Merge branch 'libnvdimm-for-next' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82  * - enable syscall per default because its emulated by KVM
83  * - enable LME and LMA per default on 64 bit KVM
84  */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32  __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64  __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 static bool __read_mostly backwards_tsc_observed = false;
138
139 #define KVM_NR_SHARED_MSRS 16
140
141 struct kvm_shared_msrs_global {
142         int nr;
143         u32 msrs[KVM_NR_SHARED_MSRS];
144 };
145
146 struct kvm_shared_msrs {
147         struct user_return_notifier urn;
148         bool registered;
149         struct kvm_shared_msr_values {
150                 u64 host;
151                 u64 curr;
152         } values[KVM_NR_SHARED_MSRS];
153 };
154
155 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
156 static struct kvm_shared_msrs __percpu *shared_msrs;
157
158 struct kvm_stats_debugfs_item debugfs_entries[] = {
159         { "pf_fixed", VCPU_STAT(pf_fixed) },
160         { "pf_guest", VCPU_STAT(pf_guest) },
161         { "tlb_flush", VCPU_STAT(tlb_flush) },
162         { "invlpg", VCPU_STAT(invlpg) },
163         { "exits", VCPU_STAT(exits) },
164         { "io_exits", VCPU_STAT(io_exits) },
165         { "mmio_exits", VCPU_STAT(mmio_exits) },
166         { "signal_exits", VCPU_STAT(signal_exits) },
167         { "irq_window", VCPU_STAT(irq_window_exits) },
168         { "nmi_window", VCPU_STAT(nmi_window_exits) },
169         { "halt_exits", VCPU_STAT(halt_exits) },
170         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
171         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
172         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
173         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
174         { "hypercalls", VCPU_STAT(hypercalls) },
175         { "request_irq", VCPU_STAT(request_irq_exits) },
176         { "irq_exits", VCPU_STAT(irq_exits) },
177         { "host_state_reload", VCPU_STAT(host_state_reload) },
178         { "efer_reload", VCPU_STAT(efer_reload) },
179         { "fpu_reload", VCPU_STAT(fpu_reload) },
180         { "insn_emulation", VCPU_STAT(insn_emulation) },
181         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
182         { "irq_injections", VCPU_STAT(irq_injections) },
183         { "nmi_injections", VCPU_STAT(nmi_injections) },
184         { "req_event", VCPU_STAT(req_event) },
185         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
186         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
187         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
188         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
189         { "mmu_flooded", VM_STAT(mmu_flooded) },
190         { "mmu_recycled", VM_STAT(mmu_recycled) },
191         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
192         { "mmu_unsync", VM_STAT(mmu_unsync) },
193         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
194         { "largepages", VM_STAT(lpages) },
195         { "max_mmu_page_hash_collisions",
196                 VM_STAT(max_mmu_page_hash_collisions) },
197         { NULL }
198 };
199
200 u64 __read_mostly host_xcr0;
201
202 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
203
204 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
205 {
206         int i;
207         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
208                 vcpu->arch.apf.gfns[i] = ~0;
209 }
210
211 static void kvm_on_user_return(struct user_return_notifier *urn)
212 {
213         unsigned slot;
214         struct kvm_shared_msrs *locals
215                 = container_of(urn, struct kvm_shared_msrs, urn);
216         struct kvm_shared_msr_values *values;
217         unsigned long flags;
218
219         /*
220          * Disabling irqs at this point since the following code could be
221          * interrupted and executed through kvm_arch_hardware_disable()
222          */
223         local_irq_save(flags);
224         if (locals->registered) {
225                 locals->registered = false;
226                 user_return_notifier_unregister(urn);
227         }
228         local_irq_restore(flags);
229         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
230                 values = &locals->values[slot];
231                 if (values->host != values->curr) {
232                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
233                         values->curr = values->host;
234                 }
235         }
236 }
237
238 static void shared_msr_update(unsigned slot, u32 msr)
239 {
240         u64 value;
241         unsigned int cpu = smp_processor_id();
242         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
243
244         /* only read, and nobody should modify it at this time,
245          * so don't need lock */
246         if (slot >= shared_msrs_global.nr) {
247                 printk(KERN_ERR "kvm: invalid MSR slot!");
248                 return;
249         }
250         rdmsrl_safe(msr, &value);
251         smsr->values[slot].host = value;
252         smsr->values[slot].curr = value;
253 }
254
255 void kvm_define_shared_msr(unsigned slot, u32 msr)
256 {
257         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
258         shared_msrs_global.msrs[slot] = msr;
259         if (slot >= shared_msrs_global.nr)
260                 shared_msrs_global.nr = slot + 1;
261 }
262 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
263
264 static void kvm_shared_msr_cpu_online(void)
265 {
266         unsigned i;
267
268         for (i = 0; i < shared_msrs_global.nr; ++i)
269                 shared_msr_update(i, shared_msrs_global.msrs[i]);
270 }
271
272 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
273 {
274         unsigned int cpu = smp_processor_id();
275         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
276         int err;
277
278         if (((value ^ smsr->values[slot].curr) & mask) == 0)
279                 return 0;
280         smsr->values[slot].curr = value;
281         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
282         if (err)
283                 return 1;
284
285         if (!smsr->registered) {
286                 smsr->urn.on_user_return = kvm_on_user_return;
287                 user_return_notifier_register(&smsr->urn);
288                 smsr->registered = true;
289         }
290         return 0;
291 }
292 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
293
294 static void drop_user_return_notifiers(void)
295 {
296         unsigned int cpu = smp_processor_id();
297         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298
299         if (smsr->registered)
300                 kvm_on_user_return(&smsr->urn);
301 }
302
303 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
304 {
305         return vcpu->arch.apic_base;
306 }
307 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
308
309 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
310 {
311         u64 old_state = vcpu->arch.apic_base &
312                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313         u64 new_state = msr_info->data &
314                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
316                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
317
318         if (!msr_info->host_initiated &&
319             ((msr_info->data & reserved_bits) != 0 ||
320              new_state == X2APIC_ENABLE ||
321              (new_state == MSR_IA32_APICBASE_ENABLE &&
322               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
323              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
324               old_state == 0)))
325                 return 1;
326
327         kvm_lapic_set_base(vcpu, msr_info->data);
328         return 0;
329 }
330 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
331
332 asmlinkage __visible void kvm_spurious_fault(void)
333 {
334         /* Fault while not rebooting.  We want the trace. */
335         BUG();
336 }
337 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
338
339 #define EXCPT_BENIGN            0
340 #define EXCPT_CONTRIBUTORY      1
341 #define EXCPT_PF                2
342
343 static int exception_class(int vector)
344 {
345         switch (vector) {
346         case PF_VECTOR:
347                 return EXCPT_PF;
348         case DE_VECTOR:
349         case TS_VECTOR:
350         case NP_VECTOR:
351         case SS_VECTOR:
352         case GP_VECTOR:
353                 return EXCPT_CONTRIBUTORY;
354         default:
355                 break;
356         }
357         return EXCPT_BENIGN;
358 }
359
360 #define EXCPT_FAULT             0
361 #define EXCPT_TRAP              1
362 #define EXCPT_ABORT             2
363 #define EXCPT_INTERRUPT         3
364
365 static int exception_type(int vector)
366 {
367         unsigned int mask;
368
369         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
370                 return EXCPT_INTERRUPT;
371
372         mask = 1 << vector;
373
374         /* #DB is trap, as instruction watchpoints are handled elsewhere */
375         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
376                 return EXCPT_TRAP;
377
378         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
379                 return EXCPT_ABORT;
380
381         /* Reserved exceptions will result in fault */
382         return EXCPT_FAULT;
383 }
384
385 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
386                 unsigned nr, bool has_error, u32 error_code,
387                 bool reinject)
388 {
389         u32 prev_nr;
390         int class1, class2;
391
392         kvm_make_request(KVM_REQ_EVENT, vcpu);
393
394         if (!vcpu->arch.exception.pending) {
395         queue:
396                 if (has_error && !is_protmode(vcpu))
397                         has_error = false;
398                 vcpu->arch.exception.pending = true;
399                 vcpu->arch.exception.has_error_code = has_error;
400                 vcpu->arch.exception.nr = nr;
401                 vcpu->arch.exception.error_code = error_code;
402                 vcpu->arch.exception.reinject = reinject;
403                 return;
404         }
405
406         /* to check exception */
407         prev_nr = vcpu->arch.exception.nr;
408         if (prev_nr == DF_VECTOR) {
409                 /* triple fault -> shutdown */
410                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
411                 return;
412         }
413         class1 = exception_class(prev_nr);
414         class2 = exception_class(nr);
415         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
416                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
417                 /* generate double fault per SDM Table 5-5 */
418                 vcpu->arch.exception.pending = true;
419                 vcpu->arch.exception.has_error_code = true;
420                 vcpu->arch.exception.nr = DF_VECTOR;
421                 vcpu->arch.exception.error_code = 0;
422         } else
423                 /* replace previous exception with a new one in a hope
424                    that instruction re-execution will regenerate lost
425                    exception */
426                 goto queue;
427 }
428
429 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
430 {
431         kvm_multiple_exception(vcpu, nr, false, 0, false);
432 }
433 EXPORT_SYMBOL_GPL(kvm_queue_exception);
434
435 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
436 {
437         kvm_multiple_exception(vcpu, nr, false, 0, true);
438 }
439 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
440
441 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
442 {
443         if (err)
444                 kvm_inject_gp(vcpu, 0);
445         else
446                 return kvm_skip_emulated_instruction(vcpu);
447
448         return 1;
449 }
450 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
451
452 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
453 {
454         ++vcpu->stat.pf_guest;
455         vcpu->arch.cr2 = fault->address;
456         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
457 }
458 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
459
460 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
461 {
462         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
463                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
464         else
465                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
466
467         return fault->nested_page_fault;
468 }
469
470 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
471 {
472         atomic_inc(&vcpu->arch.nmi_queued);
473         kvm_make_request(KVM_REQ_NMI, vcpu);
474 }
475 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
476
477 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
478 {
479         kvm_multiple_exception(vcpu, nr, true, error_code, false);
480 }
481 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
482
483 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
484 {
485         kvm_multiple_exception(vcpu, nr, true, error_code, true);
486 }
487 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
488
489 /*
490  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
491  * a #GP and return false.
492  */
493 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
494 {
495         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
496                 return true;
497         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
498         return false;
499 }
500 EXPORT_SYMBOL_GPL(kvm_require_cpl);
501
502 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
503 {
504         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
505                 return true;
506
507         kvm_queue_exception(vcpu, UD_VECTOR);
508         return false;
509 }
510 EXPORT_SYMBOL_GPL(kvm_require_dr);
511
512 /*
513  * This function will be used to read from the physical memory of the currently
514  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
515  * can read from guest physical or from the guest's guest physical memory.
516  */
517 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
518                             gfn_t ngfn, void *data, int offset, int len,
519                             u32 access)
520 {
521         struct x86_exception exception;
522         gfn_t real_gfn;
523         gpa_t ngpa;
524
525         ngpa     = gfn_to_gpa(ngfn);
526         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
527         if (real_gfn == UNMAPPED_GVA)
528                 return -EFAULT;
529
530         real_gfn = gpa_to_gfn(real_gfn);
531
532         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
533 }
534 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
535
536 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
537                                void *data, int offset, int len, u32 access)
538 {
539         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
540                                        data, offset, len, access);
541 }
542
543 /*
544  * Load the pae pdptrs.  Return true is they are all valid.
545  */
546 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
547 {
548         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
549         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
550         int i;
551         int ret;
552         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
553
554         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
555                                       offset * sizeof(u64), sizeof(pdpte),
556                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
557         if (ret < 0) {
558                 ret = 0;
559                 goto out;
560         }
561         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
562                 if ((pdpte[i] & PT_PRESENT_MASK) &&
563                     (pdpte[i] &
564                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
565                         ret = 0;
566                         goto out;
567                 }
568         }
569         ret = 1;
570
571         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
572         __set_bit(VCPU_EXREG_PDPTR,
573                   (unsigned long *)&vcpu->arch.regs_avail);
574         __set_bit(VCPU_EXREG_PDPTR,
575                   (unsigned long *)&vcpu->arch.regs_dirty);
576 out:
577
578         return ret;
579 }
580 EXPORT_SYMBOL_GPL(load_pdptrs);
581
582 bool pdptrs_changed(struct kvm_vcpu *vcpu)
583 {
584         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
585         bool changed = true;
586         int offset;
587         gfn_t gfn;
588         int r;
589
590         if (is_long_mode(vcpu) || !is_pae(vcpu))
591                 return false;
592
593         if (!test_bit(VCPU_EXREG_PDPTR,
594                       (unsigned long *)&vcpu->arch.regs_avail))
595                 return true;
596
597         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
598         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
599         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
600                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
601         if (r < 0)
602                 goto out;
603         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
604 out:
605
606         return changed;
607 }
608 EXPORT_SYMBOL_GPL(pdptrs_changed);
609
610 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
611 {
612         unsigned long old_cr0 = kvm_read_cr0(vcpu);
613         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
614
615         cr0 |= X86_CR0_ET;
616
617 #ifdef CONFIG_X86_64
618         if (cr0 & 0xffffffff00000000UL)
619                 return 1;
620 #endif
621
622         cr0 &= ~CR0_RESERVED_BITS;
623
624         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
625                 return 1;
626
627         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
628                 return 1;
629
630         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
631 #ifdef CONFIG_X86_64
632                 if ((vcpu->arch.efer & EFER_LME)) {
633                         int cs_db, cs_l;
634
635                         if (!is_pae(vcpu))
636                                 return 1;
637                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
638                         if (cs_l)
639                                 return 1;
640                 } else
641 #endif
642                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
643                                                  kvm_read_cr3(vcpu)))
644                         return 1;
645         }
646
647         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
648                 return 1;
649
650         kvm_x86_ops->set_cr0(vcpu, cr0);
651
652         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
653                 kvm_clear_async_pf_completion_queue(vcpu);
654                 kvm_async_pf_hash_reset(vcpu);
655         }
656
657         if ((cr0 ^ old_cr0) & update_bits)
658                 kvm_mmu_reset_context(vcpu);
659
660         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
661             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
662             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
663                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
664
665         return 0;
666 }
667 EXPORT_SYMBOL_GPL(kvm_set_cr0);
668
669 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
670 {
671         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
672 }
673 EXPORT_SYMBOL_GPL(kvm_lmsw);
674
675 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
676 {
677         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
678                         !vcpu->guest_xcr0_loaded) {
679                 /* kvm_set_xcr() also depends on this */
680                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
681                 vcpu->guest_xcr0_loaded = 1;
682         }
683 }
684
685 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
686 {
687         if (vcpu->guest_xcr0_loaded) {
688                 if (vcpu->arch.xcr0 != host_xcr0)
689                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
690                 vcpu->guest_xcr0_loaded = 0;
691         }
692 }
693
694 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
695 {
696         u64 xcr0 = xcr;
697         u64 old_xcr0 = vcpu->arch.xcr0;
698         u64 valid_bits;
699
700         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
701         if (index != XCR_XFEATURE_ENABLED_MASK)
702                 return 1;
703         if (!(xcr0 & XFEATURE_MASK_FP))
704                 return 1;
705         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
706                 return 1;
707
708         /*
709          * Do not allow the guest to set bits that we do not support
710          * saving.  However, xcr0 bit 0 is always set, even if the
711          * emulated CPU does not support XSAVE (see fx_init).
712          */
713         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
714         if (xcr0 & ~valid_bits)
715                 return 1;
716
717         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
718             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
719                 return 1;
720
721         if (xcr0 & XFEATURE_MASK_AVX512) {
722                 if (!(xcr0 & XFEATURE_MASK_YMM))
723                         return 1;
724                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
725                         return 1;
726         }
727         vcpu->arch.xcr0 = xcr0;
728
729         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
730                 kvm_update_cpuid(vcpu);
731         return 0;
732 }
733
734 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
735 {
736         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
737             __kvm_set_xcr(vcpu, index, xcr)) {
738                 kvm_inject_gp(vcpu, 0);
739                 return 1;
740         }
741         return 0;
742 }
743 EXPORT_SYMBOL_GPL(kvm_set_xcr);
744
745 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
746 {
747         unsigned long old_cr4 = kvm_read_cr4(vcpu);
748         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
749                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
750
751         if (cr4 & CR4_RESERVED_BITS)
752                 return 1;
753
754         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
755                 return 1;
756
757         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
758                 return 1;
759
760         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
761                 return 1;
762
763         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
764                 return 1;
765
766         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
767                 return 1;
768
769         if (is_long_mode(vcpu)) {
770                 if (!(cr4 & X86_CR4_PAE))
771                         return 1;
772         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
773                    && ((cr4 ^ old_cr4) & pdptr_bits)
774                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775                                    kvm_read_cr3(vcpu)))
776                 return 1;
777
778         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
779                 if (!guest_cpuid_has_pcid(vcpu))
780                         return 1;
781
782                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
783                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
784                         return 1;
785         }
786
787         if (kvm_x86_ops->set_cr4(vcpu, cr4))
788                 return 1;
789
790         if (((cr4 ^ old_cr4) & pdptr_bits) ||
791             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
792                 kvm_mmu_reset_context(vcpu);
793
794         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
795                 kvm_update_cpuid(vcpu);
796
797         return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr4);
800
801 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
802 {
803 #ifdef CONFIG_X86_64
804         cr3 &= ~CR3_PCID_INVD;
805 #endif
806
807         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
808                 kvm_mmu_sync_roots(vcpu);
809                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
810                 return 0;
811         }
812
813         if (is_long_mode(vcpu)) {
814                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
815                         return 1;
816         } else if (is_pae(vcpu) && is_paging(vcpu) &&
817                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
818                 return 1;
819
820         vcpu->arch.cr3 = cr3;
821         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
822         kvm_mmu_new_cr3(vcpu);
823         return 0;
824 }
825 EXPORT_SYMBOL_GPL(kvm_set_cr3);
826
827 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
828 {
829         if (cr8 & CR8_RESERVED_BITS)
830                 return 1;
831         if (lapic_in_kernel(vcpu))
832                 kvm_lapic_set_tpr(vcpu, cr8);
833         else
834                 vcpu->arch.cr8 = cr8;
835         return 0;
836 }
837 EXPORT_SYMBOL_GPL(kvm_set_cr8);
838
839 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
840 {
841         if (lapic_in_kernel(vcpu))
842                 return kvm_lapic_get_cr8(vcpu);
843         else
844                 return vcpu->arch.cr8;
845 }
846 EXPORT_SYMBOL_GPL(kvm_get_cr8);
847
848 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
849 {
850         int i;
851
852         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
853                 for (i = 0; i < KVM_NR_DB_REGS; i++)
854                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
855                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
856         }
857 }
858
859 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
860 {
861         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
862                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
863 }
864
865 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
866 {
867         unsigned long dr7;
868
869         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
870                 dr7 = vcpu->arch.guest_debug_dr7;
871         else
872                 dr7 = vcpu->arch.dr7;
873         kvm_x86_ops->set_dr7(vcpu, dr7);
874         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
875         if (dr7 & DR7_BP_EN_MASK)
876                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
877 }
878
879 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
880 {
881         u64 fixed = DR6_FIXED_1;
882
883         if (!guest_cpuid_has_rtm(vcpu))
884                 fixed |= DR6_RTM;
885         return fixed;
886 }
887
888 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890         switch (dr) {
891         case 0 ... 3:
892                 vcpu->arch.db[dr] = val;
893                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
894                         vcpu->arch.eff_db[dr] = val;
895                 break;
896         case 4:
897                 /* fall through */
898         case 6:
899                 if (val & 0xffffffff00000000ULL)
900                         return -1; /* #GP */
901                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
902                 kvm_update_dr6(vcpu);
903                 break;
904         case 5:
905                 /* fall through */
906         default: /* 7 */
907                 if (val & 0xffffffff00000000ULL)
908                         return -1; /* #GP */
909                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
910                 kvm_update_dr7(vcpu);
911                 break;
912         }
913
914         return 0;
915 }
916
917 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
918 {
919         if (__kvm_set_dr(vcpu, dr, val)) {
920                 kvm_inject_gp(vcpu, 0);
921                 return 1;
922         }
923         return 0;
924 }
925 EXPORT_SYMBOL_GPL(kvm_set_dr);
926
927 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
928 {
929         switch (dr) {
930         case 0 ... 3:
931                 *val = vcpu->arch.db[dr];
932                 break;
933         case 4:
934                 /* fall through */
935         case 6:
936                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
937                         *val = vcpu->arch.dr6;
938                 else
939                         *val = kvm_x86_ops->get_dr6(vcpu);
940                 break;
941         case 5:
942                 /* fall through */
943         default: /* 7 */
944                 *val = vcpu->arch.dr7;
945                 break;
946         }
947         return 0;
948 }
949 EXPORT_SYMBOL_GPL(kvm_get_dr);
950
951 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
952 {
953         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
954         u64 data;
955         int err;
956
957         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
958         if (err)
959                 return err;
960         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
961         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
962         return err;
963 }
964 EXPORT_SYMBOL_GPL(kvm_rdpmc);
965
966 /*
967  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
968  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
969  *
970  * This list is modified at module load time to reflect the
971  * capabilities of the host cpu. This capabilities test skips MSRs that are
972  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
973  * may depend on host virtualization features rather than host cpu features.
974  */
975
976 static u32 msrs_to_save[] = {
977         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
978         MSR_STAR,
979 #ifdef CONFIG_X86_64
980         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
981 #endif
982         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
983         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
984 };
985
986 static unsigned num_msrs_to_save;
987
988 static u32 emulated_msrs[] = {
989         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
990         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
991         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
992         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
993         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
994         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
995         HV_X64_MSR_RESET,
996         HV_X64_MSR_VP_INDEX,
997         HV_X64_MSR_VP_RUNTIME,
998         HV_X64_MSR_SCONTROL,
999         HV_X64_MSR_STIMER0_CONFIG,
1000         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1001         MSR_KVM_PV_EOI_EN,
1002
1003         MSR_IA32_TSC_ADJUST,
1004         MSR_IA32_TSCDEADLINE,
1005         MSR_IA32_MISC_ENABLE,
1006         MSR_IA32_MCG_STATUS,
1007         MSR_IA32_MCG_CTL,
1008         MSR_IA32_MCG_EXT_CTL,
1009         MSR_IA32_SMBASE,
1010         MSR_PLATFORM_INFO,
1011         MSR_MISC_FEATURES_ENABLES,
1012 };
1013
1014 static unsigned num_emulated_msrs;
1015
1016 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1017 {
1018         if (efer & efer_reserved_bits)
1019                 return false;
1020
1021         if (efer & EFER_FFXSR) {
1022                 struct kvm_cpuid_entry2 *feat;
1023
1024                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1025                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1026                         return false;
1027         }
1028
1029         if (efer & EFER_SVME) {
1030                 struct kvm_cpuid_entry2 *feat;
1031
1032                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1033                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1034                         return false;
1035         }
1036
1037         return true;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1040
1041 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1042 {
1043         u64 old_efer = vcpu->arch.efer;
1044
1045         if (!kvm_valid_efer(vcpu, efer))
1046                 return 1;
1047
1048         if (is_paging(vcpu)
1049             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1050                 return 1;
1051
1052         efer &= ~EFER_LMA;
1053         efer |= vcpu->arch.efer & EFER_LMA;
1054
1055         kvm_x86_ops->set_efer(vcpu, efer);
1056
1057         /* Update reserved bits */
1058         if ((efer ^ old_efer) & EFER_NX)
1059                 kvm_mmu_reset_context(vcpu);
1060
1061         return 0;
1062 }
1063
1064 void kvm_enable_efer_bits(u64 mask)
1065 {
1066        efer_reserved_bits &= ~mask;
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1069
1070 /*
1071  * Writes msr value into into the appropriate "register".
1072  * Returns 0 on success, non-0 otherwise.
1073  * Assumes vcpu_load() was already called.
1074  */
1075 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1076 {
1077         switch (msr->index) {
1078         case MSR_FS_BASE:
1079         case MSR_GS_BASE:
1080         case MSR_KERNEL_GS_BASE:
1081         case MSR_CSTAR:
1082         case MSR_LSTAR:
1083                 if (is_noncanonical_address(msr->data))
1084                         return 1;
1085                 break;
1086         case MSR_IA32_SYSENTER_EIP:
1087         case MSR_IA32_SYSENTER_ESP:
1088                 /*
1089                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1090                  * non-canonical address is written on Intel but not on
1091                  * AMD (which ignores the top 32-bits, because it does
1092                  * not implement 64-bit SYSENTER).
1093                  *
1094                  * 64-bit code should hence be able to write a non-canonical
1095                  * value on AMD.  Making the address canonical ensures that
1096                  * vmentry does not fail on Intel after writing a non-canonical
1097                  * value, and that something deterministic happens if the guest
1098                  * invokes 64-bit SYSENTER.
1099                  */
1100                 msr->data = get_canonical(msr->data);
1101         }
1102         return kvm_x86_ops->set_msr(vcpu, msr);
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_set_msr);
1105
1106 /*
1107  * Adapt set_msr() to msr_io()'s calling convention
1108  */
1109 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1110 {
1111         struct msr_data msr;
1112         int r;
1113
1114         msr.index = index;
1115         msr.host_initiated = true;
1116         r = kvm_get_msr(vcpu, &msr);
1117         if (r)
1118                 return r;
1119
1120         *data = msr.data;
1121         return 0;
1122 }
1123
1124 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1125 {
1126         struct msr_data msr;
1127
1128         msr.data = *data;
1129         msr.index = index;
1130         msr.host_initiated = true;
1131         return kvm_set_msr(vcpu, &msr);
1132 }
1133
1134 #ifdef CONFIG_X86_64
1135 struct pvclock_gtod_data {
1136         seqcount_t      seq;
1137
1138         struct { /* extract of a clocksource struct */
1139                 int vclock_mode;
1140                 u64     cycle_last;
1141                 u64     mask;
1142                 u32     mult;
1143                 u32     shift;
1144         } clock;
1145
1146         u64             boot_ns;
1147         u64             nsec_base;
1148         u64             wall_time_sec;
1149 };
1150
1151 static struct pvclock_gtod_data pvclock_gtod_data;
1152
1153 static void update_pvclock_gtod(struct timekeeper *tk)
1154 {
1155         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1156         u64 boot_ns;
1157
1158         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1159
1160         write_seqcount_begin(&vdata->seq);
1161
1162         /* copy pvclock gtod data */
1163         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1164         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1165         vdata->clock.mask               = tk->tkr_mono.mask;
1166         vdata->clock.mult               = tk->tkr_mono.mult;
1167         vdata->clock.shift              = tk->tkr_mono.shift;
1168
1169         vdata->boot_ns                  = boot_ns;
1170         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1171
1172         vdata->wall_time_sec            = tk->xtime_sec;
1173
1174         write_seqcount_end(&vdata->seq);
1175 }
1176 #endif
1177
1178 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1179 {
1180         /*
1181          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1182          * vcpu_enter_guest.  This function is only called from
1183          * the physical CPU that is running vcpu.
1184          */
1185         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1186 }
1187
1188 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1189 {
1190         int version;
1191         int r;
1192         struct pvclock_wall_clock wc;
1193         struct timespec64 boot;
1194
1195         if (!wall_clock)
1196                 return;
1197
1198         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1199         if (r)
1200                 return;
1201
1202         if (version & 1)
1203                 ++version;  /* first time write, random junk */
1204
1205         ++version;
1206
1207         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1208                 return;
1209
1210         /*
1211          * The guest calculates current wall clock time by adding
1212          * system time (updated by kvm_guest_time_update below) to the
1213          * wall clock specified here.  guest system time equals host
1214          * system time for us, thus we must fill in host boot time here.
1215          */
1216         getboottime64(&boot);
1217
1218         if (kvm->arch.kvmclock_offset) {
1219                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1220                 boot = timespec64_sub(boot, ts);
1221         }
1222         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1223         wc.nsec = boot.tv_nsec;
1224         wc.version = version;
1225
1226         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1227
1228         version++;
1229         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1230 }
1231
1232 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1233 {
1234         do_shl32_div32(dividend, divisor);
1235         return dividend;
1236 }
1237
1238 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1239                                s8 *pshift, u32 *pmultiplier)
1240 {
1241         uint64_t scaled64;
1242         int32_t  shift = 0;
1243         uint64_t tps64;
1244         uint32_t tps32;
1245
1246         tps64 = base_hz;
1247         scaled64 = scaled_hz;
1248         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1249                 tps64 >>= 1;
1250                 shift--;
1251         }
1252
1253         tps32 = (uint32_t)tps64;
1254         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1255                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1256                         scaled64 >>= 1;
1257                 else
1258                         tps32 <<= 1;
1259                 shift++;
1260         }
1261
1262         *pshift = shift;
1263         *pmultiplier = div_frac(scaled64, tps32);
1264
1265         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1266                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1267 }
1268
1269 #ifdef CONFIG_X86_64
1270 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1271 #endif
1272
1273 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1274 static unsigned long max_tsc_khz;
1275
1276 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1277 {
1278         u64 v = (u64)khz * (1000000 + ppm);
1279         do_div(v, 1000000);
1280         return v;
1281 }
1282
1283 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1284 {
1285         u64 ratio;
1286
1287         /* Guest TSC same frequency as host TSC? */
1288         if (!scale) {
1289                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1290                 return 0;
1291         }
1292
1293         /* TSC scaling supported? */
1294         if (!kvm_has_tsc_control) {
1295                 if (user_tsc_khz > tsc_khz) {
1296                         vcpu->arch.tsc_catchup = 1;
1297                         vcpu->arch.tsc_always_catchup = 1;
1298                         return 0;
1299                 } else {
1300                         WARN(1, "user requested TSC rate below hardware speed\n");
1301                         return -1;
1302                 }
1303         }
1304
1305         /* TSC scaling required  - calculate ratio */
1306         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1307                                 user_tsc_khz, tsc_khz);
1308
1309         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1310                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1311                           user_tsc_khz);
1312                 return -1;
1313         }
1314
1315         vcpu->arch.tsc_scaling_ratio = ratio;
1316         return 0;
1317 }
1318
1319 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1320 {
1321         u32 thresh_lo, thresh_hi;
1322         int use_scaling = 0;
1323
1324         /* tsc_khz can be zero if TSC calibration fails */
1325         if (user_tsc_khz == 0) {
1326                 /* set tsc_scaling_ratio to a safe value */
1327                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1328                 return -1;
1329         }
1330
1331         /* Compute a scale to convert nanoseconds in TSC cycles */
1332         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1333                            &vcpu->arch.virtual_tsc_shift,
1334                            &vcpu->arch.virtual_tsc_mult);
1335         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1336
1337         /*
1338          * Compute the variation in TSC rate which is acceptable
1339          * within the range of tolerance and decide if the
1340          * rate being applied is within that bounds of the hardware
1341          * rate.  If so, no scaling or compensation need be done.
