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8744                         get_segment_base(vcpu, VCPU_SREG_CS);
8745
8746         /*
8747          * Trigger an rflags update that will inject or remove the trace
8748          * flags.
8749          */
8750         kvm_set_rflags(vcpu, rflags);
8751
8752         kvm_x86_ops->update_bp_intercept(vcpu);
8753
8754         r = 0;
8755
8756 out:
8757         vcpu_put(vcpu);
8758         return r;
8759 }
8760
8761 /*
8762  * Translate a guest virtual address to a guest physical address.
8763  */
8764 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8765                                     struct kvm_translation *tr)
8766 {
8767         unsigned long vaddr = tr->linear_address;
8768         gpa_t gpa;
8769         int idx;
8770
8771         vcpu_load(vcpu);
8772
8773         idx = srcu_read_lock(&vcpu->kvm->srcu);
8774         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8775         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8776         tr->physical_address = gpa;
8777         tr->valid = gpa != UNMAPPED_GVA;
8778         tr->writeable = 1;
8779         tr->usermode = 0;
8780
8781         vcpu_put(vcpu);
8782         return 0;
8783 }
8784
8785 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8786 {
8787         struct fxregs_state *fxsave;
8788
8789         vcpu_load(vcpu);
8790
8791         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8792         memcpy(fpu->fpr, fxsave->st_space, 128);
8793         fpu->fcw = fxsave->cwd;
8794         fpu->fsw = fxsave->swd;
8795         fpu->ftwx = fxsave->twd;
8796         fpu->last_opcode = fxsave->fop;
8797         fpu->last_ip = fxsave->rip;
8798         fpu->last_dp = fxsave->rdp;
8799         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8800
8801         vcpu_put(vcpu);
8802         return 0;
8803 }
8804
8805 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8806 {
8807         struct fxregs_state *fxsave;
8808
8809         vcpu_load(vcpu);
8810
8811         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8812
8813         memcpy(fxsave->st_space, fpu->fpr, 128);
8814         fxsave->cwd = fpu->fcw;
8815         fxsave->swd = fpu->fsw;
8816         fxsave->twd = fpu->ftwx;
8817         fxsave->fop = fpu->last_opcode;
8818         fxsave->rip = fpu->last_ip;
8819         fxsave->rdp = fpu->last_dp;
8820         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8821
8822         vcpu_put(vcpu);
8823         return 0;
8824 }
8825
8826 static void store_regs(struct kvm_vcpu *vcpu)
8827 {
8828         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8829
8830         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8831                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8832
8833         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8834                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8835
8836         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8837                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8838                                 vcpu, &vcpu->run->s.regs.events);
8839 }
8840
8841 static int sync_regs(struct kvm_vcpu *vcpu)
8842 {
8843         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8844                 return -EINVAL;
8845
8846         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8847                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8848                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8849         }
8850         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8851                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8852                         return -EINVAL;
8853                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8854         }
8855         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8856                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8857                                 vcpu, &vcpu->run->s.regs.events))
8858                         return -EINVAL;
8859                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8860         }
8861
8862         return 0;
8863 }
8864
8865 static void fx_init(struct kvm_vcpu *vcpu)
8866 {
8867         fpstate_init(&vcpu->arch.guest_fpu->state);
8868         if (boot_cpu_has(X86_FEATURE_XSAVES))
8869                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8870                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8871
8872         /*
8873          * Ensure guest xcr0 is valid for loading
8874          */
8875         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8876
8877         vcpu->arch.cr0 |= X86_CR0_ET;
8878 }
8879
8880 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8881 {
8882         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8883
8884         kvmclock_reset(vcpu);
8885
8886         kvm_x86_ops->vcpu_free(vcpu);
8887         free_cpumask_var(wbinvd_dirty_mask);
8888 }
8889
8890 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8891                                                 unsigned int id)
8892 {
8893         struct kvm_vcpu *vcpu;
8894
8895         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8896                 printk_once(KERN_WARNING
8897                 "kvm: SMP vm created on host with unstable TSC; "
8898                 "guest TSC will not be reliable\n");
8899
8900         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8901
8902         return vcpu;
8903 }
8904
8905 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8906 {
8907         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8908         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8909         kvm_vcpu_mtrr_init(vcpu);
8910         vcpu_load(vcpu);
8911         kvm_vcpu_reset(vcpu, false);
8912         kvm_init_mmu(vcpu, false);
8913         vcpu_put(vcpu);
8914         return 0;
8915 }
8916
8917 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8918 {
