squashfs: fix potential buffer over-run on 4K block file systems
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <linux/slab.h>
43 #include <trace/events/kvm.h>
44 #undef TRACE_INCLUDE_FILE
45 #define CREATE_TRACE_POINTS
46 #include "trace.h"
47
48 #include <asm/debugreg.h>
49 #include <asm/uaccess.h>
50 #include <asm/msr.h>
51 #include <asm/desc.h>
52 #include <asm/mtrr.h>
53 #include <asm/mce.h>
54
55 #define MAX_IO_MSRS 256
56 #define CR0_RESERVED_BITS                                               \
57         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
58                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
59                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
60 #define CR4_RESERVED_BITS                                               \
61         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
62                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
63                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
64                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
65
66 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
67
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
70
71 /* EFER defaults:
72  * - enable syscall per default because its emulated by KVM
73  * - enable LME and LMA per default on 64 bit KVM
74  */
75 #ifdef CONFIG_X86_64
76 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
77 #else
78 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
79 #endif
80
81 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
82 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83
84 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
85 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
86                                     struct kvm_cpuid_entry2 __user *entries);
87
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90
91 int ignore_msrs = 0;
92 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
93
94 #define KVM_NR_SHARED_MSRS 16
95
96 struct kvm_shared_msrs_global {
97         int nr;
98         u32 msrs[KVM_NR_SHARED_MSRS];
99 };
100
101 struct kvm_shared_msrs {
102         struct user_return_notifier urn;
103         bool registered;
104         struct kvm_shared_msr_values {
105                 u64 host;
106                 u64 curr;
107         } values[KVM_NR_SHARED_MSRS];
108 };
109
110 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
111 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
112
113 struct kvm_stats_debugfs_item debugfs_entries[] = {
114         { "pf_fixed", VCPU_STAT(pf_fixed) },
115         { "pf_guest", VCPU_STAT(pf_guest) },
116         { "tlb_flush", VCPU_STAT(tlb_flush) },
117         { "invlpg", VCPU_STAT(invlpg) },
118         { "exits", VCPU_STAT(exits) },
119         { "io_exits", VCPU_STAT(io_exits) },
120         { "mmio_exits", VCPU_STAT(mmio_exits) },
121         { "signal_exits", VCPU_STAT(signal_exits) },
122         { "irq_window", VCPU_STAT(irq_window_exits) },
123         { "nmi_window", VCPU_STAT(nmi_window_exits) },
124         { "halt_exits", VCPU_STAT(halt_exits) },
125         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
126         { "hypercalls", VCPU_STAT(hypercalls) },
127         { "request_irq", VCPU_STAT(request_irq_exits) },
128         { "irq_exits", VCPU_STAT(irq_exits) },
129         { "host_state_reload", VCPU_STAT(host_state_reload) },
130         { "efer_reload", VCPU_STAT(efer_reload) },
131         { "fpu_reload", VCPU_STAT(fpu_reload) },
132         { "insn_emulation", VCPU_STAT(insn_emulation) },
133         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
134         { "irq_injections", VCPU_STAT(irq_injections) },
135         { "nmi_injections", VCPU_STAT(nmi_injections) },
136         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
137         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
138         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
139         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
140         { "mmu_flooded", VM_STAT(mmu_flooded) },
141         { "mmu_recycled", VM_STAT(mmu_recycled) },
142         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
143         { "mmu_unsync", VM_STAT(mmu_unsync) },
144         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
145         { "largepages", VM_STAT(lpages) },
146         { NULL }
147 };
148
149 static void kvm_on_user_return(struct user_return_notifier *urn)
150 {
151         unsigned slot;
152         struct kvm_shared_msrs *locals
153                 = container_of(urn, struct kvm_shared_msrs, urn);
154         struct kvm_shared_msr_values *values;
155
156         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
157                 values = &locals->values[slot];
158                 if (values->host != values->curr) {
159                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
160                         values->curr = values->host;
161                 }
162         }
163         locals->registered = false;
164         user_return_notifier_unregister(urn);
165 }
166
167 static void shared_msr_update(unsigned slot, u32 msr)
168 {
169         struct kvm_shared_msrs *smsr;
170         u64 value;
171
172         smsr = &__get_cpu_var(shared_msrs);
173         /* only read, and nobody should modify it at this time,
174          * so don't need lock */
175         if (slot >= shared_msrs_global.nr) {
176                 printk(KERN_ERR "kvm: invalid MSR slot!");
177                 return;
178         }
179         rdmsrl_safe(msr, &value);
180         smsr->values[slot].host = value;
181         smsr->values[slot].curr = value;
182 }
183
184 void kvm_define_shared_msr(unsigned slot, u32 msr)
185 {
186         if (slot >= shared_msrs_global.nr)
187                 shared_msrs_global.nr = slot + 1;
188         shared_msrs_global.msrs[slot] = msr;
189         /* we need ensured the shared_msr_global have been updated */
190         smp_wmb();
191 }
192 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
193
194 static void kvm_shared_msr_cpu_online(void)
195 {
196         unsigned i;
197
198         for (i = 0; i < shared_msrs_global.nr; ++i)
199                 shared_msr_update(i, shared_msrs_global.msrs[i]);
200 }
201
202 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
203 {
204         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
205
206         if (((value ^ smsr->values[slot].curr) & mask) == 0)
207                 return;
208         smsr->values[slot].curr = value;
209         wrmsrl(shared_msrs_global.msrs[slot], value);
210         if (!smsr->registered) {
211                 smsr->urn.on_user_return = kvm_on_user_return;
212                 user_return_notifier_register(&smsr->urn);
213                 smsr->registered = true;
214         }
215 }
216 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
217
218 static void drop_user_return_notifiers(void *ignore)
219 {
220         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221
222         if (smsr->registered)
223                 kvm_on_user_return(&smsr->urn);
224 }
225
226 unsigned long segment_base(u16 selector)
227 {
228         struct descriptor_table gdt;
229         struct desc_struct *d;
230         unsigned long table_base;
231         unsigned long v;
232
233         if (selector == 0)
234                 return 0;
235
236         kvm_get_gdt(&gdt);
237         table_base = gdt.base;
238
239         if (selector & 4) {           /* from ldt */
240                 u16 ldt_selector = kvm_read_ldt();
241
242                 table_base = segment_base(ldt_selector);
243         }
244         d = (struct desc_struct *)(table_base + (selector & ~7));
245         v = get_desc_base(d);
246 #ifdef CONFIG_X86_64
247         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
248                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
249 #endif
250         return v;
251 }
252 EXPORT_SYMBOL_GPL(segment_base);
253
254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 {
256         if (irqchip_in_kernel(vcpu->kvm))
257                 return vcpu->arch.apic_base;
258         else
259                 return vcpu->arch.apic_base;
260 }
261 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
262
263 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
264 {
265         /* TODO: reserve bits check */
266         if (irqchip_in_kernel(vcpu->kvm))
267                 kvm_lapic_set_base(vcpu, data);
268         else
269                 vcpu->arch.apic_base = data;
270 }
271 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
272
273 #define EXCPT_BENIGN            0
274 #define EXCPT_CONTRIBUTORY      1
275 #define EXCPT_PF                2
276
277 static int exception_class(int vector)
278 {
279         switch (vector) {
280         case PF_VECTOR:
281                 return EXCPT_PF;
282         case DE_VECTOR:
283         case TS_VECTOR:
284         case NP_VECTOR:
285         case SS_VECTOR:
286         case GP_VECTOR:
287                 return EXCPT_CONTRIBUTORY;
288         default:
289                 break;
290         }
291         return EXCPT_BENIGN;
292 }
293
294 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
295                 unsigned nr, bool has_error, u32 error_code)
296 {
297         u32 prev_nr;
298         int class1, class2;
299
300         if (!vcpu->arch.exception.pending) {
301         queue:
302                 vcpu->arch.exception.pending = true;
303                 vcpu->arch.exception.has_error_code = has_error;
304                 vcpu->arch.exception.nr = nr;
305                 vcpu->arch.exception.error_code = error_code;
306                 return;
307         }
308
309         /* to check exception */
310         prev_nr = vcpu->arch.exception.nr;
311         if (prev_nr == DF_VECTOR) {
312                 /* triple fault -> shutdown */
313                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
314                 return;
315         }
316         class1 = exception_class(prev_nr);
317         class2 = exception_class(nr);
318         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
319                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
320                 /* generate double fault per SDM Table 5-5 */
321                 vcpu->arch.exception.pending = true;
322                 vcpu->arch.exception.has_error_code = true;
323                 vcpu->arch.exception.nr = DF_VECTOR;
324                 vcpu->arch.exception.error_code = 0;
325         } else
326                 /* replace previous exception with a new one in a hope
327                    that instruction re-execution will regenerate lost
328                    exception */
329                 goto queue;
330 }
331
332 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
333 {
334         kvm_multiple_exception(vcpu, nr, false, 0);
335 }
336 EXPORT_SYMBOL_GPL(kvm_queue_exception);
337
338 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
339                            u32 error_code)
340 {
341         ++vcpu->stat.pf_guest;
342         vcpu->arch.cr2 = addr;
343         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
344 }
345
346 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
347 {
348         vcpu->arch.nmi_pending = 1;
349 }
350 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
351
352 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
353 {
354         kvm_multiple_exception(vcpu, nr, true, error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
357
358 /*
359  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
360  * a #GP and return false.
361  */
362 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
363 {
364         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
365                 return true;
366         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
367         return false;
368 }
369 EXPORT_SYMBOL_GPL(kvm_require_cpl);
370
371 /*
372  * Load the pae pdptrs.  Return true is they are all valid.
373  */
374 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
375 {
376         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
377         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
378         int i;
379         int ret;
380         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
381
382         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
383                                   offset * sizeof(u64), sizeof(pdpte));
384         if (ret < 0) {
385                 ret = 0;
386                 goto out;
387         }
388         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
389                 if (is_present_gpte(pdpte[i]) &&
390                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
391                         ret = 0;
392                         goto out;
393                 }
394         }
395         ret = 1;
396
397         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
398         __set_bit(VCPU_EXREG_PDPTR,
399                   (unsigned long *)&vcpu->arch.regs_avail);
400         __set_bit(VCPU_EXREG_PDPTR,
401                   (unsigned long *)&vcpu->arch.regs_dirty);
402 out:
403
404         return ret;
405 }
406 EXPORT_SYMBOL_GPL(load_pdptrs);
407
408 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
409 {
410         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
411         bool changed = true;
412         int r;
413
414         if (is_long_mode(vcpu) || !is_pae(vcpu))
415                 return false;
416
417         if (!test_bit(VCPU_EXREG_PDPTR,
418                       (unsigned long *)&vcpu->arch.regs_avail))
419                 return true;
420
421         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
422         if (r < 0)
423                 goto out;
424         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
425 out:
426
427         return changed;
428 }
429
430 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
431 {
432         cr0 |= X86_CR0_ET;
433
434 #ifdef CONFIG_X86_64
435         if (cr0 & 0xffffffff00000000UL) {
436                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
437                        cr0, kvm_read_cr0(vcpu));
438                 kvm_inject_gp(vcpu, 0);
439                 return;
440         }
441 #endif
442
443         cr0 &= ~CR0_RESERVED_BITS;
444
445         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
446                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
447                 kvm_inject_gp(vcpu, 0);
448                 return;
449         }
450
451         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
452                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
453                        "and a clear PE flag\n");
454                 kvm_inject_gp(vcpu, 0);
455                 return;
456         }
457
458         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
459 #ifdef CONFIG_X86_64
460                 if ((vcpu->arch.efer & EFER_LME)) {
461                         int cs_db, cs_l;
462
463                         if (!is_pae(vcpu)) {
464                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
465                                        "in long mode while PAE is disabled\n");
466                                 kvm_inject_gp(vcpu, 0);
467                                 return;
468                         }
469                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
470                         if (cs_l) {
471                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
472                                        "in long mode while CS.L == 1\n");
473                                 kvm_inject_gp(vcpu, 0);
474                                 return;
475
476                         }
477                 } else
478 #endif
479                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
480                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
481                                "reserved bits\n");
482                         kvm_inject_gp(vcpu, 0);
483                         return;
484                 }
485
486         }
487
488         kvm_x86_ops->set_cr0(vcpu, cr0);
489         vcpu->arch.cr0 = cr0;
490
491         kvm_mmu_reset_context(vcpu);
492         return;
493 }
494 EXPORT_SYMBOL_GPL(kvm_set_cr0);
495
496 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
497 {
498         kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
499 }
500 EXPORT_SYMBOL_GPL(kvm_lmsw);
501
502 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
503 {
504         unsigned long old_cr4 = kvm_read_cr4(vcpu);
505         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
506
507         if (cr4 & CR4_RESERVED_BITS) {
508                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
509                 kvm_inject_gp(vcpu, 0);
510                 return;
511         }
512
513         if (is_long_mode(vcpu)) {
514                 if (!(cr4 & X86_CR4_PAE)) {
515                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
516                                "in long mode\n");
517                         kvm_inject_gp(vcpu, 0);
518                         return;
519                 }
520         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
521                    && ((cr4 ^ old_cr4) & pdptr_bits)
522                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
523                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
524                 kvm_inject_gp(vcpu, 0);
525                 return;
526         }
527
528         if (cr4 & X86_CR4_VMXE) {
529                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
530                 kvm_inject_gp(vcpu, 0);
531                 return;
532         }
533         kvm_x86_ops->set_cr4(vcpu, cr4);
534         vcpu->arch.cr4 = cr4;
535         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
536         kvm_mmu_reset_context(vcpu);
537 }
538 EXPORT_SYMBOL_GPL(kvm_set_cr4);
539
540 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
541 {
542         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
543                 kvm_mmu_sync_roots(vcpu);
544                 kvm_mmu_flush_tlb(vcpu);
545                 return;
546         }
547
548         if (is_long_mode(vcpu)) {
549                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
550                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
551                         kvm_inject_gp(vcpu, 0);
552                         return;
553                 }
554         } else {
555                 if (is_pae(vcpu)) {
556                         if (cr3 & CR3_PAE_RESERVED_BITS) {
557                                 printk(KERN_DEBUG
558                                        "set_cr3: #GP, reserved bits\n");
559                                 kvm_inject_gp(vcpu, 0);
560                                 return;
561                         }
562                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
563                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
564                                        "reserved bits\n");
565                                 kvm_inject_gp(vcpu, 0);
566                                 return;
567                         }
568                 }
569                 /*
570                  * We don't check reserved bits in nonpae mode, because
571                  * this isn't enforced, and VMware depends on this.
572                  */
573         }
574
575         /*
576          * Does the new cr3 value map to physical memory? (Note, we
577          * catch an invalid cr3 even in real-mode, because it would
578          * cause trouble later on when we turn on paging anyway.)
579          *
580          * A real CPU would silently accept an invalid cr3 and would
581          * attempt to use it - with largely undefined (and often hard
582          * to debug) behavior on the guest side.
583          */
584         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
585                 kvm_inject_gp(vcpu, 0);
586         else {
587                 vcpu->arch.cr3 = cr3;
588                 vcpu->arch.mmu.new_cr3(vcpu);
589         }
590 }
591 EXPORT_SYMBOL_GPL(kvm_set_cr3);
592
593 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
594 {
595         if (cr8 & CR8_RESERVED_BITS) {
596                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
597                 kvm_inject_gp(vcpu, 0);
598                 return;
599         }
600         if (irqchip_in_kernel(vcpu->kvm))
601                 kvm_lapic_set_tpr(vcpu, cr8);
602         else
603                 vcpu->arch.cr8 = cr8;
604 }
605 EXPORT_SYMBOL_GPL(kvm_set_cr8);
606
607 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
608 {
609         if (irqchip_in_kernel(vcpu->kvm))
610                 return kvm_lapic_get_cr8(vcpu);
611         else
612                 return vcpu->arch.cr8;
613 }
614 EXPORT_SYMBOL_GPL(kvm_get_cr8);
615
616 static inline u32 bit(int bitno)
617 {
618         return 1 << (bitno & 31);
619 }
620
621 /*
622  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
623  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
624  *
625  * This list is modified at module load time to reflect the
626  * capabilities of the host cpu. This capabilities test skips MSRs that are
627  * kvm-specific. Those are put in the beginning of the list.
628  */
629
630 #define KVM_SAVE_MSRS_BEGIN     5
631 static u32 msrs_to_save[] = {
632         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
633         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
634         HV_X64_MSR_APIC_ASSIST_PAGE,
635         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
636         MSR_K6_STAR,
637 #ifdef CONFIG_X86_64
638         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
639 #endif
640         MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
641 };
642
643 static unsigned num_msrs_to_save;
644
645 static u32 emulated_msrs[] = {
646         MSR_IA32_MISC_ENABLE,
647 };
648
649 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
650 {
651         if (efer & efer_reserved_bits) {
652                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
653                        efer);
654                 kvm_inject_gp(vcpu, 0);
655                 return;
656         }
657
658         if (is_paging(vcpu)
659             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
660                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
661                 kvm_inject_gp(vcpu, 0);
662                 return;
663         }
664
665         if (efer & EFER_FFXSR) {
666                 struct kvm_cpuid_entry2 *feat;
667
668                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
669                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
670                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
671                         kvm_inject_gp(vcpu, 0);
672                         return;
673                 }
674         }
675
676         if (efer & EFER_SVME) {
677                 struct kvm_cpuid_entry2 *feat;
678
679                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
680                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
681                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
682                         kvm_inject_gp(vcpu, 0);
683                         return;
684                 }
685         }
686
687         kvm_x86_ops->set_efer(vcpu, efer);
688
689         efer &= ~EFER_LMA;
690         efer |= vcpu->arch.efer & EFER_LMA;
691
692         vcpu->arch.efer = efer;
693
694         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
695         kvm_mmu_reset_context(vcpu);
696 }
697
698 void kvm_enable_efer_bits(u64 mask)
699 {
700        efer_reserved_bits &= ~mask;
701 }
702 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
703
704
705 /*
706  * Writes msr value into into the appropriate "register".
707  * Returns 0 on success, non-0 otherwise.
708  * Assumes vcpu_load() was already called.
709  */
710 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
711 {
712         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
713 }
714
715 /*
716  * Adapt set_msr() to msr_io()'s calling convention
717  */
718 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
719 {
720         return kvm_set_msr(vcpu, index, *data);
721 }
722
723 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
724 {
725         static int version;
726         struct pvclock_wall_clock wc;
727         struct timespec boot;
728
729         if (!wall_clock)
730                 return;
731
732         version++;
733
734         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
735
736         /*
737          * The guest calculates current wall clock time by adding
738          * system time (updated by kvm_write_guest_time below) to the
739          * wall clock specified here.  guest system time equals host
740          * system time for us, thus we must fill in host boot time here.
741          */
742         getboottime(&boot);
743
744         wc.sec = boot.tv_sec;
745         wc.nsec = boot.tv_nsec;
746         wc.version = version;
747
748         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
749
750         version++;
751         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
752 }
753
754 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
755 {
756         uint32_t quotient, remainder;
757
758         /* Don't try to replace with do_div(), this one calculates
759          * "(dividend << 32) / divisor" */
760         __asm__ ( "divl %4"
761                   : "=a" (quotient), "=d" (remainder)
762                   : "0" (0), "1" (dividend), "r" (divisor) );
763         return quotient;
764 }
765
766 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
767 {
768         uint64_t nsecs = 1000000000LL;
769         int32_t  shift = 0;
770         uint64_t tps64;
771         uint32_t tps32;
772
773         tps64 = tsc_khz * 1000LL;
774         while (tps64 > nsecs*2) {
775                 tps64 >>= 1;
776                 shift--;
777         }
778
779         tps32 = (uint32_t)tps64;
780         while (tps32 <= (uint32_t)nsecs) {
781                 tps32 <<= 1;
782                 shift++;
783         }
784
785         hv_clock->tsc_shift = shift;
786         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
787
788         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
789                  __func__, tsc_khz, hv_clock->tsc_shift,
790                  hv_clock->tsc_to_system_mul);
791 }
792
793 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
794
795 static void kvm_write_guest_time(struct kvm_vcpu *v)
796 {
797         struct timespec ts;
798         unsigned long flags;
799         struct kvm_vcpu_arch *vcpu = &v->arch;
800         void *shared_kaddr;
801         unsigned long this_tsc_khz;
802
803         if ((!vcpu->time_page))
804                 return;
805
806         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
807         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
808                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
809                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
810         }
811         put_cpu_var(cpu_tsc_khz);
812
813         /* Keep irq disabled to prevent changes to the clock */
814         local_irq_save(flags);
815         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
816         ktime_get_ts(&ts);
817         monotonic_to_bootbased(&ts);
818         local_irq_restore(flags);
819
820         /* With all the info we got, fill in the values */
821
822         vcpu->hv_clock.system_time = ts.tv_nsec +
823                                      (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
824
825         /*
826          * The interface expects us to write an even number signaling that the
827          * update is finished. Since the guest won't see the intermediate
828          * state, we just increase by 2 at the end.
