Merge remote-tracking branch 'regulator/topic/core' into regulator-next
[sfrench/cifs-2.6.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53 #include <asm/nospec-branch.h>
54
55 #include "trace.h"
56 #include "pmu.h"
57
58 #define __ex(x) __kvm_handle_fault_on_reboot(x)
59 #define __ex_clear(x, reg) \
60         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 static const struct x86_cpu_id vmx_cpu_id[] = {
66         X86_FEATURE_MATCH(X86_FEATURE_VMX),
67         {}
68 };
69 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
70
71 static bool __read_mostly enable_vpid = 1;
72 module_param_named(vpid, enable_vpid, bool, 0444);
73
74 static bool __read_mostly enable_vnmi = 1;
75 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
76
77 static bool __read_mostly flexpriority_enabled = 1;
78 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
79
80 static bool __read_mostly enable_ept = 1;
81 module_param_named(ept, enable_ept, bool, S_IRUGO);
82
83 static bool __read_mostly enable_unrestricted_guest = 1;
84 module_param_named(unrestricted_guest,
85                         enable_unrestricted_guest, bool, S_IRUGO);
86
87 static bool __read_mostly enable_ept_ad_bits = 1;
88 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
89
90 static bool __read_mostly emulate_invalid_guest_state = true;
91 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
92
93 static bool __read_mostly fasteoi = 1;
94 module_param(fasteoi, bool, S_IRUGO);
95
96 static bool __read_mostly enable_apicv = 1;
97 module_param(enable_apicv, bool, S_IRUGO);
98
99 static bool __read_mostly enable_shadow_vmcs = 1;
100 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
101 /*
102  * If nested=1, nested virtualization is supported, i.e., guests may use
103  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104  * use VMX instructions.
105  */
106 static bool __read_mostly nested = 0;
107 module_param(nested, bool, S_IRUGO);
108
109 static u64 __read_mostly host_xss;
110
111 static bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113
114 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
115
116 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
117 static int __read_mostly cpu_preemption_timer_multi;
118 static bool __read_mostly enable_preemption_timer = 1;
119 #ifdef CONFIG_X86_64
120 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
121 #endif
122
123 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
124 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
125 #define KVM_VM_CR0_ALWAYS_ON                                            \
126         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
127 #define KVM_CR4_GUEST_OWNED_BITS                                      \
128         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
129          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
130
131 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
132 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
133
134 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
135
136 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
137
138 /*
139  * Hyper-V requires all of these, so mark them as supported even though
140  * they are just treated the same as all-context.
141  */
142 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
143         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
144         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
145         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
146         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
147
148 /*
149  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
150  * ple_gap:    upper bound on the amount of time between two successive
151  *             executions of PAUSE in a loop. Also indicate if ple enabled.
152  *             According to test, this time is usually smaller than 128 cycles.
153  * ple_window: upper bound on the amount of time a guest is allowed to execute
154  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
155  *             less than 2^12 cycles
156  * Time is measured based on a counter that runs at the same rate as the TSC,
157  * refer SDM volume 3b section 21.6.13 & 22.1.3.
158  */
159 #define KVM_VMX_DEFAULT_PLE_GAP           128
160 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
161 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
162 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
163 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
164                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
165
166 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
167 module_param(ple_gap, int, S_IRUGO);
168
169 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
170 module_param(ple_window, int, S_IRUGO);
171
172 /* Default doubles per-vcpu window every exit. */
173 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
174 module_param(ple_window_grow, int, S_IRUGO);
175
176 /* Default resets per-vcpu window every exit to ple_window. */
177 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
178 module_param(ple_window_shrink, int, S_IRUGO);
179
180 /* Default is to compute the maximum so we can never overflow. */
181 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
182 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
183 module_param(ple_window_max, int, S_IRUGO);
184
185 extern const ulong vmx_return;
186
187 #define NR_AUTOLOAD_MSRS 8
188 #define VMCS02_POOL_SIZE 1
189
190 struct vmcs {
191         u32 revision_id;
192         u32 abort;
193         char data[0];
194 };
195
196 /*
197  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
198  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
199  * loaded on this CPU (so we can clear them if the CPU goes down).
200  */
201 struct loaded_vmcs {
202         struct vmcs *vmcs;
203         struct vmcs *shadow_vmcs;
204         int cpu;
205         bool launched;
206         bool nmi_known_unmasked;
207         unsigned long vmcs_host_cr3;    /* May not match real cr3 */
208         unsigned long vmcs_host_cr4;    /* May not match real cr4 */
209         /* Support for vnmi-less CPUs */
210         int soft_vnmi_blocked;
211         ktime_t entry_time;
212         s64 vnmi_blocked_time;
213         struct list_head loaded_vmcss_on_cpu_link;
214 };
215
216 struct shared_msr_entry {
217         unsigned index;
218         u64 data;
219         u64 mask;
220 };
221
222 /*
223  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
224  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
225  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
226  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
227  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
228  * More than one of these structures may exist, if L1 runs multiple L2 guests.
229  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
230  * underlying hardware which will be used to run L2.
231  * This structure is packed to ensure that its layout is identical across
232  * machines (necessary for live migration).
233  * If there are changes in this struct, VMCS12_REVISION must be changed.
234  */
235 typedef u64 natural_width;
236 struct __packed vmcs12 {
237         /* According to the Intel spec, a VMCS region must start with the
238          * following two fields. Then follow implementation-specific data.
239          */
240         u32 revision_id;
241         u32 abort;
242
243         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
244         u32 padding[7]; /* room for future expansion */
245
246         u64 io_bitmap_a;
247         u64 io_bitmap_b;
248         u64 msr_bitmap;
249         u64 vm_exit_msr_store_addr;
250         u64 vm_exit_msr_load_addr;
251         u64 vm_entry_msr_load_addr;
252         u64 tsc_offset;
253         u64 virtual_apic_page_addr;
254         u64 apic_access_addr;
255         u64 posted_intr_desc_addr;
256         u64 vm_function_control;
257         u64 ept_pointer;
258         u64 eoi_exit_bitmap0;
259         u64 eoi_exit_bitmap1;
260         u64 eoi_exit_bitmap2;
261         u64 eoi_exit_bitmap3;
262         u64 eptp_list_address;
263         u64 xss_exit_bitmap;
264         u64 guest_physical_address;
265         u64 vmcs_link_pointer;
266         u64 pml_address;
267         u64 guest_ia32_debugctl;
268         u64 guest_ia32_pat;
269         u64 guest_ia32_efer;
270         u64 guest_ia32_perf_global_ctrl;
271         u64 guest_pdptr0;
272         u64 guest_pdptr1;
273         u64 guest_pdptr2;
274         u64 guest_pdptr3;
275         u64 guest_bndcfgs;
276         u64 host_ia32_pat;
277         u64 host_ia32_efer;
278         u64 host_ia32_perf_global_ctrl;
279         u64 padding64[8]; /* room for future expansion */
280         /*
281          * To allow migration of L1 (complete with its L2 guests) between
282          * machines of different natural widths (32 or 64 bit), we cannot have
283          * unsigned long fields with no explict size. We use u64 (aliased
284          * natural_width) instead. Luckily, x86 is little-endian.
285          */
286         natural_width cr0_guest_host_mask;
287         natural_width cr4_guest_host_mask;
288         natural_width cr0_read_shadow;
289         natural_width cr4_read_shadow;
290         natural_width cr3_target_value0;
291         natural_width cr3_target_value1;
292         natural_width cr3_target_value2;
293         natural_width cr3_target_value3;
294         natural_width exit_qualification;
295         natural_width guest_linear_address;
296         natural_width guest_cr0;
297         natural_width guest_cr3;
298         natural_width guest_cr4;
299         natural_width guest_es_base;
300         natural_width guest_cs_base;
301         natural_width guest_ss_base;
302         natural_width guest_ds_base;
303         natural_width guest_fs_base;
304         natural_width guest_gs_base;
305         natural_width guest_ldtr_base;
306         natural_width guest_tr_base;
307         natural_width guest_gdtr_base;
308         natural_width guest_idtr_base;
309         natural_width guest_dr7;
310         natural_width guest_rsp;
311         natural_width guest_rip;
312         natural_width guest_rflags;
313         natural_width guest_pending_dbg_exceptions;
314         natural_width guest_sysenter_esp;
315         natural_width guest_sysenter_eip;
316         natural_width host_cr0;
317         natural_width host_cr3;
318         natural_width host_cr4;
319         natural_width host_fs_base;
320         natural_width host_gs_base;
321         natural_width host_tr_base;
322         natural_width host_gdtr_base;
323         natural_width host_idtr_base;
324         natural_width host_ia32_sysenter_esp;
325         natural_width host_ia32_sysenter_eip;
326         natural_width host_rsp;
327         natural_width host_rip;
328         natural_width paddingl[8]; /* room for future expansion */
329         u32 pin_based_vm_exec_control;
330         u32 cpu_based_vm_exec_control;
331         u32 exception_bitmap;
332         u32 page_fault_error_code_mask;
333         u32 page_fault_error_code_match;
334         u32 cr3_target_count;
335         u32 vm_exit_controls;
336         u32 vm_exit_msr_store_count;
337         u32 vm_exit_msr_load_count;
338         u32 vm_entry_controls;
339         u32 vm_entry_msr_load_count;
340         u32 vm_entry_intr_info_field;
341         u32 vm_entry_exception_error_code;
342         u32 vm_entry_instruction_len;
343         u32 tpr_threshold;
344         u32 secondary_vm_exec_control;
345         u32 vm_instruction_error;
346         u32 vm_exit_reason;
347         u32 vm_exit_intr_info;
348         u32 vm_exit_intr_error_code;
349         u32 idt_vectoring_info_field;
350         u32 idt_vectoring_error_code;
351         u32 vm_exit_instruction_len;
352         u32 vmx_instruction_info;
353         u32 guest_es_limit;
354         u32 guest_cs_limit;
355         u32 guest_ss_limit;
356         u32 guest_ds_limit;
357         u32 guest_fs_limit;
358         u32 guest_gs_limit;
359         u32 guest_ldtr_limit;
360         u32 guest_tr_limit;
361         u32 guest_gdtr_limit;
362         u32 guest_idtr_limit;
363         u32 guest_es_ar_bytes;
364         u32 guest_cs_ar_bytes;
365         u32 guest_ss_ar_bytes;
366         u32 guest_ds_ar_bytes;
367         u32 guest_fs_ar_bytes;
368         u32 guest_gs_ar_bytes;
369         u32 guest_ldtr_ar_bytes;
370         u32 guest_tr_ar_bytes;
371         u32 guest_interruptibility_info;
372         u32 guest_activity_state;
373         u32 guest_sysenter_cs;
374         u32 host_ia32_sysenter_cs;
375         u32 vmx_preemption_timer_value;
376         u32 padding32[7]; /* room for future expansion */
377         u16 virtual_processor_id;
378         u16 posted_intr_nv;
379         u16 guest_es_selector;
380         u16 guest_cs_selector;
381         u16 guest_ss_selector;
382         u16 guest_ds_selector;
383         u16 guest_fs_selector;
384         u16 guest_gs_selector;
385         u16 guest_ldtr_selector;
386         u16 guest_tr_selector;
387         u16 guest_intr_status;
388         u16 guest_pml_index;
389         u16 host_es_selector;
390         u16 host_cs_selector;
391         u16 host_ss_selector;
392         u16 host_ds_selector;
393         u16 host_fs_selector;
394         u16 host_gs_selector;
395         u16 host_tr_selector;
396 };
397
398 /*
399  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
400  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
401  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
402  */
403 #define VMCS12_REVISION 0x11e57ed0
404
405 /*
406  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
407  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
408  * current implementation, 4K are reserved to avoid future complications.
409  */
410 #define VMCS12_SIZE 0x1000
411
412 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
413 struct vmcs02_list {
414         struct list_head list;
415         gpa_t vmptr;
416         struct loaded_vmcs vmcs02;
417 };
418
419 /*
420  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
421  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
422  */
423 struct nested_vmx {
424         /* Has the level1 guest done vmxon? */
425         bool vmxon;
426         gpa_t vmxon_ptr;
427         bool pml_full;
428
429         /* The guest-physical address of the current VMCS L1 keeps for L2 */
430         gpa_t current_vmptr;
431         /*
432          * Cache of the guest's VMCS, existing outside of guest memory.
433          * Loaded from guest memory during VMPTRLD. Flushed to guest
434          * memory during VMCLEAR and VMPTRLD.
435          */
436         struct vmcs12 *cached_vmcs12;
437         /*
438          * Indicates if the shadow vmcs must be updated with the
439          * data hold by vmcs12
440          */
441         bool sync_shadow_vmcs;
442
443         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
444         struct list_head vmcs02_pool;
445         int vmcs02_num;
446         bool change_vmcs01_virtual_x2apic_mode;
447         /* L2 must run next, and mustn't decide to exit to L1. */
448         bool nested_run_pending;
449         /*
450          * Guest pages referred to in vmcs02 with host-physical pointers, so
451          * we must keep them pinned while L2 runs.
452          */
453         struct page *apic_access_page;
454         struct page *virtual_apic_page;
455         struct page *pi_desc_page;
456         struct pi_desc *pi_desc;
457         bool pi_pending;
458         u16 posted_intr_nv;
459
460         unsigned long *msr_bitmap;
461
462         struct hrtimer preemption_timer;
463         bool preemption_timer_expired;
464
465         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
466         u64 vmcs01_debugctl;
467
468         u16 vpid02;
469         u16 last_vpid;
470
471         /*
472          * We only store the "true" versions of the VMX capability MSRs. We
473          * generate the "non-true" versions by setting the must-be-1 bits
474          * according to the SDM.