8919         struct msr_data msr;
8920         struct kvm *kvm = vcpu->kvm;
8921
8922         kvm_hv_vcpu_postcreate(vcpu);
8923
8924         if (mutex_lock_killable(&vcpu->mutex))
8925                 return;
8926         vcpu_load(vcpu);
8927         msr.data = 0x0;
8928         msr.index = MSR_IA32_TSC;
8929         msr.host_initiated = true;
8930         kvm_write_tsc(vcpu, &msr);
8931         vcpu_put(vcpu);
8932
8933         /* poll control enabled by default */
8934         vcpu->arch.msr_kvm_poll_control = 1;
8935
8936         mutex_unlock(&vcpu->mutex);
8937
8938         if (!kvmclock_periodic_sync)
8939                 return;
8940
8941         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8942                                         KVMCLOCK_SYNC_PERIOD);
8943 }
8944
8945 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8946 {
8947         vcpu->arch.apf.msr_val = 0;
8948
8949         vcpu_load(vcpu);
8950         kvm_mmu_unload(vcpu);
8951         vcpu_put(vcpu);
8952
8953         kvm_x86_ops->vcpu_free(vcpu);
8954 }
8955
8956 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8957 {
8958         kvm_lapic_reset(vcpu, init_event);
8959
8960         vcpu->arch.hflags = 0;
8961
8962         vcpu->arch.smi_pending = 0;
8963         vcpu->arch.smi_count = 0;
8964         atomic_set(&vcpu->arch.nmi_queued, 0);
8965         vcpu->arch.nmi_pending = 0;
8966         vcpu->arch.nmi_injected = false;
8967         kvm_clear_interrupt_queue(vcpu);
8968         kvm_clear_exception_queue(vcpu);
8969         vcpu->arch.exception.pending = false;
8970
8971         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8972         kvm_update_dr0123(vcpu);
8973         vcpu->arch.dr6 = DR6_INIT;
8974         kvm_update_dr6(vcpu);
8975         vcpu->arch.dr7 = DR7_FIXED_1;
8976         kvm_update_dr7(vcpu);
8977
8978         vcpu->arch.cr2 = 0;
8979
8980         kvm_make_request(KVM_REQ_EVENT, vcpu);
8981         vcpu->arch.apf.msr_val = 0;
8982         vcpu->arch.st.msr_val = 0;
8983
8984         kvmclock_reset(vcpu);
8985
8986         kvm_clear_async_pf_completion_queue(vcpu);
8987         kvm_async_pf_hash_reset(vcpu);
8988         vcpu->arch.apf.halted = false;
8989
8990         if (kvm_mpx_supported()) {
8991                 void *mpx_state_buffer;
8992
8993                 /*
8994                  * To avoid have the INIT path from kvm_apic_has_events() that be
8995                  * called with loaded FPU and does not let userspace fix the state.
8996                  */
8997                 if (init_event)
8998                         kvm_put_guest_fpu(vcpu);
8999                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9000                                         XFEATURE_BNDREGS);
9001                 if (mpx_state_buffer)
9002                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9003                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9004                                         XFEATURE_BNDCSR);
9005                 if (mpx_state_buffer)
9006                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9007                 if (init_event)
9008                         kvm_load_guest_fpu(vcpu);
9009         }
9010
9011         if (!init_event) {
9012                 kvm_pmu_reset(vcpu);
9013                 vcpu->arch.smbase = 0x30000;
9014
9015                 vcpu->arch.msr_misc_features_enables = 0;
9016
9017                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9018         }
9019
9020         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9021         vcpu->arch.regs_avail = ~0;
9022         vcpu->arch.regs_dirty = ~0;
9023
9024         vcpu->arch.ia32_xss = 0;
9025
9026         kvm_x86_ops->vcpu_reset(vcpu, init_event);
9027 }
9028
9029 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9030 {
9031         struct kvm_segment cs;
9032
9033         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9034         cs.selector = vector << 8;
9035         cs.base = vector << 12;
9036         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9037         kvm_rip_write(vcpu, 0);
9038 }
9039
9040 int kvm_arch_hardware_enable(void)
9041 {
9042         struct kvm *kvm;
9043         struct kvm_vcpu *vcpu;
9044         int i;
9045         int ret;
9046         u64 local_tsc;
9047         u64 max_tsc = 0;
9048         bool stable, backwards_tsc = false;
9049
9050         kvm_shared_msr_cpu_online();
9051         ret = kvm_x86_ops->hardware_enable();
9052         if (ret != 0)
9053                 return ret;
9054
9055         local_tsc = rdtsc();
9056         stable = !kvm_check_tsc_unstable();
9057         list_for_each_entry(kvm, &vm_list, vm_list) {
9058                 kvm_for_each_vcpu(i, vcpu, kvm) {
9059                         if (!stable && vcpu->cpu == smp_processor_id())
9060                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9061                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9062                                 backwards_tsc = true;
9063                                 if (vcpu->arch.last_host_tsc > max_tsc)
9064                                         max_tsc = vcpu->arch.last_host_tsc;
9065                         }
9066                 }
9067         }
9068
9069         /*
9070          * Sometimes, even reliable TSCs go backwards.  This happens on
9071          * platforms that reset TSC during suspend or hibernate actions, but
9072          * maintain synchronization.  We must compensate.  Fortunately, we can
9073          * detect that condition here, which happens early in CPU bringup,
9074          * before any KVM threads can be running.  Unfortunately, we can't
9075          * bring the TSCs fully up to date with real time, as we aren't yet far
9076          * enough into CPU bringup that we know how much real time has actually
9077          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9078          * variables that haven't been updated yet.
