2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
53 #define CREATE_TRACE_POINTS
56 #include <asm/debugreg.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92 struct kvm_x86_ops *kvm_x86_ops;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95 static bool ignore_msrs = 0;
96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98 unsigned int min_timer_period_us = 500;
99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101 bool kvm_has_tsc_control;
102 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
103 u32 kvm_max_guest_tsc_khz;
104 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
107 static u32 tsc_tolerance_ppm = 250;
108 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110 static bool backwards_tsc_observed = false;
112 #define KVM_NR_SHARED_MSRS 16
114 struct kvm_shared_msrs_global {
116 u32 msrs[KVM_NR_SHARED_MSRS];
119 struct kvm_shared_msrs {
120 struct user_return_notifier urn;
122 struct kvm_shared_msr_values {
125 } values[KVM_NR_SHARED_MSRS];
128 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
129 static struct kvm_shared_msrs __percpu *shared_msrs;
131 struct kvm_stats_debugfs_item debugfs_entries[] = {
132 { "pf_fixed", VCPU_STAT(pf_fixed) },
133 { "pf_guest", VCPU_STAT(pf_guest) },
134 { "tlb_flush", VCPU_STAT(tlb_flush) },
135 { "invlpg", VCPU_STAT(invlpg) },
136 { "exits", VCPU_STAT(exits) },
137 { "io_exits", VCPU_STAT(io_exits) },
138 { "mmio_exits", VCPU_STAT(mmio_exits) },
139 { "signal_exits", VCPU_STAT(signal_exits) },
140 { "irq_window", VCPU_STAT(irq_window_exits) },
141 { "nmi_window", VCPU_STAT(nmi_window_exits) },
142 { "halt_exits", VCPU_STAT(halt_exits) },
143 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
144 { "hypercalls", VCPU_STAT(hypercalls) },
145 { "request_irq", VCPU_STAT(request_irq_exits) },
146 { "irq_exits", VCPU_STAT(irq_exits) },
147 { "host_state_reload", VCPU_STAT(host_state_reload) },
148 { "efer_reload", VCPU_STAT(efer_reload) },
149 { "fpu_reload", VCPU_STAT(fpu_reload) },
150 { "insn_emulation", VCPU_STAT(insn_emulation) },
151 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
152 { "irq_injections", VCPU_STAT(irq_injections) },
153 { "nmi_injections", VCPU_STAT(nmi_injections) },
154 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
155 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
156 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
157 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
158 { "mmu_flooded", VM_STAT(mmu_flooded) },
159 { "mmu_recycled", VM_STAT(mmu_recycled) },
160 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
161 { "mmu_unsync", VM_STAT(mmu_unsync) },
162 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
163 { "largepages", VM_STAT(lpages) },
167 u64 __read_mostly host_xcr0;
169 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
171 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
174 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
175 vcpu->arch.apf.gfns[i] = ~0;
178 static void kvm_on_user_return(struct user_return_notifier *urn)
181 struct kvm_shared_msrs *locals
182 = container_of(urn, struct kvm_shared_msrs, urn);
183 struct kvm_shared_msr_values *values;
185 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
186 values = &locals->values[slot];
187 if (values->host != values->curr) {
188 wrmsrl(shared_msrs_global.msrs[slot], values->host);
189 values->curr = values->host;
192 locals->registered = false;
193 user_return_notifier_unregister(urn);
196 static void shared_msr_update(unsigned slot, u32 msr)
199 unsigned int cpu = smp_processor_id();
200 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
202 /* only read, and nobody should modify it at this time,
203 * so don't need lock */
204 if (slot >= shared_msrs_global.nr) {
205 printk(KERN_ERR "kvm: invalid MSR slot!");
208 rdmsrl_safe(msr, &value);
209 smsr->values[slot].host = value;
210 smsr->values[slot].curr = value;
213 void kvm_define_shared_msr(unsigned slot, u32 msr)
215 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
216 if (slot >= shared_msrs_global.nr)
217 shared_msrs_global.nr = slot + 1;
218 shared_msrs_global.msrs[slot] = msr;
219 /* we need ensured the shared_msr_global have been updated */
222 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
224 static void kvm_shared_msr_cpu_online(void)
228 for (i = 0; i < shared_msrs_global.nr; ++i)
229 shared_msr_update(i, shared_msrs_global.msrs[i]);
232 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
234 unsigned int cpu = smp_processor_id();
235 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
237 if (((value ^ smsr->values[slot].curr) & mask) == 0)
239 smsr->values[slot].curr = value;
240 wrmsrl(shared_msrs_global.msrs[slot], value);
241 if (!smsr->registered) {
242 smsr->urn.on_user_return = kvm_on_user_return;
243 user_return_notifier_register(&smsr->urn);
244 smsr->registered = true;
247 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
249 static void drop_user_return_notifiers(void)
251 unsigned int cpu = smp_processor_id();
252 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
254 if (smsr->registered)
255 kvm_on_user_return(&smsr->urn);
258 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
260 return vcpu->arch.apic_base;
262 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
264 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
266 u64 old_state = vcpu->arch.apic_base &
267 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
268 u64 new_state = msr_info->data &
269 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
270 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
271 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
273 if (!msr_info->host_initiated &&
274 ((msr_info->data & reserved_bits) != 0 ||
275 new_state == X2APIC_ENABLE ||
276 (new_state == MSR_IA32_APICBASE_ENABLE &&
277 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
278 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
282 kvm_lapic_set_base(vcpu, msr_info->data);
285 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
287 asmlinkage __visible void kvm_spurious_fault(void)
289 /* Fault while not rebooting. We want the trace. */
292 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
294 #define EXCPT_BENIGN 0
295 #define EXCPT_CONTRIBUTORY 1
298 static int exception_class(int vector)
308 return EXCPT_CONTRIBUTORY;
315 #define EXCPT_FAULT 0
317 #define EXCPT_ABORT 2
318 #define EXCPT_INTERRUPT 3
320 static int exception_type(int vector)
324 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
325 return EXCPT_INTERRUPT;
329 /* #DB is trap, as instruction watchpoints are handled elsewhere */
330 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
333 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
336 /* Reserved exceptions will result in fault */
340 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
341 unsigned nr, bool has_error, u32 error_code,
347 kvm_make_request(KVM_REQ_EVENT, vcpu);
349 if (!vcpu->arch.exception.pending) {
351 vcpu->arch.exception.pending = true;
352 vcpu->arch.exception.has_error_code = has_error;
353 vcpu->arch.exception.nr = nr;
354 vcpu->arch.exception.error_code = error_code;
355 vcpu->arch.exception.reinject = reinject;
359 /* to check exception */
360 prev_nr = vcpu->arch.exception.nr;
361 if (prev_nr == DF_VECTOR) {
362 /* triple fault -> shutdown */
363 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
366 class1 = exception_class(prev_nr);
367 class2 = exception_class(nr);
368 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
369 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
370 /* generate double fault per SDM Table 5-5 */
371 vcpu->arch.exception.pending = true;
372 vcpu->arch.exception.has_error_code = true;
373 vcpu->arch.exception.nr = DF_VECTOR;
374 vcpu->arch.exception.error_code = 0;
376 /* replace previous exception with a new one in a hope
377 that instruction re-execution will regenerate lost
382 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
384 kvm_multiple_exception(vcpu, nr, false, 0, false);
386 EXPORT_SYMBOL_GPL(kvm_queue_exception);
388 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
390 kvm_multiple_exception(vcpu, nr, false, 0, true);
392 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
394 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
397 kvm_inject_gp(vcpu, 0);
399 kvm_x86_ops->skip_emulated_instruction(vcpu);
401 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
403 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
405 ++vcpu->stat.pf_guest;
406 vcpu->arch.cr2 = fault->address;
407 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
409 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
411 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
413 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
414 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
416 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
418 return fault->nested_page_fault;
421 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
423 atomic_inc(&vcpu->arch.nmi_queued);
424 kvm_make_request(KVM_REQ_NMI, vcpu);
426 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
428 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
430 kvm_multiple_exception(vcpu, nr, true, error_code, false);
432 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
434 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
436 kvm_multiple_exception(vcpu, nr, true, error_code, true);
438 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
441 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
442 * a #GP and return false.
444 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
446 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
448 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
451 EXPORT_SYMBOL_GPL(kvm_require_cpl);
454 * This function will be used to read from the physical memory of the currently
455 * running guest. The difference to kvm_read_guest_page is that this function
456 * can read from guest physical or from the guest's guest physical memory.
458 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
459 gfn_t ngfn, void *data, int offset, int len,
462 struct x86_exception exception;
466 ngpa = gfn_to_gpa(ngfn);
467 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
468 if (real_gfn == UNMAPPED_GVA)
471 real_gfn = gpa_to_gfn(real_gfn);
473 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
475 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
477 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
478 void *data, int offset, int len, u32 access)
480 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
481 data, offset, len, access);
485 * Load the pae pdptrs. Return true is they are all valid.
