Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/io.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
41 #include <asm/mce.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
46 #include <asm/vmx.h>
47
48 #include "capabilities.h"
49 #include "cpuid.h"
50 #include "evmcs.h"
51 #include "irq.h"
52 #include "kvm_cache_regs.h"
53 #include "lapic.h"
54 #include "mmu.h"
55 #include "nested.h"
56 #include "ops.h"
57 #include "pmu.h"
58 #include "trace.h"
59 #include "vmcs.h"
60 #include "vmcs12.h"
61 #include "vmx.h"
62 #include "x86.h"
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 static const struct x86_cpu_id vmx_cpu_id[] = {
68         X86_FEATURE_MATCH(X86_FEATURE_VMX),
69         {}
70 };
71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
72
73 bool __read_mostly enable_vpid = 1;
74 module_param_named(vpid, enable_vpid, bool, 0444);
75
76 static bool __read_mostly enable_vnmi = 1;
77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
78
79 bool __read_mostly flexpriority_enabled = 1;
80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
81
82 bool __read_mostly enable_ept = 1;
83 module_param_named(ept, enable_ept, bool, S_IRUGO);
84
85 bool __read_mostly enable_unrestricted_guest = 1;
86 module_param_named(unrestricted_guest,
87                         enable_unrestricted_guest, bool, S_IRUGO);
88
89 bool __read_mostly enable_ept_ad_bits = 1;
90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
91
92 static bool __read_mostly emulate_invalid_guest_state = true;
93 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
94
95 static bool __read_mostly fasteoi = 1;
96 module_param(fasteoi, bool, S_IRUGO);
97
98 static bool __read_mostly enable_apicv = 1;
99 module_param(enable_apicv, bool, S_IRUGO);
100
101 /*
102  * If nested=1, nested virtualization is supported, i.e., guests may use
103  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104  * use VMX instructions.
105  */
106 static bool __read_mostly nested = 1;
107 module_param(nested, bool, S_IRUGO);
108
109 static u64 __read_mostly host_xss;
110
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
116
117 #define MSR_BITMAP_MODE_X2APIC          1
118 #define MSR_BITMAP_MODE_X2APIC_APICV    2
119
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON                            \
132         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
133          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS                                      \
135         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147         RTIT_STATUS_BYTECNT))
148
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191
192 static const struct {
193         const char *option;
194         bool for_parse;
195 } vmentry_l1d_param[] = {
196         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
197         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
198         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
199         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
200         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209         struct page *page;
210         unsigned int i;
211
212         if (!enable_ept) {
213                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
214                 return 0;
215         }
216
217         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
218                 u64 msr;
219
220                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
221                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
222                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
223                         return 0;
224                 }
225         }
226
227         /* If set to auto use the default l1tf mitigation method */
228         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
229                 switch (l1tf_mitigation) {
230                 case L1TF_MITIGATION_OFF:
231                         l1tf = VMENTER_L1D_FLUSH_NEVER;
232                         break;
233                 case L1TF_MITIGATION_FLUSH_NOWARN:
234                 case L1TF_MITIGATION_FLUSH:
235                 case L1TF_MITIGATION_FLUSH_NOSMT:
236                         l1tf = VMENTER_L1D_FLUSH_COND;
237                         break;
238                 case L1TF_MITIGATION_FULL:
239                 case L1TF_MITIGATION_FULL_FORCE:
240                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
241                         break;
242                 }
243         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
244                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
245         }
246
247         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
248             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
249                 /*
250                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
251                  * lifetime and so should not be charged to a memcg.
252                  */
253                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
254                 if (!page)
255                         return -ENOMEM;
256                 vmx_l1d_flush_pages = page_address(page);
257
258                 /*
259                  * Initialize each page with a different pattern in
260                  * order to protect against KSM in the nested
261                  * virtualization case.
262                  */
263                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
264                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
265                                PAGE_SIZE);
266                 }
267         }
268
269         l1tf_vmx_mitigation = l1tf;
270
271         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
272                 static_branch_enable(&vmx_l1d_should_flush);
273         else
274                 static_branch_disable(&vmx_l1d_should_flush);
275
276         if (l1tf == VMENTER_L1D_FLUSH_COND)
277                 static_branch_enable(&vmx_l1d_flush_cond);
278         else
279                 static_branch_disable(&vmx_l1d_flush_cond);
280         return 0;
281 }
282
283 static int vmentry_l1d_flush_parse(const char *s)
284 {
285         unsigned int i;
286
287         if (s) {
288                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
289                         if (vmentry_l1d_param[i].for_parse &&
290                             sysfs_streq(s, vmentry_l1d_param[i].option))
291                                 return i;
292                 }
293         }
294         return -EINVAL;
295 }
296
297 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
298 {
299         int l1tf, ret;
300
301         l1tf = vmentry_l1d_flush_parse(s);
302         if (l1tf < 0)
303                 return l1tf;
304
305         if (!boot_cpu_has(X86_BUG_L1TF))
306                 return 0;
307
308         /*
309          * Has vmx_init() run already? If not then this is the pre init
310          * parameter parsing. In that case just store the value and let
311          * vmx_init() do the proper setup after enable_ept has been
312          * established.
313          */
314         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
315                 vmentry_l1d_flush_param = l1tf;
316                 return 0;
317         }
318
319         mutex_lock(&vmx_l1d_flush_mutex);
320         ret = vmx_setup_l1d_flush(l1tf);
321         mutex_unlock(&vmx_l1d_flush_mutex);
322         return ret;
323 }
324
325 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
326 {
327         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
328                 return sprintf(s, "???\n");
329
330         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
331 }
332
333 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
334         .set = vmentry_l1d_flush_set,
335         .get = vmentry_l1d_flush_get,
336 };
337 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
338
339 static bool guest_state_valid(struct kvm_vcpu *vcpu);
340 static u32 vmx_segment_access_rights(struct kvm_segment *var);
341 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
342                                                           u32 msr, int type);
343
344 void vmx_vmexit(void);
345
346 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
347 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
348 /*
349  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
350  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
351  */
352 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
353
354 /*
355  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
356  * can find which vCPU should be waken up.
357  */
358 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
359 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
360
361 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
362 static DEFINE_SPINLOCK(vmx_vpid_lock);
363
364 struct vmcs_config vmcs_config;
365 struct vmx_capability vmx_capability;
366
367 #define VMX_SEGMENT_FIELD(seg)                                  \
368         [VCPU_SREG_##seg] = {                                   \
369                 .selector = GUEST_##seg##_SELECTOR,             \
370                 .base = GUEST_##seg##_BASE,                     \
371                 .limit = GUEST_##seg##_LIMIT,                   \
372                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
373         }
374
375 static const struct kvm_vmx_segment_field {
376         unsigned selector;
377         unsigned base;
378         unsigned limit;
379         unsigned ar_bytes;
380 } kvm_vmx_segment_fields[] = {
381         VMX_SEGMENT_FIELD(CS),
382         VMX_SEGMENT_FIELD(DS),
383         VMX_SEGMENT_FIELD(ES),
384         VMX_SEGMENT_FIELD(FS),
385         VMX_SEGMENT_FIELD(GS),
386         VMX_SEGMENT_FIELD(SS),
387         VMX_SEGMENT_FIELD(TR),
388         VMX_SEGMENT_FIELD(LDTR),
389 };
390
391 u64 host_efer;
392 static unsigned long host_idt_base;
393
394 /*
395  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
396  * will emulate SYSCALL in legacy mode if the vendor string in guest
397  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
398  * support this emulation, IA32_STAR must always be included in
399  * vmx_msr_index[], even in i386 builds.
400  */
401 const u32 vmx_msr_index[] = {
402 #ifdef CONFIG_X86_64
403         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
404 #endif
405         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
406 };
407
408 #if IS_ENABLED(CONFIG_HYPERV)
409 static bool __read_mostly enlightened_vmcs = true;
410 module_param(enlightened_vmcs, bool, 0444);
411
412 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
413 static void check_ept_pointer_match(struct kvm *kvm)
414 {
415         struct kvm_vcpu *vcpu;
416         u64 tmp_eptp = INVALID_PAGE;
417         int i;
418
419         kvm_for_each_vcpu(i, vcpu, kvm) {
420                 if (!VALID_PAGE(tmp_eptp)) {
421                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
422                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
423                         to_kvm_vmx(kvm)->ept_pointers_match
424                                 = EPT_POINTERS_MISMATCH;
425                         return;
426                 }
427         }
428
429         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
430 }
431
432 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
433                 void *data)
434 {
435         struct kvm_tlb_range *range = data;
436
437         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
438                         range->pages);
439 }
440
441 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
442                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
443 {
444         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
445
446         /*
447          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
448          * of the base of EPT PML4 table, strip off EPT configuration
449          * information.
450          */
451         if (range)
452                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
453                                 kvm_fill_hv_flush_list_func, (void *)range);
454         else
455                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
456 }
457
458 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
459                 struct kvm_tlb_range *range)
460 {
461         struct kvm_vcpu *vcpu;
462         int ret = 0, i;
463
464         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
465
466         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
467                 check_ept_pointer_match(kvm);
468
469         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
470                 kvm_for_each_vcpu(i, vcpu, kvm) {
471                         /* If ept_pointer is invalid pointer, bypass flush request. */
472                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
473                                 ret |= __hv_remote_flush_tlb_with_range(
474                                         kvm, vcpu, range);
475                 }
476         } else {
477                 ret = __hv_remote_flush_tlb_with_range(kvm,
478                                 kvm_get_vcpu(kvm, 0), range);
479         }
480
481         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
482         return ret;
483 }
484 static int hv_remote_flush_tlb(struct kvm *kvm)
485 {
486         return hv_remote_flush_tlb_with_range(kvm, NULL);
487 }
488
489 #endif /* IS_ENABLED(CONFIG_HYPERV) */
490
491 /*
492  * Comment's format: document - errata name - stepping - processor name.
493  * Refer from
494  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
495  */
496 static u32 vmx_preemption_cpu_tfms[] = {
497 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
498 0x000206E6,
499 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
500 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
501 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
502 0x00020652,
503 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
504 0x00020655,
505 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
506 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
507 /*
508  * 320767.pdf - AAP86  - B1 -
509  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
510  */
511 0x000106E5,
512 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
513 0x000106A0,
514 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
515 0x000106A1,
516 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
517 0x000106A4,
518  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
519  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
520  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
521 0x000106A5,
522  /* Xeon E3-1220 V2 */
523 0x000306A8,
524 };
525
526 static inline bool cpu_has_broken_vmx_preemption_timer(void)
527 {
528         u32 eax = cpuid_eax(0x00000001), i;
529
530         /* Clear the reserved bits */
531         eax &= ~(0x3U << 14 | 0xfU << 28);
532         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
533                 if (eax == vmx_preemption_cpu_tfms[i])
534                         return true;
535
536         return false;
537 }
538
539 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
540 {
541         return flexpriority_enabled && lapic_in_kernel(vcpu);
542 }
543
544 static inline bool report_flexpriority(void)
545 {
546         return flexpriority_enabled;
547 }
548
549 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
550 {
551         int i;
552
553         for (i = 0; i < vmx->nmsrs; ++i)
554                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
555                         return i;
556         return -1;
557 }
558
559 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
560 {
561         int i;
562
563         i = __find_msr_index(vmx, msr);
564         if (i >= 0)
565                 return &vmx->guest_msrs[i];
566         return NULL;
567 }
568
569 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
570 {
571         vmcs_clear(loaded_vmcs->vmcs);
572         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
573                 vmcs_clear(loaded_vmcs->shadow_vmcs);
574         loaded_vmcs->cpu = -1;
575         loaded_vmcs->launched = 0;
576 }
577
578 #ifdef CONFIG_KEXEC_CORE
579 /*
580  * This bitmap is used to indicate whether the vmclear
581  * operation is enabled on all cpus. All disabled by
582  * default.
583  */
584 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
585
586 static inline void crash_enable_local_vmclear(int cpu)
587 {
588         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
589 }
590
591 static inline void crash_disable_local_vmclear(int cpu)
592 {
593         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
594 }
595
596 static inline int crash_local_vmclear_enabled(int cpu)
597 {
598         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
599 }
600
601 static void crash_vmclear_local_loaded_vmcss(void)
602 {
603         int cpu = raw_smp_processor_id();
604         struct loaded_vmcs *v;
605
606         if (!crash_local_vmclear_enabled(cpu))
607                 return;
608
609         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
610                             loaded_vmcss_on_cpu_link)
611                 vmcs_clear(v->vmcs);
612 }
613 #else
614 static inline void crash_enable_local_vmclear(int cpu) { }
615 static inline void crash_disable_local_vmclear(int cpu) { }
616 #endif /* CONFIG_KEXEC_CORE */
617
618 static void __loaded_vmcs_clear(void *arg)
619 {
620         struct loaded_vmcs *loaded_vmcs = arg;
621         int cpu = raw_smp_processor_id();
622
623         if (loaded_vmcs->cpu != cpu)
624                 return; /* vcpu migration can race with cpu offline */
625         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
626                 per_cpu(current_vmcs, cpu) = NULL;
627         crash_disable_local_vmclear(cpu);
628         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
629
630         /*
631          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
632          * is before setting loaded_vmcs->vcpu to -1 which is done in
633          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
634          * then adds the vmcs into percpu list before it is deleted.
635          */
636         smp_wmb();
637
638         loaded_vmcs_init(loaded_vmcs);
639         crash_enable_local_vmclear(cpu);
640 }
641
642 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
643 {
644         int cpu = loaded_vmcs->cpu;
645
646         if (cpu != -1)
647                 smp_call_function_single(cpu,
648                          __loaded_vmcs_clear, loaded_vmcs, 1);
649 }
650
651 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
652                                        unsigned field)
653 {
654         bool ret;
655         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
656
657         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
658                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
659                 vmx->segment_cache.bitmask = 0;
660         }
661         ret = vmx->segment_cache.bitmask & mask;
662         vmx->segment_cache.bitmask |= mask;
663         return ret;
664 }
665
666 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
667 {
668         u16 *p = &vmx->segment_cache.seg[seg].selector;
669
670         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
671                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
672         return *p;
673 }
674
675 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
676 {
677         ulong *p = &vmx->segment_cache.seg[seg].base;
678
679         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
680                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
681         return *p;
682 }
683
684 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
685 {
686         u32 *p = &vmx->segment_cache.seg[seg].limit;
687
688         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
689                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
690         return *p;
691 }
692
693 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
694 {
695         u32 *p = &vmx->segment_cache.seg[seg].ar;
696
697         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
698                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
699         return *p;
700 }
701
702 void update_exception_bitmap(struct kvm_vcpu *vcpu)
703 {
704         u32 eb;
705
706         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
707              (1u << DB_VECTOR) | (1u << AC_VECTOR);
708         /*
709          * Guest access to VMware backdoor ports could legitimately
710          * trigger #GP because of TSS I/O permission bitmap.
711          * We intercept those #GP and allow access to them anyway
712          * as VMware does.
713          */
714         if (enable_vmware_backdoor)
715                 eb |= (1u << GP_VECTOR);
716         if ((vcpu->guest_debug &
717              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
718             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
719                 eb |= 1u << BP_VECTOR;
720         if (to_vmx(vcpu)->rmode.vm86_active)
721                 eb = ~0;
722         if (enable_ept)
723                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
724
725         /* When we are running a nested L2 guest and L1 specified for it a
726          * certain exception bitmap, we must trap the same exceptions and pass
727          * them to L1. When running L2, we will only handle the exceptions
728          * specified above if L1 did not want them.
729          */
730         if (is_guest_mode(vcpu))
731                 eb |= get_vmcs12(vcpu)->exception_bitmap;
732
733         vmcs_write32(EXCEPTION_BITMAP, eb);
734 }
735
736 /*
737  * Check if MSR is intercepted for currently loaded MSR bitmap.
738  */
739 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
740 {
741         unsigned long *msr_bitmap;
742         int f = sizeof(unsigned long);
743
744         if (!cpu_has_vmx_msr_bitmap())
745                 return true;
746
747         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
748
749         if (msr <= 0x1fff) {
750                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
751         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
752                 msr &= 0x1fff;
753                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
754         }
755
756         return true;
757 }
758
759 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
760                 unsigned long entry, unsigned long exit)
761 {
762         vm_entry_controls_clearbit(vmx, entry);
763         vm_exit_controls_clearbit(vmx, exit);
764 }
765
766 static int find_msr(struct vmx_msrs *m, unsigned int msr)
767 {
768         unsigned int i;
769
770         for (i = 0; i < m->nr; ++i) {
771                 if (m->val[i].index == msr)
772                         return i;
773         }
774         return -ENOENT;
775 }
776
777 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
778 {
779         int i;
780         struct msr_autoload *m = &vmx->msr_autoload;
781
782         switch (msr) {
783         case MSR_EFER:
784                 if (cpu_has_load_ia32_efer()) {
785                         clear_atomic_switch_msr_special(vmx,
786                                         VM_ENTRY_LOAD_IA32_EFER,
787                                         VM_EXIT_LOAD_IA32_EFER);
788                         return;
789                 }
790                 break;
791         case MSR_CORE_PERF_GLOBAL_CTRL:
792                 if (cpu_has_load_perf_global_ctrl()) {
793                         clear_atomic_switch_msr_special(vmx,
794                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
795                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
796                         return;
797                 }
798                 break;
799         }
800         i = find_msr(&m->guest, msr);
801         if (i < 0)
802                 goto skip_guest;
803         --m->guest.nr;
804         m->guest.val[i] = m->guest.val[m->guest.nr];
805         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
806
807 skip_guest:
808         i = find_msr(&m->host, msr);
809         if (i < 0)
810                 return;
811
812         --m->host.nr;
813         m->host.val[i] = m->host.val[m->host.nr];
814         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
815 }
816
817 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
818                 unsigned long entry, unsigned long exit,
819                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
820                 u64 guest_val, u64 host_val)
821 {
822         vmcs_write64(guest_val_vmcs, guest_val);
823         if (host_val_vmcs != HOST_IA32_EFER)
824                 vmcs_write64(host_val_vmcs, host_val);
825         vm_entry_controls_setbit(vmx, entry);
826         vm_exit_controls_setbit(vmx, exit);
827 }
828
829 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
830                                   u64 guest_val, u64 host_val, bool entry_only)
831 {
832         int i, j = 0;
833         struct msr_autoload *m = &vmx->msr_autoload;
834
835         switch (msr) {
836         case MSR_EFER:
837                 if (cpu_has_load_ia32_efer()) {
838                         add_atomic_switch_msr_special(vmx,
839                                         VM_ENTRY_LOAD_IA32_EFER,
840                                         VM_EXIT_LOAD_IA32_EFER,
841                                         GUEST_IA32_EFER,
842                                         HOST_IA32_EFER,
843                                         guest_val, host_val);
844                         return;
845                 }
846                 break;
847         case MSR_CORE_PERF_GLOBAL_CTRL:
848                 if (cpu_has_load_perf_global_ctrl()) {
849                         add_atomic_switch_msr_special(vmx,
850                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
851                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
852                                         GUEST_IA32_PERF_GLOBAL_CTRL,
853                                         HOST_IA32_PERF_GLOBAL_CTRL,
854                                         guest_val, host_val);
855                         return;
856                 }
857                 break;
858         case MSR_IA32_PEBS_ENABLE:
859                 /* PEBS needs a quiescent period after being disabled (to write
860                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
861                  * provide that period, so a CPU could write host's record into
862                  * guest's memory.
863                  */
864                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
865         }
866
867         i = find_msr(&m->guest, msr);
868         if (!entry_only)
869                 j = find_msr(&m->host, msr);
870
871         if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
872                 (j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
873                 printk_once(KERN_WARNING "Not enough msr switch entries. "
874                                 "Can't add msr %x\n", msr);
875                 return;
876         }
877         if (i < 0) {
878                 i = m->guest.nr++;
879                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
880         }
881         m->guest.val[i].index = msr;
882         m->guest.val[i].value = guest_val;
883
884         if (entry_only)
885                 return;
886
887         if (j < 0) {
888                 j = m->host.nr++;
889                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
890         }
891         m->host.val[j].index = msr;
892         m->host.val[j].value = host_val;
893 }
894
895 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
896 {
897         u64 guest_efer = vmx->vcpu.arch.efer;
898         u64 ignore_bits = 0;
899
900         if (!enable_ept) {
901                 /*
902                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
903                  * host CPUID is more efficient than testing guest CPUID
904                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
905                  */
906                 if (boot_cpu_has(X86_FEATURE_SMEP))
907                         guest_efer |= EFER_NX;
908                 else if (!(guest_efer & EFER_NX))
909                         ignore_bits |= EFER_NX;
910         }
911
912         /*
913          * LMA and LME handled by hardware; SCE meaningless outside long mode.
914          */
915         ignore_bits |= EFER_SCE;
916 #ifdef CONFIG_X86_64
917         ignore_bits |= EFER_LMA | EFER_LME;
918         /* SCE is meaningful only in long mode on Intel */
919         if (guest_efer & EFER_LMA)
920                 ignore_bits &= ~(u64)EFER_SCE;
921 #endif
922
923         /*
924          * On EPT, we can't emulate NX, so we must switch EFER atomically.
925          * On CPUs that support "load IA32_EFER", always switch EFER
926          * atomically, since it's faster than switching it manually.
927          */
928         if (cpu_has_load_ia32_efer() ||
929             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
930                 if (!(guest_efer & EFER_LMA))
931                         guest_efer &= ~EFER_LME;
932                 if (guest_efer != host_efer)
933                         add_atomic_switch_msr(vmx, MSR_EFER,
934                                               guest_efer, host_efer, false);
935                 else
936                         clear_atomic_switch_msr(vmx, MSR_EFER);
937                 return false;
938         } else {
939                 clear_atomic_switch_msr(vmx, MSR_EFER);
940
941                 guest_efer &= ~ignore_bits;
942                 guest_efer |= host_efer & ignore_bits;
943
944                 vmx->guest_msrs[efer_offset].data = guest_efer;
945                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
946
947                 return true;
948         }
949 }
950
951 #ifdef CONFIG_X86_32
952 /*
953  * On 32-bit kernels, VM exits still load the FS and GS bases from the
954  * VMCS rather than the segment table.  KVM uses this helper to figure
955  * out the current bases to poke them into the VMCS before entry.
956  */
957 static unsigned long segment_base(u16 selector)
958 {
959         struct desc_struct *table;
960         unsigned long v;
961
962         if (!(selector & ~SEGMENT_RPL_MASK))
963                 return 0;
964
965         table = get_current_gdt_ro();
966
967         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
968                 u16 ldt_selector = kvm_read_ldt();
969
970                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
971                         return 0;
972
973                 table = (struct desc_struct *)segment_base(ldt_selector);
974         }
975         v = get_desc_base(&table[selector >> 3]);
976         return v;
977 }
978 #endif
979
980 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
981 {
982         u32 i;
983
984         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
985         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
986         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
987         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
988         for (i = 0; i < addr_range; i++) {
989                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
990                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
991         }
992 }
993
994 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
995 {
996         u32 i;
997
998         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
999         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1000         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1001         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1002         for (i = 0; i < addr_range; i++) {
1003                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1004                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1005         }
1006 }
1007
1008 static void pt_guest_enter(struct vcpu_vmx *vmx)
1009 {
1010         if (pt_mode == PT_MODE_SYSTEM)
1011                 return;
1012
1013         /*
1014          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1015          * Save host state before VM entry.
1016          */
1017         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1018         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1019                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1020                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1021                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1022         }
1023 }
1024
1025 static void pt_guest_exit(struct vcpu_vmx *vmx)
1026 {
1027         if (pt_mode == PT_MODE_SYSTEM)
1028                 return;
1029
1030         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1031                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1032                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1033         }
1034
1035         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1036         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1037 }
1038
1039 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1040                         unsigned long fs_base, unsigned long gs_base)
1041 {
1042         if (unlikely(fs_sel != host->fs_sel)) {
1043                 if (!(fs_sel & 7))
1044                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1045                 else
1046                         vmcs_write16(HOST_FS_SELECTOR, 0);
1047                 host->fs_sel = fs_sel;
1048         }
1049         if (unlikely(gs_sel != host->gs_sel)) {
1050                 if (!(gs_sel & 7))
1051                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1052                 else
1053                         vmcs_write16(HOST_GS_SELECTOR, 0);
1054                 host->gs_sel = gs_sel;
1055         }
1056         if (unlikely(fs_base != host->fs_base)) {
1057                 vmcs_writel(HOST_FS_BASE, fs_base);
1058                 host->fs_base = fs_base;
1059         }
1060         if (unlikely(gs_base != host->gs_base)) {
1061                 vmcs_writel(HOST_GS_BASE, gs_base);
1062                 host->gs_base = gs_base;
1063         }
1064 }
1065
1066 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1067 {
1068         struct vcpu_vmx *vmx = to_vmx(vcpu);
1069         struct vmcs_host_state *host_state;
1070 #ifdef CONFIG_X86_64
1071         int cpu = raw_smp_processor_id();
1072 #endif
1073         unsigned long fs_base, gs_base;
1074         u16 fs_sel, gs_sel;
1075         int i;
1076
1077         vmx->req_immediate_exit = false;
1078
1079         /*
1080          * Note that guest MSRs to be saved/restored can also be changed
1081          * when guest state is loaded. This happens when guest transitions
1082          * to/from long-mode by setting MSR_EFER.LMA.
1083          */
1084         if (!vmx->guest_msrs_ready) {
1085                 vmx->guest_msrs_ready = true;
1086                 for (i = 0; i < vmx->save_nmsrs; ++i)
1087                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1088                                            vmx->guest_msrs[i].data,
1089                                            vmx->guest_msrs[i].mask);
1090
1091         }
1092         if (vmx->guest_state_loaded)
1093                 return;
1094
1095         host_state = &vmx->loaded_vmcs->host_state;
1096
1097         /*
1098          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1099          * allow segment selectors with cpl > 0 or ti == 1.