9079          *
9080          * So we simply find the maximum observed TSC above, then record the
9081          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9082          * the adjustment will be applied.  Note that we accumulate
9083          * adjustments, in case multiple suspend cycles happen before some VCPU
9084          * gets a chance to run again.  In the event that no KVM threads get a
9085          * chance to run, we will miss the entire elapsed period, as we'll have
9086          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9087          * loose cycle time.  This isn't too big a deal, since the loss will be
9088          * uniform across all VCPUs (not to mention the scenario is extremely
9089          * unlikely). It is possible that a second hibernate recovery happens
9090          * much faster than a first, causing the observed TSC here to be
9091          * smaller; this would require additional padding adjustment, which is
9092          * why we set last_host_tsc to the local tsc observed here.
9093          *
9094          * N.B. - this code below runs only on platforms with reliable TSC,
9095          * as that is the only way backwards_tsc is set above.  Also note
9096          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9097          * have the same delta_cyc adjustment applied if backwards_tsc
9098          * is detected.  Note further, this adjustment is only done once,
9099          * as we reset last_host_tsc on all VCPUs to stop this from being
9100          * called multiple times (one for each physical CPU bringup).
9101          *
9102          * Platforms with unreliable TSCs don't have to deal with this, they
9103          * will be compensated by the logic in vcpu_load, which sets the TSC to
9104          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9105          * guarantee that they stay in perfect synchronization.
9106          */
9107         if (backwards_tsc) {
9108                 u64 delta_cyc = max_tsc - local_tsc;
9109                 list_for_each_entry(kvm, &vm_list, vm_list) {
9110                         kvm->arch.backwards_tsc_observed = true;
9111                         kvm_for_each_vcpu(i, vcpu, kvm) {
9112                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9113                                 vcpu->arch.last_host_tsc = local_tsc;
9114                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9115                         }
9116
9117                         /*
9118                          * We have to disable TSC offset matching.. if you were
9119                          * booting a VM while issuing an S4 host suspend....
9120                          * you may have some problem.  Solving this issue is
9121                          * left as an exercise to the reader.
9122                          */
9123                         kvm->arch.last_tsc_nsec = 0;
9124                         kvm->arch.last_tsc_write = 0;
9125                 }
9126
9127         }
9128         return 0;
9129 }
9130
9131 void kvm_arch_hardware_disable(void)
9132 {
9133         kvm_x86_ops->hardware_disable();
9134         drop_user_return_notifiers();
9135 }
9136
9137 int kvm_arch_hardware_setup(void)
9138 {
9139         int r;
9140
9141         r = kvm_x86_ops->hardware_setup();
9142         if (r != 0)
9143                 return r;
9144
9145         if (kvm_has_tsc_control) {
9146                 /*
9147                  * Make sure the user can only configure tsc_khz values that
9148                  * fit into a signed integer.
9149                  * A min value is not calculated because it will always
9150                  * be 1 on all machines.