829          */
830         vcpu->hv_clock.version += 2;
831
832         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
833
834         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
835                sizeof(vcpu->hv_clock));
836
837         kunmap_atomic(shared_kaddr, KM_USER0);
838
839         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
840 }
841
842 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
843 {
844         struct kvm_vcpu_arch *vcpu = &v->arch;
845
846         if (!vcpu->time_page)
847                 return 0;
848         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
849         return 1;
850 }
851
852 static bool msr_mtrr_valid(unsigned msr)
853 {
854         switch (msr) {
855         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
856         case MSR_MTRRfix64K_00000:
857         case MSR_MTRRfix16K_80000:
858         case MSR_MTRRfix16K_A0000:
859         case MSR_MTRRfix4K_C0000:
860         case MSR_MTRRfix4K_C8000:
861         case MSR_MTRRfix4K_D0000:
862         case MSR_MTRRfix4K_D8000:
863         case MSR_MTRRfix4K_E0000:
864         case MSR_MTRRfix4K_E8000:
865         case MSR_MTRRfix4K_F0000:
866         case MSR_MTRRfix4K_F8000:
867         case MSR_MTRRdefType:
868         case MSR_IA32_CR_PAT:
869                 return true;
870         case 0x2f8:
871                 return true;
872         }
873         return false;
874 }
875
876 static bool valid_pat_type(unsigned t)
877 {
878         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
879 }
880
881 static bool valid_mtrr_type(unsigned t)
882 {
883         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
884 }
885
886 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
887 {
888         int i;
889
890         if (!msr_mtrr_valid(msr))
891                 return false;
892
893         if (msr == MSR_IA32_CR_PAT) {
894                 for (i = 0; i < 8; i++)
895                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
896                                 return false;
897                 return true;
898         } else if (msr == MSR_MTRRdefType) {
899                 if (data & ~0xcff)
900                         return false;
901                 return valid_mtrr_type(data & 0xff);
902         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
903                 for (i = 0; i < 8 ; i++)
904                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
905                                 return false;
906                 return true;
907         }
908
909         /* variable MTRRs */
910         return valid_mtrr_type(data & 0xff);
911 }
912
913 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
914 {
915         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
916
917         if (!mtrr_valid(vcpu, msr, data))
918                 return 1;
919
920         if (msr == MSR_MTRRdefType) {
921                 vcpu->arch.mtrr_state.def_type = data;
922                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
923         } else if (msr == MSR_MTRRfix64K_00000)
924                 p[0] = data;
925         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
926                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
927         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
928                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
929         else if (msr == MSR_IA32_CR_PAT)
930                 vcpu->arch.pat = data;
931         else {  /* Variable MTRRs */
932                 int idx, is_mtrr_mask;
933                 u64 *pt;
934
935                 idx = (msr - 0x200) / 2;
936                 is_mtrr_mask = msr - 0x200 - 2 * idx;
937                 if (!is_mtrr_mask)
938                         pt =
939                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
940                 else
941                         pt =
942                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
943                 *pt = data;
944         }
945
946         kvm_mmu_reset_context(vcpu);
947         return 0;
948 }
949
950 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
951 {
952         u64 mcg_cap = vcpu->arch.mcg_cap;
953         unsigned bank_num = mcg_cap & 0xff;
954
955         switch (msr) {
956         case MSR_IA32_MCG_STATUS:
957                 vcpu->arch.mcg_status = data;
958                 break;
959         case MSR_IA32_MCG_CTL:
960                 if (!(mcg_cap & MCG_CTL_P))
961                         return 1;
962                 if (data != 0 && data != ~(u64)0)
963                         return -1;
964                 vcpu->arch.mcg_ctl = data;
965                 break;
966         default:
967                 if (msr >= MSR_IA32_MC0_CTL &&
968                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
969                         u32 offset = msr - MSR_IA32_MC0_CTL;
970                         /* only 0 or all 1s can be written to IA32_MCi_CTL */
971                         if ((offset & 0x3) == 0 &&
972                             data != 0 && data != ~(u64)0)
973                                 return -1;
974                         vcpu->arch.mce_banks[offset] = data;
975                         break;
976                 }
977                 return 1;
978         }
979         return 0;
980 }
981
982 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
983 {
984         struct kvm *kvm = vcpu->kvm;
985         int lm = is_long_mode(vcpu);
986         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
987                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
988         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
989                 : kvm->arch.xen_hvm_config.blob_size_32;
990         u32 page_num = data & ~PAGE_MASK;
991         u64 page_addr = data & PAGE_MASK;
992         u8 *page;
993         int r;
994
995         r = -E2BIG;
996         if (page_num >= blob_size)
997                 goto out;
998         r = -ENOMEM;
999         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1000         if (!page)
1001                 goto out;
1002         r = -EFAULT;
1003         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1004                 goto out_free;
1005         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1006                 goto out_free;
1007         r = 0;
1008 out_free:
1009         kfree(page);
1010 out:
1011         return r;
1012 }
1013
1014 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1015 {
1016         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1017 }
1018
1019 static bool kvm_hv_msr_partition_wide(u32 msr)
1020 {
1021         bool r = false;
1022         switch (msr) {
1023         case HV_X64_MSR_GUEST_OS_ID:
1024         case HV_X64_MSR_HYPERCALL:
1025                 r = true;
1026                 break;
1027         }
1028
1029         return r;
1030 }
1031
1032 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1033 {
1034         struct kvm *kvm = vcpu->kvm;
1035
1036         switch (msr) {
1037         case HV_X64_MSR_GUEST_OS_ID:
1038                 kvm->arch.hv_guest_os_id = data;
1039                 /* setting guest os id to zero disables hypercall page */
1040                 if (!kvm->arch.hv_guest_os_id)
1041                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1042                 break;
1043         case HV_X64_MSR_HYPERCALL: {
1044                 u64 gfn;
1045                 unsigned long addr;
1046                 u8 instructions[4];
1047
1048                 /* if guest os id is not set hypercall should remain disabled */
1049                 if (!kvm->arch.hv_guest_os_id)
1050                         break;
1051                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1052                         kvm->arch.hv_hypercall = data;
1053                         break;
1054                 }
1055                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1056                 addr = gfn_to_hva(kvm, gfn);
1057                 if (kvm_is_error_hva(addr))
1058                         return 1;
1059                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1060                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1061                 if (copy_to_user((void __user *)addr, instructions, 4))
1062                         return 1;
1063                 kvm->arch.hv_hypercall = data;
1064                 break;
1065         }
1066         default:
1067                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1068                           "data 0x%llx\n", msr, data);
1069                 return 1;
1070         }
1071         return 0;
1072 }
1073
1074 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1075 {
1076         switch (msr) {
1077         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1078                 unsigned long addr;
1079
1080                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1081                         vcpu->arch.hv_vapic = data;
1082                         break;
1083                 }
1084                 addr = gfn_to_hva(vcpu->kvm, data >>
1085                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1086                 if (kvm_is_error_hva(addr))
1087                         return 1;
1088                 if (clear_user((void __user *)addr, PAGE_SIZE))
1089                         return 1;
1090                 vcpu->arch.hv_vapic = data;
1091                 break;
1092         }
1093         case HV_X64_MSR_EOI:
1094                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1095         case HV_X64_MSR_ICR:
1096                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1097         case HV_X64_MSR_TPR:
1098                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1099         default:
1100                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1101                           "data 0x%llx\n", msr, data);
1102                 return 1;
1103         }
1104
1105         return 0;
1106 }
1107
1108 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1109 {
1110         switch (msr) {
1111         case MSR_EFER:
1112                 set_efer(vcpu, data);
1113                 break;
1114         case MSR_K7_HWCR:
1115                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1116                 if (data != 0) {
1117                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1118                                 data);
1119                         return 1;
1120                 }
1121                 break;
1122         case MSR_FAM10H_MMIO_CONF_BASE:
1123                 if (data != 0) {
1124                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1125                                 "0x%llx\n", data);
1126                         return 1;
1127                 }
1128                 break;
1129         case MSR_AMD64_NB_CFG:
1130                 break;
1131         case MSR_IA32_DEBUGCTLMSR:
1132                 if (!data) {
1133                         /* We support the non-activated case already */
1134                         break;
1135                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1136                         /* Values other than LBR and BTF are vendor-specific,
1137                            thus reserved and should throw a #GP */
1138                         return 1;
1139                 }
1140                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1141                         __func__, data);
1142                 break;
1143         case MSR_IA32_UCODE_REV:
1144         case MSR_IA32_UCODE_WRITE:
1145         case MSR_VM_HSAVE_PA:
1146         case MSR_AMD64_PATCH_LOADER:
1147                 break;
1148         case 0x200 ... 0x2ff:
1149                 return set_msr_mtrr(vcpu, msr, data);
1150         case MSR_IA32_APICBASE:
1151                 kvm_set_apic_base(vcpu, data);
1152                 break;
1153         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1154                 return kvm_x2apic_msr_write(vcpu, msr, data);
1155         case MSR_IA32_MISC_ENABLE:
1156                 vcpu->arch.ia32_misc_enable_msr = data;
1157                 break;
1158         case MSR_KVM_WALL_CLOCK:
1159                 vcpu->kvm->arch.wall_clock = data;
1160                 kvm_write_wall_clock(vcpu->kvm, data);
1161                 break;
1162         case MSR_KVM_SYSTEM_TIME: {
1163                 if (vcpu->arch.time_page) {
1164                         kvm_release_page_dirty(vcpu->arch.time_page);
1165                         vcpu->arch.time_page = NULL;
1166                 }
1167
1168                 vcpu->arch.time = data;
1169
1170                 /* we verify if the enable bit is set... */
1171                 if (!(data & 1))
1172                         break;
1173
1174                 /* ...but clean it before doing the actual write */
1175                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1176
1177                 vcpu->arch.time_page =
1178                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1179
1180                 if (is_error_page(vcpu->arch.time_page)) {
1181                         kvm_release_page_clean(vcpu->arch.time_page);
1182                         vcpu->arch.time_page = NULL;
1183                 }
1184
1185                 kvm_request_guest_time_update(vcpu);
1186                 break;
1187         }
1188         case MSR_IA32_MCG_CTL:
1189         case MSR_IA32_MCG_STATUS:
1190         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1191                 return set_msr_mce(vcpu, msr, data);
1192
1193         /* Performance counters are not protected by a CPUID bit,
1194          * so we should check all of them in the generic path for the sake of
1195          * cross vendor migration.
1196          * Writing a zero into the event select MSRs disables them,
1197          * which we perfectly emulate ;-). Any other value should be at least
1198          * reported, some guests depend on them.
1199          */
1200         case MSR_P6_EVNTSEL0:
1201         case MSR_P6_EVNTSEL1:
1202         case MSR_K7_EVNTSEL0:
1203         case MSR_K7_EVNTSEL1:
1204         case MSR_K7_EVNTSEL2:
1205         case MSR_K7_EVNTSEL3:
1206                 if (data != 0)
1207                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1208                                 "0x%x data 0x%llx\n", msr, data);
1209                 break;
1210         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1211          * so we ignore writes to make it happy.
1212          */
1213         case MSR_P6_PERFCTR0:
1214         case MSR_P6_PERFCTR1:
1215         case MSR_K7_PERFCTR0:
1216         case MSR_K7_PERFCTR1:
1217         case MSR_K7_PERFCTR2:
1218         case MSR_K7_PERFCTR3:
1219                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1220                         "0x%x data 0x%llx\n", msr, data);
1221                 break;
1222         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1223                 if (kvm_hv_msr_partition_wide(msr)) {
1224                         int r;
1225                         mutex_lock(&vcpu->kvm->lock);
1226                         r = set_msr_hyperv_pw(vcpu, msr, data);
1227                         mutex_unlock(&vcpu->kvm->lock);
1228                         return r;
1229                 } else
1230                         return set_msr_hyperv(vcpu, msr, data);
1231                 break;
1232         default:
1233                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1234                         return xen_hvm_config(vcpu, data);
1235                 if (!ignore_msrs) {
1236                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1237                                 msr, data);
1238                         return 1;
1239                 } else {
1240                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1241                                 msr, data);
1242                         break;
1243                 }
1244         }
1245         return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1248
1249
1250 /*
1251  * Reads an msr value (of 'msr_index') into 'pdata'.
1252  * Returns 0 on success, non-0 otherwise.
1253  * Assumes vcpu_load() was already called.
1254  */
1255 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1256 {
1257         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1258 }
1259
1260 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1261 {
1262         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1263
1264         if (!msr_mtrr_valid(msr))
1265                 return 1;
1266
1267         if (msr == MSR_MTRRdefType)
1268                 *pdata = vcpu->arch.mtrr_state.def_type +
1269                          (vcpu->arch.mtrr_state.enabled << 10);
1270         else if (msr == MSR_MTRRfix64K_00000)
1271                 *pdata = p[0];
1272         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1273                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1274         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1275                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1276         else if (msr == MSR_IA32_CR_PAT)
1277                 *pdata = vcpu->arch.pat;
1278         else {  /* Variable MTRRs */
1279                 int idx, is_mtrr_mask;
1280                 u64 *pt;
1281
1282                 idx = (msr - 0x200) / 2;
1283                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1284                 if (!is_mtrr_mask)
1285                         pt =
1286                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1287                 else
1288                         pt =
1289                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1290                 *pdata = *pt;
1291         }
1292
1293         return 0;
1294 }
1295
1296 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1297 {
1298         u64 data;
1299         u64 mcg_cap = vcpu->arch.mcg_cap;
1300         unsigned bank_num = mcg_cap & 0xff;
1301
1302         switch (msr) {
1303         case MSR_IA32_P5_MC_ADDR:
1304         case MSR_IA32_P5_MC_TYPE:
1305                 data = 0;
1306                 break;
1307         case MSR_IA32_MCG_CAP:
1308                 data = vcpu->arch.mcg_cap;
1309                 break;
1310         case MSR_IA32_MCG_CTL:
1311                 if (!(mcg_cap & MCG_CTL_P))
1312                         return 1;
1313                 data = vcpu->arch.mcg_ctl;
1314                 break;
1315         case MSR_IA32_MCG_STATUS:
1316                 data = vcpu->arch.mcg_status;
1317                 break;
1318         default:
1319                 if (msr >= MSR_IA32_MC0_CTL &&
1320                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1321                         u32 offset = msr - MSR_IA32_MC0_CTL;
1322                         data = vcpu->arch.mce_banks[offset];
1323                         break;
1324                 }
1325                 return 1;
1326         }
1327         *pdata = data;
1328         return 0;
1329 }
1330
1331 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1332 {
1333         u64 data = 0;
1334         struct kvm *kvm = vcpu->kvm;
1335
1336         switch (msr) {
1337         case HV_X64_MSR_GUEST_OS_ID:
1338                 data = kvm->arch.hv_guest_os_id;
1339                 break;
1340         case HV_X64_MSR_HYPERCALL:
1341                 data = kvm->arch.hv_hypercall;
1342                 break;
1343         default:
1344                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1345                 return 1;
1346         }
1347
1348         *pdata = data;
1349         return 0;
1350 }
1351
1352 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1353 {
1354         u64 data = 0;
1355
1356         switch (msr) {
1357         case HV_X64_MSR_VP_INDEX: {
1358                 int r;
1359                 struct kvm_vcpu *v;
1360                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1361                         if (v == vcpu)
1362                                 data = r;
1363                 break;
1364         }
1365         case HV_X64_MSR_EOI:
1366                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1367         case HV_X64_MSR_ICR:
1368                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1369         case HV_X64_MSR_TPR:
1370                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1371         default:
1372                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1373                 return 1;
1374         }
1375         *pdata = data;
1376         return 0;
1377 }
1378
1379 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1380 {
1381         u64 data;
1382
1383         switch (msr) {
1384         case MSR_IA32_PLATFORM_ID:
1385         case MSR_IA32_UCODE_REV:
1386         case MSR_IA32_EBL_CR_POWERON:
1387         case MSR_IA32_DEBUGCTLMSR:
1388         case MSR_IA32_LASTBRANCHFROMIP:
1389         case MSR_IA32_LASTBRANCHTOIP:
1390         case MSR_IA32_LASTINTFROMIP:
1391         case MSR_IA32_LASTINTTOIP:
1392         case MSR_K8_SYSCFG:
1393         case MSR_K7_HWCR:
1394         case MSR_VM_HSAVE_PA:
1395         case MSR_P6_PERFCTR0:
1396         case MSR_P6_PERFCTR1:
1397         case MSR_P6_EVNTSEL0:
1398         case MSR_P6_EVNTSEL1:
1399         case MSR_K7_EVNTSEL0:
1400         case MSR_K7_PERFCTR0:
1401         case MSR_K8_INT_PENDING_MSG:
1402         case MSR_AMD64_NB_CFG:
1403         case MSR_FAM10H_MMIO_CONF_BASE:
1404                 data = 0;
1405                 break;
1406         case MSR_MTRRcap:
1407                 data = 0x500 | KVM_NR_VAR_MTRR;
1408                 break;
1409         case 0x200 ... 0x2ff:
1410                 return get_msr_mtrr(vcpu, msr, pdata);
1411         case 0xcd: /* fsb frequency */
1412                 data = 3;
1413                 break;
1414         case MSR_IA32_APICBASE:
1415                 data = kvm_get_apic_base(vcpu);
1416                 break;
1417         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1418                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1419                 break;
1420         case MSR_IA32_MISC_ENABLE:
1421                 data = vcpu->arch.ia32_misc_enable_msr;
1422                 break;
1423         case MSR_IA32_PERF_STATUS:
1424                 /* TSC increment by tick */
1425                 data = 1000ULL;
1426                 /* CPU multiplier */
1427                 data |= (((uint64_t)4ULL) << 40);
1428                 break;
1429         case MSR_EFER:
1430                 data = vcpu->arch.efer;
1431                 break;
1432         case MSR_KVM_WALL_CLOCK:
1433                 data = vcpu->kvm->arch.wall_clock;
1434                 break;
1435         case MSR_KVM_SYSTEM_TIME:
1436                 data = vcpu->arch.time;
1437                 break;
1438         case MSR_IA32_P5_MC_ADDR:
1439         case MSR_IA32_P5_MC_TYPE:
1440         case MSR_IA32_MCG_CAP:
1441         case MSR_IA32_MCG_CTL:
1442         case MSR_IA32_MCG_STATUS:
1443         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1444                 return get_msr_mce(vcpu, msr, pdata);
1445         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1446                 if (kvm_hv_msr_partition_wide(msr)) {
1447                         int r;
1448                         mutex_lock(&vcpu->kvm->lock);
1449                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1450                         mutex_unlock(&vcpu->kvm->lock);
1451                         return r;
1452                 } else
1453                         return get_msr_hyperv(vcpu, msr, pdata);
1454                 break;
1455         default:
1456                 if (!ignore_msrs) {
1457                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1458                         return 1;
1459                 } else {
1460                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1461                         data = 0;
1462                 }
1463                 break;
1464         }
1465         *pdata = data;
1466         return 0;
1467 }
1468 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1469
1470 /*
1471  * Read or write a bunch of msrs. All parameters are kernel addresses.
1472  *
1473  * @return number of msrs set successfully.
