Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <clocksource/hyperv_timer.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /*
139  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
140  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
141  * advancement entirely.  Any other value is used as-is and disables adaptive
142  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
143  */
144 static int __read_mostly lapic_timer_advance_ns = -1;
145 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
146
147 static bool __read_mostly vector_hashing = true;
148 module_param(vector_hashing, bool, S_IRUGO);
149
150 bool __read_mostly enable_vmware_backdoor = false;
151 module_param(enable_vmware_backdoor, bool, S_IRUGO);
152 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
153
154 static bool __read_mostly force_emulation_prefix = false;
155 module_param(force_emulation_prefix, bool, S_IRUGO);
156
157 int __read_mostly pi_inject_timer = -1;
158 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
159
160 #define KVM_NR_SHARED_MSRS 16
161
162 struct kvm_shared_msrs_global {
163         int nr;
164         u32 msrs[KVM_NR_SHARED_MSRS];
165 };
166
167 struct kvm_shared_msrs {
168         struct user_return_notifier urn;
169         bool registered;
170         struct kvm_shared_msr_values {
171                 u64 host;
172                 u64 curr;
173         } values[KVM_NR_SHARED_MSRS];
174 };
175
176 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
177 static struct kvm_shared_msrs __percpu *shared_msrs;
178
179 struct kvm_stats_debugfs_item debugfs_entries[] = {
180         { "pf_fixed", VCPU_STAT(pf_fixed) },
181         { "pf_guest", VCPU_STAT(pf_guest) },
182         { "tlb_flush", VCPU_STAT(tlb_flush) },
183         { "invlpg", VCPU_STAT(invlpg) },
184         { "exits", VCPU_STAT(exits) },
185         { "io_exits", VCPU_STAT(io_exits) },
186         { "mmio_exits", VCPU_STAT(mmio_exits) },
187         { "signal_exits", VCPU_STAT(signal_exits) },
188         { "irq_window", VCPU_STAT(irq_window_exits) },
189         { "nmi_window", VCPU_STAT(nmi_window_exits) },
190         { "halt_exits", VCPU_STAT(halt_exits) },
191         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
192         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
193         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
194         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
195         { "hypercalls", VCPU_STAT(hypercalls) },
196         { "request_irq", VCPU_STAT(request_irq_exits) },
197         { "irq_exits", VCPU_STAT(irq_exits) },
198         { "host_state_reload", VCPU_STAT(host_state_reload) },
199         { "fpu_reload", VCPU_STAT(fpu_reload) },
200         { "insn_emulation", VCPU_STAT(insn_emulation) },
201         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
202         { "irq_injections", VCPU_STAT(irq_injections) },
203         { "nmi_injections", VCPU_STAT(nmi_injections) },
204         { "req_event", VCPU_STAT(req_event) },
205         { "l1d_flush", VCPU_STAT(l1d_flush) },
206         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
207         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
208         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
209         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
210         { "mmu_flooded", VM_STAT(mmu_flooded) },
211         { "mmu_recycled", VM_STAT(mmu_recycled) },
212         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
213         { "mmu_unsync", VM_STAT(mmu_unsync) },
214         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
215         { "largepages", VM_STAT(lpages) },
216         { "max_mmu_page_hash_collisions",
217                 VM_STAT(max_mmu_page_hash_collisions) },
218         { NULL }
219 };
220
221 u64 __read_mostly host_xcr0;
222
223 struct kmem_cache *x86_fpu_cache;
224 EXPORT_SYMBOL_GPL(x86_fpu_cache);
225
226 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
227
228 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
229 {
230         int i;
231         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
232                 vcpu->arch.apf.gfns[i] = ~0;
233 }
234
235 static void kvm_on_user_return(struct user_return_notifier *urn)
236 {
237         unsigned slot;
238         struct kvm_shared_msrs *locals
239                 = container_of(urn, struct kvm_shared_msrs, urn);
240         struct kvm_shared_msr_values *values;
241         unsigned long flags;
242
243         /*
244          * Disabling irqs at this point since the following code could be
245          * interrupted and executed through kvm_arch_hardware_disable()
246          */
247         local_irq_save(flags);
248         if (locals->registered) {
249                 locals->registered = false;
250                 user_return_notifier_unregister(urn);
251         }
252         local_irq_restore(flags);
253         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
254                 values = &locals->values[slot];
255                 if (values->host != values->curr) {
256                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
257                         values->curr = values->host;
258                 }
259         }
260 }
261
262 static void shared_msr_update(unsigned slot, u32 msr)
263 {
264         u64 value;
265         unsigned int cpu = smp_processor_id();
266         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
267
268         /* only read, and nobody should modify it at this time,
269          * so don't need lock */
270         if (slot >= shared_msrs_global.nr) {
271                 printk(KERN_ERR "kvm: invalid MSR slot!");
272                 return;
273         }
274         rdmsrl_safe(msr, &value);
275         smsr->values[slot].host = value;
276         smsr->values[slot].curr = value;
277 }
278
279 void kvm_define_shared_msr(unsigned slot, u32 msr)
280 {
281         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
282         shared_msrs_global.msrs[slot] = msr;
283         if (slot >= shared_msrs_global.nr)
284                 shared_msrs_global.nr = slot + 1;
285 }
286 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
287
288 static void kvm_shared_msr_cpu_online(void)
289 {
290         unsigned i;
291
292         for (i = 0; i < shared_msrs_global.nr; ++i)
293                 shared_msr_update(i, shared_msrs_global.msrs[i]);
294 }
295
296 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
297 {
298         unsigned int cpu = smp_processor_id();
299         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300         int err;
301
302         if (((value ^ smsr->values[slot].curr) & mask) == 0)
303                 return 0;
304         smsr->values[slot].curr = value;
305         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
306         if (err)
307                 return 1;
308
309         if (!smsr->registered) {
310                 smsr->urn.on_user_return = kvm_on_user_return;
311                 user_return_notifier_register(&smsr->urn);
312                 smsr->registered = true;
313         }
314         return 0;
315 }
316 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
317
318 static void drop_user_return_notifiers(void)
319 {
320         unsigned int cpu = smp_processor_id();
321         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322
323         if (smsr->registered)
324                 kvm_on_user_return(&smsr->urn);
325 }
326
327 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
328 {
329         return vcpu->arch.apic_base;
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
332
333 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
334 {
335         return kvm_apic_mode(kvm_get_apic_base(vcpu));
336 }
337 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
338
339 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
340 {
341         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
342         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
343         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
344                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
345
346         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
347                 return 1;
348         if (!msr_info->host_initiated) {
349                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
350                         return 1;
351                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
352                         return 1;
353         }
354
355         kvm_lapic_set_base(vcpu, msr_info->data);
356         return 0;
357 }
358 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
359
360 asmlinkage __visible void kvm_spurious_fault(void)
361 {
362         /* Fault while not rebooting.  We want the trace. */
363         BUG();
364 }
365 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
366
367 #define EXCPT_BENIGN            0
368 #define EXCPT_CONTRIBUTORY      1
369 #define EXCPT_PF                2
370
371 static int exception_class(int vector)
372 {
373         switch (vector) {
374         case PF_VECTOR:
375                 return EXCPT_PF;
376         case DE_VECTOR:
377         case TS_VECTOR:
378         case NP_VECTOR:
379         case SS_VECTOR:
380         case GP_VECTOR:
381                 return EXCPT_CONTRIBUTORY;
382         default:
383                 break;
384         }
385         return EXCPT_BENIGN;
386 }
387
388 #define EXCPT_FAULT             0
389 #define EXCPT_TRAP              1
390 #define EXCPT_ABORT             2
391 #define EXCPT_INTERRUPT         3
392
393 static int exception_type(int vector)
394 {
395         unsigned int mask;
396
397         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
398                 return EXCPT_INTERRUPT;
399
400         mask = 1 << vector;
401
402         /* #DB is trap, as instruction watchpoints are handled elsewhere */
403         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
404                 return EXCPT_TRAP;
405
406         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
407                 return EXCPT_ABORT;
408
409         /* Reserved exceptions will result in fault */
410         return EXCPT_FAULT;
411 }
412
413 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
414 {
415         unsigned nr = vcpu->arch.exception.nr;
416         bool has_payload = vcpu->arch.exception.has_payload;
417         unsigned long payload = vcpu->arch.exception.payload;
418
419         if (!has_payload)
420                 return;
421
422         switch (nr) {
423         case DB_VECTOR:
424                 /*
425                  * "Certain debug exceptions may clear bit 0-3.  The
426                  * remaining contents of the DR6 register are never
427                  * cleared by the processor".
428                  */
429                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
430                 /*
431                  * DR6.RTM is set by all #DB exceptions that don't clear it.
432                  */
433                 vcpu->arch.dr6 |= DR6_RTM;
434                 vcpu->arch.dr6 |= payload;
435                 /*
436                  * Bit 16 should be set in the payload whenever the #DB
437                  * exception should clear DR6.RTM. This makes the payload
438                  * compatible with the pending debug exceptions under VMX.
439                  * Though not currently documented in the SDM, this also
440                  * makes the payload compatible with the exit qualification
441                  * for #DB exceptions under VMX.
442                  */
443                 vcpu->arch.dr6 ^= payload & DR6_RTM;
444                 break;
445         case PF_VECTOR:
446                 vcpu->arch.cr2 = payload;
447                 break;
448         }
449
450         vcpu->arch.exception.has_payload = false;
451         vcpu->arch.exception.payload = 0;
452 }
453 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
454
455 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
456                 unsigned nr, bool has_error, u32 error_code,
457                 bool has_payload, unsigned long payload, bool reinject)
458 {
459         u32 prev_nr;
460         int class1, class2;
461
462         kvm_make_request(KVM_REQ_EVENT, vcpu);
463
464         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
465         queue:
466                 if (has_error && !is_protmode(vcpu))
467                         has_error = false;
468                 if (reinject) {
469                         /*
470                          * On vmentry, vcpu->arch.exception.pending is only
471                          * true if an event injection was blocked by
472                          * nested_run_pending.  In that case, however,
473                          * vcpu_enter_guest requests an immediate exit,
474                          * and the guest shouldn't proceed far enough to
475                          * need reinjection.
476                          */
477                         WARN_ON_ONCE(vcpu->arch.exception.pending);
478                         vcpu->arch.exception.injected = true;
479                         if (WARN_ON_ONCE(has_payload)) {
480                                 /*
481                                  * A reinjected event has already
482                                  * delivered its payload.
483                                  */
484                                 has_payload = false;
485                                 payload = 0;
486                         }
487                 } else {
488                         vcpu->arch.exception.pending = true;
489                         vcpu->arch.exception.injected = false;
490                 }
491                 vcpu->arch.exception.has_error_code = has_error;
492                 vcpu->arch.exception.nr = nr;
493                 vcpu->arch.exception.error_code = error_code;
494                 vcpu->arch.exception.has_payload = has_payload;
495                 vcpu->arch.exception.payload = payload;
496                 /*
497                  * In guest mode, payload delivery should be deferred,
498                  * so that the L1 hypervisor can intercept #PF before
499                  * CR2 is modified (or intercept #DB before DR6 is
500                  * modified under nVMX).  However, for ABI
501                  * compatibility with KVM_GET_VCPU_EVENTS and
502                  * KVM_SET_VCPU_EVENTS, we can't delay payload
503                  * delivery unless userspace has enabled this
504                  * functionality via the per-VM capability,
505                  * KVM_CAP_EXCEPTION_PAYLOAD.
506                  */
507                 if (!vcpu->kvm->arch.exception_payload_enabled ||
508                     !is_guest_mode(vcpu))
509                         kvm_deliver_exception_payload(vcpu);
510                 return;
511         }
512
513         /* to check exception */
514         prev_nr = vcpu->arch.exception.nr;
515         if (prev_nr == DF_VECTOR) {
516                 /* triple fault -> shutdown */
517                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
518                 return;
519         }
520         class1 = exception_class(prev_nr);
521         class2 = exception_class(nr);
522         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
523                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
524                 /*
525                  * Generate double fault per SDM Table 5-5.  Set
526                  * exception.pending = true so that the double fault
527                  * can trigger a nested vmexit.
528                  */
529                 vcpu->arch.exception.pending = true;
530                 vcpu->arch.exception.injected = false;
531                 vcpu->arch.exception.has_error_code = true;
532                 vcpu->arch.exception.nr = DF_VECTOR;
533                 vcpu->arch.exception.error_code = 0;
534                 vcpu->arch.exception.has_payload = false;
535                 vcpu->arch.exception.payload = 0;
536         } else
537                 /* replace previous exception with a new one in a hope
538                    that instruction re-execution will regenerate lost
539                    exception */
540                 goto queue;
541 }
542
543 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
544 {
545         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
546 }
547 EXPORT_SYMBOL_GPL(kvm_queue_exception);
548
549 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
550 {
551         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
552 }
553 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
554
555 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
556                                   unsigned long payload)
557 {
558         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
559 }
560
561 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
562                                     u32 error_code, unsigned long payload)
563 {
564         kvm_multiple_exception(vcpu, nr, true, error_code,
565                                true, payload, false);
566 }
567
568 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
569 {
570         if (err)
571                 kvm_inject_gp(vcpu, 0);
572         else
573                 return kvm_skip_emulated_instruction(vcpu);
574
575         return 1;
576 }
577 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
578
579 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
580 {
581         ++vcpu->stat.pf_guest;
582         vcpu->arch.exception.nested_apf =
583                 is_guest_mode(vcpu) && fault->async_page_fault;
584         if (vcpu->arch.exception.nested_apf) {
585                 vcpu->arch.apf.nested_apf_token = fault->address;
586                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
587         } else {
588                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
589                                         fault->address);
590         }
591 }
592 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
593
594 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
595 {
596         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
597                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
598         else
599                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
600
601         return fault->nested_page_fault;
602 }
603
604 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
605 {
606         atomic_inc(&vcpu->arch.nmi_queued);
607         kvm_make_request(KVM_REQ_NMI, vcpu);
608 }
609 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
610
611 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
612 {
613         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
614 }
615 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
616
617 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
618 {
619         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
620 }
621 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
622
623 /*
624  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
625  * a #GP and return false.
626  */
627 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
628 {
629         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
630                 return true;
631         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
632         return false;
633 }
634 EXPORT_SYMBOL_GPL(kvm_require_cpl);
635
636 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
637 {
638         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
639                 return true;
640
641         kvm_queue_exception(vcpu, UD_VECTOR);
642         return false;
643 }
644 EXPORT_SYMBOL_GPL(kvm_require_dr);
645
646 /*
647  * This function will be used to read from the physical memory of the currently
648  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
649  * can read from guest physical or from the guest's guest physical memory.
650  */
651 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
652                             gfn_t ngfn, void *data, int offset, int len,
653                             u32 access)
654 {
655         struct x86_exception exception;
656         gfn_t real_gfn;
657         gpa_t ngpa;
658
659         ngpa     = gfn_to_gpa(ngfn);
660         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
661         if (real_gfn == UNMAPPED_GVA)
662                 return -EFAULT;
663
664         real_gfn = gpa_to_gfn(real_gfn);
665
666         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
667 }
668 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
669
670 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
671                                void *data, int offset, int len, u32 access)
672 {
673         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
674                                        data, offset, len, access);
675 }
676
677 /*
678  * Load the pae pdptrs.  Return true is they are all valid.
679  */
680 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
681 {
682         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
683         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
684         int i;
685         int ret;
686         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
687
688         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
689                                       offset * sizeof(u64), sizeof(pdpte),
690                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
691         if (ret < 0) {
692                 ret = 0;
693                 goto out;
694         }
695         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
696                 if ((pdpte[i] & PT_PRESENT_MASK) &&
697                     (pdpte[i] &
698                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
699                         ret = 0;
700                         goto out;
701                 }
702         }
703         ret = 1;
704
705         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
706         __set_bit(VCPU_EXREG_PDPTR,
707                   (unsigned long *)&vcpu->arch.regs_avail);
708         __set_bit(VCPU_EXREG_PDPTR,
709                   (unsigned long *)&vcpu->arch.regs_dirty);
710 out:
711
712         return ret;
713 }
714 EXPORT_SYMBOL_GPL(load_pdptrs);
715
716 bool pdptrs_changed(struct kvm_vcpu *vcpu)
717 {
718         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
719         bool changed = true;
720         int offset;
721         gfn_t gfn;
722         int r;
723
724         if (!is_pae_paging(vcpu))
725                 return false;
726
727         if (!test_bit(VCPU_EXREG_PDPTR,
728                       (unsigned long *)&vcpu->arch.regs_avail))
729                 return true;
730
731         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
732         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
733         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
734                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
735         if (r < 0)
736                 goto out;
737         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
738 out:
739
740         return changed;
741 }
742 EXPORT_SYMBOL_GPL(pdptrs_changed);
743
744 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
745 {
746         unsigned long old_cr0 = kvm_read_cr0(vcpu);
747         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
748
749         cr0 |= X86_CR0_ET;
750
751 #ifdef CONFIG_X86_64
752         if (cr0 & 0xffffffff00000000UL)
753                 return 1;
754 #endif
755
756         cr0 &= ~CR0_RESERVED_BITS;
757
758         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
759                 return 1;
760
761         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
762                 return 1;
763
764         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
765 #ifdef CONFIG_X86_64
766                 if ((vcpu->arch.efer & EFER_LME)) {
767                         int cs_db, cs_l;
768
769                         if (!is_pae(vcpu))
770                                 return 1;
771                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
772                         if (cs_l)
773                                 return 1;
774                 } else
775 #endif
776                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
777                                                  kvm_read_cr3(vcpu)))
778                         return 1;
779         }
780
781         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
782                 return 1;
783
784         kvm_x86_ops->set_cr0(vcpu, cr0);
785
786         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
787                 kvm_clear_async_pf_completion_queue(vcpu);
788                 kvm_async_pf_hash_reset(vcpu);
789         }
790
791         if ((cr0 ^ old_cr0) & update_bits)
792                 kvm_mmu_reset_context(vcpu);
793
794         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
795             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
796             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
797                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
798
799         return 0;
800 }
801 EXPORT_SYMBOL_GPL(kvm_set_cr0);
802
803 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
804 {
805         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
806 }
807 EXPORT_SYMBOL_GPL(kvm_lmsw);
808
809 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
810 {
811         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
812                         !vcpu->guest_xcr0_loaded) {
813                 /* kvm_set_xcr() also depends on this */
814                 if (vcpu->arch.xcr0 != host_xcr0)
815                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
816                 vcpu->guest_xcr0_loaded = 1;
817         }
818 }
819 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
820
821 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
822 {
823         if (vcpu->guest_xcr0_loaded) {
824                 if (vcpu->arch.xcr0 != host_xcr0)
825                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
826                 vcpu->guest_xcr0_loaded = 0;
827         }
828 }
829 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
830
831 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
832 {
833         u64 xcr0 = xcr;
834         u64 old_xcr0 = vcpu->arch.xcr0;
835         u64 valid_bits;
836
837         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
838         if (index != XCR_XFEATURE_ENABLED_MASK)
839                 return 1;
840         if (!(xcr0 & XFEATURE_MASK_FP))
841                 return 1;
842         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
843                 return 1;
844
845         /*
846          * Do not allow the guest to set bits that we do not support
847          * saving.  However, xcr0 bit 0 is always set, even if the
848          * emulated CPU does not support XSAVE (see fx_init).
849          */
850         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
851         if (xcr0 & ~valid_bits)
852                 return 1;
853
854         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
855             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
856                 return 1;
857
858         if (xcr0 & XFEATURE_MASK_AVX512) {
859                 if (!(xcr0 & XFEATURE_MASK_YMM))
860                         return 1;
861                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
862                         return 1;
863         }
864         vcpu->arch.xcr0 = xcr0;
865
866         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
867                 kvm_update_cpuid(vcpu);
868         return 0;
869 }
870
871 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
872 {
873         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
874             __kvm_set_xcr(vcpu, index, xcr)) {
875                 kvm_inject_gp(vcpu, 0);
876                 return 1;
877         }
878         return 0;
879 }
880 EXPORT_SYMBOL_GPL(kvm_set_xcr);
881
882 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
883 {
884         unsigned long old_cr4 = kvm_read_cr4(vcpu);
885         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
886                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
887
888         if (cr4 & CR4_RESERVED_BITS)
889                 return 1;
890
891         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
892                 return 1;
893
894         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
895                 return 1;
896
897         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
898                 return 1;
899
900         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
901                 return 1;
902
903         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
904                 return 1;
905
906         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
907                 return 1;
908
909         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
910                 return 1;
911
912         if (is_long_mode(vcpu)) {
913                 if (!(cr4 & X86_CR4_PAE))
914                         return 1;
915         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
916                    && ((cr4 ^ old_cr4) & pdptr_bits)
917                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
918                                    kvm_read_cr3(vcpu)))
919                 return 1;
920
921         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
922                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
923                         return 1;
924
925                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
926                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
927                         return 1;
928         }
929
930         if (kvm_x86_ops->set_cr4(vcpu, cr4))
931                 return 1;
932
933         if (((cr4 ^ old_cr4) & pdptr_bits) ||
934             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
935                 kvm_mmu_reset_context(vcpu);
936
937         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
938                 kvm_update_cpuid(vcpu);
939
940         return 0;
941 }
942 EXPORT_SYMBOL_GPL(kvm_set_cr4);
943
944 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
945 {
946         bool skip_tlb_flush = false;
947 #ifdef CONFIG_X86_64
948         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
949
950         if (pcid_enabled) {
951                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
952                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
953         }
954 #endif
955
956         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
957                 if (!skip_tlb_flush) {
958                         kvm_mmu_sync_roots(vcpu);
959                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
960                 }
961                 return 0;
962         }
963
964         if (is_long_mode(vcpu) &&
965             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
966                 return 1;
967         else if (is_pae_paging(vcpu) &&
968                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
969                 return 1;
970
971         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
972         vcpu->arch.cr3 = cr3;
973         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
974
975         return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_set_cr3);
978
979 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
980 {
981         if (cr8 & CR8_RESERVED_BITS)
982                 return 1;
983         if (lapic_in_kernel(vcpu))
984                 kvm_lapic_set_tpr(vcpu, cr8);
985         else
986                 vcpu->arch.cr8 = cr8;
987         return 0;
988 }
989 EXPORT_SYMBOL_GPL(kvm_set_cr8);
990
991 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
992 {
993         if (lapic_in_kernel(vcpu))
994                 return kvm_lapic_get_cr8(vcpu);
995         else
996                 return vcpu->arch.cr8;
997 }
998 EXPORT_SYMBOL_GPL(kvm_get_cr8);
999
1000 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1001 {
1002         int i;
1003
1004         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1005                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1006                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1007                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1008         }
1009 }
1010
1011 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1012 {
1013         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1014                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1015 }
1016
1017 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1018 {
1019         unsigned long dr7;
1020
1021         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1022                 dr7 = vcpu->arch.guest_debug_dr7;
1023         else
1024                 dr7 = vcpu->arch.dr7;
1025         kvm_x86_ops->set_dr7(vcpu, dr7);
1026         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1027         if (dr7 & DR7_BP_EN_MASK)
1028                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1029 }
1030
1031 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1032 {
1033         u64 fixed = DR6_FIXED_1;
1034
1035         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1036                 fixed |= DR6_RTM;
1037         return fixed;
1038 }
1039
1040 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1041 {
1042         switch (dr) {
1043         case 0 ... 3:
1044                 vcpu->arch.db[dr] = val;
1045                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1046                         vcpu->arch.eff_db[dr] = val;
1047                 break;
1048         case 4:
1049                 /* fall through */
1050         case 6:
1051                 if (val & 0xffffffff00000000ULL)
1052                         return -1; /* #GP */
1053                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1054                 kvm_update_dr6(vcpu);
1055                 break;
1056         case 5:
1057                 /* fall through */
1058         default: /* 7 */
1059                 if (val & 0xffffffff00000000ULL)
1060                         return -1; /* #GP */
1061                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1062                 kvm_update_dr7(vcpu);
1063                 break;
1064         }
1065
1066         return 0;
1067 }
1068
1069 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1070 {
1071         if (__kvm_set_dr(vcpu, dr, val)) {
1072                 kvm_inject_gp(vcpu, 0);
1073                 return 1;
1074         }
1075         return 0;
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_set_dr);
1078
1079 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1080 {
1081         switch (dr) {
1082         case 0 ... 3:
1083                 *val = vcpu->arch.db[dr];
1084                 break;
1085         case 4:
1086                 /* fall through */
1087         case 6:
1088                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1089                         *val = vcpu->arch.dr6;
1090                 else
1091                         *val = kvm_x86_ops->get_dr6(vcpu);
1092                 break;
1093         case 5:
1094                 /* fall through */
1095         default: /* 7 */
1096                 *val = vcpu->arch.dr7;
1097                 break;
1098         }
1099         return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(kvm_get_dr);
1102
1103 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1104 {
1105         u32 ecx = kvm_rcx_read(vcpu);
1106         u64 data;
1107         int err;
1108
1109         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1110         if (err)
1111                 return err;
1112         kvm_rax_write(vcpu, (u32)data);
1113         kvm_rdx_write(vcpu, data >> 32);
1114         return err;
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1117
1118 /*
1119  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1120  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1121  *
1122  * This list is modified at module load time to reflect the
1123  * capabilities of the host cpu. This capabilities test skips MSRs that are
1124  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1125  * may depend on host virtualization features rather than host cpu features.
1126  */
1127
1128 static u32 msrs_to_save[] = {
1129         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1130         MSR_STAR,
1131 #ifdef CONFIG_X86_64
1132         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1133 #endif
1134         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1135         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1136         MSR_IA32_SPEC_CTRL,
1137         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1138         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1139         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1140         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1141         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1142         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1143 };
1144
1145 static unsigned num_msrs_to_save;
1146
1147 static u32 emulated_msrs[] = {
1148         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1149         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1150         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1151         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1152         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1153         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1154         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1155         HV_X64_MSR_RESET,
1156         HV_X64_MSR_VP_INDEX,
1157         HV_X64_MSR_VP_RUNTIME,
1158         HV_X64_MSR_SCONTROL,
1159         HV_X64_MSR_STIMER0_CONFIG,
1160         HV_X64_MSR_VP_ASSIST_PAGE,
1161         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1162         HV_X64_MSR_TSC_EMULATION_STATUS,
1163
1164         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1165         MSR_KVM_PV_EOI_EN,
1166
1167         MSR_IA32_TSC_ADJUST,
1168         MSR_IA32_TSCDEADLINE,
1169         MSR_IA32_ARCH_CAPABILITIES,
1170         MSR_IA32_MISC_ENABLE,
1171         MSR_IA32_MCG_STATUS,
1172         MSR_IA32_MCG_CTL,
1173         MSR_IA32_MCG_EXT_CTL,
1174         MSR_IA32_SMBASE,
1175         MSR_SMI_COUNT,
1176         MSR_PLATFORM_INFO,
1177         MSR_MISC_FEATURES_ENABLES,
1178         MSR_AMD64_VIRT_SPEC_CTRL,
1179         MSR_IA32_POWER_CTL,
1180
1181         /*
1182          * The following list leaves out MSRs whose values are determined
1183          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1184          * We always support the "true" VMX control MSRs, even if the host
1185          * processor does not, so I am putting these registers here rather
1186          * than in msrs_to_save.
1187          */
1188         MSR_IA32_VMX_BASIC,
1189         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1190         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1191         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1192         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1193         MSR_IA32_VMX_MISC,
1194         MSR_IA32_VMX_CR0_FIXED0,
1195         MSR_IA32_VMX_CR4_FIXED0,
1196         MSR_IA32_VMX_VMCS_ENUM,
1197         MSR_IA32_VMX_PROCBASED_CTLS2,
1198         MSR_IA32_VMX_EPT_VPID_CAP,
1199         MSR_IA32_VMX_VMFUNC,
1200
1201         MSR_K7_HWCR,
1202         MSR_KVM_POLL_CONTROL,
1203 };
1204
1205 static unsigned num_emulated_msrs;
1206
1207 /*
1208  * List of msr numbers which are used to expose MSR-based features that
1209  * can be used by a hypervisor to validate requested CPU features.
1210  */
1211 static u32 msr_based_features[] = {
1212         MSR_IA32_VMX_BASIC,
1213         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1214         MSR_IA32_VMX_PINBASED_CTLS,
1215         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1216         MSR_IA32_VMX_PROCBASED_CTLS,
1217         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1218         MSR_IA32_VMX_EXIT_CTLS,
1219         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1220         MSR_IA32_VMX_ENTRY_CTLS,
1221         MSR_IA32_VMX_MISC,
1222         MSR_IA32_VMX_CR0_FIXED0,
1223         MSR_IA32_VMX_CR0_FIXED1,
1224         MSR_IA32_VMX_CR4_FIXED0,
1225         MSR_IA32_VMX_CR4_FIXED1,
1226         MSR_IA32_VMX_VMCS_ENUM,
1227         MSR_IA32_VMX_PROCBASED_CTLS2,
1228         MSR_IA32_VMX_EPT_VPID_CAP,
1229         MSR_IA32_VMX_VMFUNC,
1230
1231         MSR_F10H_DECFG,
1232         MSR_IA32_UCODE_REV,
1233         MSR_IA32_ARCH_CAPABILITIES,
1234 };
1235
1236 static unsigned int num_msr_based_features;
1237
1238 static u64 kvm_get_arch_capabilities(void)
1239 {
1240         u64 data = 0;
1241
1242         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1243                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1244
1245         /*
1246          * If we're doing cache flushes (either "always" or "cond")
1247          * we will do one whenever the guest does a vmlaunch/vmresume.
1248          * If an outer hypervisor is doing the cache flush for us
1249          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1250          * capability to the guest too, and if EPT is disabled we're not
1251          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1252          * require a nested hypervisor to do a flush of its own.
1253          */
1254         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1255                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1256
1257         return data;
1258 }
1259
1260 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1261 {
1262         switch (msr->index) {
1263         case MSR_IA32_ARCH_CAPABILITIES:
1264                 msr->data = kvm_get_arch_capabilities();
1265                 break;
1266         case MSR_IA32_UCODE_REV:
1267                 rdmsrl_safe(msr->index, &msr->data);
1268                 break;
1269         default:
1270                 if (kvm_x86_ops->get_msr_feature(msr))
1271                         return 1;
1272         }
1273         return 0;
1274 }
1275
1276 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1277 {
1278         struct kvm_msr_entry msr;
1279         int r;
1280
1281         msr.index = index;
1282         r = kvm_get_msr_feature(&msr);
1283         if (r)
1284                 return r;
1285
1286         *data = msr.data;
1287
1288         return 0;
1289 }
1290
1291 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1292 {
1293         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1294                 return false;
1295
1296         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1297                 return false;
1298
1299         if (efer & (EFER_LME | EFER_LMA) &&
1300             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1301                 return false;
1302
1303         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1304                 return false;
1305
1306         return true;
1307
1308 }
1309 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1310 {
1311         if (efer & efer_reserved_bits)
1312                 return false;
1313
1314         return __kvm_valid_efer(vcpu, efer);
1315 }
1316 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1317
1318 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1319 {
1320         u64 old_efer = vcpu->arch.efer;
1321         u64 efer = msr_info->data;
1322
1323         if (efer & efer_reserved_bits)
1324                 return 1;
1325
1326         if (!msr_info->host_initiated) {
1327                 if (!__kvm_valid_efer(vcpu, efer))
1328                         return 1;
1329
1330                 if (is_paging(vcpu) &&
1331                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1332                         return 1;
1333         }
1334
1335         efer &= ~EFER_LMA;
1336         efer |= vcpu->arch.efer & EFER_LMA;
1337
1338         kvm_x86_ops->set_efer(vcpu, efer);
1339
1340         /* Update reserved bits */
1341         if ((efer ^ old_efer) & EFER_NX)
1342                 kvm_mmu_reset_context(vcpu);
1343
1344         return 0;
1345 }
1346
1347 void kvm_enable_efer_bits(u64 mask)
1348 {
1349        efer_reserved_bits &= ~mask;
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1352
1353 /*
1354  * Writes msr value into into the appropriate "register".
1355  * Returns 0 on success, non-0 otherwise.
1356  * Assumes vcpu_load() was already called.
1357  */
1358 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1359 {
1360         switch (msr->index) {
1361         case MSR_FS_BASE:
1362         case MSR_GS_BASE:
1363         case MSR_KERNEL_GS_BASE:
1364         case MSR_CSTAR:
1365         case MSR_LSTAR:
1366                 if (is_noncanonical_address(msr->data, vcpu))
1367                         return 1;
1368                 break;
1369         case MSR_IA32_SYSENTER_EIP:
1370         case MSR_IA32_SYSENTER_ESP:
1371                 /*
1372                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1373                  * non-canonical address is written on Intel but not on
1374                  * AMD (which ignores the top 32-bits, because it does
1375                  * not implement 64-bit SYSENTER).
1376                  *
1377                  * 64-bit code should hence be able to write a non-canonical
1378                  * value on AMD.  Making the address canonical ensures that
1379                  * vmentry does not fail on Intel after writing a non-canonical
1380                  * value, and that something deterministic happens if the guest
1381                  * invokes 64-bit SYSENTER.
1382                  */
1383                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1384         }
1385         return kvm_x86_ops->set_msr(vcpu, msr);
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_set_msr);
1388
1389 /*
1390  * Adapt set_msr() to msr_io()'s calling convention
1391  */
1392 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1393 {
1394         struct msr_data msr;
1395         int r;
1396
1397         msr.index = index;
1398         msr.host_initiated = true;
1399         r = kvm_get_msr(vcpu, &msr);
1400         if (r)
1401                 return r;
1402
1403         *data = msr.data;
1404         return 0;
1405 }
1406
1407 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1408 {
1409         struct msr_data msr;
1410
1411         msr.data = *data;
1412         msr.index = index;
1413         msr.host_initiated = true;
1414         return kvm_set_msr(vcpu, &msr);
1415 }
1416
1417 #ifdef CONFIG_X86_64
1418 struct pvclock_gtod_data {
1419         seqcount_t      seq;
1420
1421         struct { /* extract of a clocksource struct */
1422                 int vclock_mode;
1423                 u64     cycle_last;
1424                 u64     mask;
1425                 u32     mult;
1426                 u32     shift;
1427         } clock;
1428
1429         u64             boot_ns;
1430         u64             nsec_base;
1431         u64             wall_time_sec;
1432 };
1433
1434 static struct pvclock_gtod_data pvclock_gtod_data;
1435
1436 static void update_pvclock_gtod(struct timekeeper *tk)
1437 {
1438         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1439         u64 boot_ns;
1440
1441         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1442
1443         write_seqcount_begin(&vdata->seq);
1444
1445         /* copy pvclock gtod data */
1446         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1447         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1448         vdata->clock.mask               = tk->tkr_mono.mask;
1449         vdata->clock.mult               = tk->tkr_mono.mult;
1450         vdata->clock.shift              = tk->tkr_mono.shift;
1451
1452         vdata->boot_ns                  = boot_ns;
1453         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1454
1455         vdata->wall_time_sec            = tk->xtime_sec;
1456
1457         write_seqcount_end(&vdata->seq);
1458 }
1459 #endif
1460
1461 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1462 {
1463         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1464         kvm_vcpu_kick(vcpu);
1465 }
1466
1467 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1468 {
1469         int version;
1470         int r;
1471         struct pvclock_wall_clock wc;
1472         struct timespec64 boot;
1473
1474         if (!wall_clock)
1475                 return;
1476
1477         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1478         if (r)
1479                 return;
1480
1481         if (version & 1)
1482                 ++version;  /* first time write, random junk */
1483
1484         ++version;
1485
1486         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1487                 return;
1488
1489         /*
1490          * The guest calculates current wall clock time by adding
1491          * system time (updated by kvm_guest_time_update below) to the
1492          * wall clock specified here.  guest system time equals host
1493          * system time for us, thus we must fill in host boot time here.