475          */
476         u32 nested_vmx_procbased_ctls_low;
477         u32 nested_vmx_procbased_ctls_high;
478         u32 nested_vmx_secondary_ctls_low;
479         u32 nested_vmx_secondary_ctls_high;
480         u32 nested_vmx_pinbased_ctls_low;
481         u32 nested_vmx_pinbased_ctls_high;
482         u32 nested_vmx_exit_ctls_low;
483         u32 nested_vmx_exit_ctls_high;
484         u32 nested_vmx_entry_ctls_low;
485         u32 nested_vmx_entry_ctls_high;
486         u32 nested_vmx_misc_low;
487         u32 nested_vmx_misc_high;
488         u32 nested_vmx_ept_caps;
489         u32 nested_vmx_vpid_caps;
490         u64 nested_vmx_basic;
491         u64 nested_vmx_cr0_fixed0;
492         u64 nested_vmx_cr0_fixed1;
493         u64 nested_vmx_cr4_fixed0;
494         u64 nested_vmx_cr4_fixed1;
495         u64 nested_vmx_vmcs_enum;
496         u64 nested_vmx_vmfunc_controls;
497
498         /* SMM related state */
499         struct {
500                 /* in VMX operation on SMM entry? */
501                 bool vmxon;
502                 /* in guest mode on SMM entry? */
503                 bool guest_mode;
504         } smm;
505 };
506
507 #define POSTED_INTR_ON  0
508 #define POSTED_INTR_SN  1
509
510 /* Posted-Interrupt Descriptor */
511 struct pi_desc {
512         u32 pir[8];     /* Posted interrupt requested */
513         union {
514                 struct {
515                                 /* bit 256 - Outstanding Notification */
516                         u16     on      : 1,
517                                 /* bit 257 - Suppress Notification */
518                                 sn      : 1,
519                                 /* bit 271:258 - Reserved */
520                                 rsvd_1  : 14;
521                                 /* bit 279:272 - Notification Vector */
522                         u8      nv;
523                                 /* bit 287:280 - Reserved */
524                         u8      rsvd_2;
525                                 /* bit 319:288 - Notification Destination */
526                         u32     ndst;
527                 };
528                 u64 control;
529         };
530         u32 rsvd[6];
531 } __aligned(64);
532
533 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
534 {
535         return test_and_set_bit(POSTED_INTR_ON,
536                         (unsigned long *)&pi_desc->control);
537 }
538
539 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
540 {
541         return test_and_clear_bit(POSTED_INTR_ON,
542                         (unsigned long *)&pi_desc->control);
543 }
544
545 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
546 {
547         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
548 }
549
550 static inline void pi_clear_sn(struct pi_desc *pi_desc)
551 {
552         return clear_bit(POSTED_INTR_SN,
553                         (unsigned long *)&pi_desc->control);
554 }
555
556 static inline void pi_set_sn(struct pi_desc *pi_desc)
557 {
558         return set_bit(POSTED_INTR_SN,
559                         (unsigned long *)&pi_desc->control);
560 }
561
562 static inline void pi_clear_on(struct pi_desc *pi_desc)
563 {
564         clear_bit(POSTED_INTR_ON,
565                   (unsigned long *)&pi_desc->control);
566 }
567
568 static inline int pi_test_on(struct pi_desc *pi_desc)
569 {
570         return test_bit(POSTED_INTR_ON,
571                         (unsigned long *)&pi_desc->control);
572 }
573
574 static inline int pi_test_sn(struct pi_desc *pi_desc)
575 {
576         return test_bit(POSTED_INTR_SN,
577                         (unsigned long *)&pi_desc->control);
578 }
579
580 struct vcpu_vmx {
581         struct kvm_vcpu       vcpu;
582         unsigned long         host_rsp;
583         u8                    fail;
584         u32                   exit_intr_info;
585         u32                   idt_vectoring_info;
586         ulong                 rflags;
587         struct shared_msr_entry *guest_msrs;
588         int                   nmsrs;
589         int                   save_nmsrs;
590         unsigned long         host_idt_base;
591 #ifdef CONFIG_X86_64
592         u64                   msr_host_kernel_gs_base;
593         u64                   msr_guest_kernel_gs_base;
594 #endif
595         u32 vm_entry_controls_shadow;
596         u32 vm_exit_controls_shadow;
597         u32 secondary_exec_control;
598
599         /*
600          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
601          * non-nested (L1) guest, it always points to vmcs01. For a nested
602          * guest (L2), it points to a different VMCS.
603          */
604         struct loaded_vmcs    vmcs01;
605         struct loaded_vmcs   *loaded_vmcs;
606         bool                  __launched; /* temporary, used in vmx_vcpu_run */
607         struct msr_autoload {
608                 unsigned nr;
609                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
610                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
611         } msr_autoload;
612         struct {
613                 int           loaded;
614                 u16           fs_sel, gs_sel, ldt_sel;
615 #ifdef CONFIG_X86_64
616                 u16           ds_sel, es_sel;
617 #endif
618                 int           gs_ldt_reload_needed;
619                 int           fs_reload_needed;
620                 u64           msr_host_bndcfgs;
621         } host_state;
622         struct {
623                 int vm86_active;
624                 ulong save_rflags;
625                 struct kvm_segment segs[8];
626         } rmode;
627         struct {
628                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
629                 struct kvm_save_segment {
630                         u16 selector;
631                         unsigned long base;
632                         u32 limit;
633                         u32 ar;
634                 } seg[8];
635         } segment_cache;
636         int vpid;
637         bool emulation_required;
638
639         u32 exit_reason;
640
641         /* Posted interrupt descriptor */
642         struct pi_desc pi_desc;
643
644         /* Support for a guest hypervisor (nested VMX) */
645         struct nested_vmx nested;
646
647         /* Dynamic PLE window. */
648         int ple_window;
649         bool ple_window_dirty;
650
651         /* Support for PML */
652 #define PML_ENTITY_NUM          512
653         struct page *pml_pg;
654
655         /* apic deadline value in host tsc */
656         u64 hv_deadline_tsc;
657
658         u64 current_tsc_ratio;
659
660         u32 host_pkru;
661
662         /*
663          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
664          * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
665          * in msr_ia32_feature_control_valid_bits.
666          */
667         u64 msr_ia32_feature_control;
668         u64 msr_ia32_feature_control_valid_bits;
669 };
670
671 enum segment_cache_field {
672         SEG_FIELD_SEL = 0,
673         SEG_FIELD_BASE = 1,
674         SEG_FIELD_LIMIT = 2,
675         SEG_FIELD_AR = 3,
676
677         SEG_FIELD_NR = 4
678 };
679
680 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
681 {
682         return container_of(vcpu, struct vcpu_vmx, vcpu);
683 }
684
685 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
686 {
687         return &(to_vmx(vcpu)->pi_desc);
688 }
689
690 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
691 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
692 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
693                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
694
695
696 static unsigned long shadow_read_only_fields[] = {
697         /*
698          * We do NOT shadow fields that are modified when L0
699          * traps and emulates any vmx instruction (e.g. VMPTRLD,
700          * VMXON...) executed by L1.
701          * For example, VM_INSTRUCTION_ERROR is read
702          * by L1 if a vmx instruction fails (part of the error path).
703          * Note the code assumes this logic. If for some reason
704          * we start shadowing these fields then we need to
705          * force a shadow sync when L0 emulates vmx instructions
706          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
707          * by nested_vmx_failValid)
708          */
709         VM_EXIT_REASON,
710         VM_EXIT_INTR_INFO,
711         VM_EXIT_INSTRUCTION_LEN,
712         IDT_VECTORING_INFO_FIELD,
713         IDT_VECTORING_ERROR_CODE,
714         VM_EXIT_INTR_ERROR_CODE,
715         EXIT_QUALIFICATION,
716         GUEST_LINEAR_ADDRESS,
717         GUEST_PHYSICAL_ADDRESS
718 };
719 static int max_shadow_read_only_fields =
720         ARRAY_SIZE(shadow_read_only_fields);
721
722 static unsigned long shadow_read_write_fields[] = {
723         TPR_THRESHOLD,
724         GUEST_RIP,
725         GUEST_RSP,
726         GUEST_CR0,
727         GUEST_CR3,
728         GUEST_CR4,
729         GUEST_INTERRUPTIBILITY_INFO,
730         GUEST_RFLAGS,
731         GUEST_CS_SELECTOR,
732         GUEST_CS_AR_BYTES,
733         GUEST_CS_LIMIT,
734         GUEST_CS_BASE,
735         GUEST_ES_BASE,
736         GUEST_BNDCFGS,
737         CR0_GUEST_HOST_MASK,
738         CR0_READ_SHADOW,
739         CR4_READ_SHADOW,
740         TSC_OFFSET,
741         EXCEPTION_BITMAP,
742         CPU_BASED_VM_EXEC_CONTROL,
743         VM_ENTRY_EXCEPTION_ERROR_CODE,
744         VM_ENTRY_INTR_INFO_FIELD,
745         VM_ENTRY_INSTRUCTION_LEN,
746         VM_ENTRY_EXCEPTION_ERROR_CODE,
747         HOST_FS_BASE,
748         HOST_GS_BASE,
749         HOST_FS_SELECTOR,
750         HOST_GS_SELECTOR
751 };
752 static int max_shadow_read_write_fields =
753         ARRAY_SIZE(shadow_read_write_fields);
754
755 static const unsigned short vmcs_field_to_offset_table[] = {
756         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
757         FIELD(POSTED_INTR_NV, posted_intr_nv),
758         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
759         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
760         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
761         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
762         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
763         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
764         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
765         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
766         FIELD(GUEST_INTR_STATUS, guest_intr_status),
767         FIELD(GUEST_PML_INDEX, guest_pml_index),
768         FIELD(HOST_ES_SELECTOR, host_es_selector),
769         FIELD(HOST_CS_SELECTOR, host_cs_selector),
770         FIELD(HOST_SS_SELECTOR, host_ss_selector),
771         FIELD(HOST_DS_SELECTOR, host_ds_selector),
772         FIELD(HOST_FS_SELECTOR, host_fs_selector),
773         FIELD(HOST_GS_SELECTOR, host_gs_selector),
774         FIELD(HOST_TR_SELECTOR, host_tr_selector),
775         FIELD64(IO_BITMAP_A, io_bitmap_a),
776         FIELD64(IO_BITMAP_B, io_bitmap_b),
777         FIELD64(MSR_BITMAP, msr_bitmap),
778         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
779         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
780         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
781         FIELD64(TSC_OFFSET, tsc_offset),
782         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
783         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
784         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
785         FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
786         FIELD64(EPT_POINTER, ept_pointer),
787         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
788         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
789         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
790         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
791         FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
792         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
793         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
794         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
795         FIELD64(PML_ADDRESS, pml_address),
796         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
797         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
798         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
799         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
800         FIELD64(GUEST_PDPTR0, guest_pdptr0),
801         FIELD64(GUEST_PDPTR1, guest_pdptr1),
802         FIELD64(GUEST_PDPTR2, guest_pdptr2),
803         FIELD64(GUEST_PDPTR3, guest_pdptr3),
804         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
805         FIELD64(HOST_IA32_PAT, host_ia32_pat),
806         FIELD64(HOST_IA32_EFER, host_ia32_efer),
807         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
808         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
809         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
810         FIELD(EXCEPTION_BITMAP, exception_bitmap),
811         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
812         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
813         FIELD(CR3_TARGET_COUNT, cr3_target_count),
814         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
815         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
816         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
817         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
818         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
819         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
820         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
821         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
822         FIELD(TPR_THRESHOLD, tpr_threshold),
823         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
824         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
825         FIELD(VM_EXIT_REASON, vm_exit_reason),
826         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
827         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
828         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
829         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
830         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
831         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
832         FIELD(GUEST_ES_LIMIT, guest_es_limit),
833         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
834         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
835         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
836         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
837         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
838         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
839         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
840         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
841         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
842         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
843         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
844         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
845         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
846         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
847         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
848         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
849         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
850         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
851         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
852         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
853         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
854         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
855         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
856         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
857         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
858         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
859         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
860         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
861         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
862         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
863         FIELD(EXIT_QUALIFICATION, exit_qualification),
864         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
865         FIELD(GUEST_CR0, guest_cr0),
866         FIELD(GUEST_CR3, guest_cr3),
867         FIELD(GUEST_CR4, guest_cr4),
868         FIELD(GUEST_ES_BASE, guest_es_base),
869         FIELD(GUEST_CS_BASE, guest_cs_base),
870         FIELD(GUEST_SS_BASE, guest_ss_base),
871         FIELD(GUEST_DS_BASE, guest_ds_base),
872         FIELD(GUEST_FS_BASE, guest_fs_base),
873         FIELD(GUEST_GS_BASE, guest_gs_base),
874         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
875         FIELD(GUEST_TR_BASE, guest_tr_base),
876         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
877         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
878         FIELD(GUEST_DR7, guest_dr7),
879         FIELD(GUEST_RSP, guest_rsp),
880         FIELD(GUEST_RIP, guest_rip),
881         FIELD(GUEST_RFLAGS, guest_rflags),
882         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
883         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
884         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
885         FIELD(HOST_CR0, host_cr0),
886         FIELD(HOST_CR3, host_cr3),
887         FIELD(HOST_CR4, host_cr4),
888         FIELD(HOST_FS_BASE, host_fs_base),
889         FIELD(HOST_GS_BASE, host_gs_base),
890         FIELD(HOST_TR_BASE, host_tr_base),
891         FIELD(HOST_GDTR_BASE, host_gdtr_base),
892         FIELD(HOST_IDTR_BASE, host_idtr_base),
893         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
894         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
895         FIELD(HOST_RSP, host_rsp),
896         FIELD(HOST_RIP, host_rip),
897 };
898
899 static inline short vmcs_field_to_offset(unsigned long field)
900 {
901         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
902
903         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table))
904                 return -ENOENT;
905
906         /*
907          * FIXME: Mitigation for CVE-2017-5753.  To be replaced with a
908          * generic mechanism.