9151                  */
9152                 u64 max = min(0x7fffffffULL,
9153                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9154                 kvm_max_guest_tsc_khz = max;
9155
9156                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9157         }
9158
9159         kvm_init_msr_list();
9160         return 0;
9161 }
9162
9163 void kvm_arch_hardware_unsetup(void)
9164 {
9165         kvm_x86_ops->hardware_unsetup();
9166 }
9167
9168 int kvm_arch_check_processor_compat(void)
9169 {
9170         return kvm_x86_ops->check_processor_compatibility();
9171 }
9172
9173 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9174 {
9175         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9176 }
9177 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9178
9179 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9180 {
9181         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9182 }
9183
9184 struct static_key kvm_no_apic_vcpu __read_mostly;
9185 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9186
9187 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9188 {
9189         struct page *page;
9190         int r;
9191
9192         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9193         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9194                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9195         else
9196                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9197
9198         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9199         if (!page) {
9200                 r = -ENOMEM;
9201                 goto fail;
9202         }
9203         vcpu->arch.pio_data = page_address(page);
9204
9205         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9206
9207         r = kvm_mmu_create(vcpu);
9208         if (r < 0)
9209                 goto fail_free_pio_data;
9210
9211         if (irqchip_in_kernel(vcpu->kvm)) {
9212                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9213                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9214                 if (r < 0)
9215                         goto fail_mmu_destroy;
9216         } else
9217                 static_key_slow_inc(&kvm_no_apic_vcpu);
9218
9219         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9220                                        GFP_KERNEL_ACCOUNT);
9221         if (!vcpu->arch.mce_banks) {
9222                 r = -ENOMEM;
9223                 goto fail_free_lapic;
9224         }
9225         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9226
9227         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9228                                 GFP_KERNEL_ACCOUNT)) {
9229                 r = -ENOMEM;
9230                 goto fail_free_mce_banks;
9231         }
9232
9233         fx_init(vcpu);
9234
9235         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9236
9237         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9238
9239         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9240
9241         kvm_async_pf_hash_reset(vcpu);
9242         kvm_pmu_init(vcpu);
9243
9244         vcpu->arch.pending_external_vector = -1;
9245         vcpu->arch.preempted_in_kernel = false;
9246
9247         kvm_hv_vcpu_init(vcpu);
9248
9249         return 0;
9250
9251 fail_free_mce_banks:
9252         kfree(vcpu->arch.mce_banks);
9253 fail_free_lapic:
9254         kvm_free_lapic(vcpu);
9255 fail_mmu_destroy:
9256         kvm_mmu_destroy(vcpu);
9257 fail_free_pio_data:
9258         free_page((unsigned long)vcpu->arch.pio_data);
9259 fail:
9260         return r;
9261 }
9262
9263 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9264 {
9265         int idx;
9266
9267         kvm_hv_vcpu_uninit(vcpu);
9268         kvm_pmu_destroy(vcpu);
9269         kfree(vcpu->arch.mce_banks);
9270         kvm_free_lapic(vcpu);
9271         idx = srcu_read_lock(&vcpu->kvm->srcu);
9272         kvm_mmu_destroy(vcpu);
9273         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9274         free_page((unsigned long)vcpu->arch.pio_data);
9275         if (!lapic_in_kernel(vcpu))
9276                 static_key_slow_dec(&kvm_no_apic_vcpu);
9277 }
9278
9279 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9280 {
9281         vcpu->arch.l1tf_flush_l1d = true;
9282         kvm_x86_ops->sched_in(vcpu, cpu);
9283 }
9284
9285 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9286 {
9287         if (type)
9288                 return -EINVAL;
9289
9290         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9291         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9292         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9293         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9294
9295         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9296         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9297         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9298         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9299                 &kvm->arch.irq_sources_bitmap);
9300
9301         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9302         mutex_init(&kvm->arch.apic_map_lock);
9303         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9304
9305         kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9306         pvclock_update_vm_gtod_copy(kvm);
9307
9308         kvm->arch.guest_can_read_msr_platform_info = true;
9309
9310         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9311         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9312
9313         kvm_hv_init_vm(kvm);
9314         kvm_page_track_init(kvm);
9315         kvm_mmu_init_vm(kvm);
9316
9317         if (kvm_x86_ops->vm_init)
9318                 return kvm_x86_ops->vm_init(kvm);
9319
9320         return 0;
9321 }
9322
9323 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9324 {
9325         vcpu_load(vcpu);
9326         kvm_mmu_unload(vcpu);
9327         vcpu_put(vcpu);
9328 }
9329
9330 static void kvm_free_vcpus(struct kvm *kvm)
9331 {
9332         unsigned int i;
9333         struct kvm_vcpu *vcpu;
9334
9335         /*
9336          * Unpin any mmu pages first.
9337          */
9338         kvm_for_each_vcpu(i, vcpu, kvm) {
9339                 kvm_clear_async_pf_completion_queue(vcpu);
9340                 kvm_unload_vcpu_mmu(vcpu);
9341         }
9342         kvm_for_each_vcpu(i, vcpu, kvm)
9343                 kvm_arch_vcpu_free(vcpu);
9344
9345         mutex_lock(&kvm->lock);
9346         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9347                 kvm->vcpus[i] = NULL;
9348
9349         atomic_set(&kvm->online_vcpus, 0);
9350         mutex_unlock(&kvm->lock);
9351 }
9352
9353 void kvm_arch_sync_events(struct kvm *kvm)
9354 {
9355         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9356         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9357         kvm_free_pit(kvm);
9358 }
9359
9360 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9361 {
9362         int i, r;
9363         unsigned long hva;
9364         struct kvm_memslots *slots = kvm_memslots(kvm);
9365         struct kvm_memory_slot *slot, old;
9366
9367         /* Called with kvm->slots_lock held.  */
9368         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9369                 return -EINVAL;
9370
9371         slot = id_to_memslot(slots, id);
9372         if (size) {
9373                 if (slot->npages)
9374                         return -EEXIST;
9375
9376                 /*
9377                  * MAP_SHARED to prevent internal slot pages from being moved
9378                  * by fork()/COW.