1100          */
1101         host_state->ldt_sel = kvm_read_ldt();
1102
1103 #ifdef CONFIG_X86_64
1104         savesegment(ds, host_state->ds_sel);
1105         savesegment(es, host_state->es_sel);
1106
1107         gs_base = cpu_kernelmode_gs_base(cpu);
1108         if (likely(is_64bit_mm(current->mm))) {
1109                 save_fsgs_for_kvm();
1110                 fs_sel = current->thread.fsindex;
1111                 gs_sel = current->thread.gsindex;
1112                 fs_base = current->thread.fsbase;
1113                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1114         } else {
1115                 savesegment(fs, fs_sel);
1116                 savesegment(gs, gs_sel);
1117                 fs_base = read_msr(MSR_FS_BASE);
1118                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1119         }
1120
1121         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1122 #else
1123         savesegment(fs, fs_sel);
1124         savesegment(gs, gs_sel);
1125         fs_base = segment_base(fs_sel);
1126         gs_base = segment_base(gs_sel);
1127 #endif
1128
1129         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1130         vmx->guest_state_loaded = true;
1131 }
1132
1133 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1134 {
1135         struct vmcs_host_state *host_state;
1136
1137         if (!vmx->guest_state_loaded)
1138                 return;
1139
1140         host_state = &vmx->loaded_vmcs->host_state;
1141
1142         ++vmx->vcpu.stat.host_state_reload;
1143
1144 #ifdef CONFIG_X86_64
1145         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1146 #endif
1147         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1148                 kvm_load_ldt(host_state->ldt_sel);
1149 #ifdef CONFIG_X86_64
1150                 load_gs_index(host_state->gs_sel);
1151 #else
1152                 loadsegment(gs, host_state->gs_sel);
1153 #endif
1154         }
1155         if (host_state->fs_sel & 7)
1156                 loadsegment(fs, host_state->fs_sel);
1157 #ifdef CONFIG_X86_64
1158         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1159                 loadsegment(ds, host_state->ds_sel);
1160                 loadsegment(es, host_state->es_sel);
1161         }
1162 #endif
1163         invalidate_tss_limit();
1164 #ifdef CONFIG_X86_64
1165         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1166 #endif
1167         load_fixmap_gdt(raw_smp_processor_id());
1168         vmx->guest_state_loaded = false;
1169         vmx->guest_msrs_ready = false;
1170 }
1171
1172 #ifdef CONFIG_X86_64
1173 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1174 {
1175         preempt_disable();
1176         if (vmx->guest_state_loaded)
1177                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1178         preempt_enable();
1179         return vmx->msr_guest_kernel_gs_base;
1180 }
1181
1182 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1183 {
1184         preempt_disable();
1185         if (vmx->guest_state_loaded)
1186                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1187         preempt_enable();
1188         vmx->msr_guest_kernel_gs_base = data;
1189 }
1190 #endif
1191
1192 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1193 {
1194         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1195         struct pi_desc old, new;
1196         unsigned int dest;
1197
1198         /*
1199          * In case of hot-plug or hot-unplug, we may have to undo
1200          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1201          * always keep PI.NDST up to date for simplicity: it makes the
1202          * code easier, and CPU migration is not a fast path.
1203          */
1204         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1205                 return;
1206
1207         /* The full case.  */
1208         do {
1209                 old.control = new.control = pi_desc->control;
1210
1211                 dest = cpu_physical_id(cpu);
1212
1213                 if (x2apic_enabled())
1214                         new.ndst = dest;
1215                 else
1216                         new.ndst = (dest << 8) & 0xFF00;
1217
1218                 new.sn = 0;
1219         } while (cmpxchg64(&pi_desc->control, old.control,
1220                            new.control) != old.control);
1221
1222         /*
1223          * Clear SN before reading the bitmap.  The VT-d firmware
1224          * writes the bitmap and reads SN atomically (5.2.3 in the
1225          * spec), so it doesn't really have a memory barrier that
1226          * pairs with this, but we cannot do that and we need one.
1227          */
1228         smp_mb__after_atomic();
1229
1230         if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1231                 pi_set_on(pi_desc);
1232 }
1233
1234 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1235 {
1236         struct vcpu_vmx *vmx = to_vmx(vcpu);
1237         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1238
1239         if (!already_loaded) {
1240                 loaded_vmcs_clear(vmx->loaded_vmcs);
1241                 local_irq_disable();
1242                 crash_disable_local_vmclear(cpu);
1243
1244                 /*
1245                  * Read loaded_vmcs->cpu should be before fetching
1246                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1247                  * See the comments in __loaded_vmcs_clear().
1248                  */
1249                 smp_rmb();
1250
1251                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1252                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1253                 crash_enable_local_vmclear(cpu);
1254                 local_irq_enable();
1255         }
1256
1257         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1258                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1259                 vmcs_load(vmx->loaded_vmcs->vmcs);
1260                 indirect_branch_prediction_barrier();
1261         }
1262
1263         if (!already_loaded) {
1264                 void *gdt = get_current_gdt_ro();
1265                 unsigned long sysenter_esp;
1266
1267                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1268
1269                 /*
1270                  * Linux uses per-cpu TSS and GDT, so set these when switching
1271                  * processors.  See 22.2.4.
1272                  */
1273                 vmcs_writel(HOST_TR_BASE,
1274                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1275                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1276
1277                 /*
1278                  * VM exits change the host TR limit to 0x67 after a VM
1279                  * exit.  This is okay, since 0x67 covers everything except
1280                  * the IO bitmap and have have code to handle the IO bitmap
1281                  * being lost after a VM exit.
1282                  */
1283                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1284
1285                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1286                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1287
1288                 vmx->loaded_vmcs->cpu = cpu;
1289         }
1290
1291         /* Setup TSC multiplier */
1292         if (kvm_has_tsc_control &&
1293             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1294                 decache_tsc_multiplier(vmx);
1295 }
1296
1297 /*
1298  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1299  * vcpu mutex is already taken.
1300  */
1301 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1302 {
1303         struct vcpu_vmx *vmx = to_vmx(vcpu);
1304
1305         vmx_vcpu_load_vmcs(vcpu, cpu);
1306
1307         vmx_vcpu_pi_load(vcpu, cpu);
1308
1309         vmx->host_pkru = read_pkru();
1310         vmx->host_debugctlmsr = get_debugctlmsr();
1311 }
1312
1313 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1314 {
1315         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1316
1317         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1318                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1319                 !kvm_vcpu_apicv_active(vcpu))
1320                 return;
1321
1322         /* Set SN when the vCPU is preempted */
1323         if (vcpu->preempted)
1324                 pi_set_sn(pi_desc);
1325 }
1326
1327 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1328 {
1329         vmx_vcpu_pi_put(vcpu);
1330
1331         vmx_prepare_switch_to_host(to_vmx(vcpu));
1332 }
1333
1334 static bool emulation_required(struct kvm_vcpu *vcpu)
1335 {
1336         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1337 }
1338
1339 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1340
1341 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1342 {
1343         unsigned long rflags, save_rflags;
1344
1345         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1346                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1347                 rflags = vmcs_readl(GUEST_RFLAGS);
1348                 if (to_vmx(vcpu)->rmode.vm86_active) {
1349                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1350                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1351                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1352                 }
1353                 to_vmx(vcpu)->rflags = rflags;
1354         }
1355         return to_vmx(vcpu)->rflags;
1356 }
1357
1358 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1359 {
1360         unsigned long old_rflags = vmx_get_rflags(vcpu);
1361
1362         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1363         to_vmx(vcpu)->rflags = rflags;
1364         if (to_vmx(vcpu)->rmode.vm86_active) {
1365                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1366                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1367         }
1368         vmcs_writel(GUEST_RFLAGS, rflags);
1369
1370         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1371                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1372 }
1373
1374 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1375 {
1376         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1377         int ret = 0;
1378
1379         if (interruptibility & GUEST_INTR_STATE_STI)
1380                 ret |= KVM_X86_SHADOW_INT_STI;
1381         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1382                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1383
1384         return ret;
1385 }
1386
1387 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1388 {
1389         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1390         u32 interruptibility = interruptibility_old;
1391
1392         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1393
1394         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1395                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1396         else if (mask & KVM_X86_SHADOW_INT_STI)
1397                 interruptibility |= GUEST_INTR_STATE_STI;
1398
1399         if ((interruptibility != interruptibility_old))
1400                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1401 }
1402
1403 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1404 {
1405         struct vcpu_vmx *vmx = to_vmx(vcpu);
1406         unsigned long value;
1407
1408         /*
1409          * Any MSR write that attempts to change bits marked reserved will
1410          * case a #GP fault.
1411          */
1412         if (data & vmx->pt_desc.ctl_bitmask)
1413                 return 1;
1414
1415         /*
1416          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1417          * result in a #GP unless the same write also clears TraceEn.
1418          */
1419         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1420                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1421                 return 1;
1422
1423         /*
1424          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1425          * and FabricEn would cause #GP, if
1426          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1427          */
1428         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1429                 !(data & RTIT_CTL_FABRIC_EN) &&
1430                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1431                                         PT_CAP_single_range_output))
1432                 return 1;
1433
1434         /*
1435          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1436          * utilize encodings marked reserved will casue a #GP fault.
1437          */
1438         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1439         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1440                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1441                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1442                 return 1;
1443         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1444                                                 PT_CAP_cycle_thresholds);
1445         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1446                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1447                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1448                 return 1;
1449         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1450         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1451                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1452                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1453                 return 1;
1454
1455         /*
1456          * If ADDRx_CFG is reserved or the encodings is >2 will
1457          * cause a #GP fault.
1458          */
1459         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1460         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1461                 return 1;
1462         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1463         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1464                 return 1;
1465         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1466         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1467                 return 1;
1468         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1469         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1470                 return 1;
1471
1472         return 0;
1473 }
1474
1475
1476 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1477 {
1478         unsigned long rip;
1479
1480         rip = kvm_rip_read(vcpu);
1481         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1482         kvm_rip_write(vcpu, rip);
1483
1484         /* skipping an emulated instruction also counts */
1485         vmx_set_interrupt_shadow(vcpu, 0);
1486 }
1487
1488 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1489 {
1490         /*
1491          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1492          * explicitly skip the instruction because if the HLT state is set,
1493          * then the instruction is already executing and RIP has already been
1494          * advanced.
1495          */
1496         if (kvm_hlt_in_guest(vcpu->kvm) &&
1497                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1498                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1499 }
1500
1501 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1502 {
1503         struct vcpu_vmx *vmx = to_vmx(vcpu);
1504         unsigned nr = vcpu->arch.exception.nr;
1505         bool has_error_code = vcpu->arch.exception.has_error_code;
1506         u32 error_code = vcpu->arch.exception.error_code;
1507         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1508
1509         kvm_deliver_exception_payload(vcpu);
1510
1511         if (has_error_code) {
1512                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1513                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1514         }
1515
1516         if (vmx->rmode.vm86_active) {
1517                 int inc_eip = 0;
1518                 if (kvm_exception_is_soft(nr))
1519                         inc_eip = vcpu->arch.event_exit_inst_len;
1520                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1521                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1522                 return;
1523         }
1524
1525         WARN_ON_ONCE(vmx->emulation_required);
1526
1527         if (kvm_exception_is_soft(nr)) {
1528                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1529                              vmx->vcpu.arch.event_exit_inst_len);
1530                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1531         } else
1532                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1533
1534         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1535
1536         vmx_clear_hlt(vcpu);
1537 }
1538
1539 static bool vmx_rdtscp_supported(void)
1540 {
1541         return cpu_has_vmx_rdtscp();
1542 }
1543
1544 static bool vmx_invpcid_supported(void)
1545 {
1546         return cpu_has_vmx_invpcid();
1547 }
1548
1549 /*
1550  * Swap MSR entry in host/guest MSR entry array.
1551  */
1552 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1553 {
1554         struct shared_msr_entry tmp;
1555
1556         tmp = vmx->guest_msrs[to];
1557         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1558         vmx->guest_msrs[from] = tmp;
1559 }
1560
1561 /*
1562  * Set up the vmcs to automatically save and restore system
1563  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1564  * mode, as fiddling with msrs is very expensive.
1565  */
1566 static void setup_msrs(struct vcpu_vmx *vmx)
1567 {
1568         int save_nmsrs, index;
1569
1570         save_nmsrs = 0;
1571 #ifdef CONFIG_X86_64
1572         /*
1573          * The SYSCALL MSRs are only needed on long mode guests, and only
1574          * when EFER.SCE is set.
1575          */
1576         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1577                 index = __find_msr_index(vmx, MSR_STAR);
1578                 if (index >= 0)
1579                         move_msr_up(vmx, index, save_nmsrs++);
1580                 index = __find_msr_index(vmx, MSR_LSTAR);
1581                 if (index >= 0)
1582                         move_msr_up(vmx, index, save_nmsrs++);
1583                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1584                 if (index >= 0)
1585                         move_msr_up(vmx, index, save_nmsrs++);
1586         }
1587 #endif
1588         index = __find_msr_index(vmx, MSR_EFER);
1589         if (index >= 0 && update_transition_efer(vmx, index))
1590                 move_msr_up(vmx, index, save_nmsrs++);
1591         index = __find_msr_index(vmx, MSR_TSC_AUX);
1592         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1593                 move_msr_up(vmx, index, save_nmsrs++);
1594
1595         vmx->save_nmsrs = save_nmsrs;
1596         vmx->guest_msrs_ready = false;
1597
1598         if (cpu_has_vmx_msr_bitmap())
1599                 vmx_update_msr_bitmap(&vmx->vcpu);
1600 }
1601
1602 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1603 {
1604         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1605
1606         if (is_guest_mode(vcpu) &&
1607             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1608                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1609
1610         return vcpu->arch.tsc_offset;
1611 }
1612
1613 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1614 {
1615         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1616         u64 g_tsc_offset = 0;
1617
1618         /*
1619          * We're here if L1 chose not to trap WRMSR to TSC. According
1620          * to the spec, this should set L1's TSC; The offset that L1
1621          * set for L2 remains unchanged, and still needs to be added
1622          * to the newly set TSC to get L2's TSC.
1623          */
1624         if (is_guest_mode(vcpu) &&
1625             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1626                 g_tsc_offset = vmcs12->tsc_offset;
1627
1628         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1629                                    vcpu->arch.tsc_offset - g_tsc_offset,
1630                                    offset);
1631         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1632         return offset + g_tsc_offset;
1633 }
1634
1635 /*
1636  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1637  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1638  * all guests if the "nested" module option is off, and can also be disabled
1639  * for a single guest by disabling its VMX cpuid bit.
1640  */
1641 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1642 {
1643         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1644 }
1645
1646 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1647                                                  uint64_t val)
1648 {
1649         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1650
1651         return !(val & ~valid_bits);
1652 }
1653
1654 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1655 {
1656         switch (msr->index) {
1657         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1658                 if (!nested)
1659                         return 1;
1660                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1661         default:
1662                 return 1;
1663         }
1664
1665         return 0;
1666 }
1667
1668 /*
1669  * Reads an msr value (of 'msr_index') into 'pdata'.
1670  * Returns 0 on success, non-0 otherwise.
1671  * Assumes vcpu_load() was already called.
1672  */
1673 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1674 {
1675         struct vcpu_vmx *vmx = to_vmx(vcpu);
1676         struct shared_msr_entry *msr;
1677         u32 index;
1678
1679         switch (msr_info->index) {
1680 #ifdef CONFIG_X86_64
1681         case MSR_FS_BASE:
1682                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1683                 break;
1684         case MSR_GS_BASE:
1685                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1686                 break;
1687         case MSR_KERNEL_GS_BASE:
1688                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1689                 break;
1690 #endif
1691         case MSR_EFER:
1692                 return kvm_get_msr_common(vcpu, msr_info);
1693         case MSR_IA32_SPEC_CTRL:
1694                 if (!msr_info->host_initiated &&
1695                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1696                         return 1;
1697
1698                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1699                 break;
1700         case MSR_IA32_SYSENTER_CS:
1701                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1702                 break;
1703         case MSR_IA32_SYSENTER_EIP:
1704                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1705                 break;
1706         case MSR_IA32_SYSENTER_ESP:
1707                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1708                 break;
1709         case MSR_IA32_BNDCFGS:
1710                 if (!kvm_mpx_supported() ||
1711                     (!msr_info->host_initiated &&
1712                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1713                         return 1;
1714                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1715                 break;
1716         case MSR_IA32_MCG_EXT_CTL:
1717                 if (!msr_info->host_initiated &&
1718                     !(vmx->msr_ia32_feature_control &
1719                       FEATURE_CONTROL_LMCE))
1720                         return 1;
1721                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1722                 break;
1723         case MSR_IA32_FEATURE_CONTROL:
1724                 msr_info->data = vmx->msr_ia32_feature_control;
1725                 break;
1726         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1727                 if (!nested_vmx_allowed(vcpu))
1728                         return 1;
1729                 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1730                                        &msr_info->data);
1731         case MSR_IA32_XSS:
1732                 if (!vmx_xsaves_supported() ||
1733                     (!msr_info->host_initiated &&
1734                      !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1735                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1736                         return 1;
1737                 msr_info->data = vcpu->arch.ia32_xss;
1738                 break;
1739         case MSR_IA32_RTIT_CTL:
1740                 if (pt_mode != PT_MODE_HOST_GUEST)
1741                         return 1;
1742                 msr_info->data = vmx->pt_desc.guest.ctl;
1743                 break;
1744         case MSR_IA32_RTIT_STATUS:
1745                 if (pt_mode != PT_MODE_HOST_GUEST)
1746                         return 1;
1747                 msr_info->data = vmx->pt_desc.guest.status;
1748                 break;
1749         case MSR_IA32_RTIT_CR3_MATCH:
1750                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1751                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1752                                                 PT_CAP_cr3_filtering))
1753                         return 1;
1754                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1755                 break;
1756         case MSR_IA32_RTIT_OUTPUT_BASE:
1757                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1758                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1759                                         PT_CAP_topa_output) &&
1760                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1761                                         PT_CAP_single_range_output)))
1762                         return 1;
1763                 msr_info->data = vmx->pt_desc.guest.output_base;
1764                 break;
1765         case MSR_IA32_RTIT_OUTPUT_MASK:
1766                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1767                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1768                                         PT_CAP_topa_output) &&
1769                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1770                                         PT_CAP_single_range_output)))
1771                         return 1;
1772                 msr_info->data = vmx->pt_desc.guest.output_mask;
1773                 break;
1774         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1775                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1776                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1777                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1778                                         PT_CAP_num_address_ranges)))
1779                         return 1;
1780                 if (index % 2)
1781                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1782                 else
1783                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1784                 break;
1785         case MSR_TSC_AUX:
1786                 if (!msr_info->host_initiated &&
1787                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1788                         return 1;
1789                 /* Else, falls through */
1790         default:
1791                 msr = find_msr_entry(vmx, msr_info->index);
1792                 if (msr) {
1793                         msr_info->data = msr->data;
1794                         break;
1795                 }
1796                 return kvm_get_msr_common(vcpu, msr_info);
1797         }
1798
1799         return 0;
1800 }
1801
1802 /*
1803  * Writes msr value into into the appropriate "register".
1804  * Returns 0 on success, non-0 otherwise.
1805  * Assumes vcpu_load() was already called.
1806  */
1807 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1808 {
1809         struct vcpu_vmx *vmx = to_vmx(vcpu);
1810         struct shared_msr_entry *msr;
1811         int ret = 0;
1812         u32 msr_index = msr_info->index;
1813         u64 data = msr_info->data;
1814         u32 index;
1815
1816         switch (msr_index) {
1817         case MSR_EFER:
1818                 ret = kvm_set_msr_common(vcpu, msr_info);
1819                 break;
1820 #ifdef CONFIG_X86_64
1821         case MSR_FS_BASE:
1822                 vmx_segment_cache_clear(vmx);
1823                 vmcs_writel(GUEST_FS_BASE, data);
1824                 break;
1825         case MSR_GS_BASE:
1826                 vmx_segment_cache_clear(vmx);
1827                 vmcs_writel(GUEST_GS_BASE, data);
1828                 break;
1829         case MSR_KERNEL_GS_BASE:
1830                 vmx_write_guest_kernel_gs_base(vmx, data);
1831                 break;
1832 #endif
1833         case MSR_IA32_SYSENTER_CS:
1834                 if (is_guest_mode(vcpu))
1835                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1836                 vmcs_write32(GUEST_SYSENTER_CS, data);
1837                 break;
1838         case MSR_IA32_SYSENTER_EIP:
1839                 if (is_guest_mode(vcpu))
1840                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1841                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1842                 break;
1843         case MSR_IA32_SYSENTER_ESP:
1844                 if (is_guest_mode(vcpu))
1845                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
1846                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1847                 break;
1848         case MSR_IA32_DEBUGCTLMSR:
1849                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1850                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
1851                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1852
1853                 ret = kvm_set_msr_common(vcpu, msr_info);
1854                 break;
1855
1856         case MSR_IA32_BNDCFGS:
1857                 if (!kvm_mpx_supported() ||
1858                     (!msr_info->host_initiated &&
1859                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1860                         return 1;
1861                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1862                     (data & MSR_IA32_BNDCFGS_RSVD))
1863                         return 1;
1864                 vmcs_write64(GUEST_BNDCFGS, data);
1865                 break;
1866         case MSR_IA32_SPEC_CTRL:
1867                 if (!msr_info->host_initiated &&
1868                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1869                         return 1;
1870
1871                 /* The STIBP bit doesn't fault even if it's not advertised */
1872                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1873                         return 1;
1874
1875                 vmx->spec_ctrl = data;
1876
1877                 if (!data)
1878                         break;
1879
1880                 /*
1881                  * For non-nested:
1882                  * When it's written (to non-zero) for the first time, pass
1883                  * it through.
1884                  *
1885                  * For nested:
1886                  * The handling of the MSR bitmap for L2 guests is done in
1887                  * nested_vmx_merge_msr_bitmap. We should not touch the
1888                  * vmcs02.msr_bitmap here since it gets completely overwritten
1889                  * in the merging. We update the vmcs01 here for L1 as well
1890                  * since it will end up touching the MSR anyway now.
1891                  */
1892                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1893                                               MSR_IA32_SPEC_CTRL,
1894                                               MSR_TYPE_RW);
1895                 break;
1896         case MSR_IA32_PRED_CMD:
1897                 if (!msr_info->host_initiated &&
1898                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1899                         return 1;
1900
1901                 if (data & ~PRED_CMD_IBPB)
1902                         return 1;
1903
1904                 if (!data)
1905                         break;
1906
1907                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
1908
1909                 /*
1910                  * For non-nested:
1911                  * When it's written (to non-zero) for the first time, pass
1912                  * it through.
1913                  *
1914                  * For nested:
1915                  * The handling of the MSR bitmap for L2 guests is done in
1916                  * nested_vmx_merge_msr_bitmap. We should not touch the
1917                  * vmcs02.msr_bitmap here since it gets completely overwritten
1918                  * in the merging.
1919                  */
1920                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
1921                                               MSR_TYPE_W);
1922                 break;
1923         case MSR_IA32_CR_PAT:
1924                 if (!kvm_pat_valid(data))
1925                         return 1;
1926
1927                 if (is_guest_mode(vcpu) &&
1928                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
1929                         get_vmcs12(vcpu)->guest_ia32_pat = data;
1930
1931                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1932                         vmcs_write64(GUEST_IA32_PAT, data);
1933                         vcpu->arch.pat = data;
1934                         break;
1935                 }
1936                 ret = kvm_set_msr_common(vcpu, msr_info);
1937                 break;
1938         case MSR_IA32_TSC_ADJUST:
1939                 ret = kvm_set_msr_common(vcpu, msr_info);
1940                 break;
1941         case MSR_IA32_MCG_EXT_CTL:
1942                 if ((!msr_info->host_initiated &&
1943                      !(to_vmx(vcpu)->msr_ia32_feature_control &
1944                        FEATURE_CONTROL_LMCE)) ||
1945                     (data & ~MCG_EXT_CTL_LMCE_EN))
1946                         return 1;
1947                 vcpu->arch.mcg_ext_ctl = data;
1948                 break;
1949         case MSR_IA32_FEATURE_CONTROL:
1950                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
1951                     (to_vmx(vcpu)->msr_ia32_feature_control &
1952                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
1953                         return 1;
1954                 vmx->msr_ia32_feature_control = data;
1955                 if (msr_info->host_initiated && data == 0)
1956                         vmx_leave_nested(vcpu);
1957                 break;
1958         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1959                 if (!msr_info->host_initiated)
1960                         return 1; /* they are read-only */
1961                 if (!nested_vmx_allowed(vcpu))
1962                         return 1;
1963                 return vmx_set_vmx_msr(vcpu, msr_index, data);
1964         case MSR_IA32_XSS:
1965                 if (!vmx_xsaves_supported() ||
1966                     (!msr_info->host_initiated &&
1967                      !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1968                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1969                         return 1;
1970                 /*
1971                  * The only supported bit as of Skylake is bit 8, but
1972                  * it is not supported on KVM.
1973                  */
1974                 if (data != 0)
1975                         return 1;
1976                 vcpu->arch.ia32_xss = data;
1977                 if (vcpu->arch.ia32_xss != host_xss)
1978                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
1979                                 vcpu->arch.ia32_xss, host_xss, false);
1980                 else
1981                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
1982                 break;
1983         case MSR_IA32_RTIT_CTL:
1984                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1985                         vmx_rtit_ctl_check(vcpu, data) ||
1986                         vmx->nested.vmxon)
1987                         return 1;
1988                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
1989                 vmx->pt_desc.guest.ctl = data;
1990                 pt_update_intercept_for_msr(vmx);
1991                 break;
1992         case MSR_IA32_RTIT_STATUS:
1993                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1994                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1995                         (data & MSR_IA32_RTIT_STATUS_MASK))
1996                         return 1;
1997                 vmx->pt_desc.guest.status = data;
1998                 break;
1999         case MSR_IA32_RTIT_CR3_MATCH:
2000                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2001                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2002                         !intel_pt_validate_cap(vmx->pt_desc.caps,
2003                                                 PT_CAP_cr3_filtering))
2004                         return 1;
2005                 vmx->pt_desc.guest.cr3_match = data;
2006                 break;
2007         case MSR_IA32_RTIT_OUTPUT_BASE:
2008                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2009                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2010                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2011                                         PT_CAP_topa_output) &&
2012                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2013                                         PT_CAP_single_range_output)) ||
2014                         (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2015                         return 1;
2016                 vmx->pt_desc.guest.output_base = data;
2017                 break;
2018         case MSR_IA32_RTIT_OUTPUT_MASK:
2019                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2020                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2021                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2022                                         PT_CAP_topa_output) &&
2023                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2024                                         PT_CAP_single_range_output)))
2025                         return 1;
2026                 vmx->pt_desc.guest.output_mask = data;
2027                 break;
2028         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2029                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2030                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2031                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2032                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2033                                         PT_CAP_num_address_ranges)))
2034                         return 1;
2035                 if (index % 2)
2036                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2037                 else
2038                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2039                 break;
2040         case MSR_TSC_AUX:
2041                 if (!msr_info->host_initiated &&
2042                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2043                         return 1;
2044                 /* Check reserved bit, higher 32 bits should be zero */
2045                 if ((data >> 32) != 0)
2046                         return 1;
2047                 /* Else, falls through */
2048         default:
2049                 msr = find_msr_entry(vmx, msr_index);
2050                 if (msr) {
2051                         u64 old_msr_data = msr->data;
2052                         msr->data = data;
2053                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2054                                 preempt_disable();
2055                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2056                                                          msr->mask);
2057                                 preempt_enable();
2058                                 if (ret)
2059                                         msr->data = old_msr_data;
2060                         }
2061                         break;
2062                 }
2063                 ret = kvm_set_msr_common(vcpu, msr_info);
2064         }
2065
2066         return ret;
2067 }
2068
2069 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2070 {
2071         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2072         switch (reg) {
2073         case VCPU_REGS_RSP:
2074                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2075                 break;
2076         case VCPU_REGS_RIP:
2077                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2078                 break;
2079         case VCPU_EXREG_PDPTR:
2080                 if (enable_ept)
2081                         ept_save_pdptrs(vcpu);
2082                 break;
2083         default:
2084                 break;
2085         }
2086 }
2087
2088 static __init int cpu_has_kvm_support(void)
2089 {
2090         return cpu_has_vmx();
2091 }
2092
2093 static __init int vmx_disabled_by_bios(void)
2094 {
2095         u64 msr;
2096
2097         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2098         if (msr & FEATURE_CONTROL_LOCKED) {
2099                 /* launched w/ TXT and VMX disabled */
2100                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2101                         && tboot_enabled())
2102                         return 1;
2103                 /* launched w/o TXT and VMX only enabled w/ TXT */
2104                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2105                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2106                         && !tboot_enabled()) {
2107                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2108                                 "activate TXT before enabling KVM\n");
2109                         return 1;
2110                 }
2111                 /* launched w/o TXT and VMX disabled */
2112                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2113                         && !tboot_enabled())
2114                         return 1;
2115         }
2116
2117         return 0;
2118 }
2119
2120 static void kvm_cpu_vmxon(u64 addr)
2121 {
2122         cr4_set_bits(X86_CR4_VMXE);
2123         intel_pt_handle_vmx(1);
2124
2125         asm volatile ("vmxon %0" : : "m"(addr));
2126 }
2127
2128 static int hardware_enable(void)
2129 {
2130         int cpu = raw_smp_processor_id();
2131         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2132         u64 old, test_bits;
2133
2134         if (cr4_read_shadow() & X86_CR4_VMXE)
2135                 return -EBUSY;
2136
2137         /*
2138          * This can happen if we hot-added a CPU but failed to allocate
2139          * VP assist page for it.
