Merge tag 'pci-v5.3-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[sfrench/cifs-2.6.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 /*
23  * Hyper-V requires all of these, so mark them as supported even though
24  * they are just treated the same as all-context.
25  */
26 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
27         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
28         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
29         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
30         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
31
32 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
33
34 enum {
35         VMX_VMREAD_BITMAP,
36         VMX_VMWRITE_BITMAP,
37         VMX_BITMAP_NR
38 };
39 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
40
41 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
42 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
43
44 struct shadow_vmcs_field {
45         u16     encoding;
46         u16     offset;
47 };
48 static struct shadow_vmcs_field shadow_read_only_fields[] = {
49 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
50 #include "vmcs_shadow_fields.h"
51 };
52 static int max_shadow_read_only_fields =
53         ARRAY_SIZE(shadow_read_only_fields);
54
55 static struct shadow_vmcs_field shadow_read_write_fields[] = {
56 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
57 #include "vmcs_shadow_fields.h"
58 };
59 static int max_shadow_read_write_fields =
60         ARRAY_SIZE(shadow_read_write_fields);
61
62 static void init_vmcs_shadow_fields(void)
63 {
64         int i, j;
65
66         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
67         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
68
69         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
70                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
71                 u16 field = entry.encoding;
72
73                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
74                     (i + 1 == max_shadow_read_only_fields ||
75                      shadow_read_only_fields[i + 1].encoding != field + 1))
76                         pr_err("Missing field from shadow_read_only_field %x\n",
77                                field + 1);
78
79                 clear_bit(field, vmx_vmread_bitmap);
80                 if (field & 1)
81 #ifdef CONFIG_X86_64
82                         continue;
83 #else
84                         entry.offset += sizeof(u32);
85 #endif
86                 shadow_read_only_fields[j++] = entry;
87         }
88         max_shadow_read_only_fields = j;
89
90         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
91                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
92                 u16 field = entry.encoding;
93
94                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
95                     (i + 1 == max_shadow_read_write_fields ||
96                      shadow_read_write_fields[i + 1].encoding != field + 1))
97                         pr_err("Missing field from shadow_read_write_field %x\n",
98                                field + 1);
99
100                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
101                           field <= GUEST_TR_AR_BYTES,
102                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
103
104                 /*
105                  * PML and the preemption timer can be emulated, but the
106                  * processor cannot vmwrite to fields that don't exist
107                  * on bare metal.
108                  */
109                 switch (field) {
110                 case GUEST_PML_INDEX:
111                         if (!cpu_has_vmx_pml())
112                                 continue;
113                         break;
114                 case VMX_PREEMPTION_TIMER_VALUE:
115                         if (!cpu_has_vmx_preemption_timer())
116                                 continue;
117                         break;
118                 case GUEST_INTR_STATUS:
119                         if (!cpu_has_vmx_apicv())
120                                 continue;
121                         break;
122                 default:
123                         break;
124                 }
125
126                 clear_bit(field, vmx_vmwrite_bitmap);
127                 clear_bit(field, vmx_vmread_bitmap);
128                 if (field & 1)
129 #ifdef CONFIG_X86_64
130                         continue;
131 #else
132                         entry.offset += sizeof(u32);
133 #endif
134                 shadow_read_write_fields[j++] = entry;
135         }
136         max_shadow_read_write_fields = j;
137 }
138
139 /*
140  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
141  * set the success or error code of an emulated VMX instruction (as specified
142  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
143  * instruction.
144  */
145 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
146 {
147         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
148                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
149                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
150         return kvm_skip_emulated_instruction(vcpu);
151 }
152
153 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
154 {
155         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
156                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
157                             X86_EFLAGS_SF | X86_EFLAGS_OF))
158                         | X86_EFLAGS_CF);
159         return kvm_skip_emulated_instruction(vcpu);
160 }
161
162 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
163                                 u32 vm_instruction_error)
164 {
165         struct vcpu_vmx *vmx = to_vmx(vcpu);
166
167         /*
168          * failValid writes the error number to the current VMCS, which
169          * can't be done if there isn't a current VMCS.
170          */
171         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
172                 return nested_vmx_failInvalid(vcpu);
173
174         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
175                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
176                             X86_EFLAGS_SF | X86_EFLAGS_OF))
177                         | X86_EFLAGS_ZF);
178         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
179         /*
180          * We don't need to force a shadow sync because
181          * VM_INSTRUCTION_ERROR is not shadowed
182          */
183         return kvm_skip_emulated_instruction(vcpu);
184 }
185
186 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
187 {
188         /* TODO: not to reset guest simply here. */
189         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
190         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
191 }
192
193 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
194 {
195         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
196         vmcs_write64(VMCS_LINK_POINTER, -1ull);
197         vmx->nested.need_vmcs12_to_shadow_sync = false;
198 }
199
200 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
201 {
202         struct vcpu_vmx *vmx = to_vmx(vcpu);
203
204         if (!vmx->nested.hv_evmcs)
205                 return;
206
207         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
208         vmx->nested.hv_evmcs_vmptr = -1ull;
209         vmx->nested.hv_evmcs = NULL;
210 }
211
212 /*
213  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
214  * just stops using VMX.
215  */
216 static void free_nested(struct kvm_vcpu *vcpu)
217 {
218         struct vcpu_vmx *vmx = to_vmx(vcpu);
219
220         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
221                 return;
222
223         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
224
225         vmx->nested.vmxon = false;
226         vmx->nested.smm.vmxon = false;
227         free_vpid(vmx->nested.vpid02);
228         vmx->nested.posted_intr_nv = -1;
229         vmx->nested.current_vmptr = -1ull;
230         if (enable_shadow_vmcs) {
231                 vmx_disable_shadow_vmcs(vmx);
232                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
233                 free_vmcs(vmx->vmcs01.shadow_vmcs);
234                 vmx->vmcs01.shadow_vmcs = NULL;
235         }
236         kfree(vmx->nested.cached_vmcs12);
237         vmx->nested.cached_vmcs12 = NULL;
238         kfree(vmx->nested.cached_shadow_vmcs12);
239         vmx->nested.cached_shadow_vmcs12 = NULL;
240         /* Unpin physical memory we referred to in the vmcs02 */
241         if (vmx->nested.apic_access_page) {
242                 kvm_release_page_dirty(vmx->nested.apic_access_page);
243                 vmx->nested.apic_access_page = NULL;
244         }
245         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
246         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
247         vmx->nested.pi_desc = NULL;
248
249         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
250
251         nested_release_evmcs(vcpu);
252
253         free_loaded_vmcs(&vmx->nested.vmcs02);
254 }
255
256 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
257                                      struct loaded_vmcs *prev)
258 {
259         struct vmcs_host_state *dest, *src;
260
261         if (unlikely(!vmx->guest_state_loaded))
262                 return;
263
264         src = &prev->host_state;
265         dest = &vmx->loaded_vmcs->host_state;
266
267         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
268         dest->ldt_sel = src->ldt_sel;
269 #ifdef CONFIG_X86_64
270         dest->ds_sel = src->ds_sel;
271         dest->es_sel = src->es_sel;
272 #endif
273 }
274
275 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
276 {
277         struct vcpu_vmx *vmx = to_vmx(vcpu);
278         struct loaded_vmcs *prev;
279         int cpu;
280
281         if (vmx->loaded_vmcs == vmcs)
282                 return;
283
284         cpu = get_cpu();
285         prev = vmx->loaded_vmcs;
286         vmx->loaded_vmcs = vmcs;
287         vmx_vcpu_load_vmcs(vcpu, cpu);
288         vmx_sync_vmcs_host_state(vmx, prev);
289         put_cpu();
290
291         vmx_segment_cache_clear(vmx);
292 }
293
294 /*
295  * Ensure that the current vmcs of the logical processor is the
296  * vmcs01 of the vcpu before calling free_nested().
297  */
298 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
299 {
300         vcpu_load(vcpu);
301         vmx_leave_nested(vcpu);
302         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
303         free_nested(vcpu);
304         vcpu_put(vcpu);
305 }
306
307 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
308                 struct x86_exception *fault)
309 {
310         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
311         struct vcpu_vmx *vmx = to_vmx(vcpu);
312         u32 exit_reason;
313         unsigned long exit_qualification = vcpu->arch.exit_qualification;
314
315         if (vmx->nested.pml_full) {
316                 exit_reason = EXIT_REASON_PML_FULL;
317                 vmx->nested.pml_full = false;
318                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
319         } else if (fault->error_code & PFERR_RSVD_MASK)
320                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
321         else
322                 exit_reason = EXIT_REASON_EPT_VIOLATION;
323
324         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
325         vmcs12->guest_physical_address = fault->address;
326 }
327
328 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
329 {
330         WARN_ON(mmu_is_nested(vcpu));
331
332         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
333         kvm_init_shadow_ept_mmu(vcpu,
334                         to_vmx(vcpu)->nested.msrs.ept_caps &
335                         VMX_EPT_EXECUTE_ONLY_BIT,
336                         nested_ept_ad_enabled(vcpu),
337                         nested_ept_get_cr3(vcpu));
338         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
339         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
340         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
341         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
342
343         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
344 }
345
346 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
347 {
348         vcpu->arch.mmu = &vcpu->arch.root_mmu;
349         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
350 }
351
352 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
353                                             u16 error_code)
354 {
355         bool inequality, bit;
356
357         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
358         inequality =
359                 (error_code & vmcs12->page_fault_error_code_mask) !=
360                  vmcs12->page_fault_error_code_match;
361         return inequality ^ bit;
362 }
363
364
365 /*
366  * KVM wants to inject page-faults which it got to the guest. This function
367  * checks whether in a nested guest, we need to inject them to L1 or L2.
368  */
369 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
370 {
371         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
372         unsigned int nr = vcpu->arch.exception.nr;
373         bool has_payload = vcpu->arch.exception.has_payload;
374         unsigned long payload = vcpu->arch.exception.payload;
375
376         if (nr == PF_VECTOR) {
377                 if (vcpu->arch.exception.nested_apf) {
378                         *exit_qual = vcpu->arch.apf.nested_apf_token;
379                         return 1;
380                 }
381                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
382                                                     vcpu->arch.exception.error_code)) {
383                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
384                         return 1;
385                 }
386         } else if (vmcs12->exception_bitmap & (1u << nr)) {
387                 if (nr == DB_VECTOR) {
388                         if (!has_payload) {
389                                 payload = vcpu->arch.dr6;
390                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
391                                 payload ^= DR6_RTM;
392                         }
393                         *exit_qual = payload;
394                 } else
395                         *exit_qual = 0;
396                 return 1;
397         }
398
399         return 0;
400 }
401
402
403 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
404                 struct x86_exception *fault)
405 {
406         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
407
408         WARN_ON(!is_guest_mode(vcpu));
409
410         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
411                 !to_vmx(vcpu)->nested.nested_run_pending) {
412                 vmcs12->vm_exit_intr_error_code = fault->error_code;
413                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
414                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
415                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
416                                   fault->address);
417         } else {
418                 kvm_inject_page_fault(vcpu, fault);
419         }
420 }
421
422 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
423 {
424         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
425 }
426
427 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
428                                                struct vmcs12 *vmcs12)
429 {
430         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
431                 return 0;
432
433         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
434             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
435                 return -EINVAL;
436
437         return 0;
438 }
439
440 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
441                                                 struct vmcs12 *vmcs12)
442 {
443         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
444                 return 0;
445
446         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
447                 return -EINVAL;
448
449         return 0;
450 }
451
452 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
453                                                 struct vmcs12 *vmcs12)
454 {
455         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
456                 return 0;
457
458         if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
459                 return -EINVAL;
460
461         return 0;
462 }
463
464 /*
465  * Check if MSR is intercepted for L01 MSR bitmap.
466  */
467 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
468 {
469         unsigned long *msr_bitmap;
470         int f = sizeof(unsigned long);
471
472         if (!cpu_has_vmx_msr_bitmap())
473                 return true;
474
475         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
476
477         if (msr <= 0x1fff) {
478                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
479         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
480                 msr &= 0x1fff;
481                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
482         }
483
484         return true;
485 }
486
487 /*
488  * If a msr is allowed by L0, we should check whether it is allowed by L1.
489  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
490  */
491 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
492                                                unsigned long *msr_bitmap_nested,
493                                                u32 msr, int type)
494 {
495         int f = sizeof(unsigned long);
496
497         /*
498          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
499          * have the write-low and read-high bitmap offsets the wrong way round.
500          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
501          */
502         if (msr <= 0x1fff) {
503                 if (type & MSR_TYPE_R &&
504                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
505                         /* read-low */
506                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
507
508                 if (type & MSR_TYPE_W &&
509                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
510                         /* write-low */
511                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
512
513         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
514                 msr &= 0x1fff;
515                 if (type & MSR_TYPE_R &&
516                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
517                         /* read-high */
518                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
519
520                 if (type & MSR_TYPE_W &&
521                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
522                         /* write-high */
523                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
524
525         }
526 }
527
528 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
529         int msr;
530
531         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
532                 unsigned word = msr / BITS_PER_LONG;
533
534                 msr_bitmap[word] = ~0;
535                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
536         }
537 }
538
539 /*
540  * Merge L0's and L1's MSR bitmap, return false to indicate that
541  * we do not use the hardware.
542  */
543 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
544                                                  struct vmcs12 *vmcs12)
545 {
546         int msr;
547         unsigned long *msr_bitmap_l1;
548         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
549         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
550
551         /* Nothing to do if the MSR bitmap is not in use.  */
552         if (!cpu_has_vmx_msr_bitmap() ||
553             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
554                 return false;
555
556         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
557                 return false;
558
559         msr_bitmap_l1 = (unsigned long *)map->hva;
560
561         /*
562          * To keep the control flow simple, pay eight 8-byte writes (sixteen
563          * 4-byte writes on 32-bit systems) up front to enable intercepts for
564          * the x2APIC MSR range and selectively disable them below.
565          */
566         enable_x2apic_msr_intercepts(msr_bitmap_l0);
567
568         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
569                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
570                         /*
571                          * L0 need not intercept reads for MSRs between 0x800
572                          * and 0x8ff, it just lets the processor take the value
573                          * from the virtual-APIC page; take those 256 bits
574                          * directly from the L1 bitmap.
575                          */
576                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
577                                 unsigned word = msr / BITS_PER_LONG;
578
579                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
580                         }
581                 }
582
583                 nested_vmx_disable_intercept_for_msr(
584                         msr_bitmap_l1, msr_bitmap_l0,
585                         X2APIC_MSR(APIC_TASKPRI),
586                         MSR_TYPE_R | MSR_TYPE_W);
587
588                 if (nested_cpu_has_vid(vmcs12)) {
589                         nested_vmx_disable_intercept_for_msr(
590                                 msr_bitmap_l1, msr_bitmap_l0,
591                                 X2APIC_MSR(APIC_EOI),
592                                 MSR_TYPE_W);
593                         nested_vmx_disable_intercept_for_msr(
594                                 msr_bitmap_l1, msr_bitmap_l0,
595                                 X2APIC_MSR(APIC_SELF_IPI),
596                                 MSR_TYPE_W);
597                 }
598         }
599
600         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
601         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
602                                              MSR_FS_BASE, MSR_TYPE_RW);
603
604         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
605                                              MSR_GS_BASE, MSR_TYPE_RW);
606
607         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
608                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
609
610         /*
611          * Checking the L0->L1 bitmap is trying to verify two things:
612          *
613          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
614          *    ensures that we do not accidentally generate an L02 MSR bitmap
615          *    from the L12 MSR bitmap that is too permissive.
616          * 2. That L1 or L2s have actually used the MSR. This avoids
617          *    unnecessarily merging of the bitmap if the MSR is unused. This
618          *    works properly because we only update the L01 MSR bitmap lazily.
619          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
620          *    updated to reflect this when L1 (or its L2s) actually write to
621          *    the MSR.
622          */
623         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
624                 nested_vmx_disable_intercept_for_msr(
625                                         msr_bitmap_l1, msr_bitmap_l0,
626                                         MSR_IA32_SPEC_CTRL,
627                                         MSR_TYPE_R | MSR_TYPE_W);
628
629         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
630                 nested_vmx_disable_intercept_for_msr(
631                                         msr_bitmap_l1, msr_bitmap_l0,
632                                         MSR_IA32_PRED_CMD,
633                                         MSR_TYPE_W);
634
635         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
636
637         return true;
638 }
639
640 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
641                                        struct vmcs12 *vmcs12)
642 {
643         struct kvm_host_map map;
644         struct vmcs12 *shadow;
645
646         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
647             vmcs12->vmcs_link_pointer == -1ull)
648                 return;
649
650         shadow = get_shadow_vmcs12(vcpu);
651
652         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
653                 return;
654
655         memcpy(shadow, map.hva, VMCS12_SIZE);
656         kvm_vcpu_unmap(vcpu, &map, false);
657 }
658
659 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
660                                               struct vmcs12 *vmcs12)
661 {
662         struct vcpu_vmx *vmx = to_vmx(vcpu);
663
664         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
665             vmcs12->vmcs_link_pointer == -1ull)
666                 return;
667
668         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
669                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
670 }
671
672 /*
673  * In nested virtualization, check if L1 has set
674  * VM_EXIT_ACK_INTR_ON_EXIT
675  */
676 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
677 {
678         return get_vmcs12(vcpu)->vm_exit_controls &
679                 VM_EXIT_ACK_INTR_ON_EXIT;
680 }
681
682 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
683 {
684         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
685 }
686
687 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
688                                           struct vmcs12 *vmcs12)
689 {
690         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
691             !page_address_valid(vcpu, vmcs12->apic_access_addr))
692                 return -EINVAL;
693         else
694                 return 0;
695 }
696
697 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
698                                            struct vmcs12 *vmcs12)
699 {
700         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
701             !nested_cpu_has_apic_reg_virt(vmcs12) &&
702             !nested_cpu_has_vid(vmcs12) &&
703             !nested_cpu_has_posted_intr(vmcs12))
704                 return 0;
705
706         /*
707          * If virtualize x2apic mode is enabled,
708          * virtualize apic access must be disabled.
709          */
710         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
711             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
712                 return -EINVAL;
713
714         /*
715          * If virtual interrupt delivery is enabled,
716          * we must exit on external interrupts.
717          */
718         if (nested_cpu_has_vid(vmcs12) &&
719            !nested_exit_on_intr(vcpu))
720                 return -EINVAL;
721
722         /*
723          * bits 15:8 should be zero in posted_intr_nv,
724          * the descriptor address has been already checked
725          * in nested_get_vmcs12_pages.
726          *
727          * bits 5:0 of posted_intr_desc_addr should be zero.
728          */
729         if (nested_cpu_has_posted_intr(vmcs12) &&
730            (!nested_cpu_has_vid(vmcs12) ||
731             !nested_exit_intr_ack_set(vcpu) ||
732             (vmcs12->posted_intr_nv & 0xff00) ||
733             (vmcs12->posted_intr_desc_addr & 0x3f) ||
734             (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
735                 return -EINVAL;
736
737         /* tpr shadow is needed by all apicv features. */
738         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
739                 return -EINVAL;
740
741         return 0;
742 }
743
744 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
745                                        u32 count, u64 addr)
746 {
747         int maxphyaddr;
748
749         if (count == 0)
750                 return 0;
751         maxphyaddr = cpuid_maxphyaddr(vcpu);
752         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
753             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
754                 return -EINVAL;
755
756         return 0;
757 }
758
759 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
760                                                      struct vmcs12 *vmcs12)
761 {
762         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
763                                         vmcs12->vm_exit_msr_load_addr) ||
764             nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
765                                         vmcs12->vm_exit_msr_store_addr))
766                 return -EINVAL;
767
768         return 0;
769 }
770
771 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
772                                                       struct vmcs12 *vmcs12)
773 {
774         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
775                                         vmcs12->vm_entry_msr_load_addr))
776                 return -EINVAL;
777
778         return 0;
779 }
780
781 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
782                                          struct vmcs12 *vmcs12)
783 {
784         if (!nested_cpu_has_pml(vmcs12))
785                 return 0;
786
787         if (!nested_cpu_has_ept(vmcs12) ||
788             !page_address_valid(vcpu, vmcs12->pml_address))
789                 return -EINVAL;
790
791         return 0;
792 }
793
794 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
795                                                         struct vmcs12 *vmcs12)
796 {
797         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
798             !nested_cpu_has_ept(vmcs12))
799                 return -EINVAL;
800         return 0;
801 }
802
803 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
804                                                          struct vmcs12 *vmcs12)
805 {
806         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
807             !nested_cpu_has_ept(vmcs12))
808                 return -EINVAL;
809         return 0;
810 }
811
812 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
813                                                  struct vmcs12 *vmcs12)
814 {
815         if (!nested_cpu_has_shadow_vmcs(vmcs12))
816                 return 0;
817
818         if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
819             !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
820                 return -EINVAL;
821
822         return 0;
823 }
824
825 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
826                                        struct vmx_msr_entry *e)
827 {
828         /* x2APIC MSR accesses are not allowed */
829         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
830                 return -EINVAL;
831         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
832             e->index == MSR_IA32_UCODE_REV)
833                 return -EINVAL;
834         if (e->reserved != 0)
835                 return -EINVAL;
836         return 0;
837 }
838
839 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
840                                      struct vmx_msr_entry *e)
841 {
842         if (e->index == MSR_FS_BASE ||
843             e->index == MSR_GS_BASE ||
844             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
845             nested_vmx_msr_check_common(vcpu, e))
846                 return -EINVAL;
847         return 0;
848 }
849
850 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
851                                       struct vmx_msr_entry *e)
852 {
853         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
854             nested_vmx_msr_check_common(vcpu, e))
855                 return -EINVAL;
856         return 0;
857 }
858
859 /*
860  * Load guest's/host's msr at nested entry/exit.