9379                  */
9380                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9381                               MAP_SHARED | MAP_ANONYMOUS, 0);
9382                 if (IS_ERR((void *)hva))
9383                         return PTR_ERR((void *)hva);
9384         } else {
9385                 if (!slot->npages)
9386                         return 0;
9387
9388                 hva = 0;
9389         }
9390
9391         old = *slot;
9392         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9393                 struct kvm_userspace_memory_region m;
9394
9395                 m.slot = id | (i << 16);
9396                 m.flags = 0;
9397                 m.guest_phys_addr = gpa;
9398                 m.userspace_addr = hva;
9399                 m.memory_size = size;
9400                 r = __kvm_set_memory_region(kvm, &m);
9401                 if (r < 0)
9402                         return r;
9403         }
9404
9405         if (!size)
9406                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9407
9408         return 0;
9409 }
9410 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9411
9412 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9413 {
9414         int r;
9415
9416         mutex_lock(&kvm->slots_lock);
9417         r = __x86_set_memory_region(kvm, id, gpa, size);
9418         mutex_unlock(&kvm->slots_lock);
9419
9420         return r;
9421 }
9422 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9423
9424 void kvm_arch_destroy_vm(struct kvm *kvm)
9425 {
9426         if (current->mm == kvm->mm) {
9427                 /*
9428                  * Free memory regions allocated on behalf of userspace,
9429                  * unless the the memory map has changed due to process exit
9430                  * or fd copying.
9431                  */
9432                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9433                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9434                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9435         }
9436         if (kvm_x86_ops->vm_destroy)
9437                 kvm_x86_ops->vm_destroy(kvm);
9438         kvm_pic_destroy(kvm);
9439         kvm_ioapic_destroy(kvm);
9440         kvm_free_vcpus(kvm);
9441         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9442         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9443         kvm_mmu_uninit_vm(kvm);
9444         kvm_page_track_cleanup(kvm);
9445         kvm_hv_destroy_vm(kvm);
9446 }
9447
9448 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9449                            struct kvm_memory_slot *dont)
9450 {
9451         int i;
9452
9453         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9454                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9455                         kvfree(free->arch.rmap[i]);
9456                         free->arch.rmap[i] = NULL;
9457                 }
9458                 if (i == 0)
9459                         continue;
9460
9461                 if (!dont || free->arch.lpage_info[i - 1] !=
9462                              dont->arch.lpage_info[i - 1]) {
9463                         kvfree(free->arch.lpage_info[i - 1]);
9464                         free->arch.lpage_info[i - 1] = NULL;
9465                 }
9466         }
9467
9468         kvm_page_track_free_memslot(free, dont);
9469 }
9470
9471 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9472                             unsigned long npages)
9473 {
9474         int i;
9475
9476         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9477                 struct kvm_lpage_info *linfo;
9478                 unsigned long ugfn;
9479                 int lpages;
9480                 int level = i + 1;
9481
9482                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9483                                       slot->base_gfn, level) + 1;
9484
9485                 slot->arch.rmap[i] =
9486                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9487                                  GFP_KERNEL_ACCOUNT);
9488                 if (!slot->arch.rmap[i])
9489                         goto out_free;
9490                 if (i == 0)
9491                         continue;
9492
9493                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9494                 if (!linfo)
9495                         goto out_free;
9496
9497                 slot->arch.lpage_info[i - 1] = linfo;
9498
9499                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9500                         linfo[0].disallow_lpage = 1;
9501                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9502                         linfo[lpages - 1].disallow_lpage = 1;
9503                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9504                 /*
9505                  * If the gfn and userspace address are not aligned wrt each
9506                  * other, or if explicitly asked to, disable large page
9507                  * support for this slot
9508                  */
9509                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9510                     !kvm_largepages_enabled()) {
9511                         unsigned long j;
9512
9513                         for (j = 0; j < lpages; ++j)
9514                                 linfo[j].disallow_lpage = 1;
9515                 }
9516         }
9517
9518         if (kvm_page_track_create_memslot(slot, npages))
9519                 goto out_free;
9520
9521         return 0;
9522
9523 out_free:
9524         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9525                 kvfree(slot->arch.rmap[i]);
9526                 slot->arch.rmap[i] = NULL;
9527                 if (i == 0)
9528                         continue;
9529
9530                 kvfree(slot->arch.lpage_info[i - 1]);
9531                 slot->arch.lpage_info[i - 1] = NULL;
9532         }
9533         return -ENOMEM;
9534 }
9535
9536 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9537 {
9538         /*
9539          * memslots->generation has been incremented.
9540          * mmio generation may have reached its maximum value.