2140          */
2141         if (static_branch_unlikely(&enable_evmcs) &&
2142             !hv_get_vp_assist_page(cpu))
2143                 return -EFAULT;
2144
2145         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2146         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2147         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2148
2149         /*
2150          * Now we can enable the vmclear operation in kdump
2151          * since the loaded_vmcss_on_cpu list on this cpu
2152          * has been initialized.
2153          *
2154          * Though the cpu is not in VMX operation now, there
2155          * is no problem to enable the vmclear operation
2156          * for the loaded_vmcss_on_cpu list is empty!
2157          */
2158         crash_enable_local_vmclear(cpu);
2159
2160         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2161
2162         test_bits = FEATURE_CONTROL_LOCKED;
2163         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2164         if (tboot_enabled())
2165                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2166
2167         if ((old & test_bits) != test_bits) {
2168                 /* enable and lock */
2169                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2170         }
2171         kvm_cpu_vmxon(phys_addr);
2172         if (enable_ept)
2173                 ept_sync_global();
2174
2175         return 0;
2176 }
2177
2178 static void vmclear_local_loaded_vmcss(void)
2179 {
2180         int cpu = raw_smp_processor_id();
2181         struct loaded_vmcs *v, *n;
2182
2183         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2184                                  loaded_vmcss_on_cpu_link)
2185                 __loaded_vmcs_clear(v);
2186 }
2187
2188
2189 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2190  * tricks.
2191  */
2192 static void kvm_cpu_vmxoff(void)
2193 {
2194         asm volatile (__ex("vmxoff"));
2195
2196         intel_pt_handle_vmx(0);
2197         cr4_clear_bits(X86_CR4_VMXE);
2198 }
2199
2200 static void hardware_disable(void)
2201 {
2202         vmclear_local_loaded_vmcss();
2203         kvm_cpu_vmxoff();
2204 }
2205
2206 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2207                                       u32 msr, u32 *result)
2208 {
2209         u32 vmx_msr_low, vmx_msr_high;
2210         u32 ctl = ctl_min | ctl_opt;
2211
2212         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2213
2214         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2215         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2216
2217         /* Ensure minimum (required) set of control bits are supported. */
2218         if (ctl_min & ~ctl)
2219                 return -EIO;
2220
2221         *result = ctl;
2222         return 0;
2223 }
2224
2225 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2226                                     struct vmx_capability *vmx_cap)
2227 {
2228         u32 vmx_msr_low, vmx_msr_high;
2229         u32 min, opt, min2, opt2;
2230         u32 _pin_based_exec_control = 0;
2231         u32 _cpu_based_exec_control = 0;
2232         u32 _cpu_based_2nd_exec_control = 0;
2233         u32 _vmexit_control = 0;
2234         u32 _vmentry_control = 0;
2235
2236         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2237         min = CPU_BASED_HLT_EXITING |
2238 #ifdef CONFIG_X86_64
2239               CPU_BASED_CR8_LOAD_EXITING |
2240               CPU_BASED_CR8_STORE_EXITING |
2241 #endif
2242               CPU_BASED_CR3_LOAD_EXITING |
2243               CPU_BASED_CR3_STORE_EXITING |
2244               CPU_BASED_UNCOND_IO_EXITING |
2245               CPU_BASED_MOV_DR_EXITING |
2246               CPU_BASED_USE_TSC_OFFSETING |
2247               CPU_BASED_MWAIT_EXITING |
2248               CPU_BASED_MONITOR_EXITING |
2249               CPU_BASED_INVLPG_EXITING |
2250               CPU_BASED_RDPMC_EXITING;
2251
2252         opt = CPU_BASED_TPR_SHADOW |
2253               CPU_BASED_USE_MSR_BITMAPS |
2254               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2255         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2256                                 &_cpu_based_exec_control) < 0)
2257                 return -EIO;
2258 #ifdef CONFIG_X86_64
2259         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2260                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2261                                            ~CPU_BASED_CR8_STORE_EXITING;
2262 #endif
2263         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2264                 min2 = 0;
2265                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2266                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2267                         SECONDARY_EXEC_WBINVD_EXITING |
2268                         SECONDARY_EXEC_ENABLE_VPID |
2269                         SECONDARY_EXEC_ENABLE_EPT |
2270                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2271                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2272                         SECONDARY_EXEC_DESC |
2273                         SECONDARY_EXEC_RDTSCP |
2274                         SECONDARY_EXEC_ENABLE_INVPCID |
2275                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2276                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2277                         SECONDARY_EXEC_SHADOW_VMCS |
2278                         SECONDARY_EXEC_XSAVES |
2279                         SECONDARY_EXEC_RDSEED_EXITING |
2280                         SECONDARY_EXEC_RDRAND_EXITING |
2281                         SECONDARY_EXEC_ENABLE_PML |
2282                         SECONDARY_EXEC_TSC_SCALING |
2283                         SECONDARY_EXEC_PT_USE_GPA |
2284                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2285                         SECONDARY_EXEC_ENABLE_VMFUNC |
2286                         SECONDARY_EXEC_ENCLS_EXITING;
2287                 if (adjust_vmx_controls(min2, opt2,
2288                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2289                                         &_cpu_based_2nd_exec_control) < 0)
2290                         return -EIO;
2291         }
2292 #ifndef CONFIG_X86_64
2293         if (!(_cpu_based_2nd_exec_control &
2294                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2295                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2296 #endif
2297
2298         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2299                 _cpu_based_2nd_exec_control &= ~(
2300                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2301                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2302                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2303
2304         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2305                 &vmx_cap->ept, &vmx_cap->vpid);
2306
2307         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2308                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2309                    enabled */
2310                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2311                                              CPU_BASED_CR3_STORE_EXITING |
2312                                              CPU_BASED_INVLPG_EXITING);
2313         } else if (vmx_cap->ept) {
2314                 vmx_cap->ept = 0;
2315                 pr_warn_once("EPT CAP should not exist if not support "
2316                                 "1-setting enable EPT VM-execution control\n");
2317         }
2318         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2319                 vmx_cap->vpid) {
2320                 vmx_cap->vpid = 0;
2321                 pr_warn_once("VPID CAP should not exist if not support "
2322                                 "1-setting enable VPID VM-execution control\n");
2323         }
2324
2325         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2326 #ifdef CONFIG_X86_64
2327         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2328 #endif
2329         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2330               VM_EXIT_LOAD_IA32_PAT |
2331               VM_EXIT_LOAD_IA32_EFER |
2332               VM_EXIT_CLEAR_BNDCFGS |
2333               VM_EXIT_PT_CONCEAL_PIP |
2334               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2335         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2336                                 &_vmexit_control) < 0)
2337                 return -EIO;
2338
2339         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2340         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2341                  PIN_BASED_VMX_PREEMPTION_TIMER;
2342         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2343                                 &_pin_based_exec_control) < 0)
2344                 return -EIO;
2345
2346         if (cpu_has_broken_vmx_preemption_timer())
2347                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2348         if (!(_cpu_based_2nd_exec_control &
2349                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2350                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2351
2352         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2353         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2354               VM_ENTRY_LOAD_IA32_PAT |
2355               VM_ENTRY_LOAD_IA32_EFER |
2356               VM_ENTRY_LOAD_BNDCFGS |
2357               VM_ENTRY_PT_CONCEAL_PIP |
2358               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2359         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2360                                 &_vmentry_control) < 0)
2361                 return -EIO;
2362
2363         /*
2364          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2365          * can't be used due to an errata where VM Exit may incorrectly clear
2366          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2367          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2368          */
2369         if (boot_cpu_data.x86 == 0x6) {
2370                 switch (boot_cpu_data.x86_model) {
2371                 case 26: /* AAK155 */
2372                 case 30: /* AAP115 */
2373                 case 37: /* AAT100 */
2374                 case 44: /* BC86,AAY89,BD102 */
2375                 case 46: /* BA97 */
2376                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2377                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2378                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2379                                         "does not work properly. Using workaround\n");
2380                         break;
2381                 default:
2382                         break;
2383                 }
2384         }
2385
2386
2387         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2388
2389         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2390         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2391                 return -EIO;
2392
2393 #ifdef CONFIG_X86_64
2394         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2395         if (vmx_msr_high & (1u<<16))
2396                 return -EIO;
2397 #endif
2398
2399         /* Require Write-Back (WB) memory type for VMCS accesses. */
2400         if (((vmx_msr_high >> 18) & 15) != 6)
2401                 return -EIO;
2402
2403         vmcs_conf->size = vmx_msr_high & 0x1fff;
2404         vmcs_conf->order = get_order(vmcs_conf->size);
2405         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2406
2407         vmcs_conf->revision_id = vmx_msr_low;
2408
2409         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2410         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2411         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2412         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2413         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2414
2415         if (static_branch_unlikely(&enable_evmcs))
2416                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2417
2418         return 0;
2419 }
2420
2421 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2422 {
2423         int node = cpu_to_node(cpu);
2424         struct page *pages;
2425         struct vmcs *vmcs;
2426
2427         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2428         if (!pages)
2429                 return NULL;
2430         vmcs = page_address(pages);
2431         memset(vmcs, 0, vmcs_config.size);
2432
2433         /* KVM supports Enlightened VMCS v1 only */
2434         if (static_branch_unlikely(&enable_evmcs))
2435                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2436         else
2437                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2438
2439         if (shadow)
2440                 vmcs->hdr.shadow_vmcs = 1;
2441         return vmcs;
2442 }
2443
2444 void free_vmcs(struct vmcs *vmcs)
2445 {
2446         free_pages((unsigned long)vmcs, vmcs_config.order);
2447 }
2448
2449 /*
2450  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2451  */
2452 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2453 {
2454         if (!loaded_vmcs->vmcs)
2455                 return;
2456         loaded_vmcs_clear(loaded_vmcs);
2457         free_vmcs(loaded_vmcs->vmcs);
2458         loaded_vmcs->vmcs = NULL;
2459         if (loaded_vmcs->msr_bitmap)
2460                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2461         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2462 }
2463
2464 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2465 {
2466         loaded_vmcs->vmcs = alloc_vmcs(false);
2467         if (!loaded_vmcs->vmcs)
2468                 return -ENOMEM;
2469
2470         loaded_vmcs->shadow_vmcs = NULL;
2471         loaded_vmcs->hv_timer_soft_disabled = false;
2472         loaded_vmcs_init(loaded_vmcs);
2473
2474         if (cpu_has_vmx_msr_bitmap()) {
2475                 loaded_vmcs->msr_bitmap = (unsigned long *)
2476                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2477                 if (!loaded_vmcs->msr_bitmap)
2478                         goto out_vmcs;
2479                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2480
2481                 if (IS_ENABLED(CONFIG_HYPERV) &&
2482                     static_branch_unlikely(&enable_evmcs) &&
2483                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2484                         struct hv_enlightened_vmcs *evmcs =
2485                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2486
2487                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2488                 }
2489         }
2490
2491         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2492         memset(&loaded_vmcs->controls_shadow, 0,
2493                 sizeof(struct vmcs_controls_shadow));
2494
2495         return 0;
2496
2497 out_vmcs:
2498         free_loaded_vmcs(loaded_vmcs);
2499         return -ENOMEM;
2500 }
2501
2502 static void free_kvm_area(void)
2503 {
2504         int cpu;
2505
2506         for_each_possible_cpu(cpu) {
2507                 free_vmcs(per_cpu(vmxarea, cpu));
2508                 per_cpu(vmxarea, cpu) = NULL;
2509         }
2510 }
2511
2512 static __init int alloc_kvm_area(void)
2513 {
2514         int cpu;
2515
2516         for_each_possible_cpu(cpu) {
2517                 struct vmcs *vmcs;
2518
2519                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2520                 if (!vmcs) {
2521                         free_kvm_area();
2522                         return -ENOMEM;
2523                 }
2524
2525                 /*
2526                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2527                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2528                  * revision_id reported by MSR_IA32_VMX_BASIC.
2529                  *
2530                  * However, even though not explicitly documented by
2531                  * TLFS, VMXArea passed as VMXON argument should
2532                  * still be marked with revision_id reported by
2533                  * physical CPU.
2534                  */
2535                 if (static_branch_unlikely(&enable_evmcs))
2536                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2537
2538                 per_cpu(vmxarea, cpu) = vmcs;
2539         }
2540         return 0;
2541 }
2542
2543 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2544                 struct kvm_segment *save)
2545 {
2546         if (!emulate_invalid_guest_state) {
2547                 /*
2548                  * CS and SS RPL should be equal during guest entry according
2549                  * to VMX spec, but in reality it is not always so. Since vcpu
2550                  * is in the middle of the transition from real mode to
2551                  * protected mode it is safe to assume that RPL 0 is a good
2552                  * default value.
2553                  */
2554                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2555                         save->selector &= ~SEGMENT_RPL_MASK;
2556                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2557                 save->s = 1;
2558         }
2559         vmx_set_segment(vcpu, save, seg);
2560 }
2561
2562 static void enter_pmode(struct kvm_vcpu *vcpu)
2563 {
2564         unsigned long flags;
2565         struct vcpu_vmx *vmx = to_vmx(vcpu);
2566
2567         /*
2568          * Update real mode segment cache. It may be not up-to-date if sement
2569          * register was written while vcpu was in a guest mode.
2570          */
2571         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2572         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2573         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2574         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2575         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2576         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2577
2578         vmx->rmode.vm86_active = 0;
2579
2580         vmx_segment_cache_clear(vmx);
2581
2582         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2583
2584         flags = vmcs_readl(GUEST_RFLAGS);
2585         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2586         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2587         vmcs_writel(GUEST_RFLAGS, flags);
2588
2589         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2590                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2591
2592         update_exception_bitmap(vcpu);
2593
2594         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2595         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2596         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2597         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2598         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2599         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2600 }
2601
2602 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2603 {
2604         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2605         struct kvm_segment var = *save;
2606
2607         var.dpl = 0x3;
2608         if (seg == VCPU_SREG_CS)
2609                 var.type = 0x3;
2610
2611         if (!emulate_invalid_guest_state) {
2612                 var.selector = var.base >> 4;
2613                 var.base = var.base & 0xffff0;
2614                 var.limit = 0xffff;
2615                 var.g = 0;
2616                 var.db = 0;
2617                 var.present = 1;
2618                 var.s = 1;
2619                 var.l = 0;
2620                 var.unusable = 0;
2621                 var.type = 0x3;
2622                 var.avl = 0;
2623                 if (save->base & 0xf)
2624                         printk_once(KERN_WARNING "kvm: segment base is not "
2625                                         "paragraph aligned when entering "
2626                                         "protected mode (seg=%d)", seg);
2627         }
2628
2629         vmcs_write16(sf->selector, var.selector);
2630         vmcs_writel(sf->base, var.base);
2631         vmcs_write32(sf->limit, var.limit);
2632         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2633 }
2634
2635 static void enter_rmode(struct kvm_vcpu *vcpu)
2636 {
2637         unsigned long flags;
2638         struct vcpu_vmx *vmx = to_vmx(vcpu);
2639         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2640
2641         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2642         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2643         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2644         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2645         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2646         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2647         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2648
2649         vmx->rmode.vm86_active = 1;
2650
2651         /*
2652          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2653          * vcpu. Warn the user that an update is overdue.
2654          */
2655         if (!kvm_vmx->tss_addr)
2656                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2657                              "called before entering vcpu\n");
2658
2659         vmx_segment_cache_clear(vmx);
2660
2661         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2662         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2663         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2664
2665         flags = vmcs_readl(GUEST_RFLAGS);
2666         vmx->rmode.save_rflags = flags;
2667
2668         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2669
2670         vmcs_writel(GUEST_RFLAGS, flags);
2671         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2672         update_exception_bitmap(vcpu);
2673
2674         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2675         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2676         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2677         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2678         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2679         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2680
2681         kvm_mmu_reset_context(vcpu);
2682 }
2683
2684 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2685 {
2686         struct vcpu_vmx *vmx = to_vmx(vcpu);
2687         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2688
2689         if (!msr)
2690                 return;
2691
2692         vcpu->arch.efer = efer;
2693         if (efer & EFER_LMA) {
2694                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2695                 msr->data = efer;
2696         } else {
2697                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2698
2699                 msr->data = efer & ~EFER_LME;
2700         }
2701         setup_msrs(vmx);
2702 }
2703
2704 #ifdef CONFIG_X86_64
2705
2706 static void enter_lmode(struct kvm_vcpu *vcpu)
2707 {
2708         u32 guest_tr_ar;
2709
2710         vmx_segment_cache_clear(to_vmx(vcpu));
2711
2712         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2713         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2714                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2715                                      __func__);
2716                 vmcs_write32(GUEST_TR_AR_BYTES,
2717                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2718                              | VMX_AR_TYPE_BUSY_64_TSS);
2719         }
2720         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2721 }
2722
2723 static void exit_lmode(struct kvm_vcpu *vcpu)
2724 {
2725         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2726         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2727 }
2728
2729 #endif
2730
2731 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2732 {
2733         int vpid = to_vmx(vcpu)->vpid;
2734
2735         if (!vpid_sync_vcpu_addr(vpid, addr))
2736                 vpid_sync_context(vpid);
2737
2738         /*
2739          * If VPIDs are not supported or enabled, then the above is a no-op.
2740          * But we don't really need a TLB flush in that case anyway, because
2741          * each VM entry/exit includes an implicit flush when VPID is 0.
2742          */
2743 }
2744
2745 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2746 {
2747         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2748
2749         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2750         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2751 }
2752
2753 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2754 {
2755         if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2756                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2757         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2758 }
2759
2760 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2761 {
2762         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2763
2764         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2765         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2766 }
2767
2768 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2769 {
2770         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2771
2772         if (!test_bit(VCPU_EXREG_PDPTR,
2773                       (unsigned long *)&vcpu->arch.regs_dirty))
2774                 return;
2775
2776         if (is_pae_paging(vcpu)) {
2777                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2778                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2779                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2780                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2781         }
2782 }
2783
2784 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2785 {
2786         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2787
2788         if (is_pae_paging(vcpu)) {
2789                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2790                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2791                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2792                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2793         }
2794
2795         __set_bit(VCPU_EXREG_PDPTR,
2796                   (unsigned long *)&vcpu->arch.regs_avail);
2797         __set_bit(VCPU_EXREG_PDPTR,
2798                   (unsigned long *)&vcpu->arch.regs_dirty);
2799 }
2800
2801 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2802                                         unsigned long cr0,
2803                                         struct kvm_vcpu *vcpu)
2804 {
2805         struct vcpu_vmx *vmx = to_vmx(vcpu);
2806
2807         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2808                 vmx_decache_cr3(vcpu);
2809         if (!(cr0 & X86_CR0_PG)) {
2810                 /* From paging/starting to nonpaging */
2811                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2812                                           CPU_BASED_CR3_STORE_EXITING);
2813                 vcpu->arch.cr0 = cr0;
2814                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2815         } else if (!is_paging(vcpu)) {
2816                 /* From nonpaging to paging */
2817                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2818                                             CPU_BASED_CR3_STORE_EXITING);
2819                 vcpu->arch.cr0 = cr0;
2820                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2821         }
2822
2823         if (!(cr0 & X86_CR0_WP))
2824                 *hw_cr0 &= ~X86_CR0_WP;
2825 }
2826
2827 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2828 {
2829         struct vcpu_vmx *vmx = to_vmx(vcpu);
2830         unsigned long hw_cr0;
2831
2832         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2833         if (enable_unrestricted_guest)
2834                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2835         else {
2836                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2837
2838                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2839                         enter_pmode(vcpu);
2840
2841                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2842                         enter_rmode(vcpu);
2843         }
2844
2845 #ifdef CONFIG_X86_64
2846         if (vcpu->arch.efer & EFER_LME) {
2847                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2848                         enter_lmode(vcpu);
2849                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2850                         exit_lmode(vcpu);
2851         }
2852 #endif
2853
2854         if (enable_ept && !enable_unrestricted_guest)
2855                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2856
2857         vmcs_writel(CR0_READ_SHADOW, cr0);
2858         vmcs_writel(GUEST_CR0, hw_cr0);
2859         vcpu->arch.cr0 = cr0;
2860
2861         /* depends on vcpu->arch.cr0 to be set to a new value */
2862         vmx->emulation_required = emulation_required(vcpu);
2863 }
2864
2865 static int get_ept_level(struct kvm_vcpu *vcpu)
2866 {
2867         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2868                 return 5;
2869         return 4;
2870 }
2871
2872 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2873 {
2874         u64 eptp = VMX_EPTP_MT_WB;
2875
2876         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2877
2878         if (enable_ept_ad_bits &&
2879             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2880                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2881         eptp |= (root_hpa & PAGE_MASK);
2882
2883         return eptp;
2884 }
2885
2886 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2887 {
2888         struct kvm *kvm = vcpu->kvm;
2889         unsigned long guest_cr3;
2890         u64 eptp;
2891
2892         guest_cr3 = cr3;
2893         if (enable_ept) {
2894                 eptp = construct_eptp(vcpu, cr3);
2895                 vmcs_write64(EPT_POINTER, eptp);
2896
2897                 if (kvm_x86_ops->tlb_remote_flush) {
2898                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2899                         to_vmx(vcpu)->ept_pointer = eptp;
2900                         to_kvm_vmx(kvm)->ept_pointers_match
2901                                 = EPT_POINTERS_CHECK;
2902                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2903                 }
2904
2905                 if (enable_unrestricted_guest || is_paging(vcpu) ||
2906                     is_guest_mode(vcpu))
2907                         guest_cr3 = kvm_read_cr3(vcpu);
2908                 else
2909                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
2910                 ept_load_pdptrs(vcpu);
2911         }
2912
2913         vmcs_writel(GUEST_CR3, guest_cr3);
2914 }
2915
2916 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2917 {
2918         struct vcpu_vmx *vmx = to_vmx(vcpu);
2919         /*
2920          * Pass through host's Machine Check Enable value to hw_cr4, which
2921          * is in force while we are in guest mode.  Do not let guests control
2922          * this bit, even if host CR4.MCE == 0.
2923          */
2924         unsigned long hw_cr4;
2925
2926         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
2927         if (enable_unrestricted_guest)
2928                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
2929         else if (vmx->rmode.vm86_active)
2930                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
2931         else
2932                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
2933
2934         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
2935                 if (cr4 & X86_CR4_UMIP) {
2936                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
2937                         hw_cr4 &= ~X86_CR4_UMIP;
2938                 } else if (!is_guest_mode(vcpu) ||
2939                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
2940                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
2941                 }
2942         }
2943
2944         if (cr4 & X86_CR4_VMXE) {
2945                 /*
2946                  * To use VMXON (and later other VMX instructions), a guest
2947                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
2948                  * So basically the check on whether to allow nested VMX
2949                  * is here.  We operate under the default treatment of SMM,
2950                  * so VMX cannot be enabled under SMM.
2951                  */
2952                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
2953                         return 1;
2954         }
2955
2956         if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
2957                 return 1;
2958
2959         vcpu->arch.cr4 = cr4;
2960
2961         if (!enable_unrestricted_guest) {
2962                 if (enable_ept) {
2963                         if (!is_paging(vcpu)) {
2964                                 hw_cr4 &= ~X86_CR4_PAE;
2965                                 hw_cr4 |= X86_CR4_PSE;
2966                         } else if (!(cr4 & X86_CR4_PAE)) {
2967                                 hw_cr4 &= ~X86_CR4_PAE;
2968                         }
2969                 }
2970
2971                 /*
2972                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
2973                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
2974                  * to be manually disabled when guest switches to non-paging
2975                  * mode.
2976                  *
2977                  * If !enable_unrestricted_guest, the CPU is always running
2978                  * with CR0.PG=1 and CR4 needs to be modified.
2979                  * If enable_unrestricted_guest, the CPU automatically
2980                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
2981                  */
2982                 if (!is_paging(vcpu))
2983                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
2984         }
2985
2986         vmcs_writel(CR4_READ_SHADOW, cr4);
2987         vmcs_writel(GUEST_CR4, hw_cr4);
2988         return 0;
2989 }
2990
2991 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
2992 {
2993         struct vcpu_vmx *vmx = to_vmx(vcpu);
2994         u32 ar;
2995
2996         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
2997                 *var = vmx->rmode.segs[seg];
2998                 if (seg == VCPU_SREG_TR
2999                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3000                         return;
3001                 var->base = vmx_read_guest_seg_base(vmx, seg);
3002                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3003                 return;
3004         }
3005         var->base = vmx_read_guest_seg_base(vmx, seg);
3006         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3007         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3008         ar = vmx_read_guest_seg_ar(vmx, seg);
3009         var->unusable = (ar >> 16) & 1;
3010         var->type = ar & 15;
3011         var->s = (ar >> 4) & 1;
3012         var->dpl = (ar >> 5) & 3;
3013         /*
3014          * Some userspaces do not preserve unusable property. Since usable
3015          * segment has to be present according to VMX spec we can use present
3016          * property to amend userspace bug by making unusable segment always
3017          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3018          * segment as unusable.