1474  */
1475 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1476                     struct kvm_msr_entry *entries,
1477                     int (*do_msr)(struct kvm_vcpu *vcpu,
1478                                   unsigned index, u64 *data))
1479 {
1480         int i, idx;
1481
1482         vcpu_load(vcpu);
1483
1484         idx = srcu_read_lock(&vcpu->kvm->srcu);
1485         for (i = 0; i < msrs->nmsrs; ++i)
1486                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1487                         break;
1488         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1489
1490         vcpu_put(vcpu);
1491
1492         return i;
1493 }
1494
1495 /*
1496  * Read or write a bunch of msrs. Parameters are user addresses.
1497  *
1498  * @return number of msrs set successfully.
1499  */
1500 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1501                   int (*do_msr)(struct kvm_vcpu *vcpu,
1502                                 unsigned index, u64 *data),
1503                   int writeback)
1504 {
1505         struct kvm_msrs msrs;
1506         struct kvm_msr_entry *entries;
1507         int r, n;
1508         unsigned size;
1509
1510         r = -EFAULT;
1511         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1512                 goto out;
1513
1514         r = -E2BIG;
1515         if (msrs.nmsrs >= MAX_IO_MSRS)
1516                 goto out;
1517
1518         r = -ENOMEM;
1519         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1520         entries = vmalloc(size);
1521         if (!entries)
1522                 goto out;
1523
1524         r = -EFAULT;
1525         if (copy_from_user(entries, user_msrs->entries, size))
1526                 goto out_free;
1527
1528         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1529         if (r < 0)
1530                 goto out_free;
1531
1532         r = -EFAULT;
1533         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1534                 goto out_free;
1535
1536         r = n;
1537
1538 out_free:
1539         vfree(entries);
1540 out:
1541         return r;
1542 }
1543
1544 int kvm_dev_ioctl_check_extension(long ext)
1545 {
1546         int r;
1547
1548         switch (ext) {
1549         case KVM_CAP_IRQCHIP:
1550         case KVM_CAP_HLT:
1551         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1552         case KVM_CAP_SET_TSS_ADDR:
1553         case KVM_CAP_EXT_CPUID:
1554         case KVM_CAP_CLOCKSOURCE:
1555         case KVM_CAP_PIT:
1556         case KVM_CAP_NOP_IO_DELAY:
1557         case KVM_CAP_MP_STATE:
1558         case KVM_CAP_SYNC_MMU:
1559         case KVM_CAP_REINJECT_CONTROL:
1560         case KVM_CAP_IRQ_INJECT_STATUS:
1561         case KVM_CAP_ASSIGN_DEV_IRQ:
1562         case KVM_CAP_IRQFD:
1563         case KVM_CAP_IOEVENTFD:
1564         case KVM_CAP_PIT2:
1565         case KVM_CAP_PIT_STATE2:
1566         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1567         case KVM_CAP_XEN_HVM:
1568         case KVM_CAP_ADJUST_CLOCK:
1569         case KVM_CAP_VCPU_EVENTS:
1570         case KVM_CAP_HYPERV:
1571         case KVM_CAP_HYPERV_VAPIC:
1572         case KVM_CAP_HYPERV_SPIN:
1573         case KVM_CAP_PCI_SEGMENT:
1574         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1575                 r = 1;
1576                 break;
1577         case KVM_CAP_COALESCED_MMIO:
1578                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1579                 break;
1580         case KVM_CAP_VAPIC:
1581                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1582                 break;
1583         case KVM_CAP_NR_VCPUS:
1584                 r = KVM_MAX_VCPUS;
1585                 break;
1586         case KVM_CAP_NR_MEMSLOTS:
1587                 r = KVM_MEMORY_SLOTS;
1588                 break;
1589         case KVM_CAP_PV_MMU:    /* obsolete */
1590                 r = 0;
1591                 break;
1592         case KVM_CAP_IOMMU:
1593                 r = iommu_found();
1594                 break;
1595         case KVM_CAP_MCE:
1596                 r = KVM_MAX_MCE_BANKS;
1597                 break;
1598         default:
1599                 r = 0;
1600                 break;
1601         }
1602         return r;
1603
1604 }
1605
1606 long kvm_arch_dev_ioctl(struct file *filp,
1607                         unsigned int ioctl, unsigned long arg)
1608 {
1609         void __user *argp = (void __user *)arg;
1610         long r;
1611
1612         switch (ioctl) {
1613         case KVM_GET_MSR_INDEX_LIST: {
1614                 struct kvm_msr_list __user *user_msr_list = argp;
1615                 struct kvm_msr_list msr_list;
1616                 unsigned n;
1617
1618                 r = -EFAULT;
1619                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1620                         goto out;
1621                 n = msr_list.nmsrs;
1622                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1623                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1624                         goto out;
1625                 r = -E2BIG;
1626                 if (n < msr_list.nmsrs)
1627                         goto out;
1628                 r = -EFAULT;
1629                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1630                                  num_msrs_to_save * sizeof(u32)))
1631                         goto out;
1632                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1633                                  &emulated_msrs,
1634                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1635                         goto out;
1636                 r = 0;
1637                 break;
1638         }
1639         case KVM_GET_SUPPORTED_CPUID: {
1640                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1641                 struct kvm_cpuid2 cpuid;
1642
1643                 r = -EFAULT;
1644                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1645                         goto out;
1646                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1647                                                       cpuid_arg->entries);
1648                 if (r)
1649                         goto out;
1650
1651                 r = -EFAULT;
1652                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1653                         goto out;
1654                 r = 0;
1655                 break;
1656         }
1657         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1658                 u64 mce_cap;
1659
1660                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1661                 r = -EFAULT;
1662                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1663                         goto out;
1664                 r = 0;
1665                 break;
1666         }
1667         default:
1668                 r = -EINVAL;
1669         }
1670 out:
1671         return r;
1672 }
1673
1674 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1675 {
1676         kvm_x86_ops->vcpu_load(vcpu, cpu);
1677         if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1678                 unsigned long khz = cpufreq_quick_get(cpu);
1679                 if (!khz)
1680                         khz = tsc_khz;
1681                 per_cpu(cpu_tsc_khz, cpu) = khz;
1682         }
1683         kvm_request_guest_time_update(vcpu);
1684 }
1685
1686 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1687 {
1688         kvm_put_guest_fpu(vcpu);
1689         kvm_x86_ops->vcpu_put(vcpu);
1690 }
1691
1692 static int is_efer_nx(void)
1693 {
1694         unsigned long long efer = 0;
1695
1696         rdmsrl_safe(MSR_EFER, &efer);
1697         return efer & EFER_NX;
1698 }
1699
1700 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1701 {
1702         int i;
1703         struct kvm_cpuid_entry2 *e, *entry;
1704
1705         entry = NULL;
1706         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1707                 e = &vcpu->arch.cpuid_entries[i];
1708                 if (e->function == 0x80000001) {
1709                         entry = e;
1710                         break;
1711                 }
1712         }
1713         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1714                 entry->edx &= ~(1 << 20);
1715                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1716         }
1717 }
1718
1719 /* when an old userspace process fills a new kernel module */
1720 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1721                                     struct kvm_cpuid *cpuid,
1722                                     struct kvm_cpuid_entry __user *entries)
1723 {
1724         int r, i;
1725         struct kvm_cpuid_entry *cpuid_entries;
1726
1727         r = -E2BIG;
1728         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1729                 goto out;
1730         r = -ENOMEM;
1731         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1732         if (!cpuid_entries)
1733                 goto out;
1734         r = -EFAULT;
1735         if (copy_from_user(cpuid_entries, entries,
1736                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1737                 goto out_free;
1738         for (i = 0; i < cpuid->nent; i++) {
1739                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1740                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1741                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1742                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1743                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1744                 vcpu->arch.cpuid_entries[i].index = 0;
1745                 vcpu->arch.cpuid_entries[i].flags = 0;
1746                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1747                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1748                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1749         }
1750         vcpu->arch.cpuid_nent = cpuid->nent;
1751         cpuid_fix_nx_cap(vcpu);
1752         r = 0;
1753         kvm_apic_set_version(vcpu);
1754         kvm_x86_ops->cpuid_update(vcpu);
1755
1756 out_free:
1757         vfree(cpuid_entries);
1758 out:
1759         return r;
1760 }
1761
1762 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1763                                      struct kvm_cpuid2 *cpuid,
1764                                      struct kvm_cpuid_entry2 __user *entries)
1765 {
1766         int r;
1767
1768         r = -E2BIG;
1769         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1770                 goto out;
1771         r = -EFAULT;
1772         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1773                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1774                 goto out;
1775         vcpu->arch.cpuid_nent = cpuid->nent;
1776         kvm_apic_set_version(vcpu);
1777         kvm_x86_ops->cpuid_update(vcpu);
1778         return 0;
1779
1780 out:
1781         return r;
1782 }
1783
1784 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1785                                      struct kvm_cpuid2 *cpuid,
1786                                      struct kvm_cpuid_entry2 __user *entries)
1787 {
1788         int r;
1789
1790         r = -E2BIG;
1791         if (cpuid->nent < vcpu->arch.cpuid_nent)
1792                 goto out;
1793         r = -EFAULT;
1794         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1795                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1796                 goto out;
1797         return 0;
1798
1799 out:
1800         cpuid->nent = vcpu->arch.cpuid_nent;
1801         return r;
1802 }
1803
1804 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1805                            u32 index)
1806 {
1807         entry->function = function;
1808         entry->index = index;
1809         cpuid_count(entry->function, entry->index,
1810                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1811         entry->flags = 0;
1812 }
1813
1814 #define F(x) bit(X86_FEATURE_##x)
1815
1816 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1817                          u32 index, int *nent, int maxnent)
1818 {
1819         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1820 #ifdef CONFIG_X86_64
1821         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1822                                 ? F(GBPAGES) : 0;
1823         unsigned f_lm = F(LM);
1824 #else
1825         unsigned f_gbpages = 0;
1826         unsigned f_lm = 0;
1827 #endif
1828         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1829
1830         /* cpuid 1.edx */
1831         const u32 kvm_supported_word0_x86_features =
1832                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1833                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1834                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1835                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1836                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1837                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1838                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1839                 0 /* HTT, TM, Reserved, PBE */;
1840         /* cpuid 0x80000001.edx */
1841         const u32 kvm_supported_word1_x86_features =
1842                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1843                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1844                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1845                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1846                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1847                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1848                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1849                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1850         /* cpuid 1.ecx */
1851         const u32 kvm_supported_word4_x86_features =
1852                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1853                 0 /* DS-CPL, VMX, SMX, EST */ |
1854                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1855                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1856                 0 /* Reserved, DCA */ | F(XMM4_1) |
1857                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1858                 0 /* Reserved, XSAVE, OSXSAVE */;
1859         /* cpuid 0x80000001.ecx */
1860         const u32 kvm_supported_word6_x86_features =
1861                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1862                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1863                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1864                 0 /* SKINIT */ | 0 /* WDT */;
1865
1866         /* all calls to cpuid_count() should be made on the same cpu */
1867         get_cpu();
1868         do_cpuid_1_ent(entry, function, index);
1869         ++*nent;
1870
1871         switch (function) {
1872         case 0:
1873                 entry->eax = min(entry->eax, (u32)0xb);
1874                 break;
1875         case 1:
1876                 entry->edx &= kvm_supported_word0_x86_features;
1877                 entry->ecx &= kvm_supported_word4_x86_features;
1878                 /* we support x2apic emulation even if host does not support
1879                  * it since we emulate x2apic in software */
1880                 entry->ecx |= F(X2APIC);
1881                 break;
1882         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1883          * may return different values. This forces us to get_cpu() before
1884          * issuing the first command, and also to emulate this annoying behavior
1885          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1886         case 2: {
1887                 int t, times = entry->eax & 0xff;
1888
1889                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1890                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1891                 for (t = 1; t < times && *nent < maxnent; ++t) {
1892                         do_cpuid_1_ent(&entry[t], function, 0);
1893                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1894                         ++*nent;
1895                 }
1896                 break;
1897         }
1898         /* function 4 and 0xb have additional index. */
1899         case 4: {
1900                 int i, cache_type;
1901
1902                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1903                 /* read more entries until cache_type is zero */
1904                 for (i = 1; *nent < maxnent; ++i) {
1905                         cache_type = entry[i - 1].eax & 0x1f;
1906                         if (!cache_type)
1907                                 break;
1908                         do_cpuid_1_ent(&entry[i], function, i);
1909                         entry[i].flags |=
1910                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1911                         ++*nent;
1912                 }
1913                 break;
1914         }
1915         case 0xb: {
1916                 int i, level_type;
1917
1918                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1919                 /* read more entries until level_type is zero */
1920                 for (i = 1; *nent < maxnent; ++i) {
1921                         level_type = entry[i - 1].ecx & 0xff00;
1922                         if (!level_type)
1923                                 break;
1924                         do_cpuid_1_ent(&entry[i], function, i);
1925                         entry[i].flags |=
1926                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1927                         ++*nent;
1928                 }
1929                 break;
1930         }
1931         case 0x80000000:
1932                 entry->eax = min(entry->eax, 0x8000001a);
1933                 break;
1934         case 0x80000001:
1935                 entry->edx &= kvm_supported_word1_x86_features;
1936                 entry->ecx &= kvm_supported_word6_x86_features;
1937                 break;
1938         }
1939         put_cpu();
1940 }
1941
1942 #undef F
1943
1944 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1945                                      struct kvm_cpuid_entry2 __user *entries)
1946 {
1947         struct kvm_cpuid_entry2 *cpuid_entries;
1948         int limit, nent = 0, r = -E2BIG;
1949         u32 func;
1950
1951         if (cpuid->nent < 1)
1952                 goto out;
1953         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1954                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1955         r = -ENOMEM;
1956         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1957         if (!cpuid_entries)
1958                 goto out;
1959
1960         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1961         limit = cpuid_entries[0].eax;
1962         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1963                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1964                              &nent, cpuid->nent);
1965         r = -E2BIG;
1966         if (nent >= cpuid->nent)
1967                 goto out_free;
1968
1969         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1970         limit = cpuid_entries[nent - 1].eax;
1971         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1972                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1973                              &nent, cpuid->nent);
1974         r = -E2BIG;
1975         if (nent >= cpuid->nent)
1976                 goto out_free;
1977
1978         r = -EFAULT;
1979         if (copy_to_user(entries, cpuid_entries,
1980                          nent * sizeof(struct kvm_cpuid_entry2)))
1981                 goto out_free;
1982         cpuid->nent = nent;
1983         r = 0;
1984
1985 out_free:
1986         vfree(cpuid_entries);
1987 out:
1988         return r;
1989 }
1990
1991 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1992                                     struct kvm_lapic_state *s)
1993 {
1994         vcpu_load(vcpu);
1995         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1996         vcpu_put(vcpu);
1997
1998         return 0;
1999 }
2000
2001 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2002                                     struct kvm_lapic_state *s)
2003 {
2004         vcpu_load(vcpu);
2005         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2006         kvm_apic_post_state_restore(vcpu);
2007         update_cr8_intercept(vcpu);
2008         vcpu_put(vcpu);
2009
2010         return 0;
2011 }
2012
2013 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2014                                     struct kvm_interrupt *irq)
2015 {
2016         if (irq->irq < 0 || irq->irq >= 256)
2017                 return -EINVAL;
2018         if (irqchip_in_kernel(vcpu->kvm))
2019                 return -ENXIO;
2020         vcpu_load(vcpu);
2021
2022         kvm_queue_interrupt(vcpu, irq->irq, false);
2023
2024         vcpu_put(vcpu);
2025
2026         return 0;
2027 }
2028
2029 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2030 {
2031         vcpu_load(vcpu);
2032         kvm_inject_nmi(vcpu);
2033         vcpu_put(vcpu);
2034
2035         return 0;
2036 }
2037
2038 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2039                                            struct kvm_tpr_access_ctl *tac)
2040 {
2041         if (tac->flags)
2042                 return -EINVAL;
2043         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2044         return 0;
2045 }
2046
2047 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2048                                         u64 mcg_cap)
2049 {
2050         int r;
2051         unsigned bank_num = mcg_cap & 0xff, bank;
2052
2053         r = -EINVAL;
2054         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2055                 goto out;
2056         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2057                 goto out;
2058         r = 0;
2059         vcpu->arch.mcg_cap = mcg_cap;
2060         /* Init IA32_MCG_CTL to all 1s */
2061         if (mcg_cap & MCG_CTL_P)
2062                 vcpu->arch.mcg_ctl = ~(u64)0;
2063         /* Init IA32_MCi_CTL to all 1s */
2064         for (bank = 0; bank < bank_num; bank++)
2065                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2066 out:
2067         return r;
2068 }
2069
2070 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2071                                       struct kvm_x86_mce *mce)
2072 {
2073         u64 mcg_cap = vcpu->arch.mcg_cap;
2074         unsigned bank_num = mcg_cap & 0xff;
2075         u64 *banks = vcpu->arch.mce_banks;
2076
2077         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2078                 return -EINVAL;
2079         /*
2080          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2081          * reporting is disabled
2082          */
2083         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2084             vcpu->arch.mcg_ctl != ~(u64)0)
2085                 return 0;
2086         banks += 4 * mce->bank;
2087         /*
2088          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2089          * reporting is disabled for the bank
2090          */