1342          */
1343         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1344         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1345         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1346                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1347                 use_scaling = 1;
1348         }
1349         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1350 }
1351
1352 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1353 {
1354         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1355                                       vcpu->arch.virtual_tsc_mult,
1356                                       vcpu->arch.virtual_tsc_shift);
1357         tsc += vcpu->arch.this_tsc_write;
1358         return tsc;
1359 }
1360
1361 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1362 {
1363 #ifdef CONFIG_X86_64
1364         bool vcpus_matched;
1365         struct kvm_arch *ka = &vcpu->kvm->arch;
1366         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1367
1368         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1369                          atomic_read(&vcpu->kvm->online_vcpus));
1370
1371         /*
1372          * Once the masterclock is enabled, always perform request in
1373          * order to update it.
1374          *
1375          * In order to enable masterclock, the host clocksource must be TSC
1376          * and the vcpus need to have matched TSCs.  When that happens,
1377          * perform request to enable masterclock.
1378          */
1379         if (ka->use_master_clock ||
1380             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1381                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1382
1383         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1384                             atomic_read(&vcpu->kvm->online_vcpus),
1385                             ka->use_master_clock, gtod->clock.vclock_mode);
1386 #endif
1387 }
1388
1389 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1390 {
1391         u64 curr_offset = vcpu->arch.tsc_offset;
1392         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1393 }
1394
1395 /*
1396  * Multiply tsc by a fixed point number represented by ratio.
1397  *
1398  * The most significant 64-N bits (mult) of ratio represent the
1399  * integral part of the fixed point number; the remaining N bits
1400  * (frac) represent the fractional part, ie. ratio represents a fixed
1401  * point number (mult + frac * 2^(-N)).
1402  *
1403  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1404  */
1405 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1406 {
1407         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1408 }
1409
1410 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1411 {
1412         u64 _tsc = tsc;
1413         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1414
1415         if (ratio != kvm_default_tsc_scaling_ratio)
1416                 _tsc = __scale_tsc(ratio, tsc);
1417
1418         return _tsc;
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1421
1422 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1423 {
1424         u64 tsc;
1425
1426         tsc = kvm_scale_tsc(vcpu, rdtsc());
1427
1428         return target_tsc - tsc;
1429 }
1430
1431 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1432 {
1433         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1436
1437 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1438 {
1439         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1440         vcpu->arch.tsc_offset = offset;
1441 }
1442
1443 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1444 {
1445         struct kvm *kvm = vcpu->kvm;
1446         u64 offset, ns, elapsed;
1447         unsigned long flags;
1448         bool matched;
1449         bool already_matched;
1450         u64 data = msr->data;
1451         bool synchronizing = false;
1452
1453         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1454         offset = kvm_compute_tsc_offset(vcpu, data);
1455         ns = ktime_get_boot_ns();
1456         elapsed = ns - kvm->arch.last_tsc_nsec;
1457
1458         if (vcpu->arch.virtual_tsc_khz) {
1459                 if (data == 0 && msr->host_initiated) {
1460                         /*
1461                          * detection of vcpu initialization -- need to sync
1462                          * with other vCPUs. This particularly helps to keep
1463                          * kvm_clock stable after CPU hotplug
1464                          */
1465                         synchronizing = true;
1466                 } else {
1467                         u64 tsc_exp = kvm->arch.last_tsc_write +
1468                                                 nsec_to_cycles(vcpu, elapsed);
1469                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1470                         /*
1471                          * Special case: TSC write with a small delta (1 second)
1472                          * of virtual cycle time against real time is
1473                          * interpreted as an attempt to synchronize the CPU.
1474                          */
1475                         synchronizing = data < tsc_exp + tsc_hz &&
1476                                         data + tsc_hz > tsc_exp;
1477                 }
1478         }
1479
1480         /*
1481          * For a reliable TSC, we can match TSC offsets, and for an unstable
1482          * TSC, we add elapsed time in this computation.  We could let the
1483          * compensation code attempt to catch up if we fall behind, but
1484          * it's better to try to match offsets from the beginning.
1485          */
1486         if (synchronizing &&
1487             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1488                 if (!check_tsc_unstable()) {
1489                         offset = kvm->arch.cur_tsc_offset;
1490                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1491                 } else {
1492                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1493                         data += delta;
1494                         offset = kvm_compute_tsc_offset(vcpu, data);
1495                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1496                 }
1497                 matched = true;
1498                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1499         } else {
1500                 /*
1501                  * We split periods of matched TSC writes into generations.
1502                  * For each generation, we track the original measured
1503                  * nanosecond time, offset, and write, so if TSCs are in
1504                  * sync, we can match exact offset, and if not, we can match
1505                  * exact software computation in compute_guest_tsc()
1506                  *
1507                  * These values are tracked in kvm->arch.cur_xxx variables.
1508                  */
1509                 kvm->arch.cur_tsc_generation++;
1510                 kvm->arch.cur_tsc_nsec = ns;
1511                 kvm->arch.cur_tsc_write = data;
1512                 kvm->arch.cur_tsc_offset = offset;
1513                 matched = false;
1514                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1515                          kvm->arch.cur_tsc_generation, data);
1516         }
1517
1518         /*
1519          * We also track th most recent recorded KHZ, write and time to
1520          * allow the matching interval to be extended at each write.
1521          */
1522         kvm->arch.last_tsc_nsec = ns;
1523         kvm->arch.last_tsc_write = data;
1524         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1525
1526         vcpu->arch.last_guest_tsc = data;
1527
1528         /* Keep track of which generation this VCPU has synchronized to */
1529         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1530         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1531         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1532
1533         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1534                 update_ia32_tsc_adjust_msr(vcpu, offset);
1535         kvm_vcpu_write_tsc_offset(vcpu, offset);
1536         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1537
1538         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1539         if (!matched) {
1540                 kvm->arch.nr_vcpus_matched_tsc = 0;
1541         } else if (!already_matched) {
1542                 kvm->arch.nr_vcpus_matched_tsc++;
1543         }
1544
1545         kvm_track_tsc_matching(vcpu);
1546         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1547 }
1548
1549 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1550
1551 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1552                                            s64 adjustment)
1553 {
1554         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1555 }
1556
1557 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1558 {
1559         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1560                 WARN_ON(adjustment < 0);
1561         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1562         adjust_tsc_offset_guest(vcpu, adjustment);
1563 }
1564
1565 #ifdef CONFIG_X86_64
1566
1567 static u64 read_tsc(void)
1568 {
1569         u64 ret = (u64)rdtsc_ordered();
1570         u64 last = pvclock_gtod_data.clock.cycle_last;
1571
1572         if (likely(ret >= last))
1573                 return ret;
1574
1575         /*
1576          * GCC likes to generate cmov here, but this branch is extremely
1577          * predictable (it's just a function of time and the likely is
1578          * very likely) and there's a data dependence, so force GCC
1579          * to generate a branch instead.  I don't barrier() because
1580          * we don't actually need a barrier, and if this function
1581          * ever gets inlined it will generate worse code.
1582          */
1583         asm volatile ("");
1584         return last;
1585 }
1586
1587 static inline u64 vgettsc(u64 *cycle_now)
1588 {
1589         long v;
1590         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1591
1592         *cycle_now = read_tsc();
1593
1594         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1595         return v * gtod->clock.mult;
1596 }
1597
1598 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1599 {
1600         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1601         unsigned long seq;
1602         int mode;
1603         u64 ns;
1604
1605         do {
1606                 seq = read_seqcount_begin(&gtod->seq);
1607                 mode = gtod->clock.vclock_mode;
1608                 ns = gtod->nsec_base;
1609                 ns += vgettsc(cycle_now);
1610                 ns >>= gtod->clock.shift;
1611                 ns += gtod->boot_ns;
1612         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1613         *t = ns;
1614
1615         return mode;
1616 }
1617
1618 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1619 {
1620         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1621         unsigned long seq;
1622         int mode;
1623         u64 ns;
1624
1625         do {
1626                 seq = read_seqcount_begin(&gtod->seq);
1627                 mode = gtod->clock.vclock_mode;
1628                 ts->tv_sec = gtod->wall_time_sec;
1629                 ns = gtod->nsec_base;
1630                 ns += vgettsc(cycle_now);
1631                 ns >>= gtod->clock.shift;
1632         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1633
1634         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1635         ts->tv_nsec = ns;
1636
1637         return mode;
1638 }
1639
1640 /* returns true if host is using tsc clocksource */
1641 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1642 {
1643         /* checked again under seqlock below */
1644         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1645                 return false;
1646
1647         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1648 }
1649
1650 /* returns true if host is using tsc clocksource */
1651 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1652                                            u64 *cycle_now)
1653 {
1654         /* checked again under seqlock below */
1655         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1656                 return false;
1657
1658         return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1659 }
1660 #endif
1661
1662 /*
1663  *
1664  * Assuming a stable TSC across physical CPUS, and a stable TSC
1665  * across virtual CPUs, the following condition is possible.
1666  * Each numbered line represents an event visible to both
1667  * CPUs at the next numbered event.
1668  *
1669  * "timespecX" represents host monotonic time. "tscX" represents
1670  * RDTSC value.
1671  *
1672  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1673  *
1674  * 1.  read timespec0,tsc0
1675  * 2.                                   | timespec1 = timespec0 + N
1676  *                                      | tsc1 = tsc0 + M
1677  * 3. transition to guest               | transition to guest
1678  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1679  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1680  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1681  *
1682  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1683  *
1684  *      - ret0 < ret1
1685  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1686  *              ...
1687  *      - 0 < N - M => M < N
1688  *
1689  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1690  * always the case (the difference between two distinct xtime instances
1691  * might be smaller then the difference between corresponding TSC reads,
1692  * when updating guest vcpus pvclock areas).
1693  *
1694  * To avoid that problem, do not allow visibility of distinct
1695  * system_timestamp/tsc_timestamp values simultaneously: use a master
1696  * copy of host monotonic time values. Update that master copy
1697  * in lockstep.
1698  *
1699  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1700  *
1701  */
1702
1703 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1704 {
1705 #ifdef CONFIG_X86_64
1706         struct kvm_arch *ka = &kvm->arch;
1707         int vclock_mode;
1708         bool host_tsc_clocksource, vcpus_matched;
1709
1710         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1711                         atomic_read(&kvm->online_vcpus));
1712
1713         /*
1714          * If the host uses TSC clock, then passthrough TSC as stable
1715          * to the guest.
1716          */
1717         host_tsc_clocksource = kvm_get_time_and_clockread(
1718                                         &ka->master_kernel_ns,
1719                                         &ka->master_cycle_now);
1720
1721         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1722                                 && !backwards_tsc_observed
1723                                 && !ka->boot_vcpu_runs_old_kvmclock;
1724
1725         if (ka->use_master_clock)
1726                 atomic_set(&kvm_guest_has_master_clock, 1);
1727
1728         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1729         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1730                                         vcpus_matched);
1731 #endif
1732 }
1733
1734 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1735 {
1736         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1737 }
1738
1739 static void kvm_gen_update_masterclock(struct kvm *kvm)
1740 {
1741 #ifdef CONFIG_X86_64
1742         int i;
1743         struct kvm_vcpu *vcpu;
1744         struct kvm_arch *ka = &kvm->arch;
1745
1746         spin_lock(&ka->pvclock_gtod_sync_lock);
1747         kvm_make_mclock_inprogress_request(kvm);
1748         /* no guest entries from this point */
1749         pvclock_update_vm_gtod_copy(kvm);
1750
1751         kvm_for_each_vcpu(i, vcpu, kvm)
1752                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1753
1754         /* guest entries allowed */
1755         kvm_for_each_vcpu(i, vcpu, kvm)
1756                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1757
1758         spin_unlock(&ka->pvclock_gtod_sync_lock);
1759 #endif
1760 }
1761
1762 u64 get_kvmclock_ns(struct kvm *kvm)
1763 {
1764         struct kvm_arch *ka = &kvm->arch;
1765         struct pvclock_vcpu_time_info hv_clock;
1766         u64 ret;
1767
1768         spin_lock(&ka->pvclock_gtod_sync_lock);
1769         if (!ka->use_master_clock) {
1770                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1771                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1772         }
1773
1774         hv_clock.tsc_timestamp = ka->master_cycle_now;
1775         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1776         spin_unlock(&ka->pvclock_gtod_sync_lock);
1777
1778         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1779         get_cpu();
1780
1781         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1782                            &hv_clock.tsc_shift,
1783                            &hv_clock.tsc_to_system_mul);
1784         ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1785
1786         put_cpu();
1787
1788         return ret;
1789 }
1790
1791 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1792 {
1793         struct kvm_vcpu_arch *vcpu = &v->arch;
1794         struct pvclock_vcpu_time_info guest_hv_clock;
1795
1796         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1797                 &guest_hv_clock, sizeof(guest_hv_clock))))
1798                 return;
1799
1800         /* This VCPU is paused, but it's legal for a guest to read another
1801          * VCPU's kvmclock, so we really have to follow the specification where
1802          * it says that version is odd if data is being modified, and even after
1803          * it is consistent.
1804          *
1805          * Version field updates must be kept separate.  This is because
1806          * kvm_write_guest_cached might use a "rep movs" instruction, and
1807          * writes within a string instruction are weakly ordered.  So there
1808          * are three writes overall.
1809          *
1810          * As a small optimization, only write the version field in the first
1811          * and third write.  The vcpu->pv_time cache is still valid, because the
1812          * version field is the first in the struct.
1813          */
1814         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1815
1816         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1817         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1818                                 &vcpu->hv_clock,
1819                                 sizeof(vcpu->hv_clock.version));
1820
1821         smp_wmb();
1822
1823         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1824         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1825
1826         if (vcpu->pvclock_set_guest_stopped_request) {
1827                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1828                 vcpu->pvclock_set_guest_stopped_request = false;
1829         }
1830
1831         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1832
1833         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1834                                 &vcpu->hv_clock,
1835                                 sizeof(vcpu->hv_clock));
1836
1837         smp_wmb();
1838
1839         vcpu->hv_clock.version++;
1840         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1841                                 &vcpu->hv_clock,
1842                                 sizeof(vcpu->hv_clock.version));
1843 }
1844
1845 static int kvm_guest_time_update(struct kvm_vcpu *v)
1846 {
1847         unsigned long flags, tgt_tsc_khz;
1848         struct kvm_vcpu_arch *vcpu = &v->arch;
1849         struct kvm_arch *ka = &v->kvm->arch;
1850         s64 kernel_ns;
1851         u64 tsc_timestamp, host_tsc;
1852         u8 pvclock_flags;
1853         bool use_master_clock;
1854
1855         kernel_ns = 0;
1856         host_tsc = 0;
1857
1858         /*
1859          * If the host uses TSC clock, then passthrough TSC as stable
1860          * to the guest.
1861          */
1862         spin_lock(&ka->pvclock_gtod_sync_lock);
1863         use_master_clock = ka->use_master_clock;
1864         if (use_master_clock) {
1865                 host_tsc = ka->master_cycle_now;
1866                 kernel_ns = ka->master_kernel_ns;
1867         }
1868         spin_unlock(&ka->pvclock_gtod_sync_lock);
1869
1870         /* Keep irq disabled to prevent changes to the clock */
1871         local_irq_save(flags);
1872         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1873         if (unlikely(tgt_tsc_khz == 0)) {
1874                 local_irq_restore(flags);
1875                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1876                 return 1;
1877         }
1878         if (!use_master_clock) {
1879                 host_tsc = rdtsc();
1880                 kernel_ns = ktime_get_boot_ns();
1881         }
1882
1883         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1884
1885         /*
1886          * We may have to catch up the TSC to match elapsed wall clock
1887          * time for two reasons, even if kvmclock is used.
1888          *   1) CPU could have been running below the maximum TSC rate
1889          *   2) Broken TSC compensation resets the base at each VCPU
1890          *      entry to avoid unknown leaps of TSC even when running
1891          *      again on the same CPU.  This may cause apparent elapsed
1892          *      time to disappear, and the guest to stand still or run
1893          *      very slowly.
1894          */
1895         if (vcpu->tsc_catchup) {
1896                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1897                 if (tsc > tsc_timestamp) {
1898                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1899                         tsc_timestamp = tsc;
1900                 }
1901         }
1902
1903         local_irq_restore(flags);
1904
1905         /* With all the info we got, fill in the values */
1906
1907         if (kvm_has_tsc_control)
1908                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1909
1910         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1911                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1912                                    &vcpu->hv_clock.tsc_shift,
1913                                    &vcpu->hv_clock.tsc_to_system_mul);
1914                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1915         }
1916
1917         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1918         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1919         vcpu->last_guest_tsc = tsc_timestamp;
1920
1921         /* If the host uses TSC clocksource, then it is stable */
1922         pvclock_flags = 0;
1923         if (use_master_clock)
1924                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1925
1926         vcpu->hv_clock.flags = pvclock_flags;
1927
1928         if (vcpu->pv_time_enabled)
1929                 kvm_setup_pvclock_page(v);
1930         if (v == kvm_get_vcpu(v->kvm, 0))
1931                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1932         return 0;
1933 }
1934
1935 /*
1936  * kvmclock updates which are isolated to a given vcpu, such as
1937  * vcpu->cpu migration, should not allow system_timestamp from
1938  * the rest of the vcpus to remain static. Otherwise ntp frequency
1939  * correction applies to one vcpu's system_timestamp but not
1940  * the others.
1941  *
1942  * So in those cases, request a kvmclock update for all vcpus.
1943  * We need to rate-limit these requests though, as they can
1944  * considerably slow guests that have a large number of vcpus.
1945  * The time for a remote vcpu to update its kvmclock is bound
1946  * by the delay we use to rate-limit the updates.
1947  */
1948
1949 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1950
1951 static void kvmclock_update_fn(struct work_struct *work)
1952 {
1953         int i;
1954         struct delayed_work *dwork = to_delayed_work(work);
1955         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1956                                            kvmclock_update_work);
1957         struct kvm *kvm = container_of(ka, struct kvm, arch);
1958         struct kvm_vcpu *vcpu;
1959
1960         kvm_for_each_vcpu(i, vcpu, kvm) {
1961                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1962                 kvm_vcpu_kick(vcpu);
1963         }
1964 }
1965
1966 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1967 {
1968         struct kvm *kvm = v->kvm;
1969
1970         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1971         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1972                                         KVMCLOCK_UPDATE_DELAY);
1973 }
1974
1975 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1976
1977 static void kvmclock_sync_fn(struct work_struct *work)
1978 {
1979         struct delayed_work *dwork = to_delayed_work(work);
1980         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1981                                            kvmclock_sync_work);
1982         struct kvm *kvm = container_of(ka, struct kvm, arch);
1983
1984         if (!kvmclock_periodic_sync)
1985                 return;
1986
1987         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1988         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1989                                         KVMCLOCK_SYNC_PERIOD);
1990 }
1991
1992 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1993 {
1994         u64 mcg_cap = vcpu->arch.mcg_cap;
1995         unsigned bank_num = mcg_cap & 0xff;
1996
1997         switch (msr) {
1998         case MSR_IA32_MCG_STATUS:
1999                 vcpu->arch.mcg_status = data;
2000                 break;
2001         case MSR_IA32_MCG_CTL:
2002                 if (!(mcg_cap & MCG_CTL_P))
2003                         return 1;
2004                 if (data != 0 && data != ~(u64)0)
2005                         return -1;
2006                 vcpu->arch.mcg_ctl = data;
2007                 break;
2008         default:
2009                 if (msr >= MSR_IA32_MC0_CTL &&
2010                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2011                         u32 offset = msr - MSR_IA32_MC0_CTL;
2012                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2013                          * some Linux kernels though clear bit 10 in bank 4 to
2014                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2015                          * this to avoid an uncatched #GP in the guest
2016                          */
2017                         if ((offset & 0x3) == 0 &&
2018                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2019                                 return -1;
2020                         vcpu->arch.mce_banks[offset] = data;
2021                         break;
2022                 }
2023                 return 1;
2024         }
2025         return 0;
2026 }
2027
2028 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2029 {
2030         struct kvm *kvm = vcpu->kvm;
2031         int lm = is_long_mode(vcpu);
2032         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2033                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2034         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2035                 : kvm->arch.xen_hvm_config.blob_size_32;
2036         u32 page_num = data & ~PAGE_MASK;
2037         u64 page_addr = data & PAGE_MASK;
2038         u8 *page;
2039         int r;
2040
2041         r = -E2BIG;
2042         if (page_num >= blob_size)
2043                 goto out;
2044         r = -ENOMEM;
2045         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2046         if (IS_ERR(page)) {
2047                 r = PTR_ERR(page);
2048                 goto out;
2049         }
2050         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2051                 goto out_free;
2052         r = 0;
2053 out_free:
2054         kfree(page);
2055 out:
2056         return r;
2057 }
2058
2059 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2060 {
2061         gpa_t gpa = data & ~0x3f;
2062
2063         /* Bits 2:5 are reserved, Should be zero */
2064         if (data & 0x3c)
2065                 return 1;
2066
2067         vcpu->arch.apf.msr_val = data;
2068
2069         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2070                 kvm_clear_async_pf_completion_queue(vcpu);
2071                 kvm_async_pf_hash_reset(vcpu);
2072                 return 0;
2073         }
2074
2075         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2076                                         sizeof(u32)))
2077                 return 1;
2078
2079         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2080         kvm_async_pf_wakeup_all(vcpu);
2081         return 0;
2082 }
2083
2084 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2085 {
2086         vcpu->arch.pv_time_enabled = false;
2087 }
2088
2089 static void record_steal_time(struct kvm_vcpu *vcpu)
2090 {
2091         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2092                 return;
2093
2094         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2095                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2096                 return;
2097
2098         vcpu->arch.st.steal.preempted = 0;
2099
2100         if (vcpu->arch.st.steal.version & 1)
2101                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2102
2103         vcpu->arch.st.steal.version += 1;
2104
2105         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2106                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2107
2108         smp_wmb();
2109
2110         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2111                 vcpu->arch.st.last_steal;
2112         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2113
2114         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2115                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2116
2117         smp_wmb();
2118
2119         vcpu->arch.st.steal.version += 1;
2120
2121         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2122                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2123 }
2124
2125 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2126 {
2127         bool pr = false;
2128         u32 msr = msr_info->index;
2129         u64 data = msr_info->data;
2130
2131         switch (msr) {
2132         case MSR_AMD64_NB_CFG:
2133         case MSR_IA32_UCODE_REV:
2134         case MSR_IA32_UCODE_WRITE:
2135         case MSR_VM_HSAVE_PA:
2136         case MSR_AMD64_PATCH_LOADER:
2137         case MSR_AMD64_BU_CFG2:
2138         case MSR_AMD64_DC_CFG:
2139                 break;
2140
2141         case MSR_EFER:
2142                 return set_efer(vcpu, data);
2143         case MSR_K7_HWCR:
2144                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2145                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2146                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2147                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2148                 if (data != 0) {
2149                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2150                                     data);
2151                         return 1;
2152                 }
2153                 break;
2154         case MSR_FAM10H_MMIO_CONF_BASE:
2155                 if (data != 0) {
2156                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2157                                     "0x%llx\n", data);
2158                         return 1;
2159                 }
2160                 break;
2161         case MSR_IA32_DEBUGCTLMSR:
2162                 if (!data) {
2163                         /* We support the non-activated case already */
2164                         break;
2165                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2166                         /* Values other than LBR and BTF are vendor-specific,
2167                            thus reserved and should throw a #GP */
2168                         return 1;
2169                 }
2170                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2171                             __func__, data);
2172                 break;
2173         case 0x200 ... 0x2ff:
2174                 return kvm_mtrr_set_msr(vcpu, msr, data);
2175         case MSR_IA32_APICBASE:
2176                 return kvm_set_apic_base(vcpu, msr_info);
2177         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2178                 return kvm_x2apic_msr_write(vcpu, msr, data);
2179         case MSR_IA32_TSCDEADLINE:
2180                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2181                 break;
2182         case MSR_IA32_TSC_ADJUST:
2183                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2184                         if (!msr_info->host_initiated) {
2185                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2186                                 adjust_tsc_offset_guest(vcpu, adj);
2187                         }
2188                         vcpu->arch.ia32_tsc_adjust_msr = data;
2189                 }
2190                 break;
2191         case MSR_IA32_MISC_ENABLE:
2192                 vcpu->arch.ia32_misc_enable_msr = data;
2193                 break;
2194         case MSR_IA32_SMBASE:
2195                 if (!msr_info->host_initiated)
2196                         return 1;
2197                 vcpu->arch.smbase = data;
2198                 break;
2199         case MSR_KVM_WALL_CLOCK_NEW:
2200         case MSR_KVM_WALL_CLOCK:
2201                 vcpu->kvm->arch.wall_clock = data;
2202                 kvm_write_wall_clock(vcpu->kvm, data);
2203                 break;
2204         case MSR_KVM_SYSTEM_TIME_NEW:
2205         case MSR_KVM_SYSTEM_TIME: {
2206                 struct kvm_arch *ka = &vcpu->kvm->arch;
2207
2208                 kvmclock_reset(vcpu);
2209
2210                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2211                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2212
2213                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2214                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2215
2216                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2217                 }
2218
2219                 vcpu->arch.time = data;
2220                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2221
2222                 /* we verify if the enable bit is set... */
2223                 if (!(data & 1))
2224                         break;
2225
2226                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2227                      &vcpu->arch.pv_time, data & ~1ULL,
2228                      sizeof(struct pvclock_vcpu_time_info)))
2229                         vcpu->arch.pv_time_enabled = false;
2230                 else
2231                         vcpu->arch.pv_time_enabled = true;
2232
2233                 break;
2234         }
2235         case MSR_KVM_ASYNC_PF_EN:
2236                 if (kvm_pv_enable_async_pf(vcpu, data))
2237                         return 1;
2238                 break;
2239         case MSR_KVM_STEAL_TIME:
2240
2241                 if (unlikely(!sched_info_on()))
2242                         return 1;
2243
2244                 if (data & KVM_STEAL_RESERVED_MASK)
2245                         return 1;
2246
2247                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2248                                                 data & KVM_STEAL_VALID_BITS,
2249                                                 sizeof(struct kvm_steal_time)))
2250                         return 1;
2251
2252                 vcpu->arch.st.msr_val = data;
2253
2254                 if (!(data & KVM_MSR_ENABLED))
2255                         break;
2256
2257                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2258
2259                 break;
2260         case MSR_KVM_PV_EOI_EN:
2261                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2262                         return 1;
2263                 break;
2264
2265         case MSR_IA32_MCG_CTL:
2266         case MSR_IA32_MCG_STATUS:
2267         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2268                 return set_msr_mce(vcpu, msr, data);
2269
2270         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2271         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2272                 pr = true; /* fall through */
2273         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2274         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2275                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2276                         return kvm_pmu_set_msr(vcpu, msr_info);
2277
2278                 if (pr || data != 0)
2279                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2280                                     "0x%x data 0x%llx\n", msr, data);
2281                 break;
2282         case MSR_K7_CLK_CTL:
2283                 /*
2284                  * Ignore all writes to this no longer documented MSR.
2285                  * Writes are only relevant for old K7 processors,
2286                  * all pre-dating SVM, but a recommended workaround from
2287                  * AMD for these chips. It is possible to specify the
2288                  * affected processor models on the command line, hence
2289                  * the need to ignore the workaround.
2290                  */
2291                 break;
2292         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2293         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2294         case HV_X64_MSR_CRASH_CTL:
2295         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2296                 return kvm_hv_set_msr_common(vcpu, msr, data,
2297                                              msr_info->host_initiated);
2298         case MSR_IA32_BBL_CR_CTL3:
2299                 /* Drop writes to this legacy MSR -- see rdmsr
2300                  * counterpart for further detail.