909          */
910         asm("lfence");
911
912         if (vmcs_field_to_offset_table[field] == 0)
913                 return -ENOENT;
914
915         return vmcs_field_to_offset_table[field];
916 }
917
918 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
919 {
920         return to_vmx(vcpu)->nested.cached_vmcs12;
921 }
922
923 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
924 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
925 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
926 static bool vmx_xsaves_supported(void);
927 static void vmx_set_segment(struct kvm_vcpu *vcpu,
928                             struct kvm_segment *var, int seg);
929 static void vmx_get_segment(struct kvm_vcpu *vcpu,
930                             struct kvm_segment *var, int seg);
931 static bool guest_state_valid(struct kvm_vcpu *vcpu);
932 static u32 vmx_segment_access_rights(struct kvm_segment *var);
933 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
934 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
935 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
936 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
937                                             u16 error_code);
938
939 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
940 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
941 /*
942  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
943  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
944  */
945 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
946
947 /*
948  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
949  * can find which vCPU should be waken up.
950  */
951 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
952 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
953
954 enum {
955         VMX_IO_BITMAP_A,
956         VMX_IO_BITMAP_B,
957         VMX_MSR_BITMAP_LEGACY,
958         VMX_MSR_BITMAP_LONGMODE,
959         VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
960         VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
961         VMX_MSR_BITMAP_LEGACY_X2APIC,
962         VMX_MSR_BITMAP_LONGMODE_X2APIC,
963         VMX_VMREAD_BITMAP,
964         VMX_VMWRITE_BITMAP,
965         VMX_BITMAP_NR
966 };
967
968 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
969
970 #define vmx_io_bitmap_a                      (vmx_bitmap[VMX_IO_BITMAP_A])
971 #define vmx_io_bitmap_b                      (vmx_bitmap[VMX_IO_BITMAP_B])
972 #define vmx_msr_bitmap_legacy                (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
973 #define vmx_msr_bitmap_longmode              (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
974 #define vmx_msr_bitmap_legacy_x2apic_apicv   (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
975 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
976 #define vmx_msr_bitmap_legacy_x2apic         (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
977 #define vmx_msr_bitmap_longmode_x2apic       (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
978 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
979 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
980
981 static bool cpu_has_load_ia32_efer;
982 static bool cpu_has_load_perf_global_ctrl;
983
984 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
985 static DEFINE_SPINLOCK(vmx_vpid_lock);
986
987 static struct vmcs_config {
988         int size;
989         int order;
990         u32 basic_cap;
991         u32 revision_id;
992         u32 pin_based_exec_ctrl;
993         u32 cpu_based_exec_ctrl;
994         u32 cpu_based_2nd_exec_ctrl;
995         u32 vmexit_ctrl;
996         u32 vmentry_ctrl;
997 } vmcs_config;
998
999 static struct vmx_capability {
1000         u32 ept;
1001         u32 vpid;
1002 } vmx_capability;
1003
1004 #define VMX_SEGMENT_FIELD(seg)                                  \
1005         [VCPU_SREG_##seg] = {                                   \
1006                 .selector = GUEST_##seg##_SELECTOR,             \
1007                 .base = GUEST_##seg##_BASE,                     \
1008                 .limit = GUEST_##seg##_LIMIT,                   \
1009                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
1010         }
1011
1012 static const struct kvm_vmx_segment_field {
1013         unsigned selector;
1014         unsigned base;
1015         unsigned limit;
1016         unsigned ar_bytes;
1017 } kvm_vmx_segment_fields[] = {
1018         VMX_SEGMENT_FIELD(CS),
1019         VMX_SEGMENT_FIELD(DS),
1020         VMX_SEGMENT_FIELD(ES),
1021         VMX_SEGMENT_FIELD(FS),
1022         VMX_SEGMENT_FIELD(GS),
1023         VMX_SEGMENT_FIELD(SS),
1024         VMX_SEGMENT_FIELD(TR),
1025         VMX_SEGMENT_FIELD(LDTR),
1026 };
1027
1028 static u64 host_efer;
1029
1030 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1031
1032 /*
1033  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1034  * away by decrementing the array size.
1035  */
1036 static const u32 vmx_msr_index[] = {
1037 #ifdef CONFIG_X86_64
1038         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1039 #endif
1040         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1041 };
1042
1043 static inline bool is_exception_n(u32 intr_info, u8 vector)
1044 {
1045         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1046                              INTR_INFO_VALID_MASK)) ==
1047                 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1048 }
1049
1050 static inline bool is_debug(u32 intr_info)
1051 {
1052         return is_exception_n(intr_info, DB_VECTOR);
1053 }
1054
1055 static inline bool is_breakpoint(u32 intr_info)
1056 {
1057         return is_exception_n(intr_info, BP_VECTOR);
1058 }
1059
1060 static inline bool is_page_fault(u32 intr_info)
1061 {
1062         return is_exception_n(intr_info, PF_VECTOR);
1063 }
1064
1065 static inline bool is_no_device(u32 intr_info)
1066 {
1067         return is_exception_n(intr_info, NM_VECTOR);
1068 }
1069
1070 static inline bool is_invalid_opcode(u32 intr_info)
1071 {
1072         return is_exception_n(intr_info, UD_VECTOR);
1073 }
1074
1075 static inline bool is_external_interrupt(u32 intr_info)
1076 {
1077         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1078                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1079 }
1080
1081 static inline bool is_machine_check(u32 intr_info)
1082 {
1083         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1084                              INTR_INFO_VALID_MASK)) ==
1085                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1086 }
1087
1088 static inline bool cpu_has_vmx_msr_bitmap(void)
1089 {
1090         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1091 }
1092
1093 static inline bool cpu_has_vmx_tpr_shadow(void)
1094 {
1095         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1096 }
1097
1098 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1099 {
1100         return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1101 }
1102
1103 static inline bool cpu_has_secondary_exec_ctrls(void)
1104 {
1105         return vmcs_config.cpu_based_exec_ctrl &
1106                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1107 }
1108
1109 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1110 {
1111         return vmcs_config.cpu_based_2nd_exec_ctrl &
1112                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1113 }
1114
1115 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1116 {
1117         return vmcs_config.cpu_based_2nd_exec_ctrl &
1118                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1119 }
1120
1121 static inline bool cpu_has_vmx_apic_register_virt(void)
1122 {
1123         return vmcs_config.cpu_based_2nd_exec_ctrl &
1124                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1125 }
1126
1127 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1128 {
1129         return vmcs_config.cpu_based_2nd_exec_ctrl &
1130                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1131 }
1132
1133 /*
1134  * Comment's format: document - errata name - stepping - processor name.
1135  * Refer from
1136  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1137  */
1138 static u32 vmx_preemption_cpu_tfms[] = {
1139 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
1140 0x000206E6,
1141 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1142 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1143 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1144 0x00020652,
1145 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1146 0x00020655,
1147 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1148 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1149 /*
1150  * 320767.pdf - AAP86  - B1 -
1151  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1152  */
1153 0x000106E5,
1154 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1155 0x000106A0,
1156 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1157 0x000106A1,
1158 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1159 0x000106A4,
1160  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1161  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1162  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1163 0x000106A5,
1164 };
1165
1166 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1167 {
1168         u32 eax = cpuid_eax(0x00000001), i;
1169
1170         /* Clear the reserved bits */
1171         eax &= ~(0x3U << 14 | 0xfU << 28);
1172         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1173                 if (eax == vmx_preemption_cpu_tfms[i])
1174                         return true;
1175
1176         return false;
1177 }
1178
1179 static inline bool cpu_has_vmx_preemption_timer(void)
1180 {
1181         return vmcs_config.pin_based_exec_ctrl &
1182                 PIN_BASED_VMX_PREEMPTION_TIMER;
1183 }
1184
1185 static inline bool cpu_has_vmx_posted_intr(void)
1186 {
1187         return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1188                 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1189 }
1190
1191 static inline bool cpu_has_vmx_apicv(void)
1192 {
1193         return cpu_has_vmx_apic_register_virt() &&
1194                 cpu_has_vmx_virtual_intr_delivery() &&
1195                 cpu_has_vmx_posted_intr();
1196 }
1197
1198 static inline bool cpu_has_vmx_flexpriority(void)
1199 {
1200         return cpu_has_vmx_tpr_shadow() &&
1201                 cpu_has_vmx_virtualize_apic_accesses();
1202 }
1203
1204 static inline bool cpu_has_vmx_ept_execute_only(void)
1205 {
1206         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1207 }
1208
1209 static inline bool cpu_has_vmx_ept_2m_page(void)
1210 {
1211         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1212 }
1213
1214 static inline bool cpu_has_vmx_ept_1g_page(void)
1215 {
1216         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1217 }
1218
1219 static inline bool cpu_has_vmx_ept_4levels(void)
1220 {
1221         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1222 }
1223
1224 static inline bool cpu_has_vmx_ept_mt_wb(void)
1225 {
1226         return vmx_capability.ept & VMX_EPTP_WB_BIT;
1227 }
1228
1229 static inline bool cpu_has_vmx_ept_5levels(void)
1230 {
1231         return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1232 }
1233
1234 static inline bool cpu_has_vmx_ept_ad_bits(void)
1235 {
1236         return vmx_capability.ept & VMX_EPT_AD_BIT;
1237 }
1238
1239 static inline bool cpu_has_vmx_invept_context(void)
1240 {
1241         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1242 }
1243
1244 static inline bool cpu_has_vmx_invept_global(void)
1245 {
1246         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1247 }
1248
1249 static inline bool cpu_has_vmx_invvpid_single(void)
1250 {
1251         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1252 }
1253
1254 static inline bool cpu_has_vmx_invvpid_global(void)
1255 {
1256         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1257 }
1258
1259 static inline bool cpu_has_vmx_invvpid(void)
1260 {
1261         return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1262 }
1263
1264 static inline bool cpu_has_vmx_ept(void)
1265 {
1266         return vmcs_config.cpu_based_2nd_exec_ctrl &
1267                 SECONDARY_EXEC_ENABLE_EPT;
1268 }
1269
1270 static inline bool cpu_has_vmx_unrestricted_guest(void)
1271 {
1272         return vmcs_config.cpu_based_2nd_exec_ctrl &
1273                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1274 }
1275
1276 static inline bool cpu_has_vmx_ple(void)
1277 {
1278         return vmcs_config.cpu_based_2nd_exec_ctrl &
1279                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1280 }
1281
1282 static inline bool cpu_has_vmx_basic_inout(void)
1283 {
1284         return  (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1285 }
1286
1287 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1288 {
1289         return flexpriority_enabled && lapic_in_kernel(vcpu);
1290 }
1291
1292 static inline bool cpu_has_vmx_vpid(void)
1293 {
1294         return vmcs_config.cpu_based_2nd_exec_ctrl &
1295                 SECONDARY_EXEC_ENABLE_VPID;
1296 }
1297
1298 static inline bool cpu_has_vmx_rdtscp(void)
1299 {
1300         return vmcs_config.cpu_based_2nd_exec_ctrl &
1301                 SECONDARY_EXEC_RDTSCP;
1302 }
1303
1304 static inline bool cpu_has_vmx_invpcid(void)
1305 {
1306         return vmcs_config.cpu_based_2nd_exec_ctrl &
1307                 SECONDARY_EXEC_ENABLE_INVPCID;
1308 }
1309
1310 static inline bool cpu_has_virtual_nmis(void)
1311 {
1312         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1313 }
1314
1315 static inline bool cpu_has_vmx_wbinvd_exit(void)
1316 {
1317         return vmcs_config.cpu_based_2nd_exec_ctrl &
1318                 SECONDARY_EXEC_WBINVD_EXITING;
1319 }
1320
1321 static inline bool cpu_has_vmx_shadow_vmcs(void)
1322 {
1323         u64 vmx_msr;
1324         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1325         /* check if the cpu supports writing r/o exit information fields */
1326         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1327                 return false;
1328
1329         return vmcs_config.cpu_based_2nd_exec_ctrl &
1330                 SECONDARY_EXEC_SHADOW_VMCS;
1331 }
1332
1333 static inline bool cpu_has_vmx_pml(void)
1334 {
1335         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1336 }
1337
1338 static inline bool cpu_has_vmx_tsc_scaling(void)
1339 {
1340         return vmcs_config.cpu_based_2nd_exec_ctrl &
1341                 SECONDARY_EXEC_TSC_SCALING;
1342 }
1343
1344 static inline bool cpu_has_vmx_vmfunc(void)
1345 {
1346         return vmcs_config.cpu_based_2nd_exec_ctrl &
1347                 SECONDARY_EXEC_ENABLE_VMFUNC;
1348 }
1349
1350 static inline bool report_flexpriority(void)
1351 {
1352         return flexpriority_enabled;
1353 }
1354
1355 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1356 {
1357         return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1358 }
1359
1360 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1361 {
1362         return vmcs12->cpu_based_vm_exec_control & bit;
1363 }
1364
1365 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1366 {
1367         return (vmcs12->cpu_based_vm_exec_control &
1368                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1369                 (vmcs12->secondary_vm_exec_control & bit);
1370 }
1371
1372 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1373 {
1374         return vmcs12->pin_based_vm_exec_control &
1375                 PIN_BASED_VMX_PREEMPTION_TIMER;
1376 }
1377
1378 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1379 {
1380         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1381 }
1382
1383 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1384 {
1385         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
1386 }
1387
1388 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1389 {
1390         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1391 }
1392
1393 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1394 {
1395         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1396 }
1397
1398 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1399 {
1400         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1401 }
1402
1403 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1404 {
1405         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1406 }
1407
1408 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1409 {
1410         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1411 }
1412
1413 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1414 {
1415         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1416 }
1417
1418 static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1419 {
1420         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1421 }
1422
1423 static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1424 {
1425         return nested_cpu_has_vmfunc(vmcs12) &&
1426                 (vmcs12->vm_function_control &
1427                  VMX_VMFUNC_EPTP_SWITCHING);
1428 }
1429
1430 static inline bool is_nmi(u32 intr_info)
1431 {
1432         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1433                 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1434 }
1435
1436 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1437                               u32 exit_intr_info,
1438                               unsigned long exit_qualification);
1439 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1440                         struct vmcs12 *vmcs12,
1441                         u32 reason, unsigned long qualification);
1442
1443 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1444 {
1445         int i;
1446
1447         for (i = 0; i < vmx->nmsrs; ++i)
1448                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1449                         return i;
1450         return -1;
1451 }
1452
1453 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1454 {
1455     struct {
1456         u64 vpid : 16;
1457         u64 rsvd : 48;
1458         u64 gva;
1459     } operand = { vpid, 0, gva };
1460
1461     asm volatile (__ex(ASM_VMX_INVVPID)
1462                   /* CF==1 or ZF==1 --> rc = -1 */
1463                   "; ja 1f ; ud2 ; 1:"
1464                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1465 }
1466
1467 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1468 {
1469         struct {
1470                 u64 eptp, gpa;
1471         } operand = {eptp, gpa};
1472
1473         asm volatile (__ex(ASM_VMX_INVEPT)
1474                         /* CF==1 or ZF==1 --> rc = -1 */
1475                         "; ja 1f ; ud2 ; 1:\n"
1476                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1477 }
1478
1479 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1480 {
1481         int i;
1482
1483         i = __find_msr_index(vmx, msr);
1484         if (i >= 0)
1485                 return &vmx->guest_msrs[i];
1486         return NULL;
1487 }
1488
1489 static void vmcs_clear(struct vmcs *vmcs)
1490 {
1491         u64 phys_addr = __pa(vmcs);
1492         u8 error;
1493
1494         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1495                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1496                       : "cc", "memory");
1497         if (error)
1498                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1499                        vmcs, phys_addr);
1500 }
1501
1502 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1503 {
1504         vmcs_clear(loaded_vmcs->vmcs);
1505         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1506                 vmcs_clear(loaded_vmcs->shadow_vmcs);
1507         loaded_vmcs->cpu = -1;
1508         loaded_vmcs->launched = 0;
1509 }
1510
1511 static void vmcs_load(struct vmcs *vmcs)
1512 {
1513         u64 phys_addr = __pa(vmcs);
1514         u8 error;
1515
1516         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1517                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1518                         : "cc", "memory");
1519         if (error)
1520                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1521                        vmcs, phys_addr);
1522 }
1523
1524 #ifdef CONFIG_KEXEC_CORE
1525 /*
1526  * This bitmap is used to indicate whether the vmclear
1527  * operation is enabled on all cpus. All disabled by
1528  * default.