1494          */
1495         getboottime64(&boot);
1496
1497         if (kvm->arch.kvmclock_offset) {
1498                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1499                 boot = timespec64_sub(boot, ts);
1500         }
1501         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1502         wc.nsec = boot.tv_nsec;
1503         wc.version = version;
1504
1505         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1506
1507         version++;
1508         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1509 }
1510
1511 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1512 {
1513         do_shl32_div32(dividend, divisor);
1514         return dividend;
1515 }
1516
1517 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1518                                s8 *pshift, u32 *pmultiplier)
1519 {
1520         uint64_t scaled64;
1521         int32_t  shift = 0;
1522         uint64_t tps64;
1523         uint32_t tps32;
1524
1525         tps64 = base_hz;
1526         scaled64 = scaled_hz;
1527         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1528                 tps64 >>= 1;
1529                 shift--;
1530         }
1531
1532         tps32 = (uint32_t)tps64;
1533         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1534                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1535                         scaled64 >>= 1;
1536                 else
1537                         tps32 <<= 1;
1538                 shift++;
1539         }
1540
1541         *pshift = shift;
1542         *pmultiplier = div_frac(scaled64, tps32);
1543 }
1544
1545 #ifdef CONFIG_X86_64
1546 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1547 #endif
1548
1549 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1550 static unsigned long max_tsc_khz;
1551
1552 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1553 {
1554         u64 v = (u64)khz * (1000000 + ppm);
1555         do_div(v, 1000000);
1556         return v;
1557 }
1558
1559 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1560 {
1561         u64 ratio;
1562
1563         /* Guest TSC same frequency as host TSC? */
1564         if (!scale) {
1565                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1566                 return 0;
1567         }
1568
1569         /* TSC scaling supported? */
1570         if (!kvm_has_tsc_control) {
1571                 if (user_tsc_khz > tsc_khz) {
1572                         vcpu->arch.tsc_catchup = 1;
1573                         vcpu->arch.tsc_always_catchup = 1;
1574                         return 0;
1575                 } else {
1576                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1577                         return -1;
1578                 }
1579         }
1580
1581         /* TSC scaling required  - calculate ratio */
1582         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1583                                 user_tsc_khz, tsc_khz);
1584
1585         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1586                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1587                                     user_tsc_khz);
1588                 return -1;
1589         }
1590
1591         vcpu->arch.tsc_scaling_ratio = ratio;
1592         return 0;
1593 }
1594
1595 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1596 {
1597         u32 thresh_lo, thresh_hi;
1598         int use_scaling = 0;
1599
1600         /* tsc_khz can be zero if TSC calibration fails */
1601         if (user_tsc_khz == 0) {
1602                 /* set tsc_scaling_ratio to a safe value */
1603                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1604                 return -1;
1605         }
1606
1607         /* Compute a scale to convert nanoseconds in TSC cycles */
1608         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1609                            &vcpu->arch.virtual_tsc_shift,
1610                            &vcpu->arch.virtual_tsc_mult);
1611         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1612
1613         /*
1614          * Compute the variation in TSC rate which is acceptable
1615          * within the range of tolerance and decide if the
1616          * rate being applied is within that bounds of the hardware
1617          * rate.  If so, no scaling or compensation need be done.
1618          */
1619         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1620         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1621         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1622                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1623                 use_scaling = 1;
1624         }
1625         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1626 }
1627
1628 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1629 {
1630         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1631                                       vcpu->arch.virtual_tsc_mult,
1632                                       vcpu->arch.virtual_tsc_shift);
1633         tsc += vcpu->arch.this_tsc_write;
1634         return tsc;
1635 }
1636
1637 static inline int gtod_is_based_on_tsc(int mode)
1638 {
1639         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1640 }
1641
1642 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1643 {
1644 #ifdef CONFIG_X86_64
1645         bool vcpus_matched;
1646         struct kvm_arch *ka = &vcpu->kvm->arch;
1647         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1648
1649         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1650                          atomic_read(&vcpu->kvm->online_vcpus));
1651
1652         /*
1653          * Once the masterclock is enabled, always perform request in
1654          * order to update it.
1655          *
1656          * In order to enable masterclock, the host clocksource must be TSC
1657          * and the vcpus need to have matched TSCs.  When that happens,
1658          * perform request to enable masterclock.
1659          */
1660         if (ka->use_master_clock ||
1661             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1662                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1663
1664         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1665                             atomic_read(&vcpu->kvm->online_vcpus),
1666                             ka->use_master_clock, gtod->clock.vclock_mode);
1667 #endif
1668 }
1669
1670 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1671 {
1672         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1673         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1674 }
1675
1676 /*
1677  * Multiply tsc by a fixed point number represented by ratio.
1678  *
1679  * The most significant 64-N bits (mult) of ratio represent the
1680  * integral part of the fixed point number; the remaining N bits
1681  * (frac) represent the fractional part, ie. ratio represents a fixed
1682  * point number (mult + frac * 2^(-N)).
1683  *
1684  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1685  */
1686 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1687 {
1688         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1689 }
1690
1691 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1692 {
1693         u64 _tsc = tsc;
1694         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1695
1696         if (ratio != kvm_default_tsc_scaling_ratio)
1697                 _tsc = __scale_tsc(ratio, tsc);
1698
1699         return _tsc;
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1702
1703 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1704 {
1705         u64 tsc;
1706
1707         tsc = kvm_scale_tsc(vcpu, rdtsc());
1708
1709         return target_tsc - tsc;
1710 }
1711
1712 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1713 {
1714         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1715
1716         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1719
1720 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1721 {
1722         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1723 }
1724
1725 static inline bool kvm_check_tsc_unstable(void)
1726 {
1727 #ifdef CONFIG_X86_64
1728         /*
1729          * TSC is marked unstable when we're running on Hyper-V,
1730          * 'TSC page' clocksource is good.
1731          */
1732         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1733                 return false;
1734 #endif
1735         return check_tsc_unstable();
1736 }
1737
1738 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1739 {
1740         struct kvm *kvm = vcpu->kvm;
1741         u64 offset, ns, elapsed;
1742         unsigned long flags;
1743         bool matched;
1744         bool already_matched;
1745         u64 data = msr->data;
1746         bool synchronizing = false;
1747
1748         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1749         offset = kvm_compute_tsc_offset(vcpu, data);
1750         ns = ktime_get_boottime_ns();
1751         elapsed = ns - kvm->arch.last_tsc_nsec;
1752
1753         if (vcpu->arch.virtual_tsc_khz) {
1754                 if (data == 0 && msr->host_initiated) {
1755                         /*
1756                          * detection of vcpu initialization -- need to sync
1757                          * with other vCPUs. This particularly helps to keep
1758                          * kvm_clock stable after CPU hotplug
1759                          */
1760                         synchronizing = true;
1761                 } else {
1762                         u64 tsc_exp = kvm->arch.last_tsc_write +
1763                                                 nsec_to_cycles(vcpu, elapsed);
1764                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1765                         /*
1766                          * Special case: TSC write with a small delta (1 second)
1767                          * of virtual cycle time against real time is
1768                          * interpreted as an attempt to synchronize the CPU.
1769                          */
1770                         synchronizing = data < tsc_exp + tsc_hz &&
1771                                         data + tsc_hz > tsc_exp;
1772                 }
1773         }
1774
1775         /*
1776          * For a reliable TSC, we can match TSC offsets, and for an unstable
1777          * TSC, we add elapsed time in this computation.  We could let the
1778          * compensation code attempt to catch up if we fall behind, but
1779          * it's better to try to match offsets from the beginning.
1780          */
1781         if (synchronizing &&
1782             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1783                 if (!kvm_check_tsc_unstable()) {
1784                         offset = kvm->arch.cur_tsc_offset;
1785                 } else {
1786                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1787                         data += delta;
1788                         offset = kvm_compute_tsc_offset(vcpu, data);
1789                 }
1790                 matched = true;
1791                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1792         } else {
1793                 /*
1794                  * We split periods of matched TSC writes into generations.
1795                  * For each generation, we track the original measured
1796                  * nanosecond time, offset, and write, so if TSCs are in
1797                  * sync, we can match exact offset, and if not, we can match
1798                  * exact software computation in compute_guest_tsc()
1799                  *
1800                  * These values are tracked in kvm->arch.cur_xxx variables.
1801                  */
1802                 kvm->arch.cur_tsc_generation++;
1803                 kvm->arch.cur_tsc_nsec = ns;
1804                 kvm->arch.cur_tsc_write = data;
1805                 kvm->arch.cur_tsc_offset = offset;
1806                 matched = false;
1807         }
1808
1809         /*
1810          * We also track th most recent recorded KHZ, write and time to
1811          * allow the matching interval to be extended at each write.
1812          */
1813         kvm->arch.last_tsc_nsec = ns;
1814         kvm->arch.last_tsc_write = data;
1815         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1816
1817         vcpu->arch.last_guest_tsc = data;
1818
1819         /* Keep track of which generation this VCPU has synchronized to */
1820         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1821         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1822         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1823
1824         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1825                 update_ia32_tsc_adjust_msr(vcpu, offset);
1826
1827         kvm_vcpu_write_tsc_offset(vcpu, offset);
1828         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1829
1830         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1831         if (!matched) {
1832                 kvm->arch.nr_vcpus_matched_tsc = 0;
1833         } else if (!already_matched) {
1834                 kvm->arch.nr_vcpus_matched_tsc++;
1835         }
1836
1837         kvm_track_tsc_matching(vcpu);
1838         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1839 }
1840
1841 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1842
1843 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1844                                            s64 adjustment)
1845 {
1846         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1847         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1848 }
1849
1850 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1851 {
1852         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1853                 WARN_ON(adjustment < 0);
1854         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1855         adjust_tsc_offset_guest(vcpu, adjustment);
1856 }
1857
1858 #ifdef CONFIG_X86_64
1859
1860 static u64 read_tsc(void)
1861 {
1862         u64 ret = (u64)rdtsc_ordered();
1863         u64 last = pvclock_gtod_data.clock.cycle_last;
1864
1865         if (likely(ret >= last))
1866                 return ret;
1867
1868         /*
1869          * GCC likes to generate cmov here, but this branch is extremely
1870          * predictable (it's just a function of time and the likely is
1871          * very likely) and there's a data dependence, so force GCC
1872          * to generate a branch instead.  I don't barrier() because
1873          * we don't actually need a barrier, and if this function
1874          * ever gets inlined it will generate worse code.
1875          */
1876         asm volatile ("");
1877         return last;
1878 }
1879
1880 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1881 {
1882         long v;
1883         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1884         u64 tsc_pg_val;
1885
1886         switch (gtod->clock.vclock_mode) {
1887         case VCLOCK_HVCLOCK:
1888                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1889                                                   tsc_timestamp);
1890                 if (tsc_pg_val != U64_MAX) {
1891                         /* TSC page valid */
1892                         *mode = VCLOCK_HVCLOCK;
1893                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1894                                 gtod->clock.mask;
1895                 } else {
1896                         /* TSC page invalid */
1897                         *mode = VCLOCK_NONE;
1898                 }
1899                 break;
1900         case VCLOCK_TSC:
1901                 *mode = VCLOCK_TSC;
1902                 *tsc_timestamp = read_tsc();
1903                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1904                         gtod->clock.mask;
1905                 break;
1906         default:
1907                 *mode = VCLOCK_NONE;
1908         }
1909
1910         if (*mode == VCLOCK_NONE)
1911                 *tsc_timestamp = v = 0;
1912
1913         return v * gtod->clock.mult;
1914 }
1915
1916 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1917 {
1918         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1919         unsigned long seq;
1920         int mode;
1921         u64 ns;
1922
1923         do {
1924                 seq = read_seqcount_begin(&gtod->seq);
1925                 ns = gtod->nsec_base;
1926                 ns += vgettsc(tsc_timestamp, &mode);
1927                 ns >>= gtod->clock.shift;
1928                 ns += gtod->boot_ns;
1929         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1930         *t = ns;
1931
1932         return mode;
1933 }
1934
1935 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1936 {
1937         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1938         unsigned long seq;
1939         int mode;
1940         u64 ns;
1941
1942         do {
1943                 seq = read_seqcount_begin(&gtod->seq);
1944                 ts->tv_sec = gtod->wall_time_sec;
1945                 ns = gtod->nsec_base;
1946                 ns += vgettsc(tsc_timestamp, &mode);
1947                 ns >>= gtod->clock.shift;
1948         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1949
1950         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1951         ts->tv_nsec = ns;
1952
1953         return mode;
1954 }
1955
1956 /* returns true if host is using TSC based clocksource */
1957 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1958 {
1959         /* checked again under seqlock below */
1960         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1961                 return false;
1962
1963         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1964                                                       tsc_timestamp));
1965 }
1966
1967 /* returns true if host is using TSC based clocksource */
1968 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1969                                            u64 *tsc_timestamp)
1970 {
1971         /* checked again under seqlock below */
1972         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1973                 return false;
1974
1975         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1976 }
1977 #endif
1978
1979 /*
1980  *
1981  * Assuming a stable TSC across physical CPUS, and a stable TSC
1982  * across virtual CPUs, the following condition is possible.
1983  * Each numbered line represents an event visible to both
1984  * CPUs at the next numbered event.
1985  *
1986  * "timespecX" represents host monotonic time. "tscX" represents
1987  * RDTSC value.
1988  *
1989  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1990  *
1991  * 1.  read timespec0,tsc0
1992  * 2.                                   | timespec1 = timespec0 + N
1993  *                                      | tsc1 = tsc0 + M
1994  * 3. transition to guest               | transition to guest
1995  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1996  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1997  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1998  *
1999  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2000  *
2001  *      - ret0 < ret1
2002  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2003  *              ...
2004  *      - 0 < N - M => M < N
2005  *
2006  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2007  * always the case (the difference between two distinct xtime instances
2008  * might be smaller then the difference between corresponding TSC reads,
2009  * when updating guest vcpus pvclock areas).
2010  *
2011  * To avoid that problem, do not allow visibility of distinct
2012  * system_timestamp/tsc_timestamp values simultaneously: use a master
2013  * copy of host monotonic time values. Update that master copy
2014  * in lockstep.
2015  *
2016  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2017  *
2018  */
2019
2020 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2021 {
2022 #ifdef CONFIG_X86_64
2023         struct kvm_arch *ka = &kvm->arch;
2024         int vclock_mode;
2025         bool host_tsc_clocksource, vcpus_matched;
2026
2027         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2028                         atomic_read(&kvm->online_vcpus));
2029
2030         /*
2031          * If the host uses TSC clock, then passthrough TSC as stable
2032          * to the guest.
2033          */
2034         host_tsc_clocksource = kvm_get_time_and_clockread(
2035                                         &ka->master_kernel_ns,
2036                                         &ka->master_cycle_now);
2037
2038         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2039                                 && !ka->backwards_tsc_observed
2040                                 && !ka->boot_vcpu_runs_old_kvmclock;
2041
2042         if (ka->use_master_clock)
2043                 atomic_set(&kvm_guest_has_master_clock, 1);
2044
2045         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2046         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2047                                         vcpus_matched);
2048 #endif
2049 }
2050
2051 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2052 {
2053         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2054 }
2055
2056 static void kvm_gen_update_masterclock(struct kvm *kvm)
2057 {
2058 #ifdef CONFIG_X86_64
2059         int i;
2060         struct kvm_vcpu *vcpu;
2061         struct kvm_arch *ka = &kvm->arch;
2062
2063         spin_lock(&ka->pvclock_gtod_sync_lock);
2064         kvm_make_mclock_inprogress_request(kvm);
2065         /* no guest entries from this point */
2066         pvclock_update_vm_gtod_copy(kvm);
2067
2068         kvm_for_each_vcpu(i, vcpu, kvm)
2069                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2070
2071         /* guest entries allowed */
2072         kvm_for_each_vcpu(i, vcpu, kvm)
2073                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2074
2075         spin_unlock(&ka->pvclock_gtod_sync_lock);
2076 #endif
2077 }
2078
2079 u64 get_kvmclock_ns(struct kvm *kvm)
2080 {
2081         struct kvm_arch *ka = &kvm->arch;
2082         struct pvclock_vcpu_time_info hv_clock;
2083         u64 ret;
2084
2085         spin_lock(&ka->pvclock_gtod_sync_lock);
2086         if (!ka->use_master_clock) {
2087                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2088                 return ktime_get_boottime_ns() + ka->kvmclock_offset;
2089         }
2090
2091         hv_clock.tsc_timestamp = ka->master_cycle_now;
2092         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2093         spin_unlock(&ka->pvclock_gtod_sync_lock);
2094
2095         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2096         get_cpu();
2097
2098         if (__this_cpu_read(cpu_tsc_khz)) {
2099                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2100                                    &hv_clock.tsc_shift,
2101                                    &hv_clock.tsc_to_system_mul);
2102                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2103         } else
2104                 ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2105
2106         put_cpu();
2107
2108         return ret;
2109 }
2110
2111 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2112 {
2113         struct kvm_vcpu_arch *vcpu = &v->arch;
2114         struct pvclock_vcpu_time_info guest_hv_clock;
2115
2116         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2117                 &guest_hv_clock, sizeof(guest_hv_clock))))
2118                 return;
2119
2120         /* This VCPU is paused, but it's legal for a guest to read another
2121          * VCPU's kvmclock, so we really have to follow the specification where
2122          * it says that version is odd if data is being modified, and even after
2123          * it is consistent.
2124          *
2125          * Version field updates must be kept separate.  This is because
2126          * kvm_write_guest_cached might use a "rep movs" instruction, and
2127          * writes within a string instruction are weakly ordered.  So there
2128          * are three writes overall.
2129          *
2130          * As a small optimization, only write the version field in the first
2131          * and third write.  The vcpu->pv_time cache is still valid, because the
2132          * version field is the first in the struct.
2133          */
2134         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2135
2136         if (guest_hv_clock.version & 1)
2137                 ++guest_hv_clock.version;  /* first time write, random junk */
2138
2139         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2140         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2141                                 &vcpu->hv_clock,
2142                                 sizeof(vcpu->hv_clock.version));
2143
2144         smp_wmb();
2145
2146         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2147         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2148
2149         if (vcpu->pvclock_set_guest_stopped_request) {
2150                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2151                 vcpu->pvclock_set_guest_stopped_request = false;
2152         }
2153
2154         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2155
2156         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2157                                 &vcpu->hv_clock,
2158                                 sizeof(vcpu->hv_clock));
2159
2160         smp_wmb();
2161
2162         vcpu->hv_clock.version++;
2163         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2164                                 &vcpu->hv_clock,
2165                                 sizeof(vcpu->hv_clock.version));
2166 }
2167
2168 static int kvm_guest_time_update(struct kvm_vcpu *v)
2169 {
2170         unsigned long flags, tgt_tsc_khz;
2171         struct kvm_vcpu_arch *vcpu = &v->arch;
2172         struct kvm_arch *ka = &v->kvm->arch;
2173         s64 kernel_ns;
2174         u64 tsc_timestamp, host_tsc;
2175         u8 pvclock_flags;
2176         bool use_master_clock;
2177
2178         kernel_ns = 0;
2179         host_tsc = 0;
2180
2181         /*
2182          * If the host uses TSC clock, then passthrough TSC as stable
2183          * to the guest.
2184          */
2185         spin_lock(&ka->pvclock_gtod_sync_lock);
2186         use_master_clock = ka->use_master_clock;
2187         if (use_master_clock) {
2188                 host_tsc = ka->master_cycle_now;
2189                 kernel_ns = ka->master_kernel_ns;
2190         }
2191         spin_unlock(&ka->pvclock_gtod_sync_lock);
2192
2193         /* Keep irq disabled to prevent changes to the clock */
2194         local_irq_save(flags);
2195         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2196         if (unlikely(tgt_tsc_khz == 0)) {
2197                 local_irq_restore(flags);
2198                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2199                 return 1;
2200         }
2201         if (!use_master_clock) {
2202                 host_tsc = rdtsc();
2203                 kernel_ns = ktime_get_boottime_ns();
2204         }
2205
2206         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2207
2208         /*
2209          * We may have to catch up the TSC to match elapsed wall clock
2210          * time for two reasons, even if kvmclock is used.
2211          *   1) CPU could have been running below the maximum TSC rate
2212          *   2) Broken TSC compensation resets the base at each VCPU
2213          *      entry to avoid unknown leaps of TSC even when running
2214          *      again on the same CPU.  This may cause apparent elapsed
2215          *      time to disappear, and the guest to stand still or run
2216          *      very slowly.
2217          */
2218         if (vcpu->tsc_catchup) {
2219                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2220                 if (tsc > tsc_timestamp) {
2221                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2222                         tsc_timestamp = tsc;
2223                 }
2224         }
2225
2226         local_irq_restore(flags);
2227
2228         /* With all the info we got, fill in the values */
2229
2230         if (kvm_has_tsc_control)
2231                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2232
2233         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2234                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2235                                    &vcpu->hv_clock.tsc_shift,
2236                                    &vcpu->hv_clock.tsc_to_system_mul);
2237                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2238         }
2239
2240         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2241         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2242         vcpu->last_guest_tsc = tsc_timestamp;
2243
2244         /* If the host uses TSC clocksource, then it is stable */
2245         pvclock_flags = 0;
2246         if (use_master_clock)
2247                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2248
2249         vcpu->hv_clock.flags = pvclock_flags;
2250
2251         if (vcpu->pv_time_enabled)
2252                 kvm_setup_pvclock_page(v);
2253         if (v == kvm_get_vcpu(v->kvm, 0))
2254                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2255         return 0;
2256 }
2257
2258 /*
2259  * kvmclock updates which are isolated to a given vcpu, such as
2260  * vcpu->cpu migration, should not allow system_timestamp from
2261  * the rest of the vcpus to remain static. Otherwise ntp frequency
2262  * correction applies to one vcpu's system_timestamp but not
2263  * the others.
2264  *
2265  * So in those cases, request a kvmclock update for all vcpus.
2266  * We need to rate-limit these requests though, as they can
2267  * considerably slow guests that have a large number of vcpus.
2268  * The time for a remote vcpu to update its kvmclock is bound
2269  * by the delay we use to rate-limit the updates.
2270  */
2271
2272 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2273
2274 static void kvmclock_update_fn(struct work_struct *work)
2275 {
2276         int i;
2277         struct delayed_work *dwork = to_delayed_work(work);
2278         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2279                                            kvmclock_update_work);
2280         struct kvm *kvm = container_of(ka, struct kvm, arch);
2281         struct kvm_vcpu *vcpu;
2282
2283         kvm_for_each_vcpu(i, vcpu, kvm) {
2284                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2285                 kvm_vcpu_kick(vcpu);
2286         }
2287 }
2288
2289 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2290 {
2291         struct kvm *kvm = v->kvm;
2292
2293         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2294         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2295                                         KVMCLOCK_UPDATE_DELAY);
2296 }
2297
2298 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2299
2300 static void kvmclock_sync_fn(struct work_struct *work)
2301 {
2302         struct delayed_work *dwork = to_delayed_work(work);
2303         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2304                                            kvmclock_sync_work);
2305         struct kvm *kvm = container_of(ka, struct kvm, arch);
2306
2307         if (!kvmclock_periodic_sync)
2308                 return;
2309
2310         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2311         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2312                                         KVMCLOCK_SYNC_PERIOD);
2313 }
2314
2315 /*
2316  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2317  */
2318 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2319 {
2320         /* McStatusWrEn enabled? */
2321         if (guest_cpuid_is_amd(vcpu))
2322                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2323
2324         return false;
2325 }
2326
2327 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2328 {
2329         u64 mcg_cap = vcpu->arch.mcg_cap;
2330         unsigned bank_num = mcg_cap & 0xff;
2331         u32 msr = msr_info->index;
2332         u64 data = msr_info->data;
2333
2334         switch (msr) {
2335         case MSR_IA32_MCG_STATUS:
2336                 vcpu->arch.mcg_status = data;
2337                 break;
2338         case MSR_IA32_MCG_CTL:
2339                 if (!(mcg_cap & MCG_CTL_P) &&
2340                     (data || !msr_info->host_initiated))
2341                         return 1;
2342                 if (data != 0 && data != ~(u64)0)
2343                         return 1;
2344                 vcpu->arch.mcg_ctl = data;
2345                 break;
2346         default:
2347                 if (msr >= MSR_IA32_MC0_CTL &&
2348                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2349                         u32 offset = msr - MSR_IA32_MC0_CTL;
2350                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2351                          * some Linux kernels though clear bit 10 in bank 4 to
2352                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2353                          * this to avoid an uncatched #GP in the guest
2354                          */
2355                         if ((offset & 0x3) == 0 &&
2356                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2357                                 return -1;
2358
2359                         /* MCi_STATUS */
2360                         if (!msr_info->host_initiated &&
2361                             (offset & 0x3) == 1 && data != 0) {
2362                                 if (!can_set_mci_status(vcpu))
2363                                         return -1;
2364                         }
2365
2366                         vcpu->arch.mce_banks[offset] = data;
2367                         break;
2368                 }
2369                 return 1;
2370         }
2371         return 0;
2372 }
2373
2374 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2375 {
2376         struct kvm *kvm = vcpu->kvm;
2377         int lm = is_long_mode(vcpu);
2378         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2379                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2380         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2381                 : kvm->arch.xen_hvm_config.blob_size_32;
2382         u32 page_num = data & ~PAGE_MASK;
2383         u64 page_addr = data & PAGE_MASK;
2384         u8 *page;
2385         int r;
2386
2387         r = -E2BIG;
2388         if (page_num >= blob_size)
2389                 goto out;
2390         r = -ENOMEM;
2391         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2392         if (IS_ERR(page)) {
2393                 r = PTR_ERR(page);
2394                 goto out;
2395         }
2396         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2397                 goto out_free;
2398         r = 0;
2399 out_free:
2400         kfree(page);
2401 out:
2402         return r;
2403 }
2404
2405 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2406 {
2407         gpa_t gpa = data & ~0x3f;
2408
2409         /* Bits 3:5 are reserved, Should be zero */
2410         if (data & 0x38)
2411                 return 1;
2412
2413         vcpu->arch.apf.msr_val = data;
2414
2415         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2416                 kvm_clear_async_pf_completion_queue(vcpu);
2417                 kvm_async_pf_hash_reset(vcpu);
2418                 return 0;
2419         }
2420
2421         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2422                                         sizeof(u32)))
2423                 return 1;
2424
2425         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2426         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2427         kvm_async_pf_wakeup_all(vcpu);
2428         return 0;
2429 }
2430
2431 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2432 {
2433         vcpu->arch.pv_time_enabled = false;
2434 }
2435
2436 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2437 {
2438         ++vcpu->stat.tlb_flush;
2439         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2440 }
2441
2442 static void record_steal_time(struct kvm_vcpu *vcpu)
2443 {
2444         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2445                 return;
2446
2447         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2448                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2449                 return;
2450
2451         /*
2452          * Doing a TLB flush here, on the guest's behalf, can avoid
2453          * expensive IPIs.
2454          */
2455         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2456                 kvm_vcpu_flush_tlb(vcpu, false);
2457
2458         if (vcpu->arch.st.steal.version & 1)
2459                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2460
2461         vcpu->arch.st.steal.version += 1;
2462
2463         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2464                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2465
2466         smp_wmb();
2467
2468         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2469                 vcpu->arch.st.last_steal;
2470         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2471
2472         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2473                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2474
2475         smp_wmb();
2476
2477         vcpu->arch.st.steal.version += 1;
2478
2479         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2480                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2481 }
2482
2483 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2484 {
2485         bool pr = false;
2486         u32 msr = msr_info->index;
2487         u64 data = msr_info->data;
2488
2489         switch (msr) {
2490         case MSR_AMD64_NB_CFG:
2491         case MSR_IA32_UCODE_WRITE:
2492         case MSR_VM_HSAVE_PA:
2493         case MSR_AMD64_PATCH_LOADER:
2494         case MSR_AMD64_BU_CFG2:
2495         case MSR_AMD64_DC_CFG:
2496         case MSR_F15H_EX_CFG:
2497                 break;
2498
2499         case MSR_IA32_UCODE_REV:
2500                 if (msr_info->host_initiated)
2501                         vcpu->arch.microcode_version = data;
2502                 break;
2503         case MSR_IA32_ARCH_CAPABILITIES:
2504                 if (!msr_info->host_initiated)
2505                         return 1;
2506                 vcpu->arch.arch_capabilities = data;
2507                 break;
2508         case MSR_EFER:
2509                 return set_efer(vcpu, msr_info);
2510         case MSR_K7_HWCR:
2511                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2512                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2513                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2514
2515                 /* Handle McStatusWrEn */
2516                 if (data == BIT_ULL(18)) {
2517                         vcpu->arch.msr_hwcr = data;
2518                 } else if (data != 0) {
2519                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2520                                     data);
2521                         return 1;
2522                 }
2523                 break;
2524         case MSR_FAM10H_MMIO_CONF_BASE:
2525                 if (data != 0) {
2526                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2527                                     "0x%llx\n", data);
2528                         return 1;
2529                 }
2530                 break;
2531         case MSR_IA32_DEBUGCTLMSR:
2532                 if (!data) {
2533                         /* We support the non-activated case already */
2534                         break;
2535                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2536                         /* Values other than LBR and BTF are vendor-specific,
2537                            thus reserved and should throw a #GP */
2538                         return 1;
2539                 }
2540                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2541                             __func__, data);
2542                 break;
2543         case 0x200 ... 0x2ff:
2544                 return kvm_mtrr_set_msr(vcpu, msr, data);
2545         case MSR_IA32_APICBASE:
2546                 return kvm_set_apic_base(vcpu, msr_info);
2547         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2548                 return kvm_x2apic_msr_write(vcpu, msr, data);
2549         case MSR_IA32_TSCDEADLINE:
2550                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2551                 break;
2552         case MSR_IA32_TSC_ADJUST:
2553                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2554                         if (!msr_info->host_initiated) {
2555                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2556                                 adjust_tsc_offset_guest(vcpu, adj);
2557                         }
2558                         vcpu->arch.ia32_tsc_adjust_msr = data;
2559                 }
2560                 break;
2561         case MSR_IA32_MISC_ENABLE:
2562                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2563                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2564                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2565                                 return 1;
2566                         vcpu->arch.ia32_misc_enable_msr = data;
2567                         kvm_update_cpuid(vcpu);
2568                 } else {
2569                         vcpu->arch.ia32_misc_enable_msr = data;
2570                 }
2571                 break;
2572         case MSR_IA32_SMBASE:
2573                 if (!msr_info->host_initiated)
2574                         return 1;
2575                 vcpu->arch.smbase = data;
2576                 break;
2577         case MSR_IA32_POWER_CTL:
2578                 vcpu->arch.msr_ia32_power_ctl = data;
2579                 break;
2580         case MSR_IA32_TSC:
2581                 kvm_write_tsc(vcpu, msr_info);
2582                 break;
2583         case MSR_SMI_COUNT:
2584                 if (!msr_info->host_initiated)
2585                         return 1;
2586                 vcpu->arch.smi_count = data;
2587                 break;
2588         case MSR_KVM_WALL_CLOCK_NEW:
2589         case MSR_KVM_WALL_CLOCK:
2590                 vcpu->kvm->arch.wall_clock = data;
2591                 kvm_write_wall_clock(vcpu->kvm, data);
2592                 break;
2593         case MSR_KVM_SYSTEM_TIME_NEW:
2594         case MSR_KVM_SYSTEM_TIME: {
2595                 struct kvm_arch *ka = &vcpu->kvm->arch;
2596
2597                 kvmclock_reset(vcpu);
2598
2599                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2600                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2601
2602                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2603                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2604
2605                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2606                 }
2607
2608                 vcpu->arch.time = data;
2609                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2610
2611                 /* we verify if the enable bit is set... */
2612                 if (!(data & 1))
2613                         break;
2614
2615                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2616                      &vcpu->arch.pv_time, data & ~1ULL,
2617                      sizeof(struct pvclock_vcpu_time_info)))
2618                         vcpu->arch.pv_time_enabled = false;
2619                 else
2620                         vcpu->arch.pv_time_enabled = true;
2621
2622                 break;
2623         }
2624         case MSR_KVM_ASYNC_PF_EN:
2625                 if (kvm_pv_enable_async_pf(vcpu, data))
2626                         return 1;
2627                 break;
2628         case MSR_KVM_STEAL_TIME:
2629
2630                 if (unlikely(!sched_info_on()))
2631                         return 1;
2632
2633                 if (data & KVM_STEAL_RESERVED_MASK)
2634                         return 1;
2635
2636                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2637                                                 data & KVM_STEAL_VALID_BITS,
2638                                                 sizeof(struct kvm_steal_time)))
2639                         return 1;
2640
2641                 vcpu->arch.st.msr_val = data;
2642
2643                 if (!(data & KVM_MSR_ENABLED))
2644                         break;
2645
2646                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2647
2648                 break;
2649         case MSR_KVM_PV_EOI_EN:
2650                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2651                         return 1;
2652                 break;
2653
2654         case MSR_KVM_POLL_CONTROL:
2655                 /* only enable bit supported */
2656                 if (data & (-1ULL << 1))
2657                         return 1;
2658
2659                 vcpu->arch.msr_kvm_poll_control = data;
2660                 break;
2661
2662         case MSR_IA32_MCG_CTL:
2663         case MSR_IA32_MCG_STATUS:
2664         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2665                 return set_msr_mce(vcpu, msr_info);
2666
2667         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2668         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2669                 pr = true; /* fall through */
2670         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2671         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2672                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2673                         return kvm_pmu_set_msr(vcpu, msr_info);
2674
2675                 if (pr || data != 0)
2676                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2677                                     "0x%x data 0x%llx\n", msr, data);
2678                 break;
2679         case MSR_K7_CLK_CTL:
2680                 /*
2681                  * Ignore all writes to this no longer documented MSR.