2301                  */
2302                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2303                 break;
2304         case MSR_AMD64_OSVW_ID_LENGTH:
2305                 if (!guest_cpuid_has_osvw(vcpu))
2306                         return 1;
2307                 vcpu->arch.osvw.length = data;
2308                 break;
2309         case MSR_AMD64_OSVW_STATUS:
2310                 if (!guest_cpuid_has_osvw(vcpu))
2311                         return 1;
2312                 vcpu->arch.osvw.status = data;
2313                 break;
2314         case MSR_PLATFORM_INFO:
2315                 if (!msr_info->host_initiated ||
2316                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2317                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2318                      cpuid_fault_enabled(vcpu)))
2319                         return 1;
2320                 vcpu->arch.msr_platform_info = data;
2321                 break;
2322         case MSR_MISC_FEATURES_ENABLES:
2323                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2324                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2325                      !supports_cpuid_fault(vcpu)))
2326                         return 1;
2327                 vcpu->arch.msr_misc_features_enables = data;
2328                 break;
2329         default:
2330                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2331                         return xen_hvm_config(vcpu, data);
2332                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2333                         return kvm_pmu_set_msr(vcpu, msr_info);
2334                 if (!ignore_msrs) {
2335                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2336                                     msr, data);
2337                         return 1;
2338                 } else {
2339                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2340                                     msr, data);
2341                         break;
2342                 }
2343         }
2344         return 0;
2345 }
2346 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2347
2348
2349 /*
2350  * Reads an msr value (of 'msr_index') into 'pdata'.
2351  * Returns 0 on success, non-0 otherwise.
2352  * Assumes vcpu_load() was already called.
2353  */
2354 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2355 {
2356         return kvm_x86_ops->get_msr(vcpu, msr);
2357 }
2358 EXPORT_SYMBOL_GPL(kvm_get_msr);
2359
2360 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2361 {
2362         u64 data;
2363         u64 mcg_cap = vcpu->arch.mcg_cap;
2364         unsigned bank_num = mcg_cap & 0xff;
2365
2366         switch (msr) {
2367         case MSR_IA32_P5_MC_ADDR:
2368         case MSR_IA32_P5_MC_TYPE:
2369                 data = 0;
2370                 break;
2371         case MSR_IA32_MCG_CAP:
2372                 data = vcpu->arch.mcg_cap;
2373                 break;
2374         case MSR_IA32_MCG_CTL:
2375                 if (!(mcg_cap & MCG_CTL_P))
2376                         return 1;
2377                 data = vcpu->arch.mcg_ctl;
2378                 break;
2379         case MSR_IA32_MCG_STATUS:
2380                 data = vcpu->arch.mcg_status;
2381                 break;
2382         default:
2383                 if (msr >= MSR_IA32_MC0_CTL &&
2384                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2385                         u32 offset = msr - MSR_IA32_MC0_CTL;
2386                         data = vcpu->arch.mce_banks[offset];
2387                         break;
2388                 }
2389                 return 1;
2390         }
2391         *pdata = data;
2392         return 0;
2393 }
2394
2395 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2396 {
2397         switch (msr_info->index) {
2398         case MSR_IA32_PLATFORM_ID:
2399         case MSR_IA32_EBL_CR_POWERON:
2400         case MSR_IA32_DEBUGCTLMSR:
2401         case MSR_IA32_LASTBRANCHFROMIP:
2402         case MSR_IA32_LASTBRANCHTOIP:
2403         case MSR_IA32_LASTINTFROMIP:
2404         case MSR_IA32_LASTINTTOIP:
2405         case MSR_K8_SYSCFG:
2406         case MSR_K8_TSEG_ADDR:
2407         case MSR_K8_TSEG_MASK:
2408         case MSR_K7_HWCR:
2409         case MSR_VM_HSAVE_PA:
2410         case MSR_K8_INT_PENDING_MSG:
2411         case MSR_AMD64_NB_CFG:
2412         case MSR_FAM10H_MMIO_CONF_BASE:
2413         case MSR_AMD64_BU_CFG2:
2414         case MSR_IA32_PERF_CTL:
2415         case MSR_AMD64_DC_CFG:
2416                 msr_info->data = 0;
2417                 break;
2418         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2419         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2420         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2421         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2422                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2423                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2424                 msr_info->data = 0;
2425                 break;
2426         case MSR_IA32_UCODE_REV:
2427                 msr_info->data = 0x100000000ULL;
2428                 break;
2429         case MSR_MTRRcap:
2430         case 0x200 ... 0x2ff:
2431                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2432         case 0xcd: /* fsb frequency */
2433                 msr_info->data = 3;
2434                 break;
2435                 /*
2436                  * MSR_EBC_FREQUENCY_ID
2437                  * Conservative value valid for even the basic CPU models.
2438                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2439                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2440                  * and 266MHz for model 3, or 4. Set Core Clock
2441                  * Frequency to System Bus Frequency Ratio to 1 (bits
2442                  * 31:24) even though these are only valid for CPU
2443                  * models > 2, however guests may end up dividing or
2444                  * multiplying by zero otherwise.
2445                  */
2446         case MSR_EBC_FREQUENCY_ID:
2447                 msr_info->data = 1 << 24;
2448                 break;
2449         case MSR_IA32_APICBASE:
2450                 msr_info->data = kvm_get_apic_base(vcpu);
2451                 break;
2452         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2453                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2454                 break;
2455         case MSR_IA32_TSCDEADLINE:
2456                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2457                 break;
2458         case MSR_IA32_TSC_ADJUST:
2459                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2460                 break;
2461         case MSR_IA32_MISC_ENABLE:
2462                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2463                 break;
2464         case MSR_IA32_SMBASE:
2465                 if (!msr_info->host_initiated)
2466                         return 1;
2467                 msr_info->data = vcpu->arch.smbase;
2468                 break;
2469         case MSR_IA32_PERF_STATUS:
2470                 /* TSC increment by tick */
2471                 msr_info->data = 1000ULL;
2472                 /* CPU multiplier */
2473                 msr_info->data |= (((uint64_t)4ULL) << 40);
2474                 break;
2475         case MSR_EFER:
2476                 msr_info->data = vcpu->arch.efer;
2477                 break;
2478         case MSR_KVM_WALL_CLOCK:
2479         case MSR_KVM_WALL_CLOCK_NEW:
2480                 msr_info->data = vcpu->kvm->arch.wall_clock;
2481                 break;
2482         case MSR_KVM_SYSTEM_TIME:
2483         case MSR_KVM_SYSTEM_TIME_NEW:
2484                 msr_info->data = vcpu->arch.time;
2485                 break;
2486         case MSR_KVM_ASYNC_PF_EN:
2487                 msr_info->data = vcpu->arch.apf.msr_val;
2488                 break;
2489         case MSR_KVM_STEAL_TIME:
2490                 msr_info->data = vcpu->arch.st.msr_val;
2491                 break;
2492         case MSR_KVM_PV_EOI_EN:
2493                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2494                 break;
2495         case MSR_IA32_P5_MC_ADDR:
2496         case MSR_IA32_P5_MC_TYPE:
2497         case MSR_IA32_MCG_CAP:
2498         case MSR_IA32_MCG_CTL:
2499         case MSR_IA32_MCG_STATUS:
2500         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2501                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2502         case MSR_K7_CLK_CTL:
2503                 /*
2504                  * Provide expected ramp-up count for K7. All other
2505                  * are set to zero, indicating minimum divisors for
2506                  * every field.
2507                  *
2508                  * This prevents guest kernels on AMD host with CPU
2509                  * type 6, model 8 and higher from exploding due to
2510                  * the rdmsr failing.
2511                  */
2512                 msr_info->data = 0x20000000;
2513                 break;
2514         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2515         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2516         case HV_X64_MSR_CRASH_CTL:
2517         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2518                 return kvm_hv_get_msr_common(vcpu,
2519                                              msr_info->index, &msr_info->data);
2520                 break;
2521         case MSR_IA32_BBL_CR_CTL3:
2522                 /* This legacy MSR exists but isn't fully documented in current
2523                  * silicon.  It is however accessed by winxp in very narrow
2524                  * scenarios where it sets bit #19, itself documented as
2525                  * a "reserved" bit.  Best effort attempt to source coherent
2526                  * read data here should the balance of the register be
2527                  * interpreted by the guest:
2528                  *
2529                  * L2 cache control register 3: 64GB range, 256KB size,
2530                  * enabled, latency 0x1, configured
2531                  */
2532                 msr_info->data = 0xbe702111;
2533                 break;
2534         case MSR_AMD64_OSVW_ID_LENGTH:
2535                 if (!guest_cpuid_has_osvw(vcpu))
2536                         return 1;
2537                 msr_info->data = vcpu->arch.osvw.length;
2538                 break;
2539         case MSR_AMD64_OSVW_STATUS:
2540                 if (!guest_cpuid_has_osvw(vcpu))
2541                         return 1;
2542                 msr_info->data = vcpu->arch.osvw.status;
2543                 break;
2544         case MSR_PLATFORM_INFO:
2545                 msr_info->data = vcpu->arch.msr_platform_info;
2546                 break;
2547         case MSR_MISC_FEATURES_ENABLES:
2548                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2549                 break;
2550         default:
2551                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2552                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2553                 if (!ignore_msrs) {
2554                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2555                                                msr_info->index);
2556                         return 1;
2557                 } else {
2558                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2559                         msr_info->data = 0;
2560                 }
2561                 break;
2562         }
2563         return 0;
2564 }
2565 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2566
2567 /*
2568  * Read or write a bunch of msrs. All parameters are kernel addresses.
2569  *
2570  * @return number of msrs set successfully.
2571  */
2572 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2573                     struct kvm_msr_entry *entries,
2574                     int (*do_msr)(struct kvm_vcpu *vcpu,
2575                                   unsigned index, u64 *data))
2576 {
2577         int i, idx;
2578
2579         idx = srcu_read_lock(&vcpu->kvm->srcu);
2580         for (i = 0; i < msrs->nmsrs; ++i)
2581                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2582                         break;
2583         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2584
2585         return i;
2586 }
2587
2588 /*
2589  * Read or write a bunch of msrs. Parameters are user addresses.
2590  *
2591  * @return number of msrs set successfully.
2592  */
2593 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2594                   int (*do_msr)(struct kvm_vcpu *vcpu,
2595                                 unsigned index, u64 *data),
2596                   int writeback)
2597 {
2598         struct kvm_msrs msrs;
2599         struct kvm_msr_entry *entries;
2600         int r, n;
2601         unsigned size;
2602
2603         r = -EFAULT;
2604         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2605                 goto out;
2606
2607         r = -E2BIG;
2608         if (msrs.nmsrs >= MAX_IO_MSRS)
2609                 goto out;
2610
2611         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2612         entries = memdup_user(user_msrs->entries, size);
2613         if (IS_ERR(entries)) {
2614                 r = PTR_ERR(entries);
2615                 goto out;
2616         }
2617
2618         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2619         if (r < 0)
2620                 goto out_free;
2621
2622         r = -EFAULT;
2623         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2624                 goto out_free;
2625
2626         r = n;
2627
2628 out_free:
2629         kfree(entries);
2630 out:
2631         return r;
2632 }
2633
2634 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2635 {
2636         int r;
2637
2638         switch (ext) {
2639         case KVM_CAP_IRQCHIP:
2640         case KVM_CAP_HLT:
2641         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2642         case KVM_CAP_SET_TSS_ADDR:
2643         case KVM_CAP_EXT_CPUID:
2644         case KVM_CAP_EXT_EMUL_CPUID:
2645         case KVM_CAP_CLOCKSOURCE:
2646         case KVM_CAP_PIT:
2647         case KVM_CAP_NOP_IO_DELAY:
2648         case KVM_CAP_MP_STATE:
2649         case KVM_CAP_SYNC_MMU:
2650         case KVM_CAP_USER_NMI:
2651         case KVM_CAP_REINJECT_CONTROL:
2652         case KVM_CAP_IRQ_INJECT_STATUS:
2653         case KVM_CAP_IOEVENTFD:
2654         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2655         case KVM_CAP_PIT2:
2656         case KVM_CAP_PIT_STATE2:
2657         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2658         case KVM_CAP_XEN_HVM:
2659         case KVM_CAP_VCPU_EVENTS:
2660         case KVM_CAP_HYPERV:
2661         case KVM_CAP_HYPERV_VAPIC:
2662         case KVM_CAP_HYPERV_SPIN:
2663         case KVM_CAP_HYPERV_SYNIC:
2664         case KVM_CAP_PCI_SEGMENT:
2665         case KVM_CAP_DEBUGREGS:
2666         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2667         case KVM_CAP_XSAVE:
2668         case KVM_CAP_ASYNC_PF:
2669         case KVM_CAP_GET_TSC_KHZ:
2670         case KVM_CAP_KVMCLOCK_CTRL:
2671         case KVM_CAP_READONLY_MEM:
2672         case KVM_CAP_HYPERV_TIME:
2673         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2674         case KVM_CAP_TSC_DEADLINE_TIMER:
2675         case KVM_CAP_ENABLE_CAP_VM:
2676         case KVM_CAP_DISABLE_QUIRKS:
2677         case KVM_CAP_SET_BOOT_CPU_ID:
2678         case KVM_CAP_SPLIT_IRQCHIP:
2679         case KVM_CAP_IMMEDIATE_EXIT:
2680                 r = 1;
2681                 break;
2682         case KVM_CAP_ADJUST_CLOCK:
2683                 r = KVM_CLOCK_TSC_STABLE;
2684                 break;
2685         case KVM_CAP_X86_GUEST_MWAIT:
2686                 r = kvm_mwait_in_guest();
2687                 break;
2688         case KVM_CAP_X86_SMM:
2689                 /* SMBASE is usually relocated above 1M on modern chipsets,
2690                  * and SMM handlers might indeed rely on 4G segment limits,
2691                  * so do not report SMM to be available if real mode is
2692                  * emulated via vm86 mode.  Still, do not go to great lengths
2693                  * to avoid userspace's usage of the feature, because it is a
2694                  * fringe case that is not enabled except via specific settings
2695                  * of the module parameters.
2696                  */
2697                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2698                 break;
2699         case KVM_CAP_VAPIC:
2700                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2701                 break;
2702         case KVM_CAP_NR_VCPUS:
2703                 r = KVM_SOFT_MAX_VCPUS;
2704                 break;
2705         case KVM_CAP_MAX_VCPUS:
2706                 r = KVM_MAX_VCPUS;
2707                 break;
2708         case KVM_CAP_NR_MEMSLOTS:
2709                 r = KVM_USER_MEM_SLOTS;
2710                 break;
2711         case KVM_CAP_PV_MMU:    /* obsolete */
2712                 r = 0;
2713                 break;
2714         case KVM_CAP_MCE:
2715                 r = KVM_MAX_MCE_BANKS;
2716                 break;
2717         case KVM_CAP_XCRS:
2718                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2719                 break;
2720         case KVM_CAP_TSC_CONTROL:
2721                 r = kvm_has_tsc_control;
2722                 break;
2723         case KVM_CAP_X2APIC_API:
2724                 r = KVM_X2APIC_API_VALID_FLAGS;
2725                 break;
2726         default:
2727                 r = 0;
2728                 break;
2729         }
2730         return r;
2731
2732 }
2733
2734 long kvm_arch_dev_ioctl(struct file *filp,
2735                         unsigned int ioctl, unsigned long arg)
2736 {
2737         void __user *argp = (void __user *)arg;
2738         long r;
2739
2740         switch (ioctl) {
2741         case KVM_GET_MSR_INDEX_LIST: {
2742                 struct kvm_msr_list __user *user_msr_list = argp;
2743                 struct kvm_msr_list msr_list;
2744                 unsigned n;
2745
2746                 r = -EFAULT;
2747                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2748                         goto out;
2749                 n = msr_list.nmsrs;
2750                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2751                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2752                         goto out;
2753                 r = -E2BIG;
2754                 if (n < msr_list.nmsrs)
2755                         goto out;
2756                 r = -EFAULT;
2757                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2758                                  num_msrs_to_save * sizeof(u32)))
2759                         goto out;
2760                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2761                                  &emulated_msrs,
2762                                  num_emulated_msrs * sizeof(u32)))
2763                         goto out;
2764                 r = 0;
2765                 break;
2766         }
2767         case KVM_GET_SUPPORTED_CPUID:
2768         case KVM_GET_EMULATED_CPUID: {
2769                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2770                 struct kvm_cpuid2 cpuid;
2771
2772                 r = -EFAULT;
2773                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2774                         goto out;
2775
2776                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2777                                             ioctl);
2778                 if (r)
2779                         goto out;
2780
2781                 r = -EFAULT;
2782                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2783                         goto out;
2784                 r = 0;
2785                 break;
2786         }
2787         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2788                 r = -EFAULT;
2789                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2790                                  sizeof(kvm_mce_cap_supported)))
2791                         goto out;
2792                 r = 0;
2793                 break;
2794         }
2795         default:
2796                 r = -EINVAL;
2797         }
2798 out:
2799         return r;
2800 }
2801
2802 static void wbinvd_ipi(void *garbage)
2803 {
2804         wbinvd();
2805 }
2806
2807 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2808 {
2809         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2810 }
2811
2812 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2813 {
2814         /* Address WBINVD may be executed by guest */
2815         if (need_emulate_wbinvd(vcpu)) {
2816                 if (kvm_x86_ops->has_wbinvd_exit())
2817                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2818                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2819                         smp_call_function_single(vcpu->cpu,
2820                                         wbinvd_ipi, NULL, 1);
2821         }
2822
2823         kvm_x86_ops->vcpu_load(vcpu, cpu);
2824
2825         /* Apply any externally detected TSC adjustments (due to suspend) */
2826         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2827                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2828                 vcpu->arch.tsc_offset_adjustment = 0;
2829                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2830         }
2831
2832         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2833                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2834                                 rdtsc() - vcpu->arch.last_host_tsc;
2835                 if (tsc_delta < 0)
2836                         mark_tsc_unstable("KVM discovered backwards TSC");
2837
2838                 if (check_tsc_unstable()) {
2839                         u64 offset = kvm_compute_tsc_offset(vcpu,
2840                                                 vcpu->arch.last_guest_tsc);
2841                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2842                         vcpu->arch.tsc_catchup = 1;
2843                 }
2844                 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2845                                 kvm_x86_ops->set_hv_timer(vcpu,
2846                                         kvm_get_lapic_target_expiration_tsc(vcpu)))
2847                         kvm_lapic_switch_to_sw_timer(vcpu);
2848                 /*
2849                  * On a host with synchronized TSC, there is no need to update
2850                  * kvmclock on vcpu->cpu migration
2851                  */
2852                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2853                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2854                 if (vcpu->cpu != cpu)
2855                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2856                 vcpu->cpu = cpu;
2857         }
2858
2859         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2860 }
2861
2862 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2863 {
2864         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2865                 return;
2866
2867         vcpu->arch.st.steal.preempted = 1;
2868
2869         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2870                         &vcpu->arch.st.steal.preempted,
2871                         offsetof(struct kvm_steal_time, preempted),
2872                         sizeof(vcpu->arch.st.steal.preempted));
2873 }
2874
2875 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2876 {
2877         int idx;
2878         /*
2879          * Disable page faults because we're in atomic context here.
2880          * kvm_write_guest_offset_cached() would call might_fault()
2881          * that relies on pagefault_disable() to tell if there's a
2882          * bug. NOTE: the write to guest memory may not go through if
2883          * during postcopy live migration or if there's heavy guest
2884          * paging.
2885          */
2886         pagefault_disable();
2887         /*
2888          * kvm_memslots() will be called by
2889          * kvm_write_guest_offset_cached() so take the srcu lock.
2890          */
2891         idx = srcu_read_lock(&vcpu->kvm->srcu);
2892         kvm_steal_time_set_preempted(vcpu);
2893         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2894         pagefault_enable();
2895         kvm_x86_ops->vcpu_put(vcpu);
2896         kvm_put_guest_fpu(vcpu);
2897         vcpu->arch.last_host_tsc = rdtsc();
2898 }
2899
2900 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2901                                     struct kvm_lapic_state *s)
2902 {
2903         if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2904                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2905
2906         return kvm_apic_get_state(vcpu, s);
2907 }
2908
2909 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2910                                     struct kvm_lapic_state *s)
2911 {
2912         int r;
2913
2914         r = kvm_apic_set_state(vcpu, s);
2915         if (r)
2916                 return r;
2917         update_cr8_intercept(vcpu);
2918
2919         return 0;
2920 }
2921
2922 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2923 {
2924         return (!lapic_in_kernel(vcpu) ||
2925                 kvm_apic_accept_pic_intr(vcpu));
2926 }
2927
2928 /*
2929  * if userspace requested an interrupt window, check that the
2930  * interrupt window is open.
2931  *
2932  * No need to exit to userspace if we already have an interrupt queued.
2933  */
2934 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2935 {
2936         return kvm_arch_interrupt_allowed(vcpu) &&
2937                 !kvm_cpu_has_interrupt(vcpu) &&
2938                 !kvm_event_needs_reinjection(vcpu) &&
2939                 kvm_cpu_accept_dm_intr(vcpu);
2940 }
2941
2942 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2943                                     struct kvm_interrupt *irq)
2944 {
2945         if (irq->irq >= KVM_NR_INTERRUPTS)
2946                 return -EINVAL;
2947
2948         if (!irqchip_in_kernel(vcpu->kvm)) {
2949                 kvm_queue_interrupt(vcpu, irq->irq, false);
2950                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2951                 return 0;
2952         }
2953
2954         /*
2955          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2956          * fail for in-kernel 8259.
2957          */
2958         if (pic_in_kernel(vcpu->kvm))
2959                 return -ENXIO;
2960
2961         if (vcpu->arch.pending_external_vector != -1)
2962                 return -EEXIST;
2963
2964         vcpu->arch.pending_external_vector = irq->irq;
2965         kvm_make_request(KVM_REQ_EVENT, vcpu);
2966         return 0;
2967 }
2968
2969 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2970 {
2971         kvm_inject_nmi(vcpu);
2972
2973         return 0;
2974 }
2975
2976 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2977 {
2978         kvm_make_request(KVM_REQ_SMI, vcpu);
2979
2980         return 0;
2981 }
2982
2983 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2984                                            struct kvm_tpr_access_ctl *tac)
2985 {
2986         if (tac->flags)
2987                 return -EINVAL;
2988         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2989         return 0;
2990 }
2991
2992 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2993                                         u64 mcg_cap)
2994 {
2995         int r;
2996         unsigned bank_num = mcg_cap & 0xff, bank;
2997
2998         r = -EINVAL;
2999         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3000                 goto out;
3001         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3002                 goto out;
3003         r = 0;
3004         vcpu->arch.mcg_cap = mcg_cap;
3005         /* Init IA32_MCG_CTL to all 1s */
3006         if (mcg_cap & MCG_CTL_P)
3007                 vcpu->arch.mcg_ctl = ~(u64)0;
3008         /* Init IA32_MCi_CTL to all 1s */
3009         for (bank = 0; bank < bank_num; bank++)
3010                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3011
3012         if (kvm_x86_ops->setup_mce)
3013                 kvm_x86_ops->setup_mce(vcpu);
3014 out:
3015         return r;
3016 }
3017
3018 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3019                                       struct kvm_x86_mce *mce)
3020 {
3021         u64 mcg_cap = vcpu->arch.mcg_cap;
3022         unsigned bank_num = mcg_cap & 0xff;
3023         u64 *banks = vcpu->arch.mce_banks;
3024
3025         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3026                 return -EINVAL;
3027         /*
3028          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3029          * reporting is disabled
3030          */
3031         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3032             vcpu->arch.mcg_ctl != ~(u64)0)
3033                 return 0;
3034         banks += 4 * mce->bank;
3035         /*
3036          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3037          * reporting is disabled for the bank
3038          */
3039         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3040                 return 0;
3041         if (mce->status & MCI_STATUS_UC) {
3042                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3043                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3044                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3045                         return 0;
3046                 }
3047                 if (banks[1] & MCI_STATUS_VAL)
3048                         mce->status |= MCI_STATUS_OVER;
3049                 banks[2] = mce->addr;
3050                 banks[3] = mce->misc;
3051                 vcpu->arch.mcg_status = mce->mcg_status;
3052                 banks[1] = mce->status;
3053                 kvm_queue_exception(vcpu, MC_VECTOR);
3054         } else if (!(banks[1] & MCI_STATUS_VAL)
3055                    || !(banks[1] & MCI_STATUS_UC)) {
3056                 if (banks[1] & MCI_STATUS_VAL)
3057                         mce->status |= MCI_STATUS_OVER;
3058                 banks[2] = mce->addr;
3059                 banks[3] = mce->misc;
3060                 banks[1] = mce->status;
3061         } else
3062                 banks[1] |= MCI_STATUS_OVER;
3063         return 0;
3064 }
3065
3066 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3067                                                struct kvm_vcpu_events *events)
3068 {
3069         process_nmi(vcpu);
3070         events->exception.injected =
3071                 vcpu->arch.exception.pending &&
3072                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3073         events->exception.nr = vcpu->arch.exception.nr;
3074         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3075         events->exception.pad = 0;
3076         events->exception.error_code = vcpu->arch.exception.error_code;
3077
3078         events->interrupt.injected =
3079                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3080         events->interrupt.nr = vcpu->arch.interrupt.nr;
3081         events->interrupt.soft = 0;
3082         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3083
3084         events->nmi.injected = vcpu->arch.nmi_injected;
3085         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3086         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3087         events->nmi.pad = 0;
3088
3089         events->sipi_vector = 0; /* never valid when reporting to user space */
3090
3091         events->smi.smm = is_smm(vcpu);
3092         events->smi.pending = vcpu->arch.smi_pending;
3093         events->smi.smm_inside_nmi =
3094                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3095         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3096
3097         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3098                          | KVM_VCPUEVENT_VALID_SHADOW
3099                          | KVM_VCPUEVENT_VALID_SMM);
3100         memset(&events->reserved, 0, sizeof(events->reserved));
3101 }
3102
3103 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3104
3105 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3106                                               struct kvm_vcpu_events *events)
3107 {
3108         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3109                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3110                               | KVM_VCPUEVENT_VALID_SHADOW
3111                               | KVM_VCPUEVENT_VALID_SMM))
3112                 return -EINVAL;
3113
3114         if (events->exception.injected &&
3115             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3116              is_guest_mode(vcpu)))
3117                 return -EINVAL;
3118
3119         /* INITs are latched while in SMM */
3120         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3121             (events->smi.smm || events->smi.pending) &&
3122             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3123                 return -EINVAL;
3124
3125         process_nmi(vcpu);
3126         vcpu->arch.exception.pending = events->exception.injected;
3127         vcpu->arch.exception.nr = events->exception.nr;
3128         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3129         vcpu->arch.exception.error_code = events->exception.error_code;
3130
3131         vcpu->arch.interrupt.pending = events->interrupt.injected;
3132         vcpu->arch.interrupt.nr = events->interrupt.nr;
3133         vcpu->arch.interrupt.soft = events->interrupt.soft;
3134         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3135                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3136                                                   events->interrupt.shadow);
3137
3138         vcpu->arch.nmi_injected = events->nmi.injected;
3139         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3140                 vcpu->arch.nmi_pending = events->nmi.pending;
3141         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3142
3143         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3144             lapic_in_kernel(vcpu))
3145                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3146
3147         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3148                 u32 hflags = vcpu->arch.hflags;
3149                 if (events->smi.smm)
3150                         hflags |= HF_SMM_MASK;
3151                 else
3152                         hflags &= ~HF_SMM_MASK;
3153                 kvm_set_hflags(vcpu, hflags);
3154
3155                 vcpu->arch.smi_pending = events->smi.pending;
3156                 if (events->smi.smm_inside_nmi)
3157                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3158                 else
3159                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3160                 if (lapic_in_kernel(vcpu)) {
3161                         if (events->smi.latched_init)
3162                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3163                         else
3164                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3165                 }
3166         }
3167
3168         kvm_make_request(KVM_REQ_EVENT, vcpu);
3169
3170         return 0;
3171 }
3172
3173 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3174                                              struct kvm_debugregs *dbgregs)
3175 {
3176         unsigned long val;
3177
3178         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3179         kvm_get_dr(vcpu, 6, &val);
3180         dbgregs->dr6 = val;
3181         dbgregs->dr7 = vcpu->arch.dr7;
3182         dbgregs->flags = 0;
3183         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3184 }
3185
3186 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3187                                             struct kvm_debugregs *dbgregs)
3188 {
3189         if (dbgregs->flags)
3190                 return -EINVAL;
3191
3192         if (dbgregs->dr6 & ~0xffffffffull)
3193                 return -EINVAL;
3194         if (dbgregs->dr7 & ~0xffffffffull)
3195                 return -EINVAL;
3196
3197         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3198         kvm_update_dr0123(vcpu);
3199         vcpu->arch.dr6 = dbgregs->dr6;
3200         kvm_update_dr6(vcpu);
3201         vcpu->arch.dr7 = dbgregs->dr7;
3202         kvm_update_dr7(vcpu);
3203
3204         return 0;
3205 }
3206
3207 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3208
3209 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3210 {
3211         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3212         u64 xstate_bv = xsave->header.xfeatures;
3213         u64 valid;
3214
3215         /*
3216          * Copy legacy XSAVE area, to avoid complications with CPUID
3217          * leaves 0 and 1 in the loop below.
3218          */
3219         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3220
3221         /* Set XSTATE_BV */
3222         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3223         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3224
3225         /*
3226          * Copy each region from the possibly compacted offset to the
3227          * non-compacted offset.