487 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
489 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
490 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
493 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
495 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
496 offset * sizeof(u64), sizeof(pdpte),
497 PFERR_USER_MASK|PFERR_WRITE_MASK);
502 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
503 if (is_present_gpte(pdpte[i]) &&
504 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
511 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
512 __set_bit(VCPU_EXREG_PDPTR,
513 (unsigned long *)&vcpu->arch.regs_avail);
514 __set_bit(VCPU_EXREG_PDPTR,
515 (unsigned long *)&vcpu->arch.regs_dirty);
520 EXPORT_SYMBOL_GPL(load_pdptrs);
522 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
524 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
530 if (is_long_mode(vcpu) || !is_pae(vcpu))
533 if (!test_bit(VCPU_EXREG_PDPTR,
534 (unsigned long *)&vcpu->arch.regs_avail))
537 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
538 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
539 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
540 PFERR_USER_MASK | PFERR_WRITE_MASK);
543 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
549 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
551 unsigned long old_cr0 = kvm_read_cr0(vcpu);
552 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
553 X86_CR0_CD | X86_CR0_NW;
558 if (cr0 & 0xffffffff00000000UL)
562 cr0 &= ~CR0_RESERVED_BITS;
564 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
567 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
570 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
572 if ((vcpu->arch.efer & EFER_LME)) {
577 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
582 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
587 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
590 kvm_x86_ops->set_cr0(vcpu, cr0);
592 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
593 kvm_clear_async_pf_completion_queue(vcpu);
594 kvm_async_pf_hash_reset(vcpu);
597 if ((cr0 ^ old_cr0) & update_bits)
598 kvm_mmu_reset_context(vcpu);
601 EXPORT_SYMBOL_GPL(kvm_set_cr0);
603 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
605 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
607 EXPORT_SYMBOL_GPL(kvm_lmsw);
609 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
611 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
612 !vcpu->guest_xcr0_loaded) {
613 /* kvm_set_xcr() also depends on this */
614 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
615 vcpu->guest_xcr0_loaded = 1;
619 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
621 if (vcpu->guest_xcr0_loaded) {
622 if (vcpu->arch.xcr0 != host_xcr0)
623 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
624 vcpu->guest_xcr0_loaded = 0;
628 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
631 u64 old_xcr0 = vcpu->arch.xcr0;
634 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
635 if (index != XCR_XFEATURE_ENABLED_MASK)
637 if (!(xcr0 & XSTATE_FP))
639 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
643 * Do not allow the guest to set bits that we do not support
644 * saving. However, xcr0 bit 0 is always set, even if the
645 * emulated CPU does not support XSAVE (see fx_init).
647 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
648 if (xcr0 & ~valid_bits)
651 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
654 kvm_put_guest_xcr0(vcpu);
655 vcpu->arch.xcr0 = xcr0;
657 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
658 kvm_update_cpuid(vcpu);
662 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
664 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
665 __kvm_set_xcr(vcpu, index, xcr)) {
666 kvm_inject_gp(vcpu, 0);
671 EXPORT_SYMBOL_GPL(kvm_set_xcr);
673 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
675 unsigned long old_cr4 = kvm_read_cr4(vcpu);
676 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
677 X86_CR4_PAE | X86_CR4_SMEP;
678 if (cr4 & CR4_RESERVED_BITS)
681 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
684 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
687 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
690 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
693 if (is_long_mode(vcpu)) {
694 if (!(cr4 & X86_CR4_PAE))
696 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
697 && ((cr4 ^ old_cr4) & pdptr_bits)
698 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
702 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
703 if (!guest_cpuid_has_pcid(vcpu))
706 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
707 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
711 if (kvm_x86_ops->set_cr4(vcpu, cr4))
714 if (((cr4 ^ old_cr4) & pdptr_bits) ||
715 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
716 kvm_mmu_reset_context(vcpu);
718 if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
719 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
721 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
722 kvm_update_cpuid(vcpu);
726 EXPORT_SYMBOL_GPL(kvm_set_cr4);
728 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
730 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
731 kvm_mmu_sync_roots(vcpu);
732 kvm_mmu_flush_tlb(vcpu);
736 if (is_long_mode(vcpu)) {
737 if (cr3 & CR3_L_MODE_RESERVED_BITS)
739 } else if (is_pae(vcpu) && is_paging(vcpu) &&
740 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
743 vcpu->arch.cr3 = cr3;
744 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
745 kvm_mmu_new_cr3(vcpu);
748 EXPORT_SYMBOL_GPL(kvm_set_cr3);
750 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
752 if (cr8 & CR8_RESERVED_BITS)
754 if (irqchip_in_kernel(vcpu->kvm))
755 kvm_lapic_set_tpr(vcpu, cr8);
757 vcpu->arch.cr8 = cr8;
760 EXPORT_SYMBOL_GPL(kvm_set_cr8);
762 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
764 if (irqchip_in_kernel(vcpu->kvm))
765 return kvm_lapic_get_cr8(vcpu);
767 return vcpu->arch.cr8;
769 EXPORT_SYMBOL_GPL(kvm_get_cr8);
771 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
773 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
774 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
777 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
781 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
782 dr7 = vcpu->arch.guest_debug_dr7;
784 dr7 = vcpu->arch.dr7;
785 kvm_x86_ops->set_dr7(vcpu, dr7);
786 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
787 if (dr7 & DR7_BP_EN_MASK)
788 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
791 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
793 u64 fixed = DR6_FIXED_1;
795 if (!guest_cpuid_has_rtm(vcpu))
800 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
804 vcpu->arch.db[dr] = val;
805 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
806 vcpu->arch.eff_db[dr] = val;
809 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
813 if (val & 0xffffffff00000000ULL)
815 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
816 kvm_update_dr6(vcpu);
819 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
823 if (val & 0xffffffff00000000ULL)
825 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
826 kvm_update_dr7(vcpu);
833 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
837 res = __kvm_set_dr(vcpu, dr, val);
839 kvm_queue_exception(vcpu, UD_VECTOR);
841 kvm_inject_gp(vcpu, 0);
845 EXPORT_SYMBOL_GPL(kvm_set_dr);
847 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
851 *val = vcpu->arch.db[dr];
854 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
858 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
859 *val = vcpu->arch.dr6;
861 *val = kvm_x86_ops->get_dr6(vcpu);
864 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
868 *val = vcpu->arch.dr7;
875 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
877 if (_kvm_get_dr(vcpu, dr, val)) {
878 kvm_queue_exception(vcpu, UD_VECTOR);
883 EXPORT_SYMBOL_GPL(kvm_get_dr);
885 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
887 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
891 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
894 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
895 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
898 EXPORT_SYMBOL_GPL(kvm_rdpmc);
901 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
902 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
904 * This list is modified at module load time to reflect the
905 * capabilities of the host cpu. This capabilities test skips MSRs that are
906 * kvm-specific. Those are put in the beginning of the list.
909 #define KVM_SAVE_MSRS_BEGIN 12
910 static u32 msrs_to_save[] = {
911 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
912 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
913 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
914 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
915 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
917 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
920 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
922 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
923 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
926 static unsigned num_msrs_to_save;
928 static const u32 emulated_msrs[] = {
930 MSR_IA32_TSCDEADLINE,
931 MSR_IA32_MISC_ENABLE,
936 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
938 if (efer & efer_reserved_bits)
941 if (efer & EFER_FFXSR) {
942 struct kvm_cpuid_entry2 *feat;
944 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
945 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
949 if (efer & EFER_SVME) {
950 struct kvm_cpuid_entry2 *feat;
952 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
953 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
959 EXPORT_SYMBOL_GPL(kvm_valid_efer);
961 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
963 u64 old_efer = vcpu->arch.efer;
965 if (!kvm_valid_efer(vcpu, efer))
969 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
973 efer |= vcpu->arch.efer & EFER_LMA;
975 kvm_x86_ops->set_efer(vcpu, efer);
977 /* Update reserved bits */
978 if ((efer ^ old_efer) & EFER_NX)
979 kvm_mmu_reset_context(vcpu);
984 void kvm_enable_efer_bits(u64 mask)
986 efer_reserved_bits &= ~mask;
988 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
992 * Writes msr value into into the appropriate "register".
993 * Returns 0 on success, non-0 otherwise.
994 * Assumes vcpu_load() was already called.
996 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
998 return kvm_x86_ops->set_msr(vcpu, msr);
1002 * Adapt set_msr() to msr_io()'s calling convention
1004 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1006 struct msr_data msr;
1010 msr.host_initiated = true;
1011 return kvm_set_msr(vcpu, &msr);
1014 #ifdef CONFIG_X86_64
1015 struct pvclock_gtod_data {
1018 struct { /* extract of a clocksource struct */
1030 static struct pvclock_gtod_data pvclock_gtod_data;
1032 static void update_pvclock_gtod(struct timekeeper *tk)
1034 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1037 boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot));
1039 write_seqcount_begin(&vdata->seq);
1041 /* copy pvclock gtod data */
1042 vdata->clock.vclock_mode = tk->tkr.clock->archdata.vclock_mode;
1043 vdata->clock.cycle_last = tk->tkr.cycle_last;
1044 vdata->clock.mask = tk->tkr.mask;
1045 vdata->clock.mult = tk->tkr.mult;
1046 vdata->clock.shift = tk->tkr.shift;
1048 vdata->boot_ns = boot_ns;
1049 vdata->nsec_base = tk->tkr.xtime_nsec;
1051 write_seqcount_end(&vdata->seq);
1056 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1060 struct pvclock_wall_clock wc;
1061 struct timespec boot;
1066 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1071 ++version; /* first time write, random junk */
1075 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1078 * The guest calculates current wall clock time by adding
1079 * system time (updated by kvm_guest_time_update below) to the
1080 * wall clock specified here. guest system time equals host
1081 * system time for us, thus we must fill in host boot time here.