2091         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2092                 return 0;
2093         if (mce->status & MCI_STATUS_UC) {
2094                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2095                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2096                         printk(KERN_DEBUG "kvm: set_mce: "
2097                                "injects mce exception while "
2098                                "previous one is in progress!\n");
2099                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2100                         return 0;
2101                 }
2102                 if (banks[1] & MCI_STATUS_VAL)
2103                         mce->status |= MCI_STATUS_OVER;
2104                 banks[2] = mce->addr;
2105                 banks[3] = mce->misc;
2106                 vcpu->arch.mcg_status = mce->mcg_status;
2107                 banks[1] = mce->status;
2108                 kvm_queue_exception(vcpu, MC_VECTOR);
2109         } else if (!(banks[1] & MCI_STATUS_VAL)
2110                    || !(banks[1] & MCI_STATUS_UC)) {
2111                 if (banks[1] & MCI_STATUS_VAL)
2112                         mce->status |= MCI_STATUS_OVER;
2113                 banks[2] = mce->addr;
2114                 banks[3] = mce->misc;
2115                 banks[1] = mce->status;
2116         } else
2117                 banks[1] |= MCI_STATUS_OVER;
2118         return 0;
2119 }
2120
2121 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2122                                                struct kvm_vcpu_events *events)
2123 {
2124         vcpu_load(vcpu);
2125
2126         events->exception.injected = vcpu->arch.exception.pending;
2127         events->exception.nr = vcpu->arch.exception.nr;
2128         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2129         events->exception.error_code = vcpu->arch.exception.error_code;
2130
2131         events->interrupt.injected = vcpu->arch.interrupt.pending;
2132         events->interrupt.nr = vcpu->arch.interrupt.nr;
2133         events->interrupt.soft = vcpu->arch.interrupt.soft;
2134
2135         events->nmi.injected = vcpu->arch.nmi_injected;
2136         events->nmi.pending = vcpu->arch.nmi_pending;
2137         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2138
2139         events->sipi_vector = vcpu->arch.sipi_vector;
2140
2141         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2142                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
2143
2144         vcpu_put(vcpu);
2145 }
2146
2147 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2148                                               struct kvm_vcpu_events *events)
2149 {
2150         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2151                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
2152                 return -EINVAL;
2153
2154         vcpu_load(vcpu);
2155
2156         vcpu->arch.exception.pending = events->exception.injected;
2157         vcpu->arch.exception.nr = events->exception.nr;
2158         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2159         vcpu->arch.exception.error_code = events->exception.error_code;
2160
2161         vcpu->arch.interrupt.pending = events->interrupt.injected;
2162         vcpu->arch.interrupt.nr = events->interrupt.nr;
2163         vcpu->arch.interrupt.soft = events->interrupt.soft;
2164         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2165                 kvm_pic_clear_isr_ack(vcpu->kvm);
2166
2167         vcpu->arch.nmi_injected = events->nmi.injected;
2168         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2169                 vcpu->arch.nmi_pending = events->nmi.pending;
2170         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2171
2172         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2173                 vcpu->arch.sipi_vector = events->sipi_vector;
2174
2175         vcpu_put(vcpu);
2176
2177         return 0;
2178 }
2179
2180 long kvm_arch_vcpu_ioctl(struct file *filp,
2181                          unsigned int ioctl, unsigned long arg)
2182 {
2183         struct kvm_vcpu *vcpu = filp->private_data;
2184         void __user *argp = (void __user *)arg;
2185         int r;
2186         struct kvm_lapic_state *lapic = NULL;
2187
2188         switch (ioctl) {
2189         case KVM_GET_LAPIC: {
2190                 r = -EINVAL;
2191                 if (!vcpu->arch.apic)
2192                         goto out;
2193                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2194
2195                 r = -ENOMEM;
2196                 if (!lapic)
2197                         goto out;
2198                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2199                 if (r)
2200                         goto out;
2201                 r = -EFAULT;
2202                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2203                         goto out;
2204                 r = 0;
2205                 break;
2206         }
2207         case KVM_SET_LAPIC: {
2208                 r = -EINVAL;
2209                 if (!vcpu->arch.apic)
2210                         goto out;
2211                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2212                 r = -ENOMEM;
2213                 if (!lapic)
2214                         goto out;
2215                 r = -EFAULT;
2216                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2217                         goto out;
2218                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2219                 if (r)
2220                         goto out;
2221                 r = 0;
2222                 break;
2223         }
2224         case KVM_INTERRUPT: {
2225                 struct kvm_interrupt irq;
2226
2227                 r = -EFAULT;
2228                 if (copy_from_user(&irq, argp, sizeof irq))
2229                         goto out;
2230                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2231                 if (r)
2232                         goto out;
2233                 r = 0;
2234                 break;
2235         }
2236         case KVM_NMI: {
2237                 r = kvm_vcpu_ioctl_nmi(vcpu);
2238                 if (r)
2239                         goto out;
2240                 r = 0;
2241                 break;
2242         }
2243         case KVM_SET_CPUID: {
2244                 struct kvm_cpuid __user *cpuid_arg = argp;
2245                 struct kvm_cpuid cpuid;
2246
2247                 r = -EFAULT;
2248                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2249                         goto out;
2250                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2251                 if (r)
2252                         goto out;
2253                 break;
2254         }
2255         case KVM_SET_CPUID2: {
2256                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2257                 struct kvm_cpuid2 cpuid;
2258
2259                 r = -EFAULT;
2260                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2261                         goto out;
2262                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2263                                               cpuid_arg->entries);
2264                 if (r)
2265                         goto out;
2266                 break;
2267         }
2268         case KVM_GET_CPUID2: {
2269                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2270                 struct kvm_cpuid2 cpuid;
2271
2272                 r = -EFAULT;
2273                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2274                         goto out;
2275                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2276                                               cpuid_arg->entries);
2277                 if (r)
2278                         goto out;
2279                 r = -EFAULT;
2280                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2281                         goto out;
2282                 r = 0;
2283                 break;
2284         }
2285         case KVM_GET_MSRS:
2286                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2287                 break;
2288         case KVM_SET_MSRS:
2289                 r = msr_io(vcpu, argp, do_set_msr, 0);
2290                 break;
2291         case KVM_TPR_ACCESS_REPORTING: {
2292                 struct kvm_tpr_access_ctl tac;
2293
2294                 r = -EFAULT;
2295                 if (copy_from_user(&tac, argp, sizeof tac))
2296                         goto out;
2297                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2298                 if (r)
2299                         goto out;
2300                 r = -EFAULT;
2301                 if (copy_to_user(argp, &tac, sizeof tac))
2302                         goto out;
2303                 r = 0;
2304                 break;
2305         };
2306         case KVM_SET_VAPIC_ADDR: {
2307                 struct kvm_vapic_addr va;
2308
2309                 r = -EINVAL;
2310                 if (!irqchip_in_kernel(vcpu->kvm))
2311                         goto out;
2312                 r = -EFAULT;
2313                 if (copy_from_user(&va, argp, sizeof va))
2314                         goto out;
2315                 r = 0;
2316                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2317                 break;
2318         }
2319         case KVM_X86_SETUP_MCE: {
2320                 u64 mcg_cap;
2321
2322                 r = -EFAULT;
2323                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2324                         goto out;
2325                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2326                 break;
2327         }
2328         case KVM_X86_SET_MCE: {
2329                 struct kvm_x86_mce mce;
2330
2331                 r = -EFAULT;
2332                 if (copy_from_user(&mce, argp, sizeof mce))
2333                         goto out;
2334                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2335                 break;
2336         }
2337         case KVM_GET_VCPU_EVENTS: {
2338                 struct kvm_vcpu_events events;
2339
2340                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2341
2342                 r = -EFAULT;
2343                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2344                         break;
2345                 r = 0;
2346                 break;
2347         }
2348         case KVM_SET_VCPU_EVENTS: {
2349                 struct kvm_vcpu_events events;
2350
2351                 r = -EFAULT;
2352                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2353                         break;
2354
2355                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2356                 break;
2357         }
2358         default:
2359                 r = -EINVAL;
2360         }
2361 out:
2362         kfree(lapic);
2363         return r;
2364 }
2365
2366 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2367 {
2368         int ret;
2369
2370         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2371                 return -1;
2372         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2373         return ret;
2374 }
2375
2376 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2377                                               u64 ident_addr)
2378 {
2379         kvm->arch.ept_identity_map_addr = ident_addr;
2380         return 0;
2381 }
2382
2383 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2384                                           u32 kvm_nr_mmu_pages)
2385 {
2386         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2387                 return -EINVAL;
2388
2389         mutex_lock(&kvm->slots_lock);
2390         spin_lock(&kvm->mmu_lock);
2391
2392         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2393         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2394
2395         spin_unlock(&kvm->mmu_lock);
2396         mutex_unlock(&kvm->slots_lock);
2397         return 0;
2398 }
2399
2400 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2401 {
2402         return kvm->arch.n_alloc_mmu_pages;
2403 }
2404
2405 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2406 {
2407         int i;
2408         struct kvm_mem_alias *alias;
2409         struct kvm_mem_aliases *aliases;
2410
2411         aliases = rcu_dereference(kvm->arch.aliases);
2412
2413         for (i = 0; i < aliases->naliases; ++i) {
2414                 alias = &aliases->aliases[i];
2415                 if (alias->flags & KVM_ALIAS_INVALID)
2416                         continue;
2417                 if (gfn >= alias->base_gfn
2418                     && gfn < alias->base_gfn + alias->npages)
2419                         return alias->target_gfn + gfn - alias->base_gfn;
2420         }
2421         return gfn;
2422 }
2423
2424 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2425 {
2426         int i;
2427         struct kvm_mem_alias *alias;
2428         struct kvm_mem_aliases *aliases;
2429
2430         aliases = rcu_dereference(kvm->arch.aliases);
2431
2432         for (i = 0; i < aliases->naliases; ++i) {
2433                 alias = &aliases->aliases[i];
2434                 if (gfn >= alias->base_gfn
2435                     && gfn < alias->base_gfn + alias->npages)
2436                         return alias->target_gfn + gfn - alias->base_gfn;
2437         }
2438         return gfn;
2439 }
2440
2441 /*
2442  * Set a new alias region.  Aliases map a portion of physical memory into
2443  * another portion.  This is useful for memory windows, for example the PC
2444  * VGA region.
2445  */
2446 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2447                                          struct kvm_memory_alias *alias)
2448 {
2449         int r, n;
2450         struct kvm_mem_alias *p;
2451         struct kvm_mem_aliases *aliases, *old_aliases;
2452
2453         r = -EINVAL;
2454         /* General sanity checks */
2455         if (alias->memory_size & (PAGE_SIZE - 1))
2456                 goto out;
2457         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2458                 goto out;
2459         if (alias->slot >= KVM_ALIAS_SLOTS)
2460                 goto out;
2461         if (alias->guest_phys_addr + alias->memory_size
2462             < alias->guest_phys_addr)
2463                 goto out;
2464         if (alias->target_phys_addr + alias->memory_size
2465             < alias->target_phys_addr)
2466                 goto out;
2467
2468         r = -ENOMEM;
2469         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2470         if (!aliases)
2471                 goto out;
2472
2473         mutex_lock(&kvm->slots_lock);
2474
2475         /* invalidate any gfn reference in case of deletion/shrinking */
2476         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2477         aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2478         old_aliases = kvm->arch.aliases;
2479         rcu_assign_pointer(kvm->arch.aliases, aliases);
2480         synchronize_srcu_expedited(&kvm->srcu);
2481         kvm_mmu_zap_all(kvm);
2482         kfree(old_aliases);
2483
2484         r = -ENOMEM;
2485         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2486         if (!aliases)
2487                 goto out_unlock;
2488
2489         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2490
2491         p = &aliases->aliases[alias->slot];
2492         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2493         p->npages = alias->memory_size >> PAGE_SHIFT;
2494         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2495         p->flags &= ~(KVM_ALIAS_INVALID);
2496
2497         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2498                 if (aliases->aliases[n - 1].npages)
2499                         break;
2500         aliases->naliases = n;
2501
2502         old_aliases = kvm->arch.aliases;
2503         rcu_assign_pointer(kvm->arch.aliases, aliases);
2504         synchronize_srcu_expedited(&kvm->srcu);
2505         kfree(old_aliases);
2506         r = 0;
2507
2508 out_unlock:
2509         mutex_unlock(&kvm->slots_lock);
2510 out:
2511         return r;
2512 }
2513
2514 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2515 {
2516         int r;
2517
2518         r = 0;
2519         switch (chip->chip_id) {
2520         case KVM_IRQCHIP_PIC_MASTER:
2521                 memcpy(&chip->chip.pic,
2522                         &pic_irqchip(kvm)->pics[0],
2523                         sizeof(struct kvm_pic_state));
2524                 break;
2525         case KVM_IRQCHIP_PIC_SLAVE:
2526                 memcpy(&chip->chip.pic,
2527                         &pic_irqchip(kvm)->pics[1],
2528                         sizeof(struct kvm_pic_state));
2529                 break;
2530         case KVM_IRQCHIP_IOAPIC:
2531                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2532                 break;
2533         default:
2534                 r = -EINVAL;
2535                 break;
2536         }
2537         return r;
2538 }
2539
2540 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2541 {
2542         int r;
2543
2544         r = 0;
2545         switch (chip->chip_id) {
2546         case KVM_IRQCHIP_PIC_MASTER:
2547                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2548                 memcpy(&pic_irqchip(kvm)->pics[0],
2549                         &chip->chip.pic,
2550                         sizeof(struct kvm_pic_state));
2551                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2552                 break;
2553         case KVM_IRQCHIP_PIC_SLAVE:
2554                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2555                 memcpy(&pic_irqchip(kvm)->pics[1],
2556                         &chip->chip.pic,
2557                         sizeof(struct kvm_pic_state));
2558                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2559                 break;
2560         case KVM_IRQCHIP_IOAPIC:
2561                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2562                 break;
2563         default:
2564                 r = -EINVAL;
2565                 break;
2566         }
2567         kvm_pic_update_irq(pic_irqchip(kvm));
2568         return r;
2569 }
2570
2571 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2572 {
2573         int r = 0;
2574
2575         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2576         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2577         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2578         return r;
2579 }
2580
2581 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2582 {
2583         int r = 0;
2584
2585         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2586         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2587         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2588         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2589         return r;
2590 }
2591
2592 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2593 {
2594         int r = 0;
2595
2596         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2597         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2598                 sizeof(ps->channels));
2599         ps->flags = kvm->arch.vpit->pit_state.flags;
2600         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2601         return r;
2602 }
2603
2604 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2605 {
2606         int r = 0, start = 0;
2607         u32 prev_legacy, cur_legacy;
2608         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2609         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2610         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2611         if (!prev_legacy && cur_legacy)
2612                 start = 1;
2613         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2614                sizeof(kvm->arch.vpit->pit_state.channels));
2615         kvm->arch.vpit->pit_state.flags = ps->flags;
2616         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2617         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2618         return r;
2619 }
2620
2621 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2622                                  struct kvm_reinject_control *control)
2623 {
2624         if (!kvm->arch.vpit)
2625                 return -ENXIO;
2626         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2627         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2628         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2629         return 0;
2630 }
2631
2632 /*
2633  * Get (and clear) the dirty memory log for a memory slot.
2634  */
2635 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2636                                       struct kvm_dirty_log *log)
2637 {
2638         int r, n, i;
2639         struct kvm_memory_slot *memslot;
2640         unsigned long is_dirty = 0;
2641         unsigned long *dirty_bitmap = NULL;
2642
2643         mutex_lock(&kvm->slots_lock);
2644
2645         r = -EINVAL;
2646         if (log->slot >= KVM_MEMORY_SLOTS)
2647                 goto out;
2648
2649         memslot = &kvm->memslots->memslots[log->slot];
2650         r = -ENOENT;
2651         if (!memslot->dirty_bitmap)
2652                 goto out;
2653
2654         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2655
2656         r = -ENOMEM;
2657         dirty_bitmap = vmalloc(n);
2658         if (!dirty_bitmap)
2659                 goto out;
2660         memset(dirty_bitmap, 0, n);
2661
2662         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2663                 is_dirty = memslot->dirty_bitmap[i];
2664
2665         /* If nothing is dirty, don't bother messing with page tables. */
2666         if (is_dirty) {
2667                 struct kvm_memslots *slots, *old_slots;
2668
2669                 spin_lock(&kvm->mmu_lock);
2670                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2671                 spin_unlock(&kvm->mmu_lock);
2672
2673                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2674                 if (!slots)
2675                         goto out_free;
2676
2677                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2678                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2679
2680                 old_slots = kvm->memslots;
2681                 rcu_assign_pointer(kvm->memslots, slots);
2682                 synchronize_srcu_expedited(&kvm->srcu);
2683                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2684                 kfree(old_slots);
2685         }
2686
2687         r = 0;
2688         if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2689                 r = -EFAULT;
2690 out_free:
2691         vfree(dirty_bitmap);
2692 out:
2693         mutex_unlock(&kvm->slots_lock);
2694         return r;
2695 }
2696
2697 long kvm_arch_vm_ioctl(struct file *filp,
2698                        unsigned int ioctl, unsigned long arg)
2699 {
2700         struct kvm *kvm = filp->private_data;
2701         void __user *argp = (void __user *)arg;
2702         int r = -ENOTTY;
2703         /*
2704          * This union makes it completely explicit to gcc-3.x
2705          * that these two variables' stack usage should be
2706          * combined, not added together.