861  * return 0 for success, entry index for failure.
862  */
863 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
864 {
865         u32 i;
866         struct vmx_msr_entry e;
867         struct msr_data msr;
868
869         msr.host_initiated = false;
870         for (i = 0; i < count; i++) {
871                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
872                                         &e, sizeof(e))) {
873                         pr_debug_ratelimited(
874                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
875                                 __func__, i, gpa + i * sizeof(e));
876                         goto fail;
877                 }
878                 if (nested_vmx_load_msr_check(vcpu, &e)) {
879                         pr_debug_ratelimited(
880                                 "%s check failed (%u, 0x%x, 0x%x)\n",
881                                 __func__, i, e.index, e.reserved);
882                         goto fail;
883                 }
884                 msr.index = e.index;
885                 msr.data = e.value;
886                 if (kvm_set_msr(vcpu, &msr)) {
887                         pr_debug_ratelimited(
888                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
889                                 __func__, i, e.index, e.value);
890                         goto fail;
891                 }
892         }
893         return 0;
894 fail:
895         return i + 1;
896 }
897
898 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
899 {
900         u32 i;
901         struct vmx_msr_entry e;
902
903         for (i = 0; i < count; i++) {
904                 struct msr_data msr_info;
905                 if (kvm_vcpu_read_guest(vcpu,
906                                         gpa + i * sizeof(e),
907                                         &e, 2 * sizeof(u32))) {
908                         pr_debug_ratelimited(
909                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
910                                 __func__, i, gpa + i * sizeof(e));
911                         return -EINVAL;
912                 }
913                 if (nested_vmx_store_msr_check(vcpu, &e)) {
914                         pr_debug_ratelimited(
915                                 "%s check failed (%u, 0x%x, 0x%x)\n",
916                                 __func__, i, e.index, e.reserved);
917                         return -EINVAL;
918                 }
919                 msr_info.host_initiated = false;
920                 msr_info.index = e.index;
921                 if (kvm_get_msr(vcpu, &msr_info)) {
922                         pr_debug_ratelimited(
923                                 "%s cannot read MSR (%u, 0x%x)\n",
924                                 __func__, i, e.index);
925                         return -EINVAL;
926                 }
927                 if (kvm_vcpu_write_guest(vcpu,
928                                          gpa + i * sizeof(e) +
929                                              offsetof(struct vmx_msr_entry, value),
930                                          &msr_info.data, sizeof(msr_info.data))) {
931                         pr_debug_ratelimited(
932                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
933                                 __func__, i, e.index, msr_info.data);
934                         return -EINVAL;
935                 }
936         }
937         return 0;
938 }
939
940 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
941 {
942         unsigned long invalid_mask;
943
944         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
945         return (val & invalid_mask) == 0;
946 }
947
948 /*
949  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
950  * emulating VM entry into a guest with EPT enabled.
951  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
952  * is assigned to entry_failure_code on failure.
953  */
954 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
955                                u32 *entry_failure_code)
956 {
957         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
958                 if (!nested_cr3_valid(vcpu, cr3)) {
959                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
960                         return -EINVAL;
961                 }
962
963                 /*
964                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
965                  * must not be dereferenced.
966                  */
967                 if (is_pae_paging(vcpu) && !nested_ept) {
968                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
969                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
970                                 return -EINVAL;
971                         }
972                 }
973         }
974
975         if (!nested_ept)
976                 kvm_mmu_new_cr3(vcpu, cr3, false);
977
978         vcpu->arch.cr3 = cr3;
979         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
980
981         kvm_init_mmu(vcpu, false);
982
983         return 0;
984 }
985
986 /*
987  * Returns if KVM is able to config CPU to tag TLB entries
988  * populated by L2 differently than TLB entries populated
989  * by L1.
990  *
991  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
992  *
993  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
994  * with different VPID (L1 entries are tagged with vmx->vpid
995  * while L2 entries are tagged with vmx->nested.vpid02).
996  */
997 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
998 {
999         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1000
1001         return nested_cpu_has_ept(vmcs12) ||
1002                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1003 }
1004
1005 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1006 {
1007         struct vcpu_vmx *vmx = to_vmx(vcpu);
1008
1009         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1010 }
1011
1012
1013 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1014 {
1015         return fixed_bits_valid(control, low, high);
1016 }
1017
1018 static inline u64 vmx_control_msr(u32 low, u32 high)
1019 {
1020         return low | ((u64)high << 32);
1021 }
1022
1023 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1024 {
1025         superset &= mask;
1026         subset &= mask;
1027
1028         return (superset | subset) == superset;
1029 }
1030
1031 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1032 {
1033         const u64 feature_and_reserved =
1034                 /* feature (except bit 48; see below) */
1035                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1036                 /* reserved */
1037                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1038         u64 vmx_basic = vmx->nested.msrs.basic;
1039
1040         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1041                 return -EINVAL;
1042
1043         /*
1044          * KVM does not emulate a version of VMX that constrains physical
1045          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1046          */
1047         if (data & BIT_ULL(48))
1048                 return -EINVAL;
1049
1050         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1051             vmx_basic_vmcs_revision_id(data))
1052                 return -EINVAL;
1053
1054         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1055                 return -EINVAL;
1056
1057         vmx->nested.msrs.basic = data;
1058         return 0;
1059 }
1060
1061 static int
1062 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1063 {
1064         u64 supported;
1065         u32 *lowp, *highp;
1066
1067         switch (msr_index) {
1068         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1069                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1070                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1071                 break;
1072         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1073                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1074                 highp = &vmx->nested.msrs.procbased_ctls_high;
1075                 break;
1076         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1077                 lowp = &vmx->nested.msrs.exit_ctls_low;
1078                 highp = &vmx->nested.msrs.exit_ctls_high;
1079                 break;
1080         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1081                 lowp = &vmx->nested.msrs.entry_ctls_low;
1082                 highp = &vmx->nested.msrs.entry_ctls_high;
1083                 break;
1084         case MSR_IA32_VMX_PROCBASED_CTLS2:
1085                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1086                 highp = &vmx->nested.msrs.secondary_ctls_high;
1087                 break;
1088         default:
1089                 BUG();
1090         }
1091
1092         supported = vmx_control_msr(*lowp, *highp);
1093
1094         /* Check must-be-1 bits are still 1. */
1095         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1096                 return -EINVAL;
1097
1098         /* Check must-be-0 bits are still 0. */
1099         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1100                 return -EINVAL;
1101
1102         *lowp = data;
1103         *highp = data >> 32;
1104         return 0;
1105 }
1106
1107 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1108 {
1109         const u64 feature_and_reserved_bits =
1110                 /* feature */
1111                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1112                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1113                 /* reserved */
1114                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1115         u64 vmx_misc;
1116
1117         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1118                                    vmx->nested.msrs.misc_high);
1119
1120         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1121                 return -EINVAL;
1122
1123         if ((vmx->nested.msrs.pinbased_ctls_high &
1124              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1125             vmx_misc_preemption_timer_rate(data) !=
1126             vmx_misc_preemption_timer_rate(vmx_misc))
1127                 return -EINVAL;
1128
1129         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1130                 return -EINVAL;
1131
1132         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1133                 return -EINVAL;
1134
1135         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1136                 return -EINVAL;
1137
1138         vmx->nested.msrs.misc_low = data;
1139         vmx->nested.msrs.misc_high = data >> 32;
1140
1141         return 0;
1142 }
1143
1144 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1145 {
1146         u64 vmx_ept_vpid_cap;
1147
1148         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1149                                            vmx->nested.msrs.vpid_caps);
1150
1151         /* Every bit is either reserved or a feature bit. */
1152         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1153                 return -EINVAL;
1154
1155         vmx->nested.msrs.ept_caps = data;
1156         vmx->nested.msrs.vpid_caps = data >> 32;
1157         return 0;
1158 }
1159
1160 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1161 {
1162         u64 *msr;
1163
1164         switch (msr_index) {
1165         case MSR_IA32_VMX_CR0_FIXED0:
1166                 msr = &vmx->nested.msrs.cr0_fixed0;
1167                 break;
1168         case MSR_IA32_VMX_CR4_FIXED0:
1169                 msr = &vmx->nested.msrs.cr4_fixed0;
1170                 break;
1171         default:
1172                 BUG();
1173         }
1174
1175         /*
1176          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1177          * must be 1 in the restored value.
1178          */
1179         if (!is_bitwise_subset(data, *msr, -1ULL))
1180                 return -EINVAL;
1181
1182         *msr = data;
1183         return 0;
1184 }
1185
1186 /*
1187  * Called when userspace is restoring VMX MSRs.
1188  *
1189  * Returns 0 on success, non-0 otherwise.
1190  */
1191 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1192 {
1193         struct vcpu_vmx *vmx = to_vmx(vcpu);
1194
1195         /*
1196          * Don't allow changes to the VMX capability MSRs while the vCPU
1197          * is in VMX operation.
1198          */
1199         if (vmx->nested.vmxon)
1200                 return -EBUSY;
1201
1202         switch (msr_index) {
1203         case MSR_IA32_VMX_BASIC:
1204                 return vmx_restore_vmx_basic(vmx, data);
1205         case MSR_IA32_VMX_PINBASED_CTLS:
1206         case MSR_IA32_VMX_PROCBASED_CTLS:
1207         case MSR_IA32_VMX_EXIT_CTLS:
1208         case MSR_IA32_VMX_ENTRY_CTLS:
1209                 /*
1210                  * The "non-true" VMX capability MSRs are generated from the
1211                  * "true" MSRs, so we do not support restoring them directly.
1212                  *
1213                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1214                  * should restore the "true" MSRs with the must-be-1 bits
1215                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1216                  * DEFAULT SETTINGS".
1217                  */
1218                 return -EINVAL;
1219         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1220         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1221         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1222         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1223         case MSR_IA32_VMX_PROCBASED_CTLS2:
1224                 return vmx_restore_control_msr(vmx, msr_index, data);
1225         case MSR_IA32_VMX_MISC:
1226                 return vmx_restore_vmx_misc(vmx, data);
1227         case MSR_IA32_VMX_CR0_FIXED0:
1228         case MSR_IA32_VMX_CR4_FIXED0:
1229                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1230         case MSR_IA32_VMX_CR0_FIXED1:
1231         case MSR_IA32_VMX_CR4_FIXED1:
1232                 /*
1233                  * These MSRs are generated based on the vCPU's CPUID, so we
1234                  * do not support restoring them directly.
1235                  */
1236                 return -EINVAL;
1237         case MSR_IA32_VMX_EPT_VPID_CAP:
1238                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1239         case MSR_IA32_VMX_VMCS_ENUM:
1240                 vmx->nested.msrs.vmcs_enum = data;
1241                 return 0;
1242         case MSR_IA32_VMX_VMFUNC:
1243                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1244                         return -EINVAL;
1245                 vmx->nested.msrs.vmfunc_controls = data;
1246                 return 0;
1247         default:
1248                 /*
1249                  * The rest of the VMX capability MSRs do not support restore.
1250                  */
1251                 return -EINVAL;
1252         }
1253 }
1254
1255 /* Returns 0 on success, non-0 otherwise. */
1256 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1257 {
1258         switch (msr_index) {
1259         case MSR_IA32_VMX_BASIC:
1260                 *pdata = msrs->basic;
1261                 break;
1262         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1263         case MSR_IA32_VMX_PINBASED_CTLS:
1264                 *pdata = vmx_control_msr(
1265                         msrs->pinbased_ctls_low,
1266                         msrs->pinbased_ctls_high);
1267                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1268                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1269                 break;
1270         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1271         case MSR_IA32_VMX_PROCBASED_CTLS:
1272                 *pdata = vmx_control_msr(
1273                         msrs->procbased_ctls_low,
1274                         msrs->procbased_ctls_high);
1275                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1276                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1277                 break;
1278         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1279         case MSR_IA32_VMX_EXIT_CTLS:
1280                 *pdata = vmx_control_msr(
1281                         msrs->exit_ctls_low,
1282                         msrs->exit_ctls_high);
1283                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1284                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1285                 break;
1286         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1287         case MSR_IA32_VMX_ENTRY_CTLS:
1288                 *pdata = vmx_control_msr(
1289                         msrs->entry_ctls_low,
1290                         msrs->entry_ctls_high);
1291                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1292                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1293                 break;
1294         case MSR_IA32_VMX_MISC:
1295                 *pdata = vmx_control_msr(
1296                         msrs->misc_low,
1297                         msrs->misc_high);
1298                 break;
1299         case MSR_IA32_VMX_CR0_FIXED0:
1300                 *pdata = msrs->cr0_fixed0;
1301                 break;
1302         case MSR_IA32_VMX_CR0_FIXED1:
1303                 *pdata = msrs->cr0_fixed1;
1304                 break;
1305         case MSR_IA32_VMX_CR4_FIXED0:
1306                 *pdata = msrs->cr4_fixed0;
1307                 break;
1308         case MSR_IA32_VMX_CR4_FIXED1:
1309                 *pdata = msrs->cr4_fixed1;
1310                 break;
1311         case MSR_IA32_VMX_VMCS_ENUM:
1312                 *pdata = msrs->vmcs_enum;
1313                 break;
1314         case MSR_IA32_VMX_PROCBASED_CTLS2:
1315                 *pdata = vmx_control_msr(
1316                         msrs->secondary_ctls_low,
1317                         msrs->secondary_ctls_high);
1318                 break;
1319         case MSR_IA32_VMX_EPT_VPID_CAP:
1320                 *pdata = msrs->ept_caps |
1321                         ((u64)msrs->vpid_caps << 32);
1322                 break;
1323         case MSR_IA32_VMX_VMFUNC:
1324                 *pdata = msrs->vmfunc_controls;
1325                 break;
1326         default:
1327                 return 1;
1328         }
1329
1330         return 0;
1331 }
1332
1333 /*
1334  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1335  * been modified by the L1 guest.  Note, "writable" in this context means
1336  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1337  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1338  * VM-exit information fields (which are actually writable if the vCPU is
1339  * configured to support "VMWRITE to any supported field in the VMCS").
1340  */
1341 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1342 {
1343         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1344         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1345         struct shadow_vmcs_field field;
1346         unsigned long val;
1347         int i;
1348
1349         if (WARN_ON(!shadow_vmcs))
1350                 return;
1351
1352         preempt_disable();
1353
1354         vmcs_load(shadow_vmcs);
1355
1356         for (i = 0; i < max_shadow_read_write_fields; i++) {
1357                 field = shadow_read_write_fields[i];
1358                 val = __vmcs_readl(field.encoding);
1359                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1360         }
1361
1362         vmcs_clear(shadow_vmcs);
1363         vmcs_load(vmx->loaded_vmcs->vmcs);
1364
1365         preempt_enable();
1366 }
1367
1368 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1369 {
1370         const struct shadow_vmcs_field *fields[] = {
1371                 shadow_read_write_fields,
1372                 shadow_read_only_fields
1373         };
1374         const int max_fields[] = {
1375                 max_shadow_read_write_fields,
1376                 max_shadow_read_only_fields
1377         };
1378         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1379         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1380         struct shadow_vmcs_field field;
1381         unsigned long val;
1382         int i, q;
1383
1384         if (WARN_ON(!shadow_vmcs))
1385                 return;
1386
1387         vmcs_load(shadow_vmcs);
1388
1389         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1390                 for (i = 0; i < max_fields[q]; i++) {
1391                         field = fields[q][i];
1392                         val = vmcs12_read_any(vmcs12, field.encoding,
1393                                               field.offset);
1394                         __vmcs_writel(field.encoding, val);
1395                 }
1396         }
1397
1398         vmcs_clear(shadow_vmcs);
1399         vmcs_load(vmx->loaded_vmcs->vmcs);
1400 }
1401
1402 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1403 {
1404         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1405         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1406
1407         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1408         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1409         vmcs12->guest_rip = evmcs->guest_rip;
1410
1411         if (unlikely(!(evmcs->hv_clean_fields &
1412                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1413                 vmcs12->guest_rsp = evmcs->guest_rsp;
1414                 vmcs12->guest_rflags = evmcs->guest_rflags;
1415                 vmcs12->guest_interruptibility_info =
1416                         evmcs->guest_interruptibility_info;
1417         }
1418
1419         if (unlikely(!(evmcs->hv_clean_fields &
1420                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1421                 vmcs12->cpu_based_vm_exec_control =
1422                         evmcs->cpu_based_vm_exec_control;
1423         }
1424
1425         if (unlikely(!(evmcs->hv_clean_fields &
1426                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1427                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1428         }
1429
1430         if (unlikely(!(evmcs->hv_clean_fields &
1431                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1432                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1433         }
1434
1435         if (unlikely(!(evmcs->hv_clean_fields &
1436                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1437                 vmcs12->vm_entry_intr_info_field =
1438                         evmcs->vm_entry_intr_info_field;
1439                 vmcs12->vm_entry_exception_error_code =
1440                         evmcs->vm_entry_exception_error_code;
1441                 vmcs12->vm_entry_instruction_len =
1442                         evmcs->vm_entry_instruction_len;
1443         }
1444
1445         if (unlikely(!(evmcs->hv_clean_fields &
1446                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1447                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1448                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1449                 vmcs12->host_cr0 = evmcs->host_cr0;
1450                 vmcs12->host_cr3 = evmcs->host_cr3;
1451                 vmcs12->host_cr4 = evmcs->host_cr4;
1452                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1453                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1454                 vmcs12->host_rip = evmcs->host_rip;
1455                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1456                 vmcs12->host_es_selector = evmcs->host_es_selector;
1457                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1458                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1459                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1460                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1461                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1462                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1463         }
1464
1465         if (unlikely(!(evmcs->hv_clean_fields &
1466                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1467                 vmcs12->pin_based_vm_exec_control =
1468                         evmcs->pin_based_vm_exec_control;
1469                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1470                 vmcs12->secondary_vm_exec_control =
1471                         evmcs->secondary_vm_exec_control;
1472         }
1473
1474         if (unlikely(!(evmcs->hv_clean_fields &
1475                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1476                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1477                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1478         }
1479
1480         if (unlikely(!(evmcs->hv_clean_fields &
1481                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1482                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1483         }
1484
1485         if (unlikely(!(evmcs->hv_clean_fields &
1486                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1487                 vmcs12->guest_es_base = evmcs->guest_es_base;
1488                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1489                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1490                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1491                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1492                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1493                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1494                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1495                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1496                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1497                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1498                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1499                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1500                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1501                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1502                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1503                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1504                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1505                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1506                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1507                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1508                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1509                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1510                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1511                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1512                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1513                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1514                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1515                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1516                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1517                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1518                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1519                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1520                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1521                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1522                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1523         }
1524
1525         if (unlikely(!(evmcs->hv_clean_fields &
1526                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1527                 vmcs12->tsc_offset = evmcs->tsc_offset;
1528                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1529                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1530         }
1531
1532         if (unlikely(!(evmcs->hv_clean_fields &
1533                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1534                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1535                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1536                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1537                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1538                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1539                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1540                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1541                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1542         }
1543
1544         if (unlikely(!(evmcs->hv_clean_fields &
1545                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1546                 vmcs12->host_fs_base = evmcs->host_fs_base;
1547                 vmcs12->host_gs_base = evmcs->host_gs_base;
1548                 vmcs12->host_tr_base = evmcs->host_tr_base;
1549                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1550                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1551                 vmcs12->host_rsp = evmcs->host_rsp;
1552         }
1553
1554         if (unlikely(!(evmcs->hv_clean_fields &
1555                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1556                 vmcs12->ept_pointer = evmcs->ept_pointer;
1557                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1558         }
1559
1560         if (unlikely(!(evmcs->hv_clean_fields &
1561                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1562                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1563                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1564                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1565                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1566                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1567                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1568                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1569                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1570                 vmcs12->guest_pending_dbg_exceptions =
1571                         evmcs->guest_pending_dbg_exceptions;
1572                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1573                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1574                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1575                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1576                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1577         }
1578
1579         /*
1580          * Not used?