3228          */
3229         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3230         while (valid) {
3231                 u64 feature = valid & -valid;
3232                 int index = fls64(feature) - 1;
3233                 void *src = get_xsave_addr(xsave, feature);
3234
3235                 if (src) {
3236                         u32 size, offset, ecx, edx;
3237                         cpuid_count(XSTATE_CPUID, index,
3238                                     &size, &offset, &ecx, &edx);
3239                         memcpy(dest + offset, src, size);
3240                 }
3241
3242                 valid -= feature;
3243         }
3244 }
3245
3246 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3247 {
3248         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3249         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3250         u64 valid;
3251
3252         /*
3253          * Copy legacy XSAVE area, to avoid complications with CPUID
3254          * leaves 0 and 1 in the loop below.
3255          */
3256         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3257
3258         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3259         xsave->header.xfeatures = xstate_bv;
3260         if (boot_cpu_has(X86_FEATURE_XSAVES))
3261                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3262
3263         /*
3264          * Copy each region from the non-compacted offset to the
3265          * possibly compacted offset.
3266          */
3267         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3268         while (valid) {
3269                 u64 feature = valid & -valid;
3270                 int index = fls64(feature) - 1;
3271                 void *dest = get_xsave_addr(xsave, feature);
3272
3273                 if (dest) {
3274                         u32 size, offset, ecx, edx;
3275                         cpuid_count(XSTATE_CPUID, index,
3276                                     &size, &offset, &ecx, &edx);
3277                         memcpy(dest, src + offset, size);
3278                 }
3279
3280                 valid -= feature;
3281         }
3282 }
3283
3284 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3285                                          struct kvm_xsave *guest_xsave)
3286 {
3287         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3288                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3289                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3290         } else {
3291                 memcpy(guest_xsave->region,
3292                         &vcpu->arch.guest_fpu.state.fxsave,
3293                         sizeof(struct fxregs_state));
3294                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3295                         XFEATURE_MASK_FPSSE;
3296         }
3297 }
3298
3299 #define XSAVE_MXCSR_OFFSET 24
3300
3301 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3302                                         struct kvm_xsave *guest_xsave)
3303 {
3304         u64 xstate_bv =
3305                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3306         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3307
3308         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3309                 /*
3310                  * Here we allow setting states that are not present in
3311                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3312                  * with old userspace.
3313                  */
3314                 if (xstate_bv & ~kvm_supported_xcr0() ||
3315                         mxcsr & ~mxcsr_feature_mask)
3316                         return -EINVAL;
3317                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3318         } else {
3319                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3320                         mxcsr & ~mxcsr_feature_mask)
3321                         return -EINVAL;
3322                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3323                         guest_xsave->region, sizeof(struct fxregs_state));
3324         }
3325         return 0;
3326 }
3327
3328 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3329                                         struct kvm_xcrs *guest_xcrs)
3330 {
3331         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3332                 guest_xcrs->nr_xcrs = 0;
3333                 return;
3334         }
3335
3336         guest_xcrs->nr_xcrs = 1;
3337         guest_xcrs->flags = 0;
3338         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3339         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3340 }
3341
3342 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3343                                        struct kvm_xcrs *guest_xcrs)
3344 {
3345         int i, r = 0;
3346
3347         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3348                 return -EINVAL;
3349
3350         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3351                 return -EINVAL;
3352
3353         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3354                 /* Only support XCR0 currently */
3355                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3356                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3357                                 guest_xcrs->xcrs[i].value);
3358                         break;
3359                 }
3360         if (r)
3361                 r = -EINVAL;
3362         return r;
3363 }
3364
3365 /*
3366  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3367  * stopped by the hypervisor.  This function will be called from the host only.
3368  * EINVAL is returned when the host attempts to set the flag for a guest that
3369  * does not support pv clocks.
3370  */
3371 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3372 {
3373         if (!vcpu->arch.pv_time_enabled)
3374                 return -EINVAL;
3375         vcpu->arch.pvclock_set_guest_stopped_request = true;
3376         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3377         return 0;
3378 }
3379
3380 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3381                                      struct kvm_enable_cap *cap)
3382 {
3383         if (cap->flags)
3384                 return -EINVAL;
3385
3386         switch (cap->cap) {
3387         case KVM_CAP_HYPERV_SYNIC:
3388                 if (!irqchip_in_kernel(vcpu->kvm))
3389                         return -EINVAL;
3390                 return kvm_hv_activate_synic(vcpu);
3391         default:
3392                 return -EINVAL;
3393         }
3394 }
3395
3396 long kvm_arch_vcpu_ioctl(struct file *filp,
3397                          unsigned int ioctl, unsigned long arg)
3398 {
3399         struct kvm_vcpu *vcpu = filp->private_data;
3400         void __user *argp = (void __user *)arg;
3401         int r;
3402         union {
3403                 struct kvm_lapic_state *lapic;
3404                 struct kvm_xsave *xsave;
3405                 struct kvm_xcrs *xcrs;
3406                 void *buffer;
3407         } u;
3408
3409         u.buffer = NULL;
3410         switch (ioctl) {
3411         case KVM_GET_LAPIC: {
3412                 r = -EINVAL;
3413                 if (!lapic_in_kernel(vcpu))
3414                         goto out;
3415                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3416
3417                 r = -ENOMEM;
3418                 if (!u.lapic)
3419                         goto out;
3420                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3421                 if (r)
3422                         goto out;
3423                 r = -EFAULT;
3424                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3425                         goto out;
3426                 r = 0;
3427                 break;
3428         }
3429         case KVM_SET_LAPIC: {
3430                 r = -EINVAL;
3431                 if (!lapic_in_kernel(vcpu))
3432                         goto out;
3433                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3434                 if (IS_ERR(u.lapic))
3435                         return PTR_ERR(u.lapic);
3436
3437                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3438                 break;
3439         }
3440         case KVM_INTERRUPT: {
3441                 struct kvm_interrupt irq;
3442
3443                 r = -EFAULT;
3444                 if (copy_from_user(&irq, argp, sizeof irq))
3445                         goto out;
3446                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3447                 break;
3448         }
3449         case KVM_NMI: {
3450                 r = kvm_vcpu_ioctl_nmi(vcpu);
3451                 break;
3452         }
3453         case KVM_SMI: {
3454                 r = kvm_vcpu_ioctl_smi(vcpu);
3455                 break;
3456         }
3457         case KVM_SET_CPUID: {
3458                 struct kvm_cpuid __user *cpuid_arg = argp;
3459                 struct kvm_cpuid cpuid;
3460
3461                 r = -EFAULT;
3462                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3463                         goto out;
3464                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3465                 break;
3466         }
3467         case KVM_SET_CPUID2: {
3468                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3469                 struct kvm_cpuid2 cpuid;
3470
3471                 r = -EFAULT;
3472                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3473                         goto out;
3474                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3475                                               cpuid_arg->entries);
3476                 break;
3477         }
3478         case KVM_GET_CPUID2: {
3479                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3480                 struct kvm_cpuid2 cpuid;
3481
3482                 r = -EFAULT;
3483                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3484                         goto out;
3485                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3486                                               cpuid_arg->entries);
3487                 if (r)
3488                         goto out;
3489                 r = -EFAULT;
3490                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3491                         goto out;
3492                 r = 0;
3493                 break;
3494         }
3495         case KVM_GET_MSRS:
3496                 r = msr_io(vcpu, argp, do_get_msr, 1);
3497                 break;
3498         case KVM_SET_MSRS:
3499                 r = msr_io(vcpu, argp, do_set_msr, 0);
3500                 break;
3501         case KVM_TPR_ACCESS_REPORTING: {
3502                 struct kvm_tpr_access_ctl tac;
3503
3504                 r = -EFAULT;
3505                 if (copy_from_user(&tac, argp, sizeof tac))
3506                         goto out;
3507                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3508                 if (r)
3509                         goto out;
3510                 r = -EFAULT;
3511                 if (copy_to_user(argp, &tac, sizeof tac))
3512                         goto out;
3513                 r = 0;
3514                 break;
3515         };
3516         case KVM_SET_VAPIC_ADDR: {
3517                 struct kvm_vapic_addr va;
3518                 int idx;
3519
3520                 r = -EINVAL;
3521                 if (!lapic_in_kernel(vcpu))
3522                         goto out;
3523                 r = -EFAULT;
3524                 if (copy_from_user(&va, argp, sizeof va))
3525                         goto out;
3526                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3527                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3528                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3529                 break;
3530         }
3531         case KVM_X86_SETUP_MCE: {
3532                 u64 mcg_cap;
3533
3534                 r = -EFAULT;
3535                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3536                         goto out;
3537                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3538                 break;
3539         }
3540         case KVM_X86_SET_MCE: {
3541                 struct kvm_x86_mce mce;
3542
3543                 r = -EFAULT;
3544                 if (copy_from_user(&mce, argp, sizeof mce))
3545                         goto out;
3546                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3547                 break;
3548         }
3549         case KVM_GET_VCPU_EVENTS: {
3550                 struct kvm_vcpu_events events;
3551
3552                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3553
3554                 r = -EFAULT;
3555                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3556                         break;
3557                 r = 0;
3558                 break;
3559         }
3560         case KVM_SET_VCPU_EVENTS: {
3561                 struct kvm_vcpu_events events;
3562
3563                 r = -EFAULT;
3564                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3565                         break;
3566
3567                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3568                 break;
3569         }
3570         case KVM_GET_DEBUGREGS: {
3571                 struct kvm_debugregs dbgregs;
3572
3573                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3574
3575                 r = -EFAULT;
3576                 if (copy_to_user(argp, &dbgregs,
3577                                  sizeof(struct kvm_debugregs)))
3578                         break;
3579                 r = 0;
3580                 break;
3581         }
3582         case KVM_SET_DEBUGREGS: {
3583                 struct kvm_debugregs dbgregs;
3584
3585                 r = -EFAULT;
3586                 if (copy_from_user(&dbgregs, argp,
3587                                    sizeof(struct kvm_debugregs)))
3588                         break;
3589
3590                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3591                 break;
3592         }
3593         case KVM_GET_XSAVE: {
3594                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3595                 r = -ENOMEM;
3596                 if (!u.xsave)
3597                         break;
3598
3599                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3600
3601                 r = -EFAULT;
3602                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3603                         break;
3604                 r = 0;
3605                 break;
3606         }
3607         case KVM_SET_XSAVE: {
3608                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3609                 if (IS_ERR(u.xsave))
3610                         return PTR_ERR(u.xsave);
3611
3612                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3613                 break;
3614         }
3615         case KVM_GET_XCRS: {
3616                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3617                 r = -ENOMEM;
3618                 if (!u.xcrs)
3619                         break;
3620
3621                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3622
3623                 r = -EFAULT;
3624                 if (copy_to_user(argp, u.xcrs,
3625                                  sizeof(struct kvm_xcrs)))
3626                         break;
3627                 r = 0;
3628                 break;
3629         }
3630         case KVM_SET_XCRS: {
3631                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3632                 if (IS_ERR(u.xcrs))
3633                         return PTR_ERR(u.xcrs);
3634
3635                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3636                 break;
3637         }
3638         case KVM_SET_TSC_KHZ: {
3639                 u32 user_tsc_khz;
3640
3641                 r = -EINVAL;
3642                 user_tsc_khz = (u32)arg;
3643
3644                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3645                         goto out;
3646
3647                 if (user_tsc_khz == 0)
3648                         user_tsc_khz = tsc_khz;
3649
3650                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3651                         r = 0;
3652
3653                 goto out;
3654         }
3655         case KVM_GET_TSC_KHZ: {
3656                 r = vcpu->arch.virtual_tsc_khz;
3657                 goto out;
3658         }
3659         case KVM_KVMCLOCK_CTRL: {
3660                 r = kvm_set_guest_paused(vcpu);
3661                 goto out;
3662         }
3663         case KVM_ENABLE_CAP: {
3664                 struct kvm_enable_cap cap;
3665
3666                 r = -EFAULT;
3667                 if (copy_from_user(&cap, argp, sizeof(cap)))
3668                         goto out;
3669                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3670                 break;
3671         }
3672         default:
3673                 r = -EINVAL;
3674         }
3675 out:
3676         kfree(u.buffer);
3677         return r;
3678 }
3679
3680 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3681 {
3682         return VM_FAULT_SIGBUS;
3683 }
3684
3685 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3686 {
3687         int ret;
3688
3689         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3690                 return -EINVAL;
3691         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3692         return ret;
3693 }
3694
3695 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3696                                               u64 ident_addr)
3697 {
3698         kvm->arch.ept_identity_map_addr = ident_addr;
3699         return 0;
3700 }
3701
3702 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3703                                           u32 kvm_nr_mmu_pages)
3704 {
3705         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3706                 return -EINVAL;
3707
3708         mutex_lock(&kvm->slots_lock);
3709
3710         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3711         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3712
3713         mutex_unlock(&kvm->slots_lock);
3714         return 0;
3715 }
3716
3717 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3718 {
3719         return kvm->arch.n_max_mmu_pages;
3720 }
3721
3722 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3723 {
3724         struct kvm_pic *pic = kvm->arch.vpic;
3725         int r;
3726
3727         r = 0;
3728         switch (chip->chip_id) {
3729         case KVM_IRQCHIP_PIC_MASTER:
3730                 memcpy(&chip->chip.pic, &pic->pics[0],
3731                         sizeof(struct kvm_pic_state));
3732                 break;
3733         case KVM_IRQCHIP_PIC_SLAVE:
3734                 memcpy(&chip->chip.pic, &pic->pics[1],
3735                         sizeof(struct kvm_pic_state));
3736                 break;
3737         case KVM_IRQCHIP_IOAPIC:
3738                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3739                 break;
3740         default:
3741                 r = -EINVAL;
3742                 break;
3743         }
3744         return r;
3745 }
3746
3747 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3748 {
3749         struct kvm_pic *pic = kvm->arch.vpic;
3750         int r;
3751
3752         r = 0;
3753         switch (chip->chip_id) {
3754         case KVM_IRQCHIP_PIC_MASTER:
3755                 spin_lock(&pic->lock);
3756                 memcpy(&pic->pics[0], &chip->chip.pic,
3757                         sizeof(struct kvm_pic_state));
3758                 spin_unlock(&pic->lock);
3759                 break;
3760         case KVM_IRQCHIP_PIC_SLAVE:
3761                 spin_lock(&pic->lock);
3762                 memcpy(&pic->pics[1], &chip->chip.pic,
3763                         sizeof(struct kvm_pic_state));
3764                 spin_unlock(&pic->lock);
3765                 break;
3766         case KVM_IRQCHIP_IOAPIC:
3767                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3768                 break;
3769         default:
3770                 r = -EINVAL;
3771                 break;
3772         }
3773         kvm_pic_update_irq(pic);
3774         return r;
3775 }
3776
3777 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3778 {
3779         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3780
3781         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3782
3783         mutex_lock(&kps->lock);
3784         memcpy(ps, &kps->channels, sizeof(*ps));
3785         mutex_unlock(&kps->lock);
3786         return 0;
3787 }
3788
3789 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3790 {
3791         int i;
3792         struct kvm_pit *pit = kvm->arch.vpit;
3793
3794         mutex_lock(&pit->pit_state.lock);
3795         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3796         for (i = 0; i < 3; i++)
3797                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3798         mutex_unlock(&pit->pit_state.lock);
3799         return 0;
3800 }
3801
3802 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3803 {
3804         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3805         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3806                 sizeof(ps->channels));
3807         ps->flags = kvm->arch.vpit->pit_state.flags;
3808         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3809         memset(&ps->reserved, 0, sizeof(ps->reserved));
3810         return 0;
3811 }
3812
3813 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3814 {
3815         int start = 0;
3816         int i;
3817         u32 prev_legacy, cur_legacy;
3818         struct kvm_pit *pit = kvm->arch.vpit;
3819
3820         mutex_lock(&pit->pit_state.lock);
3821         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3822         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3823         if (!prev_legacy && cur_legacy)
3824                 start = 1;
3825         memcpy(&pit->pit_state.channels, &ps->channels,
3826                sizeof(pit->pit_state.channels));
3827         pit->pit_state.flags = ps->flags;
3828         for (i = 0; i < 3; i++)
3829                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3830                                    start && i == 0);
3831         mutex_unlock(&pit->pit_state.lock);
3832         return 0;
3833 }
3834
3835 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3836                                  struct kvm_reinject_control *control)
3837 {
3838         struct kvm_pit *pit = kvm->arch.vpit;
3839
3840         if (!pit)
3841                 return -ENXIO;
3842
3843         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3844          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3845          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3846          */
3847         mutex_lock(&pit->pit_state.lock);
3848         kvm_pit_set_reinject(pit, control->pit_reinject);
3849         mutex_unlock(&pit->pit_state.lock);
3850
3851         return 0;
3852 }
3853
3854 /**
3855  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3856  * @kvm: kvm instance
3857  * @log: slot id and address to which we copy the log
3858  *
3859  * Steps 1-4 below provide general overview of dirty page logging. See
3860  * kvm_get_dirty_log_protect() function description for additional details.
3861  *
3862  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3863  * always flush the TLB (step 4) even if previous step failed  and the dirty
3864  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3865  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3866  * writes will be marked dirty for next log read.
3867  *
3868  *   1. Take a snapshot of the bit and clear it if needed.
3869  *   2. Write protect the corresponding page.
3870  *   3. Copy the snapshot to the userspace.
3871  *   4. Flush TLB's if needed.
3872  */
3873 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3874 {
3875         bool is_dirty = false;
3876         int r;
3877
3878         mutex_lock(&kvm->slots_lock);
3879
3880         /*
3881          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3882          */
3883         if (kvm_x86_ops->flush_log_dirty)
3884                 kvm_x86_ops->flush_log_dirty(kvm);
3885
3886         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3887
3888         /*
3889          * All the TLBs can be flushed out of mmu lock, see the comments in
3890          * kvm_mmu_slot_remove_write_access().
3891          */
3892         lockdep_assert_held(&kvm->slots_lock);
3893         if (is_dirty)
3894                 kvm_flush_remote_tlbs(kvm);
3895
3896         mutex_unlock(&kvm->slots_lock);
3897         return r;
3898 }
3899
3900 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3901                         bool line_status)
3902 {
3903         if (!irqchip_in_kernel(kvm))
3904                 return -ENXIO;
3905
3906         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3907                                         irq_event->irq, irq_event->level,
3908                                         line_status);
3909         return 0;
3910 }
3911
3912 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3913                                    struct kvm_enable_cap *cap)
3914 {
3915         int r;
3916
3917         if (cap->flags)
3918                 return -EINVAL;
3919
3920         switch (cap->cap) {
3921         case KVM_CAP_DISABLE_QUIRKS:
3922                 kvm->arch.disabled_quirks = cap->args[0];
3923                 r = 0;
3924                 break;
3925         case KVM_CAP_SPLIT_IRQCHIP: {
3926                 mutex_lock(&kvm->lock);
3927                 r = -EINVAL;
3928                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3929                         goto split_irqchip_unlock;
3930                 r = -EEXIST;
3931                 if (irqchip_in_kernel(kvm))
3932                         goto split_irqchip_unlock;
3933                 if (kvm->created_vcpus)
3934                         goto split_irqchip_unlock;
3935                 r = kvm_setup_empty_irq_routing(kvm);
3936                 if (r)
3937                         goto split_irqchip_unlock;
3938                 /* Pairs with irqchip_in_kernel. */
3939                 smp_wmb();
3940                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3941                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3942                 r = 0;
3943 split_irqchip_unlock:
3944                 mutex_unlock(&kvm->lock);
3945                 break;
3946         }
3947         case KVM_CAP_X2APIC_API:
3948                 r = -EINVAL;
3949                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3950                         break;
3951
3952                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3953                         kvm->arch.x2apic_format = true;
3954                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3955                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3956
3957                 r = 0;
3958                 break;
3959         default:
3960                 r = -EINVAL;
3961                 break;
3962         }
3963         return r;
3964 }
3965
3966 long kvm_arch_vm_ioctl(struct file *filp,
3967                        unsigned int ioctl, unsigned long arg)
3968 {
3969         struct kvm *kvm = filp->private_data;
3970         void __user *argp = (void __user *)arg;
3971         int r = -ENOTTY;
3972         /*
3973          * This union makes it completely explicit to gcc-3.x
3974          * that these two variables' stack usage should be
3975          * combined, not added together.
3976          */
3977         union {
3978                 struct kvm_pit_state ps;
3979                 struct kvm_pit_state2 ps2;
3980                 struct kvm_pit_config pit_config;
3981         } u;
3982
3983         switch (ioctl) {
3984         case KVM_SET_TSS_ADDR:
3985                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3986                 break;
3987         case KVM_SET_IDENTITY_MAP_ADDR: {
3988                 u64 ident_addr;
3989
3990                 r = -EFAULT;
3991                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3992                         goto out;
3993                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3994                 break;
3995         }
3996         case KVM_SET_NR_MMU_PAGES:
3997                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3998                 break;
3999         case KVM_GET_NR_MMU_PAGES:
4000                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4001                 break;
4002         case KVM_CREATE_IRQCHIP: {
4003                 mutex_lock(&kvm->lock);
4004
4005                 r = -EEXIST;
4006                 if (irqchip_in_kernel(kvm))
4007                         goto create_irqchip_unlock;
4008
4009                 r = -EINVAL;
4010                 if (kvm->created_vcpus)
4011                         goto create_irqchip_unlock;
4012
4013                 r = kvm_pic_init(kvm);
4014                 if (r)
4015                         goto create_irqchip_unlock;
4016
4017                 r = kvm_ioapic_init(kvm);
4018                 if (r) {
4019                         kvm_pic_destroy(kvm);
4020                         goto create_irqchip_unlock;
4021                 }
4022
4023                 r = kvm_setup_default_irq_routing(kvm);
4024                 if (r) {
4025                         kvm_ioapic_destroy(kvm);
4026                         kvm_pic_destroy(kvm);
4027                         goto create_irqchip_unlock;
4028                 }
4029                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4030                 smp_wmb();
4031                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4032         create_irqchip_unlock:
4033                 mutex_unlock(&kvm->lock);
4034                 break;
4035         }
4036         case KVM_CREATE_PIT:
4037                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4038                 goto create_pit;
4039         case KVM_CREATE_PIT2:
4040                 r = -EFAULT;
4041                 if (copy_from_user(&u.pit_config, argp,
4042                                    sizeof(struct kvm_pit_config)))
4043                         goto out;
4044         create_pit:
4045                 mutex_lock(&kvm->lock);
4046                 r = -EEXIST;
4047                 if (kvm->arch.vpit)
4048                         goto create_pit_unlock;
4049                 r = -ENOMEM;
4050                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4051                 if (kvm->arch.vpit)
4052                         r = 0;
4053         create_pit_unlock:
4054                 mutex_unlock(&kvm->lock);
4055                 break;
4056         case KVM_GET_IRQCHIP: {
4057                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4058                 struct kvm_irqchip *chip;
4059
4060                 chip = memdup_user(argp, sizeof(*chip));
4061                 if (IS_ERR(chip)) {
4062                         r = PTR_ERR(chip);
4063                         goto out;
4064                 }
4065
4066                 r = -ENXIO;
4067                 if (!irqchip_kernel(kvm))
4068                         goto get_irqchip_out;
4069                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4070                 if (r)
4071                         goto get_irqchip_out;
4072                 r = -EFAULT;
4073                 if (copy_to_user(argp, chip, sizeof *chip))
4074                         goto get_irqchip_out;
4075                 r = 0;
4076         get_irqchip_out:
4077                 kfree(chip);
4078                 break;
4079         }
4080         case KVM_SET_IRQCHIP: {
4081                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4082                 struct kvm_irqchip *chip;
4083
4084                 chip = memdup_user(argp, sizeof(*chip));
4085                 if (IS_ERR(chip)) {
4086                         r = PTR_ERR(chip);
4087                         goto out;
4088                 }
4089
4090                 r = -ENXIO;
4091                 if (!irqchip_kernel(kvm))
4092                         goto set_irqchip_out;
4093                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4094                 if (r)
4095                         goto set_irqchip_out;
4096                 r = 0;
4097         set_irqchip_out:
4098                 kfree(chip);
4099                 break;
4100         }
4101         case KVM_GET_PIT: {
4102                 r = -EFAULT;
4103                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4104                         goto out;
4105                 r = -ENXIO;
4106                 if (!kvm->arch.vpit)
4107                         goto out;
4108                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4109                 if (r)
4110                         goto out;
4111                 r = -EFAULT;
4112                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4113                         goto out;
4114                 r = 0;
4115                 break;
4116         }
4117         case KVM_SET_PIT: {
4118                 r = -EFAULT;
4119                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4120                         goto out;
4121                 r = -ENXIO;
4122                 if (!kvm->arch.vpit)
4123                         goto out;
4124                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4125                 break;
4126         }
4127         case KVM_GET_PIT2: {
4128                 r = -ENXIO;
4129                 if (!kvm->arch.vpit)
4130                         goto out;
4131                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4132                 if (r)
4133                         goto out;
4134                 r = -EFAULT;
4135                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4136                         goto out;
4137                 r = 0;
4138                 break;
4139         }
4140         case KVM_SET_PIT2: {
4141                 r = -EFAULT;
4142                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4143                         goto out;
4144                 r = -ENXIO;
4145                 if (!kvm->arch.vpit)
4146                         goto out;
4147                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4148                 break;
4149         }
4150         case KVM_REINJECT_CONTROL: {
4151                 struct kvm_reinject_control control;
4152                 r =  -EFAULT;
4153                 if (copy_from_user(&control, argp, sizeof(control)))
4154                         goto out;
4155                 r = kvm_vm_ioctl_reinject(kvm, &control);
4156                 break;
4157         }
4158         case KVM_SET_BOOT_CPU_ID:
4159                 r = 0;
4160                 mutex_lock(&kvm->lock);
4161                 if (kvm->created_vcpus)
4162                         r = -EBUSY;
4163                 else
4164                         kvm->arch.bsp_vcpu_id = arg;
4165                 mutex_unlock(&kvm->lock);
4166                 break;
4167         case KVM_XEN_HVM_CONFIG: {
4168                 r = -EFAULT;
4169                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4170                                    sizeof(struct kvm_xen_hvm_config)))
4171                         goto out;
4172                 r = -EINVAL;
4173                 if (kvm->arch.xen_hvm_config.flags)
4174                         goto out;
4175                 r = 0;
4176                 break;
4177         }
4178         case KVM_SET_CLOCK: {
4179                 struct kvm_clock_data user_ns;
4180                 u64 now_ns;
4181
4182                 r = -EFAULT;
4183                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4184                         goto out;
4185
4186                 r = -EINVAL;
4187                 if (user_ns.flags)
4188                         goto out;
4189
4190                 r = 0;
4191                 now_ns = get_kvmclock_ns(kvm);
4192                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4193                 kvm_gen_update_masterclock(kvm);
4194                 break;
4195         }
4196         case KVM_GET_CLOCK: {
4197                 struct kvm_clock_data user_ns;
4198                 u64 now_ns;
4199
4200                 now_ns = get_kvmclock_ns(kvm);
4201                 user_ns.clock = now_ns;
4202                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4203                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4204
4205                 r = -EFAULT;
4206                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4207                         goto out;
4208                 r = 0;
4209                 break;
4210         }
4211         case KVM_ENABLE_CAP: {
4212                 struct kvm_enable_cap cap;
4213
4214                 r = -EFAULT;
4215                 if (copy_from_user(&cap, argp, sizeof(cap)))
4216                         goto out;
4217                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4218                 break;
4219         }
4220         default:
4221                 r = -ENOTTY;
4222         }
4223 out:
4224         return r;
4225 }
4226
4227 static void kvm_init_msr_list(void)
4228 {
4229         u32 dummy[2];
4230         unsigned i, j;
4231
4232         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4233                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4234                         continue;
4235
4236                 /*
4237                  * Even MSRs that are valid in the host may not be exposed
4238                  * to the guests in some cases.