2707          */
2708         union {
2709                 struct kvm_pit_state ps;
2710                 struct kvm_pit_state2 ps2;
2711                 struct kvm_memory_alias alias;
2712                 struct kvm_pit_config pit_config;
2713         } u;
2714
2715         switch (ioctl) {
2716         case KVM_SET_TSS_ADDR:
2717                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2718                 if (r < 0)
2719                         goto out;
2720                 break;
2721         case KVM_SET_IDENTITY_MAP_ADDR: {
2722                 u64 ident_addr;
2723
2724                 r = -EFAULT;
2725                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2726                         goto out;
2727                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2728                 if (r < 0)
2729                         goto out;
2730                 break;
2731         }
2732         case KVM_SET_MEMORY_REGION: {
2733                 struct kvm_memory_region kvm_mem;
2734                 struct kvm_userspace_memory_region kvm_userspace_mem;
2735
2736                 r = -EFAULT;
2737                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2738                         goto out;
2739                 kvm_userspace_mem.slot = kvm_mem.slot;
2740                 kvm_userspace_mem.flags = kvm_mem.flags;
2741                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2742                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2743                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2744                 if (r)
2745                         goto out;
2746                 break;
2747         }
2748         case KVM_SET_NR_MMU_PAGES:
2749                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2750                 if (r)
2751                         goto out;
2752                 break;
2753         case KVM_GET_NR_MMU_PAGES:
2754                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2755                 break;
2756         case KVM_SET_MEMORY_ALIAS:
2757                 r = -EFAULT;
2758                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2759                         goto out;
2760                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2761                 if (r)
2762                         goto out;
2763                 break;
2764         case KVM_CREATE_IRQCHIP: {
2765                 struct kvm_pic *vpic;
2766
2767                 mutex_lock(&kvm->lock);
2768                 r = -EEXIST;
2769                 if (kvm->arch.vpic)
2770                         goto create_irqchip_unlock;
2771                 r = -ENOMEM;
2772                 vpic = kvm_create_pic(kvm);
2773                 if (vpic) {
2774                         r = kvm_ioapic_init(kvm);
2775                         if (r) {
2776                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
2777                                                           &vpic->dev);
2778                                 kfree(vpic);
2779                                 goto create_irqchip_unlock;
2780                         }
2781                 } else
2782                         goto create_irqchip_unlock;
2783                 smp_wmb();
2784                 kvm->arch.vpic = vpic;
2785                 smp_wmb();
2786                 r = kvm_setup_default_irq_routing(kvm);
2787                 if (r) {
2788                         mutex_lock(&kvm->irq_lock);
2789                         kvm_ioapic_destroy(kvm);
2790                         kvm_destroy_pic(kvm);
2791                         mutex_unlock(&kvm->irq_lock);
2792                 }
2793         create_irqchip_unlock:
2794                 mutex_unlock(&kvm->lock);
2795                 break;
2796         }
2797         case KVM_CREATE_PIT:
2798                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2799                 goto create_pit;
2800         case KVM_CREATE_PIT2:
2801                 r = -EFAULT;
2802                 if (copy_from_user(&u.pit_config, argp,
2803                                    sizeof(struct kvm_pit_config)))
2804                         goto out;
2805         create_pit:
2806                 mutex_lock(&kvm->slots_lock);
2807                 r = -EEXIST;
2808                 if (kvm->arch.vpit)
2809                         goto create_pit_unlock;
2810                 r = -ENOMEM;
2811                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2812                 if (kvm->arch.vpit)
2813                         r = 0;
2814         create_pit_unlock:
2815                 mutex_unlock(&kvm->slots_lock);
2816                 break;
2817         case KVM_IRQ_LINE_STATUS:
2818         case KVM_IRQ_LINE: {
2819                 struct kvm_irq_level irq_event;
2820
2821                 r = -EFAULT;
2822                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2823                         goto out;
2824                 if (irqchip_in_kernel(kvm)) {
2825                         __s32 status;
2826                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2827                                         irq_event.irq, irq_event.level);
2828                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2829                                 irq_event.status = status;
2830                                 if (copy_to_user(argp, &irq_event,
2831                                                         sizeof irq_event))
2832                                         goto out;
2833                         }
2834                         r = 0;
2835                 }
2836                 break;
2837         }
2838         case KVM_GET_IRQCHIP: {
2839                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2840                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2841
2842                 r = -ENOMEM;
2843                 if (!chip)
2844                         goto out;
2845                 r = -EFAULT;
2846                 if (copy_from_user(chip, argp, sizeof *chip))
2847                         goto get_irqchip_out;
2848                 r = -ENXIO;
2849                 if (!irqchip_in_kernel(kvm))
2850                         goto get_irqchip_out;
2851                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2852                 if (r)
2853                         goto get_irqchip_out;
2854                 r = -EFAULT;
2855                 if (copy_to_user(argp, chip, sizeof *chip))
2856                         goto get_irqchip_out;
2857                 r = 0;
2858         get_irqchip_out:
2859                 kfree(chip);
2860                 if (r)
2861                         goto out;
2862                 break;
2863         }
2864         case KVM_SET_IRQCHIP: {
2865                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2866                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2867
2868                 r = -ENOMEM;
2869                 if (!chip)
2870                         goto out;
2871                 r = -EFAULT;
2872                 if (copy_from_user(chip, argp, sizeof *chip))
2873                         goto set_irqchip_out;
2874                 r = -ENXIO;
2875                 if (!irqchip_in_kernel(kvm))
2876                         goto set_irqchip_out;
2877                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2878                 if (r)
2879                         goto set_irqchip_out;
2880                 r = 0;
2881         set_irqchip_out:
2882                 kfree(chip);
2883                 if (r)
2884                         goto out;
2885                 break;
2886         }
2887         case KVM_GET_PIT: {
2888                 r = -EFAULT;
2889                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2890                         goto out;
2891                 r = -ENXIO;
2892                 if (!kvm->arch.vpit)
2893                         goto out;
2894                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2895                 if (r)
2896                         goto out;
2897                 r = -EFAULT;
2898                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2899                         goto out;
2900                 r = 0;
2901                 break;
2902         }
2903         case KVM_SET_PIT: {
2904                 r = -EFAULT;
2905                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2906                         goto out;
2907                 r = -ENXIO;
2908                 if (!kvm->arch.vpit)
2909                         goto out;
2910                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2911                 if (r)
2912                         goto out;
2913                 r = 0;
2914                 break;
2915         }
2916         case KVM_GET_PIT2: {
2917                 r = -ENXIO;
2918                 if (!kvm->arch.vpit)
2919                         goto out;
2920                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2921                 if (r)
2922                         goto out;
2923                 r = -EFAULT;
2924                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2925                         goto out;
2926                 r = 0;
2927                 break;
2928         }
2929         case KVM_SET_PIT2: {
2930                 r = -EFAULT;
2931                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2932                         goto out;
2933                 r = -ENXIO;
2934                 if (!kvm->arch.vpit)
2935                         goto out;
2936                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2937                 if (r)
2938                         goto out;
2939                 r = 0;
2940                 break;
2941         }
2942         case KVM_REINJECT_CONTROL: {
2943                 struct kvm_reinject_control control;
2944                 r =  -EFAULT;
2945                 if (copy_from_user(&control, argp, sizeof(control)))
2946                         goto out;
2947                 r = kvm_vm_ioctl_reinject(kvm, &control);
2948                 if (r)
2949                         goto out;
2950                 r = 0;
2951                 break;
2952         }
2953         case KVM_XEN_HVM_CONFIG: {
2954                 r = -EFAULT;
2955                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2956                                    sizeof(struct kvm_xen_hvm_config)))
2957                         goto out;
2958                 r = -EINVAL;
2959                 if (kvm->arch.xen_hvm_config.flags)
2960                         goto out;
2961                 r = 0;
2962                 break;
2963         }
2964         case KVM_SET_CLOCK: {
2965                 struct timespec now;
2966                 struct kvm_clock_data user_ns;
2967                 u64 now_ns;
2968                 s64 delta;
2969
2970                 r = -EFAULT;
2971                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2972                         goto out;
2973
2974                 r = -EINVAL;
2975                 if (user_ns.flags)
2976                         goto out;
2977
2978                 r = 0;
2979                 ktime_get_ts(&now);
2980                 now_ns = timespec_to_ns(&now);
2981                 delta = user_ns.clock - now_ns;
2982                 kvm->arch.kvmclock_offset = delta;
2983                 break;
2984         }
2985         case KVM_GET_CLOCK: {
2986                 struct timespec now;
2987                 struct kvm_clock_data user_ns;
2988                 u64 now_ns;
2989
2990                 ktime_get_ts(&now);
2991                 now_ns = timespec_to_ns(&now);
2992                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2993                 user_ns.flags = 0;
2994
2995                 r = -EFAULT;
2996                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2997                         goto out;
2998                 r = 0;
2999                 break;
3000         }
3001
3002         default:
3003                 ;
3004         }
3005 out:
3006         return r;
3007 }
3008
3009 static void kvm_init_msr_list(void)
3010 {
3011         u32 dummy[2];
3012         unsigned i, j;
3013
3014         /* skip the first msrs in the list. KVM-specific */
3015         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3016                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3017                         continue;
3018                 if (j < i)
3019                         msrs_to_save[j] = msrs_to_save[i];
3020                 j++;
3021         }
3022         num_msrs_to_save = j;
3023 }
3024
3025 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3026                            const void *v)
3027 {
3028         if (vcpu->arch.apic &&
3029             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3030                 return 0;
3031
3032         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3033 }
3034
3035 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3036 {
3037         if (vcpu->arch.apic &&
3038             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3039                 return 0;
3040
3041         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3042 }
3043
3044 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3045 {
3046         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3047         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3048 }
3049
3050  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3051 {
3052         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3053         access |= PFERR_FETCH_MASK;
3054         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3055 }
3056
3057 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3058 {
3059         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3060         access |= PFERR_WRITE_MASK;
3061         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3062 }
3063
3064 /* uses this to access any guest's mapped memory without checking CPL */
3065 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3066 {
3067         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3068 }
3069
3070 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3071                                       struct kvm_vcpu *vcpu, u32 access,
3072                                       u32 *error)
3073 {
3074         void *data = val;
3075         int r = X86EMUL_CONTINUE;
3076
3077         while (bytes) {
3078                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3079                 unsigned offset = addr & (PAGE_SIZE-1);
3080                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3081                 int ret;
3082
3083                 if (gpa == UNMAPPED_GVA) {
3084                         r = X86EMUL_PROPAGATE_FAULT;
3085                         goto out;
3086                 }
3087                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3088                 if (ret < 0) {
3089                         r = X86EMUL_UNHANDLEABLE;
3090                         goto out;
3091                 }
3092
3093                 bytes -= toread;
3094                 data += toread;
3095                 addr += toread;
3096         }
3097 out:
3098         return r;
3099 }
3100
3101 /* used for instruction fetching */
3102 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3103                                 struct kvm_vcpu *vcpu, u32 *error)
3104 {
3105         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3106         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3107                                           access | PFERR_FETCH_MASK, error);
3108 }
3109
3110 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3111                                struct kvm_vcpu *vcpu, u32 *error)
3112 {
3113         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3114         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3115                                           error);
3116 }
3117
3118 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3119                                struct kvm_vcpu *vcpu, u32 *error)
3120 {
3121         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3122 }
3123
3124 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
3125                                 struct kvm_vcpu *vcpu, u32 *error)
3126 {
3127         void *data = val;
3128         int r = X86EMUL_CONTINUE;
3129
3130         while (bytes) {
3131                 gpa_t gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error);
3132                 unsigned offset = addr & (PAGE_SIZE-1);
3133                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3134                 int ret;
3135
3136                 if (gpa == UNMAPPED_GVA) {
3137                         r = X86EMUL_PROPAGATE_FAULT;
3138                         goto out;
3139                 }
3140                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3141                 if (ret < 0) {
3142                         r = X86EMUL_UNHANDLEABLE;
3143                         goto out;
3144                 }
3145
3146                 bytes -= towrite;
3147                 data += towrite;
3148                 addr += towrite;
3149         }
3150 out:
3151         return r;
3152 }
3153
3154
3155 static int emulator_read_emulated(unsigned long addr,
3156                                   void *val,
3157                                   unsigned int bytes,
3158                                   struct kvm_vcpu *vcpu)
3159 {
3160         gpa_t                 gpa;
3161         u32 error_code;
3162
3163         if (vcpu->mmio_read_completed) {
3164                 memcpy(val, vcpu->mmio_data, bytes);
3165                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3166                                vcpu->mmio_phys_addr, *(u64 *)val);
3167                 vcpu->mmio_read_completed = 0;
3168                 return X86EMUL_CONTINUE;
3169         }
3170
3171         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
3172
3173         if (gpa == UNMAPPED_GVA) {
3174                 kvm_inject_page_fault(vcpu, addr, error_code);
3175                 return X86EMUL_PROPAGATE_FAULT;
3176         }
3177
3178         /* For APIC access vmexit */
3179         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3180                 goto mmio;
3181
3182         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3183                                 == X86EMUL_CONTINUE)
3184                 return X86EMUL_CONTINUE;
3185
3186 mmio:
3187         /*
3188          * Is this MMIO handled locally?
3189          */
3190         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3191                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3192                 return X86EMUL_CONTINUE;
3193         }
3194
3195         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3196
3197         vcpu->mmio_needed = 1;
3198         vcpu->mmio_phys_addr = gpa;
3199         vcpu->mmio_size = bytes;
3200         vcpu->mmio_is_write = 0;
3201
3202         return X86EMUL_UNHANDLEABLE;
3203 }
3204
3205 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3206                           const void *val, int bytes)
3207 {
3208         int ret;
3209
3210         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3211         if (ret < 0)
3212                 return 0;
3213         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3214         return 1;
3215 }
3216
3217 static int emulator_write_emulated_onepage(unsigned long addr,
3218                                            const void *val,
3219                                            unsigned int bytes,
3220                                            struct kvm_vcpu *vcpu)
3221 {
3222         gpa_t                 gpa;
3223         u32 error_code;
3224
3225         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
3226
3227         if (gpa == UNMAPPED_GVA) {
3228                 kvm_inject_page_fault(vcpu, addr, error_code);
3229                 return X86EMUL_PROPAGATE_FAULT;
3230         }
3231
3232         /* For APIC access vmexit */
3233         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3234                 goto mmio;
3235
3236         if (emulator_write_phys(vcpu, gpa, val, bytes))
3237                 return X86EMUL_CONTINUE;
3238
3239 mmio:
3240         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3241         /*
3242          * Is this MMIO handled locally?
3243          */
3244         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3245                 return X86EMUL_CONTINUE;
3246
3247         vcpu->mmio_needed = 1;
3248         vcpu->mmio_phys_addr = gpa;
3249         vcpu->mmio_size = bytes;
3250         vcpu->mmio_is_write = 1;
3251         memcpy(vcpu->mmio_data, val, bytes);
3252
3253         return X86EMUL_CONTINUE;
3254 }
3255
3256 int emulator_write_emulated(unsigned long addr,
3257                                    const void *val,
3258                                    unsigned int bytes,
3259                                    struct kvm_vcpu *vcpu)
3260 {
3261         /* Crossing a page boundary? */
3262         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3263                 int rc, now;
3264
3265                 now = -addr & ~PAGE_MASK;
3266                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
3267                 if (rc != X86EMUL_CONTINUE)
3268                         return rc;
3269                 addr += now;
3270                 val += now;
3271                 bytes -= now;
3272         }
3273         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
3274 }
3275 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3276
3277 static int emulator_cmpxchg_emulated(unsigned long addr,
3278                                      const void *old,
3279                                      const void *new,
3280                                      unsigned int bytes,
3281                                      struct kvm_vcpu *vcpu)
3282 {
3283         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3284 #ifndef CONFIG_X86_64
3285         /* guests cmpxchg8b have to be emulated atomically */
3286         if (bytes == 8) {
3287                 gpa_t gpa;
3288                 struct page *page;
3289                 char *kaddr;
3290                 u64 val;
3291
3292                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3293
3294                 if (gpa == UNMAPPED_GVA ||
3295                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3296                         goto emul_write;
3297
3298                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3299                         goto emul_write;
3300
3301                 val = *(u64 *)new;
3302
3303                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3304
3305                 kaddr = kmap_atomic(page, KM_USER0);
3306                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
3307                 kunmap_atomic(kaddr, KM_USER0);
3308                 kvm_release_page_dirty(page);
3309         }
3310 emul_write:
3311 #endif
3312
3313         return emulator_write_emulated(addr, new, bytes, vcpu);
3314 }
3315
3316 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3317 {
3318         return kvm_x86_ops->get_segment_base(vcpu, seg);
3319 }
3320
3321 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3322 {
3323         kvm_mmu_invlpg(vcpu, address);
3324         return X86EMUL_CONTINUE;
3325 }
3326
3327 int emulate_clts(struct kvm_vcpu *vcpu)
3328 {
3329         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3330         kvm_x86_ops->fpu_activate(vcpu);
3331         return X86EMUL_CONTINUE;
3332 }
3333
3334 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3335 {
3336         return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
3337 }
3338
3339 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3340 {
3341         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3342
3343         return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
3344 }
3345
3346 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3347 {
3348         u8 opcodes[4];
3349         unsigned long rip = kvm_rip_read(vcpu);
3350         unsigned long rip_linear;
3351
3352         if (!printk_ratelimit())
3353                 return;
3354
3355         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3356
3357         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
3358
3359         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3360                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3361 }
3362 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3363
3364 static struct x86_emulate_ops emulate_ops = {
3365         .read_std            = kvm_read_guest_virt_system,
3366         .fetch               = kvm_fetch_guest_virt,
3367         .read_emulated       = emulator_read_emulated,
3368         .write_emulated      = emulator_write_emulated,
3369         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
3370 };
3371
3372 static void cache_all_regs(struct kvm_vcpu *vcpu)
3373 {
3374         kvm_register_read(vcpu, VCPU_REGS_RAX);
3375         kvm_register_read(vcpu, VCPU_REGS_RSP);
3376         kvm_register_read(vcpu, VCPU_REGS_RIP);
3377         vcpu->arch.regs_dirty = ~0;
3378 }
3379
3380 int emulate_instruction(struct kvm_vcpu *vcpu,
3381                         unsigned long cr2,
3382                         u16 error_code,
3383                         int emulation_type)
3384 {
3385         int r, shadow_mask;
3386         struct decode_cache *c;
3387         struct kvm_run *run = vcpu->run;
3388
3389         kvm_clear_exception_queue(vcpu);
3390         vcpu->arch.mmio_fault_cr2 = cr2;
3391         /*
3392          * TODO: fix emulate.c to use guest_read/write_register
3393          * instead of direct ->regs accesses, can save hundred cycles
3394          * on Intel for instructions that don't read/change RSP, for
3395          * for example.
3396          */
3397         cache_all_regs(vcpu);
3398
3399         vcpu->mmio_is_write = 0;
3400         vcpu->arch.pio.string = 0;
3401
3402         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3403                 int cs_db, cs_l;
3404                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3405
3406                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3407                 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3408                 vcpu->arch.emulate_ctxt.mode =
3409                         (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3410                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3411                         ? X86EMUL_MODE_VM86 : cs_l
3412                         ? X86EMUL_MODE_PROT64 : cs_db
3413                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3414
3415                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3416
3417                 /* Only allow emulation of specific instructions on #UD
3418                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
3419                 c = &vcpu->arch.emulate_ctxt.decode;
3420                 if (emulation_type & EMULTYPE_TRAP_UD) {
3421                         if (!c->twobyte)
3422                                 return EMULATE_FAIL;
3423                         switch (c->b) {
3424                         case 0x01: /* VMMCALL */
3425                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3426                                         return EMULATE_FAIL;
3427                                 break;
3428                         case 0x34: /* sysenter */
3429                         case 0x35: /* sysexit */
3430                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3431                                         return EMULATE_FAIL;
3432                                 break;
3433                         case 0x05: /* syscall */
3434                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3435                                         return EMULATE_FAIL;
3436                                 break;
3437                         default:
3438                                 return EMULATE_FAIL;
3439                         }
3440
3441                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3442                                 return EMULATE_FAIL;
3443                 }
3444
3445                 ++vcpu->stat.insn_emulation;
3446                 if (r)  {
3447                         ++vcpu->stat.insn_emulation_fail;
3448                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3449                                 return EMULATE_DONE;
3450                         return EMULATE_FAIL;
3451                 }
3452         }
3453
3454         if (emulation_type & EMULTYPE_SKIP) {
3455                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3456                 return EMULATE_DONE;
3457         }
3458
3459         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3460         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3461
3462         if (r == 0)
3463                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3464
3465         if (vcpu->arch.pio.string)
3466                 return EMULATE_DO_MMIO;
3467
3468         if ((r || vcpu->mmio_is_write) && run) {
3469                 run->exit_reason = KVM_EXIT_MMIO;
3470                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3471                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3472                 run->mmio.len = vcpu->mmio_size;
3473                 run->mmio.is_write = vcpu->mmio_is_write;
3474         }
3475
3476         if (r) {
3477                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3478                         return EMULATE_DONE;
3479                 if (!vcpu->mmio_needed) {
3480                         kvm_report_emulation_failure(vcpu, "mmio");
3481                         return EMULATE_FAIL;
3482                 }
3483                 return EMULATE_DO_MMIO;
3484         }
3485
3486         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3487
3488         if (vcpu->mmio_is_write) {
3489                 vcpu->mmio_needed = 0;
3490                 return EMULATE_DO_MMIO;
3491         }
3492
3493         return EMULATE_DONE;
3494 }
3495 EXPORT_SYMBOL_GPL(emulate_instruction);
3496
3497 static int pio_copy_data(struct kvm_vcpu *vcpu)
3498 {
3499         void *p = vcpu->arch.pio_data;
3500         gva_t q = vcpu->arch.pio.guest_gva;
3501         unsigned bytes;
3502         int ret;
3503         u32 error_code;
3504
3505         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3506         if (vcpu->arch.pio.in)
3507                 ret = kvm_write_guest_virt(q, p, bytes, vcpu, &error_code);
3508         else
3509                 ret = kvm_read_guest_virt(q, p, bytes, vcpu, &error_code);
3510
3511         if (ret == X86EMUL_PROPAGATE_FAULT)
3512                 kvm_inject_page_fault(vcpu, q, error_code);
3513
3514         return ret;
3515 }
3516
3517 int complete_pio(struct kvm_vcpu *vcpu)
3518 {
3519         struct kvm_pio_request *io = &vcpu->arch.pio;
3520         long delta;
3521         int r;
3522         unsigned long val;
3523
3524         if (!io->string) {
3525                 if (io->in) {
3526                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3527                         memcpy(&val, vcpu->arch.pio_data, io->size);
3528                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3529                 }
3530         } else {
3531                 if (io->in) {
3532                         r = pio_copy_data(vcpu);
3533                         if (r)
3534                                 goto out;
3535                 }
3536
3537                 delta = 1;
3538                 if (io->rep) {
3539                         delta *= io->cur_count;
3540                         /*
3541                          * The size of the register should really depend on
3542                          * current address size.
3543                          */
3544                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3545                         val -= delta;
3546                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3547                 }
3548                 if (io->down)
3549                         delta = -delta;
3550                 delta *= io->size;
3551                 if (io->in) {
3552                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3553                         val += delta;
3554                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3555                 } else {
3556                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3557                         val += delta;
3558                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3559                 }
3560         }
3561 out:
3562         io->count -= io->cur_count;
3563         io->cur_count = 0;
3564
3565         return 0;
3566 }
3567
3568 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3569 {
3570         /* TODO: String I/O for in kernel device */
3571         int r;
3572
3573         if (vcpu->arch.pio.in)
3574                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3575                                     vcpu->arch.pio.size, pd);
3576         else
3577                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3578                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3579                                      pd);
3580         return r;
3581 }
3582
3583 static int pio_string_write(struct kvm_vcpu *vcpu)
3584 {
3585         struct kvm_pio_request *io = &vcpu->arch.pio;
3586         void *pd = vcpu->arch.pio_data;
3587         int i, r = 0;
3588
3589         for (i = 0; i < io->cur_count; i++) {
3590                 if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3591                                      io->port, io->size, pd)) {
3592                         r = -EOPNOTSUPP;
3593                         break;
3594                 }
3595                 pd += io->size;
3596         }
3597         return r;
3598 }
3599
3600 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3601 {
3602         unsigned long val;
3603
3604         trace_kvm_pio(!in, port, size, 1);
3605
3606         vcpu->run->exit_reason = KVM_EXIT_IO;
3607         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3608         vcpu->run->io.size = vcpu->arch.pio.size = size;
3609         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3610         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3611         vcpu->run->io.port = vcpu->arch.pio.port = port;
3612         vcpu->arch.pio.in = in;
3613         vcpu->arch.pio.string = 0;
3614         vcpu->arch.pio.down = 0;
3615         vcpu->arch.pio.rep = 0;
3616
3617         if (!vcpu->arch.pio.in) {
3618                 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3619                 memcpy(vcpu->arch.pio_data, &val, 4);
3620         }
3621
3622         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3623                 complete_pio(vcpu);
3624                 return 1;
3625         }
3626         return 0;
3627 }
3628 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3629
3630 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3631                   int size, unsigned long count, int down,
3632                   gva_t address, int rep, unsigned port)
3633 {
3634         unsigned now, in_page;
3635         int ret = 0;
3636
3637         trace_kvm_pio(!in, port, size, count);
3638
3639         vcpu->run->exit_reason = KVM_EXIT_IO;
3640         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3641         vcpu->run->io.size = vcpu->arch.pio.size = size;
3642         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3643         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3644         vcpu->run->io.port = vcpu->arch.pio.port = port;
3645         vcpu->arch.pio.in = in;
3646         vcpu->arch.pio.string = 1;
3647         vcpu->arch.pio.down = down;
3648         vcpu->arch.pio.rep = rep;
3649
3650         if (!count) {
3651                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3652                 return 1;
3653         }
3654
3655         if (!down)
3656                 in_page = PAGE_SIZE - offset_in_page(address);
3657         else
3658                 in_page = offset_in_page(address) + size;
3659         now = min(count, (unsigned long)in_page / size);
3660         if (!now)
3661                 now = 1;
3662         if (down) {
3663                 /*
3664                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3665                  */
3666                 pr_unimpl(vcpu, "guest string pio down\n");
3667                 kvm_inject_gp(vcpu, 0);
3668                 return 1;
3669         }
3670         vcpu->run->io.count = now;
3671         vcpu->arch.pio.cur_count = now;
3672
3673         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3674                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3675
3676         vcpu->arch.pio.guest_gva = address;
3677
3678         if (!vcpu->arch.pio.in) {
3679                 /* string PIO write */
3680                 ret = pio_copy_data(vcpu);
3681                 if (ret == X86EMUL_PROPAGATE_FAULT)
3682                         return 1;
3683                 if (ret == 0 && !pio_string_write(vcpu)) {
3684                         complete_pio(vcpu);
3685                         if (vcpu->arch.pio.count == 0)
3686                                 ret = 1;
3687                 }
3688         }
3689         /* no string PIO read support yet */
3690
3691         return ret;
3692 }
3693 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3694
3695 static void bounce_off(void *info)
3696 {
3697         /* nothing */
3698 }
3699
3700 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3701                                      void *data)
3702 {
3703         struct cpufreq_freqs *freq = data;
3704         struct kvm *kvm;
3705         struct kvm_vcpu *vcpu;
3706         int i, send_ipi = 0;
3707
3708         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3709                 return 0;
3710         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3711                 return 0;
3712         per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3713
3714         spin_lock(&kvm_lock);
3715         list_for_each_entry(kvm, &vm_list, vm_list) {
3716                 kvm_for_each_vcpu(i, vcpu, kvm) {
3717                         if (vcpu->cpu != freq->cpu)
3718                                 continue;
3719                         if (!kvm_request_guest_time_update(vcpu))
3720                                 continue;
3721                         if (vcpu->cpu != smp_processor_id())
3722                                 send_ipi++;
3723                 }
3724         }
3725         spin_unlock(&kvm_lock);
3726
3727         if (freq->old < freq->new && send_ipi) {
3728                 /*
3729                  * We upscale the frequency.  Must make the guest
3730                  * doesn't see old kvmclock values while running with
3731                  * the new frequency, otherwise we risk the guest sees
3732                  * time go backwards.