2682                  * Writes are only relevant for old K7 processors,
2683                  * all pre-dating SVM, but a recommended workaround from
2684                  * AMD for these chips. It is possible to specify the
2685                  * affected processor models on the command line, hence
2686                  * the need to ignore the workaround.
2687                  */
2688                 break;
2689         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2690         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2691         case HV_X64_MSR_CRASH_CTL:
2692         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2693         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2694         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2695         case HV_X64_MSR_TSC_EMULATION_STATUS:
2696                 return kvm_hv_set_msr_common(vcpu, msr, data,
2697                                              msr_info->host_initiated);
2698         case MSR_IA32_BBL_CR_CTL3:
2699                 /* Drop writes to this legacy MSR -- see rdmsr
2700                  * counterpart for further detail.
2701                  */
2702                 if (report_ignored_msrs)
2703                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2704                                 msr, data);
2705                 break;
2706         case MSR_AMD64_OSVW_ID_LENGTH:
2707                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2708                         return 1;
2709                 vcpu->arch.osvw.length = data;
2710                 break;
2711         case MSR_AMD64_OSVW_STATUS:
2712                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2713                         return 1;
2714                 vcpu->arch.osvw.status = data;
2715                 break;
2716         case MSR_PLATFORM_INFO:
2717                 if (!msr_info->host_initiated ||
2718                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2719                      cpuid_fault_enabled(vcpu)))
2720                         return 1;
2721                 vcpu->arch.msr_platform_info = data;
2722                 break;
2723         case MSR_MISC_FEATURES_ENABLES:
2724                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2725                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2726                      !supports_cpuid_fault(vcpu)))
2727                         return 1;
2728                 vcpu->arch.msr_misc_features_enables = data;
2729                 break;
2730         default:
2731                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2732                         return xen_hvm_config(vcpu, data);
2733                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2734                         return kvm_pmu_set_msr(vcpu, msr_info);
2735                 if (!ignore_msrs) {
2736                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2737                                     msr, data);
2738                         return 1;
2739                 } else {
2740                         if (report_ignored_msrs)
2741                                 vcpu_unimpl(vcpu,
2742                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2743                                         msr, data);
2744                         break;
2745                 }
2746         }
2747         return 0;
2748 }
2749 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2750
2751
2752 /*
2753  * Reads an msr value (of 'msr_index') into 'pdata'.
2754  * Returns 0 on success, non-0 otherwise.
2755  * Assumes vcpu_load() was already called.
2756  */
2757 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2758 {
2759         return kvm_x86_ops->get_msr(vcpu, msr);
2760 }
2761 EXPORT_SYMBOL_GPL(kvm_get_msr);
2762
2763 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2764 {
2765         u64 data;
2766         u64 mcg_cap = vcpu->arch.mcg_cap;
2767         unsigned bank_num = mcg_cap & 0xff;
2768
2769         switch (msr) {
2770         case MSR_IA32_P5_MC_ADDR:
2771         case MSR_IA32_P5_MC_TYPE:
2772                 data = 0;
2773                 break;
2774         case MSR_IA32_MCG_CAP:
2775                 data = vcpu->arch.mcg_cap;
2776                 break;
2777         case MSR_IA32_MCG_CTL:
2778                 if (!(mcg_cap & MCG_CTL_P) && !host)
2779                         return 1;
2780                 data = vcpu->arch.mcg_ctl;
2781                 break;
2782         case MSR_IA32_MCG_STATUS:
2783                 data = vcpu->arch.mcg_status;
2784                 break;
2785         default:
2786                 if (msr >= MSR_IA32_MC0_CTL &&
2787                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2788                         u32 offset = msr - MSR_IA32_MC0_CTL;
2789                         data = vcpu->arch.mce_banks[offset];
2790                         break;
2791                 }
2792                 return 1;
2793         }
2794         *pdata = data;
2795         return 0;
2796 }
2797
2798 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2799 {
2800         switch (msr_info->index) {
2801         case MSR_IA32_PLATFORM_ID:
2802         case MSR_IA32_EBL_CR_POWERON:
2803         case MSR_IA32_DEBUGCTLMSR:
2804         case MSR_IA32_LASTBRANCHFROMIP:
2805         case MSR_IA32_LASTBRANCHTOIP:
2806         case MSR_IA32_LASTINTFROMIP:
2807         case MSR_IA32_LASTINTTOIP:
2808         case MSR_K8_SYSCFG:
2809         case MSR_K8_TSEG_ADDR:
2810         case MSR_K8_TSEG_MASK:
2811         case MSR_VM_HSAVE_PA:
2812         case MSR_K8_INT_PENDING_MSG:
2813         case MSR_AMD64_NB_CFG:
2814         case MSR_FAM10H_MMIO_CONF_BASE:
2815         case MSR_AMD64_BU_CFG2:
2816         case MSR_IA32_PERF_CTL:
2817         case MSR_AMD64_DC_CFG:
2818         case MSR_F15H_EX_CFG:
2819                 msr_info->data = 0;
2820                 break;
2821         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2822         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2823         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2824         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2825         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2826                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2827                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2828                 msr_info->data = 0;
2829                 break;
2830         case MSR_IA32_UCODE_REV:
2831                 msr_info->data = vcpu->arch.microcode_version;
2832                 break;
2833         case MSR_IA32_ARCH_CAPABILITIES:
2834                 if (!msr_info->host_initiated &&
2835                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2836                         return 1;
2837                 msr_info->data = vcpu->arch.arch_capabilities;
2838                 break;
2839         case MSR_IA32_POWER_CTL:
2840                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2841                 break;
2842         case MSR_IA32_TSC:
2843                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2844                 break;
2845         case MSR_MTRRcap:
2846         case 0x200 ... 0x2ff:
2847                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2848         case 0xcd: /* fsb frequency */
2849                 msr_info->data = 3;
2850                 break;
2851                 /*
2852                  * MSR_EBC_FREQUENCY_ID
2853                  * Conservative value valid for even the basic CPU models.
2854                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2855                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2856                  * and 266MHz for model 3, or 4. Set Core Clock
2857                  * Frequency to System Bus Frequency Ratio to 1 (bits
2858                  * 31:24) even though these are only valid for CPU
2859                  * models > 2, however guests may end up dividing or
2860                  * multiplying by zero otherwise.
2861                  */
2862         case MSR_EBC_FREQUENCY_ID:
2863                 msr_info->data = 1 << 24;
2864                 break;
2865         case MSR_IA32_APICBASE:
2866                 msr_info->data = kvm_get_apic_base(vcpu);
2867                 break;
2868         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2869                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2870                 break;
2871         case MSR_IA32_TSCDEADLINE:
2872                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2873                 break;
2874         case MSR_IA32_TSC_ADJUST:
2875                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2876                 break;
2877         case MSR_IA32_MISC_ENABLE:
2878                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2879                 break;
2880         case MSR_IA32_SMBASE:
2881                 if (!msr_info->host_initiated)
2882                         return 1;
2883                 msr_info->data = vcpu->arch.smbase;
2884                 break;
2885         case MSR_SMI_COUNT:
2886                 msr_info->data = vcpu->arch.smi_count;
2887                 break;
2888         case MSR_IA32_PERF_STATUS:
2889                 /* TSC increment by tick */
2890                 msr_info->data = 1000ULL;
2891                 /* CPU multiplier */
2892                 msr_info->data |= (((uint64_t)4ULL) << 40);
2893                 break;
2894         case MSR_EFER:
2895                 msr_info->data = vcpu->arch.efer;
2896                 break;
2897         case MSR_KVM_WALL_CLOCK:
2898         case MSR_KVM_WALL_CLOCK_NEW:
2899                 msr_info->data = vcpu->kvm->arch.wall_clock;
2900                 break;
2901         case MSR_KVM_SYSTEM_TIME:
2902         case MSR_KVM_SYSTEM_TIME_NEW:
2903                 msr_info->data = vcpu->arch.time;
2904                 break;
2905         case MSR_KVM_ASYNC_PF_EN:
2906                 msr_info->data = vcpu->arch.apf.msr_val;
2907                 break;
2908         case MSR_KVM_STEAL_TIME:
2909                 msr_info->data = vcpu->arch.st.msr_val;
2910                 break;
2911         case MSR_KVM_PV_EOI_EN:
2912                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2913                 break;
2914         case MSR_KVM_POLL_CONTROL:
2915                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
2916                 break;
2917         case MSR_IA32_P5_MC_ADDR:
2918         case MSR_IA32_P5_MC_TYPE:
2919         case MSR_IA32_MCG_CAP:
2920         case MSR_IA32_MCG_CTL:
2921         case MSR_IA32_MCG_STATUS:
2922         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2923                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2924                                    msr_info->host_initiated);
2925         case MSR_K7_CLK_CTL:
2926                 /*
2927                  * Provide expected ramp-up count for K7. All other
2928                  * are set to zero, indicating minimum divisors for
2929                  * every field.
2930                  *
2931                  * This prevents guest kernels on AMD host with CPU
2932                  * type 6, model 8 and higher from exploding due to
2933                  * the rdmsr failing.
2934                  */
2935                 msr_info->data = 0x20000000;
2936                 break;
2937         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2938         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2939         case HV_X64_MSR_CRASH_CTL:
2940         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2941         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2942         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2943         case HV_X64_MSR_TSC_EMULATION_STATUS:
2944                 return kvm_hv_get_msr_common(vcpu,
2945                                              msr_info->index, &msr_info->data,
2946                                              msr_info->host_initiated);
2947                 break;
2948         case MSR_IA32_BBL_CR_CTL3:
2949                 /* This legacy MSR exists but isn't fully documented in current
2950                  * silicon.  It is however accessed by winxp in very narrow
2951                  * scenarios where it sets bit #19, itself documented as
2952                  * a "reserved" bit.  Best effort attempt to source coherent
2953                  * read data here should the balance of the register be
2954                  * interpreted by the guest:
2955                  *
2956                  * L2 cache control register 3: 64GB range, 256KB size,
2957                  * enabled, latency 0x1, configured
2958                  */
2959                 msr_info->data = 0xbe702111;
2960                 break;
2961         case MSR_AMD64_OSVW_ID_LENGTH:
2962                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2963                         return 1;
2964                 msr_info->data = vcpu->arch.osvw.length;
2965                 break;
2966         case MSR_AMD64_OSVW_STATUS:
2967                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2968                         return 1;
2969                 msr_info->data = vcpu->arch.osvw.status;
2970                 break;
2971         case MSR_PLATFORM_INFO:
2972                 if (!msr_info->host_initiated &&
2973                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2974                         return 1;
2975                 msr_info->data = vcpu->arch.msr_platform_info;
2976                 break;
2977         case MSR_MISC_FEATURES_ENABLES:
2978                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2979                 break;
2980         case MSR_K7_HWCR:
2981                 msr_info->data = vcpu->arch.msr_hwcr;
2982                 break;
2983         default:
2984                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2985                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2986                 if (!ignore_msrs) {
2987                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2988                                                msr_info->index);
2989                         return 1;
2990                 } else {
2991                         if (report_ignored_msrs)
2992                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2993                                         msr_info->index);
2994                         msr_info->data = 0;
2995                 }
2996                 break;
2997         }
2998         return 0;
2999 }
3000 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3001
3002 /*
3003  * Read or write a bunch of msrs. All parameters are kernel addresses.
3004  *
3005  * @return number of msrs set successfully.
3006  */
3007 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3008                     struct kvm_msr_entry *entries,
3009                     int (*do_msr)(struct kvm_vcpu *vcpu,
3010                                   unsigned index, u64 *data))
3011 {
3012         int i;
3013
3014         for (i = 0; i < msrs->nmsrs; ++i)
3015                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3016                         break;
3017
3018         return i;
3019 }
3020
3021 /*
3022  * Read or write a bunch of msrs. Parameters are user addresses.
3023  *
3024  * @return number of msrs set successfully.
3025  */
3026 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3027                   int (*do_msr)(struct kvm_vcpu *vcpu,
3028                                 unsigned index, u64 *data),
3029                   int writeback)
3030 {
3031         struct kvm_msrs msrs;
3032         struct kvm_msr_entry *entries;
3033         int r, n;
3034         unsigned size;
3035
3036         r = -EFAULT;
3037         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3038                 goto out;
3039
3040         r = -E2BIG;
3041         if (msrs.nmsrs >= MAX_IO_MSRS)
3042                 goto out;
3043
3044         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3045         entries = memdup_user(user_msrs->entries, size);
3046         if (IS_ERR(entries)) {
3047                 r = PTR_ERR(entries);
3048                 goto out;
3049         }
3050
3051         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3052         if (r < 0)
3053                 goto out_free;
3054
3055         r = -EFAULT;
3056         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3057                 goto out_free;
3058
3059         r = n;
3060
3061 out_free:
3062         kfree(entries);
3063 out:
3064         return r;
3065 }
3066
3067 static inline bool kvm_can_mwait_in_guest(void)
3068 {
3069         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3070                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3071                 boot_cpu_has(X86_FEATURE_ARAT);
3072 }
3073
3074 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3075 {
3076         int r = 0;
3077
3078         switch (ext) {
3079         case KVM_CAP_IRQCHIP:
3080         case KVM_CAP_HLT:
3081         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3082         case KVM_CAP_SET_TSS_ADDR:
3083         case KVM_CAP_EXT_CPUID:
3084         case KVM_CAP_EXT_EMUL_CPUID:
3085         case KVM_CAP_CLOCKSOURCE:
3086         case KVM_CAP_PIT:
3087         case KVM_CAP_NOP_IO_DELAY:
3088         case KVM_CAP_MP_STATE:
3089         case KVM_CAP_SYNC_MMU:
3090         case KVM_CAP_USER_NMI:
3091         case KVM_CAP_REINJECT_CONTROL:
3092         case KVM_CAP_IRQ_INJECT_STATUS:
3093         case KVM_CAP_IOEVENTFD:
3094         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3095         case KVM_CAP_PIT2:
3096         case KVM_CAP_PIT_STATE2:
3097         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3098         case KVM_CAP_XEN_HVM:
3099         case KVM_CAP_VCPU_EVENTS:
3100         case KVM_CAP_HYPERV:
3101         case KVM_CAP_HYPERV_VAPIC:
3102         case KVM_CAP_HYPERV_SPIN:
3103         case KVM_CAP_HYPERV_SYNIC:
3104         case KVM_CAP_HYPERV_SYNIC2:
3105         case KVM_CAP_HYPERV_VP_INDEX:
3106         case KVM_CAP_HYPERV_EVENTFD:
3107         case KVM_CAP_HYPERV_TLBFLUSH:
3108         case KVM_CAP_HYPERV_SEND_IPI:
3109         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3110         case KVM_CAP_HYPERV_CPUID:
3111         case KVM_CAP_PCI_SEGMENT:
3112         case KVM_CAP_DEBUGREGS:
3113         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3114         case KVM_CAP_XSAVE:
3115         case KVM_CAP_ASYNC_PF:
3116         case KVM_CAP_GET_TSC_KHZ:
3117         case KVM_CAP_KVMCLOCK_CTRL:
3118         case KVM_CAP_READONLY_MEM:
3119         case KVM_CAP_HYPERV_TIME:
3120         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3121         case KVM_CAP_TSC_DEADLINE_TIMER:
3122         case KVM_CAP_DISABLE_QUIRKS:
3123         case KVM_CAP_SET_BOOT_CPU_ID:
3124         case KVM_CAP_SPLIT_IRQCHIP:
3125         case KVM_CAP_IMMEDIATE_EXIT:
3126         case KVM_CAP_PMU_EVENT_FILTER:
3127         case KVM_CAP_GET_MSR_FEATURES:
3128         case KVM_CAP_MSR_PLATFORM_INFO:
3129         case KVM_CAP_EXCEPTION_PAYLOAD:
3130                 r = 1;
3131                 break;
3132         case KVM_CAP_SYNC_REGS:
3133                 r = KVM_SYNC_X86_VALID_FIELDS;
3134                 break;
3135         case KVM_CAP_ADJUST_CLOCK:
3136                 r = KVM_CLOCK_TSC_STABLE;
3137                 break;
3138         case KVM_CAP_X86_DISABLE_EXITS:
3139                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3140                       KVM_X86_DISABLE_EXITS_CSTATE;
3141                 if(kvm_can_mwait_in_guest())
3142                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3143                 break;
3144         case KVM_CAP_X86_SMM:
3145                 /* SMBASE is usually relocated above 1M on modern chipsets,
3146                  * and SMM handlers might indeed rely on 4G segment limits,
3147                  * so do not report SMM to be available if real mode is
3148                  * emulated via vm86 mode.  Still, do not go to great lengths
3149                  * to avoid userspace's usage of the feature, because it is a
3150                  * fringe case that is not enabled except via specific settings
3151                  * of the module parameters.
3152                  */
3153                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3154                 break;
3155         case KVM_CAP_VAPIC:
3156                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3157                 break;
3158         case KVM_CAP_NR_VCPUS:
3159                 r = KVM_SOFT_MAX_VCPUS;
3160                 break;
3161         case KVM_CAP_MAX_VCPUS:
3162                 r = KVM_MAX_VCPUS;
3163                 break;
3164         case KVM_CAP_MAX_VCPU_ID:
3165                 r = KVM_MAX_VCPU_ID;
3166                 break;
3167         case KVM_CAP_PV_MMU:    /* obsolete */
3168                 r = 0;
3169                 break;
3170         case KVM_CAP_MCE:
3171                 r = KVM_MAX_MCE_BANKS;
3172                 break;
3173         case KVM_CAP_XCRS:
3174                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3175                 break;
3176         case KVM_CAP_TSC_CONTROL:
3177                 r = kvm_has_tsc_control;
3178                 break;
3179         case KVM_CAP_X2APIC_API:
3180                 r = KVM_X2APIC_API_VALID_FLAGS;
3181                 break;
3182         case KVM_CAP_NESTED_STATE:
3183                 r = kvm_x86_ops->get_nested_state ?
3184                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3185                 break;
3186         default:
3187                 break;
3188         }
3189         return r;
3190
3191 }
3192
3193 long kvm_arch_dev_ioctl(struct file *filp,
3194                         unsigned int ioctl, unsigned long arg)
3195 {
3196         void __user *argp = (void __user *)arg;
3197         long r;
3198
3199         switch (ioctl) {
3200         case KVM_GET_MSR_INDEX_LIST: {
3201                 struct kvm_msr_list __user *user_msr_list = argp;
3202                 struct kvm_msr_list msr_list;
3203                 unsigned n;
3204
3205                 r = -EFAULT;
3206                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3207                         goto out;
3208                 n = msr_list.nmsrs;
3209                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3210                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3211                         goto out;
3212                 r = -E2BIG;
3213                 if (n < msr_list.nmsrs)
3214                         goto out;
3215                 r = -EFAULT;
3216                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3217                                  num_msrs_to_save * sizeof(u32)))
3218                         goto out;
3219                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3220                                  &emulated_msrs,
3221                                  num_emulated_msrs * sizeof(u32)))
3222                         goto out;
3223                 r = 0;
3224                 break;
3225         }
3226         case KVM_GET_SUPPORTED_CPUID:
3227         case KVM_GET_EMULATED_CPUID: {
3228                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3229                 struct kvm_cpuid2 cpuid;
3230
3231                 r = -EFAULT;
3232                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3233                         goto out;
3234
3235                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3236                                             ioctl);
3237                 if (r)
3238                         goto out;
3239
3240                 r = -EFAULT;
3241                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3242                         goto out;
3243                 r = 0;
3244                 break;
3245         }
3246         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3247                 r = -EFAULT;
3248                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3249                                  sizeof(kvm_mce_cap_supported)))
3250                         goto out;
3251                 r = 0;
3252                 break;
3253         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3254                 struct kvm_msr_list __user *user_msr_list = argp;
3255                 struct kvm_msr_list msr_list;
3256                 unsigned int n;
3257
3258                 r = -EFAULT;
3259                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3260                         goto out;
3261                 n = msr_list.nmsrs;
3262                 msr_list.nmsrs = num_msr_based_features;
3263                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3264                         goto out;
3265                 r = -E2BIG;
3266                 if (n < msr_list.nmsrs)
3267                         goto out;
3268                 r = -EFAULT;
3269                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3270                                  num_msr_based_features * sizeof(u32)))
3271                         goto out;
3272                 r = 0;
3273                 break;
3274         }
3275         case KVM_GET_MSRS:
3276                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3277                 break;
3278         }
3279         default:
3280                 r = -EINVAL;
3281         }
3282 out:
3283         return r;
3284 }
3285
3286 static void wbinvd_ipi(void *garbage)
3287 {
3288         wbinvd();
3289 }
3290
3291 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3292 {
3293         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3294 }
3295
3296 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3297 {
3298         /* Address WBINVD may be executed by guest */
3299         if (need_emulate_wbinvd(vcpu)) {
3300                 if (kvm_x86_ops->has_wbinvd_exit())
3301                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3302                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3303                         smp_call_function_single(vcpu->cpu,
3304                                         wbinvd_ipi, NULL, 1);
3305         }
3306
3307         kvm_x86_ops->vcpu_load(vcpu, cpu);
3308
3309         fpregs_assert_state_consistent();
3310         if (test_thread_flag(TIF_NEED_FPU_LOAD))
3311                 switch_fpu_return();
3312
3313         /* Apply any externally detected TSC adjustments (due to suspend) */
3314         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3315                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3316                 vcpu->arch.tsc_offset_adjustment = 0;
3317                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3318         }
3319
3320         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3321                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3322                                 rdtsc() - vcpu->arch.last_host_tsc;
3323                 if (tsc_delta < 0)
3324                         mark_tsc_unstable("KVM discovered backwards TSC");
3325
3326                 if (kvm_check_tsc_unstable()) {
3327                         u64 offset = kvm_compute_tsc_offset(vcpu,
3328                                                 vcpu->arch.last_guest_tsc);
3329                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3330                         vcpu->arch.tsc_catchup = 1;
3331                 }
3332
3333                 if (kvm_lapic_hv_timer_in_use(vcpu))
3334                         kvm_lapic_restart_hv_timer(vcpu);
3335
3336                 /*
3337                  * On a host with synchronized TSC, there is no need to update
3338                  * kvmclock on vcpu->cpu migration
3339                  */
3340                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3341                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3342                 if (vcpu->cpu != cpu)
3343                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3344                 vcpu->cpu = cpu;
3345         }
3346
3347         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3348 }
3349
3350 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3351 {
3352         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3353                 return;
3354
3355         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3356
3357         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3358                         &vcpu->arch.st.steal.preempted,
3359                         offsetof(struct kvm_steal_time, preempted),
3360                         sizeof(vcpu->arch.st.steal.preempted));
3361 }
3362
3363 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3364 {
3365         int idx;
3366
3367         if (vcpu->preempted)
3368                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3369
3370         /*
3371          * Disable page faults because we're in atomic context here.
3372          * kvm_write_guest_offset_cached() would call might_fault()
3373          * that relies on pagefault_disable() to tell if there's a
3374          * bug. NOTE: the write to guest memory may not go through if
3375          * during postcopy live migration or if there's heavy guest
3376          * paging.
3377          */
3378         pagefault_disable();
3379         /*
3380          * kvm_memslots() will be called by
3381          * kvm_write_guest_offset_cached() so take the srcu lock.
3382          */
3383         idx = srcu_read_lock(&vcpu->kvm->srcu);
3384         kvm_steal_time_set_preempted(vcpu);
3385         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3386         pagefault_enable();
3387         kvm_x86_ops->vcpu_put(vcpu);
3388         vcpu->arch.last_host_tsc = rdtsc();
3389         /*
3390          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3391          * on every vmexit, but if not, we might have a stale dr6 from the
3392          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3393          */
3394         set_debugreg(0, 6);
3395 }
3396
3397 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3398                                     struct kvm_lapic_state *s)
3399 {
3400         if (vcpu->arch.apicv_active)
3401                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3402
3403         return kvm_apic_get_state(vcpu, s);
3404 }
3405
3406 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3407                                     struct kvm_lapic_state *s)
3408 {
3409         int r;
3410
3411         r = kvm_apic_set_state(vcpu, s);
3412         if (r)
3413                 return r;
3414         update_cr8_intercept(vcpu);
3415
3416         return 0;
3417 }
3418
3419 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3420 {
3421         return (!lapic_in_kernel(vcpu) ||
3422                 kvm_apic_accept_pic_intr(vcpu));
3423 }
3424
3425 /*
3426  * if userspace requested an interrupt window, check that the
3427  * interrupt window is open.
3428  *
3429  * No need to exit to userspace if we already have an interrupt queued.
3430  */
3431 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3432 {
3433         return kvm_arch_interrupt_allowed(vcpu) &&
3434                 !kvm_cpu_has_interrupt(vcpu) &&
3435                 !kvm_event_needs_reinjection(vcpu) &&
3436                 kvm_cpu_accept_dm_intr(vcpu);
3437 }
3438
3439 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3440                                     struct kvm_interrupt *irq)
3441 {
3442         if (irq->irq >= KVM_NR_INTERRUPTS)
3443                 return -EINVAL;
3444
3445         if (!irqchip_in_kernel(vcpu->kvm)) {
3446                 kvm_queue_interrupt(vcpu, irq->irq, false);
3447                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3448                 return 0;
3449         }
3450
3451         /*
3452          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3453          * fail for in-kernel 8259.
3454          */
3455         if (pic_in_kernel(vcpu->kvm))
3456                 return -ENXIO;
3457
3458         if (vcpu->arch.pending_external_vector != -1)
3459                 return -EEXIST;
3460
3461         vcpu->arch.pending_external_vector = irq->irq;
3462         kvm_make_request(KVM_REQ_EVENT, vcpu);
3463         return 0;
3464 }
3465
3466 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3467 {
3468         kvm_inject_nmi(vcpu);
3469
3470         return 0;
3471 }
3472
3473 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3474 {
3475         kvm_make_request(KVM_REQ_SMI, vcpu);
3476
3477         return 0;
3478 }
3479
3480 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3481                                            struct kvm_tpr_access_ctl *tac)
3482 {
3483         if (tac->flags)
3484                 return -EINVAL;
3485         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3486         return 0;
3487 }
3488
3489 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3490                                         u64 mcg_cap)
3491 {
3492         int r;
3493         unsigned bank_num = mcg_cap & 0xff, bank;
3494
3495         r = -EINVAL;
3496         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3497                 goto out;
3498         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3499                 goto out;
3500         r = 0;
3501         vcpu->arch.mcg_cap = mcg_cap;
3502         /* Init IA32_MCG_CTL to all 1s */
3503         if (mcg_cap & MCG_CTL_P)
3504                 vcpu->arch.mcg_ctl = ~(u64)0;
3505         /* Init IA32_MCi_CTL to all 1s */
3506         for (bank = 0; bank < bank_num; bank++)
3507                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3508
3509         if (kvm_x86_ops->setup_mce)
3510                 kvm_x86_ops->setup_mce(vcpu);
3511 out:
3512         return r;
3513 }
3514
3515 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3516                                       struct kvm_x86_mce *mce)
3517 {
3518         u64 mcg_cap = vcpu->arch.mcg_cap;
3519         unsigned bank_num = mcg_cap & 0xff;
3520         u64 *banks = vcpu->arch.mce_banks;
3521
3522         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3523                 return -EINVAL;
3524         /*
3525          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3526          * reporting is disabled
3527          */
3528         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3529             vcpu->arch.mcg_ctl != ~(u64)0)
3530                 return 0;
3531         banks += 4 * mce->bank;
3532         /*
3533          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3534          * reporting is disabled for the bank
3535          */
3536         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3537                 return 0;
3538         if (mce->status & MCI_STATUS_UC) {
3539                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3540                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3541                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3542                         return 0;
3543                 }
3544                 if (banks[1] & MCI_STATUS_VAL)
3545                         mce->status |= MCI_STATUS_OVER;
3546                 banks[2] = mce->addr;
3547                 banks[3] = mce->misc;
3548                 vcpu->arch.mcg_status = mce->mcg_status;
3549                 banks[1] = mce->status;
3550                 kvm_queue_exception(vcpu, MC_VECTOR);
3551         } else if (!(banks[1] & MCI_STATUS_VAL)
3552                    || !(banks[1] & MCI_STATUS_UC)) {
3553                 if (banks[1] & MCI_STATUS_VAL)
3554                         mce->status |= MCI_STATUS_OVER;
3555                 banks[2] = mce->addr;
3556                 banks[3] = mce->misc;
3557                 banks[1] = mce->status;
3558         } else
3559                 banks[1] |= MCI_STATUS_OVER;
3560         return 0;
3561 }
3562
3563 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3564                                                struct kvm_vcpu_events *events)
3565 {
3566         process_nmi(vcpu);
3567
3568         /*
3569          * The API doesn't provide the instruction length for software
3570          * exceptions, so don't report them. As long as the guest RIP
3571          * isn't advanced, we should expect to encounter the exception
3572          * again.
3573          */
3574         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3575                 events->exception.injected = 0;
3576                 events->exception.pending = 0;
3577         } else {
3578                 events->exception.injected = vcpu->arch.exception.injected;
3579                 events->exception.pending = vcpu->arch.exception.pending;
3580                 /*
3581                  * For ABI compatibility, deliberately conflate
3582                  * pending and injected exceptions when
3583                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3584                  */
3585                 if (!vcpu->kvm->arch.exception_payload_enabled)
3586                         events->exception.injected |=
3587                                 vcpu->arch.exception.pending;
3588         }
3589         events->exception.nr = vcpu->arch.exception.nr;
3590         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3591         events->exception.error_code = vcpu->arch.exception.error_code;
3592         events->exception_has_payload = vcpu->arch.exception.has_payload;
3593         events->exception_payload = vcpu->arch.exception.payload;
3594
3595         events->interrupt.injected =
3596                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3597         events->interrupt.nr = vcpu->arch.interrupt.nr;
3598         events->interrupt.soft = 0;
3599         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3600
3601         events->nmi.injected = vcpu->arch.nmi_injected;
3602         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3603         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3604         events->nmi.pad = 0;
3605
3606         events->sipi_vector = 0; /* never valid when reporting to user space */
3607
3608         events->smi.smm = is_smm(vcpu);
3609         events->smi.pending = vcpu->arch.smi_pending;
3610         events->smi.smm_inside_nmi =
3611                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3612         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3613
3614         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3615                          | KVM_VCPUEVENT_VALID_SHADOW
3616                          | KVM_VCPUEVENT_VALID_SMM);
3617         if (vcpu->kvm->arch.exception_payload_enabled)
3618                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3619
3620         memset(&events->reserved, 0, sizeof(events->reserved));
3621 }
3622
3623 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3624
3625 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3626                                               struct kvm_vcpu_events *events)
3627 {
3628         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3629                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3630                               | KVM_VCPUEVENT_VALID_SHADOW
3631                               | KVM_VCPUEVENT_VALID_SMM
3632                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3633                 return -EINVAL;
3634
3635         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3636                 if (!vcpu->kvm->arch.exception_payload_enabled)
3637                         return -EINVAL;
3638                 if (events->exception.pending)
3639                         events->exception.injected = 0;
3640                 else
3641                         events->exception_has_payload = 0;
3642         } else {
3643                 events->exception.pending = 0;
3644                 events->exception_has_payload = 0;
3645         }
3646
3647         if ((events->exception.injected || events->exception.pending) &&
3648             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3649                 return -EINVAL;
3650
3651         /* INITs are latched while in SMM */
3652         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3653             (events->smi.smm || events->smi.pending) &&
3654             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3655                 return -EINVAL;
3656
3657         process_nmi(vcpu);
3658         vcpu->arch.exception.injected = events->exception.injected;
3659         vcpu->arch.exception.pending = events->exception.pending;
3660         vcpu->arch.exception.nr = events->exception.nr;
3661         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3662         vcpu->arch.exception.error_code = events->exception.error_code;
3663         vcpu->arch.exception.has_payload = events->exception_has_payload;
3664         vcpu->arch.exception.payload = events->exception_payload;
3665
3666         vcpu->arch.interrupt.injected = events->interrupt.injected;
3667         vcpu->arch.interrupt.nr = events->interrupt.nr;
3668         vcpu->arch.interrupt.soft = events->interrupt.soft;
3669         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3670                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3671                                                   events->interrupt.shadow);
3672
3673         vcpu->arch.nmi_injected = events->nmi.injected;
3674         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3675                 vcpu->arch.nmi_pending = events->nmi.pending;
3676         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3677
3678         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3679             lapic_in_kernel(vcpu))
3680                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3681
3682         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3683                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3684                         if (events->smi.smm)
3685                                 vcpu->arch.hflags |= HF_SMM_MASK;
3686                         else
3687                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3688                         kvm_smm_changed(vcpu);
3689                 }
3690
3691                 vcpu->arch.smi_pending = events->smi.pending;
3692
3693                 if (events->smi.smm) {
3694                         if (events->smi.smm_inside_nmi)
3695                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3696                         else
3697                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3698                         if (lapic_in_kernel(vcpu)) {
3699                                 if (events->smi.latched_init)
3700                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3701                                 else
3702                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3703                         }
3704                 }
3705         }
3706
3707         kvm_make_request(KVM_REQ_EVENT, vcpu);
3708
3709         return 0;
3710 }
3711
3712 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3713                                              struct kvm_debugregs *dbgregs)
3714 {
3715         unsigned long val;
3716
3717         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3718         kvm_get_dr(vcpu, 6, &val);
3719         dbgregs->dr6 = val;
3720         dbgregs->dr7 = vcpu->arch.dr7;
3721         dbgregs->flags = 0;
3722         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3723 }
3724
3725 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3726                                             struct kvm_debugregs *dbgregs)
3727 {
3728         if (dbgregs->flags)
3729                 return -EINVAL;
3730
3731         if (dbgregs->dr6 & ~0xffffffffull)
3732                 return -EINVAL;
3733         if (dbgregs->dr7 & ~0xffffffffull)
3734                 return -EINVAL;
3735
3736         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3737         kvm_update_dr0123(vcpu);
3738         vcpu->arch.dr6 = dbgregs->dr6;
3739         kvm_update_dr6(vcpu);
3740         vcpu->arch.dr7 = dbgregs->dr7;
3741         kvm_update_dr7(vcpu);
3742
3743         return 0;
3744 }
3745
3746 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3747
3748 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3749 {
3750         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3751         u64 xstate_bv = xsave->header.xfeatures;
3752         u64 valid;
3753
3754         /*
3755          * Copy legacy XSAVE area, to avoid complications with CPUID
3756          * leaves 0 and 1 in the loop below.