1085 if (kvm->arch.kvmclock_offset) {
1086 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1087 boot = timespec_sub(boot, ts);
1089 wc.sec = boot.tv_sec;
1090 wc.nsec = boot.tv_nsec;
1091 wc.version = version;
1093 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1096 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1099 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1101 uint32_t quotient, remainder;
1103 /* Don't try to replace with do_div(), this one calculates
1104 * "(dividend << 32) / divisor" */
1106 : "=a" (quotient), "=d" (remainder)
1107 : "0" (0), "1" (dividend), "r" (divisor) );
1111 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1112 s8 *pshift, u32 *pmultiplier)
1119 tps64 = base_khz * 1000LL;
1120 scaled64 = scaled_khz * 1000LL;
1121 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1126 tps32 = (uint32_t)tps64;
1127 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1128 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1136 *pmultiplier = div_frac(scaled64, tps32);
1138 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1139 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1142 static inline u64 get_kernel_ns(void)
1144 return ktime_get_boot_ns();
1147 #ifdef CONFIG_X86_64
1148 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1151 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1152 unsigned long max_tsc_khz;
1154 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1156 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1157 vcpu->arch.virtual_tsc_shift);
1160 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1162 u64 v = (u64)khz * (1000000 + ppm);
1167 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1169 u32 thresh_lo, thresh_hi;
1170 int use_scaling = 0;
1172 /* tsc_khz can be zero if TSC calibration fails */
1173 if (this_tsc_khz == 0)
1176 /* Compute a scale to convert nanoseconds in TSC cycles */
1177 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1178 &vcpu->arch.virtual_tsc_shift,
1179 &vcpu->arch.virtual_tsc_mult);
1180 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1183 * Compute the variation in TSC rate which is acceptable
1184 * within the range of tolerance and decide if the
1185 * rate being applied is within that bounds of the hardware
1186 * rate. If so, no scaling or compensation need be done.
1188 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1189 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1190 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1191 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1194 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1197 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1199 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1200 vcpu->arch.virtual_tsc_mult,
1201 vcpu->arch.virtual_tsc_shift);
1202 tsc += vcpu->arch.this_tsc_write;
1206 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1208 #ifdef CONFIG_X86_64
1210 bool do_request = false;
1211 struct kvm_arch *ka = &vcpu->kvm->arch;
1212 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1214 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1215 atomic_read(&vcpu->kvm->online_vcpus));
1217 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1218 if (!ka->use_master_clock)
1221 if (!vcpus_matched && ka->use_master_clock)
1225 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1227 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1228 atomic_read(&vcpu->kvm->online_vcpus),
1229 ka->use_master_clock, gtod->clock.vclock_mode);
1233 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1235 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1236 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1239 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1241 struct kvm *kvm = vcpu->kvm;
1242 u64 offset, ns, elapsed;
1243 unsigned long flags;
1246 bool already_matched;
1247 u64 data = msr->data;
1249 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1250 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1251 ns = get_kernel_ns();
1252 elapsed = ns - kvm->arch.last_tsc_nsec;
1254 if (vcpu->arch.virtual_tsc_khz) {
1257 /* n.b - signed multiplication and division required */
1258 usdiff = data - kvm->arch.last_tsc_write;
1259 #ifdef CONFIG_X86_64
1260 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1262 /* do_div() only does unsigned */
1263 asm("1: idivl %[divisor]\n"
1264 "2: xor %%edx, %%edx\n"
1265 " movl $0, %[faulted]\n"
1267 ".section .fixup,\"ax\"\n"
1268 "4: movl $1, %[faulted]\n"
1272 _ASM_EXTABLE(1b, 4b)
1274 : "=A"(usdiff), [faulted] "=r" (faulted)
1275 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1278 do_div(elapsed, 1000);
1283 /* idivl overflow => difference is larger than USEC_PER_SEC */
1285 usdiff = USEC_PER_SEC;
1287 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1290 * Special case: TSC write with a small delta (1 second) of virtual
1291 * cycle time against real time is interpreted as an attempt to
1292 * synchronize the CPU.
1294 * For a reliable TSC, we can match TSC offsets, and for an unstable
1295 * TSC, we add elapsed time in this computation. We could let the
1296 * compensation code attempt to catch up if we fall behind, but
1297 * it's better to try to match offsets from the beginning.
1299 if (usdiff < USEC_PER_SEC &&
1300 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1301 if (!check_tsc_unstable()) {
1302 offset = kvm->arch.cur_tsc_offset;
1303 pr_debug("kvm: matched tsc offset for %llu\n", data);
1305 u64 delta = nsec_to_cycles(vcpu, elapsed);
1307 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1308 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1311 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1314 * We split periods of matched TSC writes into generations.
1315 * For each generation, we track the original measured
1316 * nanosecond time, offset, and write, so if TSCs are in
1317 * sync, we can match exact offset, and if not, we can match
1318 * exact software computation in compute_guest_tsc()
1320 * These values are tracked in kvm->arch.cur_xxx variables.
1322 kvm->arch.cur_tsc_generation++;
1323 kvm->arch.cur_tsc_nsec = ns;
1324 kvm->arch.cur_tsc_write = data;
1325 kvm->arch.cur_tsc_offset = offset;
1327 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1328 kvm->arch.cur_tsc_generation, data);
1332 * We also track th most recent recorded KHZ, write and time to
1333 * allow the matching interval to be extended at each write.
1335 kvm->arch.last_tsc_nsec = ns;
1336 kvm->arch.last_tsc_write = data;
1337 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1339 vcpu->arch.last_guest_tsc = data;
1341 /* Keep track of which generation this VCPU has synchronized to */
1342 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1343 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1344 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1346 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1347 update_ia32_tsc_adjust_msr(vcpu, offset);
1348 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1349 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1351 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1353 kvm->arch.nr_vcpus_matched_tsc = 0;
1354 } else if (!already_matched) {
1355 kvm->arch.nr_vcpus_matched_tsc++;
1358 kvm_track_tsc_matching(vcpu);
1359 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1362 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1364 #ifdef CONFIG_X86_64
1366 static cycle_t read_tsc(void)
1372 * Empirically, a fence (of type that depends on the CPU)
1373 * before rdtsc is enough to ensure that rdtsc is ordered
1374 * with respect to loads. The various CPU manuals are unclear
1375 * as to whether rdtsc can be reordered with later loads,
1376 * but no one has ever seen it happen.
1379 ret = (cycle_t)vget_cycles();
1381 last = pvclock_gtod_data.clock.cycle_last;
1383 if (likely(ret >= last))
1387 * GCC likes to generate cmov here, but this branch is extremely
1388 * predictable (it's just a funciton of time and the likely is
1389 * very likely) and there's a data dependence, so force GCC
1390 * to generate a branch instead. I don't barrier() because
1391 * we don't actually need a barrier, and if this function
1392 * ever gets inlined it will generate worse code.
1398 static inline u64 vgettsc(cycle_t *cycle_now)
1401 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1403 *cycle_now = read_tsc();
1405 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1406 return v * gtod->clock.mult;
1409 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1411 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1417 seq = read_seqcount_begin(>od->seq);
1418 mode = gtod->clock.vclock_mode;
1419 ns = gtod->nsec_base;
1420 ns += vgettsc(cycle_now);
1421 ns >>= gtod->clock.shift;
1422 ns += gtod->boot_ns;
1423 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1429 /* returns true if host is using tsc clocksource */
1430 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1432 /* checked again under seqlock below */
1433 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1436 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1442 * Assuming a stable TSC across physical CPUS, and a stable TSC
1443 * across virtual CPUs, the following condition is possible.
1444 * Each numbered line represents an event visible to both
1445 * CPUs at the next numbered event.
1447 * "timespecX" represents host monotonic time. "tscX" represents
1450 * VCPU0 on CPU0 | VCPU1 on CPU1
1452 * 1. read timespec0,tsc0
1453 * 2. | timespec1 = timespec0 + N
1455 * 3. transition to guest | transition to guest
1456 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1457 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1458 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1460 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1463 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1465 * - 0 < N - M => M < N
1467 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1468 * always the case (the difference between two distinct xtime instances
1469 * might be smaller then the difference between corresponding TSC reads,
1470 * when updating guest vcpus pvclock areas).
1472 * To avoid that problem, do not allow visibility of distinct
1473 * system_timestamp/tsc_timestamp values simultaneously: use a master
1474 * copy of host monotonic time values. Update that master copy
1477 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1481 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1483 #ifdef CONFIG_X86_64
1484 struct kvm_arch *ka = &kvm->arch;
1486 bool host_tsc_clocksource, vcpus_matched;
1488 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1489 atomic_read(&kvm->online_vcpus));
1492 * If the host uses TSC clock, then passthrough TSC as stable
1495 host_tsc_clocksource = kvm_get_time_and_clockread(
1496 &ka->master_kernel_ns,
1497 &ka->master_cycle_now);
1499 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1500 && !backwards_tsc_observed;
1502 if (ka->use_master_clock)
1503 atomic_set(&kvm_guest_has_master_clock, 1);
1505 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1506 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1511 static void kvm_gen_update_masterclock(struct kvm *kvm)
1513 #ifdef CONFIG_X86_64
1515 struct kvm_vcpu *vcpu;
1516 struct kvm_arch *ka = &kvm->arch;
1518 spin_lock(&ka->pvclock_gtod_sync_lock);
1519 kvm_make_mclock_inprogress_request(kvm);
1520 /* no guest entries from this point */
1521 pvclock_update_vm_gtod_copy(kvm);
1523 kvm_for_each_vcpu(i, vcpu, kvm)
1524 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1526 /* guest entries allowed */
1527 kvm_for_each_vcpu(i, vcpu, kvm)
1528 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1530 spin_unlock(&ka->pvclock_gtod_sync_lock);
1534 static int kvm_guest_time_update(struct kvm_vcpu *v)
1536 unsigned long flags, this_tsc_khz;
1537 struct kvm_vcpu_arch *vcpu = &v->arch;
1538 struct kvm_arch *ka = &v->kvm->arch;
1540 u64 tsc_timestamp, host_tsc;
1541 struct pvclock_vcpu_time_info guest_hv_clock;
1543 bool use_master_clock;
1549 * If the host uses TSC clock, then passthrough TSC as stable
1552 spin_lock(&ka->pvclock_gtod_sync_lock);
1553 use_master_clock = ka->use_master_clock;
1554 if (use_master_clock) {
1555 host_tsc = ka->master_cycle_now;
1556 kernel_ns = ka->master_kernel_ns;
1558 spin_unlock(&ka->pvclock_gtod_sync_lock);
1560 /* Keep irq disabled to prevent changes to the clock */
1561 local_irq_save(flags);
1562 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1563 if (unlikely(this_tsc_khz == 0)) {
1564 local_irq_restore(flags);
1565 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1568 if (!use_master_clock) {
1569 host_tsc = native_read_tsc();
1570 kernel_ns = get_kernel_ns();
1573 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1576 * We may have to catch up the TSC to match elapsed wall clock
1577 * time for two reasons, even if kvmclock is used.