3019          */
3020         var->present = !var->unusable;
3021         var->avl = (ar >> 12) & 1;
3022         var->l = (ar >> 13) & 1;
3023         var->db = (ar >> 14) & 1;
3024         var->g = (ar >> 15) & 1;
3025 }
3026
3027 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3028 {
3029         struct kvm_segment s;
3030
3031         if (to_vmx(vcpu)->rmode.vm86_active) {
3032                 vmx_get_segment(vcpu, &s, seg);
3033                 return s.base;
3034         }
3035         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3036 }
3037
3038 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3039 {
3040         struct vcpu_vmx *vmx = to_vmx(vcpu);
3041
3042         if (unlikely(vmx->rmode.vm86_active))
3043                 return 0;
3044         else {
3045                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3046                 return VMX_AR_DPL(ar);
3047         }
3048 }
3049
3050 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3051 {
3052         u32 ar;
3053
3054         if (var->unusable || !var->present)
3055                 ar = 1 << 16;
3056         else {
3057                 ar = var->type & 15;
3058                 ar |= (var->s & 1) << 4;
3059                 ar |= (var->dpl & 3) << 5;
3060                 ar |= (var->present & 1) << 7;
3061                 ar |= (var->avl & 1) << 12;
3062                 ar |= (var->l & 1) << 13;
3063                 ar |= (var->db & 1) << 14;
3064                 ar |= (var->g & 1) << 15;
3065         }
3066
3067         return ar;
3068 }
3069
3070 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3071 {
3072         struct vcpu_vmx *vmx = to_vmx(vcpu);
3073         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3074
3075         vmx_segment_cache_clear(vmx);
3076
3077         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3078                 vmx->rmode.segs[seg] = *var;
3079                 if (seg == VCPU_SREG_TR)
3080                         vmcs_write16(sf->selector, var->selector);
3081                 else if (var->s)
3082                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3083                 goto out;
3084         }
3085
3086         vmcs_writel(sf->base, var->base);
3087         vmcs_write32(sf->limit, var->limit);
3088         vmcs_write16(sf->selector, var->selector);
3089
3090         /*
3091          *   Fix the "Accessed" bit in AR field of segment registers for older
3092          * qemu binaries.
3093          *   IA32 arch specifies that at the time of processor reset the
3094          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3095          * is setting it to 0 in the userland code. This causes invalid guest
3096          * state vmexit when "unrestricted guest" mode is turned on.
3097          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3098          * tree. Newer qemu binaries with that qemu fix would not need this
3099          * kvm hack.
3100          */
3101         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3102                 var->type |= 0x1; /* Accessed */
3103
3104         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3105
3106 out:
3107         vmx->emulation_required = emulation_required(vcpu);
3108 }
3109
3110 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3111 {
3112         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3113
3114         *db = (ar >> 14) & 1;
3115         *l = (ar >> 13) & 1;
3116 }
3117
3118 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3119 {
3120         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3121         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3122 }
3123
3124 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3125 {
3126         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3127         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3128 }
3129
3130 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3131 {
3132         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3133         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3134 }
3135
3136 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3137 {
3138         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3139         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3140 }
3141
3142 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3143 {
3144         struct kvm_segment var;
3145         u32 ar;
3146
3147         vmx_get_segment(vcpu, &var, seg);
3148         var.dpl = 0x3;
3149         if (seg == VCPU_SREG_CS)
3150                 var.type = 0x3;
3151         ar = vmx_segment_access_rights(&var);
3152
3153         if (var.base != (var.selector << 4))
3154                 return false;
3155         if (var.limit != 0xffff)
3156                 return false;
3157         if (ar != 0xf3)
3158                 return false;
3159
3160         return true;
3161 }
3162
3163 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3164 {
3165         struct kvm_segment cs;
3166         unsigned int cs_rpl;
3167
3168         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3169         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3170
3171         if (cs.unusable)
3172                 return false;
3173         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3174                 return false;
3175         if (!cs.s)
3176                 return false;
3177         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3178                 if (cs.dpl > cs_rpl)
3179                         return false;
3180         } else {
3181                 if (cs.dpl != cs_rpl)
3182                         return false;
3183         }
3184         if (!cs.present)
3185                 return false;
3186
3187         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3188         return true;
3189 }
3190
3191 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3192 {
3193         struct kvm_segment ss;
3194         unsigned int ss_rpl;
3195
3196         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3197         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3198
3199         if (ss.unusable)
3200                 return true;
3201         if (ss.type != 3 && ss.type != 7)
3202                 return false;
3203         if (!ss.s)
3204                 return false;
3205         if (ss.dpl != ss_rpl) /* DPL != RPL */
3206                 return false;
3207         if (!ss.present)
3208                 return false;
3209
3210         return true;
3211 }
3212
3213 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3214 {
3215         struct kvm_segment var;
3216         unsigned int rpl;
3217
3218         vmx_get_segment(vcpu, &var, seg);
3219         rpl = var.selector & SEGMENT_RPL_MASK;
3220
3221         if (var.unusable)
3222                 return true;
3223         if (!var.s)
3224                 return false;
3225         if (!var.present)
3226                 return false;
3227         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3228                 if (var.dpl < rpl) /* DPL < RPL */
3229                         return false;
3230         }
3231
3232         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3233          * rights flags
3234          */
3235         return true;
3236 }
3237
3238 static bool tr_valid(struct kvm_vcpu *vcpu)
3239 {
3240         struct kvm_segment tr;
3241
3242         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3243
3244         if (tr.unusable)
3245                 return false;
3246         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3247                 return false;
3248         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3249                 return false;
3250         if (!tr.present)
3251                 return false;
3252
3253         return true;
3254 }
3255
3256 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3257 {
3258         struct kvm_segment ldtr;
3259
3260         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3261
3262         if (ldtr.unusable)
3263                 return true;
3264         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3265                 return false;
3266         if (ldtr.type != 2)
3267                 return false;
3268         if (!ldtr.present)
3269                 return false;
3270
3271         return true;
3272 }
3273
3274 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3275 {
3276         struct kvm_segment cs, ss;
3277
3278         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3279         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3280
3281         return ((cs.selector & SEGMENT_RPL_MASK) ==
3282                  (ss.selector & SEGMENT_RPL_MASK));
3283 }
3284
3285 /*
3286  * Check if guest state is valid. Returns true if valid, false if
3287  * not.
3288  * We assume that registers are always usable
3289  */
3290 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3291 {
3292         if (enable_unrestricted_guest)
3293                 return true;
3294
3295         /* real mode guest state checks */
3296         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3297                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3298                         return false;
3299                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3300                         return false;
3301                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3302                         return false;
3303                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3304                         return false;
3305                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3306                         return false;
3307                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3308                         return false;
3309         } else {
3310         /* protected mode guest state checks */
3311                 if (!cs_ss_rpl_check(vcpu))
3312                         return false;
3313                 if (!code_segment_valid(vcpu))
3314                         return false;
3315                 if (!stack_segment_valid(vcpu))
3316                         return false;
3317                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3318                         return false;
3319                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3320                         return false;
3321                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3322                         return false;
3323                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3324                         return false;
3325                 if (!tr_valid(vcpu))
3326                         return false;
3327                 if (!ldtr_valid(vcpu))
3328                         return false;
3329         }
3330         /* TODO:
3331          * - Add checks on RIP
3332          * - Add checks on RFLAGS
3333          */
3334
3335         return true;
3336 }
3337
3338 static int init_rmode_tss(struct kvm *kvm)
3339 {
3340         gfn_t fn;
3341         u16 data = 0;
3342         int idx, r;
3343
3344         idx = srcu_read_lock(&kvm->srcu);
3345         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3346         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3347         if (r < 0)
3348                 goto out;
3349         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3350         r = kvm_write_guest_page(kvm, fn++, &data,
3351                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3352         if (r < 0)
3353                 goto out;
3354         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3355         if (r < 0)
3356                 goto out;
3357         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3358         if (r < 0)
3359                 goto out;
3360         data = ~0;
3361         r = kvm_write_guest_page(kvm, fn, &data,
3362                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3363                                  sizeof(u8));
3364 out:
3365         srcu_read_unlock(&kvm->srcu, idx);
3366         return r;
3367 }
3368
3369 static int init_rmode_identity_map(struct kvm *kvm)
3370 {
3371         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3372         int i, idx, r = 0;
3373         kvm_pfn_t identity_map_pfn;
3374         u32 tmp;
3375
3376         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3377         mutex_lock(&kvm->slots_lock);
3378
3379         if (likely(kvm_vmx->ept_identity_pagetable_done))
3380                 goto out2;
3381
3382         if (!kvm_vmx->ept_identity_map_addr)
3383                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3384         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3385
3386         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3387                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3388         if (r < 0)
3389                 goto out2;
3390
3391         idx = srcu_read_lock(&kvm->srcu);
3392         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3393         if (r < 0)
3394                 goto out;
3395         /* Set up identity-mapping pagetable for EPT in real mode */
3396         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3397                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3398                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3399                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3400                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3401                 if (r < 0)
3402                         goto out;
3403         }
3404         kvm_vmx->ept_identity_pagetable_done = true;
3405
3406 out:
3407         srcu_read_unlock(&kvm->srcu, idx);
3408
3409 out2:
3410         mutex_unlock(&kvm->slots_lock);
3411         return r;
3412 }
3413
3414 static void seg_setup(int seg)
3415 {
3416         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3417         unsigned int ar;
3418
3419         vmcs_write16(sf->selector, 0);
3420         vmcs_writel(sf->base, 0);
3421         vmcs_write32(sf->limit, 0xffff);
3422         ar = 0x93;
3423         if (seg == VCPU_SREG_CS)
3424                 ar |= 0x08; /* code segment */
3425
3426         vmcs_write32(sf->ar_bytes, ar);
3427 }
3428
3429 static int alloc_apic_access_page(struct kvm *kvm)
3430 {
3431         struct page *page;
3432         int r = 0;
3433
3434         mutex_lock(&kvm->slots_lock);
3435         if (kvm->arch.apic_access_page_done)
3436                 goto out;
3437         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3438                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3439         if (r)
3440                 goto out;
3441
3442         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3443         if (is_error_page(page)) {
3444                 r = -EFAULT;
3445                 goto out;
3446         }
3447
3448         /*
3449          * Do not pin the page in memory, so that memory hot-unplug
3450          * is able to migrate it.
3451          */
3452         put_page(page);
3453         kvm->arch.apic_access_page_done = true;
3454 out:
3455         mutex_unlock(&kvm->slots_lock);
3456         return r;
3457 }
3458
3459 int allocate_vpid(void)
3460 {
3461         int vpid;
3462
3463         if (!enable_vpid)
3464                 return 0;
3465         spin_lock(&vmx_vpid_lock);
3466         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3467         if (vpid < VMX_NR_VPIDS)
3468                 __set_bit(vpid, vmx_vpid_bitmap);
3469         else
3470                 vpid = 0;
3471         spin_unlock(&vmx_vpid_lock);
3472         return vpid;
3473 }
3474
3475 void free_vpid(int vpid)
3476 {
3477         if (!enable_vpid || vpid == 0)
3478                 return;
3479         spin_lock(&vmx_vpid_lock);
3480         __clear_bit(vpid, vmx_vpid_bitmap);
3481         spin_unlock(&vmx_vpid_lock);
3482 }
3483
3484 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3485                                                           u32 msr, int type)
3486 {
3487         int f = sizeof(unsigned long);
3488
3489         if (!cpu_has_vmx_msr_bitmap())
3490                 return;
3491
3492         if (static_branch_unlikely(&enable_evmcs))
3493                 evmcs_touch_msr_bitmap();
3494
3495         /*
3496          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3497          * have the write-low and read-high bitmap offsets the wrong way round.
3498          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3499          */
3500         if (msr <= 0x1fff) {
3501                 if (type & MSR_TYPE_R)
3502                         /* read-low */
3503                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3504
3505                 if (type & MSR_TYPE_W)
3506                         /* write-low */
3507                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3508
3509         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3510                 msr &= 0x1fff;
3511                 if (type & MSR_TYPE_R)
3512                         /* read-high */
3513                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3514
3515                 if (type & MSR_TYPE_W)
3516                         /* write-high */
3517                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3518
3519         }
3520 }
3521
3522 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3523                                                          u32 msr, int type)
3524 {
3525         int f = sizeof(unsigned long);
3526
3527         if (!cpu_has_vmx_msr_bitmap())
3528                 return;
3529
3530         if (static_branch_unlikely(&enable_evmcs))
3531                 evmcs_touch_msr_bitmap();
3532
3533         /*
3534          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3535          * have the write-low and read-high bitmap offsets the wrong way round.
3536          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3537          */
3538         if (msr <= 0x1fff) {
3539                 if (type & MSR_TYPE_R)
3540                         /* read-low */
3541                         __set_bit(msr, msr_bitmap + 0x000 / f);
3542
3543                 if (type & MSR_TYPE_W)
3544                         /* write-low */
3545                         __set_bit(msr, msr_bitmap + 0x800 / f);
3546
3547         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3548                 msr &= 0x1fff;
3549                 if (type & MSR_TYPE_R)
3550                         /* read-high */
3551                         __set_bit(msr, msr_bitmap + 0x400 / f);
3552
3553                 if (type & MSR_TYPE_W)
3554                         /* write-high */
3555                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3556
3557         }
3558 }
3559
3560 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3561                                                       u32 msr, int type, bool value)
3562 {
3563         if (value)
3564                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3565         else
3566                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3567 }
3568
3569 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3570 {
3571         u8 mode = 0;
3572
3573         if (cpu_has_secondary_exec_ctrls() &&
3574             (secondary_exec_controls_get(to_vmx(vcpu)) &
3575              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3576                 mode |= MSR_BITMAP_MODE_X2APIC;
3577                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3578                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3579         }
3580
3581         return mode;
3582 }
3583
3584 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3585                                          u8 mode)
3586 {
3587         int msr;
3588
3589         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3590                 unsigned word = msr / BITS_PER_LONG;
3591                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3592                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3593         }
3594
3595         if (mode & MSR_BITMAP_MODE_X2APIC) {
3596                 /*
3597                  * TPR reads and writes can be virtualized even if virtual interrupt
3598                  * delivery is not in use.
3599                  */
3600                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3601                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3602                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3603                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3604                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3605                 }
3606         }
3607 }
3608
3609 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3610 {
3611         struct vcpu_vmx *vmx = to_vmx(vcpu);
3612         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3613         u8 mode = vmx_msr_bitmap_mode(vcpu);
3614         u8 changed = mode ^ vmx->msr_bitmap_mode;
3615
3616         if (!changed)
3617                 return;
3618
3619         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3620                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3621
3622         vmx->msr_bitmap_mode = mode;
3623 }
3624
3625 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3626 {
3627         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3628         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3629         u32 i;
3630
3631         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3632                                                         MSR_TYPE_RW, flag);
3633         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3634                                                         MSR_TYPE_RW, flag);
3635         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3636                                                         MSR_TYPE_RW, flag);
3637         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3638                                                         MSR_TYPE_RW, flag);
3639         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3640                 vmx_set_intercept_for_msr(msr_bitmap,
3641                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3642                 vmx_set_intercept_for_msr(msr_bitmap,
3643                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3644         }
3645 }
3646
3647 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3648 {
3649         return enable_apicv;
3650 }
3651
3652 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3653 {
3654         struct vcpu_vmx *vmx = to_vmx(vcpu);
3655         void *vapic_page;
3656         u32 vppr;
3657         int rvi;
3658
3659         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3660                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3661                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3662                 return false;
3663
3664         rvi = vmx_get_rvi();
3665
3666         vapic_page = vmx->nested.virtual_apic_map.hva;
3667         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3668
3669         return ((rvi & 0xf0) > (vppr & 0xf0));
3670 }
3671
3672 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3673                                                      bool nested)
3674 {
3675 #ifdef CONFIG_SMP
3676         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3677
3678         if (vcpu->mode == IN_GUEST_MODE) {
3679                 /*
3680                  * The vector of interrupt to be delivered to vcpu had
3681                  * been set in PIR before this function.
3682                  *
3683                  * Following cases will be reached in this block, and
3684                  * we always send a notification event in all cases as
3685                  * explained below.
3686                  *
3687                  * Case 1: vcpu keeps in non-root mode. Sending a
3688                  * notification event posts the interrupt to vcpu.
3689                  *
3690                  * Case 2: vcpu exits to root mode and is still
3691                  * runnable. PIR will be synced to vIRR before the
3692                  * next vcpu entry. Sending a notification event in
3693                  * this case has no effect, as vcpu is not in root
3694                  * mode.
3695                  *
3696                  * Case 3: vcpu exits to root mode and is blocked.
3697                  * vcpu_block() has already synced PIR to vIRR and
3698                  * never blocks vcpu if vIRR is not cleared. Therefore,
3699                  * a blocked vcpu here does not wait for any requested
3700                  * interrupts in PIR, and sending a notification event
3701                  * which has no effect is safe here.
3702                  */
3703
3704                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3705                 return true;
3706         }
3707 #endif
3708         return false;
3709 }
3710
3711 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3712                                                 int vector)
3713 {
3714         struct vcpu_vmx *vmx = to_vmx(vcpu);
3715
3716         if (is_guest_mode(vcpu) &&
3717             vector == vmx->nested.posted_intr_nv) {
3718                 /*
3719                  * If a posted intr is not recognized by hardware,
3720                  * we will accomplish it in the next vmentry.
3721                  */
3722                 vmx->nested.pi_pending = true;
3723                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3724                 /* the PIR and ON have been set by L1. */
3725                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3726                         kvm_vcpu_kick(vcpu);
3727                 return 0;
3728         }
3729         return -1;
3730 }
3731 /*
3732  * Send interrupt to vcpu via posted interrupt way.
3733  * 1. If target vcpu is running(non-root mode), send posted interrupt
3734  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3735  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3736  * interrupt from PIR in next vmentry.
3737  */
3738 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3739 {
3740         struct vcpu_vmx *vmx = to_vmx(vcpu);
3741         int r;
3742
3743         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3744         if (!r)
3745                 return;
3746
3747         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3748                 return;
3749
3750         /* If a previous notification has sent the IPI, nothing to do.  */
3751         if (pi_test_and_set_on(&vmx->pi_desc))
3752                 return;
3753
3754         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3755                 kvm_vcpu_kick(vcpu);
3756 }
3757
3758 /*
3759  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3760  * will not change in the lifetime of the guest.
3761  * Note that host-state that does change is set elsewhere. E.g., host-state
3762  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3763  */
3764 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3765 {
3766         u32 low32, high32;
3767         unsigned long tmpl;
3768         unsigned long cr0, cr3, cr4;
3769
3770         cr0 = read_cr0();
3771         WARN_ON(cr0 & X86_CR0_TS);
3772         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3773
3774         /*
3775          * Save the most likely value for this task's CR3 in the VMCS.
3776          * We can't use __get_current_cr3_fast() because we're not atomic.
3777          */
3778         cr3 = __read_cr3();
3779         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3780         vmx->loaded_vmcs->host_state.cr3 = cr3;
3781
3782         /* Save the most likely value for this task's CR4 in the VMCS. */
3783         cr4 = cr4_read_shadow();
3784         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3785         vmx->loaded_vmcs->host_state.cr4 = cr4;
3786
3787         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3788 #ifdef CONFIG_X86_64
3789         /*
3790          * Load null selectors, so we can avoid reloading them in
3791          * vmx_prepare_switch_to_host(), in case userspace uses
3792          * the null selectors too (the expected case).
3793          */
3794         vmcs_write16(HOST_DS_SELECTOR, 0);
3795         vmcs_write16(HOST_ES_SELECTOR, 0);
3796 #else
3797         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3798         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3799 #endif
3800         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3801         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3802
3803         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3804
3805         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3806
3807         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3808         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3809         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3810         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3811
3812         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3813                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3814                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3815         }
3816
3817         if (cpu_has_load_ia32_efer())
3818                 vmcs_write64(HOST_IA32_EFER, host_efer);
3819 }
3820
3821 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3822 {
3823         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3824         if (enable_ept)
3825                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3826         if (is_guest_mode(&vmx->vcpu))
3827                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3828                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3829         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3830 }
3831
3832 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3833 {
3834         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3835
3836         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3837                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3838
3839         if (!enable_vnmi)
3840                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3841
3842         if (!enable_preemption_timer)
3843                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3844
3845         return pin_based_exec_ctrl;
3846 }
3847
3848 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3849 {
3850         struct vcpu_vmx *vmx = to_vmx(vcpu);
3851
3852         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3853         if (cpu_has_secondary_exec_ctrls()) {
3854                 if (kvm_vcpu_apicv_active(vcpu))
3855                         secondary_exec_controls_setbit(vmx,
3856                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
3857                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3858                 else
3859                         secondary_exec_controls_clearbit(vmx,
3860                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3861                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3862         }
3863
3864         if (cpu_has_vmx_msr_bitmap())
3865                 vmx_update_msr_bitmap(vcpu);
3866 }
3867
3868 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3869 {
3870         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3871
3872         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3873                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3874
3875         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3876                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3877 #ifdef CONFIG_X86_64
3878                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3879                                 CPU_BASED_CR8_LOAD_EXITING;
3880 #endif
3881         }
3882         if (!enable_ept)
3883                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3884                                 CPU_BASED_CR3_LOAD_EXITING  |
3885                                 CPU_BASED_INVLPG_EXITING;
3886         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3887                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3888                                 CPU_BASED_MONITOR_EXITING);
3889         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3890                 exec_control &= ~CPU_BASED_HLT_EXITING;
3891         return exec_control;
3892 }
3893
3894
3895 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3896 {
3897         struct kvm_vcpu *vcpu = &vmx->vcpu;
3898
3899         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3900
3901         if (pt_mode == PT_MODE_SYSTEM)
3902                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3903         if (!cpu_need_virtualize_apic_accesses(vcpu))
3904                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3905         if (vmx->vpid == 0)
3906                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3907         if (!enable_ept) {
3908                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3909                 enable_unrestricted_guest = 0;
3910         }
3911         if (!enable_unrestricted_guest)
3912                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3913         if (kvm_pause_in_guest(vmx->vcpu.kvm))
3914                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3915         if (!kvm_vcpu_apicv_active(vcpu))
3916                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3917                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3918         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3919
3920         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
3921          * in vmx_set_cr4.  */
3922         exec_control &= ~SECONDARY_EXEC_DESC;
3923
3924         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
3925            (handle_vmptrld).
3926            We can NOT enable shadow_vmcs here because we don't have yet
3927            a current VMCS12
3928         */
3929         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
3930
3931         if (!enable_pml)
3932                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
3933
3934         if (vmx_xsaves_supported()) {
3935                 /* Exposing XSAVES only when XSAVE is exposed */
3936                 bool xsaves_enabled =
3937                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3938                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
3939
3940                 if (!xsaves_enabled)
3941                         exec_control &= ~SECONDARY_EXEC_XSAVES;
3942
3943                 if (nested) {
3944                         if (xsaves_enabled)
3945                                 vmx->nested.msrs.secondary_ctls_high |=
3946                                         SECONDARY_EXEC_XSAVES;
3947                         else
3948                                 vmx->nested.msrs.secondary_ctls_high &=
3949                                         ~SECONDARY_EXEC_XSAVES;
3950                 }
3951         }
3952
3953         if (vmx_rdtscp_supported()) {
3954                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
3955                 if (!rdtscp_enabled)
3956                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
3957
3958                 if (nested) {
3959                         if (rdtscp_enabled)
3960                                 vmx->nested.msrs.secondary_ctls_high |=
3961                                         SECONDARY_EXEC_RDTSCP;
3962                         else
3963                                 vmx->nested.msrs.secondary_ctls_high &=
3964                                         ~SECONDARY_EXEC_RDTSCP;
3965                 }
3966         }
3967
3968         if (vmx_invpcid_supported()) {
3969                 /* Exposing INVPCID only when PCID is exposed */
3970                 bool invpcid_enabled =
3971                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
3972                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
3973
3974                 if (!invpcid_enabled) {
3975                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3976                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
3977                 }
3978
3979                 if (nested) {
3980                         if (invpcid_enabled)
3981                                 vmx->nested.msrs.secondary_ctls_high |=
3982                                         SECONDARY_EXEC_ENABLE_INVPCID;
3983                         else
3984                                 vmx->nested.msrs.secondary_ctls_high &=
3985                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
3986                 }
3987         }
3988
3989         if (vmx_rdrand_supported()) {
3990                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
3991                 if (rdrand_enabled)
3992                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
3993
3994                 if (nested) {
3995                         if (rdrand_enabled)
3996                                 vmx->nested.msrs.secondary_ctls_high |=
3997                                         SECONDARY_EXEC_RDRAND_EXITING;
3998                         else
3999                                 vmx->nested.msrs.secondary_ctls_high &=
4000                                         ~SECONDARY_EXEC_RDRAND_EXITING;
4001                 }
4002         }
4003
4004         if (vmx_rdseed_supported()) {
4005                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4006                 if (rdseed_enabled)
4007                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4008
4009                 if (nested) {
4010                         if (rdseed_enabled)
4011                                 vmx->nested.msrs.secondary_ctls_high |=
4012                                         SECONDARY_EXEC_RDSEED_EXITING;
4013                         else
4014                                 vmx->nested.msrs.secondary_ctls_high &=
4015                                         ~SECONDARY_EXEC_RDSEED_EXITING;
4016                 }
4017         }
4018
4019         vmx->secondary_exec_control = exec_control;
4020 }
4021
4022 static void ept_set_mmio_spte_mask(void)
4023 {
4024         /*
4025          * EPT Misconfigurations can be generated if the value of bits 2:0
4026          * of an EPT paging-structure entry is 110b (write/execute).
4027          */
4028         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4029                                    VMX_EPT_MISCONFIG_WX_VALUE);
4030 }
4031
4032 #define VMX_XSS_EXIT_BITMAP 0
4033
4034 /*
4035  * Sets up the vmcs for emulated real mode.