3733                  *
3734                  * In case we update the frequency for another cpu
3735                  * (which might be in guest context) send an interrupt
3736                  * to kick the cpu out of guest context.  Next time
3737                  * guest context is entered kvmclock will be updated,
3738                  * so the guest will not see stale values.
3739                  */
3740                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3741         }
3742         return 0;
3743 }
3744
3745 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3746         .notifier_call  = kvmclock_cpufreq_notifier
3747 };
3748
3749 static void kvm_timer_init(void)
3750 {
3751         int cpu;
3752
3753         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3754                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3755                                           CPUFREQ_TRANSITION_NOTIFIER);
3756                 for_each_online_cpu(cpu) {
3757                         unsigned long khz = cpufreq_get(cpu);
3758                         if (!khz)
3759                                 khz = tsc_khz;
3760                         per_cpu(cpu_tsc_khz, cpu) = khz;
3761                 }
3762         } else {
3763                 for_each_possible_cpu(cpu)
3764                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3765         }
3766 }
3767
3768 int kvm_arch_init(void *opaque)
3769 {
3770         int r;
3771         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3772
3773         if (kvm_x86_ops) {
3774                 printk(KERN_ERR "kvm: already loaded the other module\n");
3775                 r = -EEXIST;
3776                 goto out;
3777         }
3778
3779         if (!ops->cpu_has_kvm_support()) {
3780                 printk(KERN_ERR "kvm: no hardware support\n");
3781                 r = -EOPNOTSUPP;
3782                 goto out;
3783         }
3784         if (ops->disabled_by_bios()) {
3785                 printk(KERN_ERR "kvm: disabled by bios\n");
3786                 r = -EOPNOTSUPP;
3787                 goto out;
3788         }
3789
3790         r = kvm_mmu_module_init();
3791         if (r)
3792                 goto out;
3793
3794         kvm_init_msr_list();
3795
3796         kvm_x86_ops = ops;
3797         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3798         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3799         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3800                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3801
3802         kvm_timer_init();
3803
3804         return 0;
3805
3806 out:
3807         return r;
3808 }
3809
3810 void kvm_arch_exit(void)
3811 {
3812         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3813                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3814                                             CPUFREQ_TRANSITION_NOTIFIER);
3815         kvm_x86_ops = NULL;
3816         kvm_mmu_module_exit();
3817 }
3818
3819 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3820 {
3821         ++vcpu->stat.halt_exits;
3822         if (irqchip_in_kernel(vcpu->kvm)) {
3823                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3824                 return 1;
3825         } else {
3826                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3827                 return 0;
3828         }
3829 }
3830 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3831
3832 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3833                            unsigned long a1)
3834 {
3835         if (is_long_mode(vcpu))
3836                 return a0;
3837         else
3838                 return a0 | ((gpa_t)a1 << 32);
3839 }
3840
3841 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
3842 {
3843         u64 param, ingpa, outgpa, ret;
3844         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
3845         bool fast, longmode;
3846         int cs_db, cs_l;
3847
3848         /*
3849          * hypercall generates UD from non zero cpl and real mode
3850          * per HYPER-V spec
3851          */
3852         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
3853                 kvm_queue_exception(vcpu, UD_VECTOR);
3854                 return 0;
3855         }
3856
3857         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3858         longmode = is_long_mode(vcpu) && cs_l == 1;
3859
3860         if (!longmode) {
3861                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
3862                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
3863                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
3864                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
3865                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
3866                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
3867         }
3868 #ifdef CONFIG_X86_64
3869         else {
3870                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
3871                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
3872                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
3873         }
3874 #endif
3875
3876         code = param & 0xffff;
3877         fast = (param >> 16) & 0x1;
3878         rep_cnt = (param >> 32) & 0xfff;
3879         rep_idx = (param >> 48) & 0xfff;
3880
3881         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
3882
3883         switch (code) {
3884         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
3885                 kvm_vcpu_on_spin(vcpu);
3886                 break;
3887         default:
3888                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
3889                 break;
3890         }
3891
3892         ret = res | (((u64)rep_done & 0xfff) << 32);
3893         if (longmode) {
3894                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3895         } else {
3896                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
3897                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
3898         }
3899
3900         return 1;
3901 }
3902
3903 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3904 {
3905         unsigned long nr, a0, a1, a2, a3, ret;
3906         int r = 1;
3907
3908         if (kvm_hv_hypercall_enabled(vcpu->kvm))
3909                 return kvm_hv_hypercall(vcpu);
3910
3911         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3912         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3913         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3914         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3915         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3916
3917         trace_kvm_hypercall(nr, a0, a1, a2, a3);
3918
3919         if (!is_long_mode(vcpu)) {
3920                 nr &= 0xFFFFFFFF;
3921                 a0 &= 0xFFFFFFFF;
3922                 a1 &= 0xFFFFFFFF;
3923                 a2 &= 0xFFFFFFFF;
3924                 a3 &= 0xFFFFFFFF;
3925         }
3926
3927         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3928                 ret = -KVM_EPERM;
3929                 goto out;
3930         }
3931
3932         switch (nr) {
3933         case KVM_HC_VAPIC_POLL_IRQ:
3934                 ret = 0;
3935                 break;
3936         case KVM_HC_MMU_OP:
3937                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3938                 break;
3939         default:
3940                 ret = -KVM_ENOSYS;
3941                 break;
3942         }
3943 out:
3944         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3945         ++vcpu->stat.hypercalls;
3946         return r;
3947 }
3948 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3949
3950 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3951 {
3952         char instruction[3];
3953         unsigned long rip = kvm_rip_read(vcpu);
3954
3955         /*
3956          * Blow out the MMU to ensure that no other VCPU has an active mapping
3957          * to ensure that the updated hypercall appears atomically across all
3958          * VCPUs.
3959          */
3960         kvm_mmu_zap_all(vcpu->kvm);
3961
3962         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3963
3964         return emulator_write_emulated(rip, instruction, 3, vcpu);
3965 }
3966
3967 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3968 {
3969         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3970 }
3971
3972 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3973 {
3974         struct descriptor_table dt = { limit, base };
3975
3976         kvm_x86_ops->set_gdt(vcpu, &dt);
3977 }
3978
3979 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3980 {
3981         struct descriptor_table dt = { limit, base };
3982
3983         kvm_x86_ops->set_idt(vcpu, &dt);
3984 }
3985
3986 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3987                    unsigned long *rflags)
3988 {
3989         kvm_lmsw(vcpu, msw);
3990         *rflags = kvm_get_rflags(vcpu);
3991 }
3992
3993 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3994 {
3995         unsigned long value;
3996
3997         switch (cr) {
3998         case 0:
3999                 value = kvm_read_cr0(vcpu);
4000                 break;
4001         case 2:
4002                 value = vcpu->arch.cr2;
4003                 break;
4004         case 3:
4005                 value = vcpu->arch.cr3;
4006                 break;
4007         case 4:
4008                 value = kvm_read_cr4(vcpu);
4009                 break;
4010         case 8:
4011                 value = kvm_get_cr8(vcpu);
4012                 break;
4013         default:
4014                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4015                 return 0;
4016         }
4017
4018         return value;
4019 }
4020
4021 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
4022                      unsigned long *rflags)
4023 {
4024         switch (cr) {
4025         case 0:
4026                 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4027                 *rflags = kvm_get_rflags(vcpu);
4028                 break;
4029         case 2:
4030                 vcpu->arch.cr2 = val;
4031                 break;
4032         case 3:
4033                 kvm_set_cr3(vcpu, val);
4034                 break;
4035         case 4:
4036                 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4037                 break;
4038         case 8:
4039                 kvm_set_cr8(vcpu, val & 0xfUL);
4040                 break;
4041         default:
4042                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4043         }
4044 }
4045
4046 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4047 {
4048         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4049         int j, nent = vcpu->arch.cpuid_nent;
4050
4051         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4052         /* when no next entry is found, the current entry[i] is reselected */
4053         for (j = i + 1; ; j = (j + 1) % nent) {
4054                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4055                 if (ej->function == e->function) {
4056                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4057                         return j;
4058                 }
4059         }
4060         return 0; /* silence gcc, even though control never reaches here */
4061 }
4062
4063 /* find an entry with matching function, matching index (if needed), and that
4064  * should be read next (if it's stateful) */
4065 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4066         u32 function, u32 index)
4067 {
4068         if (e->function != function)
4069                 return 0;
4070         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4071                 return 0;
4072         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4073             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4074                 return 0;
4075         return 1;
4076 }
4077
4078 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4079                                               u32 function, u32 index)
4080 {
4081         int i;
4082         struct kvm_cpuid_entry2 *best = NULL;
4083
4084         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4085                 struct kvm_cpuid_entry2 *e;
4086
4087                 e = &vcpu->arch.cpuid_entries[i];
4088                 if (is_matching_cpuid_entry(e, function, index)) {
4089                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4090                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4091                         best = e;
4092                         break;
4093                 }
4094                 /*
4095                  * Both basic or both extended?
4096                  */
4097                 if (((e->function ^ function) & 0x80000000) == 0)
4098                         if (!best || e->function > best->function)
4099                                 best = e;
4100         }
4101         return best;
4102 }
4103 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4104
4105 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4106 {
4107         struct kvm_cpuid_entry2 *best;
4108
4109         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4110         if (best)
4111                 return best->eax & 0xff;
4112         return 36;
4113 }
4114
4115 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4116 {
4117         u32 function, index;
4118         struct kvm_cpuid_entry2 *best;
4119
4120         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4121         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4122         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4123         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4124         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4125         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4126         best = kvm_find_cpuid_entry(vcpu, function, index);
4127         if (best) {
4128                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4129                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4130                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4131                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4132         }
4133         kvm_x86_ops->skip_emulated_instruction(vcpu);
4134         trace_kvm_cpuid(function,
4135                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4136                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4137                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4138                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4139 }
4140 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4141
4142 /*
4143  * Check if userspace requested an interrupt window, and that the
4144  * interrupt window is open.
4145  *
4146  * No need to exit to userspace if we already have an interrupt queued.
4147  */
4148 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4149 {
4150         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4151                 vcpu->run->request_interrupt_window &&
4152                 kvm_arch_interrupt_allowed(vcpu));
4153 }
4154
4155 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4156 {
4157         struct kvm_run *kvm_run = vcpu->run;
4158
4159         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4160         kvm_run->cr8 = kvm_get_cr8(vcpu);
4161         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4162         if (irqchip_in_kernel(vcpu->kvm))
4163                 kvm_run->ready_for_interrupt_injection = 1;
4164         else
4165                 kvm_run->ready_for_interrupt_injection =
4166                         kvm_arch_interrupt_allowed(vcpu) &&
4167                         !kvm_cpu_has_interrupt(vcpu) &&
4168                         !kvm_event_needs_reinjection(vcpu);
4169 }
4170
4171 static void vapic_enter(struct kvm_vcpu *vcpu)
4172 {
4173         struct kvm_lapic *apic = vcpu->arch.apic;
4174         struct page *page;
4175
4176         if (!apic || !apic->vapic_addr)
4177                 return;
4178
4179         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4180
4181         vcpu->arch.apic->vapic_page = page;
4182 }
4183
4184 static void vapic_exit(struct kvm_vcpu *vcpu)
4185 {
4186         struct kvm_lapic *apic = vcpu->arch.apic;
4187         int idx;
4188
4189         if (!apic || !apic->vapic_addr)
4190                 return;
4191
4192         idx = srcu_read_lock(&vcpu->kvm->srcu);
4193         kvm_release_page_dirty(apic->vapic_page);
4194         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4195         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4196 }
4197
4198 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4199 {
4200         int max_irr, tpr;
4201
4202         if (!kvm_x86_ops->update_cr8_intercept)
4203                 return;
4204
4205         if (!vcpu->arch.apic)
4206                 return;
4207
4208         if (!vcpu->arch.apic->vapic_addr)
4209                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4210         else
4211                 max_irr = -1;
4212
4213         if (max_irr != -1)
4214                 max_irr >>= 4;
4215
4216         tpr = kvm_lapic_get_cr8(vcpu);
4217
4218         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4219 }
4220
4221 static void inject_pending_event(struct kvm_vcpu *vcpu)
4222 {
4223         /* try to reinject previous events if any */
4224         if (vcpu->arch.exception.pending) {
4225                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4226                                           vcpu->arch.exception.has_error_code,
4227                                           vcpu->arch.exception.error_code);
4228                 return;
4229         }
4230
4231         if (vcpu->arch.nmi_injected) {
4232                 kvm_x86_ops->set_nmi(vcpu);
4233                 return;
4234         }
4235
4236         if (vcpu->arch.interrupt.pending) {
4237                 kvm_x86_ops->set_irq(vcpu);
4238                 return;
4239         }
4240
4241         /* try to inject new event if pending */
4242         if (vcpu->arch.nmi_pending) {
4243                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4244                         vcpu->arch.nmi_pending = false;
4245                         vcpu->arch.nmi_injected = true;
4246                         kvm_x86_ops->set_nmi(vcpu);
4247                 }
4248         } else if (kvm_cpu_has_interrupt(vcpu)) {
4249                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4250                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4251                                             false);
4252                         kvm_x86_ops->set_irq(vcpu);
4253                 }
4254         }
4255 }
4256
4257 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4258 {
4259         int r;
4260         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4261                 vcpu->run->request_interrupt_window;
4262
4263         if (vcpu->requests)
4264                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4265                         kvm_mmu_unload(vcpu);
4266
4267         r = kvm_mmu_reload(vcpu);
4268         if (unlikely(r))
4269                 goto out;
4270
4271         if (vcpu->requests) {
4272                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4273                         __kvm_migrate_timers(vcpu);
4274                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4275                         kvm_write_guest_time(vcpu);
4276                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4277                         kvm_mmu_sync_roots(vcpu);
4278                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4279                         kvm_x86_ops->tlb_flush(vcpu);
4280                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4281                                        &vcpu->requests)) {
4282                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4283                         r = 0;
4284                         goto out;
4285                 }
4286                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4287                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4288                         r = 0;
4289                         goto out;
4290                 }
4291                 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4292                         vcpu->fpu_active = 0;
4293                         kvm_x86_ops->fpu_deactivate(vcpu);
4294                 }
4295         }
4296
4297         preempt_disable();
4298
4299         kvm_x86_ops->prepare_guest_switch(vcpu);
4300         if (vcpu->fpu_active)
4301                 kvm_load_guest_fpu(vcpu);
4302
4303         local_irq_disable();
4304
4305         clear_bit(KVM_REQ_KICK, &vcpu->requests);
4306         smp_mb__after_clear_bit();
4307
4308         if (vcpu->requests || need_resched() || signal_pending(current)) {
4309                 set_bit(KVM_REQ_KICK, &vcpu->requests);
4310                 local_irq_enable();
4311                 preempt_enable();
4312                 r = 1;
4313                 goto out;
4314         }
4315
4316         inject_pending_event(vcpu);
4317
4318         /* enable NMI/IRQ window open exits if needed */
4319         if (vcpu->arch.nmi_pending)
4320                 kvm_x86_ops->enable_nmi_window(vcpu);
4321         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4322                 kvm_x86_ops->enable_irq_window(vcpu);
4323
4324         if (kvm_lapic_enabled(vcpu)) {
4325                 update_cr8_intercept(vcpu);
4326                 kvm_lapic_sync_to_vapic(vcpu);
4327         }
4328
4329         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4330
4331         kvm_guest_enter();
4332
4333         if (unlikely(vcpu->arch.switch_db_regs)) {
4334                 set_debugreg(0, 7);
4335                 set_debugreg(vcpu->arch.eff_db[0], 0);
4336                 set_debugreg(vcpu->arch.eff_db[1], 1);
4337                 set_debugreg(vcpu->arch.eff_db[2], 2);
4338                 set_debugreg(vcpu->arch.eff_db[3], 3);
4339         }
4340
4341         trace_kvm_entry(vcpu->vcpu_id);
4342         kvm_x86_ops->run(vcpu);
4343
4344         /*
4345          * If the guest has used debug registers, at least dr7
4346          * will be disabled while returning to the host.
4347          * If we don't have active breakpoints in the host, we don't
4348          * care about the messed up debug address registers. But if
4349          * we have some of them active, restore the old state.
4350          */
4351         if (hw_breakpoint_active())
4352                 hw_breakpoint_restore();
4353
4354         set_bit(KVM_REQ_KICK, &vcpu->requests);
4355         local_irq_enable();
4356
4357         ++vcpu->stat.exits;
4358
4359         /*
4360          * We must have an instruction between local_irq_enable() and
4361          * kvm_guest_exit(), so the timer interrupt isn't delayed by
4362          * the interrupt shadow.  The stat.exits increment will do nicely.