1578 * 1) CPU could have been running below the maximum TSC rate
1579 * 2) Broken TSC compensation resets the base at each VCPU
1580 * entry to avoid unknown leaps of TSC even when running
1581 * again on the same CPU. This may cause apparent elapsed
1582 * time to disappear, and the guest to stand still or run
1585 if (vcpu->tsc_catchup) {
1586 u64 tsc = compute_guest_tsc(v, kernel_ns);
1587 if (tsc > tsc_timestamp) {
1588 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1589 tsc_timestamp = tsc;
1593 local_irq_restore(flags);
1595 if (!vcpu->pv_time_enabled)
1598 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1599 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1600 &vcpu->hv_clock.tsc_shift,
1601 &vcpu->hv_clock.tsc_to_system_mul);
1602 vcpu->hw_tsc_khz = this_tsc_khz;
1605 /* With all the info we got, fill in the values */
1606 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1607 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1608 vcpu->last_guest_tsc = tsc_timestamp;
1611 * The interface expects us to write an even number signaling that the
1612 * update is finished. Since the guest won't see the intermediate
1613 * state, we just increase by 2 at the end.
1615 vcpu->hv_clock.version += 2;
1617 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1618 &guest_hv_clock, sizeof(guest_hv_clock))))
1621 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1622 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1624 if (vcpu->pvclock_set_guest_stopped_request) {
1625 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1626 vcpu->pvclock_set_guest_stopped_request = false;
1629 /* If the host uses TSC clocksource, then it is stable */
1630 if (use_master_clock)
1631 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1633 vcpu->hv_clock.flags = pvclock_flags;
1635 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1637 sizeof(vcpu->hv_clock));
1642 * kvmclock updates which are isolated to a given vcpu, such as
1643 * vcpu->cpu migration, should not allow system_timestamp from
1644 * the rest of the vcpus to remain static. Otherwise ntp frequency
1645 * correction applies to one vcpu's system_timestamp but not
1648 * So in those cases, request a kvmclock update for all vcpus.
1649 * We need to rate-limit these requests though, as they can
1650 * considerably slow guests that have a large number of vcpus.
1651 * The time for a remote vcpu to update its kvmclock is bound
1652 * by the delay we use to rate-limit the updates.
1655 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1657 static void kvmclock_update_fn(struct work_struct *work)
1660 struct delayed_work *dwork = to_delayed_work(work);
1661 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1662 kvmclock_update_work);
1663 struct kvm *kvm = container_of(ka, struct kvm, arch);
1664 struct kvm_vcpu *vcpu;
1666 kvm_for_each_vcpu(i, vcpu, kvm) {
1667 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1668 kvm_vcpu_kick(vcpu);
1672 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1674 struct kvm *kvm = v->kvm;
1676 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1677 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1678 KVMCLOCK_UPDATE_DELAY);
1681 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1683 static void kvmclock_sync_fn(struct work_struct *work)
1685 struct delayed_work *dwork = to_delayed_work(work);
1686 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1687 kvmclock_sync_work);
1688 struct kvm *kvm = container_of(ka, struct kvm, arch);
1690 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1691 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1692 KVMCLOCK_SYNC_PERIOD);
1695 static bool msr_mtrr_valid(unsigned msr)
1698 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1699 case MSR_MTRRfix64K_00000:
1700 case MSR_MTRRfix16K_80000:
1701 case MSR_MTRRfix16K_A0000:
1702 case MSR_MTRRfix4K_C0000:
1703 case MSR_MTRRfix4K_C8000:
1704 case MSR_MTRRfix4K_D0000:
1705 case MSR_MTRRfix4K_D8000:
1706 case MSR_MTRRfix4K_E0000:
1707 case MSR_MTRRfix4K_E8000:
1708 case MSR_MTRRfix4K_F0000:
1709 case MSR_MTRRfix4K_F8000:
1710 case MSR_MTRRdefType:
1711 case MSR_IA32_CR_PAT:
1719 static bool valid_pat_type(unsigned t)
1721 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1724 static bool valid_mtrr_type(unsigned t)
1726 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1729 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1734 if (!msr_mtrr_valid(msr))
1737 if (msr == MSR_IA32_CR_PAT) {
1738 for (i = 0; i < 8; i++)
1739 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1742 } else if (msr == MSR_MTRRdefType) {
1745 return valid_mtrr_type(data & 0xff);
1746 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1747 for (i = 0; i < 8 ; i++)
1748 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1753 /* variable MTRRs */
1754 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1756 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1757 if ((msr & 1) == 0) {
1759 if (!valid_mtrr_type(data & 0xff))
1766 kvm_inject_gp(vcpu, 0);
1773 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1775 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1777 if (!mtrr_valid(vcpu, msr, data))
1780 if (msr == MSR_MTRRdefType) {
1781 vcpu->arch.mtrr_state.def_type = data;
1782 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1783 } else if (msr == MSR_MTRRfix64K_00000)
1785 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1786 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1787 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1788 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1789 else if (msr == MSR_IA32_CR_PAT)
1790 vcpu->arch.pat = data;
1791 else { /* Variable MTRRs */
1792 int idx, is_mtrr_mask;
1795 idx = (msr - 0x200) / 2;
1796 is_mtrr_mask = msr - 0x200 - 2 * idx;
1799 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1802 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1806 kvm_mmu_reset_context(vcpu);
1810 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1812 u64 mcg_cap = vcpu->arch.mcg_cap;
1813 unsigned bank_num = mcg_cap & 0xff;
1816 case MSR_IA32_MCG_STATUS:
1817 vcpu->arch.mcg_status = data;
1819 case MSR_IA32_MCG_CTL:
1820 if (!(mcg_cap & MCG_CTL_P))
1822 if (data != 0 && data != ~(u64)0)
1824 vcpu->arch.mcg_ctl = data;
1827 if (msr >= MSR_IA32_MC0_CTL &&
1828 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1829 u32 offset = msr - MSR_IA32_MC0_CTL;
1830 /* only 0 or all 1s can be written to IA32_MCi_CTL
1831 * some Linux kernels though clear bit 10 in bank 4 to
1832 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1833 * this to avoid an uncatched #GP in the guest
1835 if ((offset & 0x3) == 0 &&
1836 data != 0 && (data | (1 << 10)) != ~(u64)0)
1838 vcpu->arch.mce_banks[offset] = data;
1846 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1848 struct kvm *kvm = vcpu->kvm;
1849 int lm = is_long_mode(vcpu);
1850 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1851 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1852 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1853 : kvm->arch.xen_hvm_config.blob_size_32;
1854 u32 page_num = data & ~PAGE_MASK;
1855 u64 page_addr = data & PAGE_MASK;
1860 if (page_num >= blob_size)
1863 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1868 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1877 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1879 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1882 static bool kvm_hv_msr_partition_wide(u32 msr)
1886 case HV_X64_MSR_GUEST_OS_ID:
1887 case HV_X64_MSR_HYPERCALL:
1888 case HV_X64_MSR_REFERENCE_TSC:
1889 case HV_X64_MSR_TIME_REF_COUNT:
1897 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1899 struct kvm *kvm = vcpu->kvm;
1902 case HV_X64_MSR_GUEST_OS_ID:
1903 kvm->arch.hv_guest_os_id = data;
1904 /* setting guest os id to zero disables hypercall page */
1905 if (!kvm->arch.hv_guest_os_id)
1906 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1908 case HV_X64_MSR_HYPERCALL: {
1913 /* if guest os id is not set hypercall should remain disabled */
1914 if (!kvm->arch.hv_guest_os_id)
1916 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1917 kvm->arch.hv_hypercall = data;
1920 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1921 addr = gfn_to_hva(kvm, gfn);
1922 if (kvm_is_error_hva(addr))
1924 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1925 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1926 if (__copy_to_user((void __user *)addr, instructions, 4))
1928 kvm->arch.hv_hypercall = data;
1929 mark_page_dirty(kvm, gfn);
1932 case HV_X64_MSR_REFERENCE_TSC: {
1934 HV_REFERENCE_TSC_PAGE tsc_ref;
1935 memset(&tsc_ref, 0, sizeof(tsc_ref));
1936 kvm->arch.hv_tsc_page = data;
1937 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1939 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1940 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1941 &tsc_ref, sizeof(tsc_ref)))
1943 mark_page_dirty(kvm, gfn);
1947 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1948 "data 0x%llx\n", msr, data);
1954 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1957 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1961 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1962 vcpu->arch.hv_vapic = data;
1963 if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1967 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1968 addr = gfn_to_hva(vcpu->kvm, gfn);
1969 if (kvm_is_error_hva(addr))
1971 if (__clear_user((void __user *)addr, PAGE_SIZE))
1973 vcpu->arch.hv_vapic = data;
1974 mark_page_dirty(vcpu->kvm, gfn);
1975 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
1979 case HV_X64_MSR_EOI:
1980 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1981 case HV_X64_MSR_ICR:
1982 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1983 case HV_X64_MSR_TPR:
1984 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1986 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1987 "data 0x%llx\n", msr, data);
1994 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1996 gpa_t gpa = data & ~0x3f;
1998 /* Bits 2:5 are reserved, Should be zero */
2002 vcpu->arch.apf.msr_val = data;
2004 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2005 kvm_clear_async_pf_completion_queue(vcpu);
2006 kvm_async_pf_hash_reset(vcpu);
2010 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2014 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2015 kvm_async_pf_wakeup_all(vcpu);