1581          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1582          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1583          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1584          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1585          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1586          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1587          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1588          * vmcs12->page_fault_error_code_mask =
1589          *              evmcs->page_fault_error_code_mask;
1590          * vmcs12->page_fault_error_code_match =
1591          *              evmcs->page_fault_error_code_match;
1592          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1593          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1594          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1595          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1596          */
1597
1598         /*
1599          * Read only fields:
1600          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1601          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1602          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1603          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1604          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1605          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1606          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1607          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1608          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1609          * vmcs12->exit_qualification = evmcs->exit_qualification;
1610          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1611          *
1612          * Not present in struct vmcs12:
1613          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1614          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1615          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1616          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1617          */
1618
1619         return 0;
1620 }
1621
1622 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1623 {
1624         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1625         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1626
1627         /*
1628          * Should not be changed by KVM:
1629          *
1630          * evmcs->host_es_selector = vmcs12->host_es_selector;
1631          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1632          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1633          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1634          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1635          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1636          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1637          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1638          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1639          * evmcs->host_cr0 = vmcs12->host_cr0;
1640          * evmcs->host_cr3 = vmcs12->host_cr3;
1641          * evmcs->host_cr4 = vmcs12->host_cr4;
1642          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1643          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1644          * evmcs->host_rip = vmcs12->host_rip;
1645          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1646          * evmcs->host_fs_base = vmcs12->host_fs_base;
1647          * evmcs->host_gs_base = vmcs12->host_gs_base;
1648          * evmcs->host_tr_base = vmcs12->host_tr_base;
1649          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1650          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1651          * evmcs->host_rsp = vmcs12->host_rsp;
1652          * sync_vmcs02_to_vmcs12() doesn't read these:
1653          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1654          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1655          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1656          * evmcs->ept_pointer = vmcs12->ept_pointer;
1657          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1658          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1659          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1660          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1661          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1662          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1663          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1664          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1665          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1666          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1667          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1668          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1669          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1670          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1671          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1672          * evmcs->page_fault_error_code_mask =
1673          *              vmcs12->page_fault_error_code_mask;
1674          * evmcs->page_fault_error_code_match =
1675          *              vmcs12->page_fault_error_code_match;
1676          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1677          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1678          * evmcs->tsc_offset = vmcs12->tsc_offset;
1679          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1680          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1681          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1682          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1683          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1684          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1685          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1686          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1687          *
1688          * Not present in struct vmcs12:
1689          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1690          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1691          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1692          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1693          */
1694
1695         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1696         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1697         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1698         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1699         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1700         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1701         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1702         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1703
1704         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1705         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1706         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1707         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1708         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1709         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1710         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1711         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1712         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1713         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1714
1715         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1716         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1717         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1718         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1719         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1720         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1721         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1722         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1723
1724         evmcs->guest_es_base = vmcs12->guest_es_base;
1725         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1726         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1727         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1728         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1729         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1730         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1731         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1732         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1733         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1734
1735         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1736         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1737
1738         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1739         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1740         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1741         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1742
1743         evmcs->guest_pending_dbg_exceptions =
1744                 vmcs12->guest_pending_dbg_exceptions;
1745         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1746         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1747
1748         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1749         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1750
1751         evmcs->guest_cr0 = vmcs12->guest_cr0;
1752         evmcs->guest_cr3 = vmcs12->guest_cr3;
1753         evmcs->guest_cr4 = vmcs12->guest_cr4;
1754         evmcs->guest_dr7 = vmcs12->guest_dr7;
1755
1756         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1757
1758         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1759         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1760         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1761         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1762         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1763         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1764         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1765         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1766
1767         evmcs->exit_qualification = vmcs12->exit_qualification;
1768
1769         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1770         evmcs->guest_rsp = vmcs12->guest_rsp;
1771         evmcs->guest_rflags = vmcs12->guest_rflags;
1772
1773         evmcs->guest_interruptibility_info =
1774                 vmcs12->guest_interruptibility_info;
1775         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1776         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1777         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1778         evmcs->vm_entry_exception_error_code =
1779                 vmcs12->vm_entry_exception_error_code;
1780         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1781
1782         evmcs->guest_rip = vmcs12->guest_rip;
1783
1784         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1785
1786         return 0;
1787 }
1788
1789 /*
1790  * This is an equivalent of the nested hypervisor executing the vmptrld
1791  * instruction.
1792  */
1793 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1794                                                  bool from_launch)
1795 {
1796         struct vcpu_vmx *vmx = to_vmx(vcpu);
1797         bool evmcs_gpa_changed = false;
1798         u64 evmcs_gpa;
1799
1800         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1801                 return 1;
1802
1803         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1804                 return 1;
1805
1806         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1807                 if (!vmx->nested.hv_evmcs)
1808                         vmx->nested.current_vmptr = -1ull;
1809
1810                 nested_release_evmcs(vcpu);
1811
1812                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1813                                  &vmx->nested.hv_evmcs_map))
1814                         return 0;
1815
1816                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1817
1818                 /*
1819                  * Currently, KVM only supports eVMCS version 1
1820                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1821                  * value to first u32 field of eVMCS which should specify eVMCS
1822                  * VersionNumber.
1823                  *
1824                  * Guest should be aware of supported eVMCS versions by host by
1825                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1826                  * expected to set this CPUID leaf according to the value
1827                  * returned in vmcs_version from nested_enable_evmcs().
1828                  *
1829                  * However, it turns out that Microsoft Hyper-V fails to comply
1830                  * to their own invented interface: When Hyper-V use eVMCS, it
1831                  * just sets first u32 field of eVMCS to revision_id specified
1832                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1833                  * which is one of the supported versions specified in
1834                  * CPUID.0x4000000A.EAX[0:15].
1835                  *
1836                  * To overcome Hyper-V bug, we accept here either a supported
1837                  * eVMCS version or VMCS12 revision_id as valid values for first
1838                  * u32 field of eVMCS.
1839                  */
1840                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1841                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1842                         nested_release_evmcs(vcpu);
1843                         return 0;
1844                 }
1845
1846                 vmx->nested.dirty_vmcs12 = true;
1847                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1848
1849                 evmcs_gpa_changed = true;
1850                 /*
1851                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1852                  * reloaded from guest's memory (read only fields, fields not
1853                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1854                  * are no leftovers.
1855                  */
1856                 if (from_launch) {
1857                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1858                         memset(vmcs12, 0, sizeof(*vmcs12));
1859                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1860                 }
1861
1862         }
1863
1864         /*
1865          * Clean fields data can't de used on VMLAUNCH and when we switch
1866          * between different L2 guests as KVM keeps a single VMCS12 per L1.
1867          */
1868         if (from_launch || evmcs_gpa_changed)
1869                 vmx->nested.hv_evmcs->hv_clean_fields &=
1870                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1871
1872         return 1;
1873 }
1874
1875 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1876 {
1877         struct vcpu_vmx *vmx = to_vmx(vcpu);
1878
1879         /*
1880          * hv_evmcs may end up being not mapped after migration (when
1881          * L2 was running), map it here to make sure vmcs12 changes are
1882          * properly reflected.
1883          */
1884         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1885                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1886
1887         if (vmx->nested.hv_evmcs) {
1888                 copy_vmcs12_to_enlightened(vmx);
1889                 /* All fields are clean */
1890                 vmx->nested.hv_evmcs->hv_clean_fields |=
1891                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1892         } else {
1893                 copy_vmcs12_to_shadow(vmx);
1894         }
1895
1896         vmx->nested.need_vmcs12_to_shadow_sync = false;
1897 }
1898
1899 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1900 {
1901         struct vcpu_vmx *vmx =
1902                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1903
1904         vmx->nested.preemption_timer_expired = true;
1905         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1906         kvm_vcpu_kick(&vmx->vcpu);
1907
1908         return HRTIMER_NORESTART;
1909 }
1910
1911 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1912 {
1913         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1914         struct vcpu_vmx *vmx = to_vmx(vcpu);
1915
1916         /*
1917          * A timer value of zero is architecturally guaranteed to cause
1918          * a VMExit prior to executing any instructions in the guest.
1919          */
1920         if (preemption_timeout == 0) {
1921                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1922                 return;
1923         }
1924
1925         if (vcpu->arch.virtual_tsc_khz == 0)
1926                 return;
1927
1928         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1929         preemption_timeout *= 1000000;
1930         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1931         hrtimer_start(&vmx->nested.preemption_timer,
1932                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1933 }
1934
1935 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1936 {
1937         if (vmx->nested.nested_run_pending &&
1938             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1939                 return vmcs12->guest_ia32_efer;
1940         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1941                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1942         else
1943                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1944 }
1945
1946 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1947 {
1948         /*
1949          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1950          * according to L0's settings (vmcs12 is irrelevant here).  Host
1951          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1952          * will be set as needed prior to VMLAUNCH/VMRESUME.
1953          */
1954         if (vmx->nested.vmcs02_initialized)
1955                 return;
1956         vmx->nested.vmcs02_initialized = true;
1957
1958         /*
1959          * We don't care what the EPTP value is we just need to guarantee
1960          * it's valid so we don't get a false positive when doing early
1961          * consistency checks.
1962          */
1963         if (enable_ept && nested_early_check)
1964                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1965
1966         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1967         if (cpu_has_vmx_vmfunc())
1968                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1969
1970         if (cpu_has_vmx_posted_intr())
1971                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1972
1973         if (cpu_has_vmx_msr_bitmap())
1974                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1975
1976         /*
1977          * The PML address never changes, so it is constant in vmcs02.
1978          * Conceptually we want to copy the PML index from vmcs01 here,
1979          * and then back to vmcs01 on nested vmexit.  But since we flush
1980          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
1981          * index is also effectively constant in vmcs02.
1982          */
1983         if (enable_pml) {
1984                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1985                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
1986         }
1987
1988         if (cpu_has_vmx_encls_vmexit())
1989                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
1990
1991         /*
1992          * Set the MSR load/store lists to match L0's settings.  Only the
1993          * addresses are constant (for vmcs02), the counts can change based
1994          * on L2's behavior, e.g. switching to/from long mode.
1995          */
1996         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1997         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
1998         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
1999
2000         vmx_set_constant_host_state(vmx);
2001 }
2002
2003 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2004                                       struct vmcs12 *vmcs12)
2005 {
2006         prepare_vmcs02_constant_state(vmx);
2007
2008         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2009
2010         if (enable_vpid) {
2011                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2012                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2013                 else
2014                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2015         }
2016 }
2017
2018 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2019 {
2020         u32 exec_control, vmcs12_exec_ctrl;
2021         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2022
2023         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2024                 prepare_vmcs02_early_rare(vmx, vmcs12);
2025
2026         /*
2027          * PIN CONTROLS
2028          */
2029         exec_control = vmx_pin_based_exec_ctrl(vmx);
2030         exec_control |= (vmcs12->pin_based_vm_exec_control &
2031                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2032
2033         /* Posted interrupts setting is only taken from vmcs12.  */
2034         if (nested_cpu_has_posted_intr(vmcs12)) {
2035                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2036                 vmx->nested.pi_pending = false;
2037         } else {
2038                 exec_control &= ~PIN_BASED_POSTED_INTR;
2039         }
2040         pin_controls_set(vmx, exec_control);
2041
2042         /*
2043          * EXEC CONTROLS
2044          */
2045         exec_control = vmx_exec_control(vmx); /* L0's desires */
2046         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2047         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2048         exec_control &= ~CPU_BASED_TPR_SHADOW;
2049         exec_control |= vmcs12->cpu_based_vm_exec_control;
2050
2051         if (exec_control & CPU_BASED_TPR_SHADOW)
2052                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2053 #ifdef CONFIG_X86_64
2054         else
2055                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2056                                 CPU_BASED_CR8_STORE_EXITING;
2057 #endif
2058
2059         /*
2060          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2061          * for I/O port accesses.
2062          */
2063         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2064         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2065
2066         /*
2067          * This bit will be computed in nested_get_vmcs12_pages, because
2068          * we do not have access to L1's MSR bitmap yet.  For now, keep
2069          * the same bit as before, hoping to avoid multiple VMWRITEs that
2070          * only set/clear this bit.
2071          */
2072         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2073         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2074
2075         exec_controls_set(vmx, exec_control);
2076
2077         /*
2078          * SECONDARY EXEC CONTROLS
2079          */
2080         if (cpu_has_secondary_exec_ctrls()) {
2081                 exec_control = vmx->secondary_exec_control;
2082
2083                 /* Take the following fields only from vmcs12 */
2084                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2085                                   SECONDARY_EXEC_ENABLE_INVPCID |
2086                                   SECONDARY_EXEC_RDTSCP |
2087                                   SECONDARY_EXEC_XSAVES |
2088                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2089                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2090                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2091                 if (nested_cpu_has(vmcs12,
2092                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2093                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2094                                 ~SECONDARY_EXEC_ENABLE_PML;
2095                         exec_control |= vmcs12_exec_ctrl;
2096                 }
2097
2098                 /* VMCS shadowing for L2 is emulated for now */
2099                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2100
2101                 /*
2102                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2103                  * will not have to rewrite the controls just for this bit.
2104                  */
2105                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2106                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2107                         exec_control |= SECONDARY_EXEC_DESC;
2108
2109                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2110                         vmcs_write16(GUEST_INTR_STATUS,
2111                                 vmcs12->guest_intr_status);
2112
2113                 secondary_exec_controls_set(vmx, exec_control);
2114         }
2115
2116         /*
2117          * ENTRY CONTROLS
2118          *
2119          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2120          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2121          * on the related bits (if supported by the CPU) in the hope that
2122          * we can avoid VMWrites during vmx_set_efer().
2123          */
2124         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2125                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2126         if (cpu_has_load_ia32_efer()) {
2127                 if (guest_efer & EFER_LMA)
2128                         exec_control |= VM_ENTRY_IA32E_MODE;
2129                 if (guest_efer != host_efer)
2130                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2131         }
2132         vm_entry_controls_set(vmx, exec_control);
2133
2134         /*
2135          * EXIT CONTROLS
2136          *
2137          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2138          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2139          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2140          */
2141         exec_control = vmx_vmexit_ctrl();
2142         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2143                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2144         vm_exit_controls_set(vmx, exec_control);
2145
2146         /*
2147          * Interrupt/Exception Fields
2148          */
2149         if (vmx->nested.nested_run_pending) {
2150                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2151                              vmcs12->vm_entry_intr_info_field);
2152                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2153                              vmcs12->vm_entry_exception_error_code);
2154                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2155                              vmcs12->vm_entry_instruction_len);
2156                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2157                              vmcs12->guest_interruptibility_info);
2158                 vmx->loaded_vmcs->nmi_known_unmasked =
2159                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2160         } else {
2161                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2162         }
2163 }
2164
2165 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2166 {
2167         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2168
2169         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2170                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2171                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2172                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2173                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2174                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2175                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2176                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2177                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2178                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2179                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2180                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2181                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2182                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2183                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2184                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2185                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2186                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2187                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2188                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2189                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2190                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2191                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2192                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2193                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2194                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2195                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2196                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2197                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2198                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2199                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2200                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2201                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2202                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2203                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2204                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2205                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2206                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2207         }
2208
2209         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2210                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2211                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2212                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2213                             vmcs12->guest_pending_dbg_exceptions);
2214                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2215                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2216
2217                 /*
2218                  * L1 may access the L2's PDPTR, so save them to construct
2219                  * vmcs12
2220                  */
2221                 if (enable_ept) {
2222                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2223                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2224                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2225                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2226                 }
2227
2228                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2229                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2230                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2231         }
2232
2233         if (nested_cpu_has_xsaves(vmcs12))
2234                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2235
2236         /*
2237          * Whether page-faults are trapped is determined by a combination of
2238          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2239          * If enable_ept, L0 doesn't care about page faults and we should
2240          * set all of these to L1's desires. However, if !enable_ept, L0 does
2241          * care about (at least some) page faults, and because it is not easy
2242          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2243          * to exit on each and every L2 page fault. This is done by setting
2244          * MASK=MATCH=0 and (see below) EB.PF=1.
2245          * Note that below we don't need special code to set EB.PF beyond the
2246          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2247          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2248          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2249          */
2250         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2251                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2252         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2253                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2254
2255         if (cpu_has_vmx_apicv()) {
2256                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2257                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2258                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2259                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2260         }
2261
2262         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2263         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2264
2265         set_cr4_guest_host_mask(vmx);
2266 }
2267
2268 /*
2269  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2270  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2271  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2272  * guest in a way that will both be appropriate to L1's requests, and our
2273  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2274  * function also has additional necessary side-effects, like setting various
2275  * vcpu->arch fields.
2276  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2277  * is assigned to entry_failure_code on failure.
2278  */
2279 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2280                           u32 *entry_failure_code)
2281 {
2282         struct vcpu_vmx *vmx = to_vmx(vcpu);
2283         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2284         bool load_guest_pdptrs_vmcs12 = false;
2285
2286         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2287                 prepare_vmcs02_rare(vmx, vmcs12);
2288                 vmx->nested.dirty_vmcs12 = false;
2289
2290                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2291                         !(hv_evmcs->hv_clean_fields &
2292                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2293         }
2294
2295         if (vmx->nested.nested_run_pending &&
2296             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2297                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2298                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2299         } else {
2300                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2301                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2302         }
2303         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2304             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2305                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2306         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2307
2308         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2309          * bitwise-or of what L1 wants to trap for L2, and what we want to
2310          * trap. Note that CR0.TS also needs updating - we do this later.
2311          */
2312         update_exception_bitmap(vcpu);
2313         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2314         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2315
2316         if (vmx->nested.nested_run_pending &&
2317             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2318                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2319                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2320         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2321                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2322         }
2323
2324         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2325
2326         if (kvm_has_tsc_control)
2327                 decache_tsc_multiplier(vmx);
2328
2329         if (enable_vpid) {
2330                 /*
2331                  * There is no direct mapping between vpid02 and vpid12, the
2332                  * vpid02 is per-vCPU for L0 and reused while the value of
2333                  * vpid12 is changed w/ one invvpid during nested vmentry.
2334                  * The vpid12 is allocated by L1 for L2, so it will not
2335                  * influence global bitmap(for vpid01 and vpid02 allocation)
2336                  * even if spawn a lot of nested vCPUs.
2337                  */
2338                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2339                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2340                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2341                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2342                         }
2343                 } else {
2344                         /*
2345                          * If L1 use EPT, then L0 needs to execute INVEPT on
2346                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2347                          * flush until vmcs02->eptp is fully updated by
2348                          * KVM_REQ_LOAD_CR3. Note that this assumes
2349                          * KVM_REQ_TLB_FLUSH is evaluated after
2350                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2351                          */
2352                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2353                 }
2354         }
2355
2356         if (nested_cpu_has_ept(vmcs12))
2357                 nested_ept_init_mmu_context(vcpu);
2358         else if (nested_cpu_has2(vmcs12,
2359                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2360                 vmx_flush_tlb(vcpu, true);
2361
2362         /*
2363          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2364          * bits which we consider mandatory enabled.
2365          * The CR0_READ_SHADOW is what L2 should have expected to read given
2366          * the specifications by L1; It's not enough to take
2367          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2368          * have more bits than L1 expected.
2369          */
2370         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2371         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2372
2373         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2374         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2375
2376         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2377         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2378         vmx_set_efer(vcpu, vcpu->arch.efer);
2379
2380         /*
2381          * Guest state is invalid and unrestricted guest is disabled,
2382          * which means L1 attempted VMEntry to L2 with invalid state.
2383          * Fail the VMEntry.