1529  */
1530 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1531
1532 static inline void crash_enable_local_vmclear(int cpu)
1533 {
1534         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1535 }
1536
1537 static inline void crash_disable_local_vmclear(int cpu)
1538 {
1539         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1540 }
1541
1542 static inline int crash_local_vmclear_enabled(int cpu)
1543 {
1544         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1545 }
1546
1547 static void crash_vmclear_local_loaded_vmcss(void)
1548 {
1549         int cpu = raw_smp_processor_id();
1550         struct loaded_vmcs *v;
1551
1552         if (!crash_local_vmclear_enabled(cpu))
1553                 return;
1554
1555         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1556                             loaded_vmcss_on_cpu_link)
1557                 vmcs_clear(v->vmcs);
1558 }
1559 #else
1560 static inline void crash_enable_local_vmclear(int cpu) { }
1561 static inline void crash_disable_local_vmclear(int cpu) { }
1562 #endif /* CONFIG_KEXEC_CORE */
1563
1564 static void __loaded_vmcs_clear(void *arg)
1565 {
1566         struct loaded_vmcs *loaded_vmcs = arg;
1567         int cpu = raw_smp_processor_id();
1568
1569         if (loaded_vmcs->cpu != cpu)
1570                 return; /* vcpu migration can race with cpu offline */
1571         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1572                 per_cpu(current_vmcs, cpu) = NULL;
1573         crash_disable_local_vmclear(cpu);
1574         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1575
1576         /*
1577          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1578          * is before setting loaded_vmcs->vcpu to -1 which is done in
1579          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1580          * then adds the vmcs into percpu list before it is deleted.
1581          */
1582         smp_wmb();
1583
1584         loaded_vmcs_init(loaded_vmcs);
1585         crash_enable_local_vmclear(cpu);
1586 }
1587
1588 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1589 {
1590         int cpu = loaded_vmcs->cpu;
1591
1592         if (cpu != -1)
1593                 smp_call_function_single(cpu,
1594                          __loaded_vmcs_clear, loaded_vmcs, 1);
1595 }
1596
1597 static inline void vpid_sync_vcpu_single(int vpid)
1598 {
1599         if (vpid == 0)
1600                 return;
1601
1602         if (cpu_has_vmx_invvpid_single())
1603                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1604 }
1605
1606 static inline void vpid_sync_vcpu_global(void)
1607 {
1608         if (cpu_has_vmx_invvpid_global())
1609                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1610 }
1611
1612 static inline void vpid_sync_context(int vpid)
1613 {
1614         if (cpu_has_vmx_invvpid_single())
1615                 vpid_sync_vcpu_single(vpid);
1616         else
1617                 vpid_sync_vcpu_global();
1618 }
1619
1620 static inline void ept_sync_global(void)
1621 {
1622         __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1623 }
1624
1625 static inline void ept_sync_context(u64 eptp)
1626 {
1627         if (cpu_has_vmx_invept_context())
1628                 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1629         else
1630                 ept_sync_global();
1631 }
1632
1633 static __always_inline void vmcs_check16(unsigned long field)
1634 {
1635         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1636                          "16-bit accessor invalid for 64-bit field");
1637         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1638                          "16-bit accessor invalid for 64-bit high field");
1639         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1640                          "16-bit accessor invalid for 32-bit high field");
1641         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1642                          "16-bit accessor invalid for natural width field");
1643 }
1644
1645 static __always_inline void vmcs_check32(unsigned long field)
1646 {
1647         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1648                          "32-bit accessor invalid for 16-bit field");
1649         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1650                          "32-bit accessor invalid for natural width field");
1651 }
1652
1653 static __always_inline void vmcs_check64(unsigned long field)
1654 {
1655         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1656                          "64-bit accessor invalid for 16-bit field");
1657         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1658                          "64-bit accessor invalid for 64-bit high field");
1659         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1660                          "64-bit accessor invalid for 32-bit field");
1661         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1662                          "64-bit accessor invalid for natural width field");
1663 }
1664
1665 static __always_inline void vmcs_checkl(unsigned long field)
1666 {
1667         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1668                          "Natural width accessor invalid for 16-bit field");
1669         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1670                          "Natural width accessor invalid for 64-bit field");
1671         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1672                          "Natural width accessor invalid for 64-bit high field");
1673         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1674                          "Natural width accessor invalid for 32-bit field");
1675 }
1676
1677 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1678 {
1679         unsigned long value;
1680
1681         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1682                       : "=a"(value) : "d"(field) : "cc");
1683         return value;
1684 }
1685
1686 static __always_inline u16 vmcs_read16(unsigned long field)
1687 {
1688         vmcs_check16(field);
1689         return __vmcs_readl(field);
1690 }
1691
1692 static __always_inline u32 vmcs_read32(unsigned long field)
1693 {
1694         vmcs_check32(field);
1695         return __vmcs_readl(field);
1696 }
1697
1698 static __always_inline u64 vmcs_read64(unsigned long field)
1699 {
1700         vmcs_check64(field);
1701 #ifdef CONFIG_X86_64
1702         return __vmcs_readl(field);
1703 #else
1704         return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1705 #endif
1706 }
1707
1708 static __always_inline unsigned long vmcs_readl(unsigned long field)
1709 {
1710         vmcs_checkl(field);
1711         return __vmcs_readl(field);
1712 }
1713
1714 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1715 {
1716         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1717                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1718         dump_stack();
1719 }
1720
1721 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1722 {
1723         u8 error;
1724
1725         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1726                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1727         if (unlikely(error))
1728                 vmwrite_error(field, value);
1729 }
1730
1731 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1732 {
1733         vmcs_check16(field);
1734         __vmcs_writel(field, value);
1735 }
1736
1737 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1738 {
1739         vmcs_check32(field);
1740         __vmcs_writel(field, value);
1741 }
1742
1743 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1744 {
1745         vmcs_check64(field);
1746         __vmcs_writel(field, value);
1747 #ifndef CONFIG_X86_64
1748         asm volatile ("");
1749         __vmcs_writel(field+1, value >> 32);
1750 #endif
1751 }
1752
1753 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1754 {
1755         vmcs_checkl(field);
1756         __vmcs_writel(field, value);
1757 }
1758
1759 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1760 {
1761         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1762                          "vmcs_clear_bits does not support 64-bit fields");
1763         __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1764 }
1765
1766 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1767 {
1768         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1769                          "vmcs_set_bits does not support 64-bit fields");
1770         __vmcs_writel(field, __vmcs_readl(field) | mask);
1771 }
1772
1773 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1774 {
1775         vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1776 }
1777
1778 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1779 {
1780         vmcs_write32(VM_ENTRY_CONTROLS, val);
1781         vmx->vm_entry_controls_shadow = val;
1782 }
1783
1784 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1785 {
1786         if (vmx->vm_entry_controls_shadow != val)
1787                 vm_entry_controls_init(vmx, val);
1788 }
1789
1790 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1791 {
1792         return vmx->vm_entry_controls_shadow;
1793 }
1794
1795
1796 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1797 {
1798         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1799 }
1800
1801 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1802 {
1803         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1804 }
1805
1806 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1807 {
1808         vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1809 }
1810
1811 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1812 {
1813         vmcs_write32(VM_EXIT_CONTROLS, val);
1814         vmx->vm_exit_controls_shadow = val;
1815 }
1816
1817 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1818 {
1819         if (vmx->vm_exit_controls_shadow != val)
1820                 vm_exit_controls_init(vmx, val);
1821 }
1822
1823 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1824 {
1825         return vmx->vm_exit_controls_shadow;
1826 }
1827
1828
1829 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1830 {
1831         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1832 }
1833
1834 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1835 {
1836         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1837 }
1838
1839 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1840 {
1841         vmx->segment_cache.bitmask = 0;
1842 }
1843
1844 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1845                                        unsigned field)
1846 {
1847         bool ret;
1848         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1849
1850         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1851                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1852                 vmx->segment_cache.bitmask = 0;
1853         }
1854         ret = vmx->segment_cache.bitmask & mask;
1855         vmx->segment_cache.bitmask |= mask;
1856         return ret;
1857 }
1858
1859 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1860 {
1861         u16 *p = &vmx->segment_cache.seg[seg].selector;
1862
1863         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1864                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1865         return *p;
1866 }
1867
1868 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1869 {
1870         ulong *p = &vmx->segment_cache.seg[seg].base;
1871
1872         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1873                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1874         return *p;
1875 }
1876
1877 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1878 {
1879         u32 *p = &vmx->segment_cache.seg[seg].limit;
1880
1881         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1882                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1883         return *p;
1884 }
1885
1886 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1887 {
1888         u32 *p = &vmx->segment_cache.seg[seg].ar;
1889
1890         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1891                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1892         return *p;
1893 }
1894
1895 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1896 {
1897         u32 eb;
1898
1899         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1900              (1u << DB_VECTOR) | (1u << AC_VECTOR);
1901         if ((vcpu->guest_debug &
1902              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1903             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1904                 eb |= 1u << BP_VECTOR;
1905         if (to_vmx(vcpu)->rmode.vm86_active)
1906                 eb = ~0;
1907         if (enable_ept)
1908                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1909
1910         /* When we are running a nested L2 guest and L1 specified for it a
1911          * certain exception bitmap, we must trap the same exceptions and pass
1912          * them to L1. When running L2, we will only handle the exceptions
1913          * specified above if L1 did not want them.