4239                  */
4240                 switch (msrs_to_save[i]) {
4241                 case MSR_IA32_BNDCFGS:
4242                         if (!kvm_x86_ops->mpx_supported())
4243                                 continue;
4244                         break;
4245                 case MSR_TSC_AUX:
4246                         if (!kvm_x86_ops->rdtscp_supported())
4247                                 continue;
4248                         break;
4249                 default:
4250                         break;
4251                 }
4252
4253                 if (j < i)
4254                         msrs_to_save[j] = msrs_to_save[i];
4255                 j++;
4256         }
4257         num_msrs_to_save = j;
4258
4259         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4260                 switch (emulated_msrs[i]) {
4261                 case MSR_IA32_SMBASE:
4262                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4263                                 continue;
4264                         break;
4265                 default:
4266                         break;
4267                 }
4268
4269                 if (j < i)
4270                         emulated_msrs[j] = emulated_msrs[i];
4271                 j++;
4272         }
4273         num_emulated_msrs = j;
4274 }
4275
4276 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4277                            const void *v)
4278 {
4279         int handled = 0;
4280         int n;
4281
4282         do {
4283                 n = min(len, 8);
4284                 if (!(lapic_in_kernel(vcpu) &&
4285                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4286                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4287                         break;
4288                 handled += n;
4289                 addr += n;
4290                 len -= n;
4291                 v += n;
4292         } while (len);
4293
4294         return handled;
4295 }
4296
4297 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4298 {
4299         int handled = 0;
4300         int n;
4301
4302         do {
4303                 n = min(len, 8);
4304                 if (!(lapic_in_kernel(vcpu) &&
4305                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4306                                          addr, n, v))
4307                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4308                         break;
4309                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4310                 handled += n;
4311                 addr += n;
4312                 len -= n;
4313                 v += n;
4314         } while (len);
4315
4316         return handled;
4317 }
4318
4319 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4320                         struct kvm_segment *var, int seg)
4321 {
4322         kvm_x86_ops->set_segment(vcpu, var, seg);
4323 }
4324
4325 void kvm_get_segment(struct kvm_vcpu *vcpu,
4326                      struct kvm_segment *var, int seg)
4327 {
4328         kvm_x86_ops->get_segment(vcpu, var, seg);
4329 }
4330
4331 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4332                            struct x86_exception *exception)
4333 {
4334         gpa_t t_gpa;
4335
4336         BUG_ON(!mmu_is_nested(vcpu));
4337
4338         /* NPT walks are always user-walks */
4339         access |= PFERR_USER_MASK;
4340         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4341
4342         return t_gpa;
4343 }
4344
4345 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4346                               struct x86_exception *exception)
4347 {
4348         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4349         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4350 }
4351
4352  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4353                                 struct x86_exception *exception)
4354 {
4355         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4356         access |= PFERR_FETCH_MASK;
4357         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4358 }
4359
4360 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4361                                struct x86_exception *exception)
4362 {
4363         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4364         access |= PFERR_WRITE_MASK;
4365         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4366 }
4367
4368 /* uses this to access any guest's mapped memory without checking CPL */
4369 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4370                                 struct x86_exception *exception)
4371 {
4372         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4373 }
4374
4375 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4376                                       struct kvm_vcpu *vcpu, u32 access,
4377                                       struct x86_exception *exception)
4378 {
4379         void *data = val;
4380         int r = X86EMUL_CONTINUE;
4381
4382         while (bytes) {
4383                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4384                                                             exception);
4385                 unsigned offset = addr & (PAGE_SIZE-1);
4386                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4387                 int ret;
4388
4389                 if (gpa == UNMAPPED_GVA)
4390                         return X86EMUL_PROPAGATE_FAULT;
4391                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4392                                                offset, toread);
4393                 if (ret < 0) {
4394                         r = X86EMUL_IO_NEEDED;
4395                         goto out;
4396                 }
4397
4398                 bytes -= toread;
4399                 data += toread;
4400                 addr += toread;
4401         }
4402 out:
4403         return r;
4404 }
4405
4406 /* used for instruction fetching */
4407 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4408                                 gva_t addr, void *val, unsigned int bytes,
4409                                 struct x86_exception *exception)
4410 {
4411         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4412         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4413         unsigned offset;
4414         int ret;
4415
4416         /* Inline kvm_read_guest_virt_helper for speed.  */
4417         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4418                                                     exception);
4419         if (unlikely(gpa == UNMAPPED_GVA))
4420                 return X86EMUL_PROPAGATE_FAULT;
4421
4422         offset = addr & (PAGE_SIZE-1);
4423         if (WARN_ON(offset + bytes > PAGE_SIZE))
4424                 bytes = (unsigned)PAGE_SIZE - offset;
4425         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4426                                        offset, bytes);
4427         if (unlikely(ret < 0))
4428                 return X86EMUL_IO_NEEDED;
4429
4430         return X86EMUL_CONTINUE;
4431 }
4432
4433 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4434                                gva_t addr, void *val, unsigned int bytes,
4435                                struct x86_exception *exception)
4436 {
4437         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4438         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4439
4440         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4441                                           exception);
4442 }
4443 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4444
4445 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4446                                       gva_t addr, void *val, unsigned int bytes,
4447                                       struct x86_exception *exception)
4448 {
4449         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4450         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4451 }
4452
4453 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4454                 unsigned long addr, void *val, unsigned int bytes)
4455 {
4456         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4457         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4458
4459         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4460 }
4461
4462 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4463                                        gva_t addr, void *val,
4464                                        unsigned int bytes,
4465                                        struct x86_exception *exception)
4466 {
4467         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4468         void *data = val;
4469         int r = X86EMUL_CONTINUE;
4470
4471         while (bytes) {
4472                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4473                                                              PFERR_WRITE_MASK,
4474                                                              exception);
4475                 unsigned offset = addr & (PAGE_SIZE-1);
4476                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4477                 int ret;
4478
4479                 if (gpa == UNMAPPED_GVA)
4480                         return X86EMUL_PROPAGATE_FAULT;
4481                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4482                 if (ret < 0) {
4483                         r = X86EMUL_IO_NEEDED;
4484                         goto out;
4485                 }
4486
4487                 bytes -= towrite;
4488                 data += towrite;
4489                 addr += towrite;
4490         }
4491 out:
4492         return r;
4493 }
4494 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4495
4496 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4497                             gpa_t gpa, bool write)
4498 {
4499         /* For APIC access vmexit */
4500         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4501                 return 1;
4502
4503         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4504                 trace_vcpu_match_mmio(gva, gpa, write, true);
4505                 return 1;
4506         }
4507
4508         return 0;
4509 }
4510
4511 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4512                                 gpa_t *gpa, struct x86_exception *exception,
4513                                 bool write)
4514 {
4515         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4516                 | (write ? PFERR_WRITE_MASK : 0);
4517
4518         /*
4519          * currently PKRU is only applied to ept enabled guest so
4520          * there is no pkey in EPT page table for L1 guest or EPT
4521          * shadow page table for L2 guest.
4522          */
4523         if (vcpu_match_mmio_gva(vcpu, gva)
4524             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4525                                  vcpu->arch.access, 0, access)) {
4526                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4527                                         (gva & (PAGE_SIZE - 1));
4528                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4529                 return 1;
4530         }
4531
4532         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4533
4534         if (*gpa == UNMAPPED_GVA)
4535                 return -1;
4536
4537         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4538 }
4539
4540 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4541                         const void *val, int bytes)
4542 {
4543         int ret;
4544
4545         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4546         if (ret < 0)
4547                 return 0;
4548         kvm_page_track_write(vcpu, gpa, val, bytes);
4549         return 1;
4550 }
4551
4552 struct read_write_emulator_ops {
4553         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4554                                   int bytes);
4555         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4556                                   void *val, int bytes);
4557         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4558                                int bytes, void *val);
4559         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4560                                     void *val, int bytes);
4561         bool write;
4562 };
4563
4564 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4565 {
4566         if (vcpu->mmio_read_completed) {
4567                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4568                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4569                 vcpu->mmio_read_completed = 0;
4570                 return 1;
4571         }
4572
4573         return 0;
4574 }
4575
4576 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4577                         void *val, int bytes)
4578 {
4579         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4580 }
4581
4582 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4583                          void *val, int bytes)
4584 {
4585         return emulator_write_phys(vcpu, gpa, val, bytes);
4586 }
4587
4588 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4589 {
4590         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4591         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4592 }
4593
4594 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4595                           void *val, int bytes)
4596 {
4597         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4598         return X86EMUL_IO_NEEDED;
4599 }
4600
4601 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4602                            void *val, int bytes)
4603 {
4604         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4605
4606         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4607         return X86EMUL_CONTINUE;
4608 }
4609
4610 static const struct read_write_emulator_ops read_emultor = {
4611         .read_write_prepare = read_prepare,
4612         .read_write_emulate = read_emulate,
4613         .read_write_mmio = vcpu_mmio_read,
4614         .read_write_exit_mmio = read_exit_mmio,
4615 };
4616
4617 static const struct read_write_emulator_ops write_emultor = {
4618         .read_write_emulate = write_emulate,
4619         .read_write_mmio = write_mmio,
4620         .read_write_exit_mmio = write_exit_mmio,
4621         .write = true,
4622 };
4623
4624 static int emulator_read_write_onepage(unsigned long addr, void *val,
4625                                        unsigned int bytes,
4626                                        struct x86_exception *exception,
4627                                        struct kvm_vcpu *vcpu,
4628                                        const struct read_write_emulator_ops *ops)
4629 {
4630         gpa_t gpa;
4631         int handled, ret;
4632         bool write = ops->write;
4633         struct kvm_mmio_fragment *frag;
4634         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4635
4636         /*
4637          * If the exit was due to a NPF we may already have a GPA.
4638          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4639          * Note, this cannot be used on string operations since string
4640          * operation using rep will only have the initial GPA from the NPF
4641          * occurred.
4642          */
4643         if (vcpu->arch.gpa_available &&
4644             emulator_can_use_gpa(ctxt) &&
4645             vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4646             (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4647                 gpa = exception->address;
4648                 goto mmio;
4649         }
4650
4651         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4652
4653         if (ret < 0)
4654                 return X86EMUL_PROPAGATE_FAULT;
4655
4656         /* For APIC access vmexit */
4657         if (ret)
4658                 goto mmio;
4659
4660         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4661                 return X86EMUL_CONTINUE;
4662
4663 mmio:
4664         /*
4665          * Is this MMIO handled locally?
4666          */
4667         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4668         if (handled == bytes)
4669                 return X86EMUL_CONTINUE;
4670
4671         gpa += handled;
4672         bytes -= handled;
4673         val += handled;
4674
4675         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4676         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4677         frag->gpa = gpa;
4678         frag->data = val;
4679         frag->len = bytes;
4680         return X86EMUL_CONTINUE;
4681 }
4682
4683 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4684                         unsigned long addr,
4685                         void *val, unsigned int bytes,
4686                         struct x86_exception *exception,
4687                         const struct read_write_emulator_ops *ops)
4688 {
4689         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4690         gpa_t gpa;
4691         int rc;
4692
4693         if (ops->read_write_prepare &&
4694                   ops->read_write_prepare(vcpu, val, bytes))
4695                 return X86EMUL_CONTINUE;
4696
4697         vcpu->mmio_nr_fragments = 0;
4698
4699         /* Crossing a page boundary? */
4700         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4701                 int now;
4702
4703                 now = -addr & ~PAGE_MASK;
4704                 rc = emulator_read_write_onepage(addr, val, now, exception,
4705                                                  vcpu, ops);
4706
4707                 if (rc != X86EMUL_CONTINUE)
4708                         return rc;
4709                 addr += now;
4710                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4711                         addr = (u32)addr;
4712                 val += now;
4713                 bytes -= now;
4714         }
4715
4716         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4717                                          vcpu, ops);
4718         if (rc != X86EMUL_CONTINUE)
4719                 return rc;
4720
4721         if (!vcpu->mmio_nr_fragments)
4722                 return rc;
4723
4724         gpa = vcpu->mmio_fragments[0].gpa;
4725
4726         vcpu->mmio_needed = 1;
4727         vcpu->mmio_cur_fragment = 0;
4728
4729         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4730         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4731         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4732         vcpu->run->mmio.phys_addr = gpa;
4733
4734         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4735 }
4736
4737 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4738                                   unsigned long addr,
4739                                   void *val,
4740                                   unsigned int bytes,
4741                                   struct x86_exception *exception)
4742 {
4743         return emulator_read_write(ctxt, addr, val, bytes,
4744                                    exception, &read_emultor);
4745 }
4746
4747 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4748                             unsigned long addr,
4749                             const void *val,
4750                             unsigned int bytes,
4751                             struct x86_exception *exception)
4752 {
4753         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4754                                    exception, &write_emultor);
4755 }
4756
4757 #define CMPXCHG_TYPE(t, ptr, old, new) \
4758         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4759
4760 #ifdef CONFIG_X86_64
4761 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4762 #else
4763 #  define CMPXCHG64(ptr, old, new) \
4764         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4765 #endif
4766
4767 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4768                                      unsigned long addr,
4769                                      const void *old,
4770                                      const void *new,
4771                                      unsigned int bytes,
4772                                      struct x86_exception *exception)
4773 {
4774         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4775         gpa_t gpa;
4776         struct page *page;
4777         char *kaddr;
4778         bool exchanged;
4779
4780         /* guests cmpxchg8b have to be emulated atomically */
4781         if (bytes > 8 || (bytes & (bytes - 1)))
4782                 goto emul_write;
4783
4784         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4785
4786         if (gpa == UNMAPPED_GVA ||
4787             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4788                 goto emul_write;
4789
4790         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4791                 goto emul_write;
4792
4793         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4794         if (is_error_page(page))
4795                 goto emul_write;
4796
4797         kaddr = kmap_atomic(page);
4798         kaddr += offset_in_page(gpa);
4799         switch (bytes) {
4800         case 1:
4801                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4802                 break;
4803         case 2:
4804                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4805                 break;
4806         case 4:
4807                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4808                 break;
4809         case 8:
4810                 exchanged = CMPXCHG64(kaddr, old, new);
4811                 break;
4812         default:
4813                 BUG();
4814         }
4815         kunmap_atomic(kaddr);
4816         kvm_release_page_dirty(page);
4817
4818         if (!exchanged)
4819                 return X86EMUL_CMPXCHG_FAILED;
4820
4821         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4822         kvm_page_track_write(vcpu, gpa, new, bytes);
4823
4824         return X86EMUL_CONTINUE;
4825
4826 emul_write:
4827         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4828
4829         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4830 }
4831
4832 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4833 {
4834         int r = 0, i;
4835
4836         for (i = 0; i < vcpu->arch.pio.count; i++) {
4837                 if (vcpu->arch.pio.in)
4838                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4839                                             vcpu->arch.pio.size, pd);
4840                 else
4841                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4842                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
4843                                              pd);
4844                 if (r)
4845                         break;
4846                 pd += vcpu->arch.pio.size;
4847         }
4848         return r;
4849 }
4850
4851 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4852                                unsigned short port, void *val,
4853                                unsigned int count, bool in)
4854 {
4855         vcpu->arch.pio.port = port;
4856         vcpu->arch.pio.in = in;
4857         vcpu->arch.pio.count  = count;
4858         vcpu->arch.pio.size = size;
4859
4860         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4861                 vcpu->arch.pio.count = 0;
4862                 return 1;
4863         }
4864
4865         vcpu->run->exit_reason = KVM_EXIT_IO;
4866         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4867         vcpu->run->io.size = size;
4868         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4869         vcpu->run->io.count = count;
4870         vcpu->run->io.port = port;
4871
4872         return 0;
4873 }
4874
4875 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4876                                     int size, unsigned short port, void *val,
4877                                     unsigned int count)
4878 {
4879         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4880         int ret;
4881
4882         if (vcpu->arch.pio.count)
4883                 goto data_avail;
4884
4885         memset(vcpu->arch.pio_data, 0, size * count);
4886
4887         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4888         if (ret) {
4889 data_avail:
4890                 memcpy(val, vcpu->arch.pio_data, size * count);
4891                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4892                 vcpu->arch.pio.count = 0;
4893                 return 1;
4894         }
4895
4896         return 0;
4897 }
4898
4899 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4900                                      int size, unsigned short port,
4901                                      const void *val, unsigned int count)
4902 {
4903         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4904
4905         memcpy(vcpu->arch.pio_data, val, size * count);
4906         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4907         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4908 }
4909
4910 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4911 {
4912         return kvm_x86_ops->get_segment_base(vcpu, seg);
4913 }
4914
4915 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4916 {
4917         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4918 }
4919
4920 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4921 {
4922         if (!need_emulate_wbinvd(vcpu))
4923                 return X86EMUL_CONTINUE;
4924
4925         if (kvm_x86_ops->has_wbinvd_exit()) {
4926                 int cpu = get_cpu();
4927
4928                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4929                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4930                                 wbinvd_ipi, NULL, 1);
4931                 put_cpu();
4932                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4933         } else
4934                 wbinvd();
4935         return X86EMUL_CONTINUE;
4936 }
4937
4938 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4939 {
4940         kvm_emulate_wbinvd_noskip(vcpu);
4941         return kvm_skip_emulated_instruction(vcpu);
4942 }
4943 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4944
4945
4946
4947 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4948 {
4949         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4950 }
4951
4952 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4953                            unsigned long *dest)
4954 {
4955         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4956 }
4957
4958 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4959                            unsigned long value)
4960 {
4961
4962         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4963 }
4964
4965 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4966 {
4967         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4968 }
4969
4970 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4971 {
4972         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4973         unsigned long value;
4974
4975         switch (cr) {
4976         case 0:
4977                 value = kvm_read_cr0(vcpu);
4978                 break;
4979         case 2:
4980                 value = vcpu->arch.cr2;
4981                 break;
4982         case 3:
4983                 value = kvm_read_cr3(vcpu);
4984                 break;
4985         case 4:
4986                 value = kvm_read_cr4(vcpu);
4987                 break;
4988         case 8:
4989                 value = kvm_get_cr8(vcpu);
4990                 break;
4991         default:
4992                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4993                 return 0;
4994         }
4995
4996         return value;
4997 }
4998
4999 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5000 {
5001         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5002         int res = 0;
5003
5004         switch (cr) {
5005         case 0:
5006                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5007                 break;
5008         case 2:
5009                 vcpu->arch.cr2 = val;
5010                 break;
5011         case 3:
5012                 res = kvm_set_cr3(vcpu, val);
5013                 break;
5014         case 4:
5015                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5016                 break;
5017         case 8:
5018                 res = kvm_set_cr8(vcpu, val);
5019                 break;
5020         default:
5021                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5022                 res = -1;
5023         }
5024
5025         return res;
5026 }
5027
5028 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5029 {
5030         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5031 }
5032
5033 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5034 {
5035         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5036 }
5037
5038 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5039 {
5040         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5041 }
5042
5043 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5044 {
5045         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5046 }
5047
5048 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5049 {
5050         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5051 }
5052
5053 static unsigned long emulator_get_cached_segment_base(
5054         struct x86_emulate_ctxt *ctxt, int seg)
5055 {
5056         return get_segment_base(emul_to_vcpu(ctxt), seg);
5057 }
5058
5059 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5060                                  struct desc_struct *desc, u32 *base3,
5061                                  int seg)
5062 {
5063         struct kvm_segment var;
5064
5065         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5066         *selector = var.selector;
5067
5068         if (var.unusable) {
5069                 memset(desc, 0, sizeof(*desc));
5070                 if (base3)
5071                         *base3 = 0;
5072                 return false;
5073         }
5074
5075         if (var.g)
5076                 var.limit >>= 12;
5077         set_desc_limit(desc, var.limit);
5078         set_desc_base(desc, (unsigned long)var.base);
5079 #ifdef CONFIG_X86_64
5080         if (base3)
5081                 *base3 = var.base >> 32;
5082 #endif
5083         desc->type = var.type;
5084         desc->s = var.s;
5085         desc->dpl = var.dpl;
5086         desc->p = var.present;
5087         desc->avl = var.avl;
5088         desc->l = var.l;
5089         desc->d = var.db;
5090         desc->g = var.g;
5091
5092         return true;
5093 }
5094
5095 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5096                                  struct desc_struct *desc, u32 base3,
5097                                  int seg)
5098 {
5099         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5100         struct kvm_segment var;
5101
5102         var.selector = selector;
5103         var.base = get_desc_base(desc);
5104 #ifdef CONFIG_X86_64
5105         var.base |= ((u64)base3) << 32;
5106 #endif
5107         var.limit = get_desc_limit(desc);
5108         if (desc->g)
5109                 var.limit = (var.limit << 12) | 0xfff;
5110         var.type = desc->type;
5111         var.dpl = desc->dpl;
5112         var.db = desc->d;
5113         var.s = desc->s;
5114         var.l = desc->l;
5115         var.g = desc->g;
5116         var.avl = desc->avl;
5117         var.present = desc->p;
5118         var.unusable = !var.present;
5119         var.padding = 0;
5120
5121         kvm_set_segment(vcpu, &var, seg);
5122         return;
5123 }
5124
5125 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5126                             u32 msr_index, u64 *pdata)
5127 {
5128         struct msr_data msr;
5129         int r;
5130
5131         msr.index = msr_index;
5132         msr.host_initiated = false;
5133         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5134         if (r)
5135                 return r;
5136
5137         *pdata = msr.data;
5138         return 0;
5139 }
5140
5141 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5142                             u32 msr_index, u64 data)
5143 {
5144         struct msr_data msr;
5145
5146         msr.data = data;
5147         msr.index = msr_index;
5148         msr.host_initiated = false;
5149         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5150 }
5151
5152 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5153 {
5154         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5155
5156         return vcpu->arch.smbase;
5157 }
5158
5159 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5160 {
5161         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5162
5163         vcpu->arch.smbase = smbase;
5164 }
5165
5166 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5167                               u32 pmc)
5168 {
5169         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5170 }
5171
5172 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5173                              u32 pmc, u64 *pdata)
5174 {
5175         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5176 }
5177
5178 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5179 {
5180         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5181 }
5182
5183 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5184 {
5185         preempt_disable();
5186         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5187 }
5188
5189 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5190 {
5191         preempt_enable();
5192 }
5193
5194 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5195                               struct x86_instruction_info *info,
5196                               enum x86_intercept_stage stage)
5197 {
5198         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5199 }
5200
5201 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5202                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5203 {
5204         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5205 }
5206
5207 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5208 {
5209         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5210 }
5211
5212 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5213 {
5214         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5215 }
5216
5217 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5218 {
5219         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5220 }
5221
5222 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5223 {
5224         return emul_to_vcpu(ctxt)->arch.hflags;
5225 }
5226
5227 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5228 {
5229         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5230 }
5231
5232 static const struct x86_emulate_ops emulate_ops = {
5233         .read_gpr            = emulator_read_gpr,
5234         .write_gpr           = emulator_write_gpr,
5235         .read_std            = kvm_read_guest_virt_system,
5236         .write_std           = kvm_write_guest_virt_system,
5237         .read_phys           = kvm_read_guest_phys_system,
5238         .fetch               = kvm_fetch_guest_virt,
5239         .read_emulated       = emulator_read_emulated,
5240         .write_emulated      = emulator_write_emulated,
5241         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5242         .invlpg              = emulator_invlpg,
5243         .pio_in_emulated     = emulator_pio_in_emulated,
5244         .pio_out_emulated    = emulator_pio_out_emulated,
5245         .get_segment         = emulator_get_segment,
5246         .set_segment         = emulator_set_segment,
5247         .get_cached_segment_base = emulator_get_cached_segment_base,
5248         .get_gdt             = emulator_get_gdt,
5249         .get_idt             = emulator_get_idt,
5250         .set_gdt             = emulator_set_gdt,
5251         .set_idt             = emulator_set_idt,
5252         .get_cr              = emulator_get_cr,
5253         .set_cr              = emulator_set_cr,
5254         .cpl                 = emulator_get_cpl,
5255         .get_dr              = emulator_get_dr,
5256         .set_dr              = emulator_set_dr,
5257         .get_smbase          = emulator_get_smbase,
5258         .set_smbase          = emulator_set_smbase,
5259         .set_msr             = emulator_set_msr,
5260         .get_msr             = emulator_get_msr,
5261         .check_pmc           = emulator_check_pmc,
5262         .read_pmc            = emulator_read_pmc,
5263         .halt                = emulator_halt,
5264         .wbinvd              = emulator_wbinvd,
5265         .fix_hypercall       = emulator_fix_hypercall,
5266         .get_fpu             = emulator_get_fpu,
5267         .put_fpu             = emulator_put_fpu,
5268         .intercept           = emulator_intercept,
5269         .get_cpuid           = emulator_get_cpuid,
5270         .set_nmi_mask        = emulator_set_nmi_mask,
5271         .get_hflags          = emulator_get_hflags,
5272         .set_hflags          = emulator_set_hflags,
5273 };
5274
5275 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5276 {
5277         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5278         /*
5279          * an sti; sti; sequence only disable interrupts for the first
5280          * instruction. So, if the last instruction, be it emulated or
5281          * not, left the system with the INT_STI flag enabled, it
5282          * means that the last instruction is an sti. We should not
5283          * leave the flag on in this case. The same goes for mov ss
5284          */
5285         if (int_shadow & mask)
5286                 mask = 0;
5287         if (unlikely(int_shadow || mask)) {
5288                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5289                 if (!mask)
5290                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5291         }
5292 }
5293
5294 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5295 {
5296         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5297         if (ctxt->exception.vector == PF_VECTOR)
5298                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5299
5300         if (ctxt->exception.error_code_valid)
5301                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5302                                       ctxt->exception.error_code);
5303         else
5304                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5305         return false;
5306 }
5307
5308 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5309 {
5310         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5311         int cs_db, cs_l;
5312
5313         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5314
5315         ctxt->eflags = kvm_get_rflags(vcpu);
5316         ctxt->eip = kvm_rip_read(vcpu);
5317         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5318                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5319                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5320                      cs_db                              ? X86EMUL_MODE_PROT32 :
5321                                                           X86EMUL_MODE_PROT16;
5322         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5323         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5324         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5325
5326         init_decode_cache(ctxt);
5327         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5328 }
5329
5330 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5331 {
5332         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5333         int ret;
5334
5335         init_emulate_ctxt(vcpu);
5336
5337         ctxt->op_bytes = 2;
5338         ctxt->ad_bytes = 2;
5339         ctxt->_eip = ctxt->eip + inc_eip;
5340         ret = emulate_int_real(ctxt, irq);
5341
5342         if (ret != X86EMUL_CONTINUE)
5343                 return EMULATE_FAIL;
5344
5345         ctxt->eip = ctxt->_eip;
5346         kvm_rip_write(vcpu, ctxt->eip);
5347         kvm_set_rflags(vcpu, ctxt->eflags);
5348
5349         if (irq == NMI_VECTOR)
5350                 vcpu->arch.nmi_pending = 0;
5351         else
5352                 vcpu->arch.interrupt.pending = false;
5353
5354         return EMULATE_DONE;
5355 }
5356 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5357
5358 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5359 {
5360         int r = EMULATE_DONE;
5361
5362         ++vcpu->stat.insn_emulation_fail;
5363         trace_kvm_emulate_insn_failed(vcpu);
5364         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5365                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5366                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5367                 vcpu->run->internal.ndata = 0;
5368                 r = EMULATE_FAIL;
5369         }
5370         kvm_queue_exception(vcpu, UD_VECTOR);
5371
5372         return r;
5373 }
5374
5375 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5376                                   bool write_fault_to_shadow_pgtable,
5377                                   int emulation_type)
5378 {
5379         gpa_t gpa = cr2;
5380         kvm_pfn_t pfn;
5381
5382         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5383                 return false;
5384
5385         if (!vcpu->arch.mmu.direct_map) {
5386                 /*
5387                  * Write permission should be allowed since only
5388                  * write access need to be emulated.
5389                  */
5390                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5391
5392                 /*
5393                  * If the mapping is invalid in guest, let cpu retry
5394                  * it to generate fault.
5395                  */
5396                 if (gpa == UNMAPPED_GVA)
5397                         return true;
5398         }
5399
5400         /*
5401          * Do not retry the unhandleable instruction if it faults on the
5402          * readonly host memory, otherwise it will goto a infinite loop:
5403          * retry instruction -> write #PF -> emulation fail -> retry
5404          * instruction -> ...
5405          */
5406         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5407
5408         /*
5409          * If the instruction failed on the error pfn, it can not be fixed,
5410          * report the error to userspace.
5411          */
5412         if (is_error_noslot_pfn(pfn))
5413                 return false;
5414
5415         kvm_release_pfn_clean(pfn);
5416
5417         /* The instructions are well-emulated on direct mmu. */
5418         if (vcpu->arch.mmu.direct_map) {
5419                 unsigned int indirect_shadow_pages;
5420
5421                 spin_lock(&vcpu->kvm->mmu_lock);
5422                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5423                 spin_unlock(&vcpu->kvm->mmu_lock);
5424
5425                 if (indirect_shadow_pages)
5426                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5427
5428                 return true;
5429         }
5430
5431         /*
5432          * if emulation was due to access to shadowed page table
5433          * and it failed try to unshadow page and re-enter the
5434          * guest to let CPU execute the instruction.
5435          */
5436         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5437
5438         /*
5439          * If the access faults on its page table, it can not
5440          * be fixed by unprotecting shadow page and it should
5441          * be reported to userspace.
5442          */
5443         return !write_fault_to_shadow_pgtable;
5444 }
5445
5446 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5447                               unsigned long cr2,  int emulation_type)
5448 {
5449         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5450         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5451
5452         last_retry_eip = vcpu->arch.last_retry_eip;
5453         last_retry_addr = vcpu->arch.last_retry_addr;
5454
5455         /*
5456          * If the emulation is caused by #PF and it is non-page_table
5457          * writing instruction, it means the VM-EXIT is caused by shadow
5458          * page protected, we can zap the shadow page and retry this
5459          * instruction directly.
5460          *
5461          * Note: if the guest uses a non-page-table modifying instruction
5462          * on the PDE that points to the instruction, then we will unmap
5463          * the instruction and go to an infinite loop. So, we cache the
5464          * last retried eip and the last fault address, if we meet the eip
5465          * and the address again, we can break out of the potential infinite
5466          * loop.
5467          */
5468         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5469
5470         if (!(emulation_type & EMULTYPE_RETRY))
5471                 return false;
5472
5473         if (x86_page_table_writing_insn(ctxt))
5474                 return false;
5475
5476         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5477                 return false;
5478
5479         vcpu->arch.last_retry_eip = ctxt->eip;
5480         vcpu->arch.last_retry_addr = cr2;
5481
5482         if (!vcpu->arch.mmu.direct_map)
5483                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5484
5485         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5486
5487         return true;
5488 }
5489
5490 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5491 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5492
5493 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5494 {
5495         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5496                 /* This is a good place to trace that we are exiting SMM.  */
5497                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5498
5499                 /* Process a latched INIT or SMI, if any.  */
5500                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5501         }
5502
5503         kvm_mmu_reset_context(vcpu);
5504 }
5505
5506 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5507 {
5508         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5509
5510         vcpu->arch.hflags = emul_flags;
5511
5512         if (changed & HF_SMM_MASK)
5513                 kvm_smm_changed(vcpu);
5514 }
5515
5516 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5517                                 unsigned long *db)
5518 {
5519         u32 dr6 = 0;
5520         int i;
5521         u32 enable, rwlen;
5522
5523         enable = dr7;
5524         rwlen = dr7 >> 16;
5525         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5526                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5527                         dr6 |= (1 << i);
5528         return dr6;
5529 }
5530
5531 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5532 {
5533         struct kvm_run *kvm_run = vcpu->run;
5534
5535         /*
5536          * rflags is the old, "raw" value of the flags.  The new value has
5537          * not been saved yet.