2019 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2021 vcpu->arch.pv_time_enabled = false;
2024 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2028 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2031 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2032 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2033 vcpu->arch.st.accum_steal = delta;
2036 static void record_steal_time(struct kvm_vcpu *vcpu)
2038 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2041 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2042 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2045 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2046 vcpu->arch.st.steal.version += 2;
2047 vcpu->arch.st.accum_steal = 0;
2049 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2050 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2053 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2056 u32 msr = msr_info->index;
2057 u64 data = msr_info->data;
2060 case MSR_AMD64_NB_CFG:
2061 case MSR_IA32_UCODE_REV:
2062 case MSR_IA32_UCODE_WRITE:
2063 case MSR_VM_HSAVE_PA:
2064 case MSR_AMD64_PATCH_LOADER:
2065 case MSR_AMD64_BU_CFG2:
2069 return set_efer(vcpu, data);
2071 data &= ~(u64)0x40; /* ignore flush filter disable */
2072 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2073 data &= ~(u64)0x8; /* ignore TLB cache disable */
2074 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2076 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2081 case MSR_FAM10H_MMIO_CONF_BASE:
2083 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2088 case MSR_IA32_DEBUGCTLMSR:
2090 /* We support the non-activated case already */
2092 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2093 /* Values other than LBR and BTF are vendor-specific,
2094 thus reserved and should throw a #GP */
2097 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2100 case 0x200 ... 0x2ff:
2101 return set_msr_mtrr(vcpu, msr, data);
2102 case MSR_IA32_APICBASE:
2103 return kvm_set_apic_base(vcpu, msr_info);
2104 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2105 return kvm_x2apic_msr_write(vcpu, msr, data);
2106 case MSR_IA32_TSCDEADLINE:
2107 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2109 case MSR_IA32_TSC_ADJUST:
2110 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2111 if (!msr_info->host_initiated) {
2112 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2113 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2115 vcpu->arch.ia32_tsc_adjust_msr = data;
2118 case MSR_IA32_MISC_ENABLE:
2119 vcpu->arch.ia32_misc_enable_msr = data;
2121 case MSR_KVM_WALL_CLOCK_NEW:
2122 case MSR_KVM_WALL_CLOCK:
2123 vcpu->kvm->arch.wall_clock = data;
2124 kvm_write_wall_clock(vcpu->kvm, data);
2126 case MSR_KVM_SYSTEM_TIME_NEW:
2127 case MSR_KVM_SYSTEM_TIME: {
2129 kvmclock_reset(vcpu);
2131 vcpu->arch.time = data;
2132 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2134 /* we verify if the enable bit is set... */
2138 gpa_offset = data & ~(PAGE_MASK | 1);
2140 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2141 &vcpu->arch.pv_time, data & ~1ULL,
2142 sizeof(struct pvclock_vcpu_time_info)))
2143 vcpu->arch.pv_time_enabled = false;
2145 vcpu->arch.pv_time_enabled = true;
2149 case MSR_KVM_ASYNC_PF_EN:
2150 if (kvm_pv_enable_async_pf(vcpu, data))
2153 case MSR_KVM_STEAL_TIME:
2155 if (unlikely(!sched_info_on()))
2158 if (data & KVM_STEAL_RESERVED_MASK)
2161 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2162 data & KVM_STEAL_VALID_BITS,
2163 sizeof(struct kvm_steal_time)))
2166 vcpu->arch.st.msr_val = data;
2168 if (!(data & KVM_MSR_ENABLED))
2171 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2174 accumulate_steal_time(vcpu);
2177 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2180 case MSR_KVM_PV_EOI_EN:
2181 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2185 case MSR_IA32_MCG_CTL:
2186 case MSR_IA32_MCG_STATUS:
2187 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2188 return set_msr_mce(vcpu, msr, data);
2190 /* Performance counters are not protected by a CPUID bit,
2191 * so we should check all of them in the generic path for the sake of
2192 * cross vendor migration.
2193 * Writing a zero into the event select MSRs disables them,
2194 * which we perfectly emulate ;-). Any other value should be at least
2195 * reported, some guests depend on them.
2197 case MSR_K7_EVNTSEL0:
2198 case MSR_K7_EVNTSEL1:
2199 case MSR_K7_EVNTSEL2:
2200 case MSR_K7_EVNTSEL3:
2202 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2203 "0x%x data 0x%llx\n", msr, data);
2205 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2206 * so we ignore writes to make it happy.
2208 case MSR_K7_PERFCTR0:
2209 case MSR_K7_PERFCTR1:
2210 case MSR_K7_PERFCTR2:
2211 case MSR_K7_PERFCTR3:
2212 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2213 "0x%x data 0x%llx\n", msr, data);
2215 case MSR_P6_PERFCTR0:
2216 case MSR_P6_PERFCTR1:
2218 case MSR_P6_EVNTSEL0:
2219 case MSR_P6_EVNTSEL1:
2220 if (kvm_pmu_msr(vcpu, msr))
2221 return kvm_pmu_set_msr(vcpu, msr_info);
2223 if (pr || data != 0)
2224 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2225 "0x%x data 0x%llx\n", msr, data);
2227 case MSR_K7_CLK_CTL:
2229 * Ignore all writes to this no longer documented MSR.
2230 * Writes are only relevant for old K7 processors,
2231 * all pre-dating SVM, but a recommended workaround from
2232 * AMD for these chips. It is possible to specify the
2233 * affected processor models on the command line, hence
2234 * the need to ignore the workaround.
2237 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2238 if (kvm_hv_msr_partition_wide(msr)) {
2240 mutex_lock(&vcpu->kvm->lock);
2241 r = set_msr_hyperv_pw(vcpu, msr, data);
2242 mutex_unlock(&vcpu->kvm->lock);
2245 return set_msr_hyperv(vcpu, msr, data);
2247 case MSR_IA32_BBL_CR_CTL3:
2248 /* Drop writes to this legacy MSR -- see rdmsr
2249 * counterpart for further detail.
2251 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2253 case MSR_AMD64_OSVW_ID_LENGTH:
2254 if (!guest_cpuid_has_osvw(vcpu))
2256 vcpu->arch.osvw.length = data;
2258 case MSR_AMD64_OSVW_STATUS:
2259 if (!guest_cpuid_has_osvw(vcpu))
2261 vcpu->arch.osvw.status = data;
2264 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2265 return xen_hvm_config(vcpu, data);
2266 if (kvm_pmu_msr(vcpu, msr))
2267 return kvm_pmu_set_msr(vcpu, msr_info);
2269 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2273 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2280 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2284 * Reads an msr value (of 'msr_index') into 'pdata'.
2285 * Returns 0 on success, non-0 otherwise.
2286 * Assumes vcpu_load() was already called.
2288 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2290 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2293 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2295 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2297 if (!msr_mtrr_valid(msr))
2300 if (msr == MSR_MTRRdefType)
2301 *pdata = vcpu->arch.mtrr_state.def_type +
2302 (vcpu->arch.mtrr_state.enabled << 10);
2303 else if (msr == MSR_MTRRfix64K_00000)
2305 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2306 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2307 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2308 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2309 else if (msr == MSR_IA32_CR_PAT)
2310 *pdata = vcpu->arch.pat;
2311 else { /* Variable MTRRs */
2312 int idx, is_mtrr_mask;
2315 idx = (msr - 0x200) / 2;
2316 is_mtrr_mask = msr - 0x200 - 2 * idx;
2319 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2322 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2329 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2332 u64 mcg_cap = vcpu->arch.mcg_cap;
2333 unsigned bank_num = mcg_cap & 0xff;
2336 case MSR_IA32_P5_MC_ADDR:
2337 case MSR_IA32_P5_MC_TYPE:
2340 case MSR_IA32_MCG_CAP:
2341 data = vcpu->arch.mcg_cap;
2343 case MSR_IA32_MCG_CTL:
2344 if (!(mcg_cap & MCG_CTL_P))
2346 data = vcpu->arch.mcg_ctl;
2348 case MSR_IA32_MCG_STATUS:
2349 data = vcpu->arch.mcg_status;
2352 if (msr >= MSR_IA32_MC0_CTL &&
2353 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2354 u32 offset = msr - MSR_IA32_MC0_CTL;
2355 data = vcpu->arch.mce_banks[offset];
2364 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2367 struct kvm *kvm = vcpu->kvm;
2370 case HV_X64_MSR_GUEST_OS_ID:
2371 data = kvm->arch.hv_guest_os_id;
2373 case HV_X64_MSR_HYPERCALL:
2374 data = kvm->arch.hv_hypercall;
2376 case HV_X64_MSR_TIME_REF_COUNT: {
2378 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2381 case HV_X64_MSR_REFERENCE_TSC:
2382 data = kvm->arch.hv_tsc_page;
2385 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2393 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2398 case HV_X64_MSR_VP_INDEX: {
2401 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2409 case HV_X64_MSR_EOI:
2410 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2411 case HV_X64_MSR_ICR:
2412 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2413 case HV_X64_MSR_TPR:
2414 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2415 case HV_X64_MSR_APIC_ASSIST_PAGE:
2416 data = vcpu->arch.hv_vapic;
2419 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2426 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2431 case MSR_IA32_PLATFORM_ID:
2432 case MSR_IA32_EBL_CR_POWERON:
2433 case MSR_IA32_DEBUGCTLMSR:
2434 case MSR_IA32_LASTBRANCHFROMIP:
2435 case MSR_IA32_LASTBRANCHTOIP:
2436 case MSR_IA32_LASTINTFROMIP:
2437 case MSR_IA32_LASTINTTOIP:
2440 case MSR_VM_HSAVE_PA:
2441 case MSR_K7_EVNTSEL0:
2442 case MSR_K7_EVNTSEL1:
2443 case MSR_K7_EVNTSEL2:
2444 case MSR_K7_EVNTSEL3:
2445 case MSR_K7_PERFCTR0:
2446 case MSR_K7_PERFCTR1:
2447 case MSR_K7_PERFCTR2:
2448 case MSR_K7_PERFCTR3:
2449 case MSR_K8_INT_PENDING_MSG:
2450 case MSR_AMD64_NB_CFG:
2451 case MSR_FAM10H_MMIO_CONF_BASE:
2452 case MSR_AMD64_BU_CFG2:
2455 case MSR_P6_PERFCTR0:
2456 case MSR_P6_PERFCTR1:
2457 case MSR_P6_EVNTSEL0:
2458 case MSR_P6_EVNTSEL1:
2459 if (kvm_pmu_msr(vcpu, msr))
2460 return kvm_pmu_get_msr(vcpu, msr, pdata);
2463 case MSR_IA32_UCODE_REV:
2464 data = 0x100000000ULL;
2467 data = 0x500 | KVM_NR_VAR_MTRR;
2469 case 0x200 ... 0x2ff:
2470 return get_msr_mtrr(vcpu, msr, pdata);
2471 case 0xcd: /* fsb frequency */
2475 * MSR_EBC_FREQUENCY_ID
2476 * Conservative value valid for even the basic CPU models.