3757          */
3758         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3759
3760         /* Set XSTATE_BV */
3761         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3762         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3763
3764         /*
3765          * Copy each region from the possibly compacted offset to the
3766          * non-compacted offset.
3767          */
3768         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3769         while (valid) {
3770                 u64 xfeature_mask = valid & -valid;
3771                 int xfeature_nr = fls64(xfeature_mask) - 1;
3772                 void *src = get_xsave_addr(xsave, xfeature_nr);
3773
3774                 if (src) {
3775                         u32 size, offset, ecx, edx;
3776                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3777                                     &size, &offset, &ecx, &edx);
3778                         if (xfeature_nr == XFEATURE_PKRU)
3779                                 memcpy(dest + offset, &vcpu->arch.pkru,
3780                                        sizeof(vcpu->arch.pkru));
3781                         else
3782                                 memcpy(dest + offset, src, size);
3783
3784                 }
3785
3786                 valid -= xfeature_mask;
3787         }
3788 }
3789
3790 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3791 {
3792         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3793         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3794         u64 valid;
3795
3796         /*
3797          * Copy legacy XSAVE area, to avoid complications with CPUID
3798          * leaves 0 and 1 in the loop below.
3799          */
3800         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3801
3802         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3803         xsave->header.xfeatures = xstate_bv;
3804         if (boot_cpu_has(X86_FEATURE_XSAVES))
3805                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3806
3807         /*
3808          * Copy each region from the non-compacted offset to the
3809          * possibly compacted offset.
3810          */
3811         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3812         while (valid) {
3813                 u64 xfeature_mask = valid & -valid;
3814                 int xfeature_nr = fls64(xfeature_mask) - 1;
3815                 void *dest = get_xsave_addr(xsave, xfeature_nr);
3816
3817                 if (dest) {
3818                         u32 size, offset, ecx, edx;
3819                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3820                                     &size, &offset, &ecx, &edx);
3821                         if (xfeature_nr == XFEATURE_PKRU)
3822                                 memcpy(&vcpu->arch.pkru, src + offset,
3823                                        sizeof(vcpu->arch.pkru));
3824                         else
3825                                 memcpy(dest, src + offset, size);
3826                 }
3827
3828                 valid -= xfeature_mask;
3829         }
3830 }
3831
3832 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3833                                          struct kvm_xsave *guest_xsave)
3834 {
3835         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3836                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3837                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3838         } else {
3839                 memcpy(guest_xsave->region,
3840                         &vcpu->arch.guest_fpu->state.fxsave,
3841                         sizeof(struct fxregs_state));
3842                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3843                         XFEATURE_MASK_FPSSE;
3844         }
3845 }
3846
3847 #define XSAVE_MXCSR_OFFSET 24
3848
3849 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3850                                         struct kvm_xsave *guest_xsave)
3851 {
3852         u64 xstate_bv =
3853                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3854         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3855
3856         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3857                 /*
3858                  * Here we allow setting states that are not present in
3859                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3860                  * with old userspace.
3861                  */
3862                 if (xstate_bv & ~kvm_supported_xcr0() ||
3863                         mxcsr & ~mxcsr_feature_mask)
3864                         return -EINVAL;
3865                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3866         } else {
3867                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3868                         mxcsr & ~mxcsr_feature_mask)
3869                         return -EINVAL;
3870                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3871                         guest_xsave->region, sizeof(struct fxregs_state));
3872         }
3873         return 0;
3874 }
3875
3876 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3877                                         struct kvm_xcrs *guest_xcrs)
3878 {
3879         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3880                 guest_xcrs->nr_xcrs = 0;
3881                 return;
3882         }
3883
3884         guest_xcrs->nr_xcrs = 1;
3885         guest_xcrs->flags = 0;
3886         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3887         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3888 }
3889
3890 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3891                                        struct kvm_xcrs *guest_xcrs)
3892 {
3893         int i, r = 0;
3894
3895         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3896                 return -EINVAL;
3897
3898         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3899                 return -EINVAL;
3900
3901         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3902                 /* Only support XCR0 currently */
3903                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3904                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3905                                 guest_xcrs->xcrs[i].value);
3906                         break;
3907                 }
3908         if (r)
3909                 r = -EINVAL;
3910         return r;
3911 }
3912
3913 /*
3914  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3915  * stopped by the hypervisor.  This function will be called from the host only.
3916  * EINVAL is returned when the host attempts to set the flag for a guest that
3917  * does not support pv clocks.
3918  */
3919 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3920 {
3921         if (!vcpu->arch.pv_time_enabled)
3922                 return -EINVAL;
3923         vcpu->arch.pvclock_set_guest_stopped_request = true;
3924         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3925         return 0;
3926 }
3927
3928 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3929                                      struct kvm_enable_cap *cap)
3930 {
3931         int r;
3932         uint16_t vmcs_version;
3933         void __user *user_ptr;
3934
3935         if (cap->flags)
3936                 return -EINVAL;
3937
3938         switch (cap->cap) {
3939         case KVM_CAP_HYPERV_SYNIC2:
3940                 if (cap->args[0])
3941                         return -EINVAL;
3942                 /* fall through */
3943
3944         case KVM_CAP_HYPERV_SYNIC:
3945                 if (!irqchip_in_kernel(vcpu->kvm))
3946                         return -EINVAL;
3947                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3948                                              KVM_CAP_HYPERV_SYNIC2);
3949         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3950                 if (!kvm_x86_ops->nested_enable_evmcs)
3951                         return -ENOTTY;
3952                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3953                 if (!r) {
3954                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3955                         if (copy_to_user(user_ptr, &vmcs_version,
3956                                          sizeof(vmcs_version)))
3957                                 r = -EFAULT;
3958                 }
3959                 return r;
3960
3961         default:
3962                 return -EINVAL;
3963         }
3964 }
3965
3966 long kvm_arch_vcpu_ioctl(struct file *filp,
3967                          unsigned int ioctl, unsigned long arg)
3968 {
3969         struct kvm_vcpu *vcpu = filp->private_data;
3970         void __user *argp = (void __user *)arg;
3971         int r;
3972         union {
3973                 struct kvm_lapic_state *lapic;
3974                 struct kvm_xsave *xsave;
3975                 struct kvm_xcrs *xcrs;
3976                 void *buffer;
3977         } u;
3978
3979         vcpu_load(vcpu);
3980
3981         u.buffer = NULL;
3982         switch (ioctl) {
3983         case KVM_GET_LAPIC: {
3984                 r = -EINVAL;
3985                 if (!lapic_in_kernel(vcpu))
3986                         goto out;
3987                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3988                                 GFP_KERNEL_ACCOUNT);
3989
3990                 r = -ENOMEM;
3991                 if (!u.lapic)
3992                         goto out;
3993                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3994                 if (r)
3995                         goto out;
3996                 r = -EFAULT;
3997                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3998                         goto out;
3999                 r = 0;
4000                 break;
4001         }
4002         case KVM_SET_LAPIC: {
4003                 r = -EINVAL;
4004                 if (!lapic_in_kernel(vcpu))
4005                         goto out;
4006                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4007                 if (IS_ERR(u.lapic)) {
4008                         r = PTR_ERR(u.lapic);
4009                         goto out_nofree;
4010                 }
4011
4012                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4013                 break;
4014         }
4015         case KVM_INTERRUPT: {
4016                 struct kvm_interrupt irq;
4017
4018                 r = -EFAULT;
4019                 if (copy_from_user(&irq, argp, sizeof(irq)))
4020                         goto out;
4021                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4022                 break;
4023         }
4024         case KVM_NMI: {
4025                 r = kvm_vcpu_ioctl_nmi(vcpu);
4026                 break;
4027         }
4028         case KVM_SMI: {
4029                 r = kvm_vcpu_ioctl_smi(vcpu);
4030                 break;
4031         }
4032         case KVM_SET_CPUID: {
4033                 struct kvm_cpuid __user *cpuid_arg = argp;
4034                 struct kvm_cpuid cpuid;
4035
4036                 r = -EFAULT;
4037                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4038                         goto out;
4039                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4040                 break;
4041         }
4042         case KVM_SET_CPUID2: {
4043                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4044                 struct kvm_cpuid2 cpuid;
4045
4046                 r = -EFAULT;
4047                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4048                         goto out;
4049                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4050                                               cpuid_arg->entries);
4051                 break;
4052         }
4053         case KVM_GET_CPUID2: {
4054                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4055                 struct kvm_cpuid2 cpuid;
4056
4057                 r = -EFAULT;
4058                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4059                         goto out;
4060                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4061                                               cpuid_arg->entries);
4062                 if (r)
4063                         goto out;
4064                 r = -EFAULT;
4065                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4066                         goto out;
4067                 r = 0;
4068                 break;
4069         }
4070         case KVM_GET_MSRS: {
4071                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4072                 r = msr_io(vcpu, argp, do_get_msr, 1);
4073                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4074                 break;
4075         }
4076         case KVM_SET_MSRS: {
4077                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4078                 r = msr_io(vcpu, argp, do_set_msr, 0);
4079                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4080                 break;
4081         }
4082         case KVM_TPR_ACCESS_REPORTING: {
4083                 struct kvm_tpr_access_ctl tac;
4084
4085                 r = -EFAULT;
4086                 if (copy_from_user(&tac, argp, sizeof(tac)))
4087                         goto out;
4088                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4089                 if (r)
4090                         goto out;
4091                 r = -EFAULT;
4092                 if (copy_to_user(argp, &tac, sizeof(tac)))
4093                         goto out;
4094                 r = 0;
4095                 break;
4096         };
4097         case KVM_SET_VAPIC_ADDR: {
4098                 struct kvm_vapic_addr va;
4099                 int idx;
4100
4101                 r = -EINVAL;
4102                 if (!lapic_in_kernel(vcpu))
4103                         goto out;
4104                 r = -EFAULT;
4105                 if (copy_from_user(&va, argp, sizeof(va)))
4106                         goto out;
4107                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4108                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4109                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4110                 break;
4111         }
4112         case KVM_X86_SETUP_MCE: {
4113                 u64 mcg_cap;
4114
4115                 r = -EFAULT;
4116                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4117                         goto out;
4118                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4119                 break;
4120         }
4121         case KVM_X86_SET_MCE: {
4122                 struct kvm_x86_mce mce;
4123
4124                 r = -EFAULT;
4125                 if (copy_from_user(&mce, argp, sizeof(mce)))
4126                         goto out;
4127                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4128                 break;
4129         }
4130         case KVM_GET_VCPU_EVENTS: {
4131                 struct kvm_vcpu_events events;
4132
4133                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4134
4135                 r = -EFAULT;
4136                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4137                         break;
4138                 r = 0;
4139                 break;
4140         }
4141         case KVM_SET_VCPU_EVENTS: {
4142                 struct kvm_vcpu_events events;
4143
4144                 r = -EFAULT;
4145                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4146                         break;
4147
4148                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4149                 break;
4150         }
4151         case KVM_GET_DEBUGREGS: {
4152                 struct kvm_debugregs dbgregs;
4153
4154                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4155
4156                 r = -EFAULT;
4157                 if (copy_to_user(argp, &dbgregs,
4158                                  sizeof(struct kvm_debugregs)))
4159                         break;
4160                 r = 0;
4161                 break;
4162         }
4163         case KVM_SET_DEBUGREGS: {
4164                 struct kvm_debugregs dbgregs;
4165
4166                 r = -EFAULT;
4167                 if (copy_from_user(&dbgregs, argp,
4168                                    sizeof(struct kvm_debugregs)))
4169                         break;
4170
4171                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4172                 break;
4173         }
4174         case KVM_GET_XSAVE: {
4175                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4176                 r = -ENOMEM;
4177                 if (!u.xsave)
4178                         break;
4179
4180                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4181
4182                 r = -EFAULT;
4183                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4184                         break;
4185                 r = 0;
4186                 break;
4187         }
4188         case KVM_SET_XSAVE: {
4189                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4190                 if (IS_ERR(u.xsave)) {
4191                         r = PTR_ERR(u.xsave);
4192                         goto out_nofree;
4193                 }
4194
4195                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4196                 break;
4197         }
4198         case KVM_GET_XCRS: {
4199                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4200                 r = -ENOMEM;
4201                 if (!u.xcrs)
4202                         break;
4203
4204                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4205
4206                 r = -EFAULT;
4207                 if (copy_to_user(argp, u.xcrs,
4208                                  sizeof(struct kvm_xcrs)))
4209                         break;
4210                 r = 0;
4211                 break;
4212         }
4213         case KVM_SET_XCRS: {
4214                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4215                 if (IS_ERR(u.xcrs)) {
4216                         r = PTR_ERR(u.xcrs);
4217                         goto out_nofree;
4218                 }
4219
4220                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4221                 break;
4222         }
4223         case KVM_SET_TSC_KHZ: {
4224                 u32 user_tsc_khz;
4225
4226                 r = -EINVAL;
4227                 user_tsc_khz = (u32)arg;
4228
4229                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4230                         goto out;
4231
4232                 if (user_tsc_khz == 0)
4233                         user_tsc_khz = tsc_khz;
4234
4235                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4236                         r = 0;
4237
4238                 goto out;
4239         }
4240         case KVM_GET_TSC_KHZ: {
4241                 r = vcpu->arch.virtual_tsc_khz;
4242                 goto out;
4243         }
4244         case KVM_KVMCLOCK_CTRL: {
4245                 r = kvm_set_guest_paused(vcpu);
4246                 goto out;
4247         }
4248         case KVM_ENABLE_CAP: {
4249                 struct kvm_enable_cap cap;
4250
4251                 r = -EFAULT;
4252                 if (copy_from_user(&cap, argp, sizeof(cap)))
4253                         goto out;
4254                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4255                 break;
4256         }
4257         case KVM_GET_NESTED_STATE: {
4258                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4259                 u32 user_data_size;
4260
4261                 r = -EINVAL;
4262                 if (!kvm_x86_ops->get_nested_state)
4263                         break;
4264
4265                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4266                 r = -EFAULT;
4267                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4268                         break;
4269
4270                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4271                                                   user_data_size);
4272                 if (r < 0)
4273                         break;
4274
4275                 if (r > user_data_size) {
4276                         if (put_user(r, &user_kvm_nested_state->size))
4277                                 r = -EFAULT;
4278                         else
4279                                 r = -E2BIG;
4280                         break;
4281                 }
4282
4283                 r = 0;
4284                 break;
4285         }
4286         case KVM_SET_NESTED_STATE: {
4287                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4288                 struct kvm_nested_state kvm_state;
4289
4290                 r = -EINVAL;
4291                 if (!kvm_x86_ops->set_nested_state)
4292                         break;
4293
4294                 r = -EFAULT;
4295                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4296                         break;
4297
4298                 r = -EINVAL;
4299                 if (kvm_state.size < sizeof(kvm_state))
4300                         break;
4301
4302                 if (kvm_state.flags &
4303                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4304                       | KVM_STATE_NESTED_EVMCS))
4305                         break;
4306
4307                 /* nested_run_pending implies guest_mode.  */
4308                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4309                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4310                         break;
4311
4312                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4313                 break;
4314         }
4315         case KVM_GET_SUPPORTED_HV_CPUID: {
4316                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4317                 struct kvm_cpuid2 cpuid;
4318
4319                 r = -EFAULT;
4320                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4321                         goto out;
4322
4323                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4324                                                 cpuid_arg->entries);
4325                 if (r)
4326                         goto out;
4327
4328                 r = -EFAULT;
4329                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4330                         goto out;
4331                 r = 0;
4332                 break;
4333         }
4334         default:
4335                 r = -EINVAL;
4336         }
4337 out:
4338         kfree(u.buffer);
4339 out_nofree:
4340         vcpu_put(vcpu);
4341         return r;
4342 }
4343
4344 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4345 {
4346         return VM_FAULT_SIGBUS;
4347 }
4348
4349 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4350 {
4351         int ret;
4352
4353         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4354                 return -EINVAL;
4355         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4356         return ret;
4357 }
4358
4359 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4360                                               u64 ident_addr)
4361 {
4362         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4363 }
4364
4365 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4366                                          unsigned long kvm_nr_mmu_pages)
4367 {
4368         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4369                 return -EINVAL;
4370
4371         mutex_lock(&kvm->slots_lock);
4372
4373         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4374         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4375
4376         mutex_unlock(&kvm->slots_lock);
4377         return 0;
4378 }
4379
4380 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4381 {
4382         return kvm->arch.n_max_mmu_pages;
4383 }
4384
4385 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4386 {
4387         struct kvm_pic *pic = kvm->arch.vpic;
4388         int r;
4389
4390         r = 0;
4391         switch (chip->chip_id) {
4392         case KVM_IRQCHIP_PIC_MASTER:
4393                 memcpy(&chip->chip.pic, &pic->pics[0],
4394                         sizeof(struct kvm_pic_state));
4395                 break;
4396         case KVM_IRQCHIP_PIC_SLAVE:
4397                 memcpy(&chip->chip.pic, &pic->pics[1],
4398                         sizeof(struct kvm_pic_state));
4399                 break;
4400         case KVM_IRQCHIP_IOAPIC:
4401                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4402                 break;
4403         default:
4404                 r = -EINVAL;
4405                 break;
4406         }
4407         return r;
4408 }
4409
4410 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4411 {
4412         struct kvm_pic *pic = kvm->arch.vpic;
4413         int r;
4414
4415         r = 0;
4416         switch (chip->chip_id) {
4417         case KVM_IRQCHIP_PIC_MASTER:
4418                 spin_lock(&pic->lock);
4419                 memcpy(&pic->pics[0], &chip->chip.pic,
4420                         sizeof(struct kvm_pic_state));
4421                 spin_unlock(&pic->lock);
4422                 break;
4423         case KVM_IRQCHIP_PIC_SLAVE:
4424                 spin_lock(&pic->lock);
4425                 memcpy(&pic->pics[1], &chip->chip.pic,
4426                         sizeof(struct kvm_pic_state));
4427                 spin_unlock(&pic->lock);
4428                 break;
4429         case KVM_IRQCHIP_IOAPIC:
4430                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4431                 break;
4432         default:
4433                 r = -EINVAL;
4434                 break;
4435         }
4436         kvm_pic_update_irq(pic);
4437         return r;
4438 }
4439
4440 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4441 {
4442         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4443
4444         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4445
4446         mutex_lock(&kps->lock);
4447         memcpy(ps, &kps->channels, sizeof(*ps));
4448         mutex_unlock(&kps->lock);
4449         return 0;
4450 }
4451
4452 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4453 {
4454         int i;
4455         struct kvm_pit *pit = kvm->arch.vpit;
4456
4457         mutex_lock(&pit->pit_state.lock);
4458         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4459         for (i = 0; i < 3; i++)
4460                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4461         mutex_unlock(&pit->pit_state.lock);
4462         return 0;
4463 }
4464
4465 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4466 {
4467         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4468         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4469                 sizeof(ps->channels));
4470         ps->flags = kvm->arch.vpit->pit_state.flags;
4471         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4472         memset(&ps->reserved, 0, sizeof(ps->reserved));
4473         return 0;
4474 }
4475
4476 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4477 {
4478         int start = 0;
4479         int i;
4480         u32 prev_legacy, cur_legacy;
4481         struct kvm_pit *pit = kvm->arch.vpit;
4482
4483         mutex_lock(&pit->pit_state.lock);
4484         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4485         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4486         if (!prev_legacy && cur_legacy)
4487                 start = 1;
4488         memcpy(&pit->pit_state.channels, &ps->channels,
4489                sizeof(pit->pit_state.channels));
4490         pit->pit_state.flags = ps->flags;
4491         for (i = 0; i < 3; i++)
4492                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4493                                    start && i == 0);
4494         mutex_unlock(&pit->pit_state.lock);
4495         return 0;
4496 }
4497
4498 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4499                                  struct kvm_reinject_control *control)
4500 {
4501         struct kvm_pit *pit = kvm->arch.vpit;
4502
4503         if (!pit)
4504                 return -ENXIO;
4505
4506         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4507          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4508          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4509          */
4510         mutex_lock(&pit->pit_state.lock);
4511         kvm_pit_set_reinject(pit, control->pit_reinject);
4512         mutex_unlock(&pit->pit_state.lock);
4513
4514         return 0;
4515 }
4516
4517 /**
4518  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4519  * @kvm: kvm instance
4520  * @log: slot id and address to which we copy the log
4521  *
4522  * Steps 1-4 below provide general overview of dirty page logging. See
4523  * kvm_get_dirty_log_protect() function description for additional details.
4524  *
4525  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4526  * always flush the TLB (step 4) even if previous step failed  and the dirty
4527  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4528  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4529  * writes will be marked dirty for next log read.
4530  *
4531  *   1. Take a snapshot of the bit and clear it if needed.
4532  *   2. Write protect the corresponding page.
4533  *   3. Copy the snapshot to the userspace.
4534  *   4. Flush TLB's if needed.
4535  */
4536 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4537 {
4538         bool flush = false;
4539         int r;
4540
4541         mutex_lock(&kvm->slots_lock);
4542
4543         /*
4544          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4545          */
4546         if (kvm_x86_ops->flush_log_dirty)
4547                 kvm_x86_ops->flush_log_dirty(kvm);
4548
4549         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4550
4551         /*
4552          * All the TLBs can be flushed out of mmu lock, see the comments in
4553          * kvm_mmu_slot_remove_write_access().
4554          */
4555         lockdep_assert_held(&kvm->slots_lock);
4556         if (flush)
4557                 kvm_flush_remote_tlbs(kvm);
4558
4559         mutex_unlock(&kvm->slots_lock);
4560         return r;
4561 }
4562
4563 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4564 {
4565         bool flush = false;
4566         int r;
4567
4568         mutex_lock(&kvm->slots_lock);
4569
4570         /*
4571          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4572          */
4573         if (kvm_x86_ops->flush_log_dirty)
4574                 kvm_x86_ops->flush_log_dirty(kvm);
4575
4576         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4577
4578         /*
4579          * All the TLBs can be flushed out of mmu lock, see the comments in
4580          * kvm_mmu_slot_remove_write_access().
4581          */
4582         lockdep_assert_held(&kvm->slots_lock);
4583         if (flush)
4584                 kvm_flush_remote_tlbs(kvm);
4585
4586         mutex_unlock(&kvm->slots_lock);
4587         return r;
4588 }
4589
4590 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4591                         bool line_status)
4592 {
4593         if (!irqchip_in_kernel(kvm))
4594                 return -ENXIO;
4595
4596         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4597                                         irq_event->irq, irq_event->level,
4598                                         line_status);
4599         return 0;
4600 }
4601
4602 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4603                             struct kvm_enable_cap *cap)
4604 {
4605         int r;
4606
4607         if (cap->flags)
4608                 return -EINVAL;
4609
4610         switch (cap->cap) {
4611         case KVM_CAP_DISABLE_QUIRKS:
4612                 kvm->arch.disabled_quirks = cap->args[0];
4613                 r = 0;
4614                 break;
4615         case KVM_CAP_SPLIT_IRQCHIP: {
4616                 mutex_lock(&kvm->lock);
4617                 r = -EINVAL;
4618                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4619                         goto split_irqchip_unlock;
4620                 r = -EEXIST;
4621                 if (irqchip_in_kernel(kvm))
4622                         goto split_irqchip_unlock;
4623                 if (kvm->created_vcpus)
4624                         goto split_irqchip_unlock;
4625                 r = kvm_setup_empty_irq_routing(kvm);
4626                 if (r)
4627                         goto split_irqchip_unlock;
4628                 /* Pairs with irqchip_in_kernel. */
4629                 smp_wmb();
4630                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4631                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4632                 r = 0;
4633 split_irqchip_unlock:
4634                 mutex_unlock(&kvm->lock);
4635                 break;
4636         }
4637         case KVM_CAP_X2APIC_API:
4638                 r = -EINVAL;
4639                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4640                         break;
4641
4642                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4643                         kvm->arch.x2apic_format = true;
4644                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4645                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4646
4647                 r = 0;
4648                 break;
4649         case KVM_CAP_X86_DISABLE_EXITS:
4650                 r = -EINVAL;
4651                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4652                         break;
4653
4654                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4655                         kvm_can_mwait_in_guest())
4656                         kvm->arch.mwait_in_guest = true;
4657                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4658                         kvm->arch.hlt_in_guest = true;
4659                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4660                         kvm->arch.pause_in_guest = true;
4661                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4662                         kvm->arch.cstate_in_guest = true;
4663                 r = 0;
4664                 break;
4665         case KVM_CAP_MSR_PLATFORM_INFO:
4666                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4667                 r = 0;
4668                 break;
4669         case KVM_CAP_EXCEPTION_PAYLOAD:
4670                 kvm->arch.exception_payload_enabled = cap->args[0];
4671                 r = 0;
4672                 break;
4673         default:
4674                 r = -EINVAL;
4675                 break;
4676         }
4677         return r;
4678 }
4679
4680 long kvm_arch_vm_ioctl(struct file *filp,
4681                        unsigned int ioctl, unsigned long arg)
4682 {
4683         struct kvm *kvm = filp->private_data;
4684         void __user *argp = (void __user *)arg;
4685         int r = -ENOTTY;
4686         /*
4687          * This union makes it completely explicit to gcc-3.x
4688          * that these two variables' stack usage should be
4689          * combined, not added together.
4690          */
4691         union {
4692                 struct kvm_pit_state ps;
4693                 struct kvm_pit_state2 ps2;
4694                 struct kvm_pit_config pit_config;
4695         } u;
4696
4697         switch (ioctl) {
4698         case KVM_SET_TSS_ADDR:
4699                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4700                 break;
4701         case KVM_SET_IDENTITY_MAP_ADDR: {
4702                 u64 ident_addr;
4703
4704                 mutex_lock(&kvm->lock);
4705                 r = -EINVAL;
4706                 if (kvm->created_vcpus)
4707                         goto set_identity_unlock;
4708                 r = -EFAULT;
4709                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4710                         goto set_identity_unlock;
4711                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4712 set_identity_unlock:
4713                 mutex_unlock(&kvm->lock);
4714                 break;
4715         }
4716         case KVM_SET_NR_MMU_PAGES:
4717                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4718                 break;
4719         case KVM_GET_NR_MMU_PAGES:
4720                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4721                 break;
4722         case KVM_CREATE_IRQCHIP: {
4723                 mutex_lock(&kvm->lock);
4724
4725                 r = -EEXIST;
4726                 if (irqchip_in_kernel(kvm))
4727                         goto create_irqchip_unlock;
4728
4729                 r = -EINVAL;
4730                 if (kvm->created_vcpus)
4731                         goto create_irqchip_unlock;
4732
4733                 r = kvm_pic_init(kvm);
4734                 if (r)
4735                         goto create_irqchip_unlock;
4736
4737                 r = kvm_ioapic_init(kvm);
4738                 if (r) {
4739                         kvm_pic_destroy(kvm);
4740                         goto create_irqchip_unlock;
4741                 }
4742
4743                 r = kvm_setup_default_irq_routing(kvm);
4744                 if (r) {
4745                         kvm_ioapic_destroy(kvm);
4746                         kvm_pic_destroy(kvm);
4747                         goto create_irqchip_unlock;
4748                 }
4749                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4750                 smp_wmb();
4751                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4752         create_irqchip_unlock:
4753                 mutex_unlock(&kvm->lock);
4754                 break;
4755         }
4756         case KVM_CREATE_PIT:
4757                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4758                 goto create_pit;
4759         case KVM_CREATE_PIT2:
4760                 r = -EFAULT;
4761                 if (copy_from_user(&u.pit_config, argp,
4762                                    sizeof(struct kvm_pit_config)))
4763                         goto out;
4764         create_pit:
4765                 mutex_lock(&kvm->lock);
4766                 r = -EEXIST;
4767                 if (kvm->arch.vpit)
4768                         goto create_pit_unlock;
4769                 r = -ENOMEM;
4770                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4771                 if (kvm->arch.vpit)
4772                         r = 0;
4773         create_pit_unlock:
4774                 mutex_unlock(&kvm->lock);
4775                 break;
4776         case KVM_GET_IRQCHIP: {
4777                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4778                 struct kvm_irqchip *chip;
4779
4780                 chip = memdup_user(argp, sizeof(*chip));
4781                 if (IS_ERR(chip)) {
4782                         r = PTR_ERR(chip);
4783                         goto out;
4784                 }
4785
4786                 r = -ENXIO;
4787                 if (!irqchip_kernel(kvm))
4788                         goto get_irqchip_out;
4789                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4790                 if (r)
4791                         goto get_irqchip_out;
4792                 r = -EFAULT;
4793                 if (copy_to_user(argp, chip, sizeof(*chip)))
4794                         goto get_irqchip_out;
4795                 r = 0;
4796         get_irqchip_out:
4797                 kfree(chip);
4798                 break;
4799         }
4800         case KVM_SET_IRQCHIP: {
4801                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4802                 struct kvm_irqchip *chip;
4803
4804                 chip = memdup_user(argp, sizeof(*chip));
4805                 if (IS_ERR(chip)) {
4806                         r = PTR_ERR(chip);
4807                         goto out;
4808                 }
4809
4810                 r = -ENXIO;
4811                 if (!irqchip_kernel(kvm))
4812                         goto set_irqchip_out;
4813                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4814                 if (r)
4815                         goto set_irqchip_out;
4816                 r = 0;
4817         set_irqchip_out:
4818                 kfree(chip);
4819                 break;
4820         }
4821         case KVM_GET_PIT: {
4822                 r = -EFAULT;
4823                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4824                         goto out;
4825                 r = -ENXIO;
4826                 if (!kvm->arch.vpit)
4827                         goto out;
4828                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4829                 if (r)
4830                         goto out;
4831                 r = -EFAULT;
4832                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4833                         goto out;
4834                 r = 0;
4835                 break;
4836         }
4837         case KVM_SET_PIT: {
4838                 r = -EFAULT;
4839                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4840                         goto out;
4841                 r = -ENXIO;
4842                 if (!kvm->arch.vpit)
4843                         goto out;
4844                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4845                 break;
4846         }
4847         case KVM_GET_PIT2: {
4848                 r = -ENXIO;
4849                 if (!kvm->arch.vpit)
4850                         goto out;
4851                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4852                 if (r)
4853                         goto out;
4854                 r = -EFAULT;
4855                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4856                         goto out;
4857                 r = 0;
4858                 break;
4859         }
4860         case KVM_SET_PIT2: {
4861                 r = -EFAULT;
4862                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4863                         goto out;
4864                 r = -ENXIO;
4865                 if (!kvm->arch.vpit)
4866                         goto out;
4867                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4868                 break;
4869         }
4870         case KVM_REINJECT_CONTROL: {
4871                 struct kvm_reinject_control control;
4872                 r =  -EFAULT;
4873                 if (copy_from_user(&control, argp, sizeof(control)))
4874                         goto out;
4875                 r = kvm_vm_ioctl_reinject(kvm, &control);
4876                 break;
4877         }
4878         case KVM_SET_BOOT_CPU_ID:
4879                 r = 0;
4880                 mutex_lock(&kvm->lock);
4881                 if (kvm->created_vcpus)
4882                         r = -EBUSY;
4883                 else
4884                         kvm->arch.bsp_vcpu_id = arg;
4885                 mutex_unlock(&kvm->lock);
4886                 break;
4887         case KVM_XEN_HVM_CONFIG: {
4888                 struct kvm_xen_hvm_config xhc;
4889                 r = -EFAULT;
4890                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4891                         goto out;
4892                 r = -EINVAL;
4893                 if (xhc.flags)
4894                         goto out;
4895                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4896                 r = 0;
4897                 break;
4898         }
4899         case KVM_SET_CLOCK: {
4900                 struct kvm_clock_data user_ns;
4901                 u64 now_ns;
4902
4903                 r = -EFAULT;
4904                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4905                         goto out;
4906
4907                 r = -EINVAL;
4908                 if (user_ns.flags)
4909                         goto out;
4910
4911                 r = 0;
4912                 /*
4913                  * TODO: userspace has to take care of races with VCPU_RUN, so
4914                  * kvm_gen_update_masterclock() can be cut down to locked
4915                  * pvclock_update_vm_gtod_copy().
4916                  */
4917                 kvm_gen_update_masterclock(kvm);
4918                 now_ns = get_kvmclock_ns(kvm);
4919                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4920                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4921                 break;
4922         }
4923         case KVM_GET_CLOCK: {
4924                 struct kvm_clock_data user_ns;
4925                 u64 now_ns;
4926
4927                 now_ns = get_kvmclock_ns(kvm);
4928                 user_ns.clock = now_ns;
4929                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4930                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4931
4932                 r = -EFAULT;
4933                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4934                         goto out;
4935                 r = 0;
4936                 break;
4937         }
4938         case KVM_MEMORY_ENCRYPT_OP: {
4939                 r = -ENOTTY;
4940                 if (kvm_x86_ops->mem_enc_op)
4941                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4942                 break;
4943         }
4944         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4945                 struct kvm_enc_region region;
4946
4947                 r = -EFAULT;
4948                 if (copy_from_user(&region, argp, sizeof(region)))
4949                         goto out;
4950
4951                 r = -ENOTTY;
4952                 if (kvm_x86_ops->mem_enc_reg_region)
4953                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4954                 break;
4955         }
4956         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4957                 struct kvm_enc_region region;
4958
4959                 r = -EFAULT;
4960                 if (copy_from_user(&region, argp, sizeof(region)))
4961                         goto out;
4962
4963                 r = -ENOTTY;
4964                 if (kvm_x86_ops->mem_enc_unreg_region)
4965                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4966                 break;
4967         }
4968         case KVM_HYPERV_EVENTFD: {
4969                 struct kvm_hyperv_eventfd hvevfd;
4970
4971                 r = -EFAULT;
4972                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4973                         goto out;
4974                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4975                 break;
4976         }
4977         case KVM_SET_PMU_EVENT_FILTER:
4978                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
4979                 break;
4980         default:
4981                 r = -ENOTTY;
4982         }
4983 out:
4984         return r;
4985 }
4986
4987 static void kvm_init_msr_list(void)
4988 {
4989         u32 dummy[2];
4990         unsigned i, j;
4991
4992         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4993                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4994                         continue;
4995
4996                 /*
4997                  * Even MSRs that are valid in the host may not be exposed
4998                  * to the guests in some cases.