9541          */
9542         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9543 }
9544
9545 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9546                                 struct kvm_memory_slot *memslot,
9547                                 const struct kvm_userspace_memory_region *mem,
9548                                 enum kvm_mr_change change)
9549 {
9550         return 0;
9551 }
9552
9553 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9554                                      struct kvm_memory_slot *new)
9555 {
9556         /* Still write protect RO slot */
9557         if (new->flags & KVM_MEM_READONLY) {
9558                 kvm_mmu_slot_remove_write_access(kvm, new);
9559                 return;
9560         }
9561
9562         /*
9563          * Call kvm_x86_ops dirty logging hooks when they are valid.
9564          *
9565          * kvm_x86_ops->slot_disable_log_dirty is called when:
9566          *
9567          *  - KVM_MR_CREATE with dirty logging is disabled
9568          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9569          *
9570          * The reason is, in case of PML, we need to set D-bit for any slots
9571          * with dirty logging disabled in order to eliminate unnecessary GPA
9572          * logging in PML buffer (and potential PML buffer full VMEXT). This
9573          * guarantees leaving PML enabled during guest's lifetime won't have
9574          * any additional overhead from PML when guest is running with dirty
9575          * logging disabled for memory slots.
9576          *
9577          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9578          * to dirty logging mode.
9579          *
9580          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9581          *
9582          * In case of write protect:
9583          *
9584          * Write protect all pages for dirty logging.
9585          *
9586          * All the sptes including the large sptes which point to this
9587          * slot are set to readonly. We can not create any new large
9588          * spte on this slot until the end of the logging.
9589          *
9590          * See the comments in fast_page_fault().
9591          */
9592         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9593                 if (kvm_x86_ops->slot_enable_log_dirty)
9594                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9595                 else
9596                         kvm_mmu_slot_remove_write_access(kvm, new);
9597         } else {
9598                 if (kvm_x86_ops->slot_disable_log_dirty)
9599                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9600         }
9601 }
9602
9603 void kvm_arch_commit_memory_region(struct kvm *kvm,
9604                                 const struct kvm_userspace_memory_region *mem,
9605                                 const struct kvm_memory_slot *old,
9606                                 const struct kvm_memory_slot *new,
9607                                 enum kvm_mr_change change)
9608 {
9609         if (!kvm->arch.n_requested_mmu_pages)
9610                 kvm_mmu_change_mmu_pages(kvm,
9611                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9612
9613         /*
9614          * Dirty logging tracks sptes in 4k granularity, meaning that large
9615          * sptes have to be split.  If live migration is successful, the guest
9616          * in the source machine will be destroyed and large sptes will be
9617          * created in the destination. However, if the guest continues to run
9618          * in the source machine (for example if live migration fails), small
9619          * sptes will remain around and cause bad performance.
9620          *
9621          * Scan sptes if dirty logging has been stopped, dropping those
9622          * which can be collapsed into a single large-page spte.  Later
9623          * page faults will create the large-page sptes.
9624          */
9625         if ((change != KVM_MR_DELETE) &&
9626                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9627                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9628                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9629
9630         /*
9631          * Set up write protection and/or dirty logging for the new slot.
9632          *
9633          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9634          * been zapped so no dirty logging staff is needed for old slot. For
9635          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9636          * new and it's also covered when dealing with the new slot.
9637          *
9638          * FIXME: const-ify all uses of struct kvm_memory_slot.