1914          */
1915         if (is_guest_mode(vcpu))
1916                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1917
1918         vmcs_write32(EXCEPTION_BITMAP, eb);
1919 }
1920
1921 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1922                 unsigned long entry, unsigned long exit)
1923 {
1924         vm_entry_controls_clearbit(vmx, entry);
1925         vm_exit_controls_clearbit(vmx, exit);
1926 }
1927
1928 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1929 {
1930         unsigned i;
1931         struct msr_autoload *m = &vmx->msr_autoload;
1932
1933         switch (msr) {
1934         case MSR_EFER:
1935                 if (cpu_has_load_ia32_efer) {
1936                         clear_atomic_switch_msr_special(vmx,
1937                                         VM_ENTRY_LOAD_IA32_EFER,
1938                                         VM_EXIT_LOAD_IA32_EFER);
1939                         return;
1940                 }
1941                 break;
1942         case MSR_CORE_PERF_GLOBAL_CTRL:
1943                 if (cpu_has_load_perf_global_ctrl) {
1944                         clear_atomic_switch_msr_special(vmx,
1945                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1946                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1947                         return;
1948                 }
1949                 break;
1950         }
1951
1952         for (i = 0; i < m->nr; ++i)
1953                 if (m->guest[i].index == msr)
1954                         break;
1955
1956         if (i == m->nr)
1957                 return;
1958         --m->nr;
1959         m->guest[i] = m->guest[m->nr];
1960         m->host[i] = m->host[m->nr];
1961         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1962         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1963 }
1964
1965 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1966                 unsigned long entry, unsigned long exit,
1967                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1968                 u64 guest_val, u64 host_val)
1969 {
1970         vmcs_write64(guest_val_vmcs, guest_val);
1971         vmcs_write64(host_val_vmcs, host_val);
1972         vm_entry_controls_setbit(vmx, entry);
1973         vm_exit_controls_setbit(vmx, exit);
1974 }
1975
1976 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1977                                   u64 guest_val, u64 host_val)
1978 {
1979         unsigned i;
1980         struct msr_autoload *m = &vmx->msr_autoload;
1981
1982         switch (msr) {
1983         case MSR_EFER:
1984                 if (cpu_has_load_ia32_efer) {
1985                         add_atomic_switch_msr_special(vmx,
1986                                         VM_ENTRY_LOAD_IA32_EFER,
1987                                         VM_EXIT_LOAD_IA32_EFER,
1988                                         GUEST_IA32_EFER,
1989                                         HOST_IA32_EFER,
1990                                         guest_val, host_val);
1991                         return;
1992                 }
1993                 break;
1994         case MSR_CORE_PERF_GLOBAL_CTRL:
1995                 if (cpu_has_load_perf_global_ctrl) {
1996                         add_atomic_switch_msr_special(vmx,
1997                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1998                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1999                                         GUEST_IA32_PERF_GLOBAL_CTRL,
2000                                         HOST_IA32_PERF_GLOBAL_CTRL,
2001                                         guest_val, host_val);
2002                         return;
2003                 }
2004                 break;
2005         case MSR_IA32_PEBS_ENABLE:
2006                 /* PEBS needs a quiescent period after being disabled (to write
2007                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
2008                  * provide that period, so a CPU could write host's record into
2009                  * guest's memory.
2010                  */
2011                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
2012         }
2013
2014         for (i = 0; i < m->nr; ++i)
2015                 if (m->guest[i].index == msr)
2016                         break;
2017
2018         if (i == NR_AUTOLOAD_MSRS) {
2019                 printk_once(KERN_WARNING "Not enough msr switch entries. "
2020                                 "Can't add msr %x\n", msr);
2021                 return;
2022         } else if (i == m->nr) {
2023                 ++m->nr;
2024                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2025                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2026         }
2027
2028         m->guest[i].index = msr;
2029         m->guest[i].value = guest_val;
2030         m->host[i].index = msr;
2031         m->host[i].value = host_val;
2032 }
2033
2034 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2035 {
2036         u64 guest_efer = vmx->vcpu.arch.efer;
2037         u64 ignore_bits = 0;
2038
2039         if (!enable_ept) {
2040                 /*
2041                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
2042                  * host CPUID is more efficient than testing guest CPUID
2043                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
2044                  */
2045                 if (boot_cpu_has(X86_FEATURE_SMEP))
2046                         guest_efer |= EFER_NX;
2047                 else if (!(guest_efer & EFER_NX))
2048                         ignore_bits |= EFER_NX;
2049         }
2050
2051         /*
2052          * LMA and LME handled by hardware; SCE meaningless outside long mode.
2053          */
2054         ignore_bits |= EFER_SCE;
2055 #ifdef CONFIG_X86_64
2056         ignore_bits |= EFER_LMA | EFER_LME;
2057         /* SCE is meaningful only in long mode on Intel */
2058         if (guest_efer & EFER_LMA)
2059                 ignore_bits &= ~(u64)EFER_SCE;
2060 #endif
2061
2062         clear_atomic_switch_msr(vmx, MSR_EFER);
2063
2064         /*
2065          * On EPT, we can't emulate NX, so we must switch EFER atomically.
2066          * On CPUs that support "load IA32_EFER", always switch EFER
2067          * atomically, since it's faster than switching it manually.
2068          */
2069         if (cpu_has_load_ia32_efer ||
2070             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2071                 if (!(guest_efer & EFER_LMA))
2072                         guest_efer &= ~EFER_LME;
2073                 if (guest_efer != host_efer)
2074                         add_atomic_switch_msr(vmx, MSR_EFER,
2075                                               guest_efer, host_efer);
2076                 return false;
2077         } else {
2078                 guest_efer &= ~ignore_bits;
2079                 guest_efer |= host_efer & ignore_bits;
2080
2081                 vmx->guest_msrs[efer_offset].data = guest_efer;
2082                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2083
2084                 return true;
2085         }
2086 }
2087
2088 #ifdef CONFIG_X86_32
2089 /*
2090  * On 32-bit kernels, VM exits still load the FS and GS bases from the
2091  * VMCS rather than the segment table.  KVM uses this helper to figure
2092  * out the current bases to poke them into the VMCS before entry.
2093  */
2094 static unsigned long segment_base(u16 selector)
2095 {
2096         struct desc_struct *table;
2097         unsigned long v;
2098
2099         if (!(selector & ~SEGMENT_RPL_MASK))
2100                 return 0;
2101
2102         table = get_current_gdt_ro();
2103
2104         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2105                 u16 ldt_selector = kvm_read_ldt();
2106
2107                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2108                         return 0;
2109
2110                 table = (struct desc_struct *)segment_base(ldt_selector);
2111         }
2112         v = get_desc_base(&table[selector >> 3]);
2113         return v;
2114 }
2115 #endif
2116
2117 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2118 {
2119         struct vcpu_vmx *vmx = to_vmx(vcpu);
2120         int i;
2121
2122         if (vmx->host_state.loaded)
2123                 return;
2124
2125         vmx->host_state.loaded = 1;
2126         /*
2127          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2128          * allow segment selectors with cpl > 0 or ti == 1.
2129          */
2130         vmx->host_state.ldt_sel = kvm_read_ldt();
2131         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2132         savesegment(fs, vmx->host_state.fs_sel);
2133         if (!(vmx->host_state.fs_sel & 7)) {
2134                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2135                 vmx->host_state.fs_reload_needed = 0;
2136         } else {
2137                 vmcs_write16(HOST_FS_SELECTOR, 0);
2138                 vmx->host_state.fs_reload_needed = 1;
2139         }
2140         savesegment(gs, vmx->host_state.gs_sel);
2141         if (!(vmx->host_state.gs_sel & 7))
2142                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2143         else {
2144                 vmcs_write16(HOST_GS_SELECTOR, 0);
2145                 vmx->host_state.gs_ldt_reload_needed = 1;
2146         }
2147
2148 #ifdef CONFIG_X86_64
2149         savesegment(ds, vmx->host_state.ds_sel);
2150         savesegment(es, vmx->host_state.es_sel);
2151 #endif
2152
2153 #ifdef CONFIG_X86_64
2154         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2155         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2156 #else
2157         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2158         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2159 #endif
2160
2161 #ifdef CONFIG_X86_64
2162         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2163         if (is_long_mode(&vmx->vcpu))
2164                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2165 #endif
2166         if (boot_cpu_has(X86_FEATURE_MPX))
2167                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2168         for (i = 0; i < vmx->save_nmsrs; ++i)
2169                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2170                                    vmx->guest_msrs[i].data,
2171                                    vmx->guest_msrs[i].mask);
2172 }
2173
2174 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2175 {
2176         if (!vmx->host_state.loaded)
2177                 return;
2178
2179         ++vmx->vcpu.stat.host_state_reload;
2180         vmx->host_state.loaded = 0;
2181 #ifdef CONFIG_X86_64
2182         if (is_long_mode(&vmx->vcpu))
2183                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2184 #endif
2185         if (vmx->host_state.gs_ldt_reload_needed) {
2186                 kvm_load_ldt(vmx->host_state.ldt_sel);
2187 #ifdef CONFIG_X86_64
2188                 load_gs_index(vmx->host_state.gs_sel);
2189 #else
2190                 loadsegment(gs, vmx->host_state.gs_sel);
2191 #endif
2192         }
2193         if (vmx->host_state.fs_reload_needed)
2194                 loadsegment(fs, vmx->host_state.fs_sel);
2195 #ifdef CONFIG_X86_64
2196         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2197                 loadsegment(ds, vmx->host_state.ds_sel);
2198                 loadsegment(es, vmx->host_state.es_sel);
2199         }
2200 #endif
2201         invalidate_tss_limit();
2202 #ifdef CONFIG_X86_64
2203         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2204 #endif
2205         if (vmx->host_state.msr_host_bndcfgs)
2206                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2207         load_fixmap_gdt(raw_smp_processor_id());
2208 }
2209
2210 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2211 {
2212         preempt_disable();
2213         __vmx_load_host_state(vmx);
2214         preempt_enable();
2215 }
2216
2217 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2218 {
2219         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2220         struct pi_desc old, new;
2221         unsigned int dest;
2222
2223         /*
2224          * In case of hot-plug or hot-unplug, we may have to undo
2225          * vmx_vcpu_pi_put even if there is no assigned device.  And we
2226          * always keep PI.NDST up to date for simplicity: it makes the
2227          * code easier, and CPU migration is not a fast path.
2228          */
2229         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
2230                 return;
2231
2232         /*
2233          * First handle the simple case where no cmpxchg is necessary; just
2234          * allow posting non-urgent interrupts.
2235          *
2236          * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2237          * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2238          * expects the VCPU to be on the blocked_vcpu_list that matches
2239          * PI.NDST.
2240          */
2241         if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2242             vcpu->cpu == cpu) {
2243                 pi_clear_sn(pi_desc);
2244                 return;
2245         }
2246
2247         /* The full case.  */
2248         do {
2249                 old.control = new.control = pi_desc->control;
2250
2251                 dest = cpu_physical_id(cpu);
2252
2253                 if (x2apic_enabled())
2254                         new.ndst = dest;
2255                 else
2256                         new.ndst = (dest << 8) & 0xFF00;
2257
2258                 new.sn = 0;
2259         } while (cmpxchg64(&pi_desc->control, old.control,
2260                            new.control) != old.control);
2261 }
2262
2263 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2264 {
2265         vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2266         vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2267 }
2268
2269 /*
2270  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2271  * vcpu mutex is already taken.
2272  */
2273 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2274 {
2275         struct vcpu_vmx *vmx = to_vmx(vcpu);
2276         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2277
2278         if (!already_loaded) {
2279                 loaded_vmcs_clear(vmx->loaded_vmcs);
2280                 local_irq_disable();
2281                 crash_disable_local_vmclear(cpu);
2282
2283                 /*
2284                  * Read loaded_vmcs->cpu should be before fetching
2285                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
2286                  * See the comments in __loaded_vmcs_clear().
2287                  */
2288                 smp_rmb();
2289
2290                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2291                          &per_cpu(loaded_vmcss_on_cpu, cpu));
2292                 crash_enable_local_vmclear(cpu);
2293                 local_irq_enable();
2294         }
2295
2296         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2297                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2298                 vmcs_load(vmx->loaded_vmcs->vmcs);
2299         }
2300
2301         if (!already_loaded) {
2302                 void *gdt = get_current_gdt_ro();
2303                 unsigned long sysenter_esp;
2304
2305                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2306
2307                 /*
2308                  * Linux uses per-cpu TSS and GDT, so set these when switching
2309                  * processors.  See 22.2.4.
2310                  */
2311                 vmcs_writel(HOST_TR_BASE,
2312                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
2313                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
2314
2315                 /*
2316                  * VM exits change the host TR limit to 0x67 after a VM
2317                  * exit.  This is okay, since 0x67 covers everything except
2318                  * the IO bitmap and have have code to handle the IO bitmap
2319                  * being lost after a VM exit.
2320                  */
2321                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2322
2323                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2324                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2325
2326                 vmx->loaded_vmcs->cpu = cpu;
2327         }
2328
2329         /* Setup TSC multiplier */
2330         if (kvm_has_tsc_control &&
2331             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2332                 decache_tsc_multiplier(vmx);
2333
2334         vmx_vcpu_pi_load(vcpu, cpu);
2335         vmx->host_pkru = read_pkru();
2336 }
2337
2338 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2339 {
2340         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2341
2342         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2343                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2344                 !kvm_vcpu_apicv_active(vcpu))
2345                 return;
2346
2347         /* Set SN when the vCPU is preempted */
2348         if (vcpu->preempted)
2349                 pi_set_sn(pi_desc);
2350 }
2351
2352 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2353 {
2354         vmx_vcpu_pi_put(vcpu);
2355
2356         __vmx_load_host_state(to_vmx(vcpu));
2357 }
2358
2359 static bool emulation_required(struct kvm_vcpu *vcpu)
2360 {
2361         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2362 }
2363
2364 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2365
2366 /*
2367  * Return the cr0 value that a nested guest would read. This is a combination
2368  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2369  * its hypervisor (cr0_read_shadow).