2477 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2478 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2479 * and 266MHz for model 3, or 4. Set Core Clock
2480 * Frequency to System Bus Frequency Ratio to 1 (bits
2481 * 31:24) even though these are only valid for CPU
2482 * models > 2, however guests may end up dividing or
2483 * multiplying by zero otherwise.
2485 case MSR_EBC_FREQUENCY_ID:
2488 case MSR_IA32_APICBASE:
2489 data = kvm_get_apic_base(vcpu);
2491 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2492 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2494 case MSR_IA32_TSCDEADLINE:
2495 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2497 case MSR_IA32_TSC_ADJUST:
2498 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2500 case MSR_IA32_MISC_ENABLE:
2501 data = vcpu->arch.ia32_misc_enable_msr;
2503 case MSR_IA32_PERF_STATUS:
2504 /* TSC increment by tick */
2506 /* CPU multiplier */
2507 data |= (((uint64_t)4ULL) << 40);
2510 data = vcpu->arch.efer;
2512 case MSR_KVM_WALL_CLOCK:
2513 case MSR_KVM_WALL_CLOCK_NEW:
2514 data = vcpu->kvm->arch.wall_clock;
2516 case MSR_KVM_SYSTEM_TIME:
2517 case MSR_KVM_SYSTEM_TIME_NEW:
2518 data = vcpu->arch.time;
2520 case MSR_KVM_ASYNC_PF_EN:
2521 data = vcpu->arch.apf.msr_val;
2523 case MSR_KVM_STEAL_TIME:
2524 data = vcpu->arch.st.msr_val;
2526 case MSR_KVM_PV_EOI_EN:
2527 data = vcpu->arch.pv_eoi.msr_val;
2529 case MSR_IA32_P5_MC_ADDR:
2530 case MSR_IA32_P5_MC_TYPE:
2531 case MSR_IA32_MCG_CAP:
2532 case MSR_IA32_MCG_CTL:
2533 case MSR_IA32_MCG_STATUS:
2534 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2535 return get_msr_mce(vcpu, msr, pdata);
2536 case MSR_K7_CLK_CTL:
2538 * Provide expected ramp-up count for K7. All other
2539 * are set to zero, indicating minimum divisors for
2542 * This prevents guest kernels on AMD host with CPU
2543 * type 6, model 8 and higher from exploding due to
2544 * the rdmsr failing.
2548 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2549 if (kvm_hv_msr_partition_wide(msr)) {
2551 mutex_lock(&vcpu->kvm->lock);
2552 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2553 mutex_unlock(&vcpu->kvm->lock);
2556 return get_msr_hyperv(vcpu, msr, pdata);
2558 case MSR_IA32_BBL_CR_CTL3:
2559 /* This legacy MSR exists but isn't fully documented in current
2560 * silicon. It is however accessed by winxp in very narrow
2561 * scenarios where it sets bit #19, itself documented as
2562 * a "reserved" bit. Best effort attempt to source coherent
2563 * read data here should the balance of the register be
2564 * interpreted by the guest:
2566 * L2 cache control register 3: 64GB range, 256KB size,
2567 * enabled, latency 0x1, configured
2571 case MSR_AMD64_OSVW_ID_LENGTH:
2572 if (!guest_cpuid_has_osvw(vcpu))
2574 data = vcpu->arch.osvw.length;
2576 case MSR_AMD64_OSVW_STATUS:
2577 if (!guest_cpuid_has_osvw(vcpu))
2579 data = vcpu->arch.osvw.status;
2582 if (kvm_pmu_msr(vcpu, msr))
2583 return kvm_pmu_get_msr(vcpu, msr, pdata);
2585 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2588 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2596 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2599 * Read or write a bunch of msrs. All parameters are kernel addresses.
2601 * @return number of msrs set successfully.
2603 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2604 struct kvm_msr_entry *entries,
2605 int (*do_msr)(struct kvm_vcpu *vcpu,
2606 unsigned index, u64 *data))
2610 idx = srcu_read_lock(&vcpu->kvm->srcu);
2611 for (i = 0; i < msrs->nmsrs; ++i)
2612 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2614 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2620 * Read or write a bunch of msrs. Parameters are user addresses.
2622 * @return number of msrs set successfully.
2624 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2625 int (*do_msr)(struct kvm_vcpu *vcpu,
2626 unsigned index, u64 *data),
2629 struct kvm_msrs msrs;
2630 struct kvm_msr_entry *entries;
2635 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2639 if (msrs.nmsrs >= MAX_IO_MSRS)
2642 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2643 entries = memdup_user(user_msrs->entries, size);
2644 if (IS_ERR(entries)) {
2645 r = PTR_ERR(entries);
2649 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2654 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2665 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2670 case KVM_CAP_IRQCHIP:
2672 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2673 case KVM_CAP_SET_TSS_ADDR:
2674 case KVM_CAP_EXT_CPUID:
2675 case KVM_CAP_EXT_EMUL_CPUID:
2676 case KVM_CAP_CLOCKSOURCE:
2678 case KVM_CAP_NOP_IO_DELAY:
2679 case KVM_CAP_MP_STATE:
2680 case KVM_CAP_SYNC_MMU:
2681 case KVM_CAP_USER_NMI:
2682 case KVM_CAP_REINJECT_CONTROL:
2683 case KVM_CAP_IRQ_INJECT_STATUS:
2685 case KVM_CAP_IOEVENTFD:
2686 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2688 case KVM_CAP_PIT_STATE2:
2689 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2690 case KVM_CAP_XEN_HVM:
2691 case KVM_CAP_ADJUST_CLOCK:
2692 case KVM_CAP_VCPU_EVENTS:
2693 case KVM_CAP_HYPERV:
2694 case KVM_CAP_HYPERV_VAPIC:
2695 case KVM_CAP_HYPERV_SPIN:
2696 case KVM_CAP_PCI_SEGMENT:
2697 case KVM_CAP_DEBUGREGS:
2698 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2700 case KVM_CAP_ASYNC_PF:
2701 case KVM_CAP_GET_TSC_KHZ:
2702 case KVM_CAP_KVMCLOCK_CTRL:
2703 case KVM_CAP_READONLY_MEM:
2704 case KVM_CAP_HYPERV_TIME:
2705 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2706 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2707 case KVM_CAP_ASSIGN_DEV_IRQ:
2708 case KVM_CAP_PCI_2_3:
2712 case KVM_CAP_COALESCED_MMIO:
2713 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2716 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2718 case KVM_CAP_NR_VCPUS:
2719 r = KVM_SOFT_MAX_VCPUS;
2721 case KVM_CAP_MAX_VCPUS:
2724 case KVM_CAP_NR_MEMSLOTS:
2725 r = KVM_USER_MEM_SLOTS;
2727 case KVM_CAP_PV_MMU: /* obsolete */
2730 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2732 r = iommu_present(&pci_bus_type);
2736 r = KVM_MAX_MCE_BANKS;
2741 case KVM_CAP_TSC_CONTROL:
2742 r = kvm_has_tsc_control;
2744 case KVM_CAP_TSC_DEADLINE_TIMER:
2745 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2755 long kvm_arch_dev_ioctl(struct file *filp,
2756 unsigned int ioctl, unsigned long arg)
2758 void __user *argp = (void __user *)arg;
2762 case KVM_GET_MSR_INDEX_LIST: {
2763 struct kvm_msr_list __user *user_msr_list = argp;
2764 struct kvm_msr_list msr_list;
2768 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2771 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2772 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2775 if (n < msr_list.nmsrs)
2778 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2779 num_msrs_to_save * sizeof(u32)))
2781 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2783 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2788 case KVM_GET_SUPPORTED_CPUID:
2789 case KVM_GET_EMULATED_CPUID: {
2790 struct kvm_cpuid2 __user *cpuid_arg = argp;
2791 struct kvm_cpuid2 cpuid;
2794 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2797 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2803 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2808 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2811 mce_cap = KVM_MCE_CAP_SUPPORTED;
2813 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2825 static void wbinvd_ipi(void *garbage)
2830 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2832 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2835 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2837 /* Address WBINVD may be executed by guest */
2838 if (need_emulate_wbinvd(vcpu)) {
2839 if (kvm_x86_ops->has_wbinvd_exit())
2840 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2841 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2842 smp_call_function_single(vcpu->cpu,
2843 wbinvd_ipi, NULL, 1);
2846 kvm_x86_ops->vcpu_load(vcpu, cpu);
2848 /* Apply any externally detected TSC adjustments (due to suspend) */
2849 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2850 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2851 vcpu->arch.tsc_offset_adjustment = 0;
2852 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2855 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2856 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2857 native_read_tsc() - vcpu->arch.last_host_tsc;
2859 mark_tsc_unstable("KVM discovered backwards TSC");