4363          * But we need to prevent reordering, hence this barrier():
4364          */
4365         barrier();
4366
4367         kvm_guest_exit();
4368
4369         preempt_enable();
4370
4371         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4372
4373         /*
4374          * Profile KVM exit RIPs:
4375          */
4376         if (unlikely(prof_on == KVM_PROFILING)) {
4377                 unsigned long rip = kvm_rip_read(vcpu);
4378                 profile_hit(KVM_PROFILING, (void *)rip);
4379         }
4380
4381
4382         kvm_lapic_sync_from_vapic(vcpu);
4383
4384         r = kvm_x86_ops->handle_exit(vcpu);
4385 out:
4386         return r;
4387 }
4388
4389
4390 static int __vcpu_run(struct kvm_vcpu *vcpu)
4391 {
4392         int r;
4393         struct kvm *kvm = vcpu->kvm;
4394
4395         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4396                 pr_debug("vcpu %d received sipi with vector # %x\n",
4397                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
4398                 kvm_lapic_reset(vcpu);
4399                 r = kvm_arch_vcpu_reset(vcpu);
4400                 if (r)
4401                         return r;
4402                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4403         }
4404
4405         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4406         vapic_enter(vcpu);
4407
4408         r = 1;
4409         while (r > 0) {
4410                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4411                         r = vcpu_enter_guest(vcpu);
4412                 else {
4413                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4414                         kvm_vcpu_block(vcpu);
4415                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4416                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4417                         {
4418                                 switch(vcpu->arch.mp_state) {
4419                                 case KVM_MP_STATE_HALTED:
4420                                         vcpu->arch.mp_state =
4421                                                 KVM_MP_STATE_RUNNABLE;
4422                                 case KVM_MP_STATE_RUNNABLE:
4423                                         break;
4424                                 case KVM_MP_STATE_SIPI_RECEIVED:
4425                                 default:
4426                                         r = -EINTR;
4427                                         break;
4428                                 }
4429                         }
4430                 }
4431
4432                 if (r <= 0)
4433                         break;
4434
4435                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4436                 if (kvm_cpu_has_pending_timer(vcpu))
4437                         kvm_inject_pending_timer_irqs(vcpu);
4438
4439                 if (dm_request_for_irq_injection(vcpu)) {
4440                         r = -EINTR;
4441                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4442                         ++vcpu->stat.request_irq_exits;
4443                 }
4444                 if (signal_pending(current)) {
4445                         r = -EINTR;
4446                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4447                         ++vcpu->stat.signal_exits;
4448                 }
4449                 if (need_resched()) {
4450                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4451                         kvm_resched(vcpu);
4452                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4453                 }
4454         }
4455
4456         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4457         post_kvm_run_save(vcpu);
4458
4459         vapic_exit(vcpu);
4460
4461         return r;
4462 }
4463
4464 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4465 {
4466         int r;
4467         sigset_t sigsaved;
4468
4469         vcpu_load(vcpu);
4470
4471         if (vcpu->sigset_active)
4472                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4473
4474         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4475                 kvm_vcpu_block(vcpu);
4476                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4477                 r = -EAGAIN;
4478                 goto out;
4479         }
4480
4481         /* re-sync apic's tpr */
4482         if (!irqchip_in_kernel(vcpu->kvm))
4483                 kvm_set_cr8(vcpu, kvm_run->cr8);
4484
4485         if (vcpu->arch.pio.cur_count) {
4486                 r = complete_pio(vcpu);
4487                 if (r)
4488                         goto out;
4489         }
4490         if (vcpu->mmio_needed) {
4491                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4492                 vcpu->mmio_read_completed = 1;
4493                 vcpu->mmio_needed = 0;
4494
4495                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4496                 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4497                                         EMULTYPE_NO_DECODE);
4498                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4499                 if (r == EMULATE_DO_MMIO) {
4500                         /*
4501                          * Read-modify-write.  Back to userspace.
4502                          */
4503                         r = 0;
4504                         goto out;
4505                 }
4506         }
4507         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4508                 kvm_register_write(vcpu, VCPU_REGS_RAX,
4509                                      kvm_run->hypercall.ret);
4510
4511         r = __vcpu_run(vcpu);
4512
4513 out:
4514         if (vcpu->sigset_active)
4515                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4516
4517         vcpu_put(vcpu);
4518         return r;
4519 }
4520
4521 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4522 {
4523         vcpu_load(vcpu);
4524
4525         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4526         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4527         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4528         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4529         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4530         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4531         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4532         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4533 #ifdef CONFIG_X86_64
4534         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4535         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4536         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4537         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4538         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4539         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4540         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4541         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4542 #endif
4543
4544         regs->rip = kvm_rip_read(vcpu);
4545         regs->rflags = kvm_get_rflags(vcpu);
4546
4547         vcpu_put(vcpu);
4548
4549         return 0;
4550 }
4551
4552 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4553 {
4554         vcpu_load(vcpu);
4555
4556         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4557         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4558         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4559         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4560         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4561         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4562         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4563         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4564 #ifdef CONFIG_X86_64
4565         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4566         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4567         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4568         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4569         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4570         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4571         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4572         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4573 #endif
4574
4575         kvm_rip_write(vcpu, regs->rip);
4576         kvm_set_rflags(vcpu, regs->rflags);
4577
4578         vcpu->arch.exception.pending = false;
4579
4580         vcpu_put(vcpu);
4581
4582         return 0;
4583 }
4584
4585 void kvm_get_segment(struct kvm_vcpu *vcpu,
4586                      struct kvm_segment *var, int seg)
4587 {
4588         kvm_x86_ops->get_segment(vcpu, var, seg);
4589 }
4590
4591 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4592 {
4593         struct kvm_segment cs;
4594
4595         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4596         *db = cs.db;
4597         *l = cs.l;
4598 }
4599 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4600
4601 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4602                                   struct kvm_sregs *sregs)
4603 {
4604         struct descriptor_table dt;
4605
4606         vcpu_load(vcpu);
4607
4608         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4609         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4610         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4611         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4612         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4613         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4614
4615         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4616         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4617
4618         kvm_x86_ops->get_idt(vcpu, &dt);
4619         sregs->idt.limit = dt.limit;
4620         sregs->idt.base = dt.base;
4621         kvm_x86_ops->get_gdt(vcpu, &dt);
4622         sregs->gdt.limit = dt.limit;
4623         sregs->gdt.base = dt.base;
4624
4625         sregs->cr0 = kvm_read_cr0(vcpu);
4626         sregs->cr2 = vcpu->arch.cr2;
4627         sregs->cr3 = vcpu->arch.cr3;
4628         sregs->cr4 = kvm_read_cr4(vcpu);
4629         sregs->cr8 = kvm_get_cr8(vcpu);
4630         sregs->efer = vcpu->arch.efer;
4631         sregs->apic_base = kvm_get_apic_base(vcpu);
4632
4633         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4634
4635         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4636                 set_bit(vcpu->arch.interrupt.nr,
4637                         (unsigned long *)sregs->interrupt_bitmap);
4638
4639         vcpu_put(vcpu);
4640
4641         return 0;
4642 }
4643
4644 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4645                                     struct kvm_mp_state *mp_state)
4646 {
4647         vcpu_load(vcpu);
4648         mp_state->mp_state = vcpu->arch.mp_state;
4649         vcpu_put(vcpu);
4650         return 0;
4651 }
4652
4653 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4654                                     struct kvm_mp_state *mp_state)
4655 {
4656         vcpu_load(vcpu);
4657         vcpu->arch.mp_state = mp_state->mp_state;
4658         vcpu_put(vcpu);
4659         return 0;
4660 }
4661
4662 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4663                         struct kvm_segment *var, int seg)
4664 {
4665         kvm_x86_ops->set_segment(vcpu, var, seg);
4666 }
4667
4668 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4669                                    struct kvm_segment *kvm_desct)
4670 {
4671         kvm_desct->base = get_desc_base(seg_desc);
4672         kvm_desct->limit = get_desc_limit(seg_desc);
4673         if (seg_desc->g) {
4674                 kvm_desct->limit <<= 12;
4675                 kvm_desct->limit |= 0xfff;
4676         }
4677         kvm_desct->selector = selector;
4678         kvm_desct->type = seg_desc->type;
4679         kvm_desct->present = seg_desc->p;
4680         kvm_desct->dpl = seg_desc->dpl;
4681         kvm_desct->db = seg_desc->d;
4682         kvm_desct->s = seg_desc->s;
4683         kvm_desct->l = seg_desc->l;
4684         kvm_desct->g = seg_desc->g;
4685         kvm_desct->avl = seg_desc->avl;
4686         if (!selector)
4687                 kvm_desct->unusable = 1;
4688         else
4689                 kvm_desct->unusable = 0;
4690         kvm_desct->padding = 0;
4691 }
4692
4693 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4694                                           u16 selector,
4695                                           struct descriptor_table *dtable)
4696 {
4697         if (selector & 1 << 2) {
4698                 struct kvm_segment kvm_seg;
4699
4700                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4701
4702                 if (kvm_seg.unusable)
4703                         dtable->limit = 0;
4704                 else
4705                         dtable->limit = kvm_seg.limit;
4706                 dtable->base = kvm_seg.base;
4707         }
4708         else
4709                 kvm_x86_ops->get_gdt(vcpu, dtable);
4710 }
4711
4712 /* allowed just for 8 bytes segments */
4713 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4714                                          struct desc_struct *seg_desc)
4715 {
4716         struct descriptor_table dtable;
4717         u16 index = selector >> 3;
4718         int ret;
4719         u32 err;
4720         gva_t addr;
4721
4722         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4723
4724         if (dtable.limit < index * 8 + 7) {
4725                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4726                 return X86EMUL_PROPAGATE_FAULT;
4727         }
4728         addr = dtable.base + index * 8;
4729         ret = kvm_read_guest_virt_system(addr, seg_desc, sizeof(*seg_desc),
4730                                          vcpu,  &err);
4731         if (ret == X86EMUL_PROPAGATE_FAULT)
4732                 kvm_inject_page_fault(vcpu, addr, err);
4733
4734        return ret;
4735 }
4736
4737 /* allowed just for 8 bytes segments */
4738 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4739                                          struct desc_struct *seg_desc)
4740 {
4741         struct descriptor_table dtable;
4742         u16 index = selector >> 3;
4743
4744         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4745
4746         if (dtable.limit < index * 8 + 7)
4747                 return 1;
4748         return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu, NULL);
4749 }
4750
4751 static gpa_t get_tss_base_addr_write(struct kvm_vcpu *vcpu,
4752                                struct desc_struct *seg_desc)
4753 {
4754         u32 base_addr = get_desc_base(seg_desc);
4755
4756         return kvm_mmu_gva_to_gpa_write(vcpu, base_addr, NULL);
4757 }
4758
4759 static gpa_t get_tss_base_addr_read(struct kvm_vcpu *vcpu,
4760                              struct desc_struct *seg_desc)
4761 {
4762         u32 base_addr = get_desc_base(seg_desc);
4763
4764         return kvm_mmu_gva_to_gpa_read(vcpu, base_addr, NULL);
4765 }
4766
4767 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4768 {
4769         struct kvm_segment kvm_seg;
4770
4771         kvm_get_segment(vcpu, &kvm_seg, seg);
4772         return kvm_seg.selector;
4773 }
4774
4775 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4776 {
4777         struct kvm_segment segvar = {
4778                 .base = selector << 4,
4779                 .limit = 0xffff,
4780                 .selector = selector,
4781                 .type = 3,
4782                 .present = 1,
4783                 .dpl = 3,
4784                 .db = 0,
4785                 .s = 1,
4786                 .l = 0,
4787                 .g = 0,
4788                 .avl = 0,
4789                 .unusable = 0,
4790         };
4791         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4792         return X86EMUL_CONTINUE;
4793 }
4794
4795 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4796 {
4797         return (seg != VCPU_SREG_LDTR) &&
4798                 (seg != VCPU_SREG_TR) &&
4799                 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4800 }
4801
4802 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg)
4803 {
4804         struct kvm_segment kvm_seg;
4805         struct desc_struct seg_desc;
4806         u8 dpl, rpl, cpl;
4807         unsigned err_vec = GP_VECTOR;
4808         u32 err_code = 0;
4809         bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
4810         int ret;
4811
4812         if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
4813                 return kvm_load_realmode_segment(vcpu, selector, seg);
4814
4815         /* NULL selector is not valid for TR, CS and SS */
4816         if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR)
4817             && null_selector)
4818                 goto exception;
4819
4820         /* TR should be in GDT only */
4821         if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
4822                 goto exception;
4823
4824         ret = load_guest_segment_descriptor(vcpu, selector, &seg_desc);
4825         if (ret)
4826                 return ret;
4827
4828         seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
4829
4830         if (null_selector) { /* for NULL selector skip all following checks */
4831                 kvm_seg.unusable = 1;
4832                 goto load;
4833         }
4834
4835         err_code = selector & 0xfffc;
4836         err_vec = GP_VECTOR;
4837
4838         /* can't load system descriptor into segment selecor */
4839         if (seg <= VCPU_SREG_GS && !kvm_seg.s)
4840                 goto exception;
4841
4842         if (!kvm_seg.present) {
4843                 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
4844                 goto exception;
4845         }
4846
4847         rpl = selector & 3;
4848         dpl = kvm_seg.dpl;
4849         cpl = kvm_x86_ops->get_cpl(vcpu);
4850
4851         switch (seg) {
4852         case VCPU_SREG_SS:
4853                 /*
4854                  * segment is not a writable data segment or segment
4855                  * selector's RPL != CPL or segment selector's RPL != CPL
4856                  */
4857                 if (rpl != cpl || (kvm_seg.type & 0xa) != 0x2 || dpl != cpl)
4858                         goto exception;
4859                 break;
4860         case VCPU_SREG_CS:
4861                 if (!(kvm_seg.type & 8))
4862                         goto exception;
4863
4864                 if (kvm_seg.type & 4) {
4865                         /* conforming */
4866                         if (dpl > cpl)
4867                                 goto exception;
4868                 } else {
4869                         /* nonconforming */
4870                         if (rpl > cpl || dpl != cpl)
4871                                 goto exception;
4872                 }
4873                 /* CS(RPL) <- CPL */
4874                 selector = (selector & 0xfffc) | cpl;
4875             break;
4876         case VCPU_SREG_TR:
4877                 if (kvm_seg.s || (kvm_seg.type != 1 && kvm_seg.type != 9))
4878                         goto exception;
4879                 break;
4880         case VCPU_SREG_LDTR:
4881                 if (kvm_seg.s || kvm_seg.type != 2)
4882                         goto exception;
4883                 break;
4884         default: /*  DS, ES, FS, or GS */
4885                 /*
4886                  * segment is not a data or readable code segment or
4887                  * ((segment is a data or nonconforming code segment)
4888                  * and (both RPL and CPL > DPL))
4889                  */
4890                 if ((kvm_seg.type & 0xa) == 0x8 ||
4891                     (((kvm_seg.type & 0xc) != 0xc) && (rpl > dpl && cpl > dpl)))
4892                         goto exception;
4893                 break;
4894         }
4895
4896         if (!kvm_seg.unusable && kvm_seg.s) {
4897                 /* mark segment as accessed */
4898                 kvm_seg.type |= 1;
4899                 seg_desc.type |= 1;
4900                 save_guest_segment_descriptor(vcpu, selector, &seg_desc);
4901         }
4902 load:
4903         kvm_set_segment(vcpu, &kvm_seg, seg);
4904         return X86EMUL_CONTINUE;
4905 exception:
4906         kvm_queue_exception_e(vcpu, err_vec, err_code);
4907         return X86EMUL_PROPAGATE_FAULT;
4908 }
4909
4910 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4911                                 struct tss_segment_32 *tss)
4912 {
4913         tss->cr3 = vcpu->arch.cr3;
4914         tss->eip = kvm_rip_read(vcpu);
4915         tss->eflags = kvm_get_rflags(vcpu);
4916         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4917         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4918         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4919         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4920         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4921         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4922         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4923         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4924         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4925         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4926         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4927         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4928         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4929         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4930         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4931 }
4932
4933 static void kvm_load_segment_selector(struct kvm_vcpu *vcpu, u16 sel, int seg)
4934 {
4935         struct kvm_segment kvm_seg;
4936         kvm_get_segment(vcpu, &kvm_seg, seg);
4937         kvm_seg.selector = sel;
4938         kvm_set_segment(vcpu, &kvm_seg, seg);
4939 }
4940
4941 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4942                                   struct tss_segment_32 *tss)
4943 {
4944         kvm_set_cr3(vcpu, tss->cr3);
4945
4946         kvm_rip_write(vcpu, tss->eip);
4947         kvm_set_rflags(vcpu, tss->eflags | 2);
4948
4949         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4950         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4951         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4952         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4953         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4954         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4955         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4956         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4957
4958         /*
4959          * SDM says that segment selectors are loaded before segment
4960          * descriptors
4961          */
4962         kvm_load_segment_selector(vcpu, tss->ldt_selector, VCPU_SREG_LDTR);
4963         kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
4964         kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
4965         kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
4966         kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
4967         kvm_load_segment_selector(vcpu, tss->fs, VCPU_SREG_FS);
4968         kvm_load_segment_selector(vcpu, tss->gs, VCPU_SREG_GS);
4969
4970         /*
4971          * Now load segment descriptors. If fault happenes at this stage
4972          * it is handled in a context of new task
4973          */
4974         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, VCPU_SREG_LDTR))
4975                 return 1;
4976
4977         if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
4978                 return 1;
4979
4980         if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
4981                 return 1;
4982
4983         if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
4984                 return 1;
4985
4986         if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
4987                 return 1;
4988
4989         if (kvm_load_segment_descriptor(vcpu, tss->fs, VCPU_SREG_FS))
4990                 return 1;
4991
4992         if (kvm_load_segment_descriptor(vcpu, tss->gs, VCPU_SREG_GS))
4993                 return 1;
4994         return 0;
4995 }
4996
4997 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4998                                 struct tss_segment_16 *tss)
4999 {
5000         tss->ip = kvm_rip_read(vcpu);
5001         tss->flag = kvm_get_rflags(vcpu);
5002         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5003         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5004         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5005         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5006         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5007         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5008         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
5009         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
5010
5011         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
5012         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
5013         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
5014         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
5015         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
5016 }
5017
5018 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
5019                                  struct tss_segment_16 *tss)
5020 {
5021         kvm_rip_write(vcpu, tss->ip);
5022         kvm_set_rflags(vcpu, tss->flag | 2);
5023         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
5024         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
5025         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
5026         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
5027         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
5028         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
5029         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
5030         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
5031
5032         /*
5033          * SDM says that segment selectors are loaded before segment
5034          * descriptors
5035          */
5036         kvm_load_segment_selector(vcpu, tss->ldt, VCPU_SREG_LDTR);
5037         kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
5038         kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
5039         kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
5040         kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
5041
5042         /*
5043          * Now load segment descriptors. If fault happenes at this stage
5044          * it is handled in a context of new task
5045          */
5046         if (kvm_load_segment_descriptor(vcpu, tss->ldt, VCPU_SREG_LDTR))
5047                 return 1;
5048
5049         if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
5050                 return 1;
5051
5052         if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
5053                 return 1;
5054
5055         if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
5056                 return 1;
5057
5058         if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
5059                 return 1;
5060         return 0;
5061 }
5062
5063 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
5064                               u16 old_tss_sel, u32 old_tss_base,
5065                               struct desc_struct *nseg_desc)
5066 {
5067         struct tss_segment_16 tss_segment_16;
5068         int ret = 0;
5069
5070         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
5071                            sizeof tss_segment_16))
5072                 goto out;
5073
5074         save_state_to_tss16(vcpu, &tss_segment_16);
5075
5076         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
5077                             sizeof tss_segment_16))
5078                 goto out;
5079
5080         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
5081                            &tss_segment_16, sizeof tss_segment_16))
5082                 goto out;
5083
5084         if (old_tss_sel != 0xffff) {
5085                 tss_segment_16.prev_task_link = old_tss_sel;
5086
5087                 if (kvm_write_guest(vcpu->kvm,
5088                                     get_tss_base_addr_write(vcpu, nseg_desc),
5089                                     &tss_segment_16.prev_task_link,
5090                                     sizeof tss_segment_16.prev_task_link))
5091                         goto out;
5092         }
5093
5094         if (load_state_from_tss16(vcpu, &tss_segment_16))
5095                 goto out;
5096
5097         ret = 1;
5098 out:
5099         return ret;
5100 }
5101
5102 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
5103                        u16 old_tss_sel, u32 old_tss_base,
5104                        struct desc_struct *nseg_desc)
5105 {
5106         struct tss_segment_32 tss_segment_32;
5107         int ret = 0;
5108
5109         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
5110                            sizeof tss_segment_32))
5111                 goto out;
5112
5113         save_state_to_tss32(vcpu, &tss_segment_32);
5114
5115         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
5116                             sizeof tss_segment_32))
5117                 goto out;
5118
5119         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
5120                            &tss_segment_32, sizeof tss_segment_32))
5121                 goto out;
5122
5123         if (old_tss_sel != 0xffff) {
5124                 tss_segment_32.prev_task_link = old_tss_sel;
5125
5126                 if (kvm_write_guest(vcpu->kvm,
5127                                     get_tss_base_addr_write(vcpu, nseg_desc),
5128                                     &tss_segment_32.prev_task_link,
5129                                     sizeof tss_segment_32.prev_task_link))
5130                         goto out;
5131         }
5132
5133         if (load_state_from_tss32(vcpu, &tss_segment_32))
5134                 goto out;
5135
5136         ret = 1;
5137 out:
5138         return ret;
5139 }
5140
5141 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
5142 {
5143         struct kvm_segment tr_seg;
5144         struct desc_struct cseg_desc;
5145         struct desc_struct nseg_desc;
5146         int ret = 0;
5147         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
5148         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
5149
5150         old_tss_base = kvm_mmu_gva_to_gpa_write(vcpu, old_tss_base, NULL);
5151
5152         /* FIXME: Handle errors. Failure to read either TSS or their
5153          * descriptors should generate a pagefault.