4999                  */
5000                 switch (msrs_to_save[i]) {
5001                 case MSR_IA32_BNDCFGS:
5002                         if (!kvm_mpx_supported())
5003                                 continue;
5004                         break;
5005                 case MSR_TSC_AUX:
5006                         if (!kvm_x86_ops->rdtscp_supported())
5007                                 continue;
5008                         break;
5009                 case MSR_IA32_RTIT_CTL:
5010                 case MSR_IA32_RTIT_STATUS:
5011                         if (!kvm_x86_ops->pt_supported())
5012                                 continue;
5013                         break;
5014                 case MSR_IA32_RTIT_CR3_MATCH:
5015                         if (!kvm_x86_ops->pt_supported() ||
5016                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5017                                 continue;
5018                         break;
5019                 case MSR_IA32_RTIT_OUTPUT_BASE:
5020                 case MSR_IA32_RTIT_OUTPUT_MASK:
5021                         if (!kvm_x86_ops->pt_supported() ||
5022                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5023                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5024                                 continue;
5025                         break;
5026                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5027                         if (!kvm_x86_ops->pt_supported() ||
5028                                 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
5029                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5030                                 continue;
5031                         break;
5032                 }
5033                 default:
5034                         break;
5035                 }
5036
5037                 if (j < i)
5038                         msrs_to_save[j] = msrs_to_save[i];
5039                 j++;
5040         }
5041         num_msrs_to_save = j;
5042
5043         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
5044                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
5045                         continue;
5046
5047                 if (j < i)
5048                         emulated_msrs[j] = emulated_msrs[i];
5049                 j++;
5050         }
5051         num_emulated_msrs = j;
5052
5053         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5054                 struct kvm_msr_entry msr;
5055
5056                 msr.index = msr_based_features[i];
5057                 if (kvm_get_msr_feature(&msr))
5058                         continue;
5059
5060                 if (j < i)
5061                         msr_based_features[j] = msr_based_features[i];
5062                 j++;
5063         }
5064         num_msr_based_features = j;
5065 }
5066
5067 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5068                            const void *v)
5069 {
5070         int handled = 0;
5071         int n;
5072
5073         do {
5074                 n = min(len, 8);
5075                 if (!(lapic_in_kernel(vcpu) &&
5076                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5077                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5078                         break;
5079                 handled += n;
5080                 addr += n;
5081                 len -= n;
5082                 v += n;
5083         } while (len);
5084
5085         return handled;
5086 }
5087
5088 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5089 {
5090         int handled = 0;
5091         int n;
5092
5093         do {
5094                 n = min(len, 8);
5095                 if (!(lapic_in_kernel(vcpu) &&
5096                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5097                                          addr, n, v))
5098                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5099                         break;
5100                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5101                 handled += n;
5102                 addr += n;
5103                 len -= n;
5104                 v += n;
5105         } while (len);
5106
5107         return handled;
5108 }
5109
5110 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5111                         struct kvm_segment *var, int seg)
5112 {
5113         kvm_x86_ops->set_segment(vcpu, var, seg);
5114 }
5115
5116 void kvm_get_segment(struct kvm_vcpu *vcpu,
5117                      struct kvm_segment *var, int seg)
5118 {
5119         kvm_x86_ops->get_segment(vcpu, var, seg);
5120 }
5121
5122 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5123                            struct x86_exception *exception)
5124 {
5125         gpa_t t_gpa;
5126
5127         BUG_ON(!mmu_is_nested(vcpu));
5128
5129         /* NPT walks are always user-walks */
5130         access |= PFERR_USER_MASK;
5131         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5132
5133         return t_gpa;
5134 }
5135
5136 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5137                               struct x86_exception *exception)
5138 {
5139         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5140         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5141 }
5142
5143  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5144                                 struct x86_exception *exception)
5145 {
5146         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5147         access |= PFERR_FETCH_MASK;
5148         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5149 }
5150
5151 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5152                                struct x86_exception *exception)
5153 {
5154         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5155         access |= PFERR_WRITE_MASK;
5156         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5157 }
5158
5159 /* uses this to access any guest's mapped memory without checking CPL */
5160 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5161                                 struct x86_exception *exception)
5162 {
5163         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5164 }
5165
5166 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5167                                       struct kvm_vcpu *vcpu, u32 access,
5168                                       struct x86_exception *exception)
5169 {
5170         void *data = val;
5171         int r = X86EMUL_CONTINUE;
5172
5173         while (bytes) {
5174                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5175                                                             exception);
5176                 unsigned offset = addr & (PAGE_SIZE-1);
5177                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5178                 int ret;
5179
5180                 if (gpa == UNMAPPED_GVA)
5181                         return X86EMUL_PROPAGATE_FAULT;
5182                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5183                                                offset, toread);
5184                 if (ret < 0) {
5185                         r = X86EMUL_IO_NEEDED;
5186                         goto out;
5187                 }
5188
5189                 bytes -= toread;
5190                 data += toread;
5191                 addr += toread;
5192         }
5193 out:
5194         return r;
5195 }
5196
5197 /* used for instruction fetching */
5198 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5199                                 gva_t addr, void *val, unsigned int bytes,
5200                                 struct x86_exception *exception)
5201 {
5202         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5203         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5204         unsigned offset;
5205         int ret;
5206
5207         /* Inline kvm_read_guest_virt_helper for speed.  */
5208         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5209                                                     exception);
5210         if (unlikely(gpa == UNMAPPED_GVA))
5211                 return X86EMUL_PROPAGATE_FAULT;
5212
5213         offset = addr & (PAGE_SIZE-1);
5214         if (WARN_ON(offset + bytes > PAGE_SIZE))
5215                 bytes = (unsigned)PAGE_SIZE - offset;
5216         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5217                                        offset, bytes);
5218         if (unlikely(ret < 0))
5219                 return X86EMUL_IO_NEEDED;
5220
5221         return X86EMUL_CONTINUE;
5222 }
5223
5224 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5225                                gva_t addr, void *val, unsigned int bytes,
5226                                struct x86_exception *exception)
5227 {
5228         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5229
5230         /*
5231          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5232          * is returned, but our callers are not ready for that and they blindly
5233          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5234          * uninitialized kernel stack memory into cr2 and error code.
5235          */
5236         memset(exception, 0, sizeof(*exception));
5237         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5238                                           exception);
5239 }
5240 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5241
5242 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5243                              gva_t addr, void *val, unsigned int bytes,
5244                              struct x86_exception *exception, bool system)
5245 {
5246         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5247         u32 access = 0;
5248
5249         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5250                 access |= PFERR_USER_MASK;
5251
5252         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5253 }
5254
5255 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5256                 unsigned long addr, void *val, unsigned int bytes)
5257 {
5258         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5259         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5260
5261         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5262 }
5263
5264 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5265                                       struct kvm_vcpu *vcpu, u32 access,
5266                                       struct x86_exception *exception)
5267 {
5268         void *data = val;
5269         int r = X86EMUL_CONTINUE;
5270
5271         while (bytes) {
5272                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5273                                                              access,
5274                                                              exception);
5275                 unsigned offset = addr & (PAGE_SIZE-1);
5276                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5277                 int ret;
5278
5279                 if (gpa == UNMAPPED_GVA)
5280                         return X86EMUL_PROPAGATE_FAULT;
5281                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5282                 if (ret < 0) {
5283                         r = X86EMUL_IO_NEEDED;
5284                         goto out;
5285                 }
5286
5287                 bytes -= towrite;
5288                 data += towrite;
5289                 addr += towrite;
5290         }
5291 out:
5292         return r;
5293 }
5294
5295 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5296                               unsigned int bytes, struct x86_exception *exception,
5297                               bool system)
5298 {
5299         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5300         u32 access = PFERR_WRITE_MASK;
5301
5302         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5303                 access |= PFERR_USER_MASK;
5304
5305         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5306                                            access, exception);
5307 }
5308
5309 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5310                                 unsigned int bytes, struct x86_exception *exception)
5311 {
5312         /* kvm_write_guest_virt_system can pull in tons of pages. */
5313         vcpu->arch.l1tf_flush_l1d = true;
5314
5315         /*
5316          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5317          * is returned, but our callers are not ready for that and they blindly
5318          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5319          * uninitialized kernel stack memory into cr2 and error code.
5320          */
5321         memset(exception, 0, sizeof(*exception));
5322         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5323                                            PFERR_WRITE_MASK, exception);
5324 }
5325 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5326
5327 int handle_ud(struct kvm_vcpu *vcpu)
5328 {
5329         int emul_type = EMULTYPE_TRAP_UD;
5330         enum emulation_result er;
5331         char sig[5]; /* ud2; .ascii "kvm" */
5332         struct x86_exception e;
5333
5334         if (force_emulation_prefix &&
5335             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5336                                 sig, sizeof(sig), &e) == 0 &&
5337             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5338                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5339                 emul_type = 0;
5340         }
5341
5342         er = kvm_emulate_instruction(vcpu, emul_type);
5343         if (er == EMULATE_USER_EXIT)
5344                 return 0;
5345         if (er != EMULATE_DONE)
5346                 kvm_queue_exception(vcpu, UD_VECTOR);
5347         return 1;
5348 }
5349 EXPORT_SYMBOL_GPL(handle_ud);
5350
5351 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5352                             gpa_t gpa, bool write)
5353 {
5354         /* For APIC access vmexit */
5355         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5356                 return 1;
5357
5358         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5359                 trace_vcpu_match_mmio(gva, gpa, write, true);
5360                 return 1;
5361         }
5362
5363         return 0;
5364 }
5365
5366 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5367                                 gpa_t *gpa, struct x86_exception *exception,
5368                                 bool write)
5369 {
5370         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5371                 | (write ? PFERR_WRITE_MASK : 0);
5372
5373         /*
5374          * currently PKRU is only applied to ept enabled guest so
5375          * there is no pkey in EPT page table for L1 guest or EPT
5376          * shadow page table for L2 guest.
5377          */
5378         if (vcpu_match_mmio_gva(vcpu, gva)
5379             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5380                                  vcpu->arch.access, 0, access)) {
5381                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5382                                         (gva & (PAGE_SIZE - 1));
5383                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5384                 return 1;
5385         }
5386
5387         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5388
5389         if (*gpa == UNMAPPED_GVA)
5390                 return -1;
5391
5392         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5393 }
5394
5395 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5396                         const void *val, int bytes)
5397 {
5398         int ret;
5399
5400         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5401         if (ret < 0)
5402                 return 0;
5403         kvm_page_track_write(vcpu, gpa, val, bytes);
5404         return 1;
5405 }
5406
5407 struct read_write_emulator_ops {
5408         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5409                                   int bytes);
5410         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5411                                   void *val, int bytes);
5412         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5413                                int bytes, void *val);
5414         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5415                                     void *val, int bytes);
5416         bool write;
5417 };
5418
5419 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5420 {
5421         if (vcpu->mmio_read_completed) {
5422                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5423                                vcpu->mmio_fragments[0].gpa, val);
5424                 vcpu->mmio_read_completed = 0;
5425                 return 1;
5426         }
5427
5428         return 0;
5429 }
5430
5431 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5432                         void *val, int bytes)
5433 {
5434         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5435 }
5436
5437 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5438                          void *val, int bytes)
5439 {
5440         return emulator_write_phys(vcpu, gpa, val, bytes);
5441 }
5442
5443 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5444 {
5445         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5446         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5447 }
5448
5449 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5450                           void *val, int bytes)
5451 {
5452         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5453         return X86EMUL_IO_NEEDED;
5454 }
5455
5456 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5457                            void *val, int bytes)
5458 {
5459         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5460
5461         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5462         return X86EMUL_CONTINUE;
5463 }
5464
5465 static const struct read_write_emulator_ops read_emultor = {
5466         .read_write_prepare = read_prepare,
5467         .read_write_emulate = read_emulate,
5468         .read_write_mmio = vcpu_mmio_read,
5469         .read_write_exit_mmio = read_exit_mmio,
5470 };
5471
5472 static const struct read_write_emulator_ops write_emultor = {
5473         .read_write_emulate = write_emulate,
5474         .read_write_mmio = write_mmio,
5475         .read_write_exit_mmio = write_exit_mmio,
5476         .write = true,
5477 };
5478
5479 static int emulator_read_write_onepage(unsigned long addr, void *val,
5480                                        unsigned int bytes,
5481                                        struct x86_exception *exception,
5482                                        struct kvm_vcpu *vcpu,
5483                                        const struct read_write_emulator_ops *ops)
5484 {
5485         gpa_t gpa;
5486         int handled, ret;
5487         bool write = ops->write;
5488         struct kvm_mmio_fragment *frag;
5489         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5490
5491         /*
5492          * If the exit was due to a NPF we may already have a GPA.
5493          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5494          * Note, this cannot be used on string operations since string
5495          * operation using rep will only have the initial GPA from the NPF
5496          * occurred.
5497          */
5498         if (vcpu->arch.gpa_available &&
5499             emulator_can_use_gpa(ctxt) &&
5500             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5501                 gpa = vcpu->arch.gpa_val;
5502                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5503         } else {
5504                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5505                 if (ret < 0)
5506                         return X86EMUL_PROPAGATE_FAULT;
5507         }
5508
5509         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5510                 return X86EMUL_CONTINUE;
5511
5512         /*
5513          * Is this MMIO handled locally?
5514          */
5515         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5516         if (handled == bytes)
5517                 return X86EMUL_CONTINUE;
5518
5519         gpa += handled;
5520         bytes -= handled;
5521         val += handled;
5522
5523         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5524         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5525         frag->gpa = gpa;
5526         frag->data = val;
5527         frag->len = bytes;
5528         return X86EMUL_CONTINUE;
5529 }
5530
5531 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5532                         unsigned long addr,
5533                         void *val, unsigned int bytes,
5534                         struct x86_exception *exception,
5535                         const struct read_write_emulator_ops *ops)
5536 {
5537         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5538         gpa_t gpa;
5539         int rc;
5540
5541         if (ops->read_write_prepare &&
5542                   ops->read_write_prepare(vcpu, val, bytes))
5543                 return X86EMUL_CONTINUE;
5544
5545         vcpu->mmio_nr_fragments = 0;
5546
5547         /* Crossing a page boundary? */
5548         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5549                 int now;
5550
5551                 now = -addr & ~PAGE_MASK;
5552                 rc = emulator_read_write_onepage(addr, val, now, exception,
5553                                                  vcpu, ops);
5554
5555                 if (rc != X86EMUL_CONTINUE)
5556                         return rc;
5557                 addr += now;
5558                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5559                         addr = (u32)addr;
5560                 val += now;
5561                 bytes -= now;
5562         }
5563
5564         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5565                                          vcpu, ops);
5566         if (rc != X86EMUL_CONTINUE)
5567                 return rc;
5568
5569         if (!vcpu->mmio_nr_fragments)
5570                 return rc;
5571
5572         gpa = vcpu->mmio_fragments[0].gpa;
5573
5574         vcpu->mmio_needed = 1;
5575         vcpu->mmio_cur_fragment = 0;
5576
5577         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5578         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5579         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5580         vcpu->run->mmio.phys_addr = gpa;
5581
5582         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5583 }
5584
5585 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5586                                   unsigned long addr,
5587                                   void *val,
5588                                   unsigned int bytes,
5589                                   struct x86_exception *exception)
5590 {
5591         return emulator_read_write(ctxt, addr, val, bytes,
5592                                    exception, &read_emultor);
5593 }
5594
5595 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5596                             unsigned long addr,
5597                             const void *val,
5598                             unsigned int bytes,
5599                             struct x86_exception *exception)
5600 {
5601         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5602                                    exception, &write_emultor);
5603 }
5604
5605 #define CMPXCHG_TYPE(t, ptr, old, new) \
5606         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5607
5608 #ifdef CONFIG_X86_64
5609 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5610 #else
5611 #  define CMPXCHG64(ptr, old, new) \
5612         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5613 #endif
5614
5615 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5616                                      unsigned long addr,
5617                                      const void *old,
5618                                      const void *new,
5619                                      unsigned int bytes,
5620                                      struct x86_exception *exception)
5621 {
5622         struct kvm_host_map map;
5623         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5624         gpa_t gpa;
5625         char *kaddr;
5626         bool exchanged;
5627
5628         /* guests cmpxchg8b have to be emulated atomically */
5629         if (bytes > 8 || (bytes & (bytes - 1)))
5630                 goto emul_write;
5631
5632         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5633
5634         if (gpa == UNMAPPED_GVA ||
5635             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5636                 goto emul_write;
5637
5638         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5639                 goto emul_write;
5640
5641         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5642                 goto emul_write;
5643
5644         kaddr = map.hva + offset_in_page(gpa);
5645
5646         switch (bytes) {
5647         case 1:
5648                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5649                 break;
5650         case 2:
5651                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5652                 break;
5653         case 4:
5654                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5655                 break;
5656         case 8:
5657                 exchanged = CMPXCHG64(kaddr, old, new);
5658                 break;
5659         default:
5660                 BUG();
5661         }
5662
5663         kvm_vcpu_unmap(vcpu, &map, true);
5664
5665         if (!exchanged)
5666                 return X86EMUL_CMPXCHG_FAILED;
5667
5668         kvm_page_track_write(vcpu, gpa, new, bytes);
5669
5670         return X86EMUL_CONTINUE;
5671
5672 emul_write:
5673         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5674
5675         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5676 }
5677
5678 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5679 {
5680         int r = 0, i;
5681
5682         for (i = 0; i < vcpu->arch.pio.count; i++) {
5683                 if (vcpu->arch.pio.in)
5684                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5685                                             vcpu->arch.pio.size, pd);
5686                 else
5687                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5688                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5689                                              pd);
5690                 if (r)
5691                         break;
5692                 pd += vcpu->arch.pio.size;
5693         }
5694         return r;
5695 }
5696
5697 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5698                                unsigned short port, void *val,
5699                                unsigned int count, bool in)
5700 {
5701         vcpu->arch.pio.port = port;
5702         vcpu->arch.pio.in = in;
5703         vcpu->arch.pio.count  = count;
5704         vcpu->arch.pio.size = size;
5705
5706         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5707                 vcpu->arch.pio.count = 0;
5708                 return 1;
5709         }
5710
5711         vcpu->run->exit_reason = KVM_EXIT_IO;
5712         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5713         vcpu->run->io.size = size;
5714         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5715         vcpu->run->io.count = count;
5716         vcpu->run->io.port = port;
5717
5718         return 0;
5719 }
5720
5721 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5722                                     int size, unsigned short port, void *val,
5723                                     unsigned int count)
5724 {
5725         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5726         int ret;
5727
5728         if (vcpu->arch.pio.count)
5729                 goto data_avail;
5730
5731         memset(vcpu->arch.pio_data, 0, size * count);
5732
5733         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5734         if (ret) {
5735 data_avail:
5736                 memcpy(val, vcpu->arch.pio_data, size * count);
5737                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5738                 vcpu->arch.pio.count = 0;
5739                 return 1;
5740         }
5741
5742         return 0;
5743 }
5744
5745 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5746                                      int size, unsigned short port,
5747                                      const void *val, unsigned int count)
5748 {
5749         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5750
5751         memcpy(vcpu->arch.pio_data, val, size * count);
5752         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5753         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5754 }
5755
5756 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5757 {
5758         return kvm_x86_ops->get_segment_base(vcpu, seg);
5759 }
5760
5761 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5762 {
5763         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5764 }
5765
5766 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5767 {
5768         if (!need_emulate_wbinvd(vcpu))
5769                 return X86EMUL_CONTINUE;
5770
5771         if (kvm_x86_ops->has_wbinvd_exit()) {
5772                 int cpu = get_cpu();
5773
5774                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5775                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5776                                 wbinvd_ipi, NULL, 1);
5777                 put_cpu();
5778                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5779         } else
5780                 wbinvd();
5781         return X86EMUL_CONTINUE;
5782 }
5783
5784 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5785 {
5786         kvm_emulate_wbinvd_noskip(vcpu);
5787         return kvm_skip_emulated_instruction(vcpu);
5788 }
5789 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5790
5791
5792
5793 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5794 {
5795         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5796 }
5797
5798 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5799                            unsigned long *dest)
5800 {
5801         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5802 }
5803
5804 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5805                            unsigned long value)
5806 {
5807
5808         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5809 }
5810
5811 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5812 {
5813         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5814 }
5815
5816 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5817 {
5818         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5819         unsigned long value;
5820
5821         switch (cr) {
5822         case 0:
5823                 value = kvm_read_cr0(vcpu);
5824                 break;
5825         case 2:
5826                 value = vcpu->arch.cr2;
5827                 break;
5828         case 3:
5829                 value = kvm_read_cr3(vcpu);
5830                 break;
5831         case 4:
5832                 value = kvm_read_cr4(vcpu);
5833                 break;
5834         case 8:
5835                 value = kvm_get_cr8(vcpu);
5836                 break;
5837         default:
5838                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5839                 return 0;
5840         }
5841
5842         return value;
5843 }
5844
5845 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5846 {
5847         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5848         int res = 0;
5849
5850         switch (cr) {
5851         case 0:
5852                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5853                 break;
5854         case 2:
5855                 vcpu->arch.cr2 = val;
5856                 break;
5857         case 3:
5858                 res = kvm_set_cr3(vcpu, val);
5859                 break;
5860         case 4:
5861                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5862                 break;
5863         case 8:
5864                 res = kvm_set_cr8(vcpu, val);
5865                 break;
5866         default:
5867                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5868                 res = -1;
5869         }
5870
5871         return res;
5872 }
5873
5874 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5875 {
5876         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5877 }
5878
5879 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5880 {
5881         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5882 }
5883
5884 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5885 {
5886         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5887 }
5888
5889 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5890 {
5891         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5892 }
5893
5894 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5895 {
5896         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5897 }
5898
5899 static unsigned long emulator_get_cached_segment_base(
5900         struct x86_emulate_ctxt *ctxt, int seg)
5901 {
5902         return get_segment_base(emul_to_vcpu(ctxt), seg);
5903 }
5904
5905 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5906                                  struct desc_struct *desc, u32 *base3,
5907                                  int seg)
5908 {
5909         struct kvm_segment var;
5910
5911         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5912         *selector = var.selector;
5913
5914         if (var.unusable) {
5915                 memset(desc, 0, sizeof(*desc));
5916                 if (base3)
5917                         *base3 = 0;
5918                 return false;
5919         }
5920
5921         if (var.g)
5922                 var.limit >>= 12;
5923         set_desc_limit(desc, var.limit);
5924         set_desc_base(desc, (unsigned long)var.base);
5925 #ifdef CONFIG_X86_64
5926         if (base3)
5927                 *base3 = var.base >> 32;
5928 #endif
5929         desc->type = var.type;
5930         desc->s = var.s;
5931         desc->dpl = var.dpl;
5932         desc->p = var.present;
5933         desc->avl = var.avl;
5934         desc->l = var.l;
5935         desc->d = var.db;
5936         desc->g = var.g;
5937
5938         return true;
5939 }
5940
5941 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5942                                  struct desc_struct *desc, u32 base3,
5943                                  int seg)
5944 {
5945         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5946         struct kvm_segment var;
5947
5948         var.selector = selector;
5949         var.base = get_desc_base(desc);
5950 #ifdef CONFIG_X86_64
5951         var.base |= ((u64)base3) << 32;
5952 #endif
5953         var.limit = get_desc_limit(desc);
5954         if (desc->g)
5955                 var.limit = (var.limit << 12) | 0xfff;
5956         var.type = desc->type;
5957         var.dpl = desc->dpl;
5958         var.db = desc->d;
5959         var.s = desc->s;
5960         var.l = desc->l;
5961         var.g = desc->g;
5962         var.avl = desc->avl;
5963         var.present = desc->p;
5964         var.unusable = !var.present;
5965         var.padding = 0;
5966
5967         kvm_set_segment(vcpu, &var, seg);
5968         return;
5969 }
5970
5971 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5972                             u32 msr_index, u64 *pdata)
5973 {
5974         struct msr_data msr;
5975         int r;
5976
5977         msr.index = msr_index;
5978         msr.host_initiated = false;
5979         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5980         if (r)
5981                 return r;
5982
5983         *pdata = msr.data;
5984         return 0;
5985 }
5986
5987 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5988                             u32 msr_index, u64 data)
5989 {
5990         struct msr_data msr;
5991
5992         msr.data = data;
5993         msr.index = msr_index;
5994         msr.host_initiated = false;
5995         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5996 }
5997
5998 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5999 {
6000         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6001
6002         return vcpu->arch.smbase;
6003 }
6004
6005 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6006 {
6007         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6008
6009         vcpu->arch.smbase = smbase;
6010 }
6011
6012 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6013                               u32 pmc)
6014 {
6015         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
6016 }
6017
6018 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6019                              u32 pmc, u64 *pdata)
6020 {
6021         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6022 }
6023
6024 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6025 {
6026         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6027 }
6028
6029 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6030                               struct x86_instruction_info *info,
6031                               enum x86_intercept_stage stage)
6032 {
6033         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6034 }
6035
6036 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6037                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6038 {
6039         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6040 }
6041
6042 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6043 {
6044         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6045 }
6046
6047 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6048 {
6049         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6050 }
6051
6052 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6053 {
6054         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6055 }
6056
6057 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6058 {
6059         return emul_to_vcpu(ctxt)->arch.hflags;
6060 }
6061
6062 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6063 {
6064         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6065 }
6066
6067 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6068                                   const char *smstate)
6069 {
6070         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6071 }
6072
6073 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6074 {
6075         kvm_smm_changed(emul_to_vcpu(ctxt));
6076 }
6077
6078 static const struct x86_emulate_ops emulate_ops = {
6079         .read_gpr            = emulator_read_gpr,
6080         .write_gpr           = emulator_write_gpr,
6081         .read_std            = emulator_read_std,
6082         .write_std           = emulator_write_std,
6083         .read_phys           = kvm_read_guest_phys_system,
6084         .fetch               = kvm_fetch_guest_virt,
6085         .read_emulated       = emulator_read_emulated,
6086         .write_emulated      = emulator_write_emulated,
6087         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6088         .invlpg              = emulator_invlpg,
6089         .pio_in_emulated     = emulator_pio_in_emulated,
6090         .pio_out_emulated    = emulator_pio_out_emulated,
6091         .get_segment         = emulator_get_segment,
6092         .set_segment         = emulator_set_segment,
6093         .get_cached_segment_base = emulator_get_cached_segment_base,
6094         .get_gdt             = emulator_get_gdt,
6095         .get_idt             = emulator_get_idt,
6096         .set_gdt             = emulator_set_gdt,
6097         .set_idt             = emulator_set_idt,
6098         .get_cr              = emulator_get_cr,
6099         .set_cr              = emulator_set_cr,
6100         .cpl                 = emulator_get_cpl,
6101         .get_dr              = emulator_get_dr,
6102         .set_dr              = emulator_set_dr,
6103         .get_smbase          = emulator_get_smbase,
6104         .set_smbase          = emulator_set_smbase,
6105         .set_msr             = emulator_set_msr,
6106         .get_msr             = emulator_get_msr,
6107         .check_pmc           = emulator_check_pmc,
6108         .read_pmc            = emulator_read_pmc,
6109         .halt                = emulator_halt,
6110         .wbinvd              = emulator_wbinvd,
6111         .fix_hypercall       = emulator_fix_hypercall,
6112         .intercept           = emulator_intercept,
6113         .get_cpuid           = emulator_get_cpuid,
6114         .set_nmi_mask        = emulator_set_nmi_mask,
6115         .get_hflags          = emulator_get_hflags,
6116         .set_hflags          = emulator_set_hflags,
6117         .pre_leave_smm       = emulator_pre_leave_smm,
6118         .post_leave_smm      = emulator_post_leave_smm,
6119 };
6120
6121 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6122 {
6123         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6124         /*
6125          * an sti; sti; sequence only disable interrupts for the first
6126          * instruction. So, if the last instruction, be it emulated or
6127          * not, left the system with the INT_STI flag enabled, it
6128          * means that the last instruction is an sti. We should not
6129          * leave the flag on in this case. The same goes for mov ss
6130          */
6131         if (int_shadow & mask)
6132                 mask = 0;
6133         if (unlikely(int_shadow || mask)) {
6134                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6135                 if (!mask)
6136                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6137         }
6138 }
6139
6140 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6141 {
6142         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6143         if (ctxt->exception.vector == PF_VECTOR)
6144                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6145
6146         if (ctxt->exception.error_code_valid)
6147                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6148                                       ctxt->exception.error_code);
6149         else
6150                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6151         return false;
6152 }
6153
6154 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6155 {
6156         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6157         int cs_db, cs_l;
6158
6159         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6160
6161         ctxt->eflags = kvm_get_rflags(vcpu);
6162         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6163
6164         ctxt->eip = kvm_rip_read(vcpu);
6165         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6166                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6167                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6168                      cs_db                              ? X86EMUL_MODE_PROT32 :
6169                                                           X86EMUL_MODE_PROT16;
6170         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6171         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6172         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6173
6174         init_decode_cache(ctxt);
6175         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6176 }
6177
6178 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6179 {
6180         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6181         int ret;
6182
6183         init_emulate_ctxt(vcpu);
6184
6185         ctxt->op_bytes = 2;
6186         ctxt->ad_bytes = 2;
6187         ctxt->_eip = ctxt->eip + inc_eip;
6188         ret = emulate_int_real(ctxt, irq);
6189
6190         if (ret != X86EMUL_CONTINUE)
6191                 return EMULATE_FAIL;
6192
6193         ctxt->eip = ctxt->_eip;
6194         kvm_rip_write(vcpu, ctxt->eip);
6195         kvm_set_rflags(vcpu, ctxt->eflags);
6196
6197         return EMULATE_DONE;
6198 }
6199 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6200
6201 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6202 {
6203         int r = EMULATE_DONE;
6204
6205         ++vcpu->stat.insn_emulation_fail;
6206         trace_kvm_emulate_insn_failed(vcpu);
6207
6208         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6209                 return EMULATE_FAIL;
6210
6211         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6212                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6213                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6214                 vcpu->run->internal.ndata = 0;
6215                 r = EMULATE_USER_EXIT;
6216         }
6217
6218         kvm_queue_exception(vcpu, UD_VECTOR);
6219
6220         return r;
6221 }
6222
6223 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6224                                   bool write_fault_to_shadow_pgtable,
6225                                   int emulation_type)
6226 {
6227         gpa_t gpa = cr2;
6228         kvm_pfn_t pfn;
6229
6230         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6231                 return false;
6232
6233         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6234                 return false;
6235
6236         if (!vcpu->arch.mmu->direct_map) {
6237                 /*
6238                  * Write permission should be allowed since only
6239                  * write access need to be emulated.
6240                  */
6241                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6242
6243                 /*
6244                  * If the mapping is invalid in guest, let cpu retry
6245                  * it to generate fault.
6246                  */
6247                 if (gpa == UNMAPPED_GVA)
6248                         return true;
6249         }
6250
6251         /*
6252          * Do not retry the unhandleable instruction if it faults on the
6253          * readonly host memory, otherwise it will goto a infinite loop:
6254          * retry instruction -> write #PF -> emulation fail -> retry
6255          * instruction -> ...
6256          */
6257         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6258
6259         /*
6260          * If the instruction failed on the error pfn, it can not be fixed,
6261          * report the error to userspace.
6262          */
6263         if (is_error_noslot_pfn(pfn))
6264                 return false;
6265
6266         kvm_release_pfn_clean(pfn);
6267
6268         /* The instructions are well-emulated on direct mmu. */
6269         if (vcpu->arch.mmu->direct_map) {
6270                 unsigned int indirect_shadow_pages;
6271
6272                 spin_lock(&vcpu->kvm->mmu_lock);
6273                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6274                 spin_unlock(&vcpu->kvm->mmu_lock);
6275
6276                 if (indirect_shadow_pages)
6277                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6278
6279                 return true;
6280         }
6281
6282         /*
6283          * if emulation was due to access to shadowed page table
6284          * and it failed try to unshadow page and re-enter the
6285          * guest to let CPU execute the instruction.
6286          */
6287         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6288
6289         /*
6290          * If the access faults on its page table, it can not
6291          * be fixed by unprotecting shadow page and it should
6292          * be reported to userspace.
6293          */
6294         return !write_fault_to_shadow_pgtable;
6295 }
6296
6297 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6298                               unsigned long cr2,  int emulation_type)
6299 {
6300         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6301         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6302
6303         last_retry_eip = vcpu->arch.last_retry_eip;
6304         last_retry_addr = vcpu->arch.last_retry_addr;
6305
6306         /*
6307          * If the emulation is caused by #PF and it is non-page_table
6308          * writing instruction, it means the VM-EXIT is caused by shadow
6309          * page protected, we can zap the shadow page and retry this
6310          * instruction directly.
6311          *
6312          * Note: if the guest uses a non-page-table modifying instruction
6313          * on the PDE that points to the instruction, then we will unmap
6314          * the instruction and go to an infinite loop. So, we cache the
6315          * last retried eip and the last fault address, if we meet the eip
6316          * and the address again, we can break out of the potential infinite
6317          * loop.
6318          */
6319         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6320
6321         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6322                 return false;
6323
6324         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6325                 return false;
6326
6327         if (x86_page_table_writing_insn(ctxt))
6328                 return false;
6329
6330         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6331                 return false;
6332
6333         vcpu->arch.last_retry_eip = ctxt->eip;
6334         vcpu->arch.last_retry_addr = cr2;
6335
6336         if (!vcpu->arch.mmu->direct_map)
6337                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6338
6339         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6340
6341         return true;
6342 }
6343
6344 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6345 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6346
6347 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6348 {
6349         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6350                 /* This is a good place to trace that we are exiting SMM.  */
6351                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6352
6353                 /* Process a latched INIT or SMI, if any.  */
6354                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6355         }
6356
6357         kvm_mmu_reset_context(vcpu);
6358 }
6359
6360 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6361                                 unsigned long *db)
6362 {
6363         u32 dr6 = 0;
6364         int i;
6365         u32 enable, rwlen;
6366
6367         enable = dr7;
6368         rwlen = dr7 >> 16;
6369         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6370                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6371                         dr6 |= (1 << i);
6372         return dr6;
6373 }
6374
6375 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6376 {
6377         struct kvm_run *kvm_run = vcpu->run;
6378
6379         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6380                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6381                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6382                 kvm_run->debug.arch.exception = DB_VECTOR;
6383                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6384                 *r = EMULATE_USER_EXIT;
6385         } else {
6386                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6387         }
6388 }
6389
6390 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6391 {
6392         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6393         int r = EMULATE_DONE;
6394
6395         kvm_x86_ops->skip_emulated_instruction(vcpu);
6396
6397         /*
6398          * rflags is the old, "raw" value of the flags.  The new value has
6399          * not been saved yet.
6400          *
6401          * This is correct even for TF set by the guest, because "the
6402          * processor will not generate this exception after the instruction
6403          * that sets the TF flag".