2370  */
2371 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2372 {
2373         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2374                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2375 }
2376 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2377 {
2378         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2379                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2380 }
2381
2382 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2383 {
2384         unsigned long rflags, save_rflags;
2385
2386         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2387                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2388                 rflags = vmcs_readl(GUEST_RFLAGS);
2389                 if (to_vmx(vcpu)->rmode.vm86_active) {
2390                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2391                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2392                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2393                 }
2394                 to_vmx(vcpu)->rflags = rflags;
2395         }
2396         return to_vmx(vcpu)->rflags;
2397 }
2398
2399 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2400 {
2401         unsigned long old_rflags = vmx_get_rflags(vcpu);
2402
2403         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2404         to_vmx(vcpu)->rflags = rflags;
2405         if (to_vmx(vcpu)->rmode.vm86_active) {
2406                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2407                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2408         }
2409         vmcs_writel(GUEST_RFLAGS, rflags);
2410
2411         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2412                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2413 }
2414
2415 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2416 {
2417         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2418         int ret = 0;
2419
2420         if (interruptibility & GUEST_INTR_STATE_STI)
2421                 ret |= KVM_X86_SHADOW_INT_STI;
2422         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2423                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2424
2425         return ret;
2426 }
2427
2428 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2429 {
2430         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2431         u32 interruptibility = interruptibility_old;
2432
2433         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2434
2435         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2436                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2437         else if (mask & KVM_X86_SHADOW_INT_STI)
2438                 interruptibility |= GUEST_INTR_STATE_STI;
2439
2440         if ((interruptibility != interruptibility_old))
2441                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2442 }
2443
2444 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2445 {
2446         unsigned long rip;
2447
2448         rip = kvm_rip_read(vcpu);
2449         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2450         kvm_rip_write(vcpu, rip);
2451
2452         /* skipping an emulated instruction also counts */
2453         vmx_set_interrupt_shadow(vcpu, 0);
2454 }
2455
2456 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2457                                                unsigned long exit_qual)
2458 {
2459         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2460         unsigned int nr = vcpu->arch.exception.nr;
2461         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2462
2463         if (vcpu->arch.exception.has_error_code) {
2464                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2465                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2466         }
2467
2468         if (kvm_exception_is_soft(nr))
2469                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2470         else
2471                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2472
2473         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2474             vmx_get_nmi_mask(vcpu))
2475                 intr_info |= INTR_INFO_UNBLOCK_NMI;
2476
2477         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2478 }
2479
2480 /*
2481  * KVM wants to inject page-faults which it got to the guest. This function
2482  * checks whether in a nested guest, we need to inject them to L1 or L2.
2483  */
2484 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
2485 {
2486         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2487         unsigned int nr = vcpu->arch.exception.nr;
2488
2489         if (nr == PF_VECTOR) {
2490                 if (vcpu->arch.exception.nested_apf) {
2491                         *exit_qual = vcpu->arch.apf.nested_apf_token;
2492                         return 1;
2493                 }
2494                 /*
2495                  * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2496                  * The fix is to add the ancillary datum (CR2 or DR6) to structs
2497                  * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2498                  * can be written only when inject_pending_event runs.  This should be
2499                  * conditional on a new capability---if the capability is disabled,
2500                  * kvm_multiple_exception would write the ancillary information to
2501                  * CR2 or DR6, for backwards ABI-compatibility.
2502                  */
2503                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2504                                                     vcpu->arch.exception.error_code)) {
2505                         *exit_qual = vcpu->arch.cr2;
2506                         return 1;
2507                 }
2508         } else {
2509                 if (vmcs12->exception_bitmap & (1u << nr)) {
2510                         if (nr == DB_VECTOR)
2511                                 *exit_qual = vcpu->arch.dr6;
2512                         else
2513                                 *exit_qual = 0;
2514                         return 1;
2515                 }
2516         }
2517
2518         return 0;
2519 }
2520
2521 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2522 {
2523         struct vcpu_vmx *vmx = to_vmx(vcpu);
2524         unsigned nr = vcpu->arch.exception.nr;
2525         bool has_error_code = vcpu->arch.exception.has_error_code;
2526         u32 error_code = vcpu->arch.exception.error_code;
2527         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2528
2529         if (has_error_code) {
2530                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2531                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2532         }
2533
2534         if (vmx->rmode.vm86_active) {
2535                 int inc_eip = 0;
2536                 if (kvm_exception_is_soft(nr))
2537                         inc_eip = vcpu->arch.event_exit_inst_len;
2538                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2539                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2540                 return;
2541         }
2542
2543         if (kvm_exception_is_soft(nr)) {
2544                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2545                              vmx->vcpu.arch.event_exit_inst_len);
2546                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2547         } else
2548                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2549
2550         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2551 }
2552
2553 static bool vmx_rdtscp_supported(void)
2554 {
2555         return cpu_has_vmx_rdtscp();
2556 }
2557
2558 static bool vmx_invpcid_supported(void)
2559 {
2560         return cpu_has_vmx_invpcid() && enable_ept;
2561 }
2562
2563 /*
2564  * Swap MSR entry in host/guest MSR entry array.
2565  */
2566 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2567 {
2568         struct shared_msr_entry tmp;
2569
2570         tmp = vmx->guest_msrs[to];
2571         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2572         vmx->guest_msrs[from] = tmp;
2573 }
2574
2575 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2576 {
2577         unsigned long *msr_bitmap;
2578
2579         if (is_guest_mode(vcpu))
2580                 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2581         else if (cpu_has_secondary_exec_ctrls() &&
2582                  (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2583                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2584                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2585                         if (is_long_mode(vcpu))
2586                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2587                         else
2588                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2589                 } else {
2590                         if (is_long_mode(vcpu))
2591                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2592                         else
2593                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2594                 }
2595         } else {
2596                 if (is_long_mode(vcpu))
2597                         msr_bitmap = vmx_msr_bitmap_longmode;
2598                 else
2599                         msr_bitmap = vmx_msr_bitmap_legacy;
2600         }
2601
2602         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2603 }
2604
2605 /*
2606  * Set up the vmcs to automatically save and restore system
2607  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2608  * mode, as fiddling with msrs is very expensive.
2609  */
2610 static void setup_msrs(struct vcpu_vmx *vmx)
2611 {
2612         int save_nmsrs, index;
2613
2614         save_nmsrs = 0;
2615 #ifdef CONFIG_X86_64
2616         if (is_long_mode(&vmx->vcpu)) {
2617                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2618                 if (index >= 0)
2619                         move_msr_up(vmx, index, save_nmsrs++);
2620                 index = __find_msr_index(vmx, MSR_LSTAR);
2621                 if (index >= 0)
2622                         move_msr_up(vmx, index, save_nmsrs++);
2623                 index = __find_msr_index(vmx, MSR_CSTAR);
2624                 if (index >= 0)
2625                         move_msr_up(vmx, index, save_nmsrs++);
2626                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2627                 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
2628                         move_msr_up(vmx, index, save_nmsrs++);
2629                 /*
2630                  * MSR_STAR is only needed on long mode guests, and only
2631                  * if efer.sce is enabled.
2632                  */
2633                 index = __find_msr_index(vmx, MSR_STAR);
2634                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2635                         move_msr_up(vmx, index, save_nmsrs++);
2636         }
2637 #endif
2638         index = __find_msr_index(vmx, MSR_EFER);
2639         if (index >= 0 && update_transition_efer(vmx, index))
2640                 move_msr_up(vmx, index, save_nmsrs++);
2641
2642         vmx->save_nmsrs = save_nmsrs;
2643
2644         if (cpu_has_vmx_msr_bitmap())
2645                 vmx_set_msr_bitmap(&vmx->vcpu);
2646 }
2647
2648 /*
2649  * reads and returns guest's timestamp counter "register"
2650  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2651  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2652  */
2653 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2654 {
2655         u64 host_tsc, tsc_offset;
2656
2657         host_tsc = rdtsc();
2658         tsc_offset = vmcs_read64(TSC_OFFSET);
2659         return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2660 }
2661
2662 /*
2663  * writes 'offset' into guest's timestamp counter offset register
2664  */
2665 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2666 {
2667         if (is_guest_mode(vcpu)) {
2668                 /*
2669                  * We're here if L1 chose not to trap WRMSR to TSC. According
2670                  * to the spec, this should set L1's TSC; The offset that L1
2671                  * set for L2 remains unchanged, and still needs to be added
2672                  * to the newly set TSC to get L2's TSC.
2673                  */
2674                 struct vmcs12 *vmcs12;
2675                 /* recalculate vmcs02.TSC_OFFSET: */
2676                 vmcs12 = get_vmcs12(vcpu);
2677                 vmcs_write64(TSC_OFFSET, offset +
2678                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2679                          vmcs12->tsc_offset : 0));
2680         } else {
2681                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2682                                            vmcs_read64(TSC_OFFSET), offset);
2683                 vmcs_write64(TSC_OFFSET, offset);
2684         }
2685 }
2686
2687 /*
2688  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2689  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2690  * all guests if the "nested" module option is off, and can also be disabled
2691  * for a single guest by disabling its VMX cpuid bit.
2692  */
2693 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2694 {
2695         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
2696 }
2697
2698 /*
2699  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2700  * returned for the various VMX controls MSRs when nested VMX is enabled.
2701  * The same values should also be used to verify that vmcs12 control fields are
2702  * valid during nested entry from L1 to L2.
2703  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2704  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2705  * bit in the high half is on if the corresponding bit in the control field
2706  * may be on. See also vmx_control_verify().
2707  */
2708 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2709 {
2710         /*
2711          * Note that as a general rule, the high half of the MSRs (bits in
2712          * the control fields which may be 1) should be initialized by the
2713          * intersection of the underlying hardware's MSR (i.e., features which
2714          * can be supported) and the list of features we want to expose -
2715          * because they are known to be properly supported in our code.
2716          * Also, usually, the low half of the MSRs (bits which must be 1) can
2717          * be set to 0, meaning that L1 may turn off any of these bits. The
2718          * reason is that if one of these bits is necessary, it will appear
2719          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2720          * fields of vmcs01 and vmcs02, will turn these bits off - and
2721          * nested_vmx_exit_reflected() will not pass related exits to L1.
2722          * These rules have exceptions below.
2723          */
2724
2725         /* pin-based controls */
2726         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2727                 vmx->nested.nested_vmx_pinbased_ctls_low,
2728                 vmx->nested.nested_vmx_pinbased_ctls_high);
2729         vmx->nested.nested_vmx_pinbased_ctls_low |=
2730                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2731         vmx->nested.nested_vmx_pinbased_ctls_high &=
2732                 PIN_BASED_EXT_INTR_MASK |
2733                 PIN_BASED_NMI_EXITING |
2734                 PIN_BASED_VIRTUAL_NMIS;
2735         vmx->nested.nested_vmx_pinbased_ctls_high |=
2736                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2737                 PIN_BASED_VMX_PREEMPTION_TIMER;
2738         if (kvm_vcpu_apicv_active(&vmx->vcpu))
2739                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2740                         PIN_BASED_POSTED_INTR;
2741
2742         /* exit controls */
2743         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2744                 vmx->nested.nested_vmx_exit_ctls_low,
2745                 vmx->nested.nested_vmx_exit_ctls_high);
2746         vmx->nested.nested_vmx_exit_ctls_low =
2747                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2748
2749         vmx->nested.nested_vmx_exit_ctls_high &=
2750 #ifdef CONFIG_X86_64
2751                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2752 #endif
2753                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2754         vmx->nested.nested_vmx_exit_ctls_high |=
2755                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2756                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2757                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2758
2759         if (kvm_mpx_supported())
2760                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2761
2762         /* We support free control of debug control saving. */
2763         vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2764
2765         /* entry controls */
2766         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2767                 vmx->nested.nested_vmx_entry_ctls_low,
2768                 vmx->nested.nested_vmx_entry_ctls_high);
2769         vmx->nested.nested_vmx_entry_ctls_low =
2770                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2771         vmx->nested.nested_vmx_entry_ctls_high &=
2772 #ifdef CONFIG_X86_64
2773                 VM_ENTRY_IA32E_MODE |
2774 #endif
2775                 VM_ENTRY_LOAD_IA32_PAT;
2776         vmx->nested.nested_vmx_entry_ctls_high |=
2777                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2778         if (kvm_mpx_supported())
2779                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2780
2781         /* We support free control of debug control loading. */
2782         vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2783
2784         /* cpu-based controls */
2785         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2786                 vmx->nested.nested_vmx_procbased_ctls_low,
2787                 vmx->nested.nested_vmx_procbased_ctls_high);
2788         vmx->nested.nested_vmx_procbased_ctls_low =
2789                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2790         vmx->nested.nested_vmx_procbased_ctls_high &=
2791                 CPU_BASED_VIRTUAL_INTR_PENDING |
2792                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2793                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2794                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2795                 CPU_BASED_CR3_STORE_EXITING |
2796 #ifdef CONFIG_X86_64
2797                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2798 #endif
2799                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2800                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2801                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2802                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2803                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2804         /*
2805          * We can allow some features even when not supported by the
2806          * hardware. For example, L1 can specify an MSR bitmap - and we
2807          * can use it to avoid exits to L1 - even when L0 runs L2
2808          * without MSR bitmaps.
2809          */
2810         vmx->nested.nested_vmx_procbased_ctls_high |=
2811                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2812                 CPU_BASED_USE_MSR_BITMAPS;
2813
2814         /* We support free control of CR3 access interception. */
2815         vmx->nested.nested_vmx_procbased_ctls_low &=
2816                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2817
2818         /*
2819          * secondary cpu-based controls.  Do not include those that
2820          * depend on CPUID bits, they are added later by vmx_cpuid_update.