4036  */
4037 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4038 {
4039         int i;
4040
4041         if (nested)
4042                 nested_vmx_vcpu_setup();
4043
4044         if (cpu_has_vmx_msr_bitmap())
4045                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4046
4047         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4048
4049         /* Control */
4050         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4051         vmx->hv_deadline_tsc = -1;
4052
4053         exec_controls_set(vmx, vmx_exec_control(vmx));
4054
4055         if (cpu_has_secondary_exec_ctrls()) {
4056                 vmx_compute_secondary_exec_control(vmx);
4057                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4058         }
4059
4060         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4061                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4062                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4063                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4064                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4065
4066                 vmcs_write16(GUEST_INTR_STATUS, 0);
4067
4068                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4069                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4070         }
4071
4072         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4073                 vmcs_write32(PLE_GAP, ple_gap);
4074                 vmx->ple_window = ple_window;
4075                 vmx->ple_window_dirty = true;
4076         }
4077
4078         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4079         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4080         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4081
4082         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4083         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4084         vmx_set_constant_host_state(vmx);
4085         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4086         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4087
4088         if (cpu_has_vmx_vmfunc())
4089                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4090
4091         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4092         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4093         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4094         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4095         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4096
4097         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4098                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4099
4100         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4101                 u32 index = vmx_msr_index[i];
4102                 u32 data_low, data_high;
4103                 int j = vmx->nmsrs;
4104
4105                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4106                         continue;
4107                 if (wrmsr_safe(index, data_low, data_high) < 0)
4108                         continue;
4109                 vmx->guest_msrs[j].index = i;
4110                 vmx->guest_msrs[j].data = 0;
4111                 vmx->guest_msrs[j].mask = -1ull;
4112                 ++vmx->nmsrs;
4113         }
4114
4115         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4116
4117         /* 22.2.1, 20.8.1 */
4118         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4119
4120         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4121         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4122
4123         set_cr4_guest_host_mask(vmx);
4124
4125         if (vmx_xsaves_supported())
4126                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4127
4128         if (enable_pml) {
4129                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4130                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4131         }
4132
4133         if (cpu_has_vmx_encls_vmexit())
4134                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4135
4136         if (pt_mode == PT_MODE_HOST_GUEST) {
4137                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4138                 /* Bit[6~0] are forced to 1, writes are ignored. */
4139                 vmx->pt_desc.guest.output_mask = 0x7F;
4140                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4141         }
4142 }
4143
4144 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4145 {
4146         struct vcpu_vmx *vmx = to_vmx(vcpu);
4147         struct msr_data apic_base_msr;
4148         u64 cr0;
4149
4150         vmx->rmode.vm86_active = 0;
4151         vmx->spec_ctrl = 0;
4152
4153         vcpu->arch.microcode_version = 0x100000000ULL;
4154         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4155         kvm_set_cr8(vcpu, 0);
4156
4157         if (!init_event) {
4158                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4159                                      MSR_IA32_APICBASE_ENABLE;
4160                 if (kvm_vcpu_is_reset_bsp(vcpu))
4161                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4162                 apic_base_msr.host_initiated = true;
4163                 kvm_set_apic_base(vcpu, &apic_base_msr);
4164         }
4165
4166         vmx_segment_cache_clear(vmx);
4167
4168         seg_setup(VCPU_SREG_CS);
4169         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4170         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4171
4172         seg_setup(VCPU_SREG_DS);
4173         seg_setup(VCPU_SREG_ES);
4174         seg_setup(VCPU_SREG_FS);
4175         seg_setup(VCPU_SREG_GS);
4176         seg_setup(VCPU_SREG_SS);
4177
4178         vmcs_write16(GUEST_TR_SELECTOR, 0);
4179         vmcs_writel(GUEST_TR_BASE, 0);
4180         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4181         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4182
4183         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4184         vmcs_writel(GUEST_LDTR_BASE, 0);
4185         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4186         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4187
4188         if (!init_event) {
4189                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4190                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4191                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4192                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4193         }
4194
4195         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4196         kvm_rip_write(vcpu, 0xfff0);
4197
4198         vmcs_writel(GUEST_GDTR_BASE, 0);
4199         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4200
4201         vmcs_writel(GUEST_IDTR_BASE, 0);
4202         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4203
4204         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4205         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4206         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4207         if (kvm_mpx_supported())
4208                 vmcs_write64(GUEST_BNDCFGS, 0);
4209
4210         setup_msrs(vmx);
4211
4212         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4213
4214         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4215                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4216                 if (cpu_need_tpr_shadow(vcpu))
4217                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4218                                      __pa(vcpu->arch.apic->regs));
4219                 vmcs_write32(TPR_THRESHOLD, 0);
4220         }
4221
4222         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4223
4224         if (vmx->vpid != 0)
4225                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4226
4227         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4228         vmx->vcpu.arch.cr0 = cr0;
4229         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4230         vmx_set_cr4(vcpu, 0);
4231         vmx_set_efer(vcpu, 0);
4232
4233         update_exception_bitmap(vcpu);
4234
4235         vpid_sync_context(vmx->vpid);
4236         if (init_event)
4237                 vmx_clear_hlt(vcpu);
4238 }
4239
4240 static void enable_irq_window(struct kvm_vcpu *vcpu)
4241 {
4242         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4243 }
4244
4245 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4246 {
4247         if (!enable_vnmi ||
4248             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4249                 enable_irq_window(vcpu);
4250                 return;
4251         }
4252
4253         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4254 }
4255
4256 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4257 {
4258         struct vcpu_vmx *vmx = to_vmx(vcpu);
4259         uint32_t intr;
4260         int irq = vcpu->arch.interrupt.nr;
4261
4262         trace_kvm_inj_virq(irq);
4263
4264         ++vcpu->stat.irq_injections;
4265         if (vmx->rmode.vm86_active) {
4266                 int inc_eip = 0;
4267                 if (vcpu->arch.interrupt.soft)
4268                         inc_eip = vcpu->arch.event_exit_inst_len;
4269                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4270                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4271                 return;
4272         }
4273         intr = irq | INTR_INFO_VALID_MASK;
4274         if (vcpu->arch.interrupt.soft) {
4275                 intr |= INTR_TYPE_SOFT_INTR;
4276                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4277                              vmx->vcpu.arch.event_exit_inst_len);
4278         } else
4279                 intr |= INTR_TYPE_EXT_INTR;
4280         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4281
4282         vmx_clear_hlt(vcpu);
4283 }
4284
4285 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4286 {
4287         struct vcpu_vmx *vmx = to_vmx(vcpu);
4288
4289         if (!enable_vnmi) {
4290                 /*
4291                  * Tracking the NMI-blocked state in software is built upon
4292                  * finding the next open IRQ window. This, in turn, depends on
4293                  * well-behaving guests: They have to keep IRQs disabled at
4294                  * least as long as the NMI handler runs. Otherwise we may
4295                  * cause NMI nesting, maybe breaking the guest. But as this is
4296                  * highly unlikely, we can live with the residual risk.
4297                  */
4298                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4299                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4300         }
4301
4302         ++vcpu->stat.nmi_injections;
4303         vmx->loaded_vmcs->nmi_known_unmasked = false;
4304
4305         if (vmx->rmode.vm86_active) {
4306                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4307                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4308                 return;
4309         }
4310
4311         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4312                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4313
4314         vmx_clear_hlt(vcpu);
4315 }
4316
4317 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4318 {
4319         struct vcpu_vmx *vmx = to_vmx(vcpu);
4320         bool masked;
4321
4322         if (!enable_vnmi)
4323                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4324         if (vmx->loaded_vmcs->nmi_known_unmasked)
4325                 return false;
4326         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4327         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4328         return masked;
4329 }
4330
4331 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4332 {
4333         struct vcpu_vmx *vmx = to_vmx(vcpu);
4334
4335         if (!enable_vnmi) {
4336                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4337                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4338                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4339                 }
4340         } else {
4341                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4342                 if (masked)
4343                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4344                                       GUEST_INTR_STATE_NMI);
4345                 else
4346                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4347                                         GUEST_INTR_STATE_NMI);
4348         }
4349 }
4350
4351 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4352 {
4353         if (to_vmx(vcpu)->nested.nested_run_pending)
4354                 return 0;
4355
4356         if (!enable_vnmi &&
4357             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4358                 return 0;
4359
4360         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4361                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4362                    | GUEST_INTR_STATE_NMI));
4363 }
4364
4365 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4366 {
4367         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4368                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4369                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4370                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4371 }
4372
4373 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4374 {
4375         int ret;
4376
4377         if (enable_unrestricted_guest)
4378                 return 0;
4379
4380         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4381                                     PAGE_SIZE * 3);
4382         if (ret)
4383                 return ret;
4384         to_kvm_vmx(kvm)->tss_addr = addr;
4385         return init_rmode_tss(kvm);
4386 }
4387
4388 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4389 {
4390         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4391         return 0;
4392 }
4393
4394 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4395 {
4396         switch (vec) {
4397         case BP_VECTOR:
4398                 /*
4399                  * Update instruction length as we may reinject the exception
4400                  * from user space while in guest debugging mode.
4401                  */
4402                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4403                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4404                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4405                         return false;
4406                 /* fall through */
4407         case DB_VECTOR:
4408                 if (vcpu->guest_debug &
4409                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4410                         return false;
4411                 /* fall through */
4412         case DE_VECTOR:
4413         case OF_VECTOR:
4414         case BR_VECTOR:
4415         case UD_VECTOR:
4416         case DF_VECTOR:
4417         case SS_VECTOR:
4418         case GP_VECTOR:
4419         case MF_VECTOR:
4420                 return true;
4421         break;
4422         }
4423         return false;
4424 }
4425
4426 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4427                                   int vec, u32 err_code)
4428 {
4429         /*
4430          * Instruction with address size override prefix opcode 0x67
4431          * Cause the #SS fault with 0 error code in VM86 mode.
4432          */
4433         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4434                 if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4435                         if (vcpu->arch.halt_request) {
4436                                 vcpu->arch.halt_request = 0;
4437                                 return kvm_vcpu_halt(vcpu);
4438                         }
4439                         return 1;
4440                 }
4441                 return 0;
4442         }
4443
4444         /*
4445          * Forward all other exceptions that are valid in real mode.
4446          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4447          *        the required debugging infrastructure rework.
4448          */
4449         kvm_queue_exception(vcpu, vec);
4450         return 1;
4451 }
4452
4453 /*
4454  * Trigger machine check on the host. We assume all the MSRs are already set up
4455  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4456  * We pass a fake environment to the machine check handler because we want
4457  * the guest to be always treated like user space, no matter what context
4458  * it used internally.
4459  */
4460 static void kvm_machine_check(void)
4461 {
4462 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4463         struct pt_regs regs = {
4464                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4465                 .flags = X86_EFLAGS_IF,
4466         };
4467
4468         do_machine_check(&regs, 0);
4469 #endif
4470 }
4471
4472 static int handle_machine_check(struct kvm_vcpu *vcpu)
4473 {
4474         /* handled by vmx_vcpu_run() */
4475         return 1;
4476 }
4477
4478 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4479 {
4480         struct vcpu_vmx *vmx = to_vmx(vcpu);
4481         struct kvm_run *kvm_run = vcpu->run;
4482         u32 intr_info, ex_no, error_code;
4483         unsigned long cr2, rip, dr6;
4484         u32 vect_info;
4485         enum emulation_result er;
4486
4487         vect_info = vmx->idt_vectoring_info;
4488         intr_info = vmx->exit_intr_info;
4489
4490         if (is_machine_check(intr_info) || is_nmi(intr_info))
4491                 return 1; /* handled by handle_exception_nmi_irqoff() */
4492
4493         if (is_invalid_opcode(intr_info))
4494                 return handle_ud(vcpu);
4495
4496         error_code = 0;
4497         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4498                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4499
4500         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4501                 WARN_ON_ONCE(!enable_vmware_backdoor);
4502                 er = kvm_emulate_instruction(vcpu,
4503                         EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
4504                 if (er == EMULATE_USER_EXIT)
4505                         return 0;
4506                 else if (er != EMULATE_DONE)
4507                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4508                 return 1;
4509         }
4510
4511         /*
4512          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4513          * MMIO, it is better to report an internal error.
4514          * See the comments in vmx_handle_exit.
4515          */
4516         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4517             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4518                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4519                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4520                 vcpu->run->internal.ndata = 3;
4521                 vcpu->run->internal.data[0] = vect_info;
4522                 vcpu->run->internal.data[1] = intr_info;
4523                 vcpu->run->internal.data[2] = error_code;
4524                 return 0;
4525         }
4526
4527         if (is_page_fault(intr_info)) {
4528                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4529                 /* EPT won't cause page fault directly */
4530                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4531                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4532         }
4533
4534         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4535
4536         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4537                 return handle_rmode_exception(vcpu, ex_no, error_code);
4538
4539         switch (ex_no) {
4540         case AC_VECTOR:
4541                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4542                 return 1;
4543         case DB_VECTOR:
4544                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4545                 if (!(vcpu->guest_debug &
4546                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4547                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4548                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4549                         if (is_icebp(intr_info))
4550                                 skip_emulated_instruction(vcpu);
4551
4552                         kvm_queue_exception(vcpu, DB_VECTOR);
4553                         return 1;
4554                 }
4555                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4556                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4557                 /* fall through */
4558         case BP_VECTOR:
4559                 /*
4560                  * Update instruction length as we may reinject #BP from
4561                  * user space while in guest debugging mode. Reading it for
4562                  * #DB as well causes no harm, it is not used in that case.
4563                  */
4564                 vmx->vcpu.arch.event_exit_inst_len =
4565                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4566                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4567                 rip = kvm_rip_read(vcpu);
4568                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4569                 kvm_run->debug.arch.exception = ex_no;
4570                 break;
4571         default:
4572                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4573                 kvm_run->ex.exception = ex_no;
4574                 kvm_run->ex.error_code = error_code;
4575                 break;
4576         }
4577         return 0;
4578 }
4579
4580 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4581 {
4582         ++vcpu->stat.irq_exits;
4583         return 1;
4584 }
4585
4586 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4587 {
4588         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4589         vcpu->mmio_needed = 0;
4590         return 0;
4591 }
4592
4593 static int handle_io(struct kvm_vcpu *vcpu)
4594 {
4595         unsigned long exit_qualification;
4596         int size, in, string;
4597         unsigned port;
4598
4599         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4600         string = (exit_qualification & 16) != 0;
4601
4602         ++vcpu->stat.io_exits;
4603
4604         if (string)
4605                 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4606
4607         port = exit_qualification >> 16;
4608         size = (exit_qualification & 7) + 1;
4609         in = (exit_qualification & 8) != 0;
4610
4611         return kvm_fast_pio(vcpu, size, port, in);
4612 }
4613
4614 static void
4615 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4616 {
4617         /*
4618          * Patch in the VMCALL instruction:
4619          */
4620         hypercall[0] = 0x0f;
4621         hypercall[1] = 0x01;
4622         hypercall[2] = 0xc1;
4623 }
4624
4625 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4626 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4627 {
4628         if (is_guest_mode(vcpu)) {
4629                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4630                 unsigned long orig_val = val;
4631
4632                 /*
4633                  * We get here when L2 changed cr0 in a way that did not change
4634                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4635                  * but did change L0 shadowed bits. So we first calculate the
4636                  * effective cr0 value that L1 would like to write into the
4637                  * hardware. It consists of the L2-owned bits from the new
4638                  * value combined with the L1-owned bits from L1's guest_cr0.
4639                  */
4640                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4641                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4642
4643                 if (!nested_guest_cr0_valid(vcpu, val))
4644                         return 1;
4645
4646                 if (kvm_set_cr0(vcpu, val))
4647                         return 1;
4648                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4649                 return 0;
4650         } else {
4651                 if (to_vmx(vcpu)->nested.vmxon &&
4652                     !nested_host_cr0_valid(vcpu, val))
4653                         return 1;
4654
4655                 return kvm_set_cr0(vcpu, val);
4656         }
4657 }
4658
4659 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4660 {
4661         if (is_guest_mode(vcpu)) {
4662                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4663                 unsigned long orig_val = val;
4664
4665                 /* analogously to handle_set_cr0 */
4666                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4667                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4668                 if (kvm_set_cr4(vcpu, val))
4669                         return 1;
4670                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4671                 return 0;
4672         } else
4673                 return kvm_set_cr4(vcpu, val);
4674 }
4675
4676 static int handle_desc(struct kvm_vcpu *vcpu)
4677 {
4678         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4679         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4680 }
4681
4682 static int handle_cr(struct kvm_vcpu *vcpu)
4683 {
4684         unsigned long exit_qualification, val;
4685         int cr;
4686         int reg;
4687         int err;
4688         int ret;
4689
4690         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4691         cr = exit_qualification & 15;
4692         reg = (exit_qualification >> 8) & 15;
4693         switch ((exit_qualification >> 4) & 3) {
4694         case 0: /* mov to cr */
4695                 val = kvm_register_readl(vcpu, reg);
4696                 trace_kvm_cr_write(cr, val);
4697                 switch (cr) {
4698                 case 0:
4699                         err = handle_set_cr0(vcpu, val);
4700                         return kvm_complete_insn_gp(vcpu, err);
4701                 case 3:
4702                         WARN_ON_ONCE(enable_unrestricted_guest);
4703                         err = kvm_set_cr3(vcpu, val);
4704                         return kvm_complete_insn_gp(vcpu, err);
4705                 case 4:
4706                         err = handle_set_cr4(vcpu, val);
4707                         return kvm_complete_insn_gp(vcpu, err);
4708                 case 8: {
4709                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4710                                 u8 cr8 = (u8)val;
4711                                 err = kvm_set_cr8(vcpu, cr8);
4712                                 ret = kvm_complete_insn_gp(vcpu, err);
4713                                 if (lapic_in_kernel(vcpu))
4714                                         return ret;
4715                                 if (cr8_prev <= cr8)
4716                                         return ret;
4717                                 /*
4718                                  * TODO: we might be squashing a
4719                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4720                                  * KVM_EXIT_DEBUG here.
4721                                  */
4722                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4723                                 return 0;
4724                         }
4725                 }
4726                 break;
4727         case 2: /* clts */
4728                 WARN_ONCE(1, "Guest should always own CR0.TS");
4729                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4730                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4731                 return kvm_skip_emulated_instruction(vcpu);
4732         case 1: /*mov from cr*/
4733                 switch (cr) {
4734                 case 3:
4735                         WARN_ON_ONCE(enable_unrestricted_guest);
4736                         val = kvm_read_cr3(vcpu);
4737                         kvm_register_write(vcpu, reg, val);
4738                         trace_kvm_cr_read(cr, val);
4739                         return kvm_skip_emulated_instruction(vcpu);
4740                 case 8:
4741                         val = kvm_get_cr8(vcpu);
4742                         kvm_register_write(vcpu, reg, val);
4743                         trace_kvm_cr_read(cr, val);
4744                         return kvm_skip_emulated_instruction(vcpu);
4745                 }
4746                 break;
4747         case 3: /* lmsw */
4748                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4749                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4750                 kvm_lmsw(vcpu, val);
4751
4752                 return kvm_skip_emulated_instruction(vcpu);
4753         default:
4754                 break;
4755         }
4756         vcpu->run->exit_reason = 0;
4757         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4758                (int)(exit_qualification >> 4) & 3, cr);
4759         return 0;
4760 }
4761
4762 static int handle_dr(struct kvm_vcpu *vcpu)
4763 {
4764         unsigned long exit_qualification;
4765         int dr, dr7, reg;
4766
4767         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4768         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4769
4770         /* First, if DR does not exist, trigger UD */
4771         if (!kvm_require_dr(vcpu, dr))
4772                 return 1;
4773
4774         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4775         if (!kvm_require_cpl(vcpu, 0))
4776                 return 1;
4777         dr7 = vmcs_readl(GUEST_DR7);
4778         if (dr7 & DR7_GD) {
4779                 /*
4780                  * As the vm-exit takes precedence over the debug trap, we
4781                  * need to emulate the latter, either for the host or the
4782                  * guest debugging itself.
4783                  */
4784                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4785                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4786                         vcpu->run->debug.arch.dr7 = dr7;
4787                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4788                         vcpu->run->debug.arch.exception = DB_VECTOR;
4789                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4790                         return 0;
4791                 } else {
4792                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4793                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4794                         kvm_queue_exception(vcpu, DB_VECTOR);
4795                         return 1;
4796                 }
4797         }
4798
4799         if (vcpu->guest_debug == 0) {
4800                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4801
4802                 /*
4803                  * No more DR vmexits; force a reload of the debug registers
4804                  * and reenter on this instruction.  The next vmexit will
4805                  * retrieve the full state of the debug registers.
4806                  */
4807                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4808                 return 1;
4809         }
4810
4811         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4812         if (exit_qualification & TYPE_MOV_FROM_DR) {
4813                 unsigned long val;
4814
4815                 if (kvm_get_dr(vcpu, dr, &val))
4816                         return 1;
4817                 kvm_register_write(vcpu, reg, val);
4818         } else
4819                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4820                         return 1;
4821
4822         return kvm_skip_emulated_instruction(vcpu);
4823 }
4824
4825 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4826 {
4827         return vcpu->arch.dr6;
4828 }
4829
4830 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4831 {
4832 }
4833
4834 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4835 {
4836         get_debugreg(vcpu->arch.db[0], 0);
4837         get_debugreg(vcpu->arch.db[1], 1);
4838         get_debugreg(vcpu->arch.db[2], 2);
4839         get_debugreg(vcpu->arch.db[3], 3);
4840         get_debugreg(vcpu->arch.dr6, 6);
4841         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4842
4843         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4844         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4845 }
4846
4847 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4848 {
4849         vmcs_writel(GUEST_DR7, val);
4850 }
4851
4852 static int handle_cpuid(struct kvm_vcpu *vcpu)
4853 {
4854         return kvm_emulate_cpuid(vcpu);
4855 }
4856
4857 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4858 {
4859         u32 ecx = kvm_rcx_read(vcpu);
4860         struct msr_data msr_info;
4861
4862         msr_info.index = ecx;
4863         msr_info.host_initiated = false;
4864         if (vmx_get_msr(vcpu, &msr_info)) {
4865                 trace_kvm_msr_read_ex(ecx);
4866                 kvm_inject_gp(vcpu, 0);
4867                 return 1;
4868         }
4869
4870         trace_kvm_msr_read(ecx, msr_info.data);
4871
4872         kvm_rax_write(vcpu, msr_info.data & -1u);
4873         kvm_rdx_write(vcpu, (msr_info.data >> 32) & -1u);
4874         return kvm_skip_emulated_instruction(vcpu);
4875 }
4876
4877 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4878 {
4879         struct msr_data msr;
4880         u32 ecx = kvm_rcx_read(vcpu);
4881         u64 data = kvm_read_edx_eax(vcpu);
4882
4883         msr.data = data;
4884         msr.index = ecx;
4885         msr.host_initiated = false;
4886         if (kvm_set_msr(vcpu, &msr) != 0) {
4887                 trace_kvm_msr_write_ex(ecx, data);
4888                 kvm_inject_gp(vcpu, 0);
4889                 return 1;
4890         }
4891
4892         trace_kvm_msr_write(ecx, data);
4893         return kvm_skip_emulated_instruction(vcpu);
4894 }
4895
4896 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4897 {
4898         kvm_apic_update_ppr(vcpu);
4899         return 1;
4900 }
4901
4902 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4903 {
4904         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4905
4906         kvm_make_request(KVM_REQ_EVENT, vcpu);
4907
4908         ++vcpu->stat.irq_window_exits;
4909         return 1;
4910 }
4911
4912 static int handle_halt(struct kvm_vcpu *vcpu)
4913 {
4914         return kvm_emulate_halt(vcpu);
4915 }
4916
4917 static int handle_vmcall(struct kvm_vcpu *vcpu)
4918 {
4919         return kvm_emulate_hypercall(vcpu);
4920 }
4921
4922 static int handle_invd(struct kvm_vcpu *vcpu)
4923 {
4924         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4925 }
4926
4927 static int handle_invlpg(struct kvm_vcpu *vcpu)
4928 {
4929         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4930
4931         kvm_mmu_invlpg(vcpu, exit_qualification);
4932         return kvm_skip_emulated_instruction(vcpu);
4933 }
4934
4935 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4936 {
4937         int err;
4938
4939         err = kvm_rdpmc(vcpu);
4940         return kvm_complete_insn_gp(vcpu, err);
4941 }
4942
4943 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4944 {
4945         return kvm_emulate_wbinvd(vcpu);
4946 }
4947
4948 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4949 {
4950         u64 new_bv = kvm_read_edx_eax(vcpu);
4951         u32 index = kvm_rcx_read(vcpu);
4952
4953         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4954                 return kvm_skip_emulated_instruction(vcpu);
4955         return 1;
4956 }
4957
4958 static int handle_xsaves(struct kvm_vcpu *vcpu)
4959 {
4960         kvm_skip_emulated_instruction(vcpu);
4961         WARN(1, "this should never happen\n");
4962         return 1;
4963 }
4964
4965 static int handle_xrstors(struct kvm_vcpu *vcpu)
4966 {
4967         kvm_skip_emulated_instruction(vcpu);
4968         WARN(1, "this should never happen\n");
4969         return 1;
4970 }
4971
4972 static int handle_apic_access(struct kvm_vcpu *vcpu)
4973 {
4974         if (likely(fasteoi)) {
4975                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4976                 int access_type, offset;
4977
4978                 access_type = exit_qualification & APIC_ACCESS_TYPE;
4979                 offset = exit_qualification & APIC_ACCESS_OFFSET;
4980                 /*
4981                  * Sane guest uses MOV to write EOI, with written value
4982                  * not cared. So make a short-circuit here by avoiding
4983                  * heavy instruction emulation.
4984                  */
4985                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4986                     (offset == APIC_EOI)) {
4987                         kvm_lapic_set_eoi(vcpu);
4988                         return kvm_skip_emulated_instruction(vcpu);
4989                 }
4990         }
4991         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4992 }
4993
4994 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4995 {
4996         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4997         int vector = exit_qualification & 0xff;
4998
4999         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5000         kvm_apic_set_eoi_accelerated(vcpu, vector);
5001         return 1;
5002 }
5003
5004 static int handle_apic_write(struct kvm_vcpu *vcpu)
5005 {
5006         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5007         u32 offset = exit_qualification & 0xfff;
5008
5009         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5010         kvm_apic_write_nodecode(vcpu, offset);
5011         return 1;
5012 }
5013
5014 static int handle_task_switch(struct kvm_vcpu *vcpu)
5015 {
5016         struct vcpu_vmx *vmx = to_vmx(vcpu);
5017         unsigned long exit_qualification;
5018         bool has_error_code = false;
5019         u32 error_code = 0;
5020         u16 tss_selector;
5021         int reason, type, idt_v, idt_index;
5022
5023         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5024         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5025         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5026
5027         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5028
5029         reason = (u32)exit_qualification >> 30;
5030         if (reason == TASK_SWITCH_GATE && idt_v) {
5031                 switch (type) {
5032                 case INTR_TYPE_NMI_INTR:
5033                         vcpu->arch.nmi_injected = false;
5034                         vmx_set_nmi_mask(vcpu, true);
5035                         break;
5036                 case INTR_TYPE_EXT_INTR:
5037                 case INTR_TYPE_SOFT_INTR:
5038                         kvm_clear_interrupt_queue(vcpu);
5039                         break;
5040                 case INTR_TYPE_HARD_EXCEPTION:
5041                         if (vmx->idt_vectoring_info &
5042                             VECTORING_INFO_DELIVER_CODE_MASK) {
5043                                 has_error_code = true;
5044                                 error_code =
5045                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5046                         }
5047                         /* fall through */
5048                 case INTR_TYPE_SOFT_EXCEPTION:
5049                         kvm_clear_exception_queue(vcpu);
5050                         break;
5051                 default:
5052                         break;
5053                 }
5054         }
5055         tss_selector = exit_qualification;
5056
5057         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5058                        type != INTR_TYPE_EXT_INTR &&
5059                        type != INTR_TYPE_NMI_INTR))
5060                 skip_emulated_instruction(vcpu);
5061
5062         if (kvm_task_switch(vcpu, tss_selector,
5063                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5064                             has_error_code, error_code) == EMULATE_FAIL) {
5065                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5066                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5067                 vcpu->run->internal.ndata = 0;
5068                 return 0;
5069         }
5070
5071         /*
5072          * TODO: What about debug traps on tss switch?