6404          */
6405         if (unlikely(rflags & X86_EFLAGS_TF))
6406                 kvm_vcpu_do_singlestep(vcpu, &r);
6407         return r == EMULATE_DONE;
6408 }
6409 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6410
6411 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6412 {
6413         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6414             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6415                 struct kvm_run *kvm_run = vcpu->run;
6416                 unsigned long eip = kvm_get_linear_rip(vcpu);
6417                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6418                                            vcpu->arch.guest_debug_dr7,
6419                                            vcpu->arch.eff_db);
6420
6421                 if (dr6 != 0) {
6422                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6423                         kvm_run->debug.arch.pc = eip;
6424                         kvm_run->debug.arch.exception = DB_VECTOR;
6425                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6426                         *r = EMULATE_USER_EXIT;
6427                         return true;
6428                 }
6429         }
6430
6431         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6432             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6433                 unsigned long eip = kvm_get_linear_rip(vcpu);
6434                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6435                                            vcpu->arch.dr7,
6436                                            vcpu->arch.db);
6437
6438                 if (dr6 != 0) {
6439                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6440                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6441                         kvm_queue_exception(vcpu, DB_VECTOR);
6442                         *r = EMULATE_DONE;
6443                         return true;
6444                 }
6445         }
6446
6447         return false;
6448 }
6449
6450 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6451 {
6452         switch (ctxt->opcode_len) {
6453         case 1:
6454                 switch (ctxt->b) {
6455                 case 0xe4:      /* IN */
6456                 case 0xe5:
6457                 case 0xec:
6458                 case 0xed:
6459                 case 0xe6:      /* OUT */
6460                 case 0xe7:
6461                 case 0xee:
6462                 case 0xef:
6463                 case 0x6c:      /* INS */
6464                 case 0x6d:
6465                 case 0x6e:      /* OUTS */
6466                 case 0x6f:
6467                         return true;
6468                 }
6469                 break;
6470         case 2:
6471                 switch (ctxt->b) {
6472                 case 0x33:      /* RDPMC */
6473                         return true;
6474                 }
6475                 break;
6476         }
6477
6478         return false;
6479 }
6480
6481 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6482                             unsigned long cr2,
6483                             int emulation_type,
6484                             void *insn,
6485                             int insn_len)
6486 {
6487         int r;
6488         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6489         bool writeback = true;
6490         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6491
6492         vcpu->arch.l1tf_flush_l1d = true;
6493
6494         /*
6495          * Clear write_fault_to_shadow_pgtable here to ensure it is
6496          * never reused.
6497          */
6498         vcpu->arch.write_fault_to_shadow_pgtable = false;
6499         kvm_clear_exception_queue(vcpu);
6500
6501         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6502                 init_emulate_ctxt(vcpu);
6503
6504                 /*
6505                  * We will reenter on the same instruction since
6506                  * we do not set complete_userspace_io.  This does not
6507                  * handle watchpoints yet, those would be handled in
6508                  * the emulate_ops.
6509                  */
6510                 if (!(emulation_type & EMULTYPE_SKIP) &&
6511                     kvm_vcpu_check_breakpoint(vcpu, &r))
6512                         return r;
6513
6514                 ctxt->interruptibility = 0;
6515                 ctxt->have_exception = false;
6516                 ctxt->exception.vector = -1;
6517                 ctxt->perm_ok = false;
6518
6519                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6520
6521                 r = x86_decode_insn(ctxt, insn, insn_len);
6522
6523                 trace_kvm_emulate_insn_start(vcpu);
6524                 ++vcpu->stat.insn_emulation;
6525                 if (r != EMULATION_OK)  {
6526                         if (emulation_type & EMULTYPE_TRAP_UD)
6527                                 return EMULATE_FAIL;
6528                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6529                                                 emulation_type))
6530                                 return EMULATE_DONE;
6531                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6532                                 return EMULATE_DONE;
6533                         if (emulation_type & EMULTYPE_SKIP)
6534                                 return EMULATE_FAIL;
6535                         return handle_emulation_failure(vcpu, emulation_type);
6536                 }
6537         }
6538
6539         if ((emulation_type & EMULTYPE_VMWARE) &&
6540             !is_vmware_backdoor_opcode(ctxt))
6541                 return EMULATE_FAIL;
6542
6543         if (emulation_type & EMULTYPE_SKIP) {
6544                 kvm_rip_write(vcpu, ctxt->_eip);
6545                 if (ctxt->eflags & X86_EFLAGS_RF)
6546                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6547                 return EMULATE_DONE;
6548         }
6549
6550         if (retry_instruction(ctxt, cr2, emulation_type))
6551                 return EMULATE_DONE;
6552
6553         /* this is needed for vmware backdoor interface to work since it
6554            changes registers values  during IO operation */
6555         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6556                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6557                 emulator_invalidate_register_cache(ctxt);
6558         }
6559
6560 restart:
6561         /* Save the faulting GPA (cr2) in the address field */
6562         ctxt->exception.address = cr2;
6563
6564         r = x86_emulate_insn(ctxt);
6565
6566         if (r == EMULATION_INTERCEPTED)
6567                 return EMULATE_DONE;
6568
6569         if (r == EMULATION_FAILED) {
6570                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6571                                         emulation_type))
6572                         return EMULATE_DONE;
6573
6574                 return handle_emulation_failure(vcpu, emulation_type);
6575         }
6576
6577         if (ctxt->have_exception) {
6578                 r = EMULATE_DONE;
6579                 if (inject_emulated_exception(vcpu))
6580                         return r;
6581         } else if (vcpu->arch.pio.count) {
6582                 if (!vcpu->arch.pio.in) {
6583                         /* FIXME: return into emulator if single-stepping.  */
6584                         vcpu->arch.pio.count = 0;
6585                 } else {
6586                         writeback = false;
6587                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6588                 }
6589                 r = EMULATE_USER_EXIT;
6590         } else if (vcpu->mmio_needed) {
6591                 if (!vcpu->mmio_is_write)
6592                         writeback = false;
6593                 r = EMULATE_USER_EXIT;
6594                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6595         } else if (r == EMULATION_RESTART)
6596                 goto restart;
6597         else
6598                 r = EMULATE_DONE;
6599
6600         if (writeback) {
6601                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6602                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6603                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6604                 if (!ctxt->have_exception ||
6605                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6606                         kvm_rip_write(vcpu, ctxt->eip);
6607                         if (r == EMULATE_DONE && ctxt->tf)
6608                                 kvm_vcpu_do_singlestep(vcpu, &r);
6609                         __kvm_set_rflags(vcpu, ctxt->eflags);
6610                 }
6611
6612                 /*
6613                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6614                  * do nothing, and it will be requested again as soon as
6615                  * the shadow expires.  But we still need to check here,
6616                  * because POPF has no interrupt shadow.
6617                  */
6618                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6619                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6620         } else
6621                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6622
6623         return r;
6624 }
6625
6626 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6627 {
6628         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6629 }
6630 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6631
6632 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6633                                         void *insn, int insn_len)
6634 {
6635         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6636 }
6637 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6638
6639 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6640 {
6641         vcpu->arch.pio.count = 0;
6642         return 1;
6643 }
6644
6645 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6646 {
6647         vcpu->arch.pio.count = 0;
6648
6649         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6650                 return 1;
6651
6652         return kvm_skip_emulated_instruction(vcpu);
6653 }
6654
6655 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6656                             unsigned short port)
6657 {
6658         unsigned long val = kvm_rax_read(vcpu);
6659         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6660                                             size, port, &val, 1);
6661         if (ret)
6662                 return ret;
6663
6664         /*
6665          * Workaround userspace that relies on old KVM behavior of %rip being
6666          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6667          */
6668         if (port == 0x7e &&
6669             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6670                 vcpu->arch.complete_userspace_io =
6671                         complete_fast_pio_out_port_0x7e;
6672                 kvm_skip_emulated_instruction(vcpu);
6673         } else {
6674                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6675                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6676         }
6677         return 0;
6678 }
6679
6680 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6681 {
6682         unsigned long val;
6683
6684         /* We should only ever be called with arch.pio.count equal to 1 */
6685         BUG_ON(vcpu->arch.pio.count != 1);
6686
6687         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6688                 vcpu->arch.pio.count = 0;
6689                 return 1;
6690         }
6691
6692         /* For size less than 4 we merge, else we zero extend */
6693         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6694
6695         /*
6696          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6697          * the copy and tracing
6698          */
6699         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6700                                  vcpu->arch.pio.port, &val, 1);
6701         kvm_rax_write(vcpu, val);
6702
6703         return kvm_skip_emulated_instruction(vcpu);
6704 }
6705
6706 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6707                            unsigned short port)
6708 {
6709         unsigned long val;
6710         int ret;
6711
6712         /* For size less than 4 we merge, else we zero extend */
6713         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6714
6715         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6716                                        &val, 1);
6717         if (ret) {
6718                 kvm_rax_write(vcpu, val);
6719                 return ret;
6720         }
6721
6722         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6723         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6724
6725         return 0;
6726 }
6727
6728 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6729 {
6730         int ret;
6731
6732         if (in)
6733                 ret = kvm_fast_pio_in(vcpu, size, port);
6734         else
6735                 ret = kvm_fast_pio_out(vcpu, size, port);
6736         return ret && kvm_skip_emulated_instruction(vcpu);
6737 }
6738 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6739
6740 static int kvmclock_cpu_down_prep(unsigned int cpu)
6741 {
6742         __this_cpu_write(cpu_tsc_khz, 0);
6743         return 0;
6744 }
6745
6746 static void tsc_khz_changed(void *data)
6747 {
6748         struct cpufreq_freqs *freq = data;
6749         unsigned long khz = 0;
6750
6751         if (data)
6752                 khz = freq->new;
6753         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6754                 khz = cpufreq_quick_get(raw_smp_processor_id());
6755         if (!khz)
6756                 khz = tsc_khz;
6757         __this_cpu_write(cpu_tsc_khz, khz);
6758 }
6759
6760 #ifdef CONFIG_X86_64
6761 static void kvm_hyperv_tsc_notifier(void)
6762 {
6763         struct kvm *kvm;
6764         struct kvm_vcpu *vcpu;
6765         int cpu;
6766
6767         mutex_lock(&kvm_lock);
6768         list_for_each_entry(kvm, &vm_list, vm_list)
6769                 kvm_make_mclock_inprogress_request(kvm);
6770
6771         hyperv_stop_tsc_emulation();
6772
6773         /* TSC frequency always matches when on Hyper-V */
6774         for_each_present_cpu(cpu)
6775                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6776         kvm_max_guest_tsc_khz = tsc_khz;
6777
6778         list_for_each_entry(kvm, &vm_list, vm_list) {
6779                 struct kvm_arch *ka = &kvm->arch;
6780
6781                 spin_lock(&ka->pvclock_gtod_sync_lock);
6782
6783                 pvclock_update_vm_gtod_copy(kvm);
6784
6785                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6786                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6787
6788                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6789                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6790
6791                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6792         }
6793         mutex_unlock(&kvm_lock);
6794 }
6795 #endif
6796
6797 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6798 {
6799         struct kvm *kvm;
6800         struct kvm_vcpu *vcpu;
6801         int i, send_ipi = 0;
6802
6803         /*
6804          * We allow guests to temporarily run on slowing clocks,
6805          * provided we notify them after, or to run on accelerating
6806          * clocks, provided we notify them before.  Thus time never
6807          * goes backwards.
6808          *
6809          * However, we have a problem.  We can't atomically update
6810          * the frequency of a given CPU from this function; it is
6811          * merely a notifier, which can be called from any CPU.
6812          * Changing the TSC frequency at arbitrary points in time
6813          * requires a recomputation of local variables related to
6814          * the TSC for each VCPU.  We must flag these local variables
6815          * to be updated and be sure the update takes place with the
6816          * new frequency before any guests proceed.
6817          *
6818          * Unfortunately, the combination of hotplug CPU and frequency
6819          * change creates an intractable locking scenario; the order
6820          * of when these callouts happen is undefined with respect to
6821          * CPU hotplug, and they can race with each other.  As such,
6822          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6823          * undefined; you can actually have a CPU frequency change take
6824          * place in between the computation of X and the setting of the
6825          * variable.  To protect against this problem, all updates of
6826          * the per_cpu tsc_khz variable are done in an interrupt
6827          * protected IPI, and all callers wishing to update the value
6828          * must wait for a synchronous IPI to complete (which is trivial
6829          * if the caller is on the CPU already).  This establishes the
6830          * necessary total order on variable updates.
6831          *
6832          * Note that because a guest time update may take place
6833          * anytime after the setting of the VCPU's request bit, the
6834          * correct TSC value must be set before the request.  However,
6835          * to ensure the update actually makes it to any guest which
6836          * starts running in hardware virtualization between the set
6837          * and the acquisition of the spinlock, we must also ping the
6838          * CPU after setting the request bit.
6839          *
6840          */
6841
6842         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6843
6844         mutex_lock(&kvm_lock);
6845         list_for_each_entry(kvm, &vm_list, vm_list) {
6846                 kvm_for_each_vcpu(i, vcpu, kvm) {
6847                         if (vcpu->cpu != cpu)
6848                                 continue;
6849                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6850                         if (vcpu->cpu != raw_smp_processor_id())
6851                                 send_ipi = 1;
6852                 }
6853         }
6854         mutex_unlock(&kvm_lock);
6855
6856         if (freq->old < freq->new && send_ipi) {
6857                 /*
6858                  * We upscale the frequency.  Must make the guest
6859                  * doesn't see old kvmclock values while running with
6860                  * the new frequency, otherwise we risk the guest sees
6861                  * time go backwards.
6862                  *
6863                  * In case we update the frequency for another cpu
6864                  * (which might be in guest context) send an interrupt
6865                  * to kick the cpu out of guest context.  Next time
6866                  * guest context is entered kvmclock will be updated,
6867                  * so the guest will not see stale values.
6868                  */
6869                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6870         }
6871 }
6872
6873 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6874                                      void *data)
6875 {
6876         struct cpufreq_freqs *freq = data;
6877         int cpu;
6878
6879         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6880                 return 0;
6881         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6882                 return 0;
6883
6884         for_each_cpu(cpu, freq->policy->cpus)
6885                 __kvmclock_cpufreq_notifier(freq, cpu);
6886
6887         return 0;
6888 }
6889
6890 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6891         .notifier_call  = kvmclock_cpufreq_notifier
6892 };
6893
6894 static int kvmclock_cpu_online(unsigned int cpu)
6895 {
6896         tsc_khz_changed(NULL);
6897         return 0;
6898 }
6899
6900 static void kvm_timer_init(void)
6901 {
6902         max_tsc_khz = tsc_khz;
6903
6904         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6905 #ifdef CONFIG_CPU_FREQ
6906                 struct cpufreq_policy policy;
6907                 int cpu;
6908
6909                 memset(&policy, 0, sizeof(policy));
6910                 cpu = get_cpu();
6911                 cpufreq_get_policy(&policy, cpu);
6912                 if (policy.cpuinfo.max_freq)
6913                         max_tsc_khz = policy.cpuinfo.max_freq;
6914                 put_cpu();
6915 #endif
6916                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6917                                           CPUFREQ_TRANSITION_NOTIFIER);
6918         }
6919
6920         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6921                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6922 }
6923
6924 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6925 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6926
6927 int kvm_is_in_guest(void)
6928 {
6929         return __this_cpu_read(current_vcpu) != NULL;
6930 }
6931
6932 static int kvm_is_user_mode(void)
6933 {
6934         int user_mode = 3;
6935
6936         if (__this_cpu_read(current_vcpu))
6937                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6938
6939         return user_mode != 0;
6940 }
6941
6942 static unsigned long kvm_get_guest_ip(void)
6943 {
6944         unsigned long ip = 0;
6945
6946         if (__this_cpu_read(current_vcpu))
6947                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6948
6949         return ip;
6950 }
6951
6952 static void kvm_handle_intel_pt_intr(void)
6953 {
6954         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
6955
6956         kvm_make_request(KVM_REQ_PMI, vcpu);
6957         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
6958                         (unsigned long *)&vcpu->arch.pmu.global_status);
6959 }
6960
6961 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6962         .is_in_guest            = kvm_is_in_guest,
6963         .is_user_mode           = kvm_is_user_mode,
6964         .get_guest_ip           = kvm_get_guest_ip,
6965         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
6966 };
6967
6968 #ifdef CONFIG_X86_64
6969 static void pvclock_gtod_update_fn(struct work_struct *work)
6970 {
6971         struct kvm *kvm;
6972
6973         struct kvm_vcpu *vcpu;
6974         int i;
6975
6976         mutex_lock(&kvm_lock);
6977         list_for_each_entry(kvm, &vm_list, vm_list)
6978                 kvm_for_each_vcpu(i, vcpu, kvm)
6979                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6980         atomic_set(&kvm_guest_has_master_clock, 0);
6981         mutex_unlock(&kvm_lock);
6982 }
6983
6984 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6985
6986 /*
6987  * Notification about pvclock gtod data update.
6988  */
6989 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6990                                void *priv)
6991 {
6992         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6993         struct timekeeper *tk = priv;
6994
6995         update_pvclock_gtod(tk);
6996
6997         /* disable master clock if host does not trust, or does not
6998          * use, TSC based clocksource.
6999          */
7000         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7001             atomic_read(&kvm_guest_has_master_clock) != 0)
7002                 queue_work(system_long_wq, &pvclock_gtod_work);
7003
7004         return 0;
7005 }
7006
7007 static struct notifier_block pvclock_gtod_notifier = {
7008         .notifier_call = pvclock_gtod_notify,
7009 };
7010 #endif
7011
7012 int kvm_arch_init(void *opaque)
7013 {
7014         int r;
7015         struct kvm_x86_ops *ops = opaque;
7016
7017         if (kvm_x86_ops) {
7018                 printk(KERN_ERR "kvm: already loaded the other module\n");
7019                 r = -EEXIST;
7020                 goto out;
7021         }
7022
7023         if (!ops->cpu_has_kvm_support()) {
7024                 printk(KERN_ERR "kvm: no hardware support\n");
7025                 r = -EOPNOTSUPP;
7026                 goto out;
7027         }
7028         if (ops->disabled_by_bios()) {
7029                 printk(KERN_ERR "kvm: disabled by bios\n");
7030                 r = -EOPNOTSUPP;
7031                 goto out;
7032         }
7033
7034         /*
7035          * KVM explicitly assumes that the guest has an FPU and
7036          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7037          * vCPU's FPU state as a fxregs_state struct.
7038          */
7039         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7040                 printk(KERN_ERR "kvm: inadequate fpu\n");
7041                 r = -EOPNOTSUPP;
7042                 goto out;
7043         }
7044
7045         r = -ENOMEM;
7046         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7047                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7048                                           NULL);
7049         if (!x86_fpu_cache) {
7050                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7051                 goto out;
7052         }
7053
7054         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7055         if (!shared_msrs) {
7056                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7057                 goto out_free_x86_fpu_cache;
7058         }
7059
7060         r = kvm_mmu_module_init();
7061         if (r)
7062                 goto out_free_percpu;
7063
7064         kvm_x86_ops = ops;
7065
7066         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7067                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7068                         PT_PRESENT_MASK, 0, sme_me_mask);
7069         kvm_timer_init();
7070
7071         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7072
7073         if (boot_cpu_has(X86_FEATURE_XSAVE))
7074                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7075
7076         kvm_lapic_init();
7077         if (pi_inject_timer == -1)
7078                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7079 #ifdef CONFIG_X86_64
7080         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7081
7082         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7083                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7084 #endif
7085
7086         return 0;
7087
7088 out_free_percpu:
7089         free_percpu(shared_msrs);
7090 out_free_x86_fpu_cache:
7091         kmem_cache_destroy(x86_fpu_cache);
7092 out:
7093         return r;
7094 }
7095
7096 void kvm_arch_exit(void)
7097 {
7098 #ifdef CONFIG_X86_64
7099         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7100                 clear_hv_tscchange_cb();
7101 #endif
7102         kvm_lapic_exit();
7103         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7104
7105         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7106                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7107                                             CPUFREQ_TRANSITION_NOTIFIER);
7108         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7109 #ifdef CONFIG_X86_64
7110         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7111 #endif
7112         kvm_x86_ops = NULL;
7113         kvm_mmu_module_exit();
7114         free_percpu(shared_msrs);
7115         kmem_cache_destroy(x86_fpu_cache);
7116 }
7117
7118 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7119 {
7120         ++vcpu->stat.halt_exits;
7121         if (lapic_in_kernel(vcpu)) {
7122                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7123                 return 1;
7124         } else {
7125                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7126                 return 0;
7127         }
7128 }
7129 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7130
7131 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7132 {
7133         int ret = kvm_skip_emulated_instruction(vcpu);
7134         /*
7135          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7136          * KVM_EXIT_DEBUG here.
7137          */
7138         return kvm_vcpu_halt(vcpu) && ret;
7139 }
7140 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7141
7142 #ifdef CONFIG_X86_64
7143 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7144                                 unsigned long clock_type)
7145 {
7146         struct kvm_clock_pairing clock_pairing;
7147         struct timespec64 ts;
7148         u64 cycle;
7149         int ret;
7150
7151         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7152                 return -KVM_EOPNOTSUPP;
7153
7154         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7155                 return -KVM_EOPNOTSUPP;
7156
7157         clock_pairing.sec = ts.tv_sec;
7158         clock_pairing.nsec = ts.tv_nsec;
7159         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7160         clock_pairing.flags = 0;
7161         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7162
7163         ret = 0;
7164         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7165                             sizeof(struct kvm_clock_pairing)))
7166                 ret = -KVM_EFAULT;
7167
7168         return ret;
7169 }
7170 #endif
7171
7172 /*
7173  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7174  *
7175  * @apicid - apicid of vcpu to be kicked.
7176  */
7177 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7178 {
7179         struct kvm_lapic_irq lapic_irq;
7180
7181         lapic_irq.shorthand = 0;
7182         lapic_irq.dest_mode = 0;
7183         lapic_irq.level = 0;
7184         lapic_irq.dest_id = apicid;
7185         lapic_irq.msi_redir_hint = false;
7186
7187         lapic_irq.delivery_mode = APIC_DM_REMRD;
7188         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7189 }
7190
7191 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7192 {
7193         if (!lapic_in_kernel(vcpu)) {
7194                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7195                 return;
7196         }
7197         if (!vcpu->arch.apicv_active)
7198                 return;
7199
7200         vcpu->arch.apicv_active = false;
7201         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7202 }
7203
7204 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7205 {
7206         struct kvm_vcpu *target = NULL;
7207         struct kvm_apic_map *map;
7208
7209         rcu_read_lock();
7210         map = rcu_dereference(kvm->arch.apic_map);
7211
7212         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7213                 target = map->phys_map[dest_id]->vcpu;
7214
7215         rcu_read_unlock();
7216
7217         if (target && READ_ONCE(target->ready))
7218                 kvm_vcpu_yield_to(target);
7219 }
7220
7221 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7222 {
7223         unsigned long nr, a0, a1, a2, a3, ret;
7224         int op_64_bit;
7225
7226         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7227                 return kvm_hv_hypercall(vcpu);
7228
7229         nr = kvm_rax_read(vcpu);
7230         a0 = kvm_rbx_read(vcpu);
7231         a1 = kvm_rcx_read(vcpu);
7232         a2 = kvm_rdx_read(vcpu);
7233         a3 = kvm_rsi_read(vcpu);
7234
7235         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7236
7237         op_64_bit = is_64_bit_mode(vcpu);
7238         if (!op_64_bit) {
7239                 nr &= 0xFFFFFFFF;
7240                 a0 &= 0xFFFFFFFF;
7241                 a1 &= 0xFFFFFFFF;
7242                 a2 &= 0xFFFFFFFF;
7243                 a3 &= 0xFFFFFFFF;
7244         }
7245
7246         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7247                 ret = -KVM_EPERM;
7248                 goto out;
7249         }
7250
7251         switch (nr) {
7252         case KVM_HC_VAPIC_POLL_IRQ:
7253                 ret = 0;
7254                 break;
7255         case KVM_HC_KICK_CPU:
7256                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7257                 kvm_sched_yield(vcpu->kvm, a1);
7258                 ret = 0;
7259                 break;
7260 #ifdef CONFIG_X86_64
7261         case KVM_HC_CLOCK_PAIRING:
7262                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7263                 break;
7264 #endif
7265         case KVM_HC_SEND_IPI:
7266                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7267                 break;
7268         case KVM_HC_SCHED_YIELD:
7269                 kvm_sched_yield(vcpu->kvm, a0);
7270                 ret = 0;
7271                 break;
7272         default:
7273                 ret = -KVM_ENOSYS;
7274                 break;
7275         }
7276 out:
7277         if (!op_64_bit)
7278                 ret = (u32)ret;
7279         kvm_rax_write(vcpu, ret);
7280
7281         ++vcpu->stat.hypercalls;
7282         return kvm_skip_emulated_instruction(vcpu);
7283 }
7284 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7285
7286 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7287 {
7288         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7289         char instruction[3];
7290         unsigned long rip = kvm_rip_read(vcpu);
7291
7292         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7293
7294         return emulator_write_emulated(ctxt, rip, instruction, 3,
7295                 &ctxt->exception);
7296 }
7297
7298 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7299 {
7300         return vcpu->run->request_interrupt_window &&
7301                 likely(!pic_in_kernel(vcpu->kvm));
7302 }
7303
7304 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7305 {
7306         struct kvm_run *kvm_run = vcpu->run;
7307
7308         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7309         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7310         kvm_run->cr8 = kvm_get_cr8(vcpu);
7311         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7312         kvm_run->ready_for_interrupt_injection =
7313                 pic_in_kernel(vcpu->kvm) ||
7314                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7315 }
7316
7317 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7318 {
7319         int max_irr, tpr;
7320
7321         if (!kvm_x86_ops->update_cr8_intercept)
7322                 return;
7323
7324         if (!lapic_in_kernel(vcpu))
7325                 return;
7326
7327         if (vcpu->arch.apicv_active)
7328                 return;
7329
7330         if (!vcpu->arch.apic->vapic_addr)
7331                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7332         else
7333                 max_irr = -1;
7334
7335         if (max_irr != -1)
7336                 max_irr >>= 4;
7337
7338         tpr = kvm_lapic_get_cr8(vcpu);
7339
7340         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7341 }
7342
7343 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7344 {
7345         int r;
7346
7347         /* try to reinject previous events if any */
7348
7349         if (vcpu->arch.exception.injected)
7350                 kvm_x86_ops->queue_exception(vcpu);
7351         /*
7352          * Do not inject an NMI or interrupt if there is a pending
7353          * exception.  Exceptions and interrupts are recognized at
7354          * instruction boundaries, i.e. the start of an instruction.
7355          * Trap-like exceptions, e.g. #DB, have higher priority than
7356          * NMIs and interrupts, i.e. traps are recognized before an
7357          * NMI/interrupt that's pending on the same instruction.
7358          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7359          * priority, but are only generated (pended) during instruction
7360          * execution, i.e. a pending fault-like exception means the
7361          * fault occurred on the *previous* instruction and must be
7362          * serviced prior to recognizing any new events in order to
7363          * fully complete the previous instruction.
7364          */
7365         else if (!vcpu->arch.exception.pending) {
7366                 if (vcpu->arch.nmi_injected)
7367                         kvm_x86_ops->set_nmi(vcpu);
7368                 else if (vcpu->arch.interrupt.injected)
7369                         kvm_x86_ops->set_irq(vcpu);
7370         }
7371
7372         /*
7373          * Call check_nested_events() even if we reinjected a previous event
7374          * in order for caller to determine if it should require immediate-exit
7375          * from L2 to L1 due to pending L1 events which require exit
7376          * from L2 to L1.
7377          */
7378         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7379                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7380                 if (r != 0)
7381                         return r;
7382         }
7383
7384         /* try to inject new event if pending */
7385         if (vcpu->arch.exception.pending) {
7386                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7387                                         vcpu->arch.exception.has_error_code,
7388                                         vcpu->arch.exception.error_code);
7389
7390                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7391                 vcpu->arch.exception.pending = false;
7392                 vcpu->arch.exception.injected = true;
7393
7394                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7395                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7396                                              X86_EFLAGS_RF);
7397
7398                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7399                         /*
7400                          * This code assumes that nSVM doesn't use
7401                          * check_nested_events(). If it does, the
7402                          * DR6/DR7 changes should happen before L1
7403                          * gets a #VMEXIT for an intercepted #DB in
7404                          * L2.  (Under VMX, on the other hand, the
7405                          * DR6/DR7 changes should not happen in the
7406                          * event of a VM-exit to L1 for an intercepted
7407                          * #DB in L2.)
7408                          */
7409                         kvm_deliver_exception_payload(vcpu);
7410                         if (vcpu->arch.dr7 & DR7_GD) {
7411                                 vcpu->arch.dr7 &= ~DR7_GD;
7412                                 kvm_update_dr7(vcpu);
7413                         }
7414                 }
7415
7416                 kvm_x86_ops->queue_exception(vcpu);
7417         }
7418
7419         /* Don't consider new event if we re-injected an event */
7420         if (kvm_event_needs_reinjection(vcpu))
7421                 return 0;
7422
7423         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7424             kvm_x86_ops->smi_allowed(vcpu)) {
7425                 vcpu->arch.smi_pending = false;
7426                 ++vcpu->arch.smi_count;
7427                 enter_smm(vcpu);
7428         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7429                 --vcpu->arch.nmi_pending;
7430                 vcpu->arch.nmi_injected = true;
7431                 kvm_x86_ops->set_nmi(vcpu);
7432         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7433                 /*
7434                  * Because interrupts can be injected asynchronously, we are
7435                  * calling check_nested_events again here to avoid a race condition.
7436                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7437                  * proposal and current concerns.  Perhaps we should be setting
7438                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7439                  */
7440                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7441                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7442                         if (r != 0)
7443                                 return r;
7444                 }
7445                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7446                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7447                                             false);
7448                         kvm_x86_ops->set_irq(vcpu);
7449                 }
7450         }
7451
7452         return 0;
7453 }
7454
7455 static void process_nmi(struct kvm_vcpu *vcpu)
7456 {
7457         unsigned limit = 2;
7458
7459         /*
7460          * x86 is limited to one NMI running, and one NMI pending after it.
7461          * If an NMI is already in progress, limit further NMIs to just one.
7462          * Otherwise, allow two (and we'll inject the first one immediately).
7463          */
7464         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7465                 limit = 1;
7466
7467         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7468         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7469         kvm_make_request(KVM_REQ_EVENT, vcpu);
7470 }
7471
7472 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7473 {
7474         u32 flags = 0;
7475         flags |= seg->g       << 23;
7476         flags |= seg->db      << 22;
7477         flags |= seg->l       << 21;
7478         flags |= seg->avl     << 20;
7479         flags |= seg->present << 15;
7480         flags |= seg->dpl     << 13;
7481         flags |= seg->s       << 12;
7482         flags |= seg->type    << 8;
7483         return flags;
7484 }
7485
7486 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7487 {
7488         struct kvm_segment seg;
7489         int offset;
7490
7491         kvm_get_segment(vcpu, &seg, n);
7492         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7493
7494         if (n < 3)
7495                 offset = 0x7f84 + n * 12;
7496         else
7497                 offset = 0x7f2c + (n - 3) * 12;
7498
7499         put_smstate(u32, buf, offset + 8, seg.base);
7500         put_smstate(u32, buf, offset + 4, seg.limit);
7501         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7502 }
7503
7504 #ifdef CONFIG_X86_64
7505 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7506 {
7507         struct kvm_segment seg;
7508         int offset;
7509         u16 flags;
7510
7511         kvm_get_segment(vcpu, &seg, n);
7512         offset = 0x7e00 + n * 16;
7513
7514         flags = enter_smm_get_segment_flags(&seg) >> 8;
7515         put_smstate(u16, buf, offset, seg.selector);
7516         put_smstate(u16, buf, offset + 2, flags);
7517         put_smstate(u32, buf, offset + 4, seg.limit);
7518         put_smstate(u64, buf, offset + 8, seg.base);
7519 }
7520 #endif
7521
7522 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7523 {
7524         struct desc_ptr dt;
7525         struct kvm_segment seg;
7526         unsigned long val;
7527         int i;
7528
7529         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7530         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7531         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7532         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7533
7534         for (i = 0; i < 8; i++)
7535                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7536
7537         kvm_get_dr(vcpu, 6, &val);
7538         put_smstate(u32, buf, 0x7fcc, (u32)val);
7539         kvm_get_dr(vcpu, 7, &val);
7540         put_smstate(u32, buf, 0x7fc8, (u32)val);
7541
7542         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7543         put_smstate(u32, buf, 0x7fc4, seg.selector);
7544         put_smstate(u32, buf, 0x7f64, seg.base);
7545         put_smstate(u32, buf, 0x7f60, seg.limit);
7546         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7547
7548         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7549         put_smstate(u32, buf, 0x7fc0, seg.selector);
7550         put_smstate(u32, buf, 0x7f80, seg.base);
7551         put_smstate(u32, buf, 0x7f7c, seg.limit);
7552         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7553
7554         kvm_x86_ops->get_gdt(vcpu, &dt);
7555         put_smstate(u32, buf, 0x7f74, dt.address);
7556         put_smstate(u32, buf, 0x7f70, dt.size);
7557
7558         kvm_x86_ops->get_idt(vcpu, &dt);
7559         put_smstate(u32, buf, 0x7f58, dt.address);
7560         put_smstate(u32, buf, 0x7f54, dt.size);
7561
7562         for (i = 0; i < 6; i++)
7563                 enter_smm_save_seg_32(vcpu, buf, i);
7564
7565         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7566
7567         /* revision id */
7568         put_smstate(u32, buf, 0x7efc, 0x00020000);
7569         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7570 }
7571
7572 #ifdef CONFIG_X86_64
7573 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7574 {
7575         struct desc_ptr dt;
7576         struct kvm_segment seg;
7577         unsigned long val;
7578         int i;
7579
7580         for (i = 0; i < 16; i++)
7581                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7582
7583         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7584         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7585
7586         kvm_get_dr(vcpu, 6, &val);
7587         put_smstate(u64, buf, 0x7f68, val);
7588         kvm_get_dr(vcpu, 7, &val);
7589         put_smstate(u64, buf, 0x7f60, val);
7590
7591         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7592         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7593         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7594
7595         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7596
7597         /* revision id */
7598         put_smstate(u32, buf, 0x7efc, 0x00020064);
7599
7600         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7601
7602         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7603         put_smstate(u16, buf, 0x7e90, seg.selector);
7604         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7605         put_smstate(u32, buf, 0x7e94, seg.limit);
7606         put_smstate(u64, buf, 0x7e98, seg.base);
7607
7608         kvm_x86_ops->get_idt(vcpu, &dt);
7609         put_smstate(u32, buf, 0x7e84, dt.size);
7610         put_smstate(u64, buf, 0x7e88, dt.address);
7611
7612         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7613         put_smstate(u16, buf, 0x7e70, seg.selector);
7614         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7615         put_smstate(u32, buf, 0x7e74, seg.limit);
7616         put_smstate(u64, buf, 0x7e78, seg.base);
7617
7618         kvm_x86_ops->get_gdt(vcpu, &dt);
7619         put_smstate(u32, buf, 0x7e64, dt.size);
7620         put_smstate(u64, buf, 0x7e68, dt.address);
7621
7622         for (i = 0; i < 6; i++)
7623                 enter_smm_save_seg_64(vcpu, buf, i);
7624 }
7625 #endif
7626
7627 static void enter_smm(struct kvm_vcpu *vcpu)
7628 {
7629         struct kvm_segment cs, ds;
7630         struct desc_ptr dt;
7631         char buf[512];
7632         u32 cr0;
7633
7634         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7635         memset(buf, 0, 512);
7636 #ifdef CONFIG_X86_64
7637         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7638                 enter_smm_save_state_64(vcpu, buf);
7639         else
7640 #endif
7641                 enter_smm_save_state_32(vcpu, buf);
7642
7643         /*
7644          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7645          * vCPU state (e.g. leave guest mode) after we've saved the state into
7646          * the SMM state-save area.