2821          */
2822         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2823                 vmx->nested.nested_vmx_secondary_ctls_low,
2824                 vmx->nested.nested_vmx_secondary_ctls_high);
2825         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2826         vmx->nested.nested_vmx_secondary_ctls_high &=
2827                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2828                 SECONDARY_EXEC_DESC |
2829                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2830                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2831                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2832                 SECONDARY_EXEC_WBINVD_EXITING;
2833
2834         if (enable_ept) {
2835                 /* nested EPT: emulate EPT also to L1 */
2836                 vmx->nested.nested_vmx_secondary_ctls_high |=
2837                         SECONDARY_EXEC_ENABLE_EPT;
2838                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2839                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2840                 if (cpu_has_vmx_ept_execute_only())
2841                         vmx->nested.nested_vmx_ept_caps |=
2842                                 VMX_EPT_EXECUTE_ONLY_BIT;
2843                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2844                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2845                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2846                         VMX_EPT_1GB_PAGE_BIT;
2847                 if (enable_ept_ad_bits) {
2848                         vmx->nested.nested_vmx_secondary_ctls_high |=
2849                                 SECONDARY_EXEC_ENABLE_PML;
2850                         vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2851                 }
2852         }
2853
2854         if (cpu_has_vmx_vmfunc()) {
2855                 vmx->nested.nested_vmx_secondary_ctls_high |=
2856                         SECONDARY_EXEC_ENABLE_VMFUNC;
2857                 /*
2858                  * Advertise EPTP switching unconditionally
2859                  * since we emulate it
2860                  */
2861                 if (enable_ept)
2862                         vmx->nested.nested_vmx_vmfunc_controls =
2863                                 VMX_VMFUNC_EPTP_SWITCHING;
2864         }
2865
2866         /*
2867          * Old versions of KVM use the single-context version without
2868          * checking for support, so declare that it is supported even
2869          * though it is treated as global context.  The alternative is
2870          * not failing the single-context invvpid, and it is worse.
2871          */
2872         if (enable_vpid) {
2873                 vmx->nested.nested_vmx_secondary_ctls_high |=
2874                         SECONDARY_EXEC_ENABLE_VPID;
2875                 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2876                         VMX_VPID_EXTENT_SUPPORTED_MASK;
2877         }
2878
2879         if (enable_unrestricted_guest)
2880                 vmx->nested.nested_vmx_secondary_ctls_high |=
2881                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2882
2883         /* miscellaneous data */
2884         rdmsr(MSR_IA32_VMX_MISC,
2885                 vmx->nested.nested_vmx_misc_low,
2886                 vmx->nested.nested_vmx_misc_high);
2887         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2888         vmx->nested.nested_vmx_misc_low |=
2889                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2890                 VMX_MISC_ACTIVITY_HLT;
2891         vmx->nested.nested_vmx_misc_high = 0;
2892
2893         /*
2894          * This MSR reports some information about VMX support. We
2895          * should return information about the VMX we emulate for the
2896          * guest, and the VMCS structure we give it - not about the
2897          * VMX support of the underlying hardware.
2898          */
2899         vmx->nested.nested_vmx_basic =
2900                 VMCS12_REVISION |
2901                 VMX_BASIC_TRUE_CTLS |
2902                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2903                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2904
2905         if (cpu_has_vmx_basic_inout())
2906                 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2907
2908         /*
2909          * These MSRs specify bits which the guest must keep fixed on
2910          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2911          * We picked the standard core2 setting.
2912          */
2913 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2914 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
2915         vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2916         vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2917
2918         /* These MSRs specify bits which the guest must keep fixed off. */
2919         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2920         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2921
2922         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2923         vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2924 }
2925
2926 /*
2927  * if fixed0[i] == 1: val[i] must be 1
2928  * if fixed1[i] == 0: val[i] must be 0
2929  */
2930 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2931 {
2932         return ((val & fixed1) | fixed0) == val;
2933 }
2934
2935 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2936 {
2937         return fixed_bits_valid(control, low, high);
2938 }
2939
2940 static inline u64 vmx_control_msr(u32 low, u32 high)
2941 {
2942         return low | ((u64)high << 32);
2943 }
2944
2945 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2946 {
2947         superset &= mask;
2948         subset &= mask;
2949
2950         return (superset | subset) == superset;
2951 }
2952
2953 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2954 {
2955         const u64 feature_and_reserved =
2956                 /* feature (except bit 48; see below) */
2957                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2958                 /* reserved */
2959                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2960         u64 vmx_basic = vmx->nested.nested_vmx_basic;
2961
2962         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2963                 return -EINVAL;
2964
2965         /*
2966          * KVM does not emulate a version of VMX that constrains physical
2967          * addresses of VMX structures (e.g. VMCS) to 32-bits.
2968          */
2969         if (data & BIT_ULL(48))
2970                 return -EINVAL;
2971
2972         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2973             vmx_basic_vmcs_revision_id(data))
2974                 return -EINVAL;
2975
2976         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2977                 return -EINVAL;
2978
2979         vmx->nested.nested_vmx_basic = data;
2980         return 0;
2981 }
2982
2983 static int
2984 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2985 {
2986         u64 supported;
2987         u32 *lowp, *highp;
2988
2989         switch (msr_index) {
2990         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2991                 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2992                 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2993                 break;
2994         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2995                 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2996                 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2997                 break;
2998         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2999                 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
3000                 highp = &vmx->nested.nested_vmx_exit_ctls_high;
3001                 break;
3002         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3003                 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
3004                 highp = &vmx->nested.nested_vmx_entry_ctls_high;
3005                 break;
3006         case MSR_IA32_VMX_PROCBASED_CTLS2:
3007                 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
3008                 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
3009                 break;
3010         default:
3011                 BUG();
3012         }
3013
3014         supported = vmx_control_msr(*lowp, *highp);
3015
3016         /* Check must-be-1 bits are still 1. */
3017         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3018                 return -EINVAL;
3019
3020         /* Check must-be-0 bits are still 0. */
3021         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3022                 return -EINVAL;
3023
3024         *lowp = data;
3025         *highp = data >> 32;
3026         return 0;
3027 }
3028
3029 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3030 {
3031         const u64 feature_and_reserved_bits =
3032                 /* feature */
3033                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3034                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3035                 /* reserved */
3036                 GENMASK_ULL(13, 9) | BIT_ULL(31);
3037         u64 vmx_misc;
3038
3039         vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3040                                    vmx->nested.nested_vmx_misc_high);
3041
3042         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3043                 return -EINVAL;
3044
3045         if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3046              PIN_BASED_VMX_PREEMPTION_TIMER) &&
3047             vmx_misc_preemption_timer_rate(data) !=
3048             vmx_misc_preemption_timer_rate(vmx_misc))
3049                 return -EINVAL;
3050
3051         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3052                 return -EINVAL;
3053
3054         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3055                 return -EINVAL;
3056
3057         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3058                 return -EINVAL;
3059
3060         vmx->nested.nested_vmx_misc_low = data;
3061         vmx->nested.nested_vmx_misc_high = data >> 32;
3062         return 0;
3063 }
3064
3065 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3066 {
3067         u64 vmx_ept_vpid_cap;
3068
3069         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3070                                            vmx->nested.nested_vmx_vpid_caps);
3071
3072         /* Every bit is either reserved or a feature bit. */
3073         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3074                 return -EINVAL;
3075
3076         vmx->nested.nested_vmx_ept_caps = data;
3077         vmx->nested.nested_vmx_vpid_caps = data >> 32;
3078         return 0;
3079 }
3080
3081 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3082 {
3083         u64 *msr;
3084
3085         switch (msr_index) {
3086         case MSR_IA32_VMX_CR0_FIXED0:
3087                 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3088                 break;
3089         case MSR_IA32_VMX_CR4_FIXED0:
3090                 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3091                 break;
3092         default:
3093                 BUG();
3094         }
3095
3096         /*
3097          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3098          * must be 1 in the restored value.
3099          */
3100         if (!is_bitwise_subset(data, *msr, -1ULL))
3101                 return -EINVAL;
3102
3103         *msr = data;
3104         return 0;
3105 }
3106
3107 /*
3108  * Called when userspace is restoring VMX MSRs.
3109  *
3110  * Returns 0 on success, non-0 otherwise.
3111  */
3112 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3113 {
3114         struct vcpu_vmx *vmx = to_vmx(vcpu);
3115
3116         switch (msr_index) {
3117         case MSR_IA32_VMX_BASIC:
3118                 return vmx_restore_vmx_basic(vmx, data);
3119         case MSR_IA32_VMX_PINBASED_CTLS:
3120         case MSR_IA32_VMX_PROCBASED_CTLS:
3121         case MSR_IA32_VMX_EXIT_CTLS:
3122         case MSR_IA32_VMX_ENTRY_CTLS:
3123                 /*
3124                  * The "non-true" VMX capability MSRs are generated from the
3125                  * "true" MSRs, so we do not support restoring them directly.
3126                  *
3127                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3128                  * should restore the "true" MSRs with the must-be-1 bits
3129                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3130                  * DEFAULT SETTINGS".
3131                  */
3132                 return -EINVAL;
3133         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3134         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3135         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3136         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3137         case MSR_IA32_VMX_PROCBASED_CTLS2:
3138                 return vmx_restore_control_msr(vmx, msr_index, data);
3139         case MSR_IA32_VMX_MISC:
3140                 return vmx_restore_vmx_misc(vmx, data);
3141         case MSR_IA32_VMX_CR0_FIXED0:
3142         case MSR_IA32_VMX_CR4_FIXED0:
3143                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3144         case MSR_IA32_VMX_CR0_FIXED1:
3145         case MSR_IA32_VMX_CR4_FIXED1:
3146                 /*
3147                  * These MSRs are generated based on the vCPU's CPUID, so we
3148                  * do not support restoring them directly.
3149                  */
3150                 return -EINVAL;
3151         case MSR_IA32_VMX_EPT_VPID_CAP:
3152                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3153         case MSR_IA32_VMX_VMCS_ENUM:
3154                 vmx->nested.nested_vmx_vmcs_enum = data;
3155                 return 0;
3156         default:
3157                 /*
3158                  * The rest of the VMX capability MSRs do not support restore.
3159                  */
3160                 return -EINVAL;
3161         }
3162 }
3163
3164 /* Returns 0 on success, non-0 otherwise. */
3165 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3166 {
3167         struct vcpu_vmx *vmx = to_vmx(vcpu);
3168
3169         switch (msr_index) {
3170         case MSR_IA32_VMX_BASIC:
3171                 *pdata = vmx->nested.nested_vmx_basic;
3172                 break;
3173         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3174         case MSR_IA32_VMX_PINBASED_CTLS:
3175                 *pdata = vmx_control_msr(
3176                         vmx->nested.nested_vmx_pinbased_ctls_low,
3177                         vmx->nested.nested_vmx_pinbased_ctls_high);
3178                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3179                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3180                 break;
3181         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3182         case MSR_IA32_VMX_PROCBASED_CTLS:
3183                 *pdata = vmx_control_msr(
3184                         vmx->nested.nested_vmx_procbased_ctls_low,
3185                         vmx->nested.nested_vmx_procbased_ctls_high);
3186                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3187                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3188                 break;
3189         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3190         case MSR_IA32_VMX_EXIT_CTLS:
3191                 *pdata = vmx_control_msr(
3192                         vmx->nested.nested_vmx_exit_ctls_low,
3193                         vmx->nested.nested_vmx_exit_ctls_high);
3194                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3195                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3196                 break;
3197         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3198         case MSR_IA32_VMX_ENTRY_CTLS:
3199                 *pdata = vmx_control_msr(
3200                         vmx->nested.nested_vmx_entry_ctls_low,
3201                         vmx->nested.nested_vmx_entry_ctls_high);
3202                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3203                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3204                 break;
3205         case MSR_IA32_VMX_MISC:
3206                 *pdata = vmx_control_msr(
3207                         vmx->nested.nested_vmx_misc_low,
3208                         vmx->nested.nested_vmx_misc_high);
3209                 break;
3210         case MSR_IA32_VMX_CR0_FIXED0:
3211                 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3212                 break;
3213         case MSR_IA32_VMX_CR0_FIXED1:
3214                 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3215                 break;
3216         case MSR_IA32_VMX_CR4_FIXED0:
3217                 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3218                 break;
3219         case MSR_IA32_VMX_CR4_FIXED1:
3220                 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3221                 break;
3222         case MSR_IA32_VMX_VMCS_ENUM:
3223                 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3224                 break;
3225         case MSR_IA32_VMX_PROCBASED_CTLS2:
3226                 *pdata = vmx_control_msr(
3227                         vmx->nested.nested_vmx_secondary_ctls_low,
3228                         vmx->nested.nested_vmx_secondary_ctls_high);
3229                 break;
3230         case MSR_IA32_VMX_EPT_VPID_CAP:
3231                 *pdata = vmx->nested.nested_vmx_ept_caps |
3232                         ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3233                 break;
3234         case MSR_IA32_VMX_VMFUNC:
3235                 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3236                 break;
3237         default:
3238                 return 1;
3239         }
3240
3241         return 0;
3242 }
3243
3244 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3245                                                  uint64_t val)
3246 {
3247         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3248
3249         return !(val & ~valid_bits);
3250 }
3251
3252 /*
3253  * Reads an msr value (of 'msr_index') into 'pdata'.
3254  * Returns 0 on success, non-0 otherwise.