5538          *
5539          * This is correct even for TF set by the guest, because "the
5540          * processor will not generate this exception after the instruction
5541          * that sets the TF flag".
5542          */
5543         if (unlikely(rflags & X86_EFLAGS_TF)) {
5544                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5545                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5546                                                   DR6_RTM;
5547                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5548                         kvm_run->debug.arch.exception = DB_VECTOR;
5549                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5550                         *r = EMULATE_USER_EXIT;
5551                 } else {
5552                         /*
5553                          * "Certain debug exceptions may clear bit 0-3.  The
5554                          * remaining contents of the DR6 register are never
5555                          * cleared by the processor".
5556                          */
5557                         vcpu->arch.dr6 &= ~15;
5558                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5559                         kvm_queue_exception(vcpu, DB_VECTOR);
5560                 }
5561         }
5562 }
5563
5564 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5565 {
5566         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5567         int r = EMULATE_DONE;
5568
5569         kvm_x86_ops->skip_emulated_instruction(vcpu);
5570         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5571         return r == EMULATE_DONE;
5572 }
5573 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5574
5575 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5576 {
5577         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5578             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5579                 struct kvm_run *kvm_run = vcpu->run;
5580                 unsigned long eip = kvm_get_linear_rip(vcpu);
5581                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5582                                            vcpu->arch.guest_debug_dr7,
5583                                            vcpu->arch.eff_db);
5584
5585                 if (dr6 != 0) {
5586                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5587                         kvm_run->debug.arch.pc = eip;
5588                         kvm_run->debug.arch.exception = DB_VECTOR;
5589                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5590                         *r = EMULATE_USER_EXIT;
5591                         return true;
5592                 }
5593         }
5594
5595         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5596             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5597                 unsigned long eip = kvm_get_linear_rip(vcpu);
5598                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5599                                            vcpu->arch.dr7,
5600                                            vcpu->arch.db);
5601
5602                 if (dr6 != 0) {
5603                         vcpu->arch.dr6 &= ~15;
5604                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5605                         kvm_queue_exception(vcpu, DB_VECTOR);
5606                         *r = EMULATE_DONE;
5607                         return true;
5608                 }
5609         }
5610
5611         return false;
5612 }
5613
5614 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5615                             unsigned long cr2,
5616                             int emulation_type,
5617                             void *insn,
5618                             int insn_len)
5619 {
5620         int r;
5621         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5622         bool writeback = true;
5623         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5624
5625         /*
5626          * Clear write_fault_to_shadow_pgtable here to ensure it is
5627          * never reused.
5628          */
5629         vcpu->arch.write_fault_to_shadow_pgtable = false;
5630         kvm_clear_exception_queue(vcpu);
5631
5632         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5633                 init_emulate_ctxt(vcpu);
5634
5635                 /*
5636                  * We will reenter on the same instruction since
5637                  * we do not set complete_userspace_io.  This does not
5638                  * handle watchpoints yet, those would be handled in
5639                  * the emulate_ops.
5640                  */
5641                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5642                         return r;
5643
5644                 ctxt->interruptibility = 0;
5645                 ctxt->have_exception = false;
5646                 ctxt->exception.vector = -1;
5647                 ctxt->perm_ok = false;
5648
5649                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5650
5651                 r = x86_decode_insn(ctxt, insn, insn_len);
5652
5653                 trace_kvm_emulate_insn_start(vcpu);
5654                 ++vcpu->stat.insn_emulation;
5655                 if (r != EMULATION_OK)  {
5656                         if (emulation_type & EMULTYPE_TRAP_UD)
5657                                 return EMULATE_FAIL;
5658                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5659                                                 emulation_type))
5660                                 return EMULATE_DONE;
5661                         if (emulation_type & EMULTYPE_SKIP)
5662                                 return EMULATE_FAIL;
5663                         return handle_emulation_failure(vcpu);
5664                 }
5665         }
5666
5667         if (emulation_type & EMULTYPE_SKIP) {
5668                 kvm_rip_write(vcpu, ctxt->_eip);
5669                 if (ctxt->eflags & X86_EFLAGS_RF)
5670                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5671                 return EMULATE_DONE;
5672         }
5673
5674         if (retry_instruction(ctxt, cr2, emulation_type))
5675                 return EMULATE_DONE;
5676
5677         /* this is needed for vmware backdoor interface to work since it
5678            changes registers values  during IO operation */
5679         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5680                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5681                 emulator_invalidate_register_cache(ctxt);
5682         }
5683
5684 restart:
5685         /* Save the faulting GPA (cr2) in the address field */
5686         ctxt->exception.address = cr2;
5687
5688         r = x86_emulate_insn(ctxt);
5689
5690         if (r == EMULATION_INTERCEPTED)
5691                 return EMULATE_DONE;
5692
5693         if (r == EMULATION_FAILED) {
5694                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5695                                         emulation_type))
5696                         return EMULATE_DONE;
5697
5698                 return handle_emulation_failure(vcpu);
5699         }
5700
5701         if (ctxt->have_exception) {
5702                 r = EMULATE_DONE;
5703                 if (inject_emulated_exception(vcpu))
5704                         return r;
5705         } else if (vcpu->arch.pio.count) {
5706                 if (!vcpu->arch.pio.in) {
5707                         /* FIXME: return into emulator if single-stepping.  */
5708                         vcpu->arch.pio.count = 0;
5709                 } else {
5710                         writeback = false;
5711                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5712                 }
5713                 r = EMULATE_USER_EXIT;
5714         } else if (vcpu->mmio_needed) {
5715                 if (!vcpu->mmio_is_write)
5716                         writeback = false;
5717                 r = EMULATE_USER_EXIT;
5718                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5719         } else if (r == EMULATION_RESTART)
5720                 goto restart;
5721         else
5722                 r = EMULATE_DONE;
5723
5724         if (writeback) {
5725                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5726                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5727                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5728                 kvm_rip_write(vcpu, ctxt->eip);
5729                 if (r == EMULATE_DONE)
5730                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5731                 if (!ctxt->have_exception ||
5732                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5733                         __kvm_set_rflags(vcpu, ctxt->eflags);
5734
5735                 /*
5736                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5737                  * do nothing, and it will be requested again as soon as
5738                  * the shadow expires.  But we still need to check here,
5739                  * because POPF has no interrupt shadow.
5740                  */
5741                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5742                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5743         } else
5744                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5745
5746         return r;
5747 }
5748 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5749
5750 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5751 {
5752         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5753         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5754                                             size, port, &val, 1);
5755         /* do not return to emulator after return from userspace */
5756         vcpu->arch.pio.count = 0;
5757         return ret;
5758 }
5759 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5760
5761 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5762 {
5763         unsigned long val;
5764
5765         /* We should only ever be called with arch.pio.count equal to 1 */
5766         BUG_ON(vcpu->arch.pio.count != 1);
5767
5768         /* For size less than 4 we merge, else we zero extend */
5769         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5770                                         : 0;
5771
5772         /*
5773          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5774          * the copy and tracing
5775          */
5776         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5777                                  vcpu->arch.pio.port, &val, 1);
5778         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5779
5780         return 1;
5781 }
5782
5783 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5784 {
5785         unsigned long val;
5786         int ret;
5787
5788         /* For size less than 4 we merge, else we zero extend */
5789         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5790
5791         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5792                                        &val, 1);
5793         if (ret) {
5794                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5795                 return ret;
5796         }
5797
5798         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5799
5800         return 0;
5801 }
5802 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5803
5804 static int kvmclock_cpu_down_prep(unsigned int cpu)
5805 {
5806         __this_cpu_write(cpu_tsc_khz, 0);
5807         return 0;
5808 }
5809
5810 static void tsc_khz_changed(void *data)
5811 {
5812         struct cpufreq_freqs *freq = data;
5813         unsigned long khz = 0;
5814
5815         if (data)
5816                 khz = freq->new;
5817         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5818                 khz = cpufreq_quick_get(raw_smp_processor_id());
5819         if (!khz)
5820                 khz = tsc_khz;
5821         __this_cpu_write(cpu_tsc_khz, khz);
5822 }
5823
5824 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5825                                      void *data)
5826 {
5827         struct cpufreq_freqs *freq = data;
5828         struct kvm *kvm;
5829         struct kvm_vcpu *vcpu;
5830         int i, send_ipi = 0;
5831
5832         /*
5833          * We allow guests to temporarily run on slowing clocks,
5834          * provided we notify them after, or to run on accelerating
5835          * clocks, provided we notify them before.  Thus time never
5836          * goes backwards.
5837          *
5838          * However, we have a problem.  We can't atomically update
5839          * the frequency of a given CPU from this function; it is
5840          * merely a notifier, which can be called from any CPU.
5841          * Changing the TSC frequency at arbitrary points in time
5842          * requires a recomputation of local variables related to
5843          * the TSC for each VCPU.  We must flag these local variables
5844          * to be updated and be sure the update takes place with the
5845          * new frequency before any guests proceed.
5846          *
5847          * Unfortunately, the combination of hotplug CPU and frequency
5848          * change creates an intractable locking scenario; the order
5849          * of when these callouts happen is undefined with respect to
5850          * CPU hotplug, and they can race with each other.  As such,
5851          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5852          * undefined; you can actually have a CPU frequency change take
5853          * place in between the computation of X and the setting of the
5854          * variable.  To protect against this problem, all updates of
5855          * the per_cpu tsc_khz variable are done in an interrupt
5856          * protected IPI, and all callers wishing to update the value
5857          * must wait for a synchronous IPI to complete (which is trivial
5858          * if the caller is on the CPU already).  This establishes the
5859          * necessary total order on variable updates.
5860          *
5861          * Note that because a guest time update may take place
5862          * anytime after the setting of the VCPU's request bit, the
5863          * correct TSC value must be set before the request.  However,
5864          * to ensure the update actually makes it to any guest which
5865          * starts running in hardware virtualization between the set
5866          * and the acquisition of the spinlock, we must also ping the
5867          * CPU after setting the request bit.
5868          *
5869          */
5870
5871         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5872                 return 0;
5873         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5874                 return 0;
5875
5876         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5877
5878         spin_lock(&kvm_lock);
5879         list_for_each_entry(kvm, &vm_list, vm_list) {
5880                 kvm_for_each_vcpu(i, vcpu, kvm) {
5881                         if (vcpu->cpu != freq->cpu)
5882                                 continue;
5883                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5884                         if (vcpu->cpu != smp_processor_id())
5885                                 send_ipi = 1;
5886                 }
5887         }
5888         spin_unlock(&kvm_lock);
5889
5890         if (freq->old < freq->new && send_ipi) {
5891                 /*
5892                  * We upscale the frequency.  Must make the guest
5893                  * doesn't see old kvmclock values while running with
5894                  * the new frequency, otherwise we risk the guest sees
5895                  * time go backwards.
5896                  *
5897                  * In case we update the frequency for another cpu
5898                  * (which might be in guest context) send an interrupt
5899                  * to kick the cpu out of guest context.  Next time
5900                  * guest context is entered kvmclock will be updated,
5901                  * so the guest will not see stale values.
5902                  */
5903                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5904         }
5905         return 0;
5906 }
5907
5908 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5909         .notifier_call  = kvmclock_cpufreq_notifier
5910 };
5911
5912 static int kvmclock_cpu_online(unsigned int cpu)
5913 {
5914         tsc_khz_changed(NULL);
5915         return 0;
5916 }
5917
5918 static void kvm_timer_init(void)
5919 {
5920         max_tsc_khz = tsc_khz;
5921
5922         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5923 #ifdef CONFIG_CPU_FREQ
5924                 struct cpufreq_policy policy;
5925                 int cpu;
5926
5927                 memset(&policy, 0, sizeof(policy));
5928                 cpu = get_cpu();
5929                 cpufreq_get_policy(&policy, cpu);
5930                 if (policy.cpuinfo.max_freq)
5931                         max_tsc_khz = policy.cpuinfo.max_freq;
5932                 put_cpu();
5933 #endif
5934                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5935                                           CPUFREQ_TRANSITION_NOTIFIER);
5936         }
5937         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5938
5939         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5940                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5941 }
5942
5943 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5944
5945 int kvm_is_in_guest(void)
5946 {
5947         return __this_cpu_read(current_vcpu) != NULL;
5948 }
5949
5950 static int kvm_is_user_mode(void)
5951 {
5952         int user_mode = 3;
5953
5954         if (__this_cpu_read(current_vcpu))
5955                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5956
5957         return user_mode != 0;
5958 }
5959
5960 static unsigned long kvm_get_guest_ip(void)
5961 {
5962         unsigned long ip = 0;
5963
5964         if (__this_cpu_read(current_vcpu))
5965                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5966
5967         return ip;
5968 }
5969
5970 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5971         .is_in_guest            = kvm_is_in_guest,
5972         .is_user_mode           = kvm_is_user_mode,
5973         .get_guest_ip           = kvm_get_guest_ip,
5974 };
5975
5976 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5977 {
5978         __this_cpu_write(current_vcpu, vcpu);
5979 }
5980 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5981
5982 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5983 {
5984         __this_cpu_write(current_vcpu, NULL);
5985 }
5986 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5987
5988 static void kvm_set_mmio_spte_mask(void)
5989 {
5990         u64 mask;
5991         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5992
5993         /*
5994          * Set the reserved bits and the present bit of an paging-structure
5995          * entry to generate page fault with PFER.RSV = 1.
5996          */
5997          /* Mask the reserved physical address bits. */
5998         mask = rsvd_bits(maxphyaddr, 51);
5999
6000         /* Set the present bit. */
6001         mask |= 1ull;
6002
6003 #ifdef CONFIG_X86_64
6004         /*
6005          * If reserved bit is not supported, clear the present bit to disable
6006          * mmio page fault.
6007          */
6008         if (maxphyaddr == 52)
6009                 mask &= ~1ull;
6010 #endif
6011
6012         kvm_mmu_set_mmio_spte_mask(mask);
6013 }
6014
6015 #ifdef CONFIG_X86_64
6016 static void pvclock_gtod_update_fn(struct work_struct *work)
6017 {
6018         struct kvm *kvm;
6019
6020         struct kvm_vcpu *vcpu;
6021         int i;
6022
6023         spin_lock(&kvm_lock);
6024         list_for_each_entry(kvm, &vm_list, vm_list)
6025                 kvm_for_each_vcpu(i, vcpu, kvm)
6026                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6027         atomic_set(&kvm_guest_has_master_clock, 0);
6028         spin_unlock(&kvm_lock);
6029 }
6030
6031 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6032
6033 /*
6034  * Notification about pvclock gtod data update.
6035  */
6036 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6037                                void *priv)
6038 {
6039         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6040         struct timekeeper *tk = priv;
6041
6042         update_pvclock_gtod(tk);
6043
6044         /* disable master clock if host does not trust, or does not
6045          * use, TSC clocksource
6046          */
6047         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6048             atomic_read(&kvm_guest_has_master_clock) != 0)
6049                 queue_work(system_long_wq, &pvclock_gtod_work);
6050
6051         return 0;
6052 }
6053
6054 static struct notifier_block pvclock_gtod_notifier = {
6055         .notifier_call = pvclock_gtod_notify,
6056 };
6057 #endif
6058
6059 int kvm_arch_init(void *opaque)
6060 {
6061         int r;
6062         struct kvm_x86_ops *ops = opaque;
6063
6064         if (kvm_x86_ops) {
6065                 printk(KERN_ERR "kvm: already loaded the other module\n");
6066                 r = -EEXIST;
6067                 goto out;
6068         }
6069
6070         if (!ops->cpu_has_kvm_support()) {
6071                 printk(KERN_ERR "kvm: no hardware support\n");
6072                 r = -EOPNOTSUPP;
6073                 goto out;
6074         }
6075         if (ops->disabled_by_bios()) {
6076                 printk(KERN_ERR "kvm: disabled by bios\n");
6077                 r = -EOPNOTSUPP;
6078                 goto out;
6079         }
6080
6081         r = -ENOMEM;
6082         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6083         if (!shared_msrs) {
6084                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6085                 goto out;
6086         }
6087
6088         r = kvm_mmu_module_init();
6089         if (r)
6090                 goto out_free_percpu;
6091
6092         kvm_set_mmio_spte_mask();
6093
6094         kvm_x86_ops = ops;
6095
6096         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6097                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6098                         PT_PRESENT_MASK, 0);
6099         kvm_timer_init();
6100
6101         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6102
6103         if (boot_cpu_has(X86_FEATURE_XSAVE))
6104                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6105
6106         kvm_lapic_init();
6107 #ifdef CONFIG_X86_64
6108         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6109 #endif
6110
6111         return 0;
6112
6113 out_free_percpu:
6114         free_percpu(shared_msrs);
6115 out:
6116         return r;
6117 }
6118
6119 void kvm_arch_exit(void)
6120 {
6121         kvm_lapic_exit();
6122         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6123
6124         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6125                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6126                                             CPUFREQ_TRANSITION_NOTIFIER);
6127         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6128 #ifdef CONFIG_X86_64
6129         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6130 #endif
6131         kvm_x86_ops = NULL;
6132         kvm_mmu_module_exit();
6133         free_percpu(shared_msrs);
6134 }
6135
6136 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6137 {
6138         ++vcpu->stat.halt_exits;
6139         if (lapic_in_kernel(vcpu)) {
6140                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6141                 return 1;
6142         } else {
6143                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6144                 return 0;
6145         }
6146 }
6147 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6148
6149 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6150 {
6151         int ret = kvm_skip_emulated_instruction(vcpu);
6152         /*
6153          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6154          * KVM_EXIT_DEBUG here.
6155          */
6156         return kvm_vcpu_halt(vcpu) && ret;
6157 }
6158 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6159
6160 #ifdef CONFIG_X86_64
6161 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6162                                 unsigned long clock_type)
6163 {
6164         struct kvm_clock_pairing clock_pairing;
6165         struct timespec ts;
6166         u64 cycle;
6167         int ret;
6168
6169         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6170                 return -KVM_EOPNOTSUPP;
6171
6172         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6173                 return -KVM_EOPNOTSUPP;
6174
6175         clock_pairing.sec = ts.tv_sec;
6176         clock_pairing.nsec = ts.tv_nsec;
6177         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6178         clock_pairing.flags = 0;
6179
6180         ret = 0;
6181         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6182                             sizeof(struct kvm_clock_pairing)))
6183                 ret = -KVM_EFAULT;
6184
6185         return ret;
6186 }
6187 #endif
6188
6189 /*
6190  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6191  *
6192  * @apicid - apicid of vcpu to be kicked.
6193  */
6194 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6195 {
6196         struct kvm_lapic_irq lapic_irq;
6197
6198         lapic_irq.shorthand = 0;
6199         lapic_irq.dest_mode = 0;
6200         lapic_irq.dest_id = apicid;
6201         lapic_irq.msi_redir_hint = false;
6202
6203         lapic_irq.delivery_mode = APIC_DM_REMRD;
6204         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6205 }
6206
6207 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6208 {
6209         vcpu->arch.apicv_active = false;
6210         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6211 }
6212
6213 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6214 {
6215         unsigned long nr, a0, a1, a2, a3, ret;
6216         int op_64_bit, r;
6217
6218         r = kvm_skip_emulated_instruction(vcpu);
6219
6220         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6221                 return kvm_hv_hypercall(vcpu);
6222
6223         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6224         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6225         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6226         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6227         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6228
6229         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6230
6231         op_64_bit = is_64_bit_mode(vcpu);
6232         if (!op_64_bit) {
6233                 nr &= 0xFFFFFFFF;
6234                 a0 &= 0xFFFFFFFF;
6235                 a1 &= 0xFFFFFFFF;
6236                 a2 &= 0xFFFFFFFF;
6237                 a3 &= 0xFFFFFFFF;
6238         }
6239
6240         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6241                 ret = -KVM_EPERM;
6242                 goto out;
6243         }
6244
6245         switch (nr) {
6246         case KVM_HC_VAPIC_POLL_IRQ:
6247                 ret = 0;
6248                 break;
6249         case KVM_HC_KICK_CPU:
6250                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6251                 ret = 0;
6252                 break;
6253 #ifdef CONFIG_X86_64
6254         case KVM_HC_CLOCK_PAIRING:
6255                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6256                 break;
6257 #endif
6258         default:
6259                 ret = -KVM_ENOSYS;
6260                 break;
6261         }
6262 out:
6263         if (!op_64_bit)
6264                 ret = (u32)ret;
6265         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6266         ++vcpu->stat.hypercalls;
6267         return r;
6268 }
6269 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6270
6271 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6272 {
6273         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6274         char instruction[3];
6275         unsigned long rip = kvm_rip_read(vcpu);
6276
6277         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6278
6279         return emulator_write_emulated(ctxt, rip, instruction, 3,
6280                 &ctxt->exception);
6281 }
6282
6283 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6284 {
6285         return vcpu->run->request_interrupt_window &&
6286                 likely(!pic_in_kernel(vcpu->kvm));
6287 }
6288
6289 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6290 {
6291         struct kvm_run *kvm_run = vcpu->run;
6292
6293         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6294         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6295         kvm_run->cr8 = kvm_get_cr8(vcpu);
6296         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6297         kvm_run->ready_for_interrupt_injection =
6298                 pic_in_kernel(vcpu->kvm) ||
6299                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6300 }
6301
6302 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6303 {
6304         int max_irr, tpr;
6305
6306         if (!kvm_x86_ops->update_cr8_intercept)
6307                 return;
6308
6309         if (!lapic_in_kernel(vcpu))
6310                 return;
6311
6312         if (vcpu->arch.apicv_active)
6313                 return;
6314
6315         if (!vcpu->arch.apic->vapic_addr)
6316                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6317         else
6318                 max_irr = -1;
6319
6320         if (max_irr != -1)
6321                 max_irr >>= 4;
6322
6323         tpr = kvm_lapic_get_cr8(vcpu);
6324
6325         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6326 }
6327
6328 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6329 {
6330         int r;
6331
6332         /* try to reinject previous events if any */
6333         if (vcpu->arch.exception.pending) {
6334                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6335                                         vcpu->arch.exception.has_error_code,
6336                                         vcpu->arch.exception.error_code);
6337
6338                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6339                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6340                                              X86_EFLAGS_RF);
6341
6342                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6343                     (vcpu->arch.dr7 & DR7_GD)) {
6344                         vcpu->arch.dr7 &= ~DR7_GD;
6345                         kvm_update_dr7(vcpu);
6346                 }
6347
6348                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6349                                           vcpu->arch.exception.has_error_code,
6350                                           vcpu->arch.exception.error_code,
6351                                           vcpu->arch.exception.reinject);
6352                 return 0;
6353         }
6354
6355         if (vcpu->arch.nmi_injected) {
6356                 kvm_x86_ops->set_nmi(vcpu);
6357                 return 0;
6358         }
6359
6360         if (vcpu->arch.interrupt.pending) {
6361                 kvm_x86_ops->set_irq(vcpu);
6362                 return 0;
6363         }
6364
6365         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6366                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6367                 if (r != 0)
6368                         return r;
6369         }
6370
6371         /* try to inject new event if pending */
6372         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6373                 vcpu->arch.smi_pending = false;
6374                 enter_smm(vcpu);
6375         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6376                 --vcpu->arch.nmi_pending;
6377                 vcpu->arch.nmi_injected = true;
6378                 kvm_x86_ops->set_nmi(vcpu);
6379         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6380                 /*
6381                  * Because interrupts can be injected asynchronously, we are
6382                  * calling check_nested_events again here to avoid a race condition.
6383                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6384                  * proposal and current concerns.  Perhaps we should be setting
6385                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6386                  */
6387                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6388                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6389                         if (r != 0)
6390                                 return r;
6391                 }
6392                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6393                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6394                                             false);
6395                         kvm_x86_ops->set_irq(vcpu);
6396                 }
6397         }
6398
6399         return 0;
6400 }
6401
6402 static void process_nmi(struct kvm_vcpu *vcpu)
6403 {
6404         unsigned limit = 2;
6405
6406         /*
6407          * x86 is limited to one NMI running, and one NMI pending after it.
6408          * If an NMI is already in progress, limit further NMIs to just one.
6409          * Otherwise, allow two (and we'll inject the first one immediately).
6410          */
6411         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6412                 limit = 1;
6413
6414         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6415         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6416         kvm_make_request(KVM_REQ_EVENT, vcpu);
6417 }
6418
6419 #define put_smstate(type, buf, offset, val)                       \
6420         *(type *)((buf) + (offset) - 0x7e00) = val
6421
6422 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6423 {
6424         u32 flags = 0;
6425         flags |= seg->g       << 23;
6426         flags |= seg->db      << 22;
6427         flags |= seg->l       << 21;
6428         flags |= seg->avl     << 20;
6429         flags |= seg->present << 15;
6430         flags |= seg->dpl     << 13;
6431         flags |= seg->s       << 12;
6432         flags |= seg->type    << 8;
6433         return flags;
6434 }
6435
6436 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6437 {
6438         struct kvm_segment seg;
6439         int offset;
6440
6441         kvm_get_segment(vcpu, &seg, n);
6442         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6443
6444         if (n < 3)
6445                 offset = 0x7f84 + n * 12;
6446         else
6447                 offset = 0x7f2c + (n - 3) * 12;
6448
6449         put_smstate(u32, buf, offset + 8, seg.base);
6450         put_smstate(u32, buf, offset + 4, seg.limit);
6451         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6452 }
6453
6454 #ifdef CONFIG_X86_64
6455 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6456 {
6457         struct kvm_segment seg;
6458         int offset;
6459         u16 flags;
6460
6461         kvm_get_segment(vcpu, &seg, n);
6462         offset = 0x7e00 + n * 16;
6463
6464         flags = enter_smm_get_segment_flags(&seg) >> 8;
6465         put_smstate(u16, buf, offset, seg.selector);
6466         put_smstate(u16, buf, offset + 2, flags);
6467         put_smstate(u32, buf, offset + 4, seg.limit);
6468         put_smstate(u64, buf, offset + 8, seg.base);
6469 }
6470 #endif
6471
6472 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6473 {
6474         struct desc_ptr dt;
6475         struct kvm_segment seg;
6476         unsigned long val;
6477         int i;
6478
6479         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6480         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6481         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6482         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6483
6484         for (i = 0; i < 8; i++)
6485                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6486
6487         kvm_get_dr(vcpu, 6, &val);
6488         put_smstate(u32, buf, 0x7fcc, (u32)val);
6489         kvm_get_dr(vcpu, 7, &val);
6490         put_smstate(u32, buf, 0x7fc8, (u32)val);
6491
6492         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6493         put_smstate(u32, buf, 0x7fc4, seg.selector);
6494         put_smstate(u32, buf, 0x7f64, seg.base);
6495         put_smstate(u32, buf, 0x7f60, seg.limit);
6496         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6497
6498         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6499         put_smstate(u32, buf, 0x7fc0, seg.selector);
6500         put_smstate(u32, buf, 0x7f80, seg.base);
6501         put_smstate(u32, buf, 0x7f7c, seg.limit);
6502         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6503
6504         kvm_x86_ops->get_gdt(vcpu, &dt);
6505         put_smstate(u32, buf, 0x7f74, dt.address);
6506         put_smstate(u32, buf, 0x7f70, dt.size);
6507
6508         kvm_x86_ops->get_idt(vcpu, &dt);
6509         put_smstate(u32, buf, 0x7f58, dt.address);
6510         put_smstate(u32, buf, 0x7f54, dt.size);
6511
6512         for (i = 0; i < 6; i++)
6513                 enter_smm_save_seg_32(vcpu, buf, i);
6514
6515         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6516
6517         /* revision id */
6518         put_smstate(u32, buf, 0x7efc, 0x00020000);
6519         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6520 }
6521
6522 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6523 {
6524 #ifdef CONFIG_X86_64
6525         struct desc_ptr dt;
6526         struct kvm_segment seg;
6527         unsigned long val;
6528         int i;
6529
6530         for (i = 0; i < 16; i++)
6531                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6532
6533         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6534         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6535
6536         kvm_get_dr(vcpu, 6, &val);
6537         put_smstate(u64, buf, 0x7f68, val);
6538         kvm_get_dr(vcpu, 7, &val);
6539         put_smstate(u64, buf, 0x7f60, val);
6540
6541         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6542         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6543         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6544
6545         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6546
6547         /* revision id */
6548         put_smstate(u32, buf, 0x7efc, 0x00020064);
6549
6550         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6551
6552         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6553         put_smstate(u16, buf, 0x7e90, seg.selector);
6554         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6555         put_smstate(u32, buf, 0x7e94, seg.limit);
6556         put_smstate(u64, buf, 0x7e98, seg.base);
6557
6558         kvm_x86_ops->get_idt(vcpu, &dt);
6559         put_smstate(u32, buf, 0x7e84, dt.size);
6560         put_smstate(u64, buf, 0x7e88, dt.address);
6561
6562         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6563         put_smstate(u16, buf, 0x7e70, seg.selector);
6564         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6565         put_smstate(u32, buf, 0x7e74, seg.limit);
6566         put_smstate(u64, buf, 0x7e78, seg.base);
6567
6568         kvm_x86_ops->get_gdt(vcpu, &dt);
6569         put_smstate(u32, buf, 0x7e64, dt.size);
6570         put_smstate(u64, buf, 0x7e68, dt.address);
6571
6572         for (i = 0; i < 6; i++)
6573                 enter_smm_save_seg_64(vcpu, buf, i);
6574 #else
6575         WARN_ON_ONCE(1);
6576 #endif
6577 }
6578
6579 static void enter_smm(struct kvm_vcpu *vcpu)
6580 {
6581         struct kvm_segment cs, ds;
6582         struct desc_ptr dt;
6583         char buf[512];
6584         u32 cr0;
6585
6586         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6587         vcpu->arch.hflags |= HF_SMM_MASK;
6588         memset(buf, 0, 512);
6589         if (guest_cpuid_has_longmode(vcpu))
6590                 enter_smm_save_state_64(vcpu, buf);
6591         else
6592                 enter_smm_save_state_32(vcpu, buf);
6593
6594         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6595
6596         if (kvm_x86_ops->get_nmi_mask(vcpu))
6597                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6598         else
6599                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6600
6601         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6602         kvm_rip_write(vcpu, 0x8000);
6603
6604         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6605         kvm_x86_ops->set_cr0(vcpu, cr0);
6606         vcpu->arch.cr0 = cr0;
6607
6608         kvm_x86_ops->set_cr4(vcpu, 0);
6609
6610         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6611         dt.address = dt.size = 0;
6612         kvm_x86_ops->set_idt(vcpu, &dt);
6613
6614         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6615
6616         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6617         cs.base = vcpu->arch.smbase;
6618
6619         ds.selector = 0;
6620         ds.base = 0;
6621
6622         cs.limit    = ds.limit = 0xffffffff;
6623         cs.type     = ds.type = 0x3;
6624         cs.dpl      = ds.dpl = 0;
6625         cs.db       = ds.db = 0;
6626         cs.s        = ds.s = 1;
6627         cs.l        = ds.l = 0;
6628         cs.g        = ds.g = 1;
6629         cs.avl      = ds.avl = 0;
6630         cs.present  = ds.present = 1;
6631         cs.unusable = ds.unusable = 0;
6632         cs.padding  = ds.padding = 0;
6633
6634         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6635         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6636         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6637         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6638         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6639         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6640
6641         if (guest_cpuid_has_longmode(vcpu))
6642                 kvm_x86_ops->set_efer(vcpu, 0);
6643
6644         kvm_update_cpuid(vcpu);
6645         kvm_mmu_reset_context(vcpu);
6646 }
6647
6648 static void process_smi(struct kvm_vcpu *vcpu)
6649 {
6650         vcpu->arch.smi_pending = true;
6651         kvm_make_request(KVM_REQ_EVENT, vcpu);
6652 }
6653
6654 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6655 {
6656         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6657 }
6658
6659 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6660 {
6661         u64 eoi_exit_bitmap[4];
6662
6663         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6664                 return;
6665
6666         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6667
6668         if (irqchip_split(vcpu->kvm))
6669                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6670         else {
6671                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6672                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6673                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6674         }
6675         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6676                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6677         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6678 }
6679
6680 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6681 {
6682         ++vcpu->stat.tlb_flush;
6683         kvm_x86_ops->tlb_flush(vcpu);
6684 }
6685
6686 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6687 {
6688         struct page *page = NULL;
6689
6690         if (!lapic_in_kernel(vcpu))
6691                 return;
6692
6693         if (!kvm_x86_ops->set_apic_access_page_addr)
6694                 return;
6695
6696         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6697         if (is_error_page(page))
6698                 return;
6699         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6700
6701         /*
6702          * Do not pin apic access page in memory, the MMU notifier
6703          * will call us again if it is migrated or swapped out.