2860 if (check_tsc_unstable()) {
2861 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2862 vcpu->arch.last_guest_tsc);
2863 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2864 vcpu->arch.tsc_catchup = 1;
2867 * On a host with synchronized TSC, there is no need to update
2868 * kvmclock on vcpu->cpu migration
2870 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2871 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2872 if (vcpu->cpu != cpu)
2873 kvm_migrate_timers(vcpu);
2877 accumulate_steal_time(vcpu);
2878 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2881 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2883 kvm_x86_ops->vcpu_put(vcpu);
2884 kvm_put_guest_fpu(vcpu);
2885 vcpu->arch.last_host_tsc = native_read_tsc();
2888 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2889 struct kvm_lapic_state *s)
2891 kvm_x86_ops->sync_pir_to_irr(vcpu);
2892 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2897 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2898 struct kvm_lapic_state *s)
2900 kvm_apic_post_state_restore(vcpu, s);
2901 update_cr8_intercept(vcpu);
2906 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2907 struct kvm_interrupt *irq)
2909 if (irq->irq >= KVM_NR_INTERRUPTS)
2911 if (irqchip_in_kernel(vcpu->kvm))
2914 kvm_queue_interrupt(vcpu, irq->irq, false);
2915 kvm_make_request(KVM_REQ_EVENT, vcpu);
2920 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2922 kvm_inject_nmi(vcpu);
2927 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2928 struct kvm_tpr_access_ctl *tac)
2932 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2936 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2940 unsigned bank_num = mcg_cap & 0xff, bank;
2943 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2945 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2948 vcpu->arch.mcg_cap = mcg_cap;
2949 /* Init IA32_MCG_CTL to all 1s */
2950 if (mcg_cap & MCG_CTL_P)
2951 vcpu->arch.mcg_ctl = ~(u64)0;
2952 /* Init IA32_MCi_CTL to all 1s */
2953 for (bank = 0; bank < bank_num; bank++)
2954 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2959 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2960 struct kvm_x86_mce *mce)
2962 u64 mcg_cap = vcpu->arch.mcg_cap;
2963 unsigned bank_num = mcg_cap & 0xff;
2964 u64 *banks = vcpu->arch.mce_banks;
2966 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2969 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2970 * reporting is disabled
2972 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2973 vcpu->arch.mcg_ctl != ~(u64)0)
2975 banks += 4 * mce->bank;
2977 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2978 * reporting is disabled for the bank
2980 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2982 if (mce->status & MCI_STATUS_UC) {
2983 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2984 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2985 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2988 if (banks[1] & MCI_STATUS_VAL)
2989 mce->status |= MCI_STATUS_OVER;
2990 banks[2] = mce->addr;
2991 banks[3] = mce->misc;
2992 vcpu->arch.mcg_status = mce->mcg_status;
2993 banks[1] = mce->status;
2994 kvm_queue_exception(vcpu, MC_VECTOR);
2995 } else if (!(banks[1] & MCI_STATUS_VAL)
2996 || !(banks[1] & MCI_STATUS_UC)) {
2997 if (banks[1] & MCI_STATUS_VAL)
2998 mce->status |= MCI_STATUS_OVER;
2999 banks[2] = mce->addr;
3000 banks[3] = mce->misc;
3001 banks[1] = mce->status;
3003 banks[1] |= MCI_STATUS_OVER;
3007 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3008 struct kvm_vcpu_events *events)
3011 events->exception.injected =
3012 vcpu->arch.exception.pending &&
3013 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3014 events->exception.nr = vcpu->arch.exception.nr;
3015 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3016 events->exception.pad = 0;
3017 events->exception.error_code = vcpu->arch.exception.error_code;
3019 events->interrupt.injected =
3020 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3021 events->interrupt.nr = vcpu->arch.interrupt.nr;
3022 events->interrupt.soft = 0;
3023 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3025 events->nmi.injected = vcpu->arch.nmi_injected;
3026 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3027 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3028 events->nmi.pad = 0;
3030 events->sipi_vector = 0; /* never valid when reporting to user space */
3032 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3033 | KVM_VCPUEVENT_VALID_SHADOW);
3034 memset(&events->reserved, 0, sizeof(events->reserved));
3037 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3038 struct kvm_vcpu_events *events)
3040 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3041 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3042 | KVM_VCPUEVENT_VALID_SHADOW))
3046 vcpu->arch.exception.pending = events->exception.injected;
3047 vcpu->arch.exception.nr = events->exception.nr;
3048 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3049 vcpu->arch.exception.error_code = events->exception.error_code;
3051 vcpu->arch.interrupt.pending = events->interrupt.injected;
3052 vcpu->arch.interrupt.nr = events->interrupt.nr;
3053 vcpu->arch.interrupt.soft = events->interrupt.soft;
3054 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3055 kvm_x86_ops->set_interrupt_shadow(vcpu,
3056 events->interrupt.shadow);
3058 vcpu->arch.nmi_injected = events->nmi.injected;
3059 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3060 vcpu->arch.nmi_pending = events->nmi.pending;
3061 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3063 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3064 kvm_vcpu_has_lapic(vcpu))
3065 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3067 kvm_make_request(KVM_REQ_EVENT, vcpu);
3072 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3073 struct kvm_debugregs *dbgregs)
3077 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3078 _kvm_get_dr(vcpu, 6, &val);
3080 dbgregs->dr7 = vcpu->arch.dr7;
3082 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3085 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3086 struct kvm_debugregs *dbgregs)
3091 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3092 vcpu->arch.dr6 = dbgregs->dr6;
3093 kvm_update_dr6(vcpu);
3094 vcpu->arch.dr7 = dbgregs->dr7;
3095 kvm_update_dr7(vcpu);
3100 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3101 struct kvm_xsave *guest_xsave)
3103 if (cpu_has_xsave) {
3104 memcpy(guest_xsave->region,
3105 &vcpu->arch.guest_fpu.state->xsave,
3106 vcpu->arch.guest_xstate_size);
3107 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3108 vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3110 memcpy(guest_xsave->region,
3111 &vcpu->arch.guest_fpu.state->fxsave,
3112 sizeof(struct i387_fxsave_struct));
3113 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3118 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3119 struct kvm_xsave *guest_xsave)
3122 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3124 if (cpu_has_xsave) {
3126 * Here we allow setting states that are not present in
3127 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3128 * with old userspace.
3130 if (xstate_bv & ~kvm_supported_xcr0())
3132 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3133 guest_xsave->region, vcpu->arch.guest_xstate_size);
3135 if (xstate_bv & ~XSTATE_FPSSE)
3137 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3138 guest_xsave->region, sizeof(struct i387_fxsave_struct));
3143 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3144 struct kvm_xcrs *guest_xcrs)
3146 if (!cpu_has_xsave) {
3147 guest_xcrs->nr_xcrs = 0;
3151 guest_xcrs->nr_xcrs = 1;
3152 guest_xcrs->flags = 0;
3153 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3154 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3157 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3158 struct kvm_xcrs *guest_xcrs)
3165 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3168 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3169 /* Only support XCR0 currently */
3170 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3171 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3172 guest_xcrs->xcrs[i].value);
3181 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3182 * stopped by the hypervisor. This function will be called from the host only.
3183 * EINVAL is returned when the host attempts to set the flag for a guest that
3184 * does not support pv clocks.