5073          *       Are we supposed to inject them and update dr6?
5074          */
5075
5076         return 1;
5077 }
5078
5079 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5080 {
5081         unsigned long exit_qualification;
5082         gpa_t gpa;
5083         u64 error_code;
5084
5085         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5086
5087         /*
5088          * EPT violation happened while executing iret from NMI,
5089          * "blocked by NMI" bit has to be set before next VM entry.
5090          * There are errata that may cause this bit to not be set:
5091          * AAK134, BY25.
5092          */
5093         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5094                         enable_vnmi &&
5095                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5096                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5097
5098         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5099         trace_kvm_page_fault(gpa, exit_qualification);
5100
5101         /* Is it a read fault? */
5102         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5103                      ? PFERR_USER_MASK : 0;
5104         /* Is it a write fault? */
5105         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5106                       ? PFERR_WRITE_MASK : 0;
5107         /* Is it a fetch fault? */
5108         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5109                       ? PFERR_FETCH_MASK : 0;
5110         /* ept page table entry is present? */
5111         error_code |= (exit_qualification &
5112                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5113                         EPT_VIOLATION_EXECUTABLE))
5114                       ? PFERR_PRESENT_MASK : 0;
5115
5116         error_code |= (exit_qualification & 0x100) != 0 ?
5117                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5118
5119         vcpu->arch.exit_qualification = exit_qualification;
5120         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5121 }
5122
5123 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5124 {
5125         gpa_t gpa;
5126
5127         /*
5128          * A nested guest cannot optimize MMIO vmexits, because we have an
5129          * nGPA here instead of the required GPA.
5130          */
5131         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5132         if (!is_guest_mode(vcpu) &&
5133             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5134                 trace_kvm_fast_mmio(gpa);
5135                 /*
5136                  * Doing kvm_skip_emulated_instruction() depends on undefined
5137                  * behavior: Intel's manual doesn't mandate
5138                  * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
5139                  * occurs and while on real hardware it was observed to be set,
5140                  * other hypervisors (namely Hyper-V) don't set it, we end up
5141                  * advancing IP with some random value. Disable fast mmio when
5142                  * running nested and keep it for real hardware in hope that
5143                  * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
5144                  */
5145                 if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
5146                         return kvm_skip_emulated_instruction(vcpu);
5147                 else
5148                         return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
5149                                                                 EMULATE_DONE;
5150         }
5151
5152         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5153 }
5154
5155 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5156 {
5157         WARN_ON_ONCE(!enable_vnmi);
5158         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5159         ++vcpu->stat.nmi_window_exits;
5160         kvm_make_request(KVM_REQ_EVENT, vcpu);
5161
5162         return 1;
5163 }
5164
5165 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5166 {
5167         struct vcpu_vmx *vmx = to_vmx(vcpu);
5168         enum emulation_result err = EMULATE_DONE;
5169         int ret = 1;
5170         bool intr_window_requested;
5171         unsigned count = 130;
5172
5173         /*
5174          * We should never reach the point where we are emulating L2
5175          * due to invalid guest state as that means we incorrectly
5176          * allowed a nested VMEntry with an invalid vmcs12.
5177          */
5178         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5179
5180         intr_window_requested = exec_controls_get(vmx) &
5181                                 CPU_BASED_VIRTUAL_INTR_PENDING;
5182
5183         while (vmx->emulation_required && count-- != 0) {
5184                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5185                         return handle_interrupt_window(&vmx->vcpu);
5186
5187                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5188                         return 1;
5189
5190                 err = kvm_emulate_instruction(vcpu, 0);
5191
5192                 if (err == EMULATE_USER_EXIT) {
5193                         ++vcpu->stat.mmio_exits;
5194                         ret = 0;
5195                         goto out;
5196                 }
5197
5198                 if (err != EMULATE_DONE)
5199                         goto emulation_error;
5200
5201                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5202                     vcpu->arch.exception.pending)
5203                         goto emulation_error;
5204
5205                 if (vcpu->arch.halt_request) {
5206                         vcpu->arch.halt_request = 0;
5207                         ret = kvm_vcpu_halt(vcpu);
5208                         goto out;
5209                 }
5210
5211                 if (signal_pending(current))
5212                         goto out;
5213                 if (need_resched())
5214                         schedule();
5215         }
5216
5217 out:
5218         return ret;
5219
5220 emulation_error:
5221         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5222         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5223         vcpu->run->internal.ndata = 0;
5224         return 0;
5225 }
5226
5227 static void grow_ple_window(struct kvm_vcpu *vcpu)
5228 {
5229         struct vcpu_vmx *vmx = to_vmx(vcpu);
5230         int old = vmx->ple_window;
5231
5232         vmx->ple_window = __grow_ple_window(old, ple_window,
5233                                             ple_window_grow,
5234                                             ple_window_max);
5235
5236         if (vmx->ple_window != old)
5237                 vmx->ple_window_dirty = true;
5238
5239         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5240 }
5241
5242 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5243 {
5244         struct vcpu_vmx *vmx = to_vmx(vcpu);
5245         int old = vmx->ple_window;
5246
5247         vmx->ple_window = __shrink_ple_window(old, ple_window,
5248                                               ple_window_shrink,
5249                                               ple_window);
5250
5251         if (vmx->ple_window != old)
5252                 vmx->ple_window_dirty = true;
5253
5254         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5255 }
5256
5257 /*
5258  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5259  */
5260 static void wakeup_handler(void)
5261 {
5262         struct kvm_vcpu *vcpu;
5263         int cpu = smp_processor_id();
5264
5265         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5266         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5267                         blocked_vcpu_list) {
5268                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5269
5270                 if (pi_test_on(pi_desc) == 1)
5271                         kvm_vcpu_kick(vcpu);
5272         }
5273         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5274 }
5275
5276 static void vmx_enable_tdp(void)
5277 {
5278         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5279                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5280                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5281                 0ull, VMX_EPT_EXECUTABLE_MASK,
5282                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5283                 VMX_EPT_RWX_MASK, 0ull);
5284
5285         ept_set_mmio_spte_mask();
5286         kvm_enable_tdp();
5287 }
5288
5289 /*
5290  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5291  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5292  */
5293 static int handle_pause(struct kvm_vcpu *vcpu)
5294 {
5295         if (!kvm_pause_in_guest(vcpu->kvm))
5296                 grow_ple_window(vcpu);
5297
5298         /*
5299          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5300          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5301          * never set PAUSE_EXITING and just set PLE if supported,
5302          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5303          */
5304         kvm_vcpu_on_spin(vcpu, true);
5305         return kvm_skip_emulated_instruction(vcpu);
5306 }
5307
5308 static int handle_nop(struct kvm_vcpu *vcpu)
5309 {
5310         return kvm_skip_emulated_instruction(vcpu);
5311 }
5312
5313 static int handle_mwait(struct kvm_vcpu *vcpu)
5314 {
5315         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5316         return handle_nop(vcpu);
5317 }
5318
5319 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5320 {
5321         kvm_queue_exception(vcpu, UD_VECTOR);
5322         return 1;
5323 }
5324
5325 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5326 {
5327         return 1;
5328 }
5329
5330 static int handle_monitor(struct kvm_vcpu *vcpu)
5331 {
5332         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5333         return handle_nop(vcpu);
5334 }
5335
5336 static int handle_invpcid(struct kvm_vcpu *vcpu)
5337 {
5338         u32 vmx_instruction_info;
5339         unsigned long type;
5340         bool pcid_enabled;
5341         gva_t gva;
5342         struct x86_exception e;
5343         unsigned i;
5344         unsigned long roots_to_free = 0;
5345         struct {
5346                 u64 pcid;
5347                 u64 gla;
5348         } operand;
5349
5350         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5351                 kvm_queue_exception(vcpu, UD_VECTOR);
5352                 return 1;
5353         }
5354
5355         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5356         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5357
5358         if (type > 3) {
5359                 kvm_inject_gp(vcpu, 0);
5360                 return 1;
5361         }
5362
5363         /* According to the Intel instruction reference, the memory operand
5364          * is read even if it isn't needed (e.g., for type==all)
5365          */
5366         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5367                                 vmx_instruction_info, false,
5368                                 sizeof(operand), &gva))
5369                 return 1;
5370
5371         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5372                 kvm_inject_page_fault(vcpu, &e);
5373                 return 1;
5374         }
5375
5376         if (operand.pcid >> 12 != 0) {
5377                 kvm_inject_gp(vcpu, 0);
5378                 return 1;
5379         }
5380
5381         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5382
5383         switch (type) {
5384         case INVPCID_TYPE_INDIV_ADDR:
5385                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5386                     is_noncanonical_address(operand.gla, vcpu)) {
5387                         kvm_inject_gp(vcpu, 0);
5388                         return 1;
5389                 }
5390                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5391                 return kvm_skip_emulated_instruction(vcpu);
5392
5393         case INVPCID_TYPE_SINGLE_CTXT:
5394                 if (!pcid_enabled && (operand.pcid != 0)) {
5395                         kvm_inject_gp(vcpu, 0);
5396                         return 1;
5397                 }
5398
5399                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5400                         kvm_mmu_sync_roots(vcpu);
5401                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5402                 }
5403
5404                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5405                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5406                             == operand.pcid)
5407                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5408
5409                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5410                 /*
5411                  * If neither the current cr3 nor any of the prev_roots use the
5412                  * given PCID, then nothing needs to be done here because a
5413                  * resync will happen anyway before switching to any other CR3.
5414                  */
5415
5416                 return kvm_skip_emulated_instruction(vcpu);
5417
5418         case INVPCID_TYPE_ALL_NON_GLOBAL:
5419                 /*
5420                  * Currently, KVM doesn't mark global entries in the shadow
5421                  * page tables, so a non-global flush just degenerates to a
5422                  * global flush. If needed, we could optimize this later by
5423                  * keeping track of global entries in shadow page tables.
5424                  */
5425
5426                 /* fall-through */
5427         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5428                 kvm_mmu_unload(vcpu);
5429                 return kvm_skip_emulated_instruction(vcpu);
5430
5431         default:
5432                 BUG(); /* We have already checked above that type <= 3 */
5433         }
5434 }
5435
5436 static int handle_pml_full(struct kvm_vcpu *vcpu)
5437 {
5438         unsigned long exit_qualification;
5439
5440         trace_kvm_pml_full(vcpu->vcpu_id);
5441
5442         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5443
5444         /*
5445          * PML buffer FULL happened while executing iret from NMI,
5446          * "blocked by NMI" bit has to be set before next VM entry.
5447          */
5448         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5449                         enable_vnmi &&
5450                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5451                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5452                                 GUEST_INTR_STATE_NMI);
5453
5454         /*
5455          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5456          * here.., and there's no userspace involvement needed for PML.
5457          */
5458         return 1;
5459 }
5460
5461 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5462 {
5463         struct vcpu_vmx *vmx = to_vmx(vcpu);
5464
5465         if (!vmx->req_immediate_exit &&
5466             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5467                 kvm_lapic_expired_hv_timer(vcpu);
5468
5469         return 1;
5470 }
5471
5472 /*
5473  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5474  * are overwritten by nested_vmx_setup() when nested=1.
5475  */
5476 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5477 {
5478         kvm_queue_exception(vcpu, UD_VECTOR);
5479         return 1;
5480 }
5481
5482 static int handle_encls(struct kvm_vcpu *vcpu)
5483 {
5484         /*
5485          * SGX virtualization is not yet supported.  There is no software
5486          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5487          * to prevent the guest from executing ENCLS.
5488          */
5489         kvm_queue_exception(vcpu, UD_VECTOR);
5490         return 1;
5491 }
5492
5493 /*
5494  * The exit handlers return 1 if the exit was handled fully and guest execution
5495  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5496  * to be done to userspace and return 0.
5497  */
5498 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5499         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5500         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5501         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5502         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5503         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5504         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5505         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5506         [EXIT_REASON_CPUID]                   = handle_cpuid,
5507         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5508         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5509         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5510         [EXIT_REASON_HLT]                     = handle_halt,
5511         [EXIT_REASON_INVD]                    = handle_invd,
5512         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5513         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5514         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5515         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5516         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5517         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5518         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5519         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5520         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5521         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5522         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5523         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5524         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5525         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5526         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5527         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5528         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5529         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5530         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5531         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5532         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5533         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5534         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5535         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5536         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5537         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5538         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5539         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5540         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5541         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5542         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5543         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5544         [EXIT_REASON_XSAVES]                  = handle_xsaves,
5545         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
5546         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5547         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5548         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5549         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5550         [EXIT_REASON_ENCLS]                   = handle_encls,
5551 };
5552
5553 static const int kvm_vmx_max_exit_handlers =
5554         ARRAY_SIZE(kvm_vmx_exit_handlers);
5555
5556 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5557 {
5558         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5559         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5560 }
5561
5562 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5563 {
5564         if (vmx->pml_pg) {
5565                 __free_page(vmx->pml_pg);
5566                 vmx->pml_pg = NULL;
5567         }
5568 }
5569
5570 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5571 {
5572         struct vcpu_vmx *vmx = to_vmx(vcpu);
5573         u64 *pml_buf;
5574         u16 pml_idx;
5575
5576         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5577
5578         /* Do nothing if PML buffer is empty */
5579         if (pml_idx == (PML_ENTITY_NUM - 1))
5580                 return;
5581
5582         /* PML index always points to next available PML buffer entity */
5583         if (pml_idx >= PML_ENTITY_NUM)
5584                 pml_idx = 0;
5585         else
5586                 pml_idx++;
5587
5588         pml_buf = page_address(vmx->pml_pg);
5589         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5590                 u64 gpa;
5591
5592                 gpa = pml_buf[pml_idx];
5593                 WARN_ON(gpa & (PAGE_SIZE - 1));
5594                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5595         }
5596
5597         /* reset PML index */
5598         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5599 }
5600
5601 /*
5602  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5603  * Called before reporting dirty_bitmap to userspace.
5604  */
5605 static void kvm_flush_pml_buffers(struct kvm *kvm)
5606 {
5607         int i;
5608         struct kvm_vcpu *vcpu;
5609         /*
5610          * We only need to kick vcpu out of guest mode here, as PML buffer
5611          * is flushed at beginning of all VMEXITs, and it's obvious that only
5612          * vcpus running in guest are possible to have unflushed GPAs in PML
5613          * buffer.
5614          */
5615         kvm_for_each_vcpu(i, vcpu, kvm)
5616                 kvm_vcpu_kick(vcpu);
5617 }
5618
5619 static void vmx_dump_sel(char *name, uint32_t sel)
5620 {
5621         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5622                name, vmcs_read16(sel),
5623                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5624                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5625                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5626 }
5627
5628 static void vmx_dump_dtsel(char *name, uint32_t limit)
5629 {
5630         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5631                name, vmcs_read32(limit),
5632                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5633 }
5634
5635 void dump_vmcs(void)
5636 {
5637         u32 vmentry_ctl, vmexit_ctl;
5638         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5639         unsigned long cr4;
5640         u64 efer;
5641         int i, n;
5642
5643         if (!dump_invalid_vmcs) {
5644                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5645                 return;
5646         }
5647
5648         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5649         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5650         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5651         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5652         cr4 = vmcs_readl(GUEST_CR4);
5653         efer = vmcs_read64(GUEST_IA32_EFER);
5654         secondary_exec_control = 0;
5655         if (cpu_has_secondary_exec_ctrls())
5656                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5657
5658         pr_err("*** Guest State ***\n");
5659         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5660                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5661                vmcs_readl(CR0_GUEST_HOST_MASK));
5662         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5663                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5664         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5665         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5666             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5667         {
5668                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5669                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5670                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5671                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5672         }
5673         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5674                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5675         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5676                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5677         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5678                vmcs_readl(GUEST_SYSENTER_ESP),
5679                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5680         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5681         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5682         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5683         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5684         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5685         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5686         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5687         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5688         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5689         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5690         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5691             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5692                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5693                        efer, vmcs_read64(GUEST_IA32_PAT));
5694         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5695                vmcs_read64(GUEST_IA32_DEBUGCTL),
5696                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5697         if (cpu_has_load_perf_global_ctrl() &&
5698             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5699                 pr_err("PerfGlobCtl = 0x%016llx\n",
5700                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5701         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5702                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5703         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5704                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5705                vmcs_read32(GUEST_ACTIVITY_STATE));
5706         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5707                 pr_err("InterruptStatus = %04x\n",
5708                        vmcs_read16(GUEST_INTR_STATUS));
5709
5710         pr_err("*** Host State ***\n");
5711         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5712                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5713         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5714                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5715                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5716                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5717                vmcs_read16(HOST_TR_SELECTOR));
5718         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5719                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5720                vmcs_readl(HOST_TR_BASE));
5721         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5722                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5723         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5724                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5725                vmcs_readl(HOST_CR4));
5726         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5727                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5728                vmcs_read32(HOST_IA32_SYSENTER_CS),
5729                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5730         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5731                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5732                        vmcs_read64(HOST_IA32_EFER),
5733                        vmcs_read64(HOST_IA32_PAT));
5734         if (cpu_has_load_perf_global_ctrl() &&
5735             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5736                 pr_err("PerfGlobCtl = 0x%016llx\n",
5737                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5738
5739         pr_err("*** Control State ***\n");
5740         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5741                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5742         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5743         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5744                vmcs_read32(EXCEPTION_BITMAP),
5745                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5746                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5747         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5748                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5749                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5750                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5751         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5752                vmcs_read32(VM_EXIT_INTR_INFO),
5753                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5754                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5755         pr_err("        reason=%08x qualification=%016lx\n",
5756                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5757         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5758                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5759                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5760         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5761         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5762                 pr_err("TSC Multiplier = 0x%016llx\n",
5763                        vmcs_read64(TSC_MULTIPLIER));
5764         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5765                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5766                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5767                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5768                 }
5769                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5770                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5771                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5772                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5773         }
5774         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5775                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5776         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5777                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5778         n = vmcs_read32(CR3_TARGET_COUNT);
5779         for (i = 0; i + 1 < n; i += 4)
5780                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5781                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5782                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5783         if (i < n)
5784                 pr_err("CR3 target%u=%016lx\n",
5785                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5786         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5787                 pr_err("PLE Gap=%08x Window=%08x\n",
5788                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5789         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5790                 pr_err("Virtual processor ID = 0x%04x\n",
5791                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5792 }
5793
5794 /*
5795  * The guest has exited.  See if we can fix it or if we need userspace
5796  * assistance.
5797  */
5798 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5799 {
5800         struct vcpu_vmx *vmx = to_vmx(vcpu);
5801         u32 exit_reason = vmx->exit_reason;
5802         u32 vectoring_info = vmx->idt_vectoring_info;
5803
5804         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5805
5806         /*
5807          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5808          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5809          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5810          * mode as if vcpus is in root mode, the PML buffer must has been
5811          * flushed already.
5812          */
5813         if (enable_pml)
5814                 vmx_flush_pml_buffer(vcpu);
5815
5816         /* If guest state is invalid, start emulating */
5817         if (vmx->emulation_required)
5818                 return handle_invalid_guest_state(vcpu);
5819
5820         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5821                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5822
5823         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5824                 dump_vmcs();
5825                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5826                 vcpu->run->fail_entry.hardware_entry_failure_reason
5827                         = exit_reason;
5828                 return 0;
5829         }
5830
5831         if (unlikely(vmx->fail)) {
5832                 dump_vmcs();
5833                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5834                 vcpu->run->fail_entry.hardware_entry_failure_reason
5835                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5836                 return 0;
5837         }
5838
5839         /*
5840          * Note:
5841          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5842          * delivery event since it indicates guest is accessing MMIO.
5843          * The vm-exit can be triggered again after return to guest that
5844          * will cause infinite loop.
5845          */
5846         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5847                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5848                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5849                         exit_reason != EXIT_REASON_PML_FULL &&
5850                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5851                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5852                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5853                 vcpu->run->internal.ndata = 3;
5854                 vcpu->run->internal.data[0] = vectoring_info;
5855                 vcpu->run->internal.data[1] = exit_reason;
5856                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5857                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5858                         vcpu->run->internal.ndata++;
5859                         vcpu->run->internal.data[3] =
5860                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5861                 }
5862                 return 0;
5863         }
5864
5865         if (unlikely(!enable_vnmi &&
5866                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5867                 if (vmx_interrupt_allowed(vcpu)) {
5868                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5869                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5870                            vcpu->arch.nmi_pending) {
5871                         /*
5872                          * This CPU don't support us in finding the end of an
5873                          * NMI-blocked window if the guest runs with IRQs
5874                          * disabled. So we pull the trigger after 1 s of
5875                          * futile waiting, but inform the user about this.
5876                          */
5877                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5878                                "state on VCPU %d after 1 s timeout\n",
5879                                __func__, vcpu->vcpu_id);
5880                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5881                 }
5882         }
5883
5884         if (exit_reason < kvm_vmx_max_exit_handlers
5885             && kvm_vmx_exit_handlers[exit_reason])
5886                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5887         else {
5888                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5889                                 exit_reason);
5890                 kvm_queue_exception(vcpu, UD_VECTOR);
5891                 return 1;
5892         }
5893 }
5894
5895 /*
5896  * Software based L1D cache flush which is used when microcode providing
5897  * the cache control MSR is not loaded.
5898  *
5899  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5900  * flush it is required to read in 64 KiB because the replacement algorithm
5901  * is not exactly LRU. This could be sized at runtime via topology
5902  * information but as all relevant affected CPUs have 32KiB L1D cache size
5903  * there is no point in doing so.
5904  */
5905 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5906 {
5907         int size = PAGE_SIZE << L1D_CACHE_ORDER;
5908
5909         /*
5910          * This code is only executed when the the flush mode is 'cond' or
5911          * 'always'
5912          */
5913         if (static_branch_likely(&vmx_l1d_flush_cond)) {
5914                 bool flush_l1d;
5915
5916                 /*
5917                  * Clear the per-vcpu flush bit, it gets set again
5918                  * either from vcpu_run() or from one of the unsafe
5919                  * VMEXIT handlers.
5920                  */
5921                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5922                 vcpu->arch.l1tf_flush_l1d = false;
5923
5924                 /*
5925                  * Clear the per-cpu flush bit, it gets set again from
5926                  * the interrupt handlers.
5927                  */
5928                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5929                 kvm_clear_cpu_l1tf_flush_l1d();
5930
5931                 if (!flush_l1d)
5932                         return;
5933         }
5934
5935         vcpu->stat.l1d_flush++;
5936
5937         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5938                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5939                 return;
5940         }
5941
5942         asm volatile(
5943                 /* First ensure the pages are in the TLB */
5944                 "xorl   %%eax, %%eax\n"
5945                 ".Lpopulate_tlb:\n\t"
5946                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5947                 "addl   $4096, %%eax\n\t"
5948                 "cmpl   %%eax, %[size]\n\t"
5949                 "jne    .Lpopulate_tlb\n\t"
5950                 "xorl   %%eax, %%eax\n\t"
5951                 "cpuid\n\t"
5952                 /* Now fill the cache */
5953                 "xorl   %%eax, %%eax\n"
5954                 ".Lfill_cache:\n"
5955                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5956                 "addl   $64, %%eax\n\t"
5957                 "cmpl   %%eax, %[size]\n\t"
5958                 "jne    .Lfill_cache\n\t"
5959                 "lfence\n"
5960                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
5961                     [size] "r" (size)
5962                 : "eax", "ebx", "ecx", "edx");
5963 }
5964
5965 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5966 {
5967         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5968
5969         if (is_guest_mode(vcpu) &&
5970                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
5971                 return;
5972
5973         if (irr == -1 || tpr < irr) {
5974                 vmcs_write32(TPR_THRESHOLD, 0);
5975                 return;
5976         }
5977
5978         vmcs_write32(TPR_THRESHOLD, irr);
5979 }
5980
5981 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5982 {
5983         struct vcpu_vmx *vmx = to_vmx(vcpu);
5984         u32 sec_exec_control;
5985
5986         if (!lapic_in_kernel(vcpu))
5987                 return;
5988
5989         if (!flexpriority_enabled &&
5990             !cpu_has_vmx_virtualize_x2apic_mode())
5991                 return;
5992
5993         /* Postpone execution until vmcs01 is the current VMCS. */
5994         if (is_guest_mode(vcpu)) {
5995                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
5996                 return;
5997         }
5998
5999         sec_exec_control = secondary_exec_controls_get(vmx);
6000         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6001                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6002
6003         switch (kvm_get_apic_mode(vcpu)) {
6004         case LAPIC_MODE_INVALID:
6005                 WARN_ONCE(true, "Invalid local APIC state");
6006         case LAPIC_MODE_DISABLED:
6007                 break;
6008         case LAPIC_MODE_XAPIC:
6009                 if (flexpriority_enabled) {
6010                         sec_exec_control |=
6011                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6012                         vmx_flush_tlb(vcpu, true);
6013                 }
6014                 break;
6015         case LAPIC_MODE_X2APIC:
6016                 if (cpu_has_vmx_virtualize_x2apic_mode())
6017                         sec_exec_control |=
6018                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6019                 break;
6020         }
6021         secondary_exec_controls_set(vmx, sec_exec_control);
6022
6023         vmx_update_msr_bitmap(vcpu);
6024 }
6025
6026 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6027 {
6028         if (!is_guest_mode(vcpu)) {
6029                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6030                 vmx_flush_tlb(vcpu, true);
6031         }
6032 }
6033
6034 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6035 {
6036         u16 status;
6037         u8 old;
6038
6039         if (max_isr == -1)
6040                 max_isr = 0;
6041
6042         status = vmcs_read16(GUEST_INTR_STATUS);
6043         old = status >> 8;
6044         if (max_isr != old) {
6045                 status &= 0xff;
6046                 status |= max_isr << 8;
6047                 vmcs_write16(GUEST_INTR_STATUS, status);
6048         }
6049 }
6050
6051 static void vmx_set_rvi(int vector)
6052 {
6053         u16 status;
6054         u8 old;
6055
6056         if (vector == -1)
6057                 vector = 0;
6058
6059         status = vmcs_read16(GUEST_INTR_STATUS);
6060         old = (u8)status & 0xff;
6061         if ((u8)vector != old) {
6062                 status &= ~0xff;
6063                 status |= (u8)vector;
6064                 vmcs_write16(GUEST_INTR_STATUS, status);
6065         }
6066 }
6067
6068 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6069 {
6070         /*
6071          * When running L2, updating RVI is only relevant when
6072          * vmcs12 virtual-interrupt-delivery enabled.