6704          */
6705         put_page(page);
6706 }
6707 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6708
6709 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6710                                            unsigned long address)
6711 {
6712         /*
6713          * The physical address of apic access page is stored in the VMCS.
6714          * Update it when it becomes invalid.
6715          */
6716         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6717                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6718 }
6719
6720 /*
6721  * Returns 1 to let vcpu_run() continue the guest execution loop without
6722  * exiting to the userspace.  Otherwise, the value will be returned to the
6723  * userspace.
6724  */
6725 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6726 {
6727         int r;
6728         bool req_int_win =
6729                 dm_request_for_irq_injection(vcpu) &&
6730                 kvm_cpu_accept_dm_intr(vcpu);
6731
6732         bool req_immediate_exit = false;
6733
6734         if (vcpu->requests) {
6735                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6736                         kvm_mmu_unload(vcpu);
6737                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6738                         __kvm_migrate_timers(vcpu);
6739                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6740                         kvm_gen_update_masterclock(vcpu->kvm);
6741                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6742                         kvm_gen_kvmclock_update(vcpu);
6743                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6744                         r = kvm_guest_time_update(vcpu);
6745                         if (unlikely(r))
6746                                 goto out;
6747                 }
6748                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6749                         kvm_mmu_sync_roots(vcpu);
6750                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6751                         kvm_vcpu_flush_tlb(vcpu);
6752                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6753                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6754                         r = 0;
6755                         goto out;
6756                 }
6757                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6758                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6759                         r = 0;
6760                         goto out;
6761                 }
6762                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6763                         /* Page is swapped out. Do synthetic halt */
6764                         vcpu->arch.apf.halted = true;
6765                         r = 1;
6766                         goto out;
6767                 }
6768                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6769                         record_steal_time(vcpu);
6770                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6771                         process_smi(vcpu);
6772                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6773                         process_nmi(vcpu);
6774                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6775                         kvm_pmu_handle_event(vcpu);
6776                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6777                         kvm_pmu_deliver_pmi(vcpu);
6778                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6779                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6780                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6781                                      vcpu->arch.ioapic_handled_vectors)) {
6782                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6783                                 vcpu->run->eoi.vector =
6784                                                 vcpu->arch.pending_ioapic_eoi;
6785                                 r = 0;
6786                                 goto out;
6787                         }
6788                 }
6789                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6790                         vcpu_scan_ioapic(vcpu);
6791                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6792                         kvm_vcpu_reload_apic_access_page(vcpu);
6793                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6794                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6795                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6796                         r = 0;
6797                         goto out;
6798                 }
6799                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6800                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6801                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6802                         r = 0;
6803                         goto out;
6804                 }
6805                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6806                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6807                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6808                         r = 0;
6809                         goto out;
6810                 }
6811
6812                 /*
6813                  * KVM_REQ_HV_STIMER has to be processed after
6814                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6815                  * depend on the guest clock being up-to-date
6816                  */
6817                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6818                         kvm_hv_process_stimers(vcpu);
6819         }
6820
6821         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6822                 ++vcpu->stat.req_event;
6823                 kvm_apic_accept_events(vcpu);
6824                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6825                         r = 1;
6826                         goto out;
6827                 }
6828
6829                 if (inject_pending_event(vcpu, req_int_win) != 0)
6830                         req_immediate_exit = true;
6831                 else {
6832                         /* Enable NMI/IRQ window open exits if needed.
6833                          *
6834                          * SMIs have two cases: 1) they can be nested, and
6835                          * then there is nothing to do here because RSM will
6836                          * cause a vmexit anyway; 2) or the SMI can be pending
6837                          * because inject_pending_event has completed the
6838                          * injection of an IRQ or NMI from the previous vmexit,
6839                          * and then we request an immediate exit to inject the SMI.
6840                          */
6841                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6842                                 req_immediate_exit = true;
6843                         if (vcpu->arch.nmi_pending)
6844                                 kvm_x86_ops->enable_nmi_window(vcpu);
6845                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6846                                 kvm_x86_ops->enable_irq_window(vcpu);
6847                 }
6848
6849                 if (kvm_lapic_enabled(vcpu)) {
6850                         update_cr8_intercept(vcpu);
6851                         kvm_lapic_sync_to_vapic(vcpu);
6852                 }
6853         }
6854
6855         r = kvm_mmu_reload(vcpu);
6856         if (unlikely(r)) {
6857                 goto cancel_injection;
6858         }
6859
6860         preempt_disable();
6861
6862         kvm_x86_ops->prepare_guest_switch(vcpu);
6863         kvm_load_guest_fpu(vcpu);
6864
6865         /*
6866          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6867          * IPI are then delayed after guest entry, which ensures that they
6868          * result in virtual interrupt delivery.
6869          */
6870         local_irq_disable();
6871         vcpu->mode = IN_GUEST_MODE;
6872
6873         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6874
6875         /*
6876          * 1) We should set ->mode before checking ->requests.  Please see
6877          * the comment in kvm_vcpu_exiting_guest_mode().
6878          *
6879          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6880          * pairs with the memory barrier implicit in pi_test_and_set_on
6881          * (see vmx_deliver_posted_interrupt).
6882          *
6883          * 3) This also orders the write to mode from any reads to the page
6884          * tables done while the VCPU is running.  Please see the comment
6885          * in kvm_flush_remote_tlbs.
6886          */
6887         smp_mb__after_srcu_read_unlock();
6888
6889         /*
6890          * This handles the case where a posted interrupt was
6891          * notified with kvm_vcpu_kick.
6892          */
6893         if (kvm_lapic_enabled(vcpu)) {
6894                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6895                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6896         }
6897
6898         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6899             || need_resched() || signal_pending(current)) {
6900                 vcpu->mode = OUTSIDE_GUEST_MODE;
6901                 smp_wmb();
6902                 local_irq_enable();
6903                 preempt_enable();
6904                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6905                 r = 1;
6906                 goto cancel_injection;
6907         }
6908
6909         kvm_load_guest_xcr0(vcpu);
6910
6911         if (req_immediate_exit) {
6912                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6913                 smp_send_reschedule(vcpu->cpu);
6914         }
6915
6916         trace_kvm_entry(vcpu->vcpu_id);
6917         wait_lapic_expire(vcpu);
6918         guest_enter_irqoff();
6919
6920         if (unlikely(vcpu->arch.switch_db_regs)) {
6921                 set_debugreg(0, 7);
6922                 set_debugreg(vcpu->arch.eff_db[0], 0);
6923                 set_debugreg(vcpu->arch.eff_db[1], 1);
6924                 set_debugreg(vcpu->arch.eff_db[2], 2);
6925                 set_debugreg(vcpu->arch.eff_db[3], 3);
6926                 set_debugreg(vcpu->arch.dr6, 6);
6927                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6928         }
6929
6930         kvm_x86_ops->run(vcpu);
6931
6932         /*
6933          * Do this here before restoring debug registers on the host.  And
6934          * since we do this before handling the vmexit, a DR access vmexit
6935          * can (a) read the correct value of the debug registers, (b) set
6936          * KVM_DEBUGREG_WONT_EXIT again.
6937          */
6938         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6939                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6940                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6941                 kvm_update_dr0123(vcpu);
6942                 kvm_update_dr6(vcpu);
6943                 kvm_update_dr7(vcpu);
6944                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6945         }
6946
6947         /*
6948          * If the guest has used debug registers, at least dr7
6949          * will be disabled while returning to the host.
6950          * If we don't have active breakpoints in the host, we don't
6951          * care about the messed up debug address registers. But if
6952          * we have some of them active, restore the old state.
6953          */
6954         if (hw_breakpoint_active())
6955                 hw_breakpoint_restore();
6956
6957         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6958
6959         vcpu->mode = OUTSIDE_GUEST_MODE;
6960         smp_wmb();
6961
6962         kvm_put_guest_xcr0(vcpu);
6963
6964         kvm_x86_ops->handle_external_intr(vcpu);
6965
6966         ++vcpu->stat.exits;
6967
6968         guest_exit_irqoff();
6969
6970         local_irq_enable();
6971         preempt_enable();
6972
6973         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6974
6975         /*
6976          * Profile KVM exit RIPs:
6977          */
6978         if (unlikely(prof_on == KVM_PROFILING)) {
6979                 unsigned long rip = kvm_rip_read(vcpu);
6980                 profile_hit(KVM_PROFILING, (void *)rip);
6981         }
6982
6983         if (unlikely(vcpu->arch.tsc_always_catchup))
6984                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6985
6986         if (vcpu->arch.apic_attention)
6987                 kvm_lapic_sync_from_vapic(vcpu);
6988
6989         r = kvm_x86_ops->handle_exit(vcpu);
6990         return r;
6991
6992 cancel_injection:
6993         kvm_x86_ops->cancel_injection(vcpu);
6994         if (unlikely(vcpu->arch.apic_attention))
6995                 kvm_lapic_sync_from_vapic(vcpu);
6996 out:
6997         return r;
6998 }
6999
7000 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7001 {
7002         if (!kvm_arch_vcpu_runnable(vcpu) &&
7003             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7004                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7005                 kvm_vcpu_block(vcpu);
7006                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7007
7008                 if (kvm_x86_ops->post_block)
7009                         kvm_x86_ops->post_block(vcpu);
7010
7011                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7012                         return 1;
7013         }
7014
7015         kvm_apic_accept_events(vcpu);
7016         switch(vcpu->arch.mp_state) {
7017         case KVM_MP_STATE_HALTED:
7018                 vcpu->arch.pv.pv_unhalted = false;
7019                 vcpu->arch.mp_state =
7020                         KVM_MP_STATE_RUNNABLE;
7021         case KVM_MP_STATE_RUNNABLE:
7022                 vcpu->arch.apf.halted = false;
7023                 break;
7024         case KVM_MP_STATE_INIT_RECEIVED:
7025                 break;
7026         default:
7027                 return -EINTR;
7028                 break;
7029         }
7030         return 1;
7031 }
7032
7033 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7034 {
7035         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7036                 kvm_x86_ops->check_nested_events(vcpu, false);
7037
7038         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7039                 !vcpu->arch.apf.halted);
7040 }
7041
7042 static int vcpu_run(struct kvm_vcpu *vcpu)
7043 {
7044         int r;
7045         struct kvm *kvm = vcpu->kvm;
7046
7047         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7048
7049         for (;;) {
7050                 if (kvm_vcpu_running(vcpu)) {
7051                         r = vcpu_enter_guest(vcpu);
7052                 } else {
7053                         r = vcpu_block(kvm, vcpu);
7054                 }
7055
7056                 if (r <= 0)
7057                         break;
7058
7059                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7060                 if (kvm_cpu_has_pending_timer(vcpu))
7061                         kvm_inject_pending_timer_irqs(vcpu);
7062
7063                 if (dm_request_for_irq_injection(vcpu) &&
7064                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7065                         r = 0;
7066                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7067                         ++vcpu->stat.request_irq_exits;
7068                         break;
7069                 }
7070
7071                 kvm_check_async_pf_completion(vcpu);
7072
7073                 if (signal_pending(current)) {
7074                         r = -EINTR;
7075                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7076                         ++vcpu->stat.signal_exits;
7077                         break;
7078                 }
7079                 if (need_resched()) {
7080                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7081                         cond_resched();
7082                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7083                 }
7084         }
7085
7086         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7087
7088         return r;
7089 }
7090
7091 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7092 {
7093         int r;
7094         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7095         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7096         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7097         if (r != EMULATE_DONE)
7098                 return 0;
7099         return 1;
7100 }
7101
7102 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7103 {
7104         BUG_ON(!vcpu->arch.pio.count);
7105
7106         return complete_emulated_io(vcpu);
7107 }
7108
7109 /*
7110  * Implements the following, as a state machine:
7111  *
7112  * read:
7113  *   for each fragment
7114  *     for each mmio piece in the fragment
7115  *       write gpa, len
7116  *       exit
7117  *       copy data
7118  *   execute insn
7119  *
7120  * write:
7121  *   for each fragment
7122  *     for each mmio piece in the fragment
7123  *       write gpa, len
7124  *       copy data
7125  *       exit
7126  */
7127 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7128 {
7129         struct kvm_run *run = vcpu->run;
7130         struct kvm_mmio_fragment *frag;
7131         unsigned len;
7132
7133         BUG_ON(!vcpu->mmio_needed);
7134
7135         /* Complete previous fragment */
7136         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7137         len = min(8u, frag->len);
7138         if (!vcpu->mmio_is_write)
7139                 memcpy(frag->data, run->mmio.data, len);
7140
7141         if (frag->len <= 8) {
7142                 /* Switch to the next fragment. */
7143                 frag++;
7144                 vcpu->mmio_cur_fragment++;
7145         } else {
7146                 /* Go forward to the next mmio piece. */
7147                 frag->data += len;
7148                 frag->gpa += len;
7149                 frag->len -= len;
7150         }
7151
7152         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7153                 vcpu->mmio_needed = 0;
7154
7155                 /* FIXME: return into emulator if single-stepping.  */
7156                 if (vcpu->mmio_is_write)
7157                         return 1;
7158                 vcpu->mmio_read_completed = 1;
7159                 return complete_emulated_io(vcpu);
7160         }
7161
7162         run->exit_reason = KVM_EXIT_MMIO;
7163         run->mmio.phys_addr = frag->gpa;
7164         if (vcpu->mmio_is_write)
7165                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7166         run->mmio.len = min(8u, frag->len);
7167         run->mmio.is_write = vcpu->mmio_is_write;
7168         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7169         return 0;
7170 }
7171
7172
7173 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7174 {
7175         struct fpu *fpu = &current->thread.fpu;
7176         int r;
7177         sigset_t sigsaved;
7178
7179         fpu__activate_curr(fpu);
7180
7181         if (vcpu->sigset_active)
7182                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7183
7184         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7185                 kvm_vcpu_block(vcpu);
7186                 kvm_apic_accept_events(vcpu);
7187                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7188                 r = -EAGAIN;
7189                 goto out;
7190         }
7191
7192         /* re-sync apic's tpr */
7193         if (!lapic_in_kernel(vcpu)) {
7194                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7195                         r = -EINVAL;
7196                         goto out;
7197                 }
7198         }
7199
7200         if (unlikely(vcpu->arch.complete_userspace_io)) {
7201                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7202                 vcpu->arch.complete_userspace_io = NULL;
7203                 r = cui(vcpu);
7204                 if (r <= 0)
7205                         goto out;
7206         } else
7207                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7208
7209         if (kvm_run->immediate_exit)
7210                 r = -EINTR;
7211         else
7212                 r = vcpu_run(vcpu);
7213
7214 out:
7215         post_kvm_run_save(vcpu);
7216         if (vcpu->sigset_active)
7217                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7218
7219         return r;
7220 }
7221
7222 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7223 {
7224         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7225                 /*
7226                  * We are here if userspace calls get_regs() in the middle of
7227                  * instruction emulation. Registers state needs to be copied
7228                  * back from emulation context to vcpu. Userspace shouldn't do
7229                  * that usually, but some bad designed PV devices (vmware
7230                  * backdoor interface) need this to work
7231                  */
7232                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7233                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7234         }
7235         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7236         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7237         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7238         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7239         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7240         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7241         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7242         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7243 #ifdef CONFIG_X86_64
7244         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7245         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7246         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7247         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7248         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7249         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7250         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7251         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7252 #endif
7253
7254         regs->rip = kvm_rip_read(vcpu);
7255         regs->rflags = kvm_get_rflags(vcpu);
7256
7257         return 0;
7258 }
7259
7260 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7261 {
7262         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7263         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7264
7265         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7266         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7267         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7268         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7269         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7270         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7271         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7272         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7273 #ifdef CONFIG_X86_64
7274         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7275         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7276         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7277         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7278         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7279         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7280         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7281         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7282 #endif
7283
7284         kvm_rip_write(vcpu, regs->rip);
7285         kvm_set_rflags(vcpu, regs->rflags);
7286
7287         vcpu->arch.exception.pending = false;
7288
7289         kvm_make_request(KVM_REQ_EVENT, vcpu);
7290
7291         return 0;
7292 }
7293
7294 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7295 {
7296         struct kvm_segment cs;
7297
7298         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7299         *db = cs.db;
7300         *l = cs.l;
7301 }
7302 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7303
7304 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7305                                   struct kvm_sregs *sregs)
7306 {
7307         struct desc_ptr dt;
7308
7309         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7310         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7311         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7312         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7313         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7314         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7315
7316         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7317         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7318
7319         kvm_x86_ops->get_idt(vcpu, &dt);
7320         sregs->idt.limit = dt.size;
7321         sregs->idt.base = dt.address;
7322         kvm_x86_ops->get_gdt(vcpu, &dt);
7323         sregs->gdt.limit = dt.size;
7324         sregs->gdt.base = dt.address;
7325
7326         sregs->cr0 = kvm_read_cr0(vcpu);
7327         sregs->cr2 = vcpu->arch.cr2;
7328         sregs->cr3 = kvm_read_cr3(vcpu);
7329         sregs->cr4 = kvm_read_cr4(vcpu);
7330         sregs->cr8 = kvm_get_cr8(vcpu);
7331         sregs->efer = vcpu->arch.efer;
7332         sregs->apic_base = kvm_get_apic_base(vcpu);
7333
7334         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7335
7336         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7337                 set_bit(vcpu->arch.interrupt.nr,
7338                         (unsigned long *)sregs->interrupt_bitmap);
7339
7340         return 0;
7341 }
7342
7343 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7344                                     struct kvm_mp_state *mp_state)
7345 {
7346         kvm_apic_accept_events(vcpu);
7347         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7348                                         vcpu->arch.pv.pv_unhalted)
7349                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7350         else
7351                 mp_state->mp_state = vcpu->arch.mp_state;
7352
7353         return 0;
7354 }
7355
7356 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7357                                     struct kvm_mp_state *mp_state)
7358 {
7359         if (!lapic_in_kernel(vcpu) &&
7360             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7361                 return -EINVAL;
7362
7363         /* INITs are latched while in SMM */
7364         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7365             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7366              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7367                 return -EINVAL;
7368
7369         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7370                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7371                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7372         } else
7373                 vcpu->arch.mp_state = mp_state->mp_state;
7374         kvm_make_request(KVM_REQ_EVENT, vcpu);
7375         return 0;
7376 }
7377
7378 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7379                     int reason, bool has_error_code, u32 error_code)
7380 {
7381         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7382         int ret;
7383
7384         init_emulate_ctxt(vcpu);
7385
7386         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7387                                    has_error_code, error_code);
7388
7389         if (ret)
7390                 return EMULATE_FAIL;
7391
7392         kvm_rip_write(vcpu, ctxt->eip);
7393         kvm_set_rflags(vcpu, ctxt->eflags);
7394         kvm_make_request(KVM_REQ_EVENT, vcpu);
7395         return EMULATE_DONE;
7396 }
7397 EXPORT_SYMBOL_GPL(kvm_task_switch);
7398
7399 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7400                                   struct kvm_sregs *sregs)
7401 {
7402         struct msr_data apic_base_msr;
7403         int mmu_reset_needed = 0;
7404         int pending_vec, max_bits, idx;
7405         struct desc_ptr dt;
7406
7407         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7408                 return -EINVAL;
7409
7410         dt.size = sregs->idt.limit;
7411         dt.address = sregs->idt.base;
7412         kvm_x86_ops->set_idt(vcpu, &dt);
7413         dt.size = sregs->gdt.limit;
7414         dt.address = sregs->gdt.base;
7415         kvm_x86_ops->set_gdt(vcpu, &dt);
7416
7417         vcpu->arch.cr2 = sregs->cr2;
7418         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7419         vcpu->arch.cr3 = sregs->cr3;
7420         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7421
7422         kvm_set_cr8(vcpu, sregs->cr8);
7423
7424         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7425         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7426         apic_base_msr.data = sregs->apic_base;
7427         apic_base_msr.host_initiated = true;
7428         kvm_set_apic_base(vcpu, &apic_base_msr);
7429
7430         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7431         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7432         vcpu->arch.cr0 = sregs->cr0;
7433
7434         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7435         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7436         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7437                 kvm_update_cpuid(vcpu);
7438
7439         idx = srcu_read_lock(&vcpu->kvm->srcu);
7440         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7441                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7442                 mmu_reset_needed = 1;
7443         }
7444         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7445
7446         if (mmu_reset_needed)
7447                 kvm_mmu_reset_context(vcpu);
7448
7449         max_bits = KVM_NR_INTERRUPTS;
7450         pending_vec = find_first_bit(
7451                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7452         if (pending_vec < max_bits) {
7453                 kvm_queue_interrupt(vcpu, pending_vec, false);
7454                 pr_debug("Set back pending irq %d\n", pending_vec);
7455         }
7456
7457         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7458         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7459         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7460         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7461         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7462         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7463
7464         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7465         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7466
7467         update_cr8_intercept(vcpu);
7468
7469         /* Older userspace won't unhalt the vcpu on reset. */
7470         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7471             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7472             !is_protmode(vcpu))
7473                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7474
7475         kvm_make_request(KVM_REQ_EVENT, vcpu);
7476
7477         return 0;
7478 }
7479
7480 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7481                                         struct kvm_guest_debug *dbg)
7482 {
7483         unsigned long rflags;
7484         int i, r;
7485
7486         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7487                 r = -EBUSY;
7488                 if (vcpu->arch.exception.pending)
7489                         goto out;
7490                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7491                         kvm_queue_exception(vcpu, DB_VECTOR);
7492                 else
7493                         kvm_queue_exception(vcpu, BP_VECTOR);
7494         }
7495
7496         /*
7497          * Read rflags as long as potentially injected trace flags are still
7498          * filtered out.
7499          */
7500         rflags = kvm_get_rflags(vcpu);
7501
7502         vcpu->guest_debug = dbg->control;
7503         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7504                 vcpu->guest_debug = 0;
7505
7506         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7507                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7508                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7509                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7510         } else {
7511                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7512                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7513         }
7514         kvm_update_dr7(vcpu);
7515
7516         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7517                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7518                         get_segment_base(vcpu, VCPU_SREG_CS);
7519
7520         /*
7521          * Trigger an rflags update that will inject or remove the trace
7522          * flags.
7523          */
7524         kvm_set_rflags(vcpu, rflags);
7525
7526         kvm_x86_ops->update_bp_intercept(vcpu);
7527
7528         r = 0;
7529
7530 out:
7531
7532         return r;
7533 }
7534
7535 /*
7536  * Translate a guest virtual address to a guest physical address.
7537  */
7538 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7539                                     struct kvm_translation *tr)
7540 {
7541         unsigned long vaddr = tr->linear_address;
7542         gpa_t gpa;
7543         int idx;
7544
7545         idx = srcu_read_lock(&vcpu->kvm->srcu);
7546         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7547         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7548         tr->physical_address = gpa;
7549         tr->valid = gpa != UNMAPPED_GVA;
7550         tr->writeable = 1;
7551         tr->usermode = 0;
7552
7553         return 0;
7554 }
7555
7556 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7557 {
7558         struct fxregs_state *fxsave =
7559                         &vcpu->arch.guest_fpu.state.fxsave;
7560
7561         memcpy(fpu->fpr, fxsave->st_space, 128);
7562         fpu->fcw = fxsave->cwd;
7563         fpu->fsw = fxsave->swd;
7564         fpu->ftwx = fxsave->twd;
7565         fpu->last_opcode = fxsave->fop;
7566         fpu->last_ip = fxsave->rip;
7567         fpu->last_dp = fxsave->rdp;
7568         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7569
7570         return 0;
7571 }
7572
7573 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7574 {
7575         struct fxregs_state *fxsave =
7576                         &vcpu->arch.guest_fpu.state.fxsave;
7577
7578         memcpy(fxsave->st_space, fpu->fpr, 128);
7579         fxsave->cwd = fpu->fcw;
7580         fxsave->swd = fpu->fsw;
7581         fxsave->twd = fpu->ftwx;
7582         fxsave->fop = fpu->last_opcode;
7583         fxsave->rip = fpu->last_ip;
7584         fxsave->rdp = fpu->last_dp;
7585         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7586
7587         return 0;
7588 }
7589
7590 static void fx_init(struct kvm_vcpu *vcpu)
7591 {
7592         fpstate_init(&vcpu->arch.guest_fpu.state);
7593         if (boot_cpu_has(X86_FEATURE_XSAVES))
7594                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7595                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7596
7597         /*
7598          * Ensure guest xcr0 is valid for loading
7599          */
7600         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7601
7602         vcpu->arch.cr0 |= X86_CR0_ET;
7603 }
7604
7605 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7606 {
7607         if (vcpu->guest_fpu_loaded)
7608                 return;
7609
7610         /*
7611          * Restore all possible states in the guest,
7612          * and assume host would use all available bits.
7613          * Guest xcr0 would be loaded later.