7647          */
7648         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7649
7650         vcpu->arch.hflags |= HF_SMM_MASK;
7651         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7652
7653         if (kvm_x86_ops->get_nmi_mask(vcpu))
7654                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7655         else
7656                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7657
7658         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7659         kvm_rip_write(vcpu, 0x8000);
7660
7661         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7662         kvm_x86_ops->set_cr0(vcpu, cr0);
7663         vcpu->arch.cr0 = cr0;
7664
7665         kvm_x86_ops->set_cr4(vcpu, 0);
7666
7667         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7668         dt.address = dt.size = 0;
7669         kvm_x86_ops->set_idt(vcpu, &dt);
7670
7671         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7672
7673         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7674         cs.base = vcpu->arch.smbase;
7675
7676         ds.selector = 0;
7677         ds.base = 0;
7678
7679         cs.limit    = ds.limit = 0xffffffff;
7680         cs.type     = ds.type = 0x3;
7681         cs.dpl      = ds.dpl = 0;
7682         cs.db       = ds.db = 0;
7683         cs.s        = ds.s = 1;
7684         cs.l        = ds.l = 0;
7685         cs.g        = ds.g = 1;
7686         cs.avl      = ds.avl = 0;
7687         cs.present  = ds.present = 1;
7688         cs.unusable = ds.unusable = 0;
7689         cs.padding  = ds.padding = 0;
7690
7691         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7692         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7693         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7694         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7695         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7696         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7697
7698 #ifdef CONFIG_X86_64
7699         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7700                 kvm_x86_ops->set_efer(vcpu, 0);
7701 #endif
7702
7703         kvm_update_cpuid(vcpu);
7704         kvm_mmu_reset_context(vcpu);
7705 }
7706
7707 static void process_smi(struct kvm_vcpu *vcpu)
7708 {
7709         vcpu->arch.smi_pending = true;
7710         kvm_make_request(KVM_REQ_EVENT, vcpu);
7711 }
7712
7713 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7714 {
7715         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7716 }
7717
7718 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7719 {
7720         if (!kvm_apic_present(vcpu))
7721                 return;
7722
7723         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7724
7725         if (irqchip_split(vcpu->kvm))
7726                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7727         else {
7728                 if (vcpu->arch.apicv_active)
7729                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7730                 if (ioapic_in_kernel(vcpu->kvm))
7731                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7732         }
7733
7734         if (is_guest_mode(vcpu))
7735                 vcpu->arch.load_eoi_exitmap_pending = true;
7736         else
7737                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7738 }
7739
7740 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7741 {
7742         u64 eoi_exit_bitmap[4];
7743
7744         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7745                 return;
7746
7747         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7748                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7749         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7750 }
7751
7752 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7753                 unsigned long start, unsigned long end,
7754                 bool blockable)
7755 {
7756         unsigned long apic_address;
7757
7758         /*
7759          * The physical address of apic access page is stored in the VMCS.
7760          * Update it when it becomes invalid.
7761          */
7762         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7763         if (start <= apic_address && apic_address < end)
7764                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7765
7766         return 0;
7767 }
7768
7769 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7770 {
7771         struct page *page = NULL;
7772
7773         if (!lapic_in_kernel(vcpu))
7774                 return;
7775
7776         if (!kvm_x86_ops->set_apic_access_page_addr)
7777                 return;
7778
7779         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7780         if (is_error_page(page))
7781                 return;
7782         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7783
7784         /*
7785          * Do not pin apic access page in memory, the MMU notifier
7786          * will call us again if it is migrated or swapped out.
7787          */
7788         put_page(page);
7789 }
7790 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7791
7792 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7793 {
7794         smp_send_reschedule(vcpu->cpu);
7795 }
7796 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7797
7798 /*
7799  * Returns 1 to let vcpu_run() continue the guest execution loop without
7800  * exiting to the userspace.  Otherwise, the value will be returned to the
7801  * userspace.
7802  */
7803 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7804 {
7805         int r;
7806         bool req_int_win =
7807                 dm_request_for_irq_injection(vcpu) &&
7808                 kvm_cpu_accept_dm_intr(vcpu);
7809
7810         bool req_immediate_exit = false;
7811
7812         if (kvm_request_pending(vcpu)) {
7813                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7814                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7815                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7816                         kvm_mmu_unload(vcpu);
7817                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7818                         __kvm_migrate_timers(vcpu);
7819                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7820                         kvm_gen_update_masterclock(vcpu->kvm);
7821                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7822                         kvm_gen_kvmclock_update(vcpu);
7823                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7824                         r = kvm_guest_time_update(vcpu);
7825                         if (unlikely(r))
7826                                 goto out;
7827                 }
7828                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7829                         kvm_mmu_sync_roots(vcpu);
7830                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7831                         kvm_mmu_load_cr3(vcpu);
7832                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7833                         kvm_vcpu_flush_tlb(vcpu, true);
7834                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7835                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7836                         r = 0;
7837                         goto out;
7838                 }
7839                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7840                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7841                         vcpu->mmio_needed = 0;
7842                         r = 0;
7843                         goto out;
7844                 }
7845                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7846                         /* Page is swapped out. Do synthetic halt */
7847                         vcpu->arch.apf.halted = true;
7848                         r = 1;
7849                         goto out;
7850                 }
7851                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7852                         record_steal_time(vcpu);
7853                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7854                         process_smi(vcpu);
7855                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7856                         process_nmi(vcpu);
7857                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7858                         kvm_pmu_handle_event(vcpu);
7859                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7860                         kvm_pmu_deliver_pmi(vcpu);
7861                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7862                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7863                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7864                                      vcpu->arch.ioapic_handled_vectors)) {
7865                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7866                                 vcpu->run->eoi.vector =
7867                                                 vcpu->arch.pending_ioapic_eoi;
7868                                 r = 0;
7869                                 goto out;
7870                         }
7871                 }
7872                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7873                         vcpu_scan_ioapic(vcpu);
7874                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7875                         vcpu_load_eoi_exitmap(vcpu);
7876                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7877                         kvm_vcpu_reload_apic_access_page(vcpu);
7878                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7879                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7880                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7881                         r = 0;
7882                         goto out;
7883                 }
7884                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7885                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7886                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7887                         r = 0;
7888                         goto out;
7889                 }
7890                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7891                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7892                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7893                         r = 0;
7894                         goto out;
7895                 }
7896
7897                 /*
7898                  * KVM_REQ_HV_STIMER has to be processed after
7899                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7900                  * depend on the guest clock being up-to-date
7901                  */
7902                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7903                         kvm_hv_process_stimers(vcpu);
7904         }
7905
7906         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7907                 ++vcpu->stat.req_event;
7908                 kvm_apic_accept_events(vcpu);
7909                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7910                         r = 1;
7911                         goto out;
7912                 }
7913
7914                 if (inject_pending_event(vcpu, req_int_win) != 0)
7915                         req_immediate_exit = true;
7916                 else {
7917                         /* Enable SMI/NMI/IRQ window open exits if needed.
7918                          *
7919                          * SMIs have three cases:
7920                          * 1) They can be nested, and then there is nothing to
7921                          *    do here because RSM will cause a vmexit anyway.
7922                          * 2) There is an ISA-specific reason why SMI cannot be
7923                          *    injected, and the moment when this changes can be
7924                          *    intercepted.
7925                          * 3) Or the SMI can be pending because
7926                          *    inject_pending_event has completed the injection
7927                          *    of an IRQ or NMI from the previous vmexit, and
7928                          *    then we request an immediate exit to inject the
7929                          *    SMI.
7930                          */
7931                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7932                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7933                                         req_immediate_exit = true;
7934                         if (vcpu->arch.nmi_pending)
7935                                 kvm_x86_ops->enable_nmi_window(vcpu);
7936                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7937                                 kvm_x86_ops->enable_irq_window(vcpu);
7938                         WARN_ON(vcpu->arch.exception.pending);
7939                 }
7940
7941                 if (kvm_lapic_enabled(vcpu)) {
7942                         update_cr8_intercept(vcpu);
7943                         kvm_lapic_sync_to_vapic(vcpu);
7944                 }
7945         }
7946
7947         r = kvm_mmu_reload(vcpu);
7948         if (unlikely(r)) {
7949                 goto cancel_injection;
7950         }
7951
7952         preempt_disable();
7953
7954         kvm_x86_ops->prepare_guest_switch(vcpu);
7955
7956         /*
7957          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7958          * IPI are then delayed after guest entry, which ensures that they
7959          * result in virtual interrupt delivery.
7960          */
7961         local_irq_disable();
7962         vcpu->mode = IN_GUEST_MODE;
7963
7964         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7965
7966         /*
7967          * 1) We should set ->mode before checking ->requests.  Please see
7968          * the comment in kvm_vcpu_exiting_guest_mode().
7969          *
7970          * 2) For APICv, we should set ->mode before checking PID.ON. This
7971          * pairs with the memory barrier implicit in pi_test_and_set_on
7972          * (see vmx_deliver_posted_interrupt).
7973          *
7974          * 3) This also orders the write to mode from any reads to the page
7975          * tables done while the VCPU is running.  Please see the comment
7976          * in kvm_flush_remote_tlbs.
7977          */
7978         smp_mb__after_srcu_read_unlock();
7979
7980         /*
7981          * This handles the case where a posted interrupt was
7982          * notified with kvm_vcpu_kick.
7983          */
7984         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7985                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7986
7987         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7988             || need_resched() || signal_pending(current)) {
7989                 vcpu->mode = OUTSIDE_GUEST_MODE;
7990                 smp_wmb();
7991                 local_irq_enable();
7992                 preempt_enable();
7993                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7994                 r = 1;
7995                 goto cancel_injection;
7996         }
7997
7998         if (req_immediate_exit) {
7999                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8000                 kvm_x86_ops->request_immediate_exit(vcpu);
8001         }
8002
8003         trace_kvm_entry(vcpu->vcpu_id);
8004         guest_enter_irqoff();
8005
8006         /* The preempt notifier should have taken care of the FPU already.  */
8007         WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8008
8009         if (unlikely(vcpu->arch.switch_db_regs)) {
8010                 set_debugreg(0, 7);
8011                 set_debugreg(vcpu->arch.eff_db[0], 0);
8012                 set_debugreg(vcpu->arch.eff_db[1], 1);
8013                 set_debugreg(vcpu->arch.eff_db[2], 2);
8014                 set_debugreg(vcpu->arch.eff_db[3], 3);
8015                 set_debugreg(vcpu->arch.dr6, 6);
8016                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8017         }
8018
8019         kvm_x86_ops->run(vcpu);
8020
8021         /*
8022          * Do this here before restoring debug registers on the host.  And
8023          * since we do this before handling the vmexit, a DR access vmexit
8024          * can (a) read the correct value of the debug registers, (b) set
8025          * KVM_DEBUGREG_WONT_EXIT again.
8026          */
8027         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8028                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8029                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8030                 kvm_update_dr0123(vcpu);
8031                 kvm_update_dr6(vcpu);
8032                 kvm_update_dr7(vcpu);
8033                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8034         }
8035
8036         /*
8037          * If the guest has used debug registers, at least dr7
8038          * will be disabled while returning to the host.
8039          * If we don't have active breakpoints in the host, we don't
8040          * care about the messed up debug address registers. But if
8041          * we have some of them active, restore the old state.
8042          */
8043         if (hw_breakpoint_active())
8044                 hw_breakpoint_restore();
8045
8046         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8047
8048         vcpu->mode = OUTSIDE_GUEST_MODE;
8049         smp_wmb();
8050
8051         kvm_x86_ops->handle_exit_irqoff(vcpu);
8052
8053         /*
8054          * Consume any pending interrupts, including the possible source of
8055          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8056          * An instruction is required after local_irq_enable() to fully unblock
8057          * interrupts on processors that implement an interrupt shadow, the
8058          * stat.exits increment will do nicely.
8059          */
8060         kvm_before_interrupt(vcpu);
8061         local_irq_enable();
8062         ++vcpu->stat.exits;
8063         local_irq_disable();
8064         kvm_after_interrupt(vcpu);
8065
8066         guest_exit_irqoff();
8067         if (lapic_in_kernel(vcpu)) {
8068                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8069                 if (delta != S64_MIN) {
8070                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8071                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8072                 }
8073         }
8074
8075         local_irq_enable();
8076         preempt_enable();
8077
8078         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8079
8080         /*
8081          * Profile KVM exit RIPs:
8082          */
8083         if (unlikely(prof_on == KVM_PROFILING)) {
8084                 unsigned long rip = kvm_rip_read(vcpu);
8085                 profile_hit(KVM_PROFILING, (void *)rip);
8086         }
8087
8088         if (unlikely(vcpu->arch.tsc_always_catchup))
8089                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8090
8091         if (vcpu->arch.apic_attention)
8092                 kvm_lapic_sync_from_vapic(vcpu);
8093
8094         vcpu->arch.gpa_available = false;
8095         r = kvm_x86_ops->handle_exit(vcpu);
8096         return r;
8097
8098 cancel_injection:
8099         kvm_x86_ops->cancel_injection(vcpu);
8100         if (unlikely(vcpu->arch.apic_attention))
8101                 kvm_lapic_sync_from_vapic(vcpu);
8102 out:
8103         return r;
8104 }
8105
8106 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8107 {
8108         if (!kvm_arch_vcpu_runnable(vcpu) &&
8109             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8110                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8111                 kvm_vcpu_block(vcpu);
8112                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8113
8114                 if (kvm_x86_ops->post_block)
8115                         kvm_x86_ops->post_block(vcpu);
8116
8117                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8118                         return 1;
8119         }
8120
8121         kvm_apic_accept_events(vcpu);
8122         switch(vcpu->arch.mp_state) {
8123         case KVM_MP_STATE_HALTED:
8124                 vcpu->arch.pv.pv_unhalted = false;
8125                 vcpu->arch.mp_state =
8126                         KVM_MP_STATE_RUNNABLE;
8127                 /* fall through */
8128         case KVM_MP_STATE_RUNNABLE:
8129                 vcpu->arch.apf.halted = false;
8130                 break;
8131         case KVM_MP_STATE_INIT_RECEIVED:
8132                 break;
8133         default:
8134                 return -EINTR;
8135                 break;
8136         }
8137         return 1;
8138 }
8139
8140 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8141 {
8142         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8143                 kvm_x86_ops->check_nested_events(vcpu, false);
8144
8145         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8146                 !vcpu->arch.apf.halted);
8147 }
8148
8149 static int vcpu_run(struct kvm_vcpu *vcpu)
8150 {
8151         int r;
8152         struct kvm *kvm = vcpu->kvm;
8153
8154         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8155         vcpu->arch.l1tf_flush_l1d = true;
8156
8157         for (;;) {
8158                 if (kvm_vcpu_running(vcpu)) {
8159                         r = vcpu_enter_guest(vcpu);
8160                 } else {
8161                         r = vcpu_block(kvm, vcpu);
8162                 }
8163
8164                 if (r <= 0)
8165                         break;
8166
8167                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8168                 if (kvm_cpu_has_pending_timer(vcpu))
8169                         kvm_inject_pending_timer_irqs(vcpu);
8170
8171                 if (dm_request_for_irq_injection(vcpu) &&
8172                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8173                         r = 0;
8174                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8175                         ++vcpu->stat.request_irq_exits;
8176                         break;
8177                 }
8178
8179                 kvm_check_async_pf_completion(vcpu);
8180
8181                 if (signal_pending(current)) {
8182                         r = -EINTR;
8183                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8184                         ++vcpu->stat.signal_exits;
8185                         break;
8186                 }
8187                 if (need_resched()) {
8188                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8189                         cond_resched();
8190                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8191                 }
8192         }
8193
8194         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8195
8196         return r;
8197 }
8198
8199 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8200 {
8201         int r;
8202         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8203         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8204         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8205         if (r != EMULATE_DONE)
8206                 return 0;
8207         return 1;
8208 }
8209
8210 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8211 {
8212         BUG_ON(!vcpu->arch.pio.count);
8213
8214         return complete_emulated_io(vcpu);
8215 }
8216
8217 /*
8218  * Implements the following, as a state machine:
8219  *
8220  * read:
8221  *   for each fragment
8222  *     for each mmio piece in the fragment
8223  *       write gpa, len
8224  *       exit
8225  *       copy data
8226  *   execute insn
8227  *
8228  * write:
8229  *   for each fragment
8230  *     for each mmio piece in the fragment
8231  *       write gpa, len
8232  *       copy data
8233  *       exit
8234  */
8235 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8236 {
8237         struct kvm_run *run = vcpu->run;
8238         struct kvm_mmio_fragment *frag;
8239         unsigned len;
8240
8241         BUG_ON(!vcpu->mmio_needed);
8242
8243         /* Complete previous fragment */
8244         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8245         len = min(8u, frag->len);
8246         if (!vcpu->mmio_is_write)
8247                 memcpy(frag->data, run->mmio.data, len);
8248
8249         if (frag->len <= 8) {
8250                 /* Switch to the next fragment. */
8251                 frag++;
8252                 vcpu->mmio_cur_fragment++;
8253         } else {
8254                 /* Go forward to the next mmio piece. */
8255                 frag->data += len;
8256                 frag->gpa += len;
8257                 frag->len -= len;
8258         }
8259
8260         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8261                 vcpu->mmio_needed = 0;
8262
8263                 /* FIXME: return into emulator if single-stepping.  */
8264                 if (vcpu->mmio_is_write)
8265                         return 1;
8266                 vcpu->mmio_read_completed = 1;
8267                 return complete_emulated_io(vcpu);
8268         }
8269
8270         run->exit_reason = KVM_EXIT_MMIO;
8271         run->mmio.phys_addr = frag->gpa;
8272         if (vcpu->mmio_is_write)
8273                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8274         run->mmio.len = min(8u, frag->len);
8275         run->mmio.is_write = vcpu->mmio_is_write;
8276         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8277         return 0;
8278 }
8279
8280 /* Swap (qemu) user FPU context for the guest FPU context. */
8281 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8282 {
8283         fpregs_lock();
8284
8285         copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8286         /* PKRU is separately restored in kvm_x86_ops->run.  */
8287         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8288                                 ~XFEATURE_MASK_PKRU);
8289
8290         fpregs_mark_activate();
8291         fpregs_unlock();
8292
8293         trace_kvm_fpu(1);
8294 }
8295
8296 /* When vcpu_run ends, restore user space FPU context. */
8297 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8298 {
8299         fpregs_lock();
8300
8301         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8302         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8303
8304         fpregs_mark_activate();
8305         fpregs_unlock();
8306
8307         ++vcpu->stat.fpu_reload;
8308         trace_kvm_fpu(0);
8309 }
8310
8311 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8312 {
8313         int r;
8314
8315         vcpu_load(vcpu);
8316         kvm_sigset_activate(vcpu);
8317         kvm_load_guest_fpu(vcpu);
8318
8319         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8320                 if (kvm_run->immediate_exit) {
8321                         r = -EINTR;
8322                         goto out;
8323                 }
8324                 kvm_vcpu_block(vcpu);
8325                 kvm_apic_accept_events(vcpu);
8326                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8327                 r = -EAGAIN;
8328                 if (signal_pending(current)) {
8329                         r = -EINTR;
8330                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8331                         ++vcpu->stat.signal_exits;
8332                 }
8333                 goto out;
8334         }
8335
8336         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8337                 r = -EINVAL;
8338                 goto out;
8339         }
8340
8341         if (vcpu->run->kvm_dirty_regs) {
8342                 r = sync_regs(vcpu);
8343                 if (r != 0)
8344                         goto out;
8345         }
8346
8347         /* re-sync apic's tpr */
8348         if (!lapic_in_kernel(vcpu)) {
8349                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8350                         r = -EINVAL;
8351                         goto out;
8352                 }
8353         }
8354
8355         if (unlikely(vcpu->arch.complete_userspace_io)) {
8356                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8357                 vcpu->arch.complete_userspace_io = NULL;
8358                 r = cui(vcpu);
8359                 if (r <= 0)
8360                         goto out;
8361         } else
8362                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8363
8364         if (kvm_run->immediate_exit)
8365                 r = -EINTR;
8366         else
8367                 r = vcpu_run(vcpu);
8368
8369 out:
8370         kvm_put_guest_fpu(vcpu);
8371         if (vcpu->run->kvm_valid_regs)
8372                 store_regs(vcpu);
8373         post_kvm_run_save(vcpu);
8374         kvm_sigset_deactivate(vcpu);
8375
8376         vcpu_put(vcpu);
8377         return r;
8378 }
8379
8380 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8381 {
8382         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8383                 /*
8384                  * We are here if userspace calls get_regs() in the middle of
8385                  * instruction emulation. Registers state needs to be copied
8386                  * back from emulation context to vcpu. Userspace shouldn't do
8387                  * that usually, but some bad designed PV devices (vmware
8388                  * backdoor interface) need this to work
8389                  */
8390                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8391                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8392         }
8393         regs->rax = kvm_rax_read(vcpu);
8394         regs->rbx = kvm_rbx_read(vcpu);
8395         regs->rcx = kvm_rcx_read(vcpu);
8396         regs->rdx = kvm_rdx_read(vcpu);
8397         regs->rsi = kvm_rsi_read(vcpu);
8398         regs->rdi = kvm_rdi_read(vcpu);
8399         regs->rsp = kvm_rsp_read(vcpu);
8400         regs->rbp = kvm_rbp_read(vcpu);
8401 #ifdef CONFIG_X86_64
8402         regs->r8 = kvm_r8_read(vcpu);
8403         regs->r9 = kvm_r9_read(vcpu);
8404         regs->r10 = kvm_r10_read(vcpu);
8405         regs->r11 = kvm_r11_read(vcpu);
8406         regs->r12 = kvm_r12_read(vcpu);
8407         regs->r13 = kvm_r13_read(vcpu);
8408         regs->r14 = kvm_r14_read(vcpu);
8409         regs->r15 = kvm_r15_read(vcpu);
8410 #endif
8411
8412         regs->rip = kvm_rip_read(vcpu);
8413         regs->rflags = kvm_get_rflags(vcpu);
8414 }
8415
8416 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8417 {
8418         vcpu_load(vcpu);
8419         __get_regs(vcpu, regs);
8420         vcpu_put(vcpu);
8421         return 0;
8422 }
8423
8424 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8425 {
8426         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8427         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8428
8429         kvm_rax_write(vcpu, regs->rax);
8430         kvm_rbx_write(vcpu, regs->rbx);
8431         kvm_rcx_write(vcpu, regs->rcx);
8432         kvm_rdx_write(vcpu, regs->rdx);
8433         kvm_rsi_write(vcpu, regs->rsi);
8434         kvm_rdi_write(vcpu, regs->rdi);
8435         kvm_rsp_write(vcpu, regs->rsp);
8436         kvm_rbp_write(vcpu, regs->rbp);
8437 #ifdef CONFIG_X86_64
8438         kvm_r8_write(vcpu, regs->r8);
8439         kvm_r9_write(vcpu, regs->r9);
8440         kvm_r10_write(vcpu, regs->r10);
8441         kvm_r11_write(vcpu, regs->r11);
8442         kvm_r12_write(vcpu, regs->r12);
8443         kvm_r13_write(vcpu, regs->r13);
8444         kvm_r14_write(vcpu, regs->r14);
8445         kvm_r15_write(vcpu, regs->r15);
8446 #endif
8447
8448         kvm_rip_write(vcpu, regs->rip);
8449         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8450
8451         vcpu->arch.exception.pending = false;
8452
8453         kvm_make_request(KVM_REQ_EVENT, vcpu);
8454 }
8455
8456 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8457 {
8458         vcpu_load(vcpu);
8459         __set_regs(vcpu, regs);
8460         vcpu_put(vcpu);
8461         return 0;
8462 }
8463
8464 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8465 {
8466         struct kvm_segment cs;
8467
8468         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8469         *db = cs.db;
8470         *l = cs.l;
8471 }
8472 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8473
8474 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8475 {
8476         struct desc_ptr dt;
8477
8478         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8479         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8480         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8481         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8482         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8483         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8484
8485         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8486         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8487
8488         kvm_x86_ops->get_idt(vcpu, &dt);
8489         sregs->idt.limit = dt.size;
8490         sregs->idt.base = dt.address;
8491         kvm_x86_ops->get_gdt(vcpu, &dt);
8492         sregs->gdt.limit = dt.size;
8493         sregs->gdt.base = dt.address;
8494
8495         sregs->cr0 = kvm_read_cr0(vcpu);
8496         sregs->cr2 = vcpu->arch.cr2;
8497         sregs->cr3 = kvm_read_cr3(vcpu);
8498         sregs->cr4 = kvm_read_cr4(vcpu);
8499         sregs->cr8 = kvm_get_cr8(vcpu);
8500         sregs->efer = vcpu->arch.efer;
8501         sregs->apic_base = kvm_get_apic_base(vcpu);
8502
8503         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8504
8505         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8506                 set_bit(vcpu->arch.interrupt.nr,
8507                         (unsigned long *)sregs->interrupt_bitmap);
8508 }
8509
8510 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8511                                   struct kvm_sregs *sregs)
8512 {
8513         vcpu_load(vcpu);
8514         __get_sregs(vcpu, sregs);
8515         vcpu_put(vcpu);
8516         return 0;
8517 }
8518
8519 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8520                                     struct kvm_mp_state *mp_state)
8521 {
8522         vcpu_load(vcpu);
8523
8524         kvm_apic_accept_events(vcpu);
8525         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8526                                         vcpu->arch.pv.pv_unhalted)
8527                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8528         else
8529                 mp_state->mp_state = vcpu->arch.mp_state;
8530
8531         vcpu_put(vcpu);
8532         return 0;
8533 }
8534
8535 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8536                                     struct kvm_mp_state *mp_state)
8537 {
8538         int ret = -EINVAL;
8539
8540         vcpu_load(vcpu);
8541
8542         if (!lapic_in_kernel(vcpu) &&
8543             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8544                 goto out;
8545
8546         /* INITs are latched while in SMM */
8547         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8548             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8549              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8550                 goto out;
8551
8552         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8553                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8554                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8555         } else
8556                 vcpu->arch.mp_state = mp_state->mp_state;
8557         kvm_make_request(KVM_REQ_EVENT, vcpu);
8558
8559         ret = 0;
8560 out:
8561         vcpu_put(vcpu);
8562         return ret;
8563 }
8564
8565 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8566                     int reason, bool has_error_code, u32 error_code)
8567 {
8568         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8569         int ret;
8570
8571         init_emulate_ctxt(vcpu);
8572
8573         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8574                                    has_error_code, error_code);
8575
8576         if (ret)
8577                 return EMULATE_FAIL;
8578
8579         kvm_rip_write(vcpu, ctxt->eip);
8580         kvm_set_rflags(vcpu, ctxt->eflags);
8581         kvm_make_request(KVM_REQ_EVENT, vcpu);
8582         return EMULATE_DONE;
8583 }
8584 EXPORT_SYMBOL_GPL(kvm_task_switch);
8585
8586 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8587 {
8588         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8589                         (sregs->cr4 & X86_CR4_OSXSAVE))
8590                 return  -EINVAL;
8591
8592         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8593                 /*
8594                  * When EFER.LME and CR0.PG are set, the processor is in
8595                  * 64-bit mode (though maybe in a 32-bit code segment).
8596                  * CR4.PAE and EFER.LMA must be set.
8597                  */
8598                 if (!(sregs->cr4 & X86_CR4_PAE)
8599                     || !(sregs->efer & EFER_LMA))
8600                         return -EINVAL;
8601         } else {
8602                 /*
8603                  * Not in 64-bit mode: EFER.LMA is clear and the code
8604                  * segment cannot be 64-bit.
8605                  */
8606                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8607                         return -EINVAL;
8608         }
8609
8610         return 0;
8611 }
8612
8613 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8614 {
8615         struct msr_data apic_base_msr;
8616         int mmu_reset_needed = 0;
8617         int cpuid_update_needed = 0;
8618         int pending_vec, max_bits, idx;
8619         struct desc_ptr dt;
8620         int ret = -EINVAL;
8621
8622         if (kvm_valid_sregs(vcpu, sregs))
8623                 goto out;
8624
8625         apic_base_msr.data = sregs->apic_base;
8626         apic_base_msr.host_initiated = true;
8627         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8628                 goto out;
8629
8630         dt.size = sregs->idt.limit;
8631         dt.address = sregs->idt.base;
8632         kvm_x86_ops->set_idt(vcpu, &dt);
8633         dt.size = sregs->gdt.limit;
8634         dt.address = sregs->gdt.base;
8635         kvm_x86_ops->set_gdt(vcpu, &dt);
8636
8637         vcpu->arch.cr2 = sregs->cr2;
8638         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8639         vcpu->arch.cr3 = sregs->cr3;
8640         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8641
8642         kvm_set_cr8(vcpu, sregs->cr8);
8643
8644         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8645         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8646
8647         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8648         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8649         vcpu->arch.cr0 = sregs->cr0;
8650
8651         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8652         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8653                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8654         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8655         if (cpuid_update_needed)
8656                 kvm_update_cpuid(vcpu);
8657
8658         idx = srcu_read_lock(&vcpu->kvm->srcu);
8659         if (is_pae_paging(vcpu)) {
8660                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8661                 mmu_reset_needed = 1;
8662         }
8663         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8664
8665         if (mmu_reset_needed)
8666                 kvm_mmu_reset_context(vcpu);
8667
8668         max_bits = KVM_NR_INTERRUPTS;
8669         pending_vec = find_first_bit(
8670                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8671         if (pending_vec < max_bits) {
8672                 kvm_queue_interrupt(vcpu, pending_vec, false);
8673                 pr_debug("Set back pending irq %d\n", pending_vec);
8674         }
8675
8676         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8677         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8678         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8679         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8680         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8681         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8682
8683         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8684         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8685
8686         update_cr8_intercept(vcpu);
8687
8688         /* Older userspace won't unhalt the vcpu on reset. */
8689         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8690             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8691             !is_protmode(vcpu))
8692                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8693
8694         kvm_make_request(KVM_REQ_EVENT, vcpu);
8695
8696         ret = 0;
8697 out:
8698         return ret;
8699 }
8700
8701 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8702                                   struct kvm_sregs *sregs)
8703 {
8704         int ret;
8705
8706         vcpu_load(vcpu);
8707         ret = __set_sregs(vcpu, sregs);
8708         vcpu_put(vcpu);
8709         return ret;
8710 }
8711
8712 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8713                                         struct kvm_guest_debug *dbg)
8714 {
8715         unsigned long rflags;
8716         int i, r;
8717
8718         vcpu_load(vcpu);
8719
8720         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8721                 r = -EBUSY;
8722                 if (vcpu->arch.exception.pending)
8723                         goto out;
8724                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8725                         kvm_queue_exception(vcpu, DB_VECTOR);
8726                 else
8727                         kvm_queue_exception(vcpu, BP_VECTOR);
8728         }
8729
8730         /*
8731          * Read rflags as long as potentially injected trace flags are still
8732          * filtered out.
8733          */
8734         rflags = kvm_get_rflags(vcpu);
8735
8736         vcpu->guest_debug = dbg->control;
8737         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8738                 vcpu->guest_debug = 0;
8739
8740         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8741                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8742                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8743                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8744         } else {
8745                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8746                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8747         }
8748         kvm_update_dr7(vcpu);
8749
8750         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8751                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8752                         get_segment_base(vcpu, VCPU_SREG_CS);
8753
8754         /*
8755          * Trigger an rflags update that will inject or remove the trace
8756          * flags.
8757          */
8758         kvm_set_rflags(vcpu, rflags);
8759
8760         kvm_x86_ops->update_bp_intercept(vcpu);
8761
8762         r = 0;
8763
8764 out:
8765         vcpu_put(vcpu);
8766         return r;
8767 }
8768
8769 /*
8770  * Translate a guest virtual address to a guest physical address.