2384          */
2385         if (vmx->emulation_required) {
2386                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2387                 return -EINVAL;
2388         }
2389
2390         /* Shadow page tables on either EPT or shadow page tables. */
2391         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2392                                 entry_failure_code))
2393                 return -EINVAL;
2394
2395         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2396         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2397             is_pae_paging(vcpu)) {
2398                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2399                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2400                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2401                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2402         }
2403
2404         if (!enable_ept)
2405                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2406
2407         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2408         kvm_rip_write(vcpu, vmcs12->guest_rip);
2409         return 0;
2410 }
2411
2412 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2413 {
2414         if (!nested_cpu_has_nmi_exiting(vmcs12) &&
2415             nested_cpu_has_virtual_nmis(vmcs12))
2416                 return -EINVAL;
2417
2418         if (!nested_cpu_has_virtual_nmis(vmcs12) &&
2419             nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
2420                 return -EINVAL;
2421
2422         return 0;
2423 }
2424
2425 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2426 {
2427         struct vcpu_vmx *vmx = to_vmx(vcpu);
2428         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2429
2430         /* Check for memory type validity */
2431         switch (address & VMX_EPTP_MT_MASK) {
2432         case VMX_EPTP_MT_UC:
2433                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
2434                         return false;
2435                 break;
2436         case VMX_EPTP_MT_WB:
2437                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
2438                         return false;
2439                 break;
2440         default:
2441                 return false;
2442         }
2443
2444         /* only 4 levels page-walk length are valid */
2445         if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
2446                 return false;
2447
2448         /* Reserved bits should not be set */
2449         if (address >> maxphyaddr || ((address >> 7) & 0x1f))
2450                 return false;
2451
2452         /* AD, if set, should be supported */
2453         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2454                 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
2455                         return false;
2456         }
2457
2458         return true;
2459 }
2460
2461 /*
2462  * Checks related to VM-Execution Control Fields
2463  */
2464 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2465                                               struct vmcs12 *vmcs12)
2466 {
2467         struct vcpu_vmx *vmx = to_vmx(vcpu);
2468
2469         if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2470                                 vmx->nested.msrs.pinbased_ctls_low,
2471                                 vmx->nested.msrs.pinbased_ctls_high) ||
2472             !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2473                                 vmx->nested.msrs.procbased_ctls_low,
2474                                 vmx->nested.msrs.procbased_ctls_high))
2475                 return -EINVAL;
2476
2477         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2478             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
2479                                  vmx->nested.msrs.secondary_ctls_low,
2480                                  vmx->nested.msrs.secondary_ctls_high))
2481                 return -EINVAL;
2482
2483         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
2484             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2485             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2486             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2487             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2488             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2489             nested_vmx_check_nmi_controls(vmcs12) ||
2490             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2491             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2492             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2493             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2494             (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2495                 return -EINVAL;
2496
2497         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2498             nested_cpu_has_save_preemption_timer(vmcs12))
2499                 return -EINVAL;
2500
2501         if (nested_cpu_has_ept(vmcs12) &&
2502             !valid_ept_address(vcpu, vmcs12->ept_pointer))
2503                 return -EINVAL;
2504
2505         if (nested_cpu_has_vmfunc(vmcs12)) {
2506                 if (vmcs12->vm_function_control &
2507                     ~vmx->nested.msrs.vmfunc_controls)
2508                         return -EINVAL;
2509
2510                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2511                         if (!nested_cpu_has_ept(vmcs12) ||
2512                             !page_address_valid(vcpu, vmcs12->eptp_list_address))
2513                                 return -EINVAL;
2514                 }
2515         }
2516
2517         return 0;
2518 }
2519
2520 /*
2521  * Checks related to VM-Exit Control Fields
2522  */
2523 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2524                                          struct vmcs12 *vmcs12)
2525 {
2526         struct vcpu_vmx *vmx = to_vmx(vcpu);
2527
2528         if (!vmx_control_verify(vmcs12->vm_exit_controls,
2529                                 vmx->nested.msrs.exit_ctls_low,
2530                                 vmx->nested.msrs.exit_ctls_high) ||
2531             nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
2532                 return -EINVAL;
2533
2534         return 0;
2535 }
2536
2537 /*
2538  * Checks related to VM-Entry Control Fields
2539  */
2540 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2541                                           struct vmcs12 *vmcs12)
2542 {
2543         struct vcpu_vmx *vmx = to_vmx(vcpu);
2544
2545         if (!vmx_control_verify(vmcs12->vm_entry_controls,
2546                                 vmx->nested.msrs.entry_ctls_low,
2547                                 vmx->nested.msrs.entry_ctls_high))
2548                 return -EINVAL;
2549
2550         /*
2551          * From the Intel SDM, volume 3:
2552          * Fields relevant to VM-entry event injection must be set properly.
2553          * These fields are the VM-entry interruption-information field, the
2554          * VM-entry exception error code, and the VM-entry instruction length.
2555          */
2556         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2557                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2558                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2559                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2560                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2561                 bool should_have_error_code;
2562                 bool urg = nested_cpu_has2(vmcs12,
2563                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2564                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2565
2566                 /* VM-entry interruption-info field: interruption type */
2567                 if (intr_type == INTR_TYPE_RESERVED ||
2568                     (intr_type == INTR_TYPE_OTHER_EVENT &&
2569                      !nested_cpu_supports_monitor_trap_flag(vcpu)))
2570                         return -EINVAL;
2571
2572                 /* VM-entry interruption-info field: vector */
2573                 if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2574                     (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2575                     (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2576                         return -EINVAL;
2577
2578                 /* VM-entry interruption-info field: deliver error code */
2579                 should_have_error_code =
2580                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2581                         x86_exception_has_error_code(vector);
2582                 if (has_error_code != should_have_error_code)
2583                         return -EINVAL;
2584
2585                 /* VM-entry exception error code */
2586                 if (has_error_code &&
2587                     vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
2588                         return -EINVAL;
2589
2590                 /* VM-entry interruption-info field: reserved bits */
2591                 if (intr_info & INTR_INFO_RESVD_BITS_MASK)
2592                         return -EINVAL;
2593
2594                 /* VM-entry instruction length */
2595                 switch (intr_type) {
2596                 case INTR_TYPE_SOFT_EXCEPTION:
2597                 case INTR_TYPE_SOFT_INTR:
2598                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2599                         if ((vmcs12->vm_entry_instruction_len > 15) ||
2600                             (vmcs12->vm_entry_instruction_len == 0 &&
2601                              !nested_cpu_has_zero_length_injection(vcpu)))
2602                                 return -EINVAL;
2603                 }
2604         }
2605
2606         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2607                 return -EINVAL;
2608
2609         return 0;
2610 }
2611
2612 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2613                                      struct vmcs12 *vmcs12)
2614 {
2615         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2616             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2617             nested_check_vm_entry_controls(vcpu, vmcs12))
2618                 return -EINVAL;
2619
2620         return 0;
2621 }
2622
2623 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2624                                        struct vmcs12 *vmcs12)
2625 {
2626         bool ia32e;
2627
2628         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
2629             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
2630             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
2631                 return -EINVAL;
2632
2633         if (is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu) ||
2634             is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu))
2635                 return -EINVAL;
2636
2637         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2638             !kvm_pat_valid(vmcs12->host_ia32_pat))
2639                 return -EINVAL;
2640
2641         ia32e = (vmcs12->vm_exit_controls &
2642                  VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2643
2644         if (vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2645             vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2646             vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2647             vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2648             vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2649             vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2650             vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2651             vmcs12->host_cs_selector == 0 ||
2652             vmcs12->host_tr_selector == 0 ||
2653             (vmcs12->host_ss_selector == 0 && !ia32e))
2654                 return -EINVAL;
2655
2656 #ifdef CONFIG_X86_64
2657         if (is_noncanonical_address(vmcs12->host_fs_base, vcpu) ||
2658             is_noncanonical_address(vmcs12->host_gs_base, vcpu) ||
2659             is_noncanonical_address(vmcs12->host_gdtr_base, vcpu) ||
2660             is_noncanonical_address(vmcs12->host_idtr_base, vcpu) ||
2661             is_noncanonical_address(vmcs12->host_tr_base, vcpu))
2662                 return -EINVAL;
2663 #endif
2664
2665         /*
2666          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2667          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2668          * the values of the LMA and LME bits in the field must each be that of
2669          * the host address-space size VM-exit control.
2670          */
2671         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2672                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
2673                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
2674                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
2675                         return -EINVAL;
2676         }
2677
2678         return 0;
2679 }
2680
2681 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2682                                           struct vmcs12 *vmcs12)
2683 {
2684         int r = 0;
2685         struct vmcs12 *shadow;
2686         struct kvm_host_map map;
2687
2688         if (vmcs12->vmcs_link_pointer == -1ull)
2689                 return 0;
2690
2691         if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
2692                 return -EINVAL;
2693
2694         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
2695                 return -EINVAL;
2696
2697         shadow = map.hva;
2698
2699         if (shadow->hdr.revision_id != VMCS12_REVISION ||
2700             shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
2701                 r = -EINVAL;
2702
2703         kvm_vcpu_unmap(vcpu, &map, false);
2704         return r;
2705 }
2706
2707 /*
2708  * Checks related to Guest Non-register State
2709  */
2710 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2711 {
2712         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2713             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
2714                 return -EINVAL;
2715
2716         return 0;
2717 }
2718
2719 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2720                                         struct vmcs12 *vmcs12,
2721                                         u32 *exit_qual)
2722 {
2723         bool ia32e;
2724
2725         *exit_qual = ENTRY_FAIL_DEFAULT;
2726
2727         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
2728             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2729                 return -EINVAL;
2730
2731         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2732             !kvm_pat_valid(vmcs12->guest_ia32_pat))
2733                 return -EINVAL;
2734
2735         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2736                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2737                 return -EINVAL;
2738         }
2739
2740         /*
2741          * If the load IA32_EFER VM-entry control is 1, the following checks
2742          * are performed on the field for the IA32_EFER MSR:
2743          * - Bits reserved in the IA32_EFER MSR must be 0.
2744          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2745          *   the IA-32e mode guest VM-exit control. It must also be identical
2746          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2747          *   CR0.PG) is 1.
2748          */
2749         if (to_vmx(vcpu)->nested.nested_run_pending &&
2750             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2751                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2752                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
2753                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
2754                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
2755                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2756                         return -EINVAL;
2757         }
2758
2759         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2760             (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
2761              (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
2762                 return -EINVAL;
2763
2764         if (nested_check_guest_non_reg_state(vmcs12))
2765                 return -EINVAL;
2766
2767         return 0;
2768 }
2769
2770 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2771 {
2772         struct vcpu_vmx *vmx = to_vmx(vcpu);
2773         unsigned long cr3, cr4;
2774         bool vm_fail;
2775
2776         if (!nested_early_check)
2777                 return 0;
2778
2779         if (vmx->msr_autoload.host.nr)
2780                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2781         if (vmx->msr_autoload.guest.nr)
2782                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2783
2784         preempt_disable();
2785
2786         vmx_prepare_switch_to_guest(vcpu);
2787
2788         /*
2789          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2790          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2791          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2792          * there is no need to preserve other bits or save/restore the field.
2793          */
2794         vmcs_writel(GUEST_RFLAGS, 0);
2795
2796         cr3 = __get_current_cr3_fast();
2797         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2798                 vmcs_writel(HOST_CR3, cr3);
2799                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2800         }
2801
2802         cr4 = cr4_read_shadow();
2803         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2804                 vmcs_writel(HOST_CR4, cr4);
2805                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2806         }
2807
2808         asm(
2809                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2810                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2811                 "je 1f \n\t"
2812                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2813                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2814                 "1: \n\t"
2815                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2816
2817                 /* Check if vmlaunch or vmresume is needed */
2818                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2819
2820                 /*
2821                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2822                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2823                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2824                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2825                  */
2826                 "call vmx_vmenter\n\t"
2827
2828                 CC_SET(be)
2829               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2830               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
2831                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
2832                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
2833                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2834                 [wordsize]"i"(sizeof(ulong))
2835               : "memory"
2836         );
2837
2838         if (vmx->msr_autoload.host.nr)
2839                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2840         if (vmx->msr_autoload.guest.nr)
2841                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2842
2843         if (vm_fail) {
2844                 preempt_enable();
2845                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
2846                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2847                 return 1;
2848         }
2849
2850         /*
2851          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2852          */
2853         local_irq_enable();
2854         if (hw_breakpoint_active())
2855                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2856         preempt_enable();
2857
2858         /*
2859          * A non-failing VMEntry means we somehow entered guest mode with
2860          * an illegal RIP, and that's just the tip of the iceberg.  There
2861          * is no telling what memory has been modified or what state has
2862          * been exposed to unknown code.  Hitting this all but guarantees
2863          * a (very critical) hardware issue.
2864          */
2865         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2866                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2867
2868         return 0;
2869 }
2870
2871 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2872                                                  struct vmcs12 *vmcs12);
2873
2874 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2875 {
2876         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2877         struct vcpu_vmx *vmx = to_vmx(vcpu);
2878         struct kvm_host_map *map;
2879         struct page *page;
2880         u64 hpa;
2881
2882         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2883                 /*
2884                  * Translate L1 physical address to host physical
2885                  * address for vmcs02. Keep the page pinned, so this
2886                  * physical address remains valid. We keep a reference
2887                  * to it so we can release it later.
2888                  */
2889                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2890                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2891                         vmx->nested.apic_access_page = NULL;
2892                 }
2893                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2894                 /*
2895                  * If translation failed, no matter: This feature asks
2896                  * to exit when accessing the given address, and if it
2897                  * can never be accessed, this feature won't do
2898                  * anything anyway.
2899                  */
2900                 if (!is_error_page(page)) {
2901                         vmx->nested.apic_access_page = page;
2902                         hpa = page_to_phys(vmx->nested.apic_access_page);
2903                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2904                 } else {
2905                         secondary_exec_controls_clearbit(vmx,
2906                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2907                 }
2908         }
2909
2910         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2911                 map = &vmx->nested.virtual_apic_map;
2912
2913                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
2914                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
2915                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
2916                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
2917                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2918                         /*
2919                          * The processor will never use the TPR shadow, simply
2920                          * clear the bit from the execution control.  Such a
2921                          * configuration is useless, but it happens in tests.
2922                          * For any other configuration, failing the vm entry is
2923                          * _not_ what the processor does but it's basically the
2924                          * only possibility we have.
2925                          */
2926                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
2927                 } else {
2928                         /*
2929                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
2930                          * force VM-Entry to fail.
2931                          */
2932                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2933                 }
2934         }
2935
2936         if (nested_cpu_has_posted_intr(vmcs12)) {
2937                 map = &vmx->nested.pi_desc_map;
2938
2939                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
2940                         vmx->nested.pi_desc =
2941                                 (struct pi_desc *)(((void *)map->hva) +
2942                                 offset_in_page(vmcs12->posted_intr_desc_addr));
2943                         vmcs_write64(POSTED_INTR_DESC_ADDR,
2944                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
2945                 }
2946         }
2947         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2948                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2949         else
2950                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2951 }
2952
2953 /*
2954  * Intel's VMX Instruction Reference specifies a common set of prerequisites
2955  * for running VMX instructions (except VMXON, whose prerequisites are
2956  * slightly different). It also specifies what exception to inject otherwise.
2957  * Note that many of these exceptions have priority over VM exits, so they
2958  * don't have to be checked again here.
2959  */
2960 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2961 {
2962         if (!to_vmx(vcpu)->nested.vmxon) {
2963                 kvm_queue_exception(vcpu, UD_VECTOR);
2964                 return 0;
2965         }
2966
2967         if (vmx_get_cpl(vcpu)) {
2968                 kvm_inject_gp(vcpu, 0);
2969                 return 0;
2970         }
2971
2972         return 1;
2973 }
2974
2975 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2976 {
2977         u8 rvi = vmx_get_rvi();
2978         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2979
2980         return ((rvi & 0xf0) > (vppr & 0xf0));
2981 }
2982
2983 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2984                                    struct vmcs12 *vmcs12);
2985
2986 /*
2987  * If from_vmentry is false, this is being called from state restore (either RSM
2988  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
2989 + *
2990 + * Returns:
2991 + *   0 - success, i.e. proceed with actual VMEnter
2992 + *   1 - consistency check VMExit
2993 + *  -1 - consistency check VMFail
2994  */
2995 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
2996 {
2997         struct vcpu_vmx *vmx = to_vmx(vcpu);
2998         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2999         bool evaluate_pending_interrupts;
3000         u32 exit_reason = EXIT_REASON_INVALID_STATE;
3001         u32 exit_qual;
3002
3003         evaluate_pending_interrupts = exec_controls_get(vmx) &
3004                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
3005         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3006                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3007
3008         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3009                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3010         if (kvm_mpx_supported() &&
3011                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3012                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3013
3014         /*
3015          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3016          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3017          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3018          * software model to the pre-VMEntry host state.  When EPT is disabled,
3019          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3020          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3021          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3022          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3023          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3024          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3025          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3026          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3027          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3028          * path would need to manually save/restore vmcs01.GUEST_CR3.
3029          */
3030         if (!enable_ept && !nested_early_check)
3031                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3032
3033         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3034
3035         prepare_vmcs02_early(vmx, vmcs12);
3036
3037         if (from_vmentry) {
3038                 nested_get_vmcs12_pages(vcpu);
3039
3040                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3041                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3042                         return -1;
3043                 }
3044
3045                 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3046                         goto vmentry_fail_vmexit;
3047         }
3048
3049         enter_guest_mode(vcpu);
3050         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3051                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3052
3053         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3054                 goto vmentry_fail_vmexit_guest_mode;
3055
3056         if (from_vmentry) {
3057                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3058                 exit_qual = nested_vmx_load_msr(vcpu,
3059                                                 vmcs12->vm_entry_msr_load_addr,
3060                                                 vmcs12->vm_entry_msr_load_count);
3061                 if (exit_qual)
3062                         goto vmentry_fail_vmexit_guest_mode;
3063         } else {
3064                 /*
3065                  * The MMU is not initialized to point at the right entities yet and
3066                  * "get pages" would need to read data from the guest (i.e. we will
3067                  * need to perform gpa to hpa translation). Request a call
3068                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3069                  * have already been set at vmentry time and should not be reset.
3070                  */
3071                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3072         }
3073
3074         /*
3075          * If L1 had a pending IRQ/NMI until it executed
3076          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3077          * disallowed (e.g. interrupts disabled), L0 needs to
3078          * evaluate if this pending event should cause an exit from L2
3079          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3080          * intercept EXTERNAL_INTERRUPT).
3081          *
3082          * Usually this would be handled by the processor noticing an
3083          * IRQ/NMI window request, or checking RVI during evaluation of
3084          * pending virtual interrupts.  However, this setting was done
3085          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3086          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3087          */
3088         if (unlikely(evaluate_pending_interrupts))
3089                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3090
3091         /*
3092          * Do not start the preemption timer hrtimer until after we know
3093          * we are successful, so that only nested_vmx_vmexit needs to cancel
3094          * the timer.
3095          */
3096         vmx->nested.preemption_timer_expired = false;
3097         if (nested_cpu_has_preemption_timer(vmcs12))
3098                 vmx_start_preemption_timer(vcpu);
3099
3100         /*
3101          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3102          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3103          * returned as far as L1 is concerned. It will only return (and set
3104          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3105          */
3106         return 0;
3107
3108         /*
3109          * A failed consistency check that leads to a VMExit during L1's
3110          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3111          * 26.7 "VM-entry failures during or after loading guest state".
3112          */
3113 vmentry_fail_vmexit_guest_mode:
3114         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3115                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3116         leave_guest_mode(vcpu);
3117
3118 vmentry_fail_vmexit:
3119         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3120
3121         if (!from_vmentry)
3122                 return 1;
3123
3124         load_vmcs12_host_state(vcpu, vmcs12);
3125         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3126         vmcs12->exit_qualification = exit_qual;
3127         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3128                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3129         return 1;
3130 }
3131
3132 /*
3133  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3134  * for running an L2 nested guest.
3135  */
3136 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3137 {
3138         struct vmcs12 *vmcs12;
3139         struct vcpu_vmx *vmx = to_vmx(vcpu);
3140         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3141         int ret;
3142
3143         if (!nested_vmx_check_permission(vcpu))
3144                 return 1;
3145
3146         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3147                 return 1;
3148
3149         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3150                 return nested_vmx_failInvalid(vcpu);
3151
3152         vmcs12 = get_vmcs12(vcpu);
3153
3154         /*
3155          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3156          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3157          * rather than RFLAGS.ZF, and no error number is stored to the
3158          * VM-instruction error field.