7614          */
7615         vcpu->guest_fpu_loaded = 1;
7616         __kernel_fpu_begin();
7617         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7618         trace_kvm_fpu(1);
7619 }
7620
7621 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7622 {
7623         if (!vcpu->guest_fpu_loaded)
7624                 return;
7625
7626         vcpu->guest_fpu_loaded = 0;
7627         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7628         __kernel_fpu_end();
7629         ++vcpu->stat.fpu_reload;
7630         trace_kvm_fpu(0);
7631 }
7632
7633 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7634 {
7635         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7636
7637         kvmclock_reset(vcpu);
7638
7639         kvm_x86_ops->vcpu_free(vcpu);
7640         free_cpumask_var(wbinvd_dirty_mask);
7641 }
7642
7643 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7644                                                 unsigned int id)
7645 {
7646         struct kvm_vcpu *vcpu;
7647
7648         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7649                 printk_once(KERN_WARNING
7650                 "kvm: SMP vm created on host with unstable TSC; "
7651                 "guest TSC will not be reliable\n");
7652
7653         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7654
7655         return vcpu;
7656 }
7657
7658 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7659 {
7660         int r;
7661
7662         kvm_vcpu_mtrr_init(vcpu);
7663         r = vcpu_load(vcpu);
7664         if (r)
7665                 return r;
7666         kvm_vcpu_reset(vcpu, false);
7667         kvm_mmu_setup(vcpu);
7668         vcpu_put(vcpu);
7669         return r;
7670 }
7671
7672 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7673 {
7674         struct msr_data msr;
7675         struct kvm *kvm = vcpu->kvm;
7676
7677         if (vcpu_load(vcpu))
7678                 return;
7679         msr.data = 0x0;
7680         msr.index = MSR_IA32_TSC;
7681         msr.host_initiated = true;
7682         kvm_write_tsc(vcpu, &msr);
7683         vcpu_put(vcpu);
7684
7685         if (!kvmclock_periodic_sync)
7686                 return;
7687
7688         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7689                                         KVMCLOCK_SYNC_PERIOD);
7690 }
7691
7692 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7693 {
7694         int r;
7695         vcpu->arch.apf.msr_val = 0;
7696
7697         r = vcpu_load(vcpu);
7698         BUG_ON(r);
7699         kvm_mmu_unload(vcpu);
7700         vcpu_put(vcpu);
7701
7702         kvm_x86_ops->vcpu_free(vcpu);
7703 }
7704
7705 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7706 {
7707         vcpu->arch.hflags = 0;
7708
7709         vcpu->arch.smi_pending = 0;
7710         atomic_set(&vcpu->arch.nmi_queued, 0);
7711         vcpu->arch.nmi_pending = 0;
7712         vcpu->arch.nmi_injected = false;
7713         kvm_clear_interrupt_queue(vcpu);
7714         kvm_clear_exception_queue(vcpu);
7715
7716         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7717         kvm_update_dr0123(vcpu);
7718         vcpu->arch.dr6 = DR6_INIT;
7719         kvm_update_dr6(vcpu);
7720         vcpu->arch.dr7 = DR7_FIXED_1;
7721         kvm_update_dr7(vcpu);
7722
7723         vcpu->arch.cr2 = 0;
7724
7725         kvm_make_request(KVM_REQ_EVENT, vcpu);
7726         vcpu->arch.apf.msr_val = 0;
7727         vcpu->arch.st.msr_val = 0;
7728
7729         kvmclock_reset(vcpu);
7730
7731         kvm_clear_async_pf_completion_queue(vcpu);
7732         kvm_async_pf_hash_reset(vcpu);
7733         vcpu->arch.apf.halted = false;
7734
7735         if (!init_event) {
7736                 kvm_pmu_reset(vcpu);
7737                 vcpu->arch.smbase = 0x30000;
7738
7739                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7740                 vcpu->arch.msr_misc_features_enables = 0;
7741         }
7742
7743         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7744         vcpu->arch.regs_avail = ~0;
7745         vcpu->arch.regs_dirty = ~0;
7746
7747         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7748 }
7749
7750 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7751 {
7752         struct kvm_segment cs;
7753
7754         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7755         cs.selector = vector << 8;
7756         cs.base = vector << 12;
7757         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7758         kvm_rip_write(vcpu, 0);
7759 }
7760
7761 int kvm_arch_hardware_enable(void)
7762 {
7763         struct kvm *kvm;
7764         struct kvm_vcpu *vcpu;
7765         int i;
7766         int ret;
7767         u64 local_tsc;
7768         u64 max_tsc = 0;
7769         bool stable, backwards_tsc = false;
7770
7771         kvm_shared_msr_cpu_online();
7772         ret = kvm_x86_ops->hardware_enable();
7773         if (ret != 0)
7774                 return ret;
7775
7776         local_tsc = rdtsc();
7777         stable = !check_tsc_unstable();
7778         list_for_each_entry(kvm, &vm_list, vm_list) {
7779                 kvm_for_each_vcpu(i, vcpu, kvm) {
7780                         if (!stable && vcpu->cpu == smp_processor_id())
7781                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7782                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7783                                 backwards_tsc = true;
7784                                 if (vcpu->arch.last_host_tsc > max_tsc)
7785                                         max_tsc = vcpu->arch.last_host_tsc;
7786                         }
7787                 }
7788         }
7789
7790         /*
7791          * Sometimes, even reliable TSCs go backwards.  This happens on
7792          * platforms that reset TSC during suspend or hibernate actions, but
7793          * maintain synchronization.  We must compensate.  Fortunately, we can
7794          * detect that condition here, which happens early in CPU bringup,
7795          * before any KVM threads can be running.  Unfortunately, we can't
7796          * bring the TSCs fully up to date with real time, as we aren't yet far
7797          * enough into CPU bringup that we know how much real time has actually
7798          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7799          * variables that haven't been updated yet.
7800          *
7801          * So we simply find the maximum observed TSC above, then record the
7802          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7803          * the adjustment will be applied.  Note that we accumulate
7804          * adjustments, in case multiple suspend cycles happen before some VCPU
7805          * gets a chance to run again.  In the event that no KVM threads get a
7806          * chance to run, we will miss the entire elapsed period, as we'll have
7807          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7808          * loose cycle time.  This isn't too big a deal, since the loss will be
7809          * uniform across all VCPUs (not to mention the scenario is extremely
7810          * unlikely). It is possible that a second hibernate recovery happens
7811          * much faster than a first, causing the observed TSC here to be
7812          * smaller; this would require additional padding adjustment, which is
7813          * why we set last_host_tsc to the local tsc observed here.
7814          *
7815          * N.B. - this code below runs only on platforms with reliable TSC,
7816          * as that is the only way backwards_tsc is set above.  Also note
7817          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7818          * have the same delta_cyc adjustment applied if backwards_tsc
7819          * is detected.  Note further, this adjustment is only done once,
7820          * as we reset last_host_tsc on all VCPUs to stop this from being
7821          * called multiple times (one for each physical CPU bringup).
7822          *
7823          * Platforms with unreliable TSCs don't have to deal with this, they
7824          * will be compensated by the logic in vcpu_load, which sets the TSC to
7825          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7826          * guarantee that they stay in perfect synchronization.
7827          */
7828         if (backwards_tsc) {
7829                 u64 delta_cyc = max_tsc - local_tsc;
7830                 backwards_tsc_observed = true;
7831                 list_for_each_entry(kvm, &vm_list, vm_list) {
7832                         kvm_for_each_vcpu(i, vcpu, kvm) {
7833                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7834                                 vcpu->arch.last_host_tsc = local_tsc;
7835                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7836                         }
7837
7838                         /*
7839                          * We have to disable TSC offset matching.. if you were
7840                          * booting a VM while issuing an S4 host suspend....
7841                          * you may have some problem.  Solving this issue is
7842                          * left as an exercise to the reader.
7843                          */
7844                         kvm->arch.last_tsc_nsec = 0;
7845                         kvm->arch.last_tsc_write = 0;
7846                 }
7847
7848         }
7849         return 0;
7850 }
7851
7852 void kvm_arch_hardware_disable(void)
7853 {
7854         kvm_x86_ops->hardware_disable();
7855         drop_user_return_notifiers();
7856 }
7857
7858 int kvm_arch_hardware_setup(void)
7859 {
7860         int r;
7861
7862         r = kvm_x86_ops->hardware_setup();
7863         if (r != 0)
7864                 return r;
7865
7866         if (kvm_has_tsc_control) {
7867                 /*
7868                  * Make sure the user can only configure tsc_khz values that
7869                  * fit into a signed integer.
7870                  * A min value is not calculated needed because it will always
7871                  * be 1 on all machines.
7872                  */
7873                 u64 max = min(0x7fffffffULL,
7874                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7875                 kvm_max_guest_tsc_khz = max;
7876
7877                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7878         }
7879
7880         kvm_init_msr_list();
7881         return 0;
7882 }
7883
7884 void kvm_arch_hardware_unsetup(void)
7885 {
7886         kvm_x86_ops->hardware_unsetup();
7887 }
7888
7889 void kvm_arch_check_processor_compat(void *rtn)
7890 {
7891         kvm_x86_ops->check_processor_compatibility(rtn);
7892 }
7893
7894 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7895 {
7896         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7897 }
7898 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7899
7900 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7901 {
7902         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7903 }
7904
7905 struct static_key kvm_no_apic_vcpu __read_mostly;
7906 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7907
7908 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7909 {
7910         struct page *page;
7911         struct kvm *kvm;
7912         int r;
7913
7914         BUG_ON(vcpu->kvm == NULL);
7915         kvm = vcpu->kvm;
7916
7917         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7918         vcpu->arch.pv.pv_unhalted = false;
7919         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7920         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7921                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7922         else
7923                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7924
7925         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7926         if (!page) {
7927                 r = -ENOMEM;
7928                 goto fail;
7929         }
7930         vcpu->arch.pio_data = page_address(page);
7931
7932         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7933
7934         r = kvm_mmu_create(vcpu);
7935         if (r < 0)
7936                 goto fail_free_pio_data;
7937
7938         if (irqchip_in_kernel(kvm)) {
7939                 r = kvm_create_lapic(vcpu);
7940                 if (r < 0)
7941                         goto fail_mmu_destroy;
7942         } else
7943                 static_key_slow_inc(&kvm_no_apic_vcpu);
7944
7945         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7946                                        GFP_KERNEL);
7947         if (!vcpu->arch.mce_banks) {
7948                 r = -ENOMEM;
7949                 goto fail_free_lapic;
7950         }
7951         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7952
7953         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7954                 r = -ENOMEM;
7955                 goto fail_free_mce_banks;
7956         }
7957
7958         fx_init(vcpu);
7959
7960         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7961         vcpu->arch.pv_time_enabled = false;
7962
7963         vcpu->arch.guest_supported_xcr0 = 0;
7964         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7965
7966         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7967
7968         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7969
7970         kvm_async_pf_hash_reset(vcpu);
7971         kvm_pmu_init(vcpu);
7972
7973         vcpu->arch.pending_external_vector = -1;
7974
7975         kvm_hv_vcpu_init(vcpu);
7976
7977         return 0;
7978
7979 fail_free_mce_banks:
7980         kfree(vcpu->arch.mce_banks);
7981 fail_free_lapic:
7982         kvm_free_lapic(vcpu);
7983 fail_mmu_destroy:
7984         kvm_mmu_destroy(vcpu);
7985 fail_free_pio_data:
7986         free_page((unsigned long)vcpu->arch.pio_data);
7987 fail:
7988         return r;
7989 }
7990
7991 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7992 {
7993         int idx;
7994
7995         kvm_hv_vcpu_uninit(vcpu);
7996         kvm_pmu_destroy(vcpu);
7997         kfree(vcpu->arch.mce_banks);
7998         kvm_free_lapic(vcpu);
7999         idx = srcu_read_lock(&vcpu->kvm->srcu);
8000         kvm_mmu_destroy(vcpu);
8001         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8002         free_page((unsigned long)vcpu->arch.pio_data);
8003         if (!lapic_in_kernel(vcpu))
8004                 static_key_slow_dec(&kvm_no_apic_vcpu);
8005 }
8006
8007 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8008 {
8009         kvm_x86_ops->sched_in(vcpu, cpu);
8010 }
8011
8012 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8013 {
8014         if (type)
8015                 return -EINVAL;
8016
8017         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8018         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8019         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8020         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8021         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8022
8023         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8024         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8025         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8026         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8027                 &kvm->arch.irq_sources_bitmap);
8028
8029         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8030         mutex_init(&kvm->arch.apic_map_lock);
8031         mutex_init(&kvm->arch.hyperv.hv_lock);
8032         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8033
8034         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8035         pvclock_update_vm_gtod_copy(kvm);
8036
8037         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8038         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8039
8040         kvm_page_track_init(kvm);
8041         kvm_mmu_init_vm(kvm);
8042
8043         if (kvm_x86_ops->vm_init)
8044                 return kvm_x86_ops->vm_init(kvm);
8045
8046         return 0;
8047 }
8048
8049 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8050 {
8051         int r;
8052         r = vcpu_load(vcpu);
8053         BUG_ON(r);
8054         kvm_mmu_unload(vcpu);
8055         vcpu_put(vcpu);
8056 }
8057
8058 static void kvm_free_vcpus(struct kvm *kvm)
8059 {
8060         unsigned int i;
8061         struct kvm_vcpu *vcpu;
8062
8063         /*
8064          * Unpin any mmu pages first.
8065          */
8066         kvm_for_each_vcpu(i, vcpu, kvm) {
8067                 kvm_clear_async_pf_completion_queue(vcpu);
8068                 kvm_unload_vcpu_mmu(vcpu);
8069         }
8070         kvm_for_each_vcpu(i, vcpu, kvm)
8071                 kvm_arch_vcpu_free(vcpu);
8072
8073         mutex_lock(&kvm->lock);
8074         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8075                 kvm->vcpus[i] = NULL;
8076
8077         atomic_set(&kvm->online_vcpus, 0);
8078         mutex_unlock(&kvm->lock);
8079 }
8080
8081 void kvm_arch_sync_events(struct kvm *kvm)
8082 {
8083         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8084         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8085         kvm_free_pit(kvm);
8086 }
8087
8088 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8089 {
8090         int i, r;
8091         unsigned long hva;
8092         struct kvm_memslots *slots = kvm_memslots(kvm);
8093         struct kvm_memory_slot *slot, old;
8094
8095         /* Called with kvm->slots_lock held.  */
8096         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8097                 return -EINVAL;
8098
8099         slot = id_to_memslot(slots, id);
8100         if (size) {
8101                 if (slot->npages)
8102                         return -EEXIST;
8103
8104                 /*
8105                  * MAP_SHARED to prevent internal slot pages from being moved
8106                  * by fork()/COW.
8107                  */
8108                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8109                               MAP_SHARED | MAP_ANONYMOUS, 0);
8110                 if (IS_ERR((void *)hva))
8111                         return PTR_ERR((void *)hva);
8112         } else {
8113                 if (!slot->npages)
8114                         return 0;
8115
8116                 hva = 0;
8117         }
8118
8119         old = *slot;
8120         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8121                 struct kvm_userspace_memory_region m;
8122
8123                 m.slot = id | (i << 16);
8124                 m.flags = 0;
8125                 m.guest_phys_addr = gpa;
8126                 m.userspace_addr = hva;
8127                 m.memory_size = size;
8128                 r = __kvm_set_memory_region(kvm, &m);
8129                 if (r < 0)
8130                         return r;
8131         }
8132
8133         if (!size) {
8134                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8135                 WARN_ON(r < 0);
8136         }
8137
8138         return 0;
8139 }
8140 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8141
8142 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8143 {
8144         int r;
8145
8146         mutex_lock(&kvm->slots_lock);
8147         r = __x86_set_memory_region(kvm, id, gpa, size);
8148         mutex_unlock(&kvm->slots_lock);
8149
8150         return r;
8151 }
8152 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8153
8154 void kvm_arch_destroy_vm(struct kvm *kvm)
8155 {
8156         if (current->mm == kvm->mm) {
8157                 /*
8158                  * Free memory regions allocated on behalf of userspace,
8159                  * unless the the memory map has changed due to process exit
8160                  * or fd copying.
8161                  */
8162                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8163                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8164                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8165         }
8166         if (kvm_x86_ops->vm_destroy)
8167                 kvm_x86_ops->vm_destroy(kvm);
8168         kvm_pic_destroy(kvm);
8169         kvm_ioapic_destroy(kvm);
8170         kvm_free_vcpus(kvm);
8171         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8172         kvm_mmu_uninit_vm(kvm);
8173         kvm_page_track_cleanup(kvm);
8174 }
8175
8176 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8177                            struct kvm_memory_slot *dont)
8178 {
8179         int i;
8180
8181         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8182                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8183                         kvfree(free->arch.rmap[i]);
8184                         free->arch.rmap[i] = NULL;
8185                 }
8186                 if (i == 0)
8187                         continue;
8188
8189                 if (!dont || free->arch.lpage_info[i - 1] !=
8190                              dont->arch.lpage_info[i - 1]) {
8191                         kvfree(free->arch.lpage_info[i - 1]);
8192                         free->arch.lpage_info[i - 1] = NULL;
8193                 }
8194         }
8195
8196         kvm_page_track_free_memslot(free, dont);
8197 }
8198
8199 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8200                             unsigned long npages)
8201 {
8202         int i;
8203
8204         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8205                 struct kvm_lpage_info *linfo;
8206                 unsigned long ugfn;
8207                 int lpages;
8208                 int level = i + 1;
8209
8210                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8211                                       slot->base_gfn, level) + 1;
8212
8213                 slot->arch.rmap[i] =
8214                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8215                 if (!slot->arch.rmap[i])
8216                         goto out_free;
8217                 if (i == 0)
8218                         continue;
8219
8220                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8221                 if (!linfo)
8222                         goto out_free;
8223
8224                 slot->arch.lpage_info[i - 1] = linfo;
8225
8226                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8227                         linfo[0].disallow_lpage = 1;
8228                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8229                         linfo[lpages - 1].disallow_lpage = 1;
8230                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8231                 /*
8232                  * If the gfn and userspace address are not aligned wrt each
8233                  * other, or if explicitly asked to, disable large page
8234                  * support for this slot
8235                  */
8236                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8237                     !kvm_largepages_enabled()) {
8238                         unsigned long j;
8239
8240                         for (j = 0; j < lpages; ++j)
8241                                 linfo[j].disallow_lpage = 1;
8242                 }
8243         }
8244
8245         if (kvm_page_track_create_memslot(slot, npages))
8246                 goto out_free;
8247
8248         return 0;
8249
8250 out_free:
8251         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8252                 kvfree(slot->arch.rmap[i]);
8253                 slot->arch.rmap[i] = NULL;
8254                 if (i == 0)
8255                         continue;
8256
8257                 kvfree(slot->arch.lpage_info[i - 1]);
8258                 slot->arch.lpage_info[i - 1] = NULL;
8259         }
8260         return -ENOMEM;
8261 }
8262
8263 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8264 {
8265         /*
8266          * memslots->generation has been incremented.
8267          * mmio generation may have reached its maximum value.
8268          */
8269         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8270 }
8271
8272 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8273                                 struct kvm_memory_slot *memslot,
8274                                 const struct kvm_userspace_memory_region *mem,
8275                                 enum kvm_mr_change change)
8276 {
8277         return 0;
8278 }
8279
8280 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8281                                      struct kvm_memory_slot *new)
8282 {
8283         /* Still write protect RO slot */
8284         if (new->flags & KVM_MEM_READONLY) {
8285                 kvm_mmu_slot_remove_write_access(kvm, new);
8286                 return;
8287         }
8288
8289         /*
8290          * Call kvm_x86_ops dirty logging hooks when they are valid.
8291          *
8292          * kvm_x86_ops->slot_disable_log_dirty is called when:
8293          *
8294          *  - KVM_MR_CREATE with dirty logging is disabled
8295          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8296          *
8297          * The reason is, in case of PML, we need to set D-bit for any slots
8298          * with dirty logging disabled in order to eliminate unnecessary GPA
8299          * logging in PML buffer (and potential PML buffer full VMEXT). This
8300          * guarantees leaving PML enabled during guest's lifetime won't have
8301          * any additonal overhead from PML when guest is running with dirty
8302          * logging disabled for memory slots.
8303          *
8304          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8305          * to dirty logging mode.
8306          *
8307          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8308          *
8309          * In case of write protect:
8310          *
8311          * Write protect all pages for dirty logging.
8312          *
8313          * All the sptes including the large sptes which point to this
8314          * slot are set to readonly. We can not create any new large
8315          * spte on this slot until the end of the logging.
8316          *
8317          * See the comments in fast_page_fault().
8318          */
8319         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8320                 if (kvm_x86_ops->slot_enable_log_dirty)
8321                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8322                 else
8323                         kvm_mmu_slot_remove_write_access(kvm, new);
8324         } else {
8325                 if (kvm_x86_ops->slot_disable_log_dirty)
8326                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8327         }
8328 }
8329
8330 void kvm_arch_commit_memory_region(struct kvm *kvm,
8331                                 const struct kvm_userspace_memory_region *mem,
8332                                 const struct kvm_memory_slot *old,
8333                                 const struct kvm_memory_slot *new,
8334                                 enum kvm_mr_change change)
8335 {
8336         int nr_mmu_pages = 0;
8337
8338         if (!kvm->arch.n_requested_mmu_pages)
8339                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8340
8341         if (nr_mmu_pages)
8342                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8343
8344         /*
8345          * Dirty logging tracks sptes in 4k granularity, meaning that large
8346          * sptes have to be split.  If live migration is successful, the guest
8347          * in the source machine will be destroyed and large sptes will be
8348          * created in the destination. However, if the guest continues to run
8349          * in the source machine (for example if live migration fails), small
8350          * sptes will remain around and cause bad performance.
8351          *
8352          * Scan sptes if dirty logging has been stopped, dropping those
8353          * which can be collapsed into a single large-page spte.  Later
8354          * page faults will create the large-page sptes.
8355          */
8356         if ((change != KVM_MR_DELETE) &&
8357                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8358                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8359                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8360
8361         /*
8362          * Set up write protection and/or dirty logging for the new slot.
8363          *
8364          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8365          * been zapped so no dirty logging staff is needed for old slot. For
8366          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8367          * new and it's also covered when dealing with the new slot.
8368          *
8369          * FIXME: const-ify all uses of struct kvm_memory_slot.
8370          */
8371         if (change != KVM_MR_DELETE)
8372                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8373 }
8374
8375 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8376 {
8377         kvm_mmu_invalidate_zap_all_pages(kvm);
8378 }
8379
8380 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8381                                    struct kvm_memory_slot *slot)
8382 {
8383         kvm_page_track_flush_slot(kvm, slot);
8384 }
8385
8386 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8387 {
8388         if (!list_empty_careful(&vcpu->async_pf.done))
8389                 return true;
8390
8391         if (kvm_apic_has_events(vcpu))
8392                 return true;
8393
8394         if (vcpu->arch.pv.pv_unhalted)
8395                 return true;
8396
8397         if (atomic_read(&vcpu->arch.nmi_queued))
8398                 return true;
8399
8400         if (kvm_test_request(KVM_REQ_SMI, vcpu))
8401                 return true;
8402
8403         if (kvm_arch_interrupt_allowed(vcpu) &&
8404             kvm_cpu_has_interrupt(vcpu))
8405                 return true;
8406
8407         if (kvm_hv_has_stimer_pending(vcpu))
8408                 return true;
8409
8410         return false;
8411 }
8412
8413 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8414 {
8415         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8416 }
8417
8418 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8419 {
8420         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8421 }
8422
8423 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8424 {
8425         return kvm_x86_ops->interrupt_allowed(vcpu);
8426 }
8427
8428 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8429 {
8430         if (is_64_bit_mode(vcpu))
8431                 return kvm_rip_read(vcpu);
8432         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8433                      kvm_rip_read(vcpu));
8434 }
8435 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8436
8437 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8438 {
8439         return kvm_get_linear_rip(vcpu) == linear_rip;
8440 }
8441 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8442
8443 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8444 {
8445         unsigned long rflags;
8446
8447         rflags = kvm_x86_ops->get_rflags(vcpu);
8448         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8449                 rflags &= ~X86_EFLAGS_TF;
8450         return rflags;
8451 }
8452 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8453
8454 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8455 {
8456         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8457             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8458                 rflags |= X86_EFLAGS_TF;
8459         kvm_x86_ops->set_rflags(vcpu, rflags);
8460 }
8461
8462 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8463 {
8464         __kvm_set_rflags(vcpu, rflags);
8465         kvm_make_request(KVM_REQ_EVENT, vcpu);
8466 }
8467 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8468
8469 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8470 {
8471         int r;
8472
8473         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8474               work->wakeup_all)
8475                 return;
8476
8477         r = kvm_mmu_reload(vcpu);
8478         if (unlikely(r))
8479                 return;
8480
8481         if (!vcpu->arch.mmu.direct_map &&
8482               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8483                 return;
8484
8485         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8486 }
8487
8488 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8489 {
8490         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8491 }
8492
8493 static inline u32 kvm_async_pf_next_probe(u32 key)
8494 {
8495         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8496 }
8497
8498 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8499 {
8500         u32 key = kvm_async_pf_hash_fn(gfn);
8501
8502         while (vcpu->arch.apf.gfns[key] != ~0)
8503                 key = kvm_async_pf_next_probe(key);
8504
8505         vcpu->arch.apf.gfns[key] = gfn;
8506 }
8507
8508 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8509 {
8510         int i;
8511         u32 key = kvm_async_pf_hash_fn(gfn);
8512
8513         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8514                      (vcpu->arch.apf.gfns[key] != gfn &&
8515                       vcpu->arch.apf.gfns[key] != ~0); i++)
8516                 key = kvm_async_pf_next_probe(key);
8517
8518         return key;
8519 }
8520
8521 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8522 {
8523         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8524 }
8525
8526 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8527 {
8528         u32 i, j, k;
8529
8530         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8531         while (true) {
8532                 vcpu->arch.apf.gfns[i] = ~0;
8533                 do {
8534                         j = kvm_async_pf_next_probe(j);
8535                         if (vcpu->arch.apf.gfns[j] == ~0)
8536                                 return;
8537                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8538                         /*
8539                          * k lies cyclically in ]i,j]
8540                          * |    i.k.j |
8541                          * |....j i.k.| or  |.k..j i...|
8542                          */
8543                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8544                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8545                 i = j;
8546         }
8547 }
8548
8549 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8550 {
8551
8552         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8553                                       sizeof(val));
8554 }
8555
8556 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8557                                      struct kvm_async_pf *work)
8558 {
8559         struct x86_exception fault;
8560
8561         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8562         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8563
8564         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8565             (vcpu->arch.apf.send_user_only &&
8566              kvm_x86_ops->get_cpl(vcpu) == 0))
8567                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8568         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8569                 fault.vector = PF_VECTOR;
8570                 fault.error_code_valid = true;
8571                 fault.error_code = 0;
8572                 fault.nested_page_fault = false;
8573                 fault.address = work->arch.token;
8574                 kvm_inject_page_fault(vcpu, &fault);
8575         }
8576 }
8577
8578 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8579                                  struct kvm_async_pf *work)
8580 {
8581         struct x86_exception fault;
8582
8583         if (work->wakeup_all)
8584                 work->arch.token = ~0; /* broadcast wakeup */
8585         else
8586                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8587         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8588
8589         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8590             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8591                 fault.vector = PF_VECTOR;
8592                 fault.error_code_valid = true;
8593                 fault.error_code = 0;
8594                 fault.nested_page_fault = false;
8595                 fault.address = work->arch.token;
8596                 kvm_inject_page_fault(vcpu, &fault);
8597         }
8598         vcpu->arch.apf.halted = false;
8599         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8600 }
8601
8602 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8603 {
8604         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8605                 return true;
8606         else
8607                 return !kvm_event_needs_reinjection(vcpu) &&
8608                         kvm_x86_ops->interrupt_allowed(vcpu);
8609 }
8610
8611 void kvm_arch_start_assignment(struct kvm *kvm)
8612 {
8613         atomic_inc(&kvm->arch.assigned_device_count);
8614 }
8615 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8616
8617 void kvm_arch_end_assignment(struct kvm *kvm)
8618 {
8619         atomic_dec(&kvm->arch.assigned_device_count);
8620 }
8621 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8622
8623 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8624 {
8625         return atomic_read(&kvm->arch.assigned_device_count);
8626 }
8627 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8628
8629 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8630 {
8631         atomic_inc(&kvm->arch.noncoherent_dma_count);
8632 }
8633 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8634
8635 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8636 {
8637         atomic_dec(&kvm->arch.noncoherent_dma_count);
8638 }
8639 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8640
8641 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8642 {
8643         return atomic_read(&kvm->arch.noncoherent_dma_count);
8644 }
8645 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8646
8647 bool kvm_arch_has_irq_bypass(void)
8648 {
8649         return kvm_x86_ops->update_pi_irte != NULL;
8650 }
8651
8652 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8653                                       struct irq_bypass_producer *prod)
8654 {
8655         struct kvm_kernel_irqfd *irqfd =
8656                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8657
8658         irqfd->producer = prod;
8659
8660         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8661                                            prod->irq, irqfd->gsi, 1);
8662 }
8663
8664 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8665                                       struct irq_bypass_producer *prod)
8666 {
8667         int ret;
8668         struct kvm_kernel_irqfd *irqfd =
8669                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8670
8671         WARN_ON(irqfd->producer != prod);
8672         irqfd->producer = NULL;
8673
8674         /*
8675          * When producer of consumer is unregistered, we change back to
8676          * remapped mode, so we can re-use the current implementation
8677          * when the irq is masked/disabled or the consumer side (KVM
8678          * int this case doesn't want to receive the interrupts.
8679         */
8680         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8681         if (ret)
8682                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8683                        " fails: %d\n", irqfd->consumer.token, ret);
8684 }
8685
8686 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8687                                    uint32_t guest_irq, bool set)
8688 {
8689         if (!kvm_x86_ops->update_pi_irte)
8690                 return -EINVAL;
8691
8692         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8693 }
8694
8695 bool kvm_vector_hashing_enabled(void)
8696 {
8697         return vector_hashing;
8698 }
8699 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8700
8701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);