8771  */
8772 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8773                                     struct kvm_translation *tr)
8774 {
8775         unsigned long vaddr = tr->linear_address;
8776         gpa_t gpa;
8777         int idx;
8778
8779         vcpu_load(vcpu);
8780
8781         idx = srcu_read_lock(&vcpu->kvm->srcu);
8782         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8783         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8784         tr->physical_address = gpa;
8785         tr->valid = gpa != UNMAPPED_GVA;
8786         tr->writeable = 1;
8787         tr->usermode = 0;
8788
8789         vcpu_put(vcpu);
8790         return 0;
8791 }
8792
8793 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8794 {
8795         struct fxregs_state *fxsave;
8796
8797         vcpu_load(vcpu);
8798
8799         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8800         memcpy(fpu->fpr, fxsave->st_space, 128);
8801         fpu->fcw = fxsave->cwd;
8802         fpu->fsw = fxsave->swd;
8803         fpu->ftwx = fxsave->twd;
8804         fpu->last_opcode = fxsave->fop;
8805         fpu->last_ip = fxsave->rip;
8806         fpu->last_dp = fxsave->rdp;
8807         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8808
8809         vcpu_put(vcpu);
8810         return 0;
8811 }
8812
8813 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8814 {
8815         struct fxregs_state *fxsave;
8816
8817         vcpu_load(vcpu);
8818
8819         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8820
8821         memcpy(fxsave->st_space, fpu->fpr, 128);
8822         fxsave->cwd = fpu->fcw;
8823         fxsave->swd = fpu->fsw;
8824         fxsave->twd = fpu->ftwx;
8825         fxsave->fop = fpu->last_opcode;
8826         fxsave->rip = fpu->last_ip;
8827         fxsave->rdp = fpu->last_dp;
8828         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8829
8830         vcpu_put(vcpu);
8831         return 0;
8832 }
8833
8834 static void store_regs(struct kvm_vcpu *vcpu)
8835 {
8836         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8837
8838         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8839                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8840
8841         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8842                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8843
8844         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8845                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8846                                 vcpu, &vcpu->run->s.regs.events);
8847 }
8848
8849 static int sync_regs(struct kvm_vcpu *vcpu)
8850 {
8851         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8852                 return -EINVAL;
8853
8854         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8855                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8856                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8857         }
8858         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8859                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8860                         return -EINVAL;
8861                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8862         }
8863         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8864                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8865                                 vcpu, &vcpu->run->s.regs.events))
8866                         return -EINVAL;
8867                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8868         }
8869
8870         return 0;
8871 }
8872
8873 static void fx_init(struct kvm_vcpu *vcpu)
8874 {
8875         fpstate_init(&vcpu->arch.guest_fpu->state);
8876         if (boot_cpu_has(X86_FEATURE_XSAVES))
8877                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8878                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8879
8880         /*
8881          * Ensure guest xcr0 is valid for loading
8882          */
8883         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8884
8885         vcpu->arch.cr0 |= X86_CR0_ET;
8886 }
8887
8888 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8889 {
8890         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8891
8892         kvmclock_reset(vcpu);
8893
8894         kvm_x86_ops->vcpu_free(vcpu);
8895         free_cpumask_var(wbinvd_dirty_mask);
8896 }
8897
8898 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8899                                                 unsigned int id)
8900 {
8901         struct kvm_vcpu *vcpu;
8902
8903         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8904                 printk_once(KERN_WARNING
8905                 "kvm: SMP vm created on host with unstable TSC; "
8906                 "guest TSC will not be reliable\n");
8907
8908         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8909
8910         return vcpu;
8911 }
8912
8913 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8914 {
8915         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8916         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8917         kvm_vcpu_mtrr_init(vcpu);
8918         vcpu_load(vcpu);
8919         kvm_vcpu_reset(vcpu, false);
8920         kvm_init_mmu(vcpu, false);
8921         vcpu_put(vcpu);
8922         return 0;
8923 }
8924
8925 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8926 {
8927         struct msr_data msr;
8928         struct kvm *kvm = vcpu->kvm;
8929
8930         kvm_hv_vcpu_postcreate(vcpu);
8931
8932         if (mutex_lock_killable(&vcpu->mutex))
8933                 return;
8934         vcpu_load(vcpu);
8935         msr.data = 0x0;
8936         msr.index = MSR_IA32_TSC;
8937         msr.host_initiated = true;
8938         kvm_write_tsc(vcpu, &msr);
8939         vcpu_put(vcpu);
8940
8941         /* poll control enabled by default */
8942         vcpu->arch.msr_kvm_poll_control = 1;
8943
8944         mutex_unlock(&vcpu->mutex);
8945
8946         if (!kvmclock_periodic_sync)
8947                 return;
8948
8949         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8950                                         KVMCLOCK_SYNC_PERIOD);
8951 }
8952
8953 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8954 {
8955         vcpu->arch.apf.msr_val = 0;
8956
8957         vcpu_load(vcpu);
8958         kvm_mmu_unload(vcpu);
8959         vcpu_put(vcpu);
8960
8961         kvm_x86_ops->vcpu_free(vcpu);
8962 }
8963
8964 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8965 {
8966         kvm_lapic_reset(vcpu, init_event);
8967
8968         vcpu->arch.hflags = 0;
8969
8970         vcpu->arch.smi_pending = 0;
8971         vcpu->arch.smi_count = 0;
8972         atomic_set(&vcpu->arch.nmi_queued, 0);
8973         vcpu->arch.nmi_pending = 0;
8974         vcpu->arch.nmi_injected = false;
8975         kvm_clear_interrupt_queue(vcpu);
8976         kvm_clear_exception_queue(vcpu);
8977         vcpu->arch.exception.pending = false;
8978
8979         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8980         kvm_update_dr0123(vcpu);
8981         vcpu->arch.dr6 = DR6_INIT;
8982         kvm_update_dr6(vcpu);
8983         vcpu->arch.dr7 = DR7_FIXED_1;
8984         kvm_update_dr7(vcpu);
8985
8986         vcpu->arch.cr2 = 0;
8987
8988         kvm_make_request(KVM_REQ_EVENT, vcpu);
8989         vcpu->arch.apf.msr_val = 0;
8990         vcpu->arch.st.msr_val = 0;
8991
8992         kvmclock_reset(vcpu);
8993
8994         kvm_clear_async_pf_completion_queue(vcpu);
8995         kvm_async_pf_hash_reset(vcpu);
8996         vcpu->arch.apf.halted = false;
8997
8998         if (kvm_mpx_supported()) {
8999                 void *mpx_state_buffer;
9000
9001                 /*
9002                  * To avoid have the INIT path from kvm_apic_has_events() that be
9003                  * called with loaded FPU and does not let userspace fix the state.
9004                  */
9005                 if (init_event)
9006                         kvm_put_guest_fpu(vcpu);
9007                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9008                                         XFEATURE_BNDREGS);
9009                 if (mpx_state_buffer)
9010                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9011                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9012                                         XFEATURE_BNDCSR);
9013                 if (mpx_state_buffer)
9014                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9015                 if (init_event)
9016                         kvm_load_guest_fpu(vcpu);
9017         }
9018
9019         if (!init_event) {
9020                 kvm_pmu_reset(vcpu);
9021                 vcpu->arch.smbase = 0x30000;
9022
9023                 vcpu->arch.msr_misc_features_enables = 0;
9024
9025                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9026         }
9027
9028         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9029         vcpu->arch.regs_avail = ~0;
9030         vcpu->arch.regs_dirty = ~0;
9031
9032         vcpu->arch.ia32_xss = 0;
9033
9034         kvm_x86_ops->vcpu_reset(vcpu, init_event);
9035 }
9036
9037 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9038 {
9039         struct kvm_segment cs;
9040
9041         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9042         cs.selector = vector << 8;
9043         cs.base = vector << 12;
9044         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9045         kvm_rip_write(vcpu, 0);
9046 }
9047
9048 int kvm_arch_hardware_enable(void)
9049 {
9050         struct kvm *kvm;
9051         struct kvm_vcpu *vcpu;
9052         int i;
9053         int ret;
9054         u64 local_tsc;
9055         u64 max_tsc = 0;
9056         bool stable, backwards_tsc = false;
9057
9058         kvm_shared_msr_cpu_online();
9059         ret = kvm_x86_ops->hardware_enable();
9060         if (ret != 0)
9061                 return ret;
9062
9063         local_tsc = rdtsc();
9064         stable = !kvm_check_tsc_unstable();
9065         list_for_each_entry(kvm, &vm_list, vm_list) {
9066                 kvm_for_each_vcpu(i, vcpu, kvm) {
9067                         if (!stable && vcpu->cpu == smp_processor_id())
9068                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9069                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9070                                 backwards_tsc = true;
9071                                 if (vcpu->arch.last_host_tsc > max_tsc)
9072                                         max_tsc = vcpu->arch.last_host_tsc;
9073                         }
9074                 }
9075         }
9076
9077         /*
9078          * Sometimes, even reliable TSCs go backwards.  This happens on
9079          * platforms that reset TSC during suspend or hibernate actions, but
9080          * maintain synchronization.  We must compensate.  Fortunately, we can
9081          * detect that condition here, which happens early in CPU bringup,
9082          * before any KVM threads can be running.  Unfortunately, we can't
9083          * bring the TSCs fully up to date with real time, as we aren't yet far
9084          * enough into CPU bringup that we know how much real time has actually
9085          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9086          * variables that haven't been updated yet.
9087          *
9088          * So we simply find the maximum observed TSC above, then record the
9089          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9090          * the adjustment will be applied.  Note that we accumulate
9091          * adjustments, in case multiple suspend cycles happen before some VCPU
9092          * gets a chance to run again.  In the event that no KVM threads get a
9093          * chance to run, we will miss the entire elapsed period, as we'll have
9094          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9095          * loose cycle time.  This isn't too big a deal, since the loss will be
9096          * uniform across all VCPUs (not to mention the scenario is extremely
9097          * unlikely). It is possible that a second hibernate recovery happens
9098          * much faster than a first, causing the observed TSC here to be
9099          * smaller; this would require additional padding adjustment, which is
9100          * why we set last_host_tsc to the local tsc observed here.
9101          *
9102          * N.B. - this code below runs only on platforms with reliable TSC,
9103          * as that is the only way backwards_tsc is set above.  Also note
9104          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9105          * have the same delta_cyc adjustment applied if backwards_tsc
9106          * is detected.  Note further, this adjustment is only done once,
9107          * as we reset last_host_tsc on all VCPUs to stop this from being
9108          * called multiple times (one for each physical CPU bringup).
9109          *
9110          * Platforms with unreliable TSCs don't have to deal with this, they
9111          * will be compensated by the logic in vcpu_load, which sets the TSC to
9112          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9113          * guarantee that they stay in perfect synchronization.
9114          */
9115         if (backwards_tsc) {
9116                 u64 delta_cyc = max_tsc - local_tsc;
9117                 list_for_each_entry(kvm, &vm_list, vm_list) {
9118                         kvm->arch.backwards_tsc_observed = true;
9119                         kvm_for_each_vcpu(i, vcpu, kvm) {
9120                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9121                                 vcpu->arch.last_host_tsc = local_tsc;
9122                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9123                         }
9124
9125                         /*
9126                          * We have to disable TSC offset matching.. if you were
9127                          * booting a VM while issuing an S4 host suspend....
9128                          * you may have some problem.  Solving this issue is
9129                          * left as an exercise to the reader.
9130                          */
9131                         kvm->arch.last_tsc_nsec = 0;
9132                         kvm->arch.last_tsc_write = 0;
9133                 }
9134
9135         }
9136         return 0;
9137 }
9138
9139 void kvm_arch_hardware_disable(void)
9140 {
9141         kvm_x86_ops->hardware_disable();
9142         drop_user_return_notifiers();
9143 }
9144
9145 int kvm_arch_hardware_setup(void)
9146 {
9147         int r;
9148
9149         r = kvm_x86_ops->hardware_setup();
9150         if (r != 0)
9151                 return r;
9152
9153         if (kvm_has_tsc_control) {
9154                 /*
9155                  * Make sure the user can only configure tsc_khz values that
9156                  * fit into a signed integer.
9157                  * A min value is not calculated because it will always
9158                  * be 1 on all machines.
9159                  */
9160                 u64 max = min(0x7fffffffULL,
9161                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9162                 kvm_max_guest_tsc_khz = max;
9163
9164                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9165         }
9166
9167         kvm_init_msr_list();
9168         return 0;
9169 }
9170
9171 void kvm_arch_hardware_unsetup(void)
9172 {
9173         kvm_x86_ops->hardware_unsetup();
9174 }
9175
9176 int kvm_arch_check_processor_compat(void)
9177 {
9178         return kvm_x86_ops->check_processor_compatibility();
9179 }
9180
9181 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9182 {
9183         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9184 }
9185 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9186
9187 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9188 {
9189         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9190 }
9191
9192 struct static_key kvm_no_apic_vcpu __read_mostly;
9193 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9194
9195 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9196 {
9197         struct page *page;
9198         int r;
9199
9200         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9201         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9202                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9203         else
9204                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9205
9206         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9207         if (!page) {
9208                 r = -ENOMEM;
9209                 goto fail;
9210         }
9211         vcpu->arch.pio_data = page_address(page);
9212
9213         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9214
9215         r = kvm_mmu_create(vcpu);
9216         if (r < 0)
9217                 goto fail_free_pio_data;
9218
9219         if (irqchip_in_kernel(vcpu->kvm)) {
9220                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9221                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9222                 if (r < 0)
9223                         goto fail_mmu_destroy;
9224         } else
9225                 static_key_slow_inc(&kvm_no_apic_vcpu);
9226
9227         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9228                                        GFP_KERNEL_ACCOUNT);
9229         if (!vcpu->arch.mce_banks) {
9230                 r = -ENOMEM;
9231                 goto fail_free_lapic;
9232         }
9233         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9234
9235         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9236                                 GFP_KERNEL_ACCOUNT)) {
9237                 r = -ENOMEM;
9238                 goto fail_free_mce_banks;
9239         }
9240
9241         fx_init(vcpu);
9242
9243         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9244
9245         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9246
9247         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9248
9249         kvm_async_pf_hash_reset(vcpu);
9250         kvm_pmu_init(vcpu);
9251
9252         vcpu->arch.pending_external_vector = -1;
9253         vcpu->arch.preempted_in_kernel = false;
9254
9255         kvm_hv_vcpu_init(vcpu);
9256
9257         return 0;
9258
9259 fail_free_mce_banks:
9260         kfree(vcpu->arch.mce_banks);
9261 fail_free_lapic:
9262         kvm_free_lapic(vcpu);
9263 fail_mmu_destroy:
9264         kvm_mmu_destroy(vcpu);
9265 fail_free_pio_data:
9266         free_page((unsigned long)vcpu->arch.pio_data);
9267 fail:
9268         return r;
9269 }
9270
9271 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9272 {
9273         int idx;
9274
9275         kvm_hv_vcpu_uninit(vcpu);
9276         kvm_pmu_destroy(vcpu);
9277         kfree(vcpu->arch.mce_banks);
9278         kvm_free_lapic(vcpu);
9279         idx = srcu_read_lock(&vcpu->kvm->srcu);
9280         kvm_mmu_destroy(vcpu);
9281         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9282         free_page((unsigned long)vcpu->arch.pio_data);
9283         if (!lapic_in_kernel(vcpu))
9284                 static_key_slow_dec(&kvm_no_apic_vcpu);
9285 }
9286
9287 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9288 {
9289         vcpu->arch.l1tf_flush_l1d = true;
9290         kvm_x86_ops->sched_in(vcpu, cpu);
9291 }
9292
9293 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9294 {
9295         if (type)
9296                 return -EINVAL;
9297
9298         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9299         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9300         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9301         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9302
9303         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9304         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9305         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9306         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9307                 &kvm->arch.irq_sources_bitmap);
9308
9309         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9310         mutex_init(&kvm->arch.apic_map_lock);
9311         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9312
9313         kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9314         pvclock_update_vm_gtod_copy(kvm);
9315
9316         kvm->arch.guest_can_read_msr_platform_info = true;
9317
9318         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9319         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9320
9321         kvm_hv_init_vm(kvm);
9322         kvm_page_track_init(kvm);
9323         kvm_mmu_init_vm(kvm);
9324
9325         if (kvm_x86_ops->vm_init)
9326                 return kvm_x86_ops->vm_init(kvm);
9327
9328         return 0;
9329 }
9330
9331 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9332 {
9333         vcpu_load(vcpu);
9334         kvm_mmu_unload(vcpu);
9335         vcpu_put(vcpu);
9336 }
9337
9338 static void kvm_free_vcpus(struct kvm *kvm)
9339 {
9340         unsigned int i;
9341         struct kvm_vcpu *vcpu;
9342
9343         /*
9344          * Unpin any mmu pages first.
9345          */
9346         kvm_for_each_vcpu(i, vcpu, kvm) {
9347                 kvm_clear_async_pf_completion_queue(vcpu);
9348                 kvm_unload_vcpu_mmu(vcpu);
9349         }
9350         kvm_for_each_vcpu(i, vcpu, kvm)
9351                 kvm_arch_vcpu_free(vcpu);
9352
9353         mutex_lock(&kvm->lock);
9354         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9355                 kvm->vcpus[i] = NULL;
9356
9357         atomic_set(&kvm->online_vcpus, 0);
9358         mutex_unlock(&kvm->lock);
9359 }
9360
9361 void kvm_arch_sync_events(struct kvm *kvm)
9362 {
9363         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9364         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9365         kvm_free_pit(kvm);
9366 }
9367
9368 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9369 {
9370         int i, r;
9371         unsigned long hva;
9372         struct kvm_memslots *slots = kvm_memslots(kvm);
9373         struct kvm_memory_slot *slot, old;
9374
9375         /* Called with kvm->slots_lock held.  */
9376         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9377                 return -EINVAL;
9378
9379         slot = id_to_memslot(slots, id);
9380         if (size) {
9381                 if (slot->npages)
9382                         return -EEXIST;
9383
9384                 /*
9385                  * MAP_SHARED to prevent internal slot pages from being moved
9386                  * by fork()/COW.
9387                  */
9388                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9389                               MAP_SHARED | MAP_ANONYMOUS, 0);
9390                 if (IS_ERR((void *)hva))
9391                         return PTR_ERR((void *)hva);
9392         } else {
9393                 if (!slot->npages)
9394                         return 0;
9395
9396                 hva = 0;
9397         }
9398
9399         old = *slot;
9400         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9401                 struct kvm_userspace_memory_region m;
9402
9403                 m.slot = id | (i << 16);
9404                 m.flags = 0;
9405                 m.guest_phys_addr = gpa;
9406                 m.userspace_addr = hva;
9407                 m.memory_size = size;
9408                 r = __kvm_set_memory_region(kvm, &m);
9409                 if (r < 0)
9410                         return r;
9411         }
9412
9413         if (!size)
9414                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9415
9416         return 0;
9417 }
9418 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9419
9420 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9421 {
9422         int r;
9423
9424         mutex_lock(&kvm->slots_lock);
9425         r = __x86_set_memory_region(kvm, id, gpa, size);
9426         mutex_unlock(&kvm->slots_lock);
9427
9428         return r;
9429 }
9430 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9431
9432 void kvm_arch_destroy_vm(struct kvm *kvm)
9433 {
9434         if (current->mm == kvm->mm) {
9435                 /*
9436                  * Free memory regions allocated on behalf of userspace,
9437                  * unless the the memory map has changed due to process exit
9438                  * or fd copying.
9439                  */
9440                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9441                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9442                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9443         }
9444         if (kvm_x86_ops->vm_destroy)
9445                 kvm_x86_ops->vm_destroy(kvm);
9446         kvm_pic_destroy(kvm);
9447         kvm_ioapic_destroy(kvm);
9448         kvm_free_vcpus(kvm);
9449         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9450         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9451         kvm_mmu_uninit_vm(kvm);
9452         kvm_page_track_cleanup(kvm);
9453         kvm_hv_destroy_vm(kvm);
9454 }
9455
9456 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9457                            struct kvm_memory_slot *dont)
9458 {
9459         int i;
9460
9461         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9462                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9463                         kvfree(free->arch.rmap[i]);
9464                         free->arch.rmap[i] = NULL;
9465                 }
9466                 if (i == 0)
9467                         continue;
9468
9469                 if (!dont || free->arch.lpage_info[i - 1] !=
9470                              dont->arch.lpage_info[i - 1]) {
9471                         kvfree(free->arch.lpage_info[i - 1]);
9472                         free->arch.lpage_info[i - 1] = NULL;
9473                 }
9474         }
9475
9476         kvm_page_track_free_memslot(free, dont);
9477 }
9478
9479 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9480                             unsigned long npages)
9481 {
9482         int i;
9483
9484         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9485                 struct kvm_lpage_info *linfo;
9486                 unsigned long ugfn;
9487                 int lpages;
9488                 int level = i + 1;
9489
9490                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9491                                       slot->base_gfn, level) + 1;
9492
9493                 slot->arch.rmap[i] =
9494                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9495                                  GFP_KERNEL_ACCOUNT);
9496                 if (!slot->arch.rmap[i])
9497                         goto out_free;
9498                 if (i == 0)
9499                         continue;
9500
9501                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9502                 if (!linfo)
9503                         goto out_free;
9504
9505                 slot->arch.lpage_info[i - 1] = linfo;
9506
9507                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9508                         linfo[0].disallow_lpage = 1;
9509                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9510                         linfo[lpages - 1].disallow_lpage = 1;
9511                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9512                 /*
9513                  * If the gfn and userspace address are not aligned wrt each
9514                  * other, or if explicitly asked to, disable large page
9515                  * support for this slot
9516                  */
9517                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9518                     !kvm_largepages_enabled()) {
9519                         unsigned long j;
9520
9521                         for (j = 0; j < lpages; ++j)
9522                                 linfo[j].disallow_lpage = 1;
9523                 }
9524         }
9525
9526         if (kvm_page_track_create_memslot(slot, npages))
9527                 goto out_free;
9528
9529         return 0;
9530
9531 out_free:
9532         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9533                 kvfree(slot->arch.rmap[i]);
9534                 slot->arch.rmap[i] = NULL;
9535                 if (i == 0)
9536                         continue;
9537
9538                 kvfree(slot->arch.lpage_info[i - 1]);
9539                 slot->arch.lpage_info[i - 1] = NULL;
9540         }
9541         return -ENOMEM;
9542 }
9543
9544 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9545 {
9546         /*
9547          * memslots->generation has been incremented.
9548          * mmio generation may have reached its maximum value.
9549          */
9550         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9551 }
9552
9553 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9554                                 struct kvm_memory_slot *memslot,
9555                                 const struct kvm_userspace_memory_region *mem,
9556                                 enum kvm_mr_change change)
9557 {
9558         return 0;
9559 }
9560
9561 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9562                                      struct kvm_memory_slot *new)
9563 {
9564         /* Still write protect RO slot */
9565         if (new->flags & KVM_MEM_READONLY) {
9566                 kvm_mmu_slot_remove_write_access(kvm, new);
9567                 return;
9568         }
9569
9570         /*
9571          * Call kvm_x86_ops dirty logging hooks when they are valid.
9572          *
9573          * kvm_x86_ops->slot_disable_log_dirty is called when:
9574          *
9575          *  - KVM_MR_CREATE with dirty logging is disabled
9576          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9577          *
9578          * The reason is, in case of PML, we need to set D-bit for any slots
9579          * with dirty logging disabled in order to eliminate unnecessary GPA
9580          * logging in PML buffer (and potential PML buffer full VMEXT). This
9581          * guarantees leaving PML enabled during guest's lifetime won't have
9582          * any additional overhead from PML when guest is running with dirty
9583          * logging disabled for memory slots.
9584          *
9585          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9586          * to dirty logging mode.
9587          *
9588          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9589          *
9590          * In case of write protect:
9591          *
9592          * Write protect all pages for dirty logging.
9593          *
9594          * All the sptes including the large sptes which point to this
9595          * slot are set to readonly. We can not create any new large
9596          * spte on this slot until the end of the logging.
9597          *
9598          * See the comments in fast_page_fault().
9599          */
9600         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9601                 if (kvm_x86_ops->slot_enable_log_dirty)
9602                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9603                 else
9604                         kvm_mmu_slot_remove_write_access(kvm, new);
9605         } else {
9606                 if (kvm_x86_ops->slot_disable_log_dirty)
9607                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9608         }
9609 }
9610
9611 void kvm_arch_commit_memory_region(struct kvm *kvm,
9612                                 const struct kvm_userspace_memory_region *mem,
9613                                 const struct kvm_memory_slot *old,
9614                                 const struct kvm_memory_slot *new,
9615                                 enum kvm_mr_change change)
9616 {
9617         if (!kvm->arch.n_requested_mmu_pages)
9618                 kvm_mmu_change_mmu_pages(kvm,
9619                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9620
9621         /*
9622          * Dirty logging tracks sptes in 4k granularity, meaning that large
9623          * sptes have to be split.  If live migration is successful, the guest
9624          * in the source machine will be destroyed and large sptes will be
9625          * created in the destination. However, if the guest continues to run
9626          * in the source machine (for example if live migration fails), small
9627          * sptes will remain around and cause bad performance.
9628          *
9629          * Scan sptes if dirty logging has been stopped, dropping those
9630          * which can be collapsed into a single large-page spte.  Later
9631          * page faults will create the large-page sptes.
9632          */
9633         if ((change != KVM_MR_DELETE) &&
9634                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9635                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9636                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9637
9638         /*
9639          * Set up write protection and/or dirty logging for the new slot.
9640          *
9641          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9642          * been zapped so no dirty logging staff is needed for old slot. For
9643          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9644          * new and it's also covered when dealing with the new slot.
9645          *
9646          * FIXME: const-ify all uses of struct kvm_memory_slot.
9647          */
9648         if (change != KVM_MR_DELETE)
9649                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9650 }
9651
9652 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9653 {
9654         kvm_mmu_zap_all(kvm);
9655 }
9656
9657 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9658                                    struct kvm_memory_slot *slot)
9659 {
9660         kvm_page_track_flush_slot(kvm, slot);
9661 }
9662
9663 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9664 {
9665         return (is_guest_mode(vcpu) &&
9666                         kvm_x86_ops->guest_apic_has_interrupt &&
9667                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9668 }
9669
9670 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9671 {
9672         if (!list_empty_careful(&vcpu->async_pf.done))
9673                 return true;
9674
9675         if (kvm_apic_has_events(vcpu))
9676                 return true;
9677
9678         if (vcpu->arch.pv.pv_unhalted)
9679                 return true;
9680
9681         if (vcpu->arch.exception.pending)
9682                 return true;
9683
9684         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9685             (vcpu->arch.nmi_pending &&
9686              kvm_x86_ops->nmi_allowed(vcpu)))
9687                 return true;
9688
9689         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9690             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9691                 return true;
9692
9693         if (kvm_arch_interrupt_allowed(vcpu) &&
9694             (kvm_cpu_has_interrupt(vcpu) ||
9695             kvm_guest_apic_has_interrupt(vcpu)))
9696                 return true;
9697
9698         if (kvm_hv_has_stimer_pending(vcpu))
9699                 return true;
9700
9701         return false;
9702 }
9703
9704 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9705 {
9706         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9707 }
9708
9709 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9710 {
9711         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9712                 return true;
9713
9714         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9715                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
9716                  kvm_test_request(KVM_REQ_EVENT, vcpu))
9717                 return true;
9718
9719         if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9720                 return true;
9721
9722         return false;
9723 }
9724
9725 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9726 {
9727         return vcpu->arch.preempted_in_kernel;
9728 }
9729
9730 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9731 {
9732         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9733 }
9734
9735 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9736 {
9737         return kvm_x86_ops->interrupt_allowed(vcpu);
9738 }
9739
9740 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9741 {
9742         if (is_64_bit_mode(vcpu))
9743                 return kvm_rip_read(vcpu);
9744         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9745                      kvm_rip_read(vcpu));
9746 }
9747 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9748
9749 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9750 {
9751         return kvm_get_linear_rip(vcpu) == linear_rip;
9752 }
9753 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9754
9755 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9756 {
9757         unsigned long rflags;
9758
9759         rflags = kvm_x86_ops->get_rflags(vcpu);
9760         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9761                 rflags &= ~X86_EFLAGS_TF;
9762         return rflags;
9763 }
9764 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9765
9766 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9767 {
9768         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9769             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9770                 rflags |= X86_EFLAGS_TF;
9771         kvm_x86_ops->set_rflags(vcpu, rflags);
9772 }
9773
9774 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9775 {
9776         __kvm_set_rflags(vcpu, rflags);
9777         kvm_make_request(KVM_REQ_EVENT, vcpu);
9778 }
9779 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9780
9781 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9782 {
9783         int r;
9784
9785         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9786               work->wakeup_all)
9787                 return;
9788
9789         r = kvm_mmu_reload(vcpu);
9790         if (unlikely(r))
9791                 return;
9792
9793         if (!vcpu->arch.mmu->direct_map &&
9794               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9795                 return;
9796
9797         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9798 }
9799
9800 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9801 {
9802         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9803 }
9804
9805 static inline u32 kvm_async_pf_next_probe(u32 key)
9806 {
9807         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9808 }
9809
9810 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9811 {
9812         u32 key = kvm_async_pf_hash_fn(gfn);
9813
9814         while (vcpu->arch.apf.gfns[key] != ~0)
9815                 key = kvm_async_pf_next_probe(key);
9816
9817         vcpu->arch.apf.gfns[key] = gfn;
9818 }
9819
9820 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9821 {
9822         int i;
9823         u32 key = kvm_async_pf_hash_fn(gfn);
9824
9825         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9826                      (vcpu->arch.apf.gfns[key] != gfn &&
9827                       vcpu->arch.apf.gfns[key] != ~0); i++)
9828                 key = kvm_async_pf_next_probe(key);
9829
9830         return key;
9831 }
9832
9833 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9834 {
9835         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9836 }
9837
9838 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9839 {
9840         u32 i, j, k;
9841
9842         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9843         while (true) {
9844                 vcpu->arch.apf.gfns[i] = ~0;
9845                 do {
9846                         j = kvm_async_pf_next_probe(j);
9847                         if (vcpu->arch.apf.gfns[j] == ~0)
9848                                 return;
9849                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9850                         /*
9851                          * k lies cyclically in ]i,j]
9852                          * |    i.k.j |
9853                          * |....j i.k.| or  |.k..j i...|
9854                          */
9855                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9856                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9857                 i = j;
9858         }
9859 }
9860
9861 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9862 {
9863
9864         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9865                                       sizeof(val));
9866 }
9867
9868 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9869 {
9870
9871         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9872                                       sizeof(u32));
9873 }
9874
9875 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
9876 {
9877         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9878                 return false;
9879
9880         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9881             (vcpu->arch.apf.send_user_only &&
9882              kvm_x86_ops->get_cpl(vcpu) == 0))
9883                 return false;
9884
9885         return true;
9886 }
9887
9888 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
9889 {
9890         if (unlikely(!lapic_in_kernel(vcpu) ||
9891                      kvm_event_needs_reinjection(vcpu) ||
9892                      vcpu->arch.exception.pending))
9893                 return false;
9894
9895         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
9896                 return false;
9897
9898         /*
9899          * If interrupts are off we cannot even use an artificial
9900          * halt state.
9901          */
9902         return kvm_x86_ops->interrupt_allowed(vcpu);
9903 }
9904
9905 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9906                                      struct kvm_async_pf *work)
9907 {
9908         struct x86_exception fault;
9909
9910         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9911         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9912
9913         if (kvm_can_deliver_async_pf(vcpu) &&
9914             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9915                 fault.vector = PF_VECTOR;
9916                 fault.error_code_valid = true;
9917                 fault.error_code = 0;
9918                 fault.nested_page_fault = false;
9919                 fault.address = work->arch.token;
9920                 fault.async_page_fault = true;
9921                 kvm_inject_page_fault(vcpu, &fault);
9922         } else {
9923                 /*
9924                  * It is not possible to deliver a paravirtualized asynchronous
9925                  * page fault, but putting the guest in an artificial halt state
9926                  * can be beneficial nevertheless: if an interrupt arrives, we
9927                  * can deliver it timely and perhaps the guest will schedule
9928                  * another process.  When the instruction that triggered a page
9929                  * fault is retried, hopefully the page will be ready in the host.
9930                  */
9931                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9932         }
9933 }
9934
9935 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9936                                  struct kvm_async_pf *work)
9937 {
9938         struct x86_exception fault;
9939         u32 val;
9940
9941         if (work->wakeup_all)
9942                 work->arch.token = ~0; /* broadcast wakeup */
9943         else
9944                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9945         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9946
9947         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9948             !apf_get_user(vcpu, &val)) {
9949                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9950                     vcpu->arch.exception.pending &&
9951                     vcpu->arch.exception.nr == PF_VECTOR &&
9952                     !apf_put_user(vcpu, 0)) {
9953                         vcpu->arch.exception.injected = false;
9954                         vcpu->arch.exception.pending = false;
9955                         vcpu->arch.exception.nr = 0;
9956                         vcpu->arch.exception.has_error_code = false;
9957                         vcpu->arch.exception.error_code = 0;
9958                         vcpu->arch.exception.has_payload = false;
9959                         vcpu->arch.exception.payload = 0;
9960                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9961                         fault.vector = PF_VECTOR;
9962                         fault.error_code_valid = true;
9963                         fault.error_code = 0;
9964                         fault.nested_page_fault = false;
9965                         fault.address = work->arch.token;
9966                         fault.async_page_fault = true;
9967                         kvm_inject_page_fault(vcpu, &fault);
9968                 }
9969         }
9970         vcpu->arch.apf.halted = false;
9971         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9972 }
9973
9974 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9975 {
9976         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9977                 return true;
9978         else
9979                 return kvm_can_do_async_pf(vcpu);
9980 }
9981
9982 void kvm_arch_start_assignment(struct kvm *kvm)
9983 {
9984         atomic_inc(&kvm->arch.assigned_device_count);
9985 }
9986 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9987
9988 void kvm_arch_end_assignment(struct kvm *kvm)
9989 {
9990         atomic_dec(&kvm->arch.assigned_device_count);
9991 }
9992 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9993
9994 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9995 {
9996         return atomic_read(&kvm->arch.assigned_device_count);
9997 }
9998 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9999
10000 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10001 {
10002         atomic_inc(&kvm->arch.noncoherent_dma_count);
10003 }
10004 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10005
10006 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10007 {
10008         atomic_dec(&kvm->arch.noncoherent_dma_count);
10009 }
10010 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10011
10012 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10013 {
10014         return atomic_read(&kvm->arch.noncoherent_dma_count);
10015 }
10016 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10017
10018 bool kvm_arch_has_irq_bypass(void)
10019 {
10020         return kvm_x86_ops->update_pi_irte != NULL;
10021 }
10022
10023 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10024                                       struct irq_bypass_producer *prod)
10025 {
10026         struct kvm_kernel_irqfd *irqfd =
10027                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10028
10029         irqfd->producer = prod;
10030
10031         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10032                                            prod->irq, irqfd->gsi, 1);
10033 }
10034
10035 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10036                                       struct irq_bypass_producer *prod)
10037 {
10038         int ret;
10039         struct kvm_kernel_irqfd *irqfd =
10040                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10041
10042         WARN_ON(irqfd->producer != prod);
10043         irqfd->producer = NULL;
10044
10045         /*
10046          * When producer of consumer is unregistered, we change back to
10047          * remapped mode, so we can re-use the current implementation
10048          * when the irq is masked/disabled or the consumer side (KVM
10049          * int this case doesn't want to receive the interrupts.
10050         */
10051         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10052         if (ret)
10053                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10054                        " fails: %d\n", irqfd->consumer.token, ret);
10055 }
10056
10057 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10058                                    uint32_t guest_irq, bool set)
10059 {
10060         if (!kvm_x86_ops->update_pi_irte)
10061                 return -EINVAL;
10062
10063         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10064 }
10065
10066 bool kvm_vector_hashing_enabled(void)
10067 {
10068         return vector_hashing;
10069 }
10070 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10071
10072 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10073 {
10074         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10075 }
10076 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10077
10078
10079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10081 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10082 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10091 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10092 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10093 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
10094 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10095 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10096 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10097 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);