9639          */
9640         if (change != KVM_MR_DELETE)
9641                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9642 }
9643
9644 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9645 {
9646         kvm_mmu_zap_all(kvm);
9647 }
9648
9649 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9650                                    struct kvm_memory_slot *slot)
9651 {
9652         kvm_page_track_flush_slot(kvm, slot);
9653 }
9654
9655 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9656 {
9657         return (is_guest_mode(vcpu) &&
9658                         kvm_x86_ops->guest_apic_has_interrupt &&
9659                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9660 }
9661
9662 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9663 {
9664         if (!list_empty_careful(&vcpu->async_pf.done))
9665                 return true;
9666
9667         if (kvm_apic_has_events(vcpu))
9668                 return true;
9669
9670         if (vcpu->arch.pv.pv_unhalted)
9671                 return true;
9672
9673         if (vcpu->arch.exception.pending)
9674                 return true;
9675
9676         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9677             (vcpu->arch.nmi_pending &&
9678              kvm_x86_ops->nmi_allowed(vcpu)))
9679                 return true;
9680
9681         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9682             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9683                 return true;
9684
9685         if (kvm_arch_interrupt_allowed(vcpu) &&
9686             (kvm_cpu_has_interrupt(vcpu) ||
9687             kvm_guest_apic_has_interrupt(vcpu)))
9688                 return true;
9689
9690         if (kvm_hv_has_stimer_pending(vcpu))
9691                 return true;
9692
9693         return false;
9694 }
9695
9696 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9697 {
9698         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9699 }
9700
9701 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9702 {
9703         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9704                 return true;
9705
9706         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9707                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
9708                  kvm_test_request(KVM_REQ_EVENT, vcpu))
9709                 return true;
9710
9711         if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9712                 return true;
9713
9714         return false;
9715 }
9716
9717 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9718 {
9719         return vcpu->arch.preempted_in_kernel;
9720 }
9721
9722 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9723 {
9724         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9725 }
9726
9727 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9728 {
9729         return kvm_x86_ops->interrupt_allowed(vcpu);
9730 }
9731
9732 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9733 {
9734         if (is_64_bit_mode(vcpu))
9735                 return kvm_rip_read(vcpu);
9736         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9737                      kvm_rip_read(vcpu));
9738 }
9739 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9740
9741 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9742 {
9743         return kvm_get_linear_rip(vcpu) == linear_rip;
9744 }
9745 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9746
9747 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9748 {
9749         unsigned long rflags;
9750
9751         rflags = kvm_x86_ops->get_rflags(vcpu);
9752         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9753                 rflags &= ~X86_EFLAGS_TF;
9754         return rflags;
9755 }
9756 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9757
9758 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9759 {
9760         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9761             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9762                 rflags |= X86_EFLAGS_TF;
9763         kvm_x86_ops->set_rflags(vcpu, rflags);
9764 }
9765
9766 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9767 {
9768         __kvm_set_rflags(vcpu, rflags);
9769         kvm_make_request(KVM_REQ_EVENT, vcpu);
9770 }
9771 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9772
9773 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9774 {
9775         int r;
9776
9777         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9778               work->wakeup_all)
9779                 return;
9780
9781         r = kvm_mmu_reload(vcpu);
9782         if (unlikely(r))
9783                 return;
9784
9785         if (!vcpu->arch.mmu->direct_map &&
9786               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9787                 return;
9788
9789         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9790 }
9791
9792 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9793 {
9794         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9795 }
9796
9797 static inline u32 kvm_async_pf_next_probe(u32 key)
9798 {
9799         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9800 }
9801
9802 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9803 {
9804         u32 key = kvm_async_pf_hash_fn(gfn);
9805
9806         while (vcpu->arch.apf.gfns[key] != ~0)
9807                 key = kvm_async_pf_next_probe(key);
9808
9809         vcpu->arch.apf.gfns[key] = gfn;
9810 }
9811
9812 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9813 {
9814         int i;
9815         u32 key = kvm_async_pf_hash_fn(gfn);
9816
9817         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9818                      (vcpu->arch.apf.gfns[key] != gfn &&
9819                       vcpu->arch.apf.gfns[key] != ~0); i++)
9820                 key = kvm_async_pf_next_probe(key);
9821
9822         return key;
9823 }
9824
9825 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9826 {
9827         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9828 }
9829
9830 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9831 {
9832         u32 i, j, k;
9833
9834         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9835         while (true) {
9836                 vcpu->arch.apf.gfns[i] = ~0;
9837                 do {
9838                         j = kvm_async_pf_next_probe(j);
9839                         if (vcpu->arch.apf.gfns[j] == ~0)
9840                                 return;
9841                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9842                         /*
9843                          * k lies cyclically in ]i,j]
9844                          * |    i.k.j |
9845                          * |....j i.k.| or  |.k..j i...|
9846                          */
9847                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9848                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9849                 i = j;
9850         }
9851 }
9852
9853 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9854 {
9855
9856         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9857                                       sizeof(val));
9858 }
9859
9860 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9861 {
9862
9863         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9864                                       sizeof(u32));
9865 }
9866
9867 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
9868 {
9869         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9870                 return false;
9871
9872         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9873             (vcpu->arch.apf.send_user_only &&
9874              kvm_x86_ops->get_cpl(vcpu) == 0))
9875                 return false;
9876
9877         return true;
9878 }
9879
9880 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
9881 {
9882         if (unlikely(!lapic_in_kernel(vcpu) ||
9883                      kvm_event_needs_reinjection(vcpu) ||
9884                      vcpu->arch.exception.pending))
9885                 return false;
9886
9887         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
9888                 return false;
9889
9890         /*
9891          * If interrupts are off we cannot even use an artificial
9892          * halt state.