5154          */
5155         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
5156                 goto out;
5157
5158         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
5159                 goto out;
5160
5161         if (reason != TASK_SWITCH_IRET) {
5162                 int cpl;
5163
5164                 cpl = kvm_x86_ops->get_cpl(vcpu);
5165                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
5166                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5167                         return 1;
5168                 }
5169         }
5170
5171         if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
5172                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
5173                 return 1;
5174         }
5175
5176         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
5177                 cseg_desc.type &= ~(1 << 1); //clear the B flag
5178                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
5179         }
5180
5181         if (reason == TASK_SWITCH_IRET) {
5182                 u32 eflags = kvm_get_rflags(vcpu);
5183                 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
5184         }
5185
5186         /* set back link to prev task only if NT bit is set in eflags
5187            note that old_tss_sel is not used afetr this point */
5188         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
5189                 old_tss_sel = 0xffff;
5190
5191         if (nseg_desc.type & 8)
5192                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
5193                                          old_tss_base, &nseg_desc);
5194         else
5195                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
5196                                          old_tss_base, &nseg_desc);
5197
5198         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
5199                 u32 eflags = kvm_get_rflags(vcpu);
5200                 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
5201         }
5202
5203         if (reason != TASK_SWITCH_IRET) {
5204                 nseg_desc.type |= (1 << 1);
5205                 save_guest_segment_descriptor(vcpu, tss_selector,
5206                                               &nseg_desc);
5207         }
5208
5209         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
5210         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
5211         tr_seg.type = 11;
5212         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
5213 out:
5214         return ret;
5215 }
5216 EXPORT_SYMBOL_GPL(kvm_task_switch);
5217
5218 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5219                                   struct kvm_sregs *sregs)
5220 {
5221         int mmu_reset_needed = 0;
5222         int pending_vec, max_bits;
5223         struct descriptor_table dt;
5224
5225         vcpu_load(vcpu);
5226
5227         dt.limit = sregs->idt.limit;
5228         dt.base = sregs->idt.base;
5229         kvm_x86_ops->set_idt(vcpu, &dt);
5230         dt.limit = sregs->gdt.limit;
5231         dt.base = sregs->gdt.base;
5232         kvm_x86_ops->set_gdt(vcpu, &dt);
5233
5234         vcpu->arch.cr2 = sregs->cr2;
5235         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5236         vcpu->arch.cr3 = sregs->cr3;
5237
5238         kvm_set_cr8(vcpu, sregs->cr8);
5239
5240         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5241         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5242         kvm_set_apic_base(vcpu, sregs->apic_base);
5243
5244         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5245         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5246         vcpu->arch.cr0 = sregs->cr0;
5247
5248         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5249         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5250         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5251                 load_pdptrs(vcpu, vcpu->arch.cr3);
5252                 mmu_reset_needed = 1;
5253         }
5254
5255         if (mmu_reset_needed)
5256                 kvm_mmu_reset_context(vcpu);
5257
5258         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5259         pending_vec = find_first_bit(
5260                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5261         if (pending_vec < max_bits) {
5262                 kvm_queue_interrupt(vcpu, pending_vec, false);
5263                 pr_debug("Set back pending irq %d\n", pending_vec);
5264                 if (irqchip_in_kernel(vcpu->kvm))
5265                         kvm_pic_clear_isr_ack(vcpu->kvm);
5266         }
5267
5268         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5269         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5270         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5271         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5272         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5273         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5274
5275         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5276         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5277
5278         update_cr8_intercept(vcpu);
5279
5280         /* Older userspace won't unhalt the vcpu on reset. */
5281         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5282             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5283             !is_protmode(vcpu))
5284                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5285
5286         vcpu_put(vcpu);
5287
5288         return 0;
5289 }
5290
5291 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5292                                         struct kvm_guest_debug *dbg)
5293 {
5294         unsigned long rflags;
5295         int i, r;
5296
5297         vcpu_load(vcpu);
5298
5299         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5300                 r = -EBUSY;
5301                 if (vcpu->arch.exception.pending)
5302                         goto unlock_out;
5303                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5304                         kvm_queue_exception(vcpu, DB_VECTOR);
5305                 else
5306                         kvm_queue_exception(vcpu, BP_VECTOR);
5307         }
5308
5309         /*
5310          * Read rflags as long as potentially injected trace flags are still
5311          * filtered out.
5312          */
5313         rflags = kvm_get_rflags(vcpu);
5314
5315         vcpu->guest_debug = dbg->control;
5316         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5317                 vcpu->guest_debug = 0;
5318
5319         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5320                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5321                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5322                 vcpu->arch.switch_db_regs =
5323                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5324         } else {
5325                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5326                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5327                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5328         }
5329
5330         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5331                 vcpu->arch.singlestep_cs =
5332                         get_segment_selector(vcpu, VCPU_SREG_CS);
5333                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
5334         }
5335
5336         /*
5337          * Trigger an rflags update that will inject or remove the trace
5338          * flags.
5339          */
5340         kvm_set_rflags(vcpu, rflags);
5341
5342         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5343
5344         r = 0;
5345
5346 unlock_out:
5347         vcpu_put(vcpu);
5348
5349         return r;
5350 }
5351
5352 /*
5353  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
5354  * we have asm/x86/processor.h
5355  */
5356 struct fxsave {
5357         u16     cwd;
5358         u16     swd;
5359         u16     twd;
5360         u16     fop;
5361         u64     rip;
5362         u64     rdp;
5363         u32     mxcsr;
5364         u32     mxcsr_mask;
5365         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
5366 #ifdef CONFIG_X86_64
5367         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
5368 #else
5369         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
5370 #endif
5371 };
5372
5373 /*
5374  * Translate a guest virtual address to a guest physical address.
5375  */
5376 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5377                                     struct kvm_translation *tr)
5378 {
5379         unsigned long vaddr = tr->linear_address;
5380         gpa_t gpa;
5381         int idx;
5382
5383         vcpu_load(vcpu);
5384         idx = srcu_read_lock(&vcpu->kvm->srcu);
5385         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5386         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5387         tr->physical_address = gpa;
5388         tr->valid = gpa != UNMAPPED_GVA;
5389         tr->writeable = 1;
5390         tr->usermode = 0;
5391         vcpu_put(vcpu);
5392
5393         return 0;
5394 }
5395
5396 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5397 {
5398         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5399
5400         vcpu_load(vcpu);
5401
5402         memcpy(fpu->fpr, fxsave->st_space, 128);
5403         fpu->fcw = fxsave->cwd;
5404         fpu->fsw = fxsave->swd;
5405         fpu->ftwx = fxsave->twd;
5406         fpu->last_opcode = fxsave->fop;
5407         fpu->last_ip = fxsave->rip;
5408         fpu->last_dp = fxsave->rdp;
5409         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5410
5411         vcpu_put(vcpu);
5412
5413         return 0;
5414 }
5415
5416 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5417 {
5418         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5419
5420         vcpu_load(vcpu);
5421
5422         memcpy(fxsave->st_space, fpu->fpr, 128);
5423         fxsave->cwd = fpu->fcw;
5424         fxsave->swd = fpu->fsw;
5425         fxsave->twd = fpu->ftwx;
5426         fxsave->fop = fpu->last_opcode;
5427         fxsave->rip = fpu->last_ip;
5428         fxsave->rdp = fpu->last_dp;
5429         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5430
5431         vcpu_put(vcpu);
5432
5433         return 0;
5434 }
5435
5436 void fx_init(struct kvm_vcpu *vcpu)
5437 {
5438         unsigned after_mxcsr_mask;
5439
5440         /*
5441          * Touch the fpu the first time in non atomic context as if
5442          * this is the first fpu instruction the exception handler
5443          * will fire before the instruction returns and it'll have to
5444          * allocate ram with GFP_KERNEL.
5445          */
5446         if (!used_math())
5447                 kvm_fx_save(&vcpu->arch.host_fx_image);
5448
5449         /* Initialize guest FPU by resetting ours and saving into guest's */
5450         preempt_disable();
5451         kvm_fx_save(&vcpu->arch.host_fx_image);
5452         kvm_fx_finit();
5453         kvm_fx_save(&vcpu->arch.guest_fx_image);
5454         kvm_fx_restore(&vcpu->arch.host_fx_image);
5455         preempt_enable();
5456
5457         vcpu->arch.cr0 |= X86_CR0_ET;
5458         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5459         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5460         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5461                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5462 }
5463 EXPORT_SYMBOL_GPL(fx_init);
5464
5465 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5466 {
5467         if (vcpu->guest_fpu_loaded)
5468                 return;
5469
5470         vcpu->guest_fpu_loaded = 1;
5471         kvm_fx_save(&vcpu->arch.host_fx_image);
5472         kvm_fx_restore(&vcpu->arch.guest_fx_image);
5473         trace_kvm_fpu(1);
5474 }
5475
5476 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5477 {
5478         if (!vcpu->guest_fpu_loaded)
5479                 return;
5480
5481         vcpu->guest_fpu_loaded = 0;
5482         kvm_fx_save(&vcpu->arch.guest_fx_image);
5483         kvm_fx_restore(&vcpu->arch.host_fx_image);
5484         ++vcpu->stat.fpu_reload;
5485         set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5486         trace_kvm_fpu(0);
5487 }
5488
5489 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5490 {
5491         if (vcpu->arch.time_page) {
5492                 kvm_release_page_dirty(vcpu->arch.time_page);
5493                 vcpu->arch.time_page = NULL;
5494         }
5495
5496         kvm_x86_ops->vcpu_free(vcpu);
5497 }
5498
5499 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5500                                                 unsigned int id)
5501 {
5502         return kvm_x86_ops->vcpu_create(kvm, id);
5503 }
5504
5505 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5506 {
5507         int r;
5508
5509         /* We do fxsave: this must be aligned. */
5510         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5511
5512         vcpu->arch.mtrr_state.have_fixed = 1;
5513         vcpu_load(vcpu);
5514         r = kvm_arch_vcpu_reset(vcpu);
5515         if (r == 0)
5516                 r = kvm_mmu_setup(vcpu);
5517         vcpu_put(vcpu);
5518         if (r < 0)
5519                 goto free_vcpu;
5520
5521         return 0;
5522 free_vcpu:
5523         kvm_x86_ops->vcpu_free(vcpu);
5524         return r;
5525 }
5526
5527 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5528 {
5529         vcpu_load(vcpu);
5530         kvm_mmu_unload(vcpu);
5531         vcpu_put(vcpu);
5532
5533         kvm_x86_ops->vcpu_free(vcpu);
5534 }
5535
5536 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5537 {
5538         vcpu->arch.nmi_pending = false;
5539         vcpu->arch.nmi_injected = false;
5540
5541         vcpu->arch.switch_db_regs = 0;
5542         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5543         vcpu->arch.dr6 = DR6_FIXED_1;
5544         vcpu->arch.dr7 = DR7_FIXED_1;
5545
5546         return kvm_x86_ops->vcpu_reset(vcpu);
5547 }
5548
5549 int kvm_arch_hardware_enable(void *garbage)
5550 {
5551         /*
5552          * Since this may be called from a hotplug notifcation,
5553          * we can't get the CPU frequency directly.
5554          */
5555         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5556                 int cpu = raw_smp_processor_id();
5557                 per_cpu(cpu_tsc_khz, cpu) = 0;
5558         }
5559
5560         kvm_shared_msr_cpu_online();
5561
5562         return kvm_x86_ops->hardware_enable(garbage);
5563 }
5564
5565 void kvm_arch_hardware_disable(void *garbage)
5566 {
5567         kvm_x86_ops->hardware_disable(garbage);
5568         drop_user_return_notifiers(garbage);
5569 }
5570
5571 int kvm_arch_hardware_setup(void)
5572 {
5573         return kvm_x86_ops->hardware_setup();
5574 }
5575
5576 void kvm_arch_hardware_unsetup(void)
5577 {
5578         kvm_x86_ops->hardware_unsetup();
5579 }
5580
5581 void kvm_arch_check_processor_compat(void *rtn)
5582 {
5583         kvm_x86_ops->check_processor_compatibility(rtn);
5584 }
5585
5586 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5587 {
5588         struct page *page;
5589         struct kvm *kvm;
5590         int r;
5591
5592         BUG_ON(vcpu->kvm == NULL);
5593         kvm = vcpu->kvm;
5594
5595         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5596         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5597                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5598         else
5599                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5600
5601         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5602         if (!page) {
5603                 r = -ENOMEM;
5604                 goto fail;
5605         }
5606         vcpu->arch.pio_data = page_address(page);
5607
5608         r = kvm_mmu_create(vcpu);
5609         if (r < 0)
5610                 goto fail_free_pio_data;
5611
5612         if (irqchip_in_kernel(kvm)) {
5613                 r = kvm_create_lapic(vcpu);
5614                 if (r < 0)
5615                         goto fail_mmu_destroy;
5616         }
5617
5618         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5619                                        GFP_KERNEL);
5620         if (!vcpu->arch.mce_banks) {
5621                 r = -ENOMEM;
5622                 goto fail_free_lapic;
5623         }
5624         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5625
5626         return 0;
5627 fail_free_lapic:
5628         kvm_free_lapic(vcpu);
5629 fail_mmu_destroy:
5630         kvm_mmu_destroy(vcpu);
5631 fail_free_pio_data:
5632         free_page((unsigned long)vcpu->arch.pio_data);
5633 fail:
5634         return r;
5635 }
5636
5637 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5638 {
5639         int idx;
5640
5641         kfree(vcpu->arch.mce_banks);
5642         kvm_free_lapic(vcpu);
5643         idx = srcu_read_lock(&vcpu->kvm->srcu);
5644         kvm_mmu_destroy(vcpu);
5645         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5646         free_page((unsigned long)vcpu->arch.pio_data);
5647 }
5648
5649 struct  kvm *kvm_arch_create_vm(void)
5650 {
5651         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5652
5653         if (!kvm)
5654                 return ERR_PTR(-ENOMEM);
5655
5656         kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5657         if (!kvm->arch.aliases) {
5658                 kfree(kvm);
5659                 return ERR_PTR(-ENOMEM);
5660         }
5661
5662         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5663         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5664
5665         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5666         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5667
5668         rdtscll(kvm->arch.vm_init_tsc);
5669
5670         return kvm;
5671 }
5672
5673 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5674 {
5675         vcpu_load(vcpu);
5676         kvm_mmu_unload(vcpu);
5677         vcpu_put(vcpu);
5678 }
5679
5680 static void kvm_free_vcpus(struct kvm *kvm)
5681 {
5682         unsigned int i;
5683         struct kvm_vcpu *vcpu;
5684
5685         /*
5686          * Unpin any mmu pages first.
5687          */
5688         kvm_for_each_vcpu(i, vcpu, kvm)
5689                 kvm_unload_vcpu_mmu(vcpu);
5690         kvm_for_each_vcpu(i, vcpu, kvm)
5691                 kvm_arch_vcpu_free(vcpu);
5692
5693         mutex_lock(&kvm->lock);
5694         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5695                 kvm->vcpus[i] = NULL;
5696
5697         atomic_set(&kvm->online_vcpus, 0);
5698         mutex_unlock(&kvm->lock);
5699 }
5700
5701 void kvm_arch_sync_events(struct kvm *kvm)
5702 {
5703         kvm_free_all_assigned_devices(kvm);
5704 }
5705
5706 void kvm_arch_destroy_vm(struct kvm *kvm)
5707 {
5708         kvm_iommu_unmap_guest(kvm);
5709         kvm_free_pit(kvm);
5710         kfree(kvm->arch.vpic);
5711         kfree(kvm->arch.vioapic);
5712         kvm_free_vcpus(kvm);
5713         kvm_free_physmem(kvm);
5714         if (kvm->arch.apic_access_page)
5715                 put_page(kvm->arch.apic_access_page);
5716         if (kvm->arch.ept_identity_pagetable)
5717                 put_page(kvm->arch.ept_identity_pagetable);
5718         cleanup_srcu_struct(&kvm->srcu);
5719         kfree(kvm->arch.aliases);
5720         kfree(kvm);
5721 }
5722
5723 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5724                                 struct kvm_memory_slot *memslot,
5725                                 struct kvm_memory_slot old,
5726                                 struct kvm_userspace_memory_region *mem,
5727                                 int user_alloc)
5728 {
5729         int npages = memslot->npages;
5730
5731         /*To keep backward compatibility with older userspace,
5732          *x86 needs to hanlde !user_alloc case.
5733          */
5734         if (!user_alloc) {
5735                 if (npages && !old.rmap) {
5736                         unsigned long userspace_addr;
5737
5738                         down_write(&current->mm->mmap_sem);
5739                         userspace_addr = do_mmap(NULL, 0,
5740                                                  npages * PAGE_SIZE,
5741                                                  PROT_READ | PROT_WRITE,
5742                                                  MAP_PRIVATE | MAP_ANONYMOUS,
5743                                                  0);
5744                         up_write(&current->mm->mmap_sem);
5745
5746                         if (IS_ERR((void *)userspace_addr))
5747                                 return PTR_ERR((void *)userspace_addr);
5748
5749                         memslot->userspace_addr = userspace_addr;
5750                 }
5751         }
5752
5753
5754         return 0;
5755 }
5756
5757 void kvm_arch_commit_memory_region(struct kvm *kvm,
5758                                 struct kvm_userspace_memory_region *mem,
5759                                 struct kvm_memory_slot old,
5760                                 int user_alloc)
5761 {
5762
5763         int npages = mem->memory_size >> PAGE_SHIFT;
5764
5765         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5766                 int ret;
5767
5768                 down_write(&current->mm->mmap_sem);
5769                 ret = do_munmap(current->mm, old.userspace_addr,
5770                                 old.npages * PAGE_SIZE);
5771                 up_write(&current->mm->mmap_sem);
5772                 if (ret < 0)
5773                         printk(KERN_WARNING
5774                                "kvm_vm_ioctl_set_memory_region: "
5775                                "failed to munmap memory\n");
5776         }
5777
5778         spin_lock(&kvm->mmu_lock);
5779         if (!kvm->arch.n_requested_mmu_pages) {
5780                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5781                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5782         }
5783
5784         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5785         spin_unlock(&kvm->mmu_lock);
5786 }
5787
5788 void kvm_arch_flush_shadow(struct kvm *kvm)
5789 {
5790         kvm_mmu_zap_all(kvm);
5791         kvm_reload_remote_mmus(kvm);
5792 }
5793
5794 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5795 {
5796         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5797                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5798                 || vcpu->arch.nmi_pending ||
5799                 (kvm_arch_interrupt_allowed(vcpu) &&
5800                  kvm_cpu_has_interrupt(vcpu));
5801 }
5802
5803 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5804 {
5805         int me;
5806         int cpu = vcpu->cpu;
5807
5808         if (waitqueue_active(&vcpu->wq)) {
5809                 wake_up_interruptible(&vcpu->wq);
5810                 ++vcpu->stat.halt_wakeup;
5811         }
5812
5813         me = get_cpu();
5814         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5815                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5816                         smp_send_reschedule(cpu);
5817         put_cpu();
5818 }
5819
5820 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5821 {
5822         return kvm_x86_ops->interrupt_allowed(vcpu);
5823 }
5824
5825 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5826 {
5827         unsigned long rflags;
5828
5829         rflags = kvm_x86_ops->get_rflags(vcpu);
5830         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5831                 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5832         return rflags;
5833 }
5834 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5835
5836 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5837 {
5838         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5839             vcpu->arch.singlestep_cs ==
5840                         get_segment_selector(vcpu, VCPU_SREG_CS) &&
5841             vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5842                 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5843         kvm_x86_ops->set_rflags(vcpu, rflags);
5844 }
5845 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5846
5847 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5848 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);