3159          */
3160         if (vmcs12->hdr.shadow_vmcs)
3161                 return nested_vmx_failInvalid(vcpu);
3162
3163         if (vmx->nested.hv_evmcs) {
3164                 copy_enlightened_to_vmcs12(vmx);
3165                 /* Enlightened VMCS doesn't have launch state */
3166                 vmcs12->launch_state = !launch;
3167         } else if (enable_shadow_vmcs) {
3168                 copy_shadow_to_vmcs12(vmx);
3169         }
3170
3171         /*
3172          * The nested entry process starts with enforcing various prerequisites
3173          * on vmcs12 as required by the Intel SDM, and act appropriately when
3174          * they fail: As the SDM explains, some conditions should cause the
3175          * instruction to fail, while others will cause the instruction to seem
3176          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3177          * To speed up the normal (success) code path, we should avoid checking
3178          * for misconfigurations which will anyway be caught by the processor
3179          * when using the merged vmcs02.
3180          */
3181         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3182                 return nested_vmx_failValid(vcpu,
3183                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3184
3185         if (vmcs12->launch_state == launch)
3186                 return nested_vmx_failValid(vcpu,
3187                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3188                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3189
3190         if (nested_vmx_check_controls(vcpu, vmcs12))
3191                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3192
3193         if (nested_vmx_check_host_state(vcpu, vmcs12))
3194                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3195
3196         /*
3197          * We're finally done with prerequisite checking, and can start with
3198          * the nested entry.
3199          */
3200         vmx->nested.nested_run_pending = 1;
3201         ret = nested_vmx_enter_non_root_mode(vcpu, true);
3202         vmx->nested.nested_run_pending = !ret;
3203         if (ret > 0)
3204                 return 1;
3205         else if (ret)
3206                 return nested_vmx_failValid(vcpu,
3207                         VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3208
3209         /* Hide L1D cache contents from the nested guest.  */
3210         vmx->vcpu.arch.l1tf_flush_l1d = true;
3211
3212         /*
3213          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3214          * also be used as part of restoring nVMX state for
3215          * snapshot restore (migration).
3216          *
3217          * In this flow, it is assumed that vmcs12 cache was
3218          * trasferred as part of captured nVMX state and should
3219          * therefore not be read from guest memory (which may not
3220          * exist on destination host yet).
3221          */
3222         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3223
3224         /*
3225          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3226          * awakened by event injection or by an NMI-window VM-exit or
3227          * by an interrupt-window VM-exit, halt the vcpu.
3228          */
3229         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3230             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3231             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3232             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3233               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3234                 vmx->nested.nested_run_pending = 0;
3235                 return kvm_vcpu_halt(vcpu);
3236         }
3237         return 1;
3238 }
3239
3240 /*
3241  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3242  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3243  * This function returns the new value we should put in vmcs12.guest_cr0.
3244  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3245  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3246  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3247  *     didn't trap the bit, because if L1 did, so would L0).
3248  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3249  *     been modified by L2, and L1 knows it. So just leave the old value of
3250  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3251  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3252  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3253  *     changed these bits, and therefore they need to be updated, but L0
3254  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3255  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3256  */
3257 static inline unsigned long
3258 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3259 {
3260         return
3261         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3262         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3263         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3264                         vcpu->arch.cr0_guest_owned_bits));
3265 }
3266
3267 static inline unsigned long
3268 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3269 {
3270         return
3271         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3272         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3273         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3274                         vcpu->arch.cr4_guest_owned_bits));
3275 }
3276
3277 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3278                                       struct vmcs12 *vmcs12)
3279 {
3280         u32 idt_vectoring;
3281         unsigned int nr;
3282
3283         if (vcpu->arch.exception.injected) {
3284                 nr = vcpu->arch.exception.nr;
3285                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3286
3287                 if (kvm_exception_is_soft(nr)) {
3288                         vmcs12->vm_exit_instruction_len =
3289                                 vcpu->arch.event_exit_inst_len;
3290                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3291                 } else
3292                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3293
3294                 if (vcpu->arch.exception.has_error_code) {
3295                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3296                         vmcs12->idt_vectoring_error_code =
3297                                 vcpu->arch.exception.error_code;
3298                 }
3299
3300                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3301         } else if (vcpu->arch.nmi_injected) {
3302                 vmcs12->idt_vectoring_info_field =
3303                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3304         } else if (vcpu->arch.interrupt.injected) {
3305                 nr = vcpu->arch.interrupt.nr;
3306                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3307
3308                 if (vcpu->arch.interrupt.soft) {
3309                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3310                         vmcs12->vm_entry_instruction_len =
3311                                 vcpu->arch.event_exit_inst_len;
3312                 } else
3313                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3314
3315                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3316         }
3317 }
3318
3319
3320 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3321 {
3322         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3323         gfn_t gfn;
3324
3325         /*
3326          * Don't need to mark the APIC access page dirty; it is never
3327          * written to by the CPU during APIC virtualization.
3328          */
3329
3330         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3331                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3332                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3333         }
3334
3335         if (nested_cpu_has_posted_intr(vmcs12)) {
3336                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3337                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3338         }
3339 }
3340
3341 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3342 {
3343         struct vcpu_vmx *vmx = to_vmx(vcpu);
3344         int max_irr;
3345         void *vapic_page;
3346         u16 status;
3347
3348         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3349                 return;
3350
3351         vmx->nested.pi_pending = false;
3352         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3353                 return;
3354
3355         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3356         if (max_irr != 256) {
3357                 vapic_page = vmx->nested.virtual_apic_map.hva;
3358                 if (!vapic_page)
3359                         return;
3360
3361                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3362                         vapic_page, &max_irr);
3363                 status = vmcs_read16(GUEST_INTR_STATUS);
3364                 if ((u8)max_irr > ((u8)status & 0xff)) {
3365                         status &= ~0xff;
3366                         status |= (u8)max_irr;
3367                         vmcs_write16(GUEST_INTR_STATUS, status);
3368                 }
3369         }
3370
3371         nested_mark_vmcs12_pages_dirty(vcpu);
3372 }
3373
3374 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3375                                                unsigned long exit_qual)
3376 {
3377         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3378         unsigned int nr = vcpu->arch.exception.nr;
3379         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3380
3381         if (vcpu->arch.exception.has_error_code) {
3382                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3383                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3384         }
3385
3386         if (kvm_exception_is_soft(nr))
3387                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3388         else
3389                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3390
3391         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3392             vmx_get_nmi_mask(vcpu))
3393                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3394
3395         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3396 }
3397
3398 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3399 {
3400         struct vcpu_vmx *vmx = to_vmx(vcpu);
3401         unsigned long exit_qual;
3402         bool block_nested_events =
3403             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3404
3405         if (vcpu->arch.exception.pending &&
3406                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3407                 if (block_nested_events)
3408                         return -EBUSY;
3409                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3410                 return 0;
3411         }
3412
3413         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3414             vmx->nested.preemption_timer_expired) {
3415                 if (block_nested_events)
3416                         return -EBUSY;
3417                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3418                 return 0;
3419         }
3420
3421         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3422                 if (block_nested_events)
3423                         return -EBUSY;
3424                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3425                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3426                                   INTR_INFO_VALID_MASK, 0);
3427                 /*
3428                  * The NMI-triggered VM exit counts as injection:
3429                  * clear this one and block further NMIs.
3430                  */
3431                 vcpu->arch.nmi_pending = 0;
3432                 vmx_set_nmi_mask(vcpu, true);
3433                 return 0;
3434         }
3435
3436         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3437             nested_exit_on_intr(vcpu)) {
3438                 if (block_nested_events)
3439                         return -EBUSY;
3440                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3441                 return 0;
3442         }
3443
3444         vmx_complete_nested_posted_interrupt(vcpu);
3445         return 0;
3446 }
3447
3448 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3449 {
3450         ktime_t remaining =
3451                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3452         u64 value;
3453
3454         if (ktime_to_ns(remaining) <= 0)
3455                 return 0;
3456
3457         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3458         do_div(value, 1000000);
3459         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3460 }
3461
3462 static bool is_vmcs12_ext_field(unsigned long field)
3463 {
3464         switch (field) {
3465         case GUEST_ES_SELECTOR:
3466         case GUEST_CS_SELECTOR:
3467         case GUEST_SS_SELECTOR:
3468         case GUEST_DS_SELECTOR:
3469         case GUEST_FS_SELECTOR:
3470         case GUEST_GS_SELECTOR:
3471         case GUEST_LDTR_SELECTOR:
3472         case GUEST_TR_SELECTOR:
3473         case GUEST_ES_LIMIT:
3474         case GUEST_CS_LIMIT:
3475         case GUEST_SS_LIMIT:
3476         case GUEST_DS_LIMIT:
3477         case GUEST_FS_LIMIT:
3478         case GUEST_GS_LIMIT:
3479         case GUEST_LDTR_LIMIT:
3480         case GUEST_TR_LIMIT:
3481         case GUEST_GDTR_LIMIT:
3482         case GUEST_IDTR_LIMIT:
3483         case GUEST_ES_AR_BYTES:
3484         case GUEST_DS_AR_BYTES:
3485         case GUEST_FS_AR_BYTES:
3486         case GUEST_GS_AR_BYTES:
3487         case GUEST_LDTR_AR_BYTES:
3488         case GUEST_TR_AR_BYTES:
3489         case GUEST_ES_BASE:
3490         case GUEST_CS_BASE:
3491         case GUEST_SS_BASE:
3492         case GUEST_DS_BASE:
3493         case GUEST_FS_BASE:
3494         case GUEST_GS_BASE:
3495         case GUEST_LDTR_BASE:
3496         case GUEST_TR_BASE:
3497         case GUEST_GDTR_BASE:
3498         case GUEST_IDTR_BASE:
3499         case GUEST_PENDING_DBG_EXCEPTIONS:
3500         case GUEST_BNDCFGS:
3501                 return true;
3502         default:
3503                 break;
3504         }
3505
3506         return false;
3507 }
3508
3509 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3510                                        struct vmcs12 *vmcs12)
3511 {
3512         struct vcpu_vmx *vmx = to_vmx(vcpu);
3513
3514         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3515         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3516         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3517         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3518         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3519         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3520         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3521         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3522         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3523         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3524         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3525         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3526         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3527         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3528         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3529         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3530         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3531         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3532         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3533         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3534         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3535         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3536         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3537         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3538         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3539         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3540         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3541         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3542         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3543         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3544         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3545         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3546         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3547         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3548         vmcs12->guest_pending_dbg_exceptions =
3549                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3550         if (kvm_mpx_supported())
3551                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3552
3553         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3554 }
3555
3556 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3557                                        struct vmcs12 *vmcs12)
3558 {
3559         struct vcpu_vmx *vmx = to_vmx(vcpu);
3560         int cpu;
3561
3562         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3563                 return;
3564
3565
3566         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3567
3568         cpu = get_cpu();
3569         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3570         vmx_vcpu_load(&vmx->vcpu, cpu);
3571
3572         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3573
3574         vmx->loaded_vmcs = &vmx->vmcs01;
3575         vmx_vcpu_load(&vmx->vcpu, cpu);
3576         put_cpu();
3577 }
3578
3579 /*
3580  * Update the guest state fields of vmcs12 to reflect changes that
3581  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3582  * VM-entry controls is also updated, since this is really a guest
3583  * state bit.)
3584  */
3585 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3586 {
3587         struct vcpu_vmx *vmx = to_vmx(vcpu);
3588
3589         if (vmx->nested.hv_evmcs)
3590                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3591
3592         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3593
3594         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3595         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3596
3597         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3598         vmcs12->guest_rip = kvm_rip_read(vcpu);
3599         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3600
3601         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3602         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3603
3604         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3605         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3606         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3607
3608         vmcs12->guest_interruptibility_info =
3609                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3610
3611         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3612                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3613         else
3614                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3615
3616         if (nested_cpu_has_preemption_timer(vmcs12) &&
3617             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3618                         vmcs12->vmx_preemption_timer_value =
3619                                 vmx_get_preemption_timer_value(vcpu);
3620
3621         /*
3622          * In some cases (usually, nested EPT), L2 is allowed to change its
3623          * own CR3 without exiting. If it has changed it, we must keep it.
3624          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3625          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3626          *
3627          * Additionally, restore L2's PDPTR to vmcs12.
3628          */
3629         if (enable_ept) {
3630                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3631                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3632                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3633                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3634                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3635                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3636                 }
3637         }
3638
3639         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3640
3641         if (nested_cpu_has_vid(vmcs12))
3642                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3643
3644         vmcs12->vm_entry_controls =
3645                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3646                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3647
3648         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3649                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3650
3651         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3652                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3653 }
3654
3655 /*
3656  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3657  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3658  * and this function updates it to reflect the changes to the guest state while
3659  * L2 was running (and perhaps made some exits which were handled directly by L0
3660  * without going back to L1), and to reflect the exit reason.
3661  * Note that we do not have to copy here all VMCS fields, just those that
3662  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3663  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3664  * which already writes to vmcs12 directly.
3665  */
3666 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3667                            u32 exit_reason, u32 exit_intr_info,
3668                            unsigned long exit_qualification)
3669 {
3670         /* update exit information fields: */
3671         vmcs12->vm_exit_reason = exit_reason;
3672         vmcs12->exit_qualification = exit_qualification;
3673         vmcs12->vm_exit_intr_info = exit_intr_info;
3674
3675         vmcs12->idt_vectoring_info_field = 0;
3676         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3677         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3678
3679         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3680                 vmcs12->launch_state = 1;
3681
3682                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3683                  * instead of reading the real value. */
3684                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3685
3686                 /*
3687                  * Transfer the event that L0 or L1 may wanted to inject into
3688                  * L2 to IDT_VECTORING_INFO_FIELD.
3689                  */
3690                 vmcs12_save_pending_event(vcpu, vmcs12);
3691
3692                 /*
3693                  * According to spec, there's no need to store the guest's
3694                  * MSRs if the exit is due to a VM-entry failure that occurs
3695                  * during or after loading the guest state. Since this exit
3696                  * does not fall in that category, we need to save the MSRs.
3697                  */
3698                 if (nested_vmx_store_msr(vcpu,
3699                                          vmcs12->vm_exit_msr_store_addr,
3700                                          vmcs12->vm_exit_msr_store_count))
3701                         nested_vmx_abort(vcpu,
3702                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3703         }
3704
3705         /*
3706          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3707          * preserved above and would only end up incorrectly in L1.
3708          */
3709         vcpu->arch.nmi_injected = false;
3710         kvm_clear_exception_queue(vcpu);
3711         kvm_clear_interrupt_queue(vcpu);
3712 }
3713
3714 /*
3715  * A part of what we need to when the nested L2 guest exits and we want to
3716  * run its L1 parent, is to reset L1's guest state to the host state specified
3717  * in vmcs12.
3718  * This function is to be called not only on normal nested exit, but also on
3719  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3720  * Failures During or After Loading Guest State").
3721  * This function should be called when the active VMCS is L1's (vmcs01).
3722  */
3723 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3724                                    struct vmcs12 *vmcs12)
3725 {
3726         struct kvm_segment seg;
3727         u32 entry_failure_code;
3728
3729         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3730                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3731         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3732                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3733         else
3734                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3735         vmx_set_efer(vcpu, vcpu->arch.efer);
3736
3737         kvm_rsp_write(vcpu, vmcs12->host_rsp);
3738         kvm_rip_write(vcpu, vmcs12->host_rip);
3739         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3740         vmx_set_interrupt_shadow(vcpu, 0);
3741
3742         /*
3743          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3744          * actually changed, because vmx_set_cr0 refers to efer set above.
3745          *
3746          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3747          * (KVM doesn't change it);
3748          */
3749         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3750         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3751
3752         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3753         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3754         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3755
3756         nested_ept_uninit_mmu_context(vcpu);
3757
3758         /*
3759          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3760          * couldn't have changed.
3761          */
3762         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3763                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3764
3765         if (!enable_ept)
3766                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3767
3768         /*
3769          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3770          * VMEntry/VMExit. Thus, no need to flush TLB.
3771          *
3772          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3773          * flushed on every VMEntry/VMExit.
3774          *
3775          * Otherwise, we can preserve TLB entries as long as we are
3776          * able to tag L1 TLB entries differently than L2 TLB entries.
3777          *
3778          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3779          * and therefore we request the TLB flush to happen only after VMCS EPTP
3780          * has been set by KVM_REQ_LOAD_CR3.
3781          */
3782         if (enable_vpid &&
3783             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3784                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3785         }
3786
3787         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3788         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3789         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3790         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3791         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3792         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3793         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3794
3795         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3796         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3797                 vmcs_write64(GUEST_BNDCFGS, 0);
3798
3799         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3800                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3801                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3802         }
3803         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3804                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3805                         vmcs12->host_ia32_perf_global_ctrl);
3806
3807         /* Set L1 segment info according to Intel SDM
3808             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3809         seg = (struct kvm_segment) {
3810                 .base = 0,
3811                 .limit = 0xFFFFFFFF,
3812                 .selector = vmcs12->host_cs_selector,
3813                 .type = 11,
3814                 .present = 1,
3815                 .s = 1,
3816                 .g = 1
3817         };
3818         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3819                 seg.l = 1;
3820         else
3821                 seg.db = 1;
3822         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3823         seg = (struct kvm_segment) {
3824                 .base = 0,
3825                 .limit = 0xFFFFFFFF,
3826                 .type = 3,
3827                 .present = 1,
3828                 .s = 1,
3829                 .db = 1,
3830                 .g = 1
3831         };
3832         seg.selector = vmcs12->host_ds_selector;
3833         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3834         seg.selector = vmcs12->host_es_selector;
3835         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3836         seg.selector = vmcs12->host_ss_selector;
3837         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3838         seg.selector = vmcs12->host_fs_selector;
3839         seg.base = vmcs12->host_fs_base;
3840         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3841         seg.selector = vmcs12->host_gs_selector;
3842         seg.base = vmcs12->host_gs_base;
3843         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3844         seg = (struct kvm_segment) {
3845                 .base = vmcs12->host_tr_base,
3846                 .limit = 0x67,
3847                 .selector = vmcs12->host_tr_selector,
3848                 .type = 11,
3849                 .present = 1
3850         };
3851         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3852
3853         kvm_set_dr(vcpu, 7, 0x400);
3854         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3855
3856         if (cpu_has_vmx_msr_bitmap())
3857                 vmx_update_msr_bitmap(vcpu);
3858
3859         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3860                                 vmcs12->vm_exit_msr_load_count))
3861                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3862 }
3863
3864 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3865 {
3866         struct shared_msr_entry *efer_msr;
3867         unsigned int i;
3868
3869         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3870                 return vmcs_read64(GUEST_IA32_EFER);
3871
3872         if (cpu_has_load_ia32_efer())
3873                 return host_efer;
3874
3875         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3876                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3877                         return vmx->msr_autoload.guest.val[i].value;
3878         }
3879
3880         efer_msr = find_msr_entry(vmx, MSR_EFER);
3881         if (efer_msr)
3882                 return efer_msr->data;
3883
3884         return host_efer;
3885 }
3886
3887 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3888 {
3889         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3890         struct vcpu_vmx *vmx = to_vmx(vcpu);
3891         struct vmx_msr_entry g, h;
3892         struct msr_data msr;
3893         gpa_t gpa;
3894         u32 i, j;
3895
3896         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3897
3898         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3899                 /*
3900                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3901                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3902                  * and vcpu->arch.dr7 is not squirreled away before the
3903                  * nested VMENTER (not worth adding a variable in nested_vmx).
3904                  */
3905                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3906                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3907                 else
3908                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3909         }
3910
3911         /*
3912          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3913          * handle a variety of side effects to KVM's software model.
3914          */
3915         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3916
3917         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3918         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3919
3920         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3921         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3922
3923         nested_ept_uninit_mmu_context(vcpu);
3924         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3925         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3926
3927         /*
3928          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3929          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3930          * VMFail, like everything else we just need to ensure our
3931          * software model is up-to-date.