9893          */
9894         return kvm_x86_ops->interrupt_allowed(vcpu);
9895 }
9896
9897 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9898                                      struct kvm_async_pf *work)
9899 {
9900         struct x86_exception fault;
9901
9902         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9903         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9904
9905         if (kvm_can_deliver_async_pf(vcpu) &&
9906             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9907                 fault.vector = PF_VECTOR;
9908                 fault.error_code_valid = true;
9909                 fault.error_code = 0;
9910                 fault.nested_page_fault = false;
9911                 fault.address = work->arch.token;
9912                 fault.async_page_fault = true;
9913                 kvm_inject_page_fault(vcpu, &fault);
9914         } else {
9915                 /*
9916                  * It is not possible to deliver a paravirtualized asynchronous
9917                  * page fault, but putting the guest in an artificial halt state
9918                  * can be beneficial nevertheless: if an interrupt arrives, we
9919                  * can deliver it timely and perhaps the guest will schedule
9920                  * another process.  When the instruction that triggered a page
9921                  * fault is retried, hopefully the page will be ready in the host.
9922                  */
9923                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9924         }
9925 }
9926
9927 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9928                                  struct kvm_async_pf *work)
9929 {
9930         struct x86_exception fault;
9931         u32 val;
9932
9933         if (work->wakeup_all)
9934                 work->arch.token = ~0; /* broadcast wakeup */
9935         else
9936                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9937         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9938
9939         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9940             !apf_get_user(vcpu, &val)) {
9941                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9942                     vcpu->arch.exception.pending &&
9943                     vcpu->arch.exception.nr == PF_VECTOR &&
9944                     !apf_put_user(vcpu, 0)) {
9945                         vcpu->arch.exception.injected = false;
9946                         vcpu->arch.exception.pending = false;
9947                         vcpu->arch.exception.nr = 0;
9948                         vcpu->arch.exception.has_error_code = false;
9949                         vcpu->arch.exception.error_code = 0;
9950                         vcpu->arch.exception.has_payload = false;
9951                         vcpu->arch.exception.payload = 0;
9952                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9953                         fault.vector = PF_VECTOR;
9954                         fault.error_code_valid = true;
9955                         fault.error_code = 0;
9956                         fault.nested_page_fault = false;
9957                         fault.address = work->arch.token;
9958                         fault.async_page_fault = true;
9959                         kvm_inject_page_fault(vcpu, &fault);
9960                 }
9961         }
9962         vcpu->arch.apf.halted = false;
9963         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9964 }
9965
9966 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9967 {
9968         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9969                 return true;
9970         else
9971                 return kvm_can_do_async_pf(vcpu);
9972 }
9973
9974 void kvm_arch_start_assignment(struct kvm *kvm)
9975 {
9976         atomic_inc(&kvm->arch.assigned_device_count);
9977 }
9978 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9979
9980 void kvm_arch_end_assignment(struct kvm *kvm)
9981 {
9982         atomic_dec(&kvm->arch.assigned_device_count);
9983 }
9984 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9985
9986 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9987 {
9988         return atomic_read(&kvm->arch.assigned_device_count);
9989 }
9990 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9991
9992 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9993 {
9994         atomic_inc(&kvm->arch.noncoherent_dma_count);
9995 }
9996 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9997
9998 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9999 {
10000         atomic_dec(&kvm->arch.noncoherent_dma_count);
10001 }
10002 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10003
10004 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10005 {
10006         return atomic_read(&kvm->arch.noncoherent_dma_count);
10007 }
10008 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10009
10010 bool kvm_arch_has_irq_bypass(void)
10011 {
10012         return kvm_x86_ops->update_pi_irte != NULL;
10013 }
10014
10015 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10016                                       struct irq_bypass_producer *prod)
10017 {
10018         struct kvm_kernel_irqfd *irqfd =
10019                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10020
10021         irqfd->producer = prod;
10022
10023         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10024                                            prod->irq, irqfd->gsi, 1);
10025 }
10026
10027 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10028                                       struct irq_bypass_producer *prod)
10029 {
10030         int ret;
10031         struct kvm_kernel_irqfd *irqfd =
10032                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10033
10034         WARN_ON(irqfd->producer != prod);
10035         irqfd->producer = NULL;
10036
10037         /*
10038          * When producer of consumer is unregistered, we change back to
10039          * remapped mode, so we can re-use the current implementation
10040          * when the irq is masked/disabled or the consumer side (KVM
10041          * int this case doesn't want to receive the interrupts.
10042         */
10043         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10044         if (ret)
10045                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10046                        " fails: %d\n", irqfd->consumer.token, ret);
10047 }
10048
10049 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10050                                    uint32_t guest_irq, bool set)
10051 {
10052         if (!kvm_x86_ops->update_pi_irte)
10053                 return -EINVAL;
10054
10055         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10056 }
10057
10058 bool kvm_vector_hashing_enabled(void)
10059 {
10060         return vector_hashing;
10061 }
10062 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10063
10064 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10065 {
10066         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10067 }
10068 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10069
10070
10071 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10072 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10073 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10074 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10081 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10082 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
10086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);