3255  * Assumes vcpu_load() was already called.
3256  */
3257 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3258 {
3259         struct shared_msr_entry *msr;
3260
3261         switch (msr_info->index) {
3262 #ifdef CONFIG_X86_64
3263         case MSR_FS_BASE:
3264                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3265                 break;
3266         case MSR_GS_BASE:
3267                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3268                 break;
3269         case MSR_KERNEL_GS_BASE:
3270                 vmx_load_host_state(to_vmx(vcpu));
3271                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3272                 break;
3273 #endif
3274         case MSR_EFER:
3275                 return kvm_get_msr_common(vcpu, msr_info);
3276         case MSR_IA32_TSC:
3277                 msr_info->data = guest_read_tsc(vcpu);
3278                 break;
3279         case MSR_IA32_SYSENTER_CS:
3280                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3281                 break;
3282         case MSR_IA32_SYSENTER_EIP:
3283                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3284                 break;
3285         case MSR_IA32_SYSENTER_ESP:
3286                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3287                 break;
3288         case MSR_IA32_BNDCFGS:
3289                 if (!kvm_mpx_supported() ||
3290                     (!msr_info->host_initiated &&
3291                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3292                         return 1;
3293                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3294                 break;
3295         case MSR_IA32_MCG_EXT_CTL:
3296                 if (!msr_info->host_initiated &&
3297                     !(to_vmx(vcpu)->msr_ia32_feature_control &
3298                       FEATURE_CONTROL_LMCE))
3299                         return 1;
3300                 msr_info->data = vcpu->arch.mcg_ext_ctl;
3301                 break;
3302         case MSR_IA32_FEATURE_CONTROL:
3303                 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3304                 break;
3305         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3306                 if (!nested_vmx_allowed(vcpu))
3307                         return 1;
3308                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3309         case MSR_IA32_XSS:
3310                 if (!vmx_xsaves_supported())
3311                         return 1;
3312                 msr_info->data = vcpu->arch.ia32_xss;
3313                 break;
3314         case MSR_TSC_AUX:
3315                 if (!msr_info->host_initiated &&
3316                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3317                         return 1;
3318                 /* Otherwise falls through */
3319         default:
3320                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3321                 if (msr) {
3322                         msr_info->data = msr->data;
3323                         break;
3324                 }
3325                 return kvm_get_msr_common(vcpu, msr_info);
3326         }
3327
3328         return 0;
3329 }
3330
3331 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3332
3333 /*
3334  * Writes msr value into into the appropriate "register".
3335  * Returns 0 on success, non-0 otherwise.
3336  * Assumes vcpu_load() was already called.
3337  */
3338 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3339 {
3340         struct vcpu_vmx *vmx = to_vmx(vcpu);
3341         struct shared_msr_entry *msr;
3342         int ret = 0;
3343         u32 msr_index = msr_info->index;
3344         u64 data = msr_info->data;
3345
3346         switch (msr_index) {
3347         case MSR_EFER:
3348                 ret = kvm_set_msr_common(vcpu, msr_info);
3349                 break;
3350 #ifdef CONFIG_X86_64
3351         case MSR_FS_BASE:
3352                 vmx_segment_cache_clear(vmx);
3353                 vmcs_writel(GUEST_FS_BASE, data);
3354                 break;
3355         case MSR_GS_BASE:
3356                 vmx_segment_cache_clear(vmx);
3357                 vmcs_writel(GUEST_GS_BASE, data);
3358                 break;
3359         case MSR_KERNEL_GS_BASE:
3360                 vmx_load_host_state(vmx);
3361                 vmx->msr_guest_kernel_gs_base = data;
3362                 break;
3363 #endif
3364         case MSR_IA32_SYSENTER_CS:
3365                 vmcs_write32(GUEST_SYSENTER_CS, data);
3366                 break;
3367         case MSR_IA32_SYSENTER_EIP:
3368                 vmcs_writel(GUEST_SYSENTER_EIP, data);
3369                 break;
3370         case MSR_IA32_SYSENTER_ESP:
3371                 vmcs_writel(GUEST_SYSENTER_ESP, data);
3372                 break;
3373         case MSR_IA32_BNDCFGS:
3374                 if (!kvm_mpx_supported() ||
3375                     (!msr_info->host_initiated &&
3376                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3377                         return 1;
3378                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
3379                     (data & MSR_IA32_BNDCFGS_RSVD))
3380                         return 1;
3381                 vmcs_write64(GUEST_BNDCFGS, data);
3382                 break;
3383         case MSR_IA32_TSC:
3384                 kvm_write_tsc(vcpu, msr_info);
3385                 break;
3386         case MSR_IA32_CR_PAT:
3387                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3388                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3389                                 return 1;
3390                         vmcs_write64(GUEST_IA32_PAT, data);
3391                         vcpu->arch.pat = data;
3392                         break;
3393                 }
3394                 ret = kvm_set_msr_common(vcpu, msr_info);
3395                 break;
3396         case MSR_IA32_TSC_ADJUST:
3397                 ret = kvm_set_msr_common(vcpu, msr_info);
3398                 break;
3399         case MSR_IA32_MCG_EXT_CTL:
3400                 if ((!msr_info->host_initiated &&
3401                      !(to_vmx(vcpu)->msr_ia32_feature_control &
3402                        FEATURE_CONTROL_LMCE)) ||
3403                     (data & ~MCG_EXT_CTL_LMCE_EN))
3404                         return 1;
3405                 vcpu->arch.mcg_ext_ctl = data;
3406                 break;
3407         case MSR_IA32_FEATURE_CONTROL:
3408                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3409                     (to_vmx(vcpu)->msr_ia32_feature_control &
3410                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3411                         return 1;
3412                 vmx->msr_ia32_feature_control = data;
3413                 if (msr_info->host_initiated && data == 0)
3414                         vmx_leave_nested(vcpu);
3415                 break;
3416         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3417                 if (!msr_info->host_initiated)
3418                         return 1; /* they are read-only */
3419                 if (!nested_vmx_allowed(vcpu))
3420                         return 1;
3421                 return vmx_set_vmx_msr(vcpu, msr_index, data);
3422         case MSR_IA32_XSS:
3423                 if (!vmx_xsaves_supported())
3424                         return 1;
3425                 /*
3426                  * The only supported bit as of Skylake is bit 8, but
3427                  * it is not supported on KVM.
3428                  */
3429                 if (data != 0)
3430                         return 1;
3431                 vcpu->arch.ia32_xss = data;
3432                 if (vcpu->arch.ia32_xss != host_xss)
3433                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3434                                 vcpu->arch.ia32_xss, host_xss);
3435                 else
3436                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3437                 break;
3438         case MSR_TSC_AUX:
3439                 if (!msr_info->host_initiated &&
3440                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3441                         return 1;
3442                 /* Check reserved bit, higher 32 bits should be zero */
3443                 if ((data >> 32) != 0)
3444                         return 1;
3445                 /* Otherwise falls through */
3446         default:
3447                 msr = find_msr_entry(vmx, msr_index);
3448                 if (msr) {
3449                         u64 old_msr_data = msr->data;
3450                         msr->data = data;
3451                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3452                                 preempt_disable();
3453                                 ret = kvm_set_shared_msr(msr->index, msr->data,
3454                                                          msr->mask);
3455                                 preempt_enable();
3456                                 if (ret)
3457                                         msr->data = old_msr_data;
3458                         }
3459                         break;
3460                 }
3461                 ret = kvm_set_msr_common(vcpu, msr_info);
3462         }
3463
3464         return ret;
3465 }
3466
3467 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3468 {
3469         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3470         switch (reg) {
3471         case VCPU_REGS_RSP:
3472                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3473                 break;
3474         case VCPU_REGS_RIP:
3475                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3476                 break;
3477         case VCPU_EXREG_PDPTR:
3478                 if (enable_ept)
3479                         ept_save_pdptrs(vcpu);
3480                 break;
3481         default:
3482                 break;
3483         }
3484 }
3485
3486 static __init int cpu_has_kvm_support(void)
3487 {
3488         return cpu_has_vmx();
3489 }
3490
3491 static __init int vmx_disabled_by_bios(void)
3492 {
3493         u64 msr;
3494
3495         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3496         if (msr & FEATURE_CONTROL_LOCKED) {
3497                 /* launched w/ TXT and VMX disabled */
3498                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3499                         && tboot_enabled())
3500                         return 1;
3501                 /* launched w/o TXT and VMX only enabled w/ TXT */
3502                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3503                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3504                         && !tboot_enabled()) {
3505                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3506                                 "activate TXT before enabling KVM\n");
3507                         return 1;
3508                 }
3509                 /* launched w/o TXT and VMX disabled */
3510                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3511                         && !tboot_enabled())
3512                         return 1;
3513         }
3514
3515         return 0;
3516 }
3517
3518 static void kvm_cpu_vmxon(u64 addr)
3519 {
3520         cr4_set_bits(X86_CR4_VMXE);
3521         intel_pt_handle_vmx(1);
3522
3523         asm volatile (ASM_VMX_VMXON_RAX
3524                         : : "a"(&addr), "m"(addr)
3525                         : "memory", "cc");
3526 }
3527
3528 static int hardware_enable(void)
3529 {
3530         int cpu = raw_smp_processor_id();
3531         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3532         u64 old, test_bits;
3533
3534         if (cr4_read_shadow() & X86_CR4_VMXE)
3535                 return -EBUSY;
3536
3537         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3538         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3539         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3540
3541         /*
3542          * Now we can enable the vmclear operation in kdump
3543          * since the loaded_vmcss_on_cpu list on this cpu
3544          * has been initialized.
3545          *
3546          * Though the cpu is not in VMX operation now, there
3547          * is no problem to enable the vmclear operation
3548          * for the loaded_vmcss_on_cpu list is empty!
3549          */
3550         crash_enable_local_vmclear(cpu);
3551
3552         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3553
3554         test_bits = FEATURE_CONTROL_LOCKED;
3555         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3556         if (tboot_enabled())
3557                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3558
3559         if ((old & test_bits) != test_bits) {
3560                 /* enable and lock */
3561                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3562         }
3563         kvm_cpu_vmxon(phys_addr);
3564         if (enable_ept)
3565                 ept_sync_global();
3566
3567         return 0;
3568 }
3569
3570 static void vmclear_local_loaded_vmcss(void)
3571 {
3572         int cpu = raw_smp_processor_id();
3573         struct loaded_vmcs *v, *n;
3574
3575         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3576                                  loaded_vmcss_on_cpu_link)
3577                 __loaded_vmcs_clear(v);
3578 }
3579
3580
3581 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3582  * tricks.
3583  */
3584 static void kvm_cpu_vmxoff(void)
3585 {
3586         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3587
3588         intel_pt_handle_vmx(0);
3589         cr4_clear_bits(X86_CR4_VMXE);
3590 }
3591
3592 static void hardware_disable(void)
3593 {
3594         vmclear_local_loaded_vmcss();
3595         kvm_cpu_vmxoff();
3596 }
3597
3598 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3599                                       u32 msr, u32 *result)
3600 {
3601         u32 vmx_msr_low, vmx_msr_high;
3602         u32 ctl = ctl_min | ctl_opt;
3603
3604         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3605
3606         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3607         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3608
3609         /* Ensure minimum (required) set of control bits are supported. */
3610         if (ctl_min & ~ctl)
3611                 return -EIO;
3612
3613         *result = ctl;
3614         return 0;
3615 }
3616
3617 static __init bool allow_1_setting(u32 msr, u32 ctl)
3618 {
3619         u32 vmx_msr_low, vmx_msr_high;
3620
3621         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3622         return vmx_msr_high & ctl;
3623 }
3624
3625 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3626 {
3627         u32 vmx_msr_low, vmx_msr_high;
3628         u32 min, opt, min2, opt2;
3629         u32 _pin_based_exec_control = 0;
3630         u32 _cpu_based_exec_control = 0;
3631         u32 _cpu_based_2nd_exec_control = 0;
3632         u32 _vmexit_control = 0;
3633         u32 _vmentry_control = 0;
3634
3635         min = CPU_BASED_HLT_EXITING |
3636 #ifdef CONFIG_X86_64
3637               CPU_BASED_CR8_LOAD_EXITING |
3638               CPU_BASED_CR8_STORE_EXITING |
3639 #endif
3640               CPU_BASED_CR3_LOAD_EXITING |
3641               CPU_BASED_CR3_STORE_EXITING |
3642               CPU_BASED_USE_IO_BITMAPS |
3643               CPU_BASED_MOV_DR_EXITING |
3644               CPU_BASED_USE_TSC_OFFSETING |
3645               CPU_BASED_INVLPG_EXITING |
3646               CPU_BASED_RDPMC_EXITING;
3647
3648         if (!kvm_mwait_in_guest())
3649                 min |= CPU_BASED_MWAIT_EXITING |
3650                         CPU_BASED_MONITOR_EXITING;
3651
3652         opt = CPU_BASED_TPR_SHADOW |
3653               CPU_BASED_USE_MSR_BITMAPS |
3654               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3655         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3656                                 &_cpu_based_exec_control) < 0)
3657                 return -EIO;
3658 #ifdef CONFIG_X86_64
3659         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3660                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3661                                            ~CPU_BASED_CR8_STORE_EXITING;
3662 #endif
3663         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3664                 min2 = 0;
3665                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3666                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3667                         SECONDARY_EXEC_WBINVD_EXITING |
3668                         SECONDARY_EXEC_ENABLE_VPID |
3669                         SECONDARY_EXEC_ENABLE_EPT |