3932          */
3933         if (enable_ept)
3934                 ept_save_pdptrs(vcpu);
3935
3936         kvm_mmu_reset_context(vcpu);
3937
3938         if (cpu_has_vmx_msr_bitmap())
3939                 vmx_update_msr_bitmap(vcpu);
3940
3941         /*
3942          * This nasty bit of open coding is a compromise between blindly
3943          * loading L1's MSRs using the exit load lists (incorrect emulation
3944          * of VMFail), leaving the nested VM's MSRs in the software model
3945          * (incorrect behavior) and snapshotting the modified MSRs (too
3946          * expensive since the lists are unbound by hardware).  For each
3947          * MSR that was (prematurely) loaded from the nested VMEntry load
3948          * list, reload it from the exit load list if it exists and differs
3949          * from the guest value.  The intent is to stuff host state as
3950          * silently as possible, not to fully process the exit load list.
3951          */
3952         msr.host_initiated = false;
3953         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3954                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3955                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3956                         pr_debug_ratelimited(
3957                                 "%s read MSR index failed (%u, 0x%08llx)\n",
3958                                 __func__, i, gpa);
3959                         goto vmabort;
3960                 }
3961
3962                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3963                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3964                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3965                                 pr_debug_ratelimited(
3966                                         "%s read MSR failed (%u, 0x%08llx)\n",
3967                                         __func__, j, gpa);
3968                                 goto vmabort;
3969                         }
3970                         if (h.index != g.index)
3971                                 continue;
3972                         if (h.value == g.value)
3973                                 break;
3974
3975                         if (nested_vmx_load_msr_check(vcpu, &h)) {
3976                                 pr_debug_ratelimited(
3977                                         "%s check failed (%u, 0x%x, 0x%x)\n",
3978                                         __func__, j, h.index, h.reserved);
3979                                 goto vmabort;
3980                         }
3981
3982                         msr.index = h.index;
3983                         msr.data = h.value;
3984                         if (kvm_set_msr(vcpu, &msr)) {
3985                                 pr_debug_ratelimited(
3986                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
3987                                         __func__, j, h.index, h.value);
3988                                 goto vmabort;
3989                         }
3990                 }
3991         }
3992
3993         return;
3994
3995 vmabort:
3996         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3997 }
3998
3999 /*
4000  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4001  * and modify vmcs12 to make it see what it would expect to see there if
4002  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4003  */
4004 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4005                        u32 exit_intr_info, unsigned long exit_qualification)
4006 {
4007         struct vcpu_vmx *vmx = to_vmx(vcpu);
4008         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4009
4010         /* trying to cancel vmlaunch/vmresume is a bug */
4011         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4012
4013         leave_guest_mode(vcpu);
4014
4015         if (nested_cpu_has_preemption_timer(vmcs12))
4016                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4017
4018         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
4019                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4020
4021         if (likely(!vmx->fail)) {
4022                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4023
4024                 if (exit_reason != -1)
4025                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4026                                        exit_qualification);
4027
4028                 /*
4029                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4030                  * also be used to capture vmcs12 cache as part of
4031                  * capturing nVMX state for snapshot (migration).
4032                  *
4033                  * Otherwise, this flush will dirty guest memory at a
4034                  * point it is already assumed by user-space to be
4035                  * immutable.
4036                  */
4037                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4038         } else {
4039                 /*
4040                  * The only expected VM-instruction error is "VM entry with
4041                  * invalid control field(s)." Anything else indicates a
4042                  * problem with L0.  And we should never get here with a
4043                  * VMFail of any type if early consistency checks are enabled.
4044                  */
4045                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4046                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4047                 WARN_ON_ONCE(nested_early_check);
4048         }
4049
4050         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4051
4052         /* Update any VMCS fields that might have changed while L2 ran */
4053         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4054         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4055         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4056
4057         if (kvm_has_tsc_control)
4058                 decache_tsc_multiplier(vmx);
4059
4060         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4061                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4062                 vmx_set_virtual_apic_mode(vcpu);
4063         } else if (!nested_cpu_has_ept(vmcs12) &&
4064                    nested_cpu_has2(vmcs12,
4065                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
4066                 vmx_flush_tlb(vcpu, true);
4067         }
4068
4069         /* Unpin physical memory we referred to in vmcs02 */
4070         if (vmx->nested.apic_access_page) {
4071                 kvm_release_page_dirty(vmx->nested.apic_access_page);
4072                 vmx->nested.apic_access_page = NULL;
4073         }
4074         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4075         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4076         vmx->nested.pi_desc = NULL;
4077
4078         /*
4079          * We are now running in L2, mmu_notifier will force to reload the
4080          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4081          */
4082         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4083
4084         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4085                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4086
4087         /* in case we halted in L2 */
4088         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4089
4090         if (likely(!vmx->fail)) {
4091                 /*
4092                  * TODO: SDM says that with acknowledge interrupt on
4093                  * exit, bit 31 of the VM-exit interrupt information
4094                  * (valid interrupt) is always set to 1 on
4095                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4096                  * need kvm_cpu_has_interrupt().  See the commit
4097                  * message for details.
4098                  */
4099                 if (nested_exit_intr_ack_set(vcpu) &&
4100                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4101                     kvm_cpu_has_interrupt(vcpu)) {
4102                         int irq = kvm_cpu_get_interrupt(vcpu);
4103                         WARN_ON(irq < 0);
4104                         vmcs12->vm_exit_intr_info = irq |
4105                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4106                 }
4107
4108                 if (exit_reason != -1)
4109                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4110                                                        vmcs12->exit_qualification,
4111                                                        vmcs12->idt_vectoring_info_field,
4112                                                        vmcs12->vm_exit_intr_info,
4113                                                        vmcs12->vm_exit_intr_error_code,
4114                                                        KVM_ISA_VMX);
4115
4116                 load_vmcs12_host_state(vcpu, vmcs12);
4117
4118                 return;
4119         }
4120
4121         /*
4122          * After an early L2 VM-entry failure, we're now back
4123          * in L1 which thinks it just finished a VMLAUNCH or
4124          * VMRESUME instruction, so we need to set the failure
4125          * flag and the VM-instruction error field of the VMCS
4126          * accordingly, and skip the emulated instruction.
4127          */
4128         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4129
4130         /*
4131          * Restore L1's host state to KVM's software model.  We're here
4132          * because a consistency check was caught by hardware, which
4133          * means some amount of guest state has been propagated to KVM's
4134          * model and needs to be unwound to the host's state.
4135          */
4136         nested_vmx_restore_host_state(vcpu);
4137
4138         vmx->fail = 0;
4139 }
4140
4141 /*
4142  * Decode the memory-address operand of a vmx instruction, as recorded on an
4143  * exit caused by such an instruction (run by a guest hypervisor).
4144  * On success, returns 0. When the operand is invalid, returns 1 and throws
4145  * #UD or #GP.
4146  */
4147 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4148                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4149 {
4150         gva_t off;
4151         bool exn;
4152         struct kvm_segment s;
4153
4154         /*
4155          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4156          * Execution", on an exit, vmx_instruction_info holds most of the
4157          * addressing components of the operand. Only the displacement part
4158          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4159          * For how an actual address is calculated from all these components,
4160          * refer to Vol. 1, "Operand Addressing".
4161          */
4162         int  scaling = vmx_instruction_info & 3;
4163         int  addr_size = (vmx_instruction_info >> 7) & 7;
4164         bool is_reg = vmx_instruction_info & (1u << 10);
4165         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4166         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4167         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4168         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4169         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4170
4171         if (is_reg) {
4172                 kvm_queue_exception(vcpu, UD_VECTOR);
4173                 return 1;
4174         }
4175
4176         /* Addr = segment_base + offset */
4177         /* offset = base + [index * scale] + displacement */
4178         off = exit_qualification; /* holds the displacement */
4179         if (addr_size == 1)
4180                 off = (gva_t)sign_extend64(off, 31);
4181         else if (addr_size == 0)
4182                 off = (gva_t)sign_extend64(off, 15);
4183         if (base_is_valid)
4184                 off += kvm_register_read(vcpu, base_reg);
4185         if (index_is_valid)
4186                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4187         vmx_get_segment(vcpu, &s, seg_reg);
4188
4189         /*
4190          * The effective address, i.e. @off, of a memory operand is truncated
4191          * based on the address size of the instruction.  Note that this is
4192          * the *effective address*, i.e. the address prior to accounting for
4193          * the segment's base.
4194          */
4195         if (addr_size == 1) /* 32 bit */
4196                 off &= 0xffffffff;
4197         else if (addr_size == 0) /* 16 bit */
4198                 off &= 0xffff;
4199
4200         /* Checks for #GP/#SS exceptions. */
4201         exn = false;
4202         if (is_long_mode(vcpu)) {
4203                 /*
4204                  * The virtual/linear address is never truncated in 64-bit
4205                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4206                  * address when using FS/GS with a non-zero base.
4207                  */
4208                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4209                         *ret = s.base + off;
4210                 else
4211                         *ret = off;
4212
4213                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4214                  * non-canonical form. This is the only check on the memory
4215                  * destination for long mode!
4216                  */
4217                 exn = is_noncanonical_address(*ret, vcpu);
4218         } else {
4219                 /*
4220                  * When not in long mode, the virtual/linear address is
4221                  * unconditionally truncated to 32 bits regardless of the
4222                  * address size.
4223                  */
4224                 *ret = (s.base + off) & 0xffffffff;
4225
4226                 /* Protected mode: apply checks for segment validity in the
4227                  * following order:
4228                  * - segment type check (#GP(0) may be thrown)
4229                  * - usability check (#GP(0)/#SS(0))
4230                  * - limit check (#GP(0)/#SS(0))
4231                  */
4232                 if (wr)
4233                         /* #GP(0) if the destination operand is located in a
4234                          * read-only data segment or any code segment.
4235                          */
4236                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4237                 else
4238                         /* #GP(0) if the source operand is located in an
4239                          * execute-only code segment
4240                          */
4241                         exn = ((s.type & 0xa) == 8);
4242                 if (exn) {
4243                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4244                         return 1;
4245                 }
4246                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4247                  */
4248                 exn = (s.unusable != 0);
4249
4250                 /*
4251                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4252                  * outside the segment limit.  All CPUs that support VMX ignore
4253                  * limit checks for flat segments, i.e. segments with base==0,
4254                  * limit==0xffffffff and of type expand-up data or code.
4255                  */
4256                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4257                      ((s.type & 8) || !(s.type & 4))))
4258                         exn = exn || ((u64)off + len - 1 > s.limit);
4259         }
4260         if (exn) {
4261                 kvm_queue_exception_e(vcpu,
4262                                       seg_reg == VCPU_SREG_SS ?
4263                                                 SS_VECTOR : GP_VECTOR,
4264                                       0);
4265                 return 1;
4266         }
4267
4268         return 0;
4269 }
4270
4271 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4272 {
4273         gva_t gva;
4274         struct x86_exception e;
4275
4276         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4277                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4278                                 sizeof(*vmpointer), &gva))
4279                 return 1;
4280
4281         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4282                 kvm_inject_page_fault(vcpu, &e);
4283                 return 1;
4284         }
4285
4286         return 0;
4287 }
4288
4289 /*
4290  * Allocate a shadow VMCS and associate it with the currently loaded
4291  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4292  * VMCS is also VMCLEARed, so that it is ready for use.
4293  */
4294 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4295 {
4296         struct vcpu_vmx *vmx = to_vmx(vcpu);
4297         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4298
4299         /*
4300          * We should allocate a shadow vmcs for vmcs01 only when L1
4301          * executes VMXON and free it when L1 executes VMXOFF.
4302          * As it is invalid to execute VMXON twice, we shouldn't reach
4303          * here when vmcs01 already have an allocated shadow vmcs.
4304          */
4305         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4306
4307         if (!loaded_vmcs->shadow_vmcs) {
4308                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4309                 if (loaded_vmcs->shadow_vmcs)
4310                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4311         }
4312         return loaded_vmcs->shadow_vmcs;
4313 }
4314
4315 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4316 {
4317         struct vcpu_vmx *vmx = to_vmx(vcpu);
4318         int r;
4319
4320         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4321         if (r < 0)
4322                 goto out_vmcs02;
4323
4324         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4325         if (!vmx->nested.cached_vmcs12)
4326                 goto out_cached_vmcs12;
4327
4328         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4329         if (!vmx->nested.cached_shadow_vmcs12)
4330                 goto out_cached_shadow_vmcs12;
4331
4332         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4333                 goto out_shadow_vmcs;
4334
4335         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4336                      HRTIMER_MODE_REL_PINNED);
4337         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4338
4339         vmx->nested.vpid02 = allocate_vpid();
4340
4341         vmx->nested.vmcs02_initialized = false;
4342         vmx->nested.vmxon = true;
4343
4344         if (pt_mode == PT_MODE_HOST_GUEST) {
4345                 vmx->pt_desc.guest.ctl = 0;
4346                 pt_update_intercept_for_msr(vmx);
4347         }
4348
4349         return 0;
4350
4351 out_shadow_vmcs:
4352         kfree(vmx->nested.cached_shadow_vmcs12);
4353
4354 out_cached_shadow_vmcs12:
4355         kfree(vmx->nested.cached_vmcs12);
4356
4357 out_cached_vmcs12:
4358         free_loaded_vmcs(&vmx->nested.vmcs02);
4359
4360 out_vmcs02:
4361         return -ENOMEM;
4362 }
4363
4364 /*
4365  * Emulate the VMXON instruction.
4366  * Currently, we just remember that VMX is active, and do not save or even
4367  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4368  * do not currently need to store anything in that guest-allocated memory
4369  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4370  * argument is different from the VMXON pointer (which the spec says they do).
4371  */
4372 static int handle_vmon(struct kvm_vcpu *vcpu)
4373 {
4374         int ret;
4375         gpa_t vmptr;
4376         uint32_t revision;
4377         struct vcpu_vmx *vmx = to_vmx(vcpu);
4378         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4379                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4380
4381         /*
4382          * The Intel VMX Instruction Reference lists a bunch of bits that are
4383          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4384          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4385          * Otherwise, we should fail with #UD.  But most faulting conditions
4386          * have already been checked by hardware, prior to the VM-exit for
4387          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4388          * that bit set to 1 in non-root mode.
4389          */
4390         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4391                 kvm_queue_exception(vcpu, UD_VECTOR);
4392                 return 1;
4393         }
4394
4395         /* CPL=0 must be checked manually. */
4396         if (vmx_get_cpl(vcpu)) {
4397                 kvm_inject_gp(vcpu, 0);
4398                 return 1;
4399         }
4400
4401         if (vmx->nested.vmxon)
4402                 return nested_vmx_failValid(vcpu,
4403                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4404
4405         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4406                         != VMXON_NEEDED_FEATURES) {
4407                 kvm_inject_gp(vcpu, 0);
4408                 return 1;
4409         }
4410
4411         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4412                 return 1;
4413
4414         /*
4415          * SDM 3: 24.11.5
4416          * The first 4 bytes of VMXON region contain the supported
4417          * VMCS revision identifier
4418          *
4419          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4420          * which replaces physical address width with 32
4421          */
4422         if (!page_address_valid(vcpu, vmptr))
4423                 return nested_vmx_failInvalid(vcpu);
4424
4425         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4426             revision != VMCS12_REVISION)
4427                 return nested_vmx_failInvalid(vcpu);
4428
4429         vmx->nested.vmxon_ptr = vmptr;
4430         ret = enter_vmx_operation(vcpu);
4431         if (ret)
4432                 return ret;
4433
4434         return nested_vmx_succeed(vcpu);
4435 }
4436
4437 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4438 {
4439         struct vcpu_vmx *vmx = to_vmx(vcpu);
4440
4441         if (vmx->nested.current_vmptr == -1ull)
4442                 return;
4443
4444         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4445
4446         if (enable_shadow_vmcs) {
4447                 /* copy to memory all shadowed fields in case
4448                    they were modified */
4449                 copy_shadow_to_vmcs12(vmx);
4450                 vmx_disable_shadow_vmcs(vmx);
4451         }
4452         vmx->nested.posted_intr_nv = -1;
4453
4454         /* Flush VMCS12 to guest memory */
4455         kvm_vcpu_write_guest_page(vcpu,
4456                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4457                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4458
4459         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4460
4461         vmx->nested.current_vmptr = -1ull;
4462 }
4463
4464 /* Emulate the VMXOFF instruction */
4465 static int handle_vmoff(struct kvm_vcpu *vcpu)
4466 {
4467         if (!nested_vmx_check_permission(vcpu))
4468                 return 1;
4469         free_nested(vcpu);
4470         return nested_vmx_succeed(vcpu);
4471 }
4472
4473 /* Emulate the VMCLEAR instruction */
4474 static int handle_vmclear(struct kvm_vcpu *vcpu)
4475 {
4476         struct vcpu_vmx *vmx = to_vmx(vcpu);
4477         u32 zero = 0;
4478         gpa_t vmptr;
4479         u64 evmcs_gpa;
4480
4481         if (!nested_vmx_check_permission(vcpu))
4482                 return 1;
4483
4484         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4485                 return 1;
4486
4487         if (!page_address_valid(vcpu, vmptr))
4488                 return nested_vmx_failValid(vcpu,
4489                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4490
4491         if (vmptr == vmx->nested.vmxon_ptr)
4492                 return nested_vmx_failValid(vcpu,
4493                         VMXERR_VMCLEAR_VMXON_POINTER);
4494
4495         /*
4496          * When Enlightened VMEntry is enabled on the calling CPU we treat
4497          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4498          * way to distinguish it from VMCS12) and we must not corrupt it by
4499          * writing to the non-existent 'launch_state' field. The area doesn't
4500          * have to be the currently active EVMCS on the calling CPU and there's
4501          * nothing KVM has to do to transition it from 'active' to 'non-active'
4502          * state. It is possible that the area will stay mapped as
4503          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4504          */
4505         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4506                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4507                 if (vmptr == vmx->nested.current_vmptr)
4508                         nested_release_vmcs12(vcpu);
4509
4510                 kvm_vcpu_write_guest(vcpu,
4511                                      vmptr + offsetof(struct vmcs12,
4512                                                       launch_state),
4513                                      &zero, sizeof(zero));
4514         }
4515
4516         return nested_vmx_succeed(vcpu);
4517 }
4518
4519 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4520
4521 /* Emulate the VMLAUNCH instruction */
4522 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4523 {
4524         return nested_vmx_run(vcpu, true);
4525 }
4526
4527 /* Emulate the VMRESUME instruction */
4528 static int handle_vmresume(struct kvm_vcpu *vcpu)
4529 {
4530
4531         return nested_vmx_run(vcpu, false);
4532 }
4533
4534 static int handle_vmread(struct kvm_vcpu *vcpu)
4535 {
4536         unsigned long field;
4537         u64 field_value;
4538         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4539         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4540         int len;
4541         gva_t gva = 0;
4542         struct vmcs12 *vmcs12;
4543         short offset;
4544
4545         if (!nested_vmx_check_permission(vcpu))
4546                 return 1;
4547
4548         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4549                 return nested_vmx_failInvalid(vcpu);
4550
4551         if (!is_guest_mode(vcpu))
4552                 vmcs12 = get_vmcs12(vcpu);
4553         else {
4554                 /*
4555                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4556                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4557                  */
4558                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4559                         return nested_vmx_failInvalid(vcpu);
4560                 vmcs12 = get_shadow_vmcs12(vcpu);
4561         }
4562
4563         /* Decode instruction info and find the field to read */
4564         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4565
4566         offset = vmcs_field_to_offset(field);
4567         if (offset < 0)
4568                 return nested_vmx_failValid(vcpu,
4569                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4570
4571         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4572                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4573
4574         /* Read the field, zero-extended to a u64 field_value */
4575         field_value = vmcs12_read_any(vmcs12, field, offset);
4576
4577         /*
4578          * Now copy part of this value to register or memory, as requested.
4579          * Note that the number of bits actually copied is 32 or 64 depending
4580          * on the guest's mode (32 or 64 bit), not on the given field's length.