3186 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3188 if (!vcpu->arch.pv_time_enabled)
3190 vcpu->arch.pvclock_set_guest_stopped_request = true;
3191 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3195 long kvm_arch_vcpu_ioctl(struct file *filp,
3196 unsigned int ioctl, unsigned long arg)
3198 struct kvm_vcpu *vcpu = filp->private_data;
3199 void __user *argp = (void __user *)arg;
3202 struct kvm_lapic_state *lapic;
3203 struct kvm_xsave *xsave;
3204 struct kvm_xcrs *xcrs;
3210 case KVM_GET_LAPIC: {
3212 if (!vcpu->arch.apic)
3214 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3219 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3223 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3228 case KVM_SET_LAPIC: {
3230 if (!vcpu->arch.apic)
3232 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3233 if (IS_ERR(u.lapic))
3234 return PTR_ERR(u.lapic);
3236 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3239 case KVM_INTERRUPT: {
3240 struct kvm_interrupt irq;
3243 if (copy_from_user(&irq, argp, sizeof irq))
3245 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3249 r = kvm_vcpu_ioctl_nmi(vcpu);
3252 case KVM_SET_CPUID: {
3253 struct kvm_cpuid __user *cpuid_arg = argp;
3254 struct kvm_cpuid cpuid;
3257 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3259 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3262 case KVM_SET_CPUID2: {
3263 struct kvm_cpuid2 __user *cpuid_arg = argp;
3264 struct kvm_cpuid2 cpuid;
3267 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3269 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3270 cpuid_arg->entries);
3273 case KVM_GET_CPUID2: {
3274 struct kvm_cpuid2 __user *cpuid_arg = argp;
3275 struct kvm_cpuid2 cpuid;
3278 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3280 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3281 cpuid_arg->entries);
3285 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3291 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3294 r = msr_io(vcpu, argp, do_set_msr, 0);
3296 case KVM_TPR_ACCESS_REPORTING: {
3297 struct kvm_tpr_access_ctl tac;
3300 if (copy_from_user(&tac, argp, sizeof tac))
3302 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3306 if (copy_to_user(argp, &tac, sizeof tac))
3311 case KVM_SET_VAPIC_ADDR: {
3312 struct kvm_vapic_addr va;
3315 if (!irqchip_in_kernel(vcpu->kvm))
3318 if (copy_from_user(&va, argp, sizeof va))
3320 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3323 case KVM_X86_SETUP_MCE: {
3327 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3329 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3332 case KVM_X86_SET_MCE: {
3333 struct kvm_x86_mce mce;
3336 if (copy_from_user(&mce, argp, sizeof mce))
3338 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3341 case KVM_GET_VCPU_EVENTS: {
3342 struct kvm_vcpu_events events;
3344 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3347 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3352 case KVM_SET_VCPU_EVENTS: {
3353 struct kvm_vcpu_events events;
3356 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3359 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3362 case KVM_GET_DEBUGREGS: {
3363 struct kvm_debugregs dbgregs;
3365 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3368 if (copy_to_user(argp, &dbgregs,
3369 sizeof(struct kvm_debugregs)))
3374 case KVM_SET_DEBUGREGS: {
3375 struct kvm_debugregs dbgregs;
3378 if (copy_from_user(&dbgregs, argp,
3379 sizeof(struct kvm_debugregs)))
3382 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3385 case KVM_GET_XSAVE: {
3386 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3391 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3394 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3399 case KVM_SET_XSAVE: {
3400 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3401 if (IS_ERR(u.xsave))
3402 return PTR_ERR(u.xsave);
3404 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3407 case KVM_GET_XCRS: {
3408 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3413 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3416 if (copy_to_user(argp, u.xcrs,
3417 sizeof(struct kvm_xcrs)))
3422 case KVM_SET_XCRS: {
3423 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3425 return PTR_ERR(u.xcrs);
3427 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3430 case KVM_SET_TSC_KHZ: {
3434 user_tsc_khz = (u32)arg;
3436 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3439 if (user_tsc_khz == 0)
3440 user_tsc_khz = tsc_khz;
3442 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3447 case KVM_GET_TSC_KHZ: {
3448 r = vcpu->arch.virtual_tsc_khz;
3451 case KVM_KVMCLOCK_CTRL: {
3452 r = kvm_set_guest_paused(vcpu);
3463 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3465 return VM_FAULT_SIGBUS;
3468 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3472 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3474 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3478 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3481 kvm->arch.ept_identity_map_addr = ident_addr;
3485 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3486 u32 kvm_nr_mmu_pages)
3488 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3491 mutex_lock(&kvm->slots_lock);
3493 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3494 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3496 mutex_unlock(&kvm->slots_lock);
3500 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3502 return kvm->arch.n_max_mmu_pages;
3505 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3510 switch (chip->chip_id) {
3511 case KVM_IRQCHIP_PIC_MASTER:
3512 memcpy(&chip->chip.pic,
3513 &pic_irqchip(kvm)->pics[0],
3514 sizeof(struct kvm_pic_state));
3516 case KVM_IRQCHIP_PIC_SLAVE:
3517 memcpy(&chip->chip.pic,
3518 &pic_irqchip(kvm)->pics[1],
3519 sizeof(struct kvm_pic_state));
3521 case KVM_IRQCHIP_IOAPIC:
3522 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3531 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3536 switch (chip->chip_id) {
3537 case KVM_IRQCHIP_PIC_MASTER:
3538 spin_lock(&pic_irqchip(kvm)->lock);
3539 memcpy(&pic_irqchip(kvm)->pics[0],
3541 sizeof(struct kvm_pic_state));
3542 spin_unlock(&pic_irqchip(kvm)->lock);
3544 case KVM_IRQCHIP_PIC_SLAVE:
3545 spin_lock(&pic_irqchip(kvm)->lock);
3546 memcpy(&pic_irqchip(kvm)->pics[1],
3548 sizeof(struct kvm_pic_state));
3549 spin_unlock(&pic_irqchip(kvm)->lock);
3551 case KVM_IRQCHIP_IOAPIC:
3552 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3558 kvm_pic_update_irq(pic_irqchip(kvm));
3562 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3566 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3567 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3568 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3572 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3576 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3577 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3578 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3579 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3583 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3587 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3588 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3589 sizeof(ps->channels));
3590 ps->flags = kvm->arch.vpit->pit_state.flags;
3591 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3592 memset(&ps->reserved, 0, sizeof(ps->reserved));
3596 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3598 int r = 0, start = 0;
3599 u32 prev_legacy, cur_legacy;
3600 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3601 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3602 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3603 if (!prev_legacy && cur_legacy)
3605 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3606 sizeof(kvm->arch.vpit->pit_state.channels));
3607 kvm->arch.vpit->pit_state.flags = ps->flags;
3608 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3609 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3613 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3614 struct kvm_reinject_control *control)
3616 if (!kvm->arch.vpit)
3618 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3619 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3620 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3625 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3626 * @kvm: kvm instance
3627 * @log: slot id and address to which we copy the log
3629 * We need to keep it in mind that VCPU threads can write to the bitmap
3630 * concurrently. So, to avoid losing data, we keep the following order for
3633 * 1. Take a snapshot of the bit and clear it if needed.
3634 * 2. Write protect the corresponding page.
3635 * 3. Flush TLB's if needed.
3636 * 4. Copy the snapshot to the userspace.
3638 * Between 2 and 3, the guest may write to the page using the remaining TLB
3639 * entry. This is not a problem because the page will be reported dirty at
3640 * step 4 using the snapshot taken before and step 3 ensures that successive
3641 * writes will be logged for the next call.
3643 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3646 struct kvm_memory_slot *memslot;
3648 unsigned long *dirty_bitmap;
3649 unsigned long *dirty_bitmap_buffer;
3650 bool is_dirty = false;
3652 mutex_lock(&kvm->slots_lock);
3655 if (log->slot >= KVM_USER_MEM_SLOTS)
3658 memslot = id_to_memslot(kvm->memslots, log->slot);
3660 dirty_bitmap = memslot->dirty_bitmap;
3665 n = kvm_dirty_bitmap_bytes(memslot);
3667 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3668 memset(dirty_bitmap_buffer, 0, n);
3670 spin_lock(&kvm->mmu_lock);
3672 for (i = 0; i < n / sizeof(long); i++) {
3676 if (!dirty_bitmap[i])
3681 mask = xchg(&dirty_bitmap[i], 0);
3682 dirty_bitmap_buffer[i] = mask;
3684 offset = i * BITS_PER_LONG;
3685 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3688 spin_unlock(&kvm->mmu_lock);
3690 /* See the comments in kvm_mmu_slot_remove_write_access(). */
3691 lockdep_assert_held(&kvm->slots_lock);
3694 * All the TLBs can be flushed out of mmu lock, see the comments in
3695 * kvm_mmu_slot_remove_write_access().
3698 kvm_flush_remote_tlbs(kvm);
3701 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3706 mutex_unlock(&kvm->slots_lock);
3710 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3713 if (!irqchip_in_kernel(kvm))
3716 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3717 irq_event->irq, irq_event->level,
3722 long kvm_arch_vm_ioctl(struct file *filp,
3723 unsigned int ioctl, unsigned long arg)
3725 struct kvm *kvm = filp->private_data;
3726 void __user *argp = (void __user *)arg;
3729 * This union makes it completely explicit to gcc-3.x
3730 * that these two variables' stack usage should be
3731 * combined, not added together.
3734 struct kvm_pit_state ps;
3735 struct kvm_pit_state2 ps2;
3736 struct kvm_pit_config pit_config;
3740 case KVM_SET_TSS_ADDR:
3741 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3743 case KVM_SET_IDENTITY_MAP_ADDR: {
3747 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3749 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3752 case KVM_SET_NR_MMU_PAGES:
3753 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3755 case KVM_GET_NR_MMU_PAGES:
3756 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3758 case KVM_CREATE_IRQCHIP: {
3759 struct kvm_pic *vpic;
3761 mutex_lock(&kvm->lock);
3764 goto create_irqchip_unlock;
3766 if (atomic_read(&kvm->online_vcpus))
3767 goto create_irqchip_unlock;
3769 vpic = kvm_create_pic(kvm);
3771 r = kvm_ioapic_init(kvm);
3773 mutex_lock(&kvm->slots_lock);
3774 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3776 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3778 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3780 mutex_unlock(&kvm->slots_lock);
3782 goto create_irqchip_unlock;
3785 goto create_irqchip_unlock;
3787 kvm->arch.vpic = vpic;
3789 r = kvm_setup_default_irq_routing(kvm);
3791 mutex_lock(&kvm->slots_lock);
3792 mutex_lock(&kvm->irq_lock);
3793 kvm_ioapic_destroy(kvm);
3794 kvm_destroy_pic(kvm);
3795 mutex_unlock(&kvm->irq_lock);
3796 mutex_unlock(&kvm->slots_lock);
3798 create_irqchip_unlock:
3799 mutex_unlock(&kvm->lock);
3802 case KVM_CREATE_PIT:
3803 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3805 case KVM_CREATE_PIT2:
3807 if (copy_from_user(&u.pit_config, argp,
3808 sizeof(struct kvm_pit_config)))
3811 mutex_lock(&kvm->slots_lock);
3814 goto create_pit_unlock;
3816 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3820 mutex_unlock(&kvm->slots_lock);
3822 case KVM_GET_IRQCHIP: {
3823 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3824 struct kvm_irqchip *chip;
3826 chip = memdup_user(argp, sizeof(*chip));
3833 if (!irqchip_in_kernel(kvm))
3834 goto get_irqchip_out;
3835 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3837 goto get_irqchip_out;
3839 if (copy_to_user(argp, chip, sizeof *chip))
3840 goto get_irqchip_out;