6073          * However, it can be enabled only when L1 also
6074          * intercepts external-interrupts and in that case
6075          * we should not update vmcs02 RVI but instead intercept
6076          * interrupt. Therefore, do nothing when running L2.
6077          */
6078         if (!is_guest_mode(vcpu))
6079                 vmx_set_rvi(max_irr);
6080 }
6081
6082 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6083 {
6084         struct vcpu_vmx *vmx = to_vmx(vcpu);
6085         int max_irr;
6086         bool max_irr_updated;
6087
6088         WARN_ON(!vcpu->arch.apicv_active);
6089         if (pi_test_on(&vmx->pi_desc)) {
6090                 pi_clear_on(&vmx->pi_desc);
6091                 /*
6092                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6093                  * But on x86 this is just a compiler barrier anyway.
6094                  */
6095                 smp_mb__after_atomic();
6096                 max_irr_updated =
6097                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6098
6099                 /*
6100                  * If we are running L2 and L1 has a new pending interrupt
6101                  * which can be injected, we should re-evaluate
6102                  * what should be done with this new L1 interrupt.
6103                  * If L1 intercepts external-interrupts, we should
6104                  * exit from L2 to L1. Otherwise, interrupt should be
6105                  * delivered directly to L2.
6106                  */
6107                 if (is_guest_mode(vcpu) && max_irr_updated) {
6108                         if (nested_exit_on_intr(vcpu))
6109                                 kvm_vcpu_exiting_guest_mode(vcpu);
6110                         else
6111                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6112                 }
6113         } else {
6114                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6115         }
6116         vmx_hwapic_irr_update(vcpu, max_irr);
6117         return max_irr;
6118 }
6119
6120 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6121 {
6122         return pi_test_on(vcpu_to_pi_desc(vcpu));
6123 }
6124
6125 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6126 {
6127         if (!kvm_vcpu_apicv_active(vcpu))
6128                 return;
6129
6130         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6131         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6132         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6133         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6134 }
6135
6136 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6137 {
6138         struct vcpu_vmx *vmx = to_vmx(vcpu);
6139
6140         pi_clear_on(&vmx->pi_desc);
6141         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6142 }
6143
6144 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6145 {
6146         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6147
6148         /* if exit due to PF check for async PF */
6149         if (is_page_fault(vmx->exit_intr_info))
6150                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6151
6152         /* Handle machine checks before interrupts are enabled */
6153         if (is_machine_check(vmx->exit_intr_info))
6154                 kvm_machine_check();
6155
6156         /* We need to handle NMIs before interrupts are enabled */
6157         if (is_nmi(vmx->exit_intr_info)) {
6158                 kvm_before_interrupt(&vmx->vcpu);
6159                 asm("int $2");
6160                 kvm_after_interrupt(&vmx->vcpu);
6161         }
6162 }
6163
6164 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6165 {
6166         unsigned int vector;
6167         unsigned long entry;
6168 #ifdef CONFIG_X86_64
6169         unsigned long tmp;
6170 #endif
6171         gate_desc *desc;
6172         u32 intr_info;
6173
6174         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6175         if (WARN_ONCE(!is_external_intr(intr_info),
6176             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6177                 return;
6178
6179         vector = intr_info & INTR_INFO_VECTOR_MASK;
6180         desc = (gate_desc *)host_idt_base + vector;
6181         entry = gate_offset(desc);
6182
6183         kvm_before_interrupt(vcpu);
6184
6185         asm volatile(
6186 #ifdef CONFIG_X86_64
6187                 "mov %%" _ASM_SP ", %[sp]\n\t"
6188                 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6189                 "push $%c[ss]\n\t"
6190                 "push %[sp]\n\t"
6191 #endif
6192                 "pushf\n\t"
6193                 __ASM_SIZE(push) " $%c[cs]\n\t"
6194                 CALL_NOSPEC
6195                 :
6196 #ifdef CONFIG_X86_64
6197                 [sp]"=&r"(tmp),
6198 #endif
6199                 ASM_CALL_CONSTRAINT
6200                 :
6201                 THUNK_TARGET(entry),
6202                 [ss]"i"(__KERNEL_DS),
6203                 [cs]"i"(__KERNEL_CS)
6204         );
6205
6206         kvm_after_interrupt(vcpu);
6207 }
6208 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6209
6210 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6211 {
6212         struct vcpu_vmx *vmx = to_vmx(vcpu);
6213
6214         if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6215                 handle_external_interrupt_irqoff(vcpu);
6216         else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6217                 handle_exception_nmi_irqoff(vmx);
6218 }
6219
6220 static bool vmx_has_emulated_msr(int index)
6221 {
6222         switch (index) {
6223         case MSR_IA32_SMBASE:
6224                 /*
6225                  * We cannot do SMM unless we can run the guest in big
6226                  * real mode.
6227                  */
6228                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6229         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6230                 return nested;
6231         case MSR_AMD64_VIRT_SPEC_CTRL:
6232                 /* This is AMD only.  */
6233                 return false;
6234         default:
6235                 return true;
6236         }
6237 }
6238
6239 static bool vmx_pt_supported(void)
6240 {
6241         return pt_mode == PT_MODE_HOST_GUEST;
6242 }
6243
6244 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6245 {
6246         u32 exit_intr_info;
6247         bool unblock_nmi;
6248         u8 vector;
6249         bool idtv_info_valid;
6250
6251         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6252
6253         if (enable_vnmi) {
6254                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6255                         return;
6256                 /*
6257                  * Can't use vmx->exit_intr_info since we're not sure what
6258                  * the exit reason is.
6259                  */
6260                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6261                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6262                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6263                 /*
6264                  * SDM 3: 27.7.1.2 (September 2008)
6265                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6266                  * a guest IRET fault.
6267                  * SDM 3: 23.2.2 (September 2008)
6268                  * Bit 12 is undefined in any of the following cases:
6269                  *  If the VM exit sets the valid bit in the IDT-vectoring
6270                  *   information field.
6271                  *  If the VM exit is due to a double fault.
6272                  */
6273                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6274                     vector != DF_VECTOR && !idtv_info_valid)
6275                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6276                                       GUEST_INTR_STATE_NMI);
6277                 else
6278                         vmx->loaded_vmcs->nmi_known_unmasked =
6279                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6280                                   & GUEST_INTR_STATE_NMI);
6281         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6282                 vmx->loaded_vmcs->vnmi_blocked_time +=
6283                         ktime_to_ns(ktime_sub(ktime_get(),
6284                                               vmx->loaded_vmcs->entry_time));
6285 }
6286
6287 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6288                                       u32 idt_vectoring_info,
6289                                       int instr_len_field,
6290                                       int error_code_field)
6291 {
6292         u8 vector;
6293         int type;
6294         bool idtv_info_valid;
6295
6296         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6297
6298         vcpu->arch.nmi_injected = false;
6299         kvm_clear_exception_queue(vcpu);
6300         kvm_clear_interrupt_queue(vcpu);
6301
6302         if (!idtv_info_valid)
6303                 return;
6304
6305         kvm_make_request(KVM_REQ_EVENT, vcpu);
6306
6307         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6308         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6309
6310         switch (type) {
6311         case INTR_TYPE_NMI_INTR:
6312                 vcpu->arch.nmi_injected = true;
6313                 /*
6314                  * SDM 3: 27.7.1.2 (September 2008)
6315                  * Clear bit "block by NMI" before VM entry if a NMI
6316                  * delivery faulted.
6317                  */
6318                 vmx_set_nmi_mask(vcpu, false);
6319                 break;
6320         case INTR_TYPE_SOFT_EXCEPTION:
6321                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6322                 /* fall through */
6323         case INTR_TYPE_HARD_EXCEPTION:
6324                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6325                         u32 err = vmcs_read32(error_code_field);
6326                         kvm_requeue_exception_e(vcpu, vector, err);
6327                 } else
6328                         kvm_requeue_exception(vcpu, vector);
6329                 break;
6330         case INTR_TYPE_SOFT_INTR:
6331                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6332                 /* fall through */
6333         case INTR_TYPE_EXT_INTR:
6334                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6335                 break;
6336         default:
6337                 break;
6338         }
6339 }
6340
6341 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6342 {
6343         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6344                                   VM_EXIT_INSTRUCTION_LEN,
6345                                   IDT_VECTORING_ERROR_CODE);
6346 }
6347
6348 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6349 {
6350         __vmx_complete_interrupts(vcpu,
6351                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6352                                   VM_ENTRY_INSTRUCTION_LEN,
6353                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6354
6355         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6356 }
6357
6358 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6359 {
6360         int i, nr_msrs;
6361         struct perf_guest_switch_msr *msrs;
6362
6363         msrs = perf_guest_get_msrs(&nr_msrs);
6364
6365         if (!msrs)
6366                 return;
6367
6368         for (i = 0; i < nr_msrs; i++)
6369                 if (msrs[i].host == msrs[i].guest)
6370                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6371                 else
6372                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6373                                         msrs[i].host, false);
6374 }
6375
6376 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6377 {
6378         struct vcpu_vmx *vmx = to_vmx(vcpu);
6379         u64 tscl;
6380         u32 delta_tsc;
6381
6382         if (vmx->req_immediate_exit) {
6383                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6384                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6385         } else if (vmx->hv_deadline_tsc != -1) {
6386                 tscl = rdtsc();
6387                 if (vmx->hv_deadline_tsc > tscl)
6388                         /* set_hv_timer ensures the delta fits in 32-bits */
6389                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6390                                 cpu_preemption_timer_multi);
6391                 else
6392                         delta_tsc = 0;
6393
6394                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6395                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6396         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6397                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6398                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6399         }
6400 }
6401
6402 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6403 {
6404         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6405                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6406                 vmcs_writel(HOST_RSP, host_rsp);
6407         }
6408 }
6409
6410 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6411
6412 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6413 {
6414         struct vcpu_vmx *vmx = to_vmx(vcpu);
6415         unsigned long cr3, cr4;
6416
6417         /* Record the guest's net vcpu time for enforced NMI injections. */
6418         if (unlikely(!enable_vnmi &&
6419                      vmx->loaded_vmcs->soft_vnmi_blocked))
6420                 vmx->loaded_vmcs->entry_time = ktime_get();
6421
6422         /* Don't enter VMX if guest state is invalid, let the exit handler
6423            start emulation until we arrive back to a valid state */
6424         if (vmx->emulation_required)
6425                 return;
6426
6427         if (vmx->ple_window_dirty) {
6428                 vmx->ple_window_dirty = false;
6429                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6430         }
6431
6432         if (vmx->nested.need_vmcs12_to_shadow_sync)
6433                 nested_sync_vmcs12_to_shadow(vcpu);
6434
6435         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6436                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6437         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6438                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6439
6440         cr3 = __get_current_cr3_fast();
6441         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6442                 vmcs_writel(HOST_CR3, cr3);
6443                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6444         }
6445
6446         cr4 = cr4_read_shadow();
6447         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6448                 vmcs_writel(HOST_CR4, cr4);
6449                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6450         }
6451
6452         /* When single-stepping over STI and MOV SS, we must clear the
6453          * corresponding interruptibility bits in the guest state. Otherwise
6454          * vmentry fails as it then expects bit 14 (BS) in pending debug
6455          * exceptions being set, but that's not correct for the guest debugging
6456          * case. */
6457         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6458                 vmx_set_interrupt_shadow(vcpu, 0);
6459
6460         kvm_load_guest_xcr0(vcpu);
6461
6462         if (static_cpu_has(X86_FEATURE_PKU) &&
6463             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6464             vcpu->arch.pkru != vmx->host_pkru)
6465                 __write_pkru(vcpu->arch.pkru);
6466
6467         pt_guest_enter(vmx);
6468
6469         atomic_switch_perf_msrs(vmx);
6470
6471         if (enable_preemption_timer)
6472                 vmx_update_hv_timer(vcpu);
6473
6474         if (lapic_in_kernel(vcpu) &&
6475                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6476                 kvm_wait_lapic_expire(vcpu);
6477
6478         /*
6479          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6480          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6481          * is no need to worry about the conditional branch over the wrmsr
6482          * being speculatively taken.
6483          */
6484         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6485
6486         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6487         if (static_branch_unlikely(&vmx_l1d_should_flush))
6488                 vmx_l1d_flush(vcpu);
6489         else if (static_branch_unlikely(&mds_user_clear))
6490                 mds_clear_cpu_buffers();
6491
6492         if (vcpu->arch.cr2 != read_cr2())
6493                 write_cr2(vcpu->arch.cr2);
6494
6495         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6496                                    vmx->loaded_vmcs->launched);
6497
6498         vcpu->arch.cr2 = read_cr2();
6499
6500         /*
6501          * We do not use IBRS in the kernel. If this vCPU has used the
6502          * SPEC_CTRL MSR it may have left it on; save the value and
6503          * turn it off. This is much more efficient than blindly adding
6504          * it to the atomic save/restore list. Especially as the former
6505          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6506          *
6507          * For non-nested case:
6508          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6509          * save it.
6510          *
6511          * For nested case:
6512          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6513          * save it.
6514          */
6515         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6516                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6517
6518         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6519
6520         /* All fields are clean at this point */
6521         if (static_branch_unlikely(&enable_evmcs))
6522                 current_evmcs->hv_clean_fields |=
6523                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6524
6525         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6526         if (vmx->host_debugctlmsr)
6527                 update_debugctlmsr(vmx->host_debugctlmsr);
6528
6529 #ifndef CONFIG_X86_64
6530         /*
6531          * The sysexit path does not restore ds/es, so we must set them to
6532          * a reasonable value ourselves.
6533          *
6534          * We can't defer this to vmx_prepare_switch_to_host() since that
6535          * function may be executed in interrupt context, which saves and
6536          * restore segments around it, nullifying its effect.
6537          */
6538         loadsegment(ds, __USER_DS);
6539         loadsegment(es, __USER_DS);
6540 #endif
6541
6542         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6543                                   | (1 << VCPU_EXREG_RFLAGS)
6544                                   | (1 << VCPU_EXREG_PDPTR)
6545                                   | (1 << VCPU_EXREG_SEGMENTS)
6546                                   | (1 << VCPU_EXREG_CR3));
6547         vcpu->arch.regs_dirty = 0;
6548
6549         pt_guest_exit(vmx);
6550
6551         /*
6552          * eager fpu is enabled if PKEY is supported and CR4 is switched
6553          * back on host, so it is safe to read guest PKRU from current
6554          * XSAVE.
6555          */
6556         if (static_cpu_has(X86_FEATURE_PKU) &&
6557             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6558                 vcpu->arch.pkru = rdpkru();
6559                 if (vcpu->arch.pkru != vmx->host_pkru)
6560                         __write_pkru(vmx->host_pkru);
6561         }
6562
6563         kvm_put_guest_xcr0(vcpu);
6564
6565         vmx->nested.nested_run_pending = 0;
6566         vmx->idt_vectoring_info = 0;
6567
6568         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6569         if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6570                 kvm_machine_check();
6571
6572         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6573                 return;
6574
6575         vmx->loaded_vmcs->launched = 1;
6576         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6577
6578         vmx_recover_nmi_blocking(vmx);
6579         vmx_complete_interrupts(vmx);
6580 }
6581
6582 static struct kvm *vmx_vm_alloc(void)
6583 {
6584         struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6585                                             GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6586                                             PAGE_KERNEL);
6587         return &kvm_vmx->kvm;
6588 }
6589
6590 static void vmx_vm_free(struct kvm *kvm)
6591 {
6592         vfree(to_kvm_vmx(kvm));
6593 }
6594
6595 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6596 {
6597         struct vcpu_vmx *vmx = to_vmx(vcpu);
6598
6599         if (enable_pml)
6600                 vmx_destroy_pml_buffer(vmx);
6601         free_vpid(vmx->vpid);
6602         nested_vmx_free_vcpu(vcpu);
6603         free_loaded_vmcs(vmx->loaded_vmcs);
6604         kfree(vmx->guest_msrs);
6605         kvm_vcpu_uninit(vcpu);
6606         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6607         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6608         kmem_cache_free(kvm_vcpu_cache, vmx);
6609 }
6610
6611 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6612 {
6613         int err;
6614         struct vcpu_vmx *vmx;
6615         unsigned long *msr_bitmap;
6616         int cpu;
6617
6618         vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6619         if (!vmx)
6620                 return ERR_PTR(-ENOMEM);
6621
6622         vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6623                         GFP_KERNEL_ACCOUNT);
6624         if (!vmx->vcpu.arch.user_fpu) {
6625                 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6626                 err = -ENOMEM;
6627                 goto free_partial_vcpu;
6628         }
6629
6630         vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6631                         GFP_KERNEL_ACCOUNT);
6632         if (!vmx->vcpu.arch.guest_fpu) {
6633                 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6634                 err = -ENOMEM;
6635                 goto free_user_fpu;
6636         }
6637
6638         vmx->vpid = allocate_vpid();
6639
6640         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6641         if (err)
6642                 goto free_vcpu;
6643
6644         err = -ENOMEM;
6645
6646         /*
6647          * If PML is turned on, failure on enabling PML just results in failure
6648          * of creating the vcpu, therefore we can simplify PML logic (by
6649          * avoiding dealing with cases, such as enabling PML partially on vcpus
6650          * for the guest, etc.
6651          */
6652         if (enable_pml) {
6653                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6654                 if (!vmx->pml_pg)
6655                         goto uninit_vcpu;
6656         }
6657
6658         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6659         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6660                      > PAGE_SIZE);
6661
6662         if (!vmx->guest_msrs)
6663                 goto free_pml;
6664
6665         err = alloc_loaded_vmcs(&vmx->vmcs01);
6666         if (err < 0)
6667                 goto free_msrs;
6668
6669         msr_bitmap = vmx->vmcs01.msr_bitmap;
6670         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6671         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6672         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6673         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6674         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6675         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6676         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6677         if (kvm_cstate_in_guest(kvm)) {
6678                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6679                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6680                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6681                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6682         }
6683         vmx->msr_bitmap_mode = 0;
6684
6685         vmx->loaded_vmcs = &vmx->vmcs01;
6686         cpu = get_cpu();
6687         vmx_vcpu_load(&vmx->vcpu, cpu);
6688         vmx->vcpu.cpu = cpu;
6689         vmx_vcpu_setup(vmx);
6690         vmx_vcpu_put(&vmx->vcpu);
6691         put_cpu();
6692         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6693                 err = alloc_apic_access_page(kvm);
6694                 if (err)
6695                         goto free_vmcs;
6696         }
6697
6698         if (enable_ept && !enable_unrestricted_guest) {
6699                 err = init_rmode_identity_map(kvm);
6700                 if (err)
6701                         goto free_vmcs;
6702         }
6703
6704         if (nested)
6705                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6706                                            vmx_capability.ept,
6707                                            kvm_vcpu_apicv_active(&vmx->vcpu));
6708         else
6709                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6710
6711         vmx->nested.posted_intr_nv = -1;
6712         vmx->nested.current_vmptr = -1ull;
6713
6714         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6715
6716         /*
6717          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6718          * or POSTED_INTR_WAKEUP_VECTOR.
6719          */
6720         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6721         vmx->pi_desc.sn = 1;
6722
6723         vmx->ept_pointer = INVALID_PAGE;
6724
6725         return &vmx->vcpu;
6726
6727 free_vmcs:
6728         free_loaded_vmcs(vmx->loaded_vmcs);
6729 free_msrs:
6730         kfree(vmx->guest_msrs);
6731 free_pml:
6732         vmx_destroy_pml_buffer(vmx);
6733 uninit_vcpu:
6734         kvm_vcpu_uninit(&vmx->vcpu);
6735 free_vcpu:
6736         free_vpid(vmx->vpid);
6737         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6738 free_user_fpu:
6739         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6740 free_partial_vcpu:
6741         kmem_cache_free(kvm_vcpu_cache, vmx);
6742         return ERR_PTR(err);
6743 }
6744
6745 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6746 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6747
6748 static int vmx_vm_init(struct kvm *kvm)
6749 {
6750         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6751
6752         if (!ple_gap)
6753                 kvm->arch.pause_in_guest = true;
6754
6755         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6756                 switch (l1tf_mitigation) {
6757                 case L1TF_MITIGATION_OFF:
6758                 case L1TF_MITIGATION_FLUSH_NOWARN:
6759                         /* 'I explicitly don't care' is set */
6760                         break;
6761                 case L1TF_MITIGATION_FLUSH:
6762                 case L1TF_MITIGATION_FLUSH_NOSMT:
6763                 case L1TF_MITIGATION_FULL:
6764                         /*
6765                          * Warn upon starting the first VM in a potentially
6766                          * insecure environment.
6767                          */
6768                         if (sched_smt_active())
6769                                 pr_warn_once(L1TF_MSG_SMT);
6770                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6771                                 pr_warn_once(L1TF_MSG_L1D);
6772                         break;
6773                 case L1TF_MITIGATION_FULL_FORCE:
6774                         /* Flush is enforced */
6775                         break;
6776                 }
6777         }
6778         return 0;
6779 }
6780
6781 static int __init vmx_check_processor_compat(void)
6782 {
6783         struct vmcs_config vmcs_conf;
6784         struct vmx_capability vmx_cap;
6785
6786         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6787                 return -EIO;
6788         if (nested)
6789                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6790                                            enable_apicv);
6791         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6792                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6793                                 smp_processor_id());
6794                 return -EIO;
6795         }
6796         return 0;
6797 }
6798
6799 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6800 {
6801         u8 cache;
6802         u64 ipat = 0;
6803
6804         /* For VT-d and EPT combination
6805          * 1. MMIO: always map as UC
6806          * 2. EPT with VT-d:
6807          *   a. VT-d without snooping control feature: can't guarantee the
6808          *      result, try to trust guest.
6809          *   b. VT-d with snooping control feature: snooping control feature of
6810          *      VT-d engine can guarantee the cache correctness. Just set it
6811          *      to WB to keep consistent with host. So the same as item 3.
6812          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6813          *    consistent with host MTRR
6814          */
6815         if (is_mmio) {
6816                 cache = MTRR_TYPE_UNCACHABLE;
6817                 goto exit;
6818         }
6819
6820         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6821                 ipat = VMX_EPT_IPAT_BIT;
6822                 cache = MTRR_TYPE_WRBACK;
6823                 goto exit;
6824         }
6825
6826         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6827                 ipat = VMX_EPT_IPAT_BIT;
6828                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6829                         cache = MTRR_TYPE_WRBACK;
6830                 else
6831                         cache = MTRR_TYPE_UNCACHABLE;
6832                 goto exit;
6833         }
6834
6835         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6836
6837 exit:
6838         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6839 }
6840
6841 static int vmx_get_lpage_level(void)
6842 {
6843         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6844                 return PT_DIRECTORY_LEVEL;
6845         else
6846                 /* For shadow and EPT supported 1GB page */
6847                 return PT_PDPE_LEVEL;
6848 }
6849
6850 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6851 {
6852         /*
6853          * These bits in the secondary execution controls field
6854          * are dynamic, the others are mostly based on the hypervisor
6855          * architecture and the guest's CPUID.  Do not touch the
6856          * dynamic bits.
6857          */
6858         u32 mask =
6859                 SECONDARY_EXEC_SHADOW_VMCS |
6860                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6861                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6862                 SECONDARY_EXEC_DESC;
6863
6864         u32 new_ctl = vmx->secondary_exec_control;
6865         u32 cur_ctl = secondary_exec_controls_get(vmx);
6866
6867         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6868 }
6869
6870 /*
6871  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6872  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6873  */
6874 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6875 {
6876         struct vcpu_vmx *vmx = to_vmx(vcpu);
6877         struct kvm_cpuid_entry2 *entry;
6878
6879         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6880         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6881
6882 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6883         if (entry && (entry->_reg & (_cpuid_mask)))                     \
6884                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6885 } while (0)
6886
6887         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6888         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6889         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6890         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6891         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6892         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6893         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6894         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6895         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6896         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6897         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6898         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6899         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6900         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6901         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6902
6903         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6904         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6905         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6906         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6907         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6908         cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6909
6910 #undef cr4_fixed1_update
6911 }
6912
6913 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6914 {
6915         struct vcpu_vmx *vmx = to_vmx(vcpu);
6916
6917         if (kvm_mpx_supported()) {
6918                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6919
6920                 if (mpx_enabled) {
6921                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6922                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6923                 } else {
6924                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6925                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6926                 }
6927         }
6928 }
6929
6930 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
6931 {
6932         struct vcpu_vmx *vmx = to_vmx(vcpu);
6933         struct kvm_cpuid_entry2 *best = NULL;
6934         int i;
6935
6936         for (i = 0; i < PT_CPUID_LEAVES; i++) {
6937                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
6938                 if (!best)
6939                         return;
6940                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
6941                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
6942                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
6943                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
6944         }
6945
6946         /* Get the number of configurable Address Ranges for filtering */
6947         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
6948                                                 PT_CAP_num_address_ranges);
6949
6950         /* Initialize and clear the no dependency bits */
6951         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
6952                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
6953
6954         /*
6955          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
6956          * will inject an #GP
6957          */
6958         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
6959                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
6960
6961         /*
6962          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
6963          * PSBFreq can be set
6964          */
6965         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
6966                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
6967                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
6968
6969         /*
6970          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
6971          * MTCFreq can be set
6972          */
6973         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
6974                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
6975                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
6976
6977         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
6978         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
6979                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
6980                                                         RTIT_CTL_PTW_EN);
6981
6982         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
6983         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
6984                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
6985
6986         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
6987         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
6988                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
6989
6990         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
6991         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
6992                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
6993
6994         /* unmask address range configure area */
6995         for (i = 0; i < vmx->pt_desc.addr_range; i++)
6996                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
6997 }
6998
6999 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7000 {
7001         struct vcpu_vmx *vmx = to_vmx(vcpu);
7002
7003         if (cpu_has_secondary_exec_ctrls()) {
7004                 vmx_compute_secondary_exec_control(vmx);
7005                 vmcs_set_secondary_exec_control(vmx);
7006         }
7007
7008         if (nested_vmx_allowed(vcpu))
7009                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7010                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7011         else
7012                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7013                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7014
7015         if (nested_vmx_allowed(vcpu)) {
7016                 nested_vmx_cr_fixed1_bits_update(vcpu);
7017                 nested_vmx_entry_exit_ctls_update(vcpu);
7018         }
7019
7020         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7021                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7022                 update_intel_pt_cfg(vcpu);
7023 }
7024
7025 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7026 {
7027         if (func == 1 && nested)
7028                 entry->ecx |= bit(X86_FEATURE_VMX);
7029 }
7030
7031 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7032 {
7033         to_vmx(vcpu)->req_immediate_exit = true;
7034 }
7035
7036 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7037                                struct x86_instruction_info *info,
7038                                enum x86_intercept_stage stage)
7039 {
7040         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7041         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7042
7043         /*
7044          * RDPID causes #UD if disabled through secondary execution controls.
7045          * Because it is marked as EmulateOnUD, we need to intercept it here.