4581          */
4582         if (vmx_instruction_info & (1u << 10)) {
4583                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4584                         field_value);
4585         } else {
4586                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4587                 if (get_vmx_mem_address(vcpu, exit_qualification,
4588                                 vmx_instruction_info, true, len, &gva))
4589                         return 1;
4590                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4591                 kvm_write_guest_virt_system(vcpu, gva, &field_value, len, NULL);
4592         }
4593
4594         return nested_vmx_succeed(vcpu);
4595 }
4596
4597 static bool is_shadow_field_rw(unsigned long field)
4598 {
4599         switch (field) {
4600 #define SHADOW_FIELD_RW(x, y) case x:
4601 #include "vmcs_shadow_fields.h"
4602                 return true;
4603         default:
4604                 break;
4605         }
4606         return false;
4607 }
4608
4609 static bool is_shadow_field_ro(unsigned long field)
4610 {
4611         switch (field) {
4612 #define SHADOW_FIELD_RO(x, y) case x:
4613 #include "vmcs_shadow_fields.h"
4614                 return true;
4615         default:
4616                 break;
4617         }
4618         return false;
4619 }
4620
4621 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4622 {
4623         unsigned long field;
4624         int len;
4625         gva_t gva;
4626         struct vcpu_vmx *vmx = to_vmx(vcpu);
4627         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4628         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4629
4630         /* The value to write might be 32 or 64 bits, depending on L1's long
4631          * mode, and eventually we need to write that into a field of several
4632          * possible lengths. The code below first zero-extends the value to 64
4633          * bit (field_value), and then copies only the appropriate number of
4634          * bits into the vmcs12 field.
4635          */
4636         u64 field_value = 0;
4637         struct x86_exception e;
4638         struct vmcs12 *vmcs12;
4639         short offset;
4640
4641         if (!nested_vmx_check_permission(vcpu))
4642                 return 1;
4643
4644         if (vmx->nested.current_vmptr == -1ull)
4645                 return nested_vmx_failInvalid(vcpu);
4646
4647         if (vmx_instruction_info & (1u << 10))
4648                 field_value = kvm_register_readl(vcpu,
4649                         (((vmx_instruction_info) >> 3) & 0xf));
4650         else {
4651                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4652                 if (get_vmx_mem_address(vcpu, exit_qualification,
4653                                 vmx_instruction_info, false, len, &gva))
4654                         return 1;
4655                 if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
4656                         kvm_inject_page_fault(vcpu, &e);
4657                         return 1;
4658                 }
4659         }
4660
4661
4662         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4663         /*
4664          * If the vCPU supports "VMWRITE to any supported field in the
4665          * VMCS," then the "read-only" fields are actually read/write.
4666          */
4667         if (vmcs_field_readonly(field) &&
4668             !nested_cpu_has_vmwrite_any_field(vcpu))
4669                 return nested_vmx_failValid(vcpu,
4670                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4671
4672         if (!is_guest_mode(vcpu)) {
4673                 vmcs12 = get_vmcs12(vcpu);
4674
4675                 /*
4676                  * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4677                  * vmcs12, else we may crush a field or consume a stale value.
4678                  */
4679                 if (!is_shadow_field_rw(field))
4680                         copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4681         } else {
4682                 /*
4683                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4684                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4685                  */
4686                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4687                         return nested_vmx_failInvalid(vcpu);
4688                 vmcs12 = get_shadow_vmcs12(vcpu);
4689         }
4690
4691         offset = vmcs_field_to_offset(field);
4692         if (offset < 0)
4693                 return nested_vmx_failValid(vcpu,
4694                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4695
4696         /*
4697          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4698          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4699          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4700          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4701          * from L1 will return a different value than VMREAD from L2 (L1 sees
4702          * the stripped down value, L2 sees the full value as stored by KVM).
4703          */
4704         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4705                 field_value &= 0x1f0ff;
4706
4707         vmcs12_write_any(vmcs12, field, offset, field_value);
4708
4709         /*
4710          * Do not track vmcs12 dirty-state if in guest-mode as we actually
4711          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4712          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4713          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4714          */
4715         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4716                 /*
4717                  * L1 can read these fields without exiting, ensure the
4718                  * shadow VMCS is up-to-date.
4719                  */
4720                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4721                         preempt_disable();
4722                         vmcs_load(vmx->vmcs01.shadow_vmcs);
4723
4724                         __vmcs_writel(field, field_value);
4725
4726                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
4727                         vmcs_load(vmx->loaded_vmcs->vmcs);
4728                         preempt_enable();
4729                 }
4730                 vmx->nested.dirty_vmcs12 = true;
4731         }
4732
4733         return nested_vmx_succeed(vcpu);
4734 }
4735
4736 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4737 {
4738         vmx->nested.current_vmptr = vmptr;
4739         if (enable_shadow_vmcs) {
4740                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4741                 vmcs_write64(VMCS_LINK_POINTER,
4742                              __pa(vmx->vmcs01.shadow_vmcs));
4743                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4744         }
4745         vmx->nested.dirty_vmcs12 = true;
4746 }
4747
4748 /* Emulate the VMPTRLD instruction */
4749 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4750 {
4751         struct vcpu_vmx *vmx = to_vmx(vcpu);
4752         gpa_t vmptr;
4753
4754         if (!nested_vmx_check_permission(vcpu))
4755                 return 1;
4756
4757         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4758                 return 1;
4759
4760         if (!page_address_valid(vcpu, vmptr))
4761                 return nested_vmx_failValid(vcpu,
4762                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4763
4764         if (vmptr == vmx->nested.vmxon_ptr)
4765                 return nested_vmx_failValid(vcpu,
4766                         VMXERR_VMPTRLD_VMXON_POINTER);
4767
4768         /* Forbid normal VMPTRLD if Enlightened version was used */
4769         if (vmx->nested.hv_evmcs)
4770                 return 1;
4771
4772         if (vmx->nested.current_vmptr != vmptr) {
4773                 struct kvm_host_map map;
4774                 struct vmcs12 *new_vmcs12;
4775
4776                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4777                         /*
4778                          * Reads from an unbacked page return all 1s,
4779                          * which means that the 32 bits located at the
4780                          * given physical address won't match the required
4781                          * VMCS12_REVISION identifier.
4782                          */
4783                         return nested_vmx_failValid(vcpu,
4784                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4785                 }
4786
4787                 new_vmcs12 = map.hva;
4788
4789                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4790                     (new_vmcs12->hdr.shadow_vmcs &&
4791                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4792                         kvm_vcpu_unmap(vcpu, &map, false);
4793                         return nested_vmx_failValid(vcpu,
4794                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4795                 }
4796
4797                 nested_release_vmcs12(vcpu);
4798
4799                 /*
4800                  * Load VMCS12 from guest memory since it is not already
4801                  * cached.
4802                  */
4803                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4804                 kvm_vcpu_unmap(vcpu, &map, false);
4805
4806                 set_current_vmptr(vmx, vmptr);
4807         }
4808
4809         return nested_vmx_succeed(vcpu);
4810 }
4811
4812 /* Emulate the VMPTRST instruction */
4813 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4814 {
4815         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4816         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4817         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4818         struct x86_exception e;
4819         gva_t gva;
4820
4821         if (!nested_vmx_check_permission(vcpu))
4822                 return 1;
4823
4824         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4825                 return 1;
4826
4827         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
4828                                 true, sizeof(gpa_t), &gva))
4829                 return 1;
4830         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4831         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4832                                         sizeof(gpa_t), &e)) {
4833                 kvm_inject_page_fault(vcpu, &e);
4834                 return 1;
4835         }
4836         return nested_vmx_succeed(vcpu);
4837 }
4838
4839 /* Emulate the INVEPT instruction */
4840 static int handle_invept(struct kvm_vcpu *vcpu)
4841 {
4842         struct vcpu_vmx *vmx = to_vmx(vcpu);
4843         u32 vmx_instruction_info, types;
4844         unsigned long type;
4845         gva_t gva;
4846         struct x86_exception e;
4847         struct {
4848                 u64 eptp, gpa;
4849         } operand;
4850
4851         if (!(vmx->nested.msrs.secondary_ctls_high &
4852               SECONDARY_EXEC_ENABLE_EPT) ||
4853             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4854                 kvm_queue_exception(vcpu, UD_VECTOR);
4855                 return 1;
4856         }
4857
4858         if (!nested_vmx_check_permission(vcpu))
4859                 return 1;
4860
4861         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4862         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4863
4864         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4865
4866         if (type >= 32 || !(types & (1 << type)))
4867                 return nested_vmx_failValid(vcpu,
4868                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4869
4870         /* According to the Intel VMX instruction reference, the memory
4871          * operand is read even if it isn't needed (e.g., for type==global)
4872          */
4873         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4874                         vmx_instruction_info, false, sizeof(operand), &gva))
4875                 return 1;
4876         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4877                 kvm_inject_page_fault(vcpu, &e);
4878                 return 1;
4879         }
4880
4881         switch (type) {
4882         case VMX_EPT_EXTENT_GLOBAL:
4883         case VMX_EPT_EXTENT_CONTEXT:
4884         /*
4885          * TODO: Sync the necessary shadow EPT roots here, rather than
4886          * at the next emulated VM-entry.
4887          */
4888                 break;
4889         default:
4890                 BUG_ON(1);
4891                 break;
4892         }
4893
4894         return nested_vmx_succeed(vcpu);
4895 }
4896
4897 static int handle_invvpid(struct kvm_vcpu *vcpu)
4898 {
4899         struct vcpu_vmx *vmx = to_vmx(vcpu);
4900         u32 vmx_instruction_info;
4901         unsigned long type, types;
4902         gva_t gva;
4903         struct x86_exception e;
4904         struct {
4905                 u64 vpid;
4906                 u64 gla;
4907         } operand;
4908         u16 vpid02;
4909
4910         if (!(vmx->nested.msrs.secondary_ctls_high &
4911               SECONDARY_EXEC_ENABLE_VPID) ||
4912                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4913                 kvm_queue_exception(vcpu, UD_VECTOR);
4914                 return 1;
4915         }
4916
4917         if (!nested_vmx_check_permission(vcpu))
4918                 return 1;
4919
4920         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4921         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4922
4923         types = (vmx->nested.msrs.vpid_caps &
4924                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4925
4926         if (type >= 32 || !(types & (1 << type)))
4927                 return nested_vmx_failValid(vcpu,
4928                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4929
4930         /* according to the intel vmx instruction reference, the memory
4931          * operand is read even if it isn't needed (e.g., for type==global)
4932          */
4933         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4934                         vmx_instruction_info, false, sizeof(operand), &gva))
4935                 return 1;
4936         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4937                 kvm_inject_page_fault(vcpu, &e);
4938                 return 1;
4939         }
4940         if (operand.vpid >> 16)
4941                 return nested_vmx_failValid(vcpu,
4942                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4943
4944         vpid02 = nested_get_vpid02(vcpu);
4945         switch (type) {
4946         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4947                 if (!operand.vpid ||
4948                     is_noncanonical_address(operand.gla, vcpu))
4949                         return nested_vmx_failValid(vcpu,
4950                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4951                 if (cpu_has_vmx_invvpid_individual_addr()) {
4952                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4953                                 vpid02, operand.gla);
4954                 } else
4955                         __vmx_flush_tlb(vcpu, vpid02, false);
4956                 break;
4957         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4958         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4959                 if (!operand.vpid)
4960                         return nested_vmx_failValid(vcpu,
4961                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4962                 __vmx_flush_tlb(vcpu, vpid02, false);
4963                 break;
4964         case VMX_VPID_EXTENT_ALL_CONTEXT:
4965                 __vmx_flush_tlb(vcpu, vpid02, false);
4966                 break;
4967         default:
4968                 WARN_ON_ONCE(1);
4969                 return kvm_skip_emulated_instruction(vcpu);
4970         }
4971
4972         return nested_vmx_succeed(vcpu);
4973 }
4974
4975 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4976                                      struct vmcs12 *vmcs12)
4977 {
4978         u32 index = kvm_rcx_read(vcpu);
4979         u64 address;
4980         bool accessed_dirty;
4981         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4982
4983         if (!nested_cpu_has_eptp_switching(vmcs12) ||
4984             !nested_cpu_has_ept(vmcs12))
4985                 return 1;
4986
4987         if (index >= VMFUNC_EPTP_ENTRIES)
4988                 return 1;
4989
4990
4991         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
4992                                      &address, index * 8, 8))
4993                 return 1;
4994
4995         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
4996
4997         /*
4998          * If the (L2) guest does a vmfunc to the currently
4999          * active ept pointer, we don't have to do anything else
5000          */
5001         if (vmcs12->ept_pointer != address) {
5002                 if (!valid_ept_address(vcpu, address))
5003                         return 1;
5004
5005                 kvm_mmu_unload(vcpu);
5006                 mmu->ept_ad = accessed_dirty;
5007                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5008                 vmcs12->ept_pointer = address;
5009                 /*
5010                  * TODO: Check what's the correct approach in case
5011                  * mmu reload fails. Currently, we just let the next
5012                  * reload potentially fail
5013                  */
5014                 kvm_mmu_reload(vcpu);
5015         }
5016
5017         return 0;
5018 }
5019
5020 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5021 {
5022         struct vcpu_vmx *vmx = to_vmx(vcpu);
5023         struct vmcs12 *vmcs12;
5024         u32 function = kvm_rax_read(vcpu);
5025
5026         /*
5027          * VMFUNC is only supported for nested guests, but we always enable the
5028          * secondary control for simplicity; for non-nested mode, fake that we
5029          * didn't by injecting #UD.
5030          */
5031         if (!is_guest_mode(vcpu)) {
5032                 kvm_queue_exception(vcpu, UD_VECTOR);
5033                 return 1;
5034         }
5035
5036         vmcs12 = get_vmcs12(vcpu);
5037         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5038                 goto fail;
5039
5040         switch (function) {
5041         case 0:
5042                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5043                         goto fail;
5044                 break;
5045         default:
5046                 goto fail;
5047         }
5048         return kvm_skip_emulated_instruction(vcpu);
5049
5050 fail:
5051         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5052                           vmcs_read32(VM_EXIT_INTR_INFO),
5053                           vmcs_readl(EXIT_QUALIFICATION));
5054         return 1;
5055 }
5056
5057
5058 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5059                                        struct vmcs12 *vmcs12)
5060 {
5061         unsigned long exit_qualification;
5062         gpa_t bitmap, last_bitmap;
5063         unsigned int port;
5064         int size;
5065         u8 b;
5066
5067         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5068                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5069
5070         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5071
5072         port = exit_qualification >> 16;
5073         size = (exit_qualification & 7) + 1;
5074
5075         last_bitmap = (gpa_t)-1;
5076         b = -1;
5077
5078         while (size > 0) {
5079                 if (port < 0x8000)
5080                         bitmap = vmcs12->io_bitmap_a;
5081                 else if (port < 0x10000)
5082                         bitmap = vmcs12->io_bitmap_b;
5083                 else
5084                         return true;
5085                 bitmap += (port & 0x7fff) / 8;
5086
5087                 if (last_bitmap != bitmap)
5088                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5089                                 return true;
5090                 if (b & (1 << (port & 7)))
5091                         return true;
5092
5093                 port++;
5094                 size--;
5095                 last_bitmap = bitmap;
5096         }
5097
5098         return false;
5099 }
5100
5101 /*
5102  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5103  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5104  * disinterest in the current event (read or write a specific MSR) by using an
5105  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5106  */
5107 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5108         struct vmcs12 *vmcs12, u32 exit_reason)
5109 {
5110         u32 msr_index = kvm_rcx_read(vcpu);
5111         gpa_t bitmap;
5112
5113         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5114                 return true;
5115
5116         /*
5117          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5118          * for the four combinations of read/write and low/high MSR numbers.
5119          * First we need to figure out which of the four to use:
5120          */
5121         bitmap = vmcs12->msr_bitmap;
5122         if (exit_reason == EXIT_REASON_MSR_WRITE)
5123                 bitmap += 2048;
5124         if (msr_index >= 0xc0000000) {
5125                 msr_index -= 0xc0000000;
5126                 bitmap += 1024;
5127         }
5128
5129         /* Then read the msr_index'th bit from this bitmap: */
5130         if (msr_index < 1024*8) {
5131                 unsigned char b;
5132                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5133                         return true;
5134                 return 1 & (b >> (msr_index & 7));
5135         } else
5136                 return true; /* let L1 handle the wrong parameter */
5137 }
5138
5139 /*
5140  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5141  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5142  * intercept (via guest_host_mask etc.) the current event.
5143  */
5144 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5145         struct vmcs12 *vmcs12)
5146 {
5147         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5148         int cr = exit_qualification & 15;
5149         int reg;
5150         unsigned long val;
5151
5152         switch ((exit_qualification >> 4) & 3) {
5153         case 0: /* mov to cr */
5154                 reg = (exit_qualification >> 8) & 15;
5155                 val = kvm_register_readl(vcpu, reg);
5156                 switch (cr) {
5157                 case 0:
5158                         if (vmcs12->cr0_guest_host_mask &
5159                             (val ^ vmcs12->cr0_read_shadow))
5160                                 return true;
5161                         break;
5162                 case 3:
5163                         if ((vmcs12->cr3_target_count >= 1 &&
5164                                         vmcs12->cr3_target_value0 == val) ||
5165                                 (vmcs12->cr3_target_count >= 2 &&
5166                                         vmcs12->cr3_target_value1 == val) ||
5167                                 (vmcs12->cr3_target_count >= 3 &&
5168                                         vmcs12->cr3_target_value2 == val) ||
5169                                 (vmcs12->cr3_target_count >= 4 &&
5170                                         vmcs12->cr3_target_value3 == val))
5171                                 return false;
5172                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5173                                 return true;
5174                         break;
5175                 case 4:
5176                         if (vmcs12->cr4_guest_host_mask &
5177                             (vmcs12->cr4_read_shadow ^ val))
5178                                 return true;
5179                         break;
5180                 case 8:
5181                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5182                                 return true;
5183                         break;
5184                 }
5185                 break;
5186         case 2: /* clts */
5187                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5188                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5189                         return true;
5190                 break;
5191         case 1: /* mov from cr */
5192                 switch (cr) {
5193                 case 3:
5194                         if (vmcs12->cpu_based_vm_exec_control &
5195                             CPU_BASED_CR3_STORE_EXITING)
5196                                 return true;
5197                         break;
5198                 case 8:
5199                         if (vmcs12->cpu_based_vm_exec_control &
5200                             CPU_BASED_CR8_STORE_EXITING)
5201                                 return true;
5202                         break;
5203                 }
5204                 break;
5205         case 3: /* lmsw */
5206                 /*
5207                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5208                  * cr0. Other attempted changes are ignored, with no exit.
5209                  */
5210                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5211                 if (vmcs12->cr0_guest_host_mask & 0xe &
5212                     (val ^ vmcs12->cr0_read_shadow))
5213                         return true;
5214                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5215                     !(vmcs12->cr0_read_shadow & 0x1) &&
5216                     (val & 0x1))
5217                         return true;
5218                 break;
5219         }
5220         return false;
5221 }
5222
5223 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5224         struct vmcs12 *vmcs12, gpa_t bitmap)
5225 {
5226         u32 vmx_instruction_info;
5227         unsigned long field;
5228         u8 b;
5229
5230         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5231                 return true;
5232
5233         /* Decode instruction info and find the field to access */
5234         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5235         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5236
5237         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5238         if (field >> 15)
5239                 return true;
5240
5241         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5242                 return true;
5243
5244         return 1 & (b >> (field & 7));
5245 }
5246
5247 /*
5248  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5249  * should handle it ourselves in L0 (and then continue L2). Only call this
5250  * when in is_guest_mode (L2).
5251  */
5252 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5253 {
5254         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5255         struct vcpu_vmx *vmx = to_vmx(vcpu);
5256         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5257
5258         if (vmx->nested.nested_run_pending)
5259                 return false;
5260
5261         if (unlikely(vmx->fail)) {
5262                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5263                                     vmcs_read32(VM_INSTRUCTION_ERROR));
5264                 return true;
5265         }
5266
5267         /*
5268          * The host physical addresses of some pages of guest memory
5269          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5270          * Page). The CPU may write to these pages via their host
5271          * physical address while L2 is running, bypassing any
5272          * address-translation-based dirty tracking (e.g. EPT write
5273          * protection).
5274          *
5275          * Mark them dirty on every exit from L2 to prevent them from
5276          * getting out of sync with dirty tracking.