7046          */
7047         if (info->intercept == x86_intercept_rdtscp &&
7048             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7049                 ctxt->exception.vector = UD_VECTOR;
7050                 ctxt->exception.error_code_valid = false;
7051                 return X86EMUL_PROPAGATE_FAULT;
7052         }
7053
7054         /* TODO: check more intercepts... */
7055         return X86EMUL_CONTINUE;
7056 }
7057
7058 #ifdef CONFIG_X86_64
7059 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7060 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7061                                   u64 divisor, u64 *result)
7062 {
7063         u64 low = a << shift, high = a >> (64 - shift);
7064
7065         /* To avoid the overflow on divq */
7066         if (high >= divisor)
7067                 return 1;
7068
7069         /* Low hold the result, high hold rem which is discarded */
7070         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7071             "rm" (divisor), "0" (low), "1" (high));
7072         *result = low;
7073
7074         return 0;
7075 }
7076
7077 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7078                             bool *expired)
7079 {
7080         struct vcpu_vmx *vmx;
7081         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7082         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7083
7084         if (kvm_mwait_in_guest(vcpu->kvm) ||
7085                 kvm_can_post_timer_interrupt(vcpu))
7086                 return -EOPNOTSUPP;
7087
7088         vmx = to_vmx(vcpu);
7089         tscl = rdtsc();
7090         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7091         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7092         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7093                                                     ktimer->timer_advance_ns);
7094
7095         if (delta_tsc > lapic_timer_advance_cycles)
7096                 delta_tsc -= lapic_timer_advance_cycles;
7097         else
7098                 delta_tsc = 0;
7099
7100         /* Convert to host delta tsc if tsc scaling is enabled */
7101         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7102             delta_tsc && u64_shl_div_u64(delta_tsc,
7103                                 kvm_tsc_scaling_ratio_frac_bits,
7104                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7105                 return -ERANGE;
7106
7107         /*
7108          * If the delta tsc can't fit in the 32 bit after the multi shift,
7109          * we can't use the preemption timer.
7110          * It's possible that it fits on later vmentries, but checking
7111          * on every vmentry is costly so we just use an hrtimer.
7112          */
7113         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7114                 return -ERANGE;
7115
7116         vmx->hv_deadline_tsc = tscl + delta_tsc;
7117         *expired = !delta_tsc;
7118         return 0;
7119 }
7120
7121 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7122 {
7123         to_vmx(vcpu)->hv_deadline_tsc = -1;
7124 }
7125 #endif
7126
7127 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7128 {
7129         if (!kvm_pause_in_guest(vcpu->kvm))
7130                 shrink_ple_window(vcpu);
7131 }
7132
7133 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7134                                      struct kvm_memory_slot *slot)
7135 {
7136         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7137         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7138 }
7139
7140 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7141                                        struct kvm_memory_slot *slot)
7142 {
7143         kvm_mmu_slot_set_dirty(kvm, slot);
7144 }
7145
7146 static void vmx_flush_log_dirty(struct kvm *kvm)
7147 {
7148         kvm_flush_pml_buffers(kvm);
7149 }
7150
7151 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7152 {
7153         struct vmcs12 *vmcs12;
7154         struct vcpu_vmx *vmx = to_vmx(vcpu);
7155         gpa_t gpa, dst;
7156
7157         if (is_guest_mode(vcpu)) {
7158                 WARN_ON_ONCE(vmx->nested.pml_full);
7159
7160                 /*
7161                  * Check if PML is enabled for the nested guest.
7162                  * Whether eptp bit 6 is set is already checked
7163                  * as part of A/D emulation.
7164                  */
7165                 vmcs12 = get_vmcs12(vcpu);
7166                 if (!nested_cpu_has_pml(vmcs12))
7167                         return 0;
7168
7169                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7170                         vmx->nested.pml_full = true;
7171                         return 1;
7172                 }
7173
7174                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7175                 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7176
7177                 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7178                                          offset_in_page(dst), sizeof(gpa)))
7179                         return 0;
7180
7181                 vmcs12->guest_pml_index--;
7182         }
7183
7184         return 0;
7185 }
7186
7187 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7188                                            struct kvm_memory_slot *memslot,
7189                                            gfn_t offset, unsigned long mask)
7190 {
7191         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7192 }
7193
7194 static void __pi_post_block(struct kvm_vcpu *vcpu)
7195 {
7196         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7197         struct pi_desc old, new;
7198         unsigned int dest;
7199
7200         do {
7201                 old.control = new.control = pi_desc->control;
7202                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7203                      "Wakeup handler not enabled while the VCPU is blocked\n");
7204
7205                 dest = cpu_physical_id(vcpu->cpu);
7206
7207                 if (x2apic_enabled())
7208                         new.ndst = dest;
7209                 else
7210                         new.ndst = (dest << 8) & 0xFF00;
7211
7212                 /* set 'NV' to 'notification vector' */
7213                 new.nv = POSTED_INTR_VECTOR;
7214         } while (cmpxchg64(&pi_desc->control, old.control,
7215                            new.control) != old.control);
7216
7217         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7218                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7219                 list_del(&vcpu->blocked_vcpu_list);
7220                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7221                 vcpu->pre_pcpu = -1;
7222         }
7223 }
7224
7225 /*
7226  * This routine does the following things for vCPU which is going
7227  * to be blocked if VT-d PI is enabled.
7228  * - Store the vCPU to the wakeup list, so when interrupts happen
7229  *   we can find the right vCPU to wake up.
7230  * - Change the Posted-interrupt descriptor as below:
7231  *      'NDST' <-- vcpu->pre_pcpu
7232  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7233  * - If 'ON' is set during this process, which means at least one
7234  *   interrupt is posted for this vCPU, we cannot block it, in
7235  *   this case, return 1, otherwise, return 0.
7236  *
7237  */
7238 static int pi_pre_block(struct kvm_vcpu *vcpu)
7239 {
7240         unsigned int dest;
7241         struct pi_desc old, new;
7242         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7243
7244         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7245                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7246                 !kvm_vcpu_apicv_active(vcpu))
7247                 return 0;
7248
7249         WARN_ON(irqs_disabled());
7250         local_irq_disable();
7251         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7252                 vcpu->pre_pcpu = vcpu->cpu;
7253                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7254                 list_add_tail(&vcpu->blocked_vcpu_list,
7255                               &per_cpu(blocked_vcpu_on_cpu,
7256                                        vcpu->pre_pcpu));
7257                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7258         }
7259
7260         do {
7261                 old.control = new.control = pi_desc->control;
7262
7263                 WARN((pi_desc->sn == 1),
7264                      "Warning: SN field of posted-interrupts "
7265                      "is set before blocking\n");
7266
7267                 /*
7268                  * Since vCPU can be preempted during this process,
7269                  * vcpu->cpu could be different with pre_pcpu, we
7270                  * need to set pre_pcpu as the destination of wakeup
7271                  * notification event, then we can find the right vCPU
7272                  * to wakeup in wakeup handler if interrupts happen
7273                  * when the vCPU is in blocked state.
7274                  */
7275                 dest = cpu_physical_id(vcpu->pre_pcpu);
7276
7277                 if (x2apic_enabled())
7278                         new.ndst = dest;
7279                 else
7280                         new.ndst = (dest << 8) & 0xFF00;
7281
7282                 /* set 'NV' to 'wakeup vector' */
7283                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7284         } while (cmpxchg64(&pi_desc->control, old.control,
7285                            new.control) != old.control);
7286
7287         /* We should not block the vCPU if an interrupt is posted for it.  */
7288         if (pi_test_on(pi_desc) == 1)
7289                 __pi_post_block(vcpu);
7290
7291         local_irq_enable();
7292         return (vcpu->pre_pcpu == -1);
7293 }
7294
7295 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7296 {
7297         if (pi_pre_block(vcpu))
7298                 return 1;
7299
7300         if (kvm_lapic_hv_timer_in_use(vcpu))
7301                 kvm_lapic_switch_to_sw_timer(vcpu);
7302
7303         return 0;
7304 }
7305
7306 static void pi_post_block(struct kvm_vcpu *vcpu)
7307 {
7308         if (vcpu->pre_pcpu == -1)
7309                 return;
7310
7311         WARN_ON(irqs_disabled());
7312         local_irq_disable();
7313         __pi_post_block(vcpu);
7314         local_irq_enable();
7315 }
7316
7317 static void vmx_post_block(struct kvm_vcpu *vcpu)
7318 {
7319         if (kvm_x86_ops->set_hv_timer)
7320                 kvm_lapic_switch_to_hv_timer(vcpu);
7321
7322         pi_post_block(vcpu);
7323 }
7324
7325 /*
7326  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7327  *
7328  * @kvm: kvm
7329  * @host_irq: host irq of the interrupt
7330  * @guest_irq: gsi of the interrupt
7331  * @set: set or unset PI
7332  * returns 0 on success, < 0 on failure
7333  */
7334 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7335                               uint32_t guest_irq, bool set)
7336 {
7337         struct kvm_kernel_irq_routing_entry *e;
7338         struct kvm_irq_routing_table *irq_rt;
7339         struct kvm_lapic_irq irq;
7340         struct kvm_vcpu *vcpu;
7341         struct vcpu_data vcpu_info;
7342         int idx, ret = 0;
7343
7344         if (!kvm_arch_has_assigned_device(kvm) ||
7345                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7346                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7347                 return 0;
7348
7349         idx = srcu_read_lock(&kvm->irq_srcu);
7350         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7351         if (guest_irq >= irq_rt->nr_rt_entries ||
7352             hlist_empty(&irq_rt->map[guest_irq])) {
7353                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7354                              guest_irq, irq_rt->nr_rt_entries);
7355                 goto out;
7356         }
7357
7358         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7359                 if (e->type != KVM_IRQ_ROUTING_MSI)
7360                         continue;
7361                 /*
7362                  * VT-d PI cannot support posting multicast/broadcast
7363                  * interrupts to a vCPU, we still use interrupt remapping
7364                  * for these kind of interrupts.
7365                  *
7366                  * For lowest-priority interrupts, we only support
7367                  * those with single CPU as the destination, e.g. user
7368                  * configures the interrupts via /proc/irq or uses
7369                  * irqbalance to make the interrupts single-CPU.
7370                  *
7371                  * We will support full lowest-priority interrupt later.
7372                  */
7373
7374                 kvm_set_msi_irq(kvm, e, &irq);
7375                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
7376                         /*
7377                          * Make sure the IRTE is in remapped mode if
7378                          * we don't handle it in posted mode.
7379                          */
7380                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7381                         if (ret < 0) {
7382                                 printk(KERN_INFO
7383                                    "failed to back to remapped mode, irq: %u\n",
7384                                    host_irq);
7385                                 goto out;
7386                         }
7387
7388                         continue;
7389                 }
7390
7391                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7392                 vcpu_info.vector = irq.vector;
7393
7394                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7395                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7396
7397                 if (set)
7398                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7399                 else
7400                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7401
7402                 if (ret < 0) {
7403                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7404                                         __func__);
7405                         goto out;
7406                 }
7407         }
7408
7409         ret = 0;
7410 out:
7411         srcu_read_unlock(&kvm->irq_srcu, idx);
7412         return ret;
7413 }
7414
7415 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7416 {
7417         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7418                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7419                         FEATURE_CONTROL_LMCE;
7420         else
7421                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7422                         ~FEATURE_CONTROL_LMCE;
7423 }
7424
7425 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7426 {
7427         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7428         if (to_vmx(vcpu)->nested.nested_run_pending)
7429                 return 0;
7430         return 1;
7431 }
7432
7433 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7434 {
7435         struct vcpu_vmx *vmx = to_vmx(vcpu);
7436
7437         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7438         if (vmx->nested.smm.guest_mode)
7439                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7440
7441         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7442         vmx->nested.vmxon = false;
7443         vmx_clear_hlt(vcpu);
7444         return 0;
7445 }
7446
7447 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7448 {
7449         struct vcpu_vmx *vmx = to_vmx(vcpu);
7450         int ret;
7451
7452         if (vmx->nested.smm.vmxon) {
7453                 vmx->nested.vmxon = true;
7454                 vmx->nested.smm.vmxon = false;
7455         }
7456
7457         if (vmx->nested.smm.guest_mode) {
7458                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7459                 if (ret)
7460                         return ret;
7461
7462                 vmx->nested.smm.guest_mode = false;
7463         }
7464         return 0;
7465 }
7466
7467 static int enable_smi_window(struct kvm_vcpu *vcpu)
7468 {
7469         return 0;
7470 }
7471
7472 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7473 {
7474         return false;
7475 }
7476
7477 static __init int hardware_setup(void)
7478 {
7479         unsigned long host_bndcfgs;
7480         struct desc_ptr dt;
7481         int r, i;
7482
7483         rdmsrl_safe(MSR_EFER, &host_efer);
7484
7485         store_idt(&dt);
7486         host_idt_base = dt.address;
7487
7488         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7489                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7490
7491         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7492                 return -EIO;
7493
7494         if (boot_cpu_has(X86_FEATURE_NX))
7495                 kvm_enable_efer_bits(EFER_NX);
7496
7497         if (boot_cpu_has(X86_FEATURE_MPX)) {
7498                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7499                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7500         }
7501
7502         if (boot_cpu_has(X86_FEATURE_XSAVES))
7503                 rdmsrl(MSR_IA32_XSS, host_xss);
7504
7505         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7506             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7507                 enable_vpid = 0;
7508
7509         if (!cpu_has_vmx_ept() ||
7510             !cpu_has_vmx_ept_4levels() ||
7511             !cpu_has_vmx_ept_mt_wb() ||
7512             !cpu_has_vmx_invept_global())
7513                 enable_ept = 0;
7514
7515         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7516                 enable_ept_ad_bits = 0;
7517
7518         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7519                 enable_unrestricted_guest = 0;
7520
7521         if (!cpu_has_vmx_flexpriority())
7522                 flexpriority_enabled = 0;
7523
7524         if (!cpu_has_virtual_nmis())
7525                 enable_vnmi = 0;
7526
7527         /*
7528          * set_apic_access_page_addr() is used to reload apic access
7529          * page upon invalidation.  No need to do anything if not
7530          * using the APIC_ACCESS_ADDR VMCS field.
7531          */
7532         if (!flexpriority_enabled)
7533                 kvm_x86_ops->set_apic_access_page_addr = NULL;
7534
7535         if (!cpu_has_vmx_tpr_shadow())
7536                 kvm_x86_ops->update_cr8_intercept = NULL;
7537
7538         if (enable_ept && !cpu_has_vmx_ept_2m_page())
7539                 kvm_disable_largepages();
7540
7541 #if IS_ENABLED(CONFIG_HYPERV)
7542         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7543             && enable_ept) {
7544                 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7545                 kvm_x86_ops->tlb_remote_flush_with_range =
7546                                 hv_remote_flush_tlb_with_range;
7547         }
7548 #endif
7549
7550         if (!cpu_has_vmx_ple()) {
7551                 ple_gap = 0;
7552                 ple_window = 0;
7553                 ple_window_grow = 0;
7554                 ple_window_max = 0;
7555                 ple_window_shrink = 0;
7556         }
7557
7558         if (!cpu_has_vmx_apicv()) {
7559                 enable_apicv = 0;
7560                 kvm_x86_ops->sync_pir_to_irr = NULL;
7561         }
7562
7563         if (cpu_has_vmx_tsc_scaling()) {
7564                 kvm_has_tsc_control = true;
7565                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7566                 kvm_tsc_scaling_ratio_frac_bits = 48;
7567         }
7568
7569         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7570
7571         if (enable_ept)
7572                 vmx_enable_tdp();
7573         else
7574                 kvm_disable_tdp();
7575
7576         /*
7577          * Only enable PML when hardware supports PML feature, and both EPT
7578          * and EPT A/D bit features are enabled -- PML depends on them to work.
7579          */
7580         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7581                 enable_pml = 0;
7582
7583         if (!enable_pml) {
7584                 kvm_x86_ops->slot_enable_log_dirty = NULL;
7585                 kvm_x86_ops->slot_disable_log_dirty = NULL;
7586                 kvm_x86_ops->flush_log_dirty = NULL;
7587                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7588         }
7589
7590         if (!cpu_has_vmx_preemption_timer())
7591                 enable_preemption_timer = false;
7592
7593         if (enable_preemption_timer) {
7594                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7595                 u64 vmx_msr;
7596
7597                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7598                 cpu_preemption_timer_multi =
7599                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7600
7601                 if (tsc_khz)
7602                         use_timer_freq = (u64)tsc_khz * 1000;
7603                 use_timer_freq >>= cpu_preemption_timer_multi;
7604
7605                 /*
7606                  * KVM "disables" the preemption timer by setting it to its max
7607                  * value.  Don't use the timer if it might cause spurious exits
7608                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7609                  */
7610                 if (use_timer_freq > 0xffffffffu / 10)
7611                         enable_preemption_timer = false;
7612         }
7613
7614         if (!enable_preemption_timer) {
7615                 kvm_x86_ops->set_hv_timer = NULL;
7616                 kvm_x86_ops->cancel_hv_timer = NULL;
7617                 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7618         }
7619
7620         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7621
7622         kvm_mce_cap_supported |= MCG_LMCE_P;
7623
7624         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7625                 return -EINVAL;
7626         if (!enable_ept || !cpu_has_vmx_intel_pt())
7627                 pt_mode = PT_MODE_SYSTEM;
7628
7629         if (nested) {
7630                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7631                                            vmx_capability.ept, enable_apicv);
7632
7633                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7634                 if (r)
7635                         return r;
7636         }
7637
7638         r = alloc_kvm_area();
7639         if (r)
7640                 nested_vmx_hardware_unsetup();
7641         return r;
7642 }
7643
7644 static __exit void hardware_unsetup(void)
7645 {
7646         if (nested)
7647                 nested_vmx_hardware_unsetup();
7648
7649         free_kvm_area();
7650 }
7651
7652 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7653         .cpu_has_kvm_support = cpu_has_kvm_support,
7654         .disabled_by_bios = vmx_disabled_by_bios,
7655         .hardware_setup = hardware_setup,
7656         .hardware_unsetup = hardware_unsetup,
7657         .check_processor_compatibility = vmx_check_processor_compat,
7658         .hardware_enable = hardware_enable,
7659         .hardware_disable = hardware_disable,
7660         .cpu_has_accelerated_tpr = report_flexpriority,
7661         .has_emulated_msr = vmx_has_emulated_msr,
7662
7663         .vm_init = vmx_vm_init,
7664         .vm_alloc = vmx_vm_alloc,
7665         .vm_free = vmx_vm_free,
7666
7667         .vcpu_create = vmx_create_vcpu,
7668         .vcpu_free = vmx_free_vcpu,
7669         .vcpu_reset = vmx_vcpu_reset,
7670
7671         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7672         .vcpu_load = vmx_vcpu_load,
7673         .vcpu_put = vmx_vcpu_put,
7674
7675         .update_bp_intercept = update_exception_bitmap,
7676         .get_msr_feature = vmx_get_msr_feature,
7677         .get_msr = vmx_get_msr,
7678         .set_msr = vmx_set_msr,
7679         .get_segment_base = vmx_get_segment_base,
7680         .get_segment = vmx_get_segment,
7681         .set_segment = vmx_set_segment,
7682         .get_cpl = vmx_get_cpl,
7683         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7684         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7685         .decache_cr3 = vmx_decache_cr3,
7686         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7687         .set_cr0 = vmx_set_cr0,
7688         .set_cr3 = vmx_set_cr3,
7689         .set_cr4 = vmx_set_cr4,
7690         .set_efer = vmx_set_efer,
7691         .get_idt = vmx_get_idt,
7692         .set_idt = vmx_set_idt,
7693         .get_gdt = vmx_get_gdt,
7694         .set_gdt = vmx_set_gdt,
7695         .get_dr6 = vmx_get_dr6,
7696         .set_dr6 = vmx_set_dr6,
7697         .set_dr7 = vmx_set_dr7,
7698         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7699         .cache_reg = vmx_cache_reg,
7700         .get_rflags = vmx_get_rflags,
7701         .set_rflags = vmx_set_rflags,
7702
7703         .tlb_flush = vmx_flush_tlb,
7704         .tlb_flush_gva = vmx_flush_tlb_gva,
7705
7706         .run = vmx_vcpu_run,
7707         .handle_exit = vmx_handle_exit,
7708         .skip_emulated_instruction = skip_emulated_instruction,
7709         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7710         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7711         .patch_hypercall = vmx_patch_hypercall,
7712         .set_irq = vmx_inject_irq,
7713         .set_nmi = vmx_inject_nmi,
7714         .queue_exception = vmx_queue_exception,
7715         .cancel_injection = vmx_cancel_injection,
7716         .interrupt_allowed = vmx_interrupt_allowed,
7717         .nmi_allowed = vmx_nmi_allowed,
7718         .get_nmi_mask = vmx_get_nmi_mask,
7719         .set_nmi_mask = vmx_set_nmi_mask,
7720         .enable_nmi_window = enable_nmi_window,
7721         .enable_irq_window = enable_irq_window,
7722         .update_cr8_intercept = update_cr8_intercept,
7723         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7724         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7725         .get_enable_apicv = vmx_get_enable_apicv,
7726         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7727         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7728         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7729         .hwapic_irr_update = vmx_hwapic_irr_update,
7730         .hwapic_isr_update = vmx_hwapic_isr_update,
7731         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7732         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7733         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7734         .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7735
7736         .set_tss_addr = vmx_set_tss_addr,
7737         .set_identity_map_addr = vmx_set_identity_map_addr,
7738         .get_tdp_level = get_ept_level,
7739         .get_mt_mask = vmx_get_mt_mask,
7740
7741         .get_exit_info = vmx_get_exit_info,
7742
7743         .get_lpage_level = vmx_get_lpage_level,
7744
7745         .cpuid_update = vmx_cpuid_update,
7746
7747         .rdtscp_supported = vmx_rdtscp_supported,
7748         .invpcid_supported = vmx_invpcid_supported,
7749
7750         .set_supported_cpuid = vmx_set_supported_cpuid,
7751
7752         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7753
7754         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7755         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7756
7757         .set_tdp_cr3 = vmx_set_cr3,
7758
7759         .check_intercept = vmx_check_intercept,
7760         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7761         .mpx_supported = vmx_mpx_supported,
7762         .xsaves_supported = vmx_xsaves_supported,
7763         .umip_emulated = vmx_umip_emulated,
7764         .pt_supported = vmx_pt_supported,
7765
7766         .request_immediate_exit = vmx_request_immediate_exit,
7767
7768         .sched_in = vmx_sched_in,
7769
7770         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7771         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7772         .flush_log_dirty = vmx_flush_log_dirty,
7773         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7774         .write_log_dirty = vmx_write_pml_buffer,
7775
7776         .pre_block = vmx_pre_block,
7777         .post_block = vmx_post_block,
7778
7779         .pmu_ops = &intel_pmu_ops,
7780
7781         .update_pi_irte = vmx_update_pi_irte,
7782
7783 #ifdef CONFIG_X86_64
7784         .set_hv_timer = vmx_set_hv_timer,
7785         .cancel_hv_timer = vmx_cancel_hv_timer,
7786 #endif
7787
7788         .setup_mce = vmx_setup_mce,
7789
7790         .smi_allowed = vmx_smi_allowed,
7791         .pre_enter_smm = vmx_pre_enter_smm,
7792         .pre_leave_smm = vmx_pre_leave_smm,
7793         .enable_smi_window = enable_smi_window,
7794
7795         .check_nested_events = NULL,
7796         .get_nested_state = NULL,
7797         .set_nested_state = NULL,
7798         .get_vmcs12_pages = NULL,
7799         .nested_enable_evmcs = NULL,
7800         .nested_get_evmcs_version = NULL,
7801         .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7802 };
7803
7804 static void vmx_cleanup_l1d_flush(void)
7805 {
7806         if (vmx_l1d_flush_pages) {
7807                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7808                 vmx_l1d_flush_pages = NULL;
7809         }
7810         /* Restore state so sysfs ignores VMX */
7811         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7812 }
7813
7814 static void vmx_exit(void)
7815 {
7816 #ifdef CONFIG_KEXEC_CORE
7817         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7818         synchronize_rcu();
7819 #endif
7820
7821         kvm_exit();
7822
7823 #if IS_ENABLED(CONFIG_HYPERV)
7824         if (static_branch_unlikely(&enable_evmcs)) {
7825                 int cpu;
7826                 struct hv_vp_assist_page *vp_ap;
7827                 /*
7828                  * Reset everything to support using non-enlightened VMCS
7829                  * access later (e.g. when we reload the module with
7830                  * enlightened_vmcs=0)
7831                  */
7832                 for_each_online_cpu(cpu) {
7833                         vp_ap = hv_get_vp_assist_page(cpu);
7834
7835                         if (!vp_ap)
7836                                 continue;
7837
7838                         vp_ap->current_nested_vmcs = 0;
7839                         vp_ap->enlighten_vmentry = 0;
7840                 }
7841
7842                 static_branch_disable(&enable_evmcs);
7843         }
7844 #endif
7845         vmx_cleanup_l1d_flush();
7846 }
7847 module_exit(vmx_exit);
7848
7849 static int __init vmx_init(void)
7850 {
7851         int r;
7852
7853 #if IS_ENABLED(CONFIG_HYPERV)
7854         /*
7855          * Enlightened VMCS usage should be recommended and the host needs
7856          * to support eVMCS v1 or above. We can also disable eVMCS support
7857          * with module parameter.
7858          */
7859         if (enlightened_vmcs &&
7860             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7861             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7862             KVM_EVMCS_VERSION) {
7863                 int cpu;
7864
7865                 /* Check that we have assist pages on all online CPUs */
7866                 for_each_online_cpu(cpu) {
7867                         if (!hv_get_vp_assist_page(cpu)) {
7868                                 enlightened_vmcs = false;
7869                                 break;
7870                         }
7871                 }
7872
7873                 if (enlightened_vmcs) {
7874                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7875                         static_branch_enable(&enable_evmcs);
7876                 }
7877         } else {
7878                 enlightened_vmcs = false;
7879         }
7880 #endif
7881
7882         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7883                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7884         if (r)
7885                 return r;
7886
7887         /*
7888          * Must be called after kvm_init() so enable_ept is properly set
7889          * up. Hand the parameter mitigation value in which was stored in
7890          * the pre module init parser. If no parameter was given, it will
7891          * contain 'auto' which will be turned into the default 'cond'
7892          * mitigation mode.
7893          */
7894         if (boot_cpu_has(X86_BUG_L1TF)) {
7895                 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7896                 if (r) {
7897                         vmx_exit();
7898                         return r;
7899                 }
7900         }
7901
7902 #ifdef CONFIG_KEXEC_CORE
7903         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7904                            crash_vmclear_local_loaded_vmcss);
7905 #endif
7906         vmx_check_vmcs12_offsets();
7907
7908         return 0;
7909 }
7910 module_init(vmx_init);