5277          */
5278         nested_mark_vmcs12_pages_dirty(vcpu);
5279
5280         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5281                                 vmcs_readl(EXIT_QUALIFICATION),
5282                                 vmx->idt_vectoring_info,
5283                                 intr_info,
5284                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5285                                 KVM_ISA_VMX);
5286
5287         switch (exit_reason) {
5288         case EXIT_REASON_EXCEPTION_NMI:
5289                 if (is_nmi(intr_info))
5290                         return false;
5291                 else if (is_page_fault(intr_info))
5292                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5293                 else if (is_debug(intr_info) &&
5294                          vcpu->guest_debug &
5295                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5296                         return false;
5297                 else if (is_breakpoint(intr_info) &&
5298                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5299                         return false;
5300                 return vmcs12->exception_bitmap &
5301                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5302         case EXIT_REASON_EXTERNAL_INTERRUPT:
5303                 return false;
5304         case EXIT_REASON_TRIPLE_FAULT:
5305                 return true;
5306         case EXIT_REASON_PENDING_INTERRUPT:
5307                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5308         case EXIT_REASON_NMI_WINDOW:
5309                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5310         case EXIT_REASON_TASK_SWITCH:
5311                 return true;
5312         case EXIT_REASON_CPUID:
5313                 return true;
5314         case EXIT_REASON_HLT:
5315                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5316         case EXIT_REASON_INVD:
5317                 return true;
5318         case EXIT_REASON_INVLPG:
5319                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5320         case EXIT_REASON_RDPMC:
5321                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5322         case EXIT_REASON_RDRAND:
5323                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5324         case EXIT_REASON_RDSEED:
5325                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5326         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5327                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5328         case EXIT_REASON_VMREAD:
5329                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5330                         vmcs12->vmread_bitmap);
5331         case EXIT_REASON_VMWRITE:
5332                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5333                         vmcs12->vmwrite_bitmap);
5334         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5335         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5336         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5337         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5338         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5339                 /*
5340                  * VMX instructions trap unconditionally. This allows L1 to
5341                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5342                  */
5343                 return true;
5344         case EXIT_REASON_CR_ACCESS:
5345                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5346         case EXIT_REASON_DR_ACCESS:
5347                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5348         case EXIT_REASON_IO_INSTRUCTION:
5349                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5350         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5351                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5352         case EXIT_REASON_MSR_READ:
5353         case EXIT_REASON_MSR_WRITE:
5354                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5355         case EXIT_REASON_INVALID_STATE:
5356                 return true;
5357         case EXIT_REASON_MWAIT_INSTRUCTION:
5358                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5359         case EXIT_REASON_MONITOR_TRAP_FLAG:
5360                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5361         case EXIT_REASON_MONITOR_INSTRUCTION:
5362                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5363         case EXIT_REASON_PAUSE_INSTRUCTION:
5364                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5365                         nested_cpu_has2(vmcs12,
5366                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5367         case EXIT_REASON_MCE_DURING_VMENTRY:
5368                 return false;
5369         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5370                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5371         case EXIT_REASON_APIC_ACCESS:
5372         case EXIT_REASON_APIC_WRITE:
5373         case EXIT_REASON_EOI_INDUCED:
5374                 /*
5375                  * The controls for "virtualize APIC accesses," "APIC-
5376                  * register virtualization," and "virtual-interrupt
5377                  * delivery" only come from vmcs12.
5378                  */
5379                 return true;
5380         case EXIT_REASON_EPT_VIOLATION:
5381                 /*
5382                  * L0 always deals with the EPT violation. If nested EPT is
5383                  * used, and the nested mmu code discovers that the address is
5384                  * missing in the guest EPT table (EPT12), the EPT violation
5385                  * will be injected with nested_ept_inject_page_fault()
5386                  */
5387                 return false;
5388         case EXIT_REASON_EPT_MISCONFIG:
5389                 /*
5390                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5391                  * table (shadow on EPT) or a merged EPT table that L0 built
5392                  * (EPT on EPT). So any problems with the structure of the
5393                  * table is L0's fault.
5394                  */
5395                 return false;
5396         case EXIT_REASON_INVPCID:
5397                 return
5398                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5399                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5400         case EXIT_REASON_WBINVD:
5401                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5402         case EXIT_REASON_XSETBV:
5403                 return true;
5404         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5405                 /*
5406                  * This should never happen, since it is not possible to
5407                  * set XSS to a non-zero value---neither in L1 nor in L2.
5408                  * If if it were, XSS would have to be checked against
5409                  * the XSS exit bitmap in vmcs12.
5410                  */
5411                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5412         case EXIT_REASON_PREEMPTION_TIMER:
5413                 return false;
5414         case EXIT_REASON_PML_FULL:
5415                 /* We emulate PML support to L1. */
5416                 return false;
5417         case EXIT_REASON_VMFUNC:
5418                 /* VM functions are emulated through L2->L0 vmexits. */
5419                 return false;
5420         case EXIT_REASON_ENCLS:
5421                 /* SGX is never exposed to L1 */
5422                 return false;
5423         default:
5424                 return true;
5425         }
5426 }
5427
5428
5429 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5430                                 struct kvm_nested_state __user *user_kvm_nested_state,
5431                                 u32 user_data_size)
5432 {
5433         struct vcpu_vmx *vmx;
5434         struct vmcs12 *vmcs12;
5435         struct kvm_nested_state kvm_state = {
5436                 .flags = 0,
5437                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5438                 .size = sizeof(kvm_state),
5439                 .hdr.vmx.vmxon_pa = -1ull,
5440                 .hdr.vmx.vmcs12_pa = -1ull,
5441         };
5442         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5443                 &user_kvm_nested_state->data.vmx[0];
5444
5445         if (!vcpu)
5446                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5447
5448         vmx = to_vmx(vcpu);
5449         vmcs12 = get_vmcs12(vcpu);
5450
5451         if (nested_vmx_allowed(vcpu) &&
5452             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5453                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5454                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5455
5456                 if (vmx_has_valid_vmcs12(vcpu)) {
5457                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5458
5459                         if (vmx->nested.hv_evmcs)
5460                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5461
5462                         if (is_guest_mode(vcpu) &&
5463                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5464                             vmcs12->vmcs_link_pointer != -1ull)
5465                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5466                 }
5467
5468                 if (vmx->nested.smm.vmxon)
5469                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5470
5471                 if (vmx->nested.smm.guest_mode)
5472                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5473
5474                 if (is_guest_mode(vcpu)) {
5475                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5476
5477                         if (vmx->nested.nested_run_pending)
5478                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5479                 }
5480         }
5481
5482         if (user_data_size < kvm_state.size)
5483                 goto out;
5484
5485         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5486                 return -EFAULT;
5487
5488         if (!vmx_has_valid_vmcs12(vcpu))
5489                 goto out;
5490
5491         /*
5492          * When running L2, the authoritative vmcs12 state is in the
5493          * vmcs02. When running L1, the authoritative vmcs12 state is
5494          * in the shadow or enlightened vmcs linked to vmcs01, unless
5495          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5496          * vmcs12 state is in the vmcs12 already.
5497          */
5498         if (is_guest_mode(vcpu)) {
5499                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5500                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5501         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5502                 if (vmx->nested.hv_evmcs)
5503                         copy_enlightened_to_vmcs12(vmx);
5504                 else if (enable_shadow_vmcs)
5505                         copy_shadow_to_vmcs12(vmx);
5506         }
5507
5508         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5509         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5510
5511         /*
5512          * Copy over the full allocated size of vmcs12 rather than just the size
5513          * of the struct.
5514          */
5515         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5516                 return -EFAULT;
5517
5518         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5519             vmcs12->vmcs_link_pointer != -1ull) {
5520                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5521                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5522                         return -EFAULT;
5523         }
5524
5525 out:
5526         return kvm_state.size;
5527 }
5528
5529 /*
5530  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5531  */
5532 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5533 {
5534         if (is_guest_mode(vcpu)) {
5535                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5536                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5537         }
5538         free_nested(vcpu);
5539 }
5540
5541 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5542                                 struct kvm_nested_state __user *user_kvm_nested_state,
5543                                 struct kvm_nested_state *kvm_state)
5544 {
5545         struct vcpu_vmx *vmx = to_vmx(vcpu);
5546         struct vmcs12 *vmcs12;
5547         u32 exit_qual;
5548         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5549                 &user_kvm_nested_state->data.vmx[0];
5550         int ret;
5551
5552         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5553                 return -EINVAL;
5554
5555         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5556                 if (kvm_state->hdr.vmx.smm.flags)
5557                         return -EINVAL;
5558
5559                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5560                         return -EINVAL;
5561
5562                 /*
5563                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5564                  * enable eVMCS capability on vCPU. However, since then
5565                  * code was changed such that flag signals vmcs12 should
5566                  * be copied into eVMCS in guest memory.
5567                  *
5568                  * To preserve backwards compatability, allow user
5569                  * to set this flag even when there is no VMXON region.
5570                  */
5571                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5572                         return -EINVAL;
5573         } else {
5574                 if (!nested_vmx_allowed(vcpu))
5575                         return -EINVAL;
5576
5577                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5578                         return -EINVAL;
5579         }
5580
5581         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5582             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5583                 return -EINVAL;
5584
5585         if (kvm_state->hdr.vmx.smm.flags &
5586             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5587                 return -EINVAL;
5588
5589         /*
5590          * SMM temporarily disables VMX, so we cannot be in guest mode,
5591          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5592          * must be zero.
5593          */
5594         if (is_smm(vcpu) ?
5595                 (kvm_state->flags &
5596                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5597                 : kvm_state->hdr.vmx.smm.flags)
5598                 return -EINVAL;
5599
5600         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5601             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5602                 return -EINVAL;
5603
5604         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5605                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5606                         return -EINVAL;
5607
5608         vmx_leave_nested(vcpu);
5609
5610         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5611                 return 0;
5612
5613         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5614         ret = enter_vmx_operation(vcpu);
5615         if (ret)
5616                 return ret;
5617
5618         /* Empty 'VMXON' state is permitted */
5619         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5620                 return 0;
5621
5622         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5623                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5624                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5625                         return -EINVAL;
5626
5627                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5628         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5629                 /*
5630                  * Sync eVMCS upon entry as we may not have
5631                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5632                  */
5633                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5634         } else {
5635                 return -EINVAL;
5636         }
5637
5638         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5639                 vmx->nested.smm.vmxon = true;
5640                 vmx->nested.vmxon = false;
5641
5642                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5643                         vmx->nested.smm.guest_mode = true;
5644         }
5645
5646         vmcs12 = get_vmcs12(vcpu);
5647         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5648                 return -EFAULT;
5649
5650         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5651                 return -EINVAL;
5652
5653         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5654                 return 0;
5655
5656         vmx->nested.nested_run_pending =
5657                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5658
5659         ret = -EINVAL;
5660         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5661             vmcs12->vmcs_link_pointer != -1ull) {
5662                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5663
5664                 if (kvm_state->size <
5665                     sizeof(*kvm_state) +
5666                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5667                         goto error_guest_mode;
5668
5669                 if (copy_from_user(shadow_vmcs12,
5670                                    user_vmx_nested_state->shadow_vmcs12,
5671                                    sizeof(*shadow_vmcs12))) {
5672                         ret = -EFAULT;
5673                         goto error_guest_mode;
5674                 }
5675
5676                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5677                     !shadow_vmcs12->hdr.shadow_vmcs)
5678                         goto error_guest_mode;
5679         }
5680
5681         if (nested_vmx_check_controls(vcpu, vmcs12) ||
5682             nested_vmx_check_host_state(vcpu, vmcs12) ||
5683             nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5684                 goto error_guest_mode;
5685
5686         vmx->nested.dirty_vmcs12 = true;
5687         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5688         if (ret)
5689                 goto error_guest_mode;
5690
5691         return 0;
5692
5693 error_guest_mode:
5694         vmx->nested.nested_run_pending = 0;
5695         return ret;
5696 }
5697
5698 void nested_vmx_vcpu_setup(void)
5699 {
5700         if (enable_shadow_vmcs) {
5701                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5702                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5703         }
5704 }
5705
5706 /*
5707  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5708  * returned for the various VMX controls MSRs when nested VMX is enabled.
5709  * The same values should also be used to verify that vmcs12 control fields are
5710  * valid during nested entry from L1 to L2.
5711  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5712  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5713  * bit in the high half is on if the corresponding bit in the control field
5714  * may be on. See also vmx_control_verify().
5715  */
5716 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5717                                 bool apicv)
5718 {
5719         /*
5720          * Note that as a general rule, the high half of the MSRs (bits in
5721          * the control fields which may be 1) should be initialized by the
5722          * intersection of the underlying hardware's MSR (i.e., features which
5723          * can be supported) and the list of features we want to expose -
5724          * because they are known to be properly supported in our code.
5725          * Also, usually, the low half of the MSRs (bits which must be 1) can
5726          * be set to 0, meaning that L1 may turn off any of these bits. The
5727          * reason is that if one of these bits is necessary, it will appear
5728          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5729          * fields of vmcs01 and vmcs02, will turn these bits off - and
5730          * nested_vmx_exit_reflected() will not pass related exits to L1.
5731          * These rules have exceptions below.
5732          */
5733
5734         /* pin-based controls */
5735         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5736                 msrs->pinbased_ctls_low,
5737                 msrs->pinbased_ctls_high);
5738         msrs->pinbased_ctls_low |=
5739                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5740         msrs->pinbased_ctls_high &=
5741                 PIN_BASED_EXT_INTR_MASK |
5742                 PIN_BASED_NMI_EXITING |
5743                 PIN_BASED_VIRTUAL_NMIS |
5744                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5745         msrs->pinbased_ctls_high |=
5746                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5747                 PIN_BASED_VMX_PREEMPTION_TIMER;
5748
5749         /* exit controls */
5750         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5751                 msrs->exit_ctls_low,
5752                 msrs->exit_ctls_high);
5753         msrs->exit_ctls_low =
5754                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5755
5756         msrs->exit_ctls_high &=
5757 #ifdef CONFIG_X86_64
5758                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5759 #endif
5760                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5761         msrs->exit_ctls_high |=
5762                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5763                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5764                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5765
5766         /* We support free control of debug control saving. */
5767         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5768
5769         /* entry controls */
5770         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5771                 msrs->entry_ctls_low,
5772                 msrs->entry_ctls_high);
5773         msrs->entry_ctls_low =
5774                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5775         msrs->entry_ctls_high &=
5776 #ifdef CONFIG_X86_64
5777                 VM_ENTRY_IA32E_MODE |
5778 #endif
5779                 VM_ENTRY_LOAD_IA32_PAT;
5780         msrs->entry_ctls_high |=
5781                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5782
5783         /* We support free control of debug control loading. */
5784         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5785
5786         /* cpu-based controls */
5787         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5788                 msrs->procbased_ctls_low,
5789                 msrs->procbased_ctls_high);
5790         msrs->procbased_ctls_low =
5791                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5792         msrs->procbased_ctls_high &=
5793                 CPU_BASED_VIRTUAL_INTR_PENDING |
5794                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5795                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5796                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5797                 CPU_BASED_CR3_STORE_EXITING |
5798 #ifdef CONFIG_X86_64
5799                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5800 #endif
5801                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5802                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5803                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5804                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5805                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5806         /*
5807          * We can allow some features even when not supported by the
5808          * hardware. For example, L1 can specify an MSR bitmap - and we
5809          * can use it to avoid exits to L1 - even when L0 runs L2
5810          * without MSR bitmaps.
5811          */
5812         msrs->procbased_ctls_high |=
5813                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5814                 CPU_BASED_USE_MSR_BITMAPS;
5815
5816         /* We support free control of CR3 access interception. */
5817         msrs->procbased_ctls_low &=
5818                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5819
5820         /*
5821          * secondary cpu-based controls.  Do not include those that
5822          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5823          */
5824         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5825                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5826                       msrs->secondary_ctls_low,
5827                       msrs->secondary_ctls_high);
5828
5829         msrs->secondary_ctls_low = 0;
5830         msrs->secondary_ctls_high &=
5831                 SECONDARY_EXEC_DESC |
5832                 SECONDARY_EXEC_RDTSCP |
5833                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5834                 SECONDARY_EXEC_WBINVD_EXITING |
5835                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5836                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5837                 SECONDARY_EXEC_RDRAND_EXITING |
5838                 SECONDARY_EXEC_ENABLE_INVPCID |
5839                 SECONDARY_EXEC_RDSEED_EXITING |
5840                 SECONDARY_EXEC_XSAVES;
5841
5842         /*
5843          * We can emulate "VMCS shadowing," even if the hardware
5844          * doesn't support it.
5845          */
5846         msrs->secondary_ctls_high |=
5847                 SECONDARY_EXEC_SHADOW_VMCS;
5848
5849         if (enable_ept) {
5850                 /* nested EPT: emulate EPT also to L1 */
5851                 msrs->secondary_ctls_high |=
5852                         SECONDARY_EXEC_ENABLE_EPT;
5853                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5854                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5855                 if (cpu_has_vmx_ept_execute_only())
5856                         msrs->ept_caps |=
5857                                 VMX_EPT_EXECUTE_ONLY_BIT;
5858                 msrs->ept_caps &= ept_caps;
5859                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5860                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5861                         VMX_EPT_1GB_PAGE_BIT;
5862                 if (enable_ept_ad_bits) {
5863                         msrs->secondary_ctls_high |=
5864                                 SECONDARY_EXEC_ENABLE_PML;
5865                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5866                 }
5867         }
5868
5869         if (cpu_has_vmx_vmfunc()) {
5870                 msrs->secondary_ctls_high |=
5871                         SECONDARY_EXEC_ENABLE_VMFUNC;
5872                 /*
5873                  * Advertise EPTP switching unconditionally
5874                  * since we emulate it
5875                  */
5876                 if (enable_ept)
5877                         msrs->vmfunc_controls =
5878                                 VMX_VMFUNC_EPTP_SWITCHING;
5879         }
5880
5881         /*
5882          * Old versions of KVM use the single-context version without
5883          * checking for support, so declare that it is supported even
5884          * though it is treated as global context.  The alternative is
5885          * not failing the single-context invvpid, and it is worse.
5886          */
5887         if (enable_vpid) {
5888                 msrs->secondary_ctls_high |=
5889                         SECONDARY_EXEC_ENABLE_VPID;
5890                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5891                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5892         }
5893
5894         if (enable_unrestricted_guest)
5895                 msrs->secondary_ctls_high |=
5896                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5897
5898         if (flexpriority_enabled)
5899                 msrs->secondary_ctls_high |=
5900                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5901
5902         /* miscellaneous data */
5903         rdmsr(MSR_IA32_VMX_MISC,
5904                 msrs->misc_low,
5905                 msrs->misc_high);
5906         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5907         msrs->misc_low |=
5908                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5909                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5910                 VMX_MISC_ACTIVITY_HLT;
5911         msrs->misc_high = 0;
5912
5913         /*
5914          * This MSR reports some information about VMX support. We
5915          * should return information about the VMX we emulate for the
5916          * guest, and the VMCS structure we give it - not about the
5917          * VMX support of the underlying hardware.
5918          */
5919         msrs->basic =
5920                 VMCS12_REVISION |
5921                 VMX_BASIC_TRUE_CTLS |
5922                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5923                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5924
5925         if (cpu_has_vmx_basic_inout())
5926                 msrs->basic |= VMX_BASIC_INOUT;
5927
5928         /*
5929          * These MSRs specify bits which the guest must keep fixed on
5930          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5931          * We picked the standard core2 setting.
5932          */
5933 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5934 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
5935         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5936         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5937
5938         /* These MSRs specify bits which the guest must keep fixed off. */
5939         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5940         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5941
5942         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
5943         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5944 }
5945
5946 void nested_vmx_hardware_unsetup(void)
5947 {
5948         int i;
5949
5950         if (enable_shadow_vmcs) {
5951                 for (i = 0; i < VMX_BITMAP_NR; i++)
5952                         free_page((unsigned long)vmx_bitmap[i]);
5953         }
5954 }
5955
5956 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5957 {
5958         int i;
5959
5960         if (!cpu_has_vmx_shadow_vmcs())
5961                 enable_shadow_vmcs = 0;
5962         if (enable_shadow_vmcs) {
5963                 for (i = 0; i < VMX_BITMAP_NR; i++) {
5964                         /*
5965                          * The vmx_bitmap is not tied to a VM and so should
5966                          * not be charged to a memcg.
5967                          */
5968                         vmx_bitmap[i] = (unsigned long *)
5969                                 __get_free_page(GFP_KERNEL);
5970                         if (!vmx_bitmap[i]) {
5971                                 nested_vmx_hardware_unsetup();
5972                                 return -ENOMEM;
5973                         }
5974                 }
5975
5976                 init_vmcs_shadow_fields();
5977         }
5978
5979         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
5980         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
5981         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
5982         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
5983         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
5984         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
5985         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
5986         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
5987         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
5988         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
5989         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
5990         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
5991
5992         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
5993         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
5994         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
5995         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
5996         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
5997         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
5998
5999         return 0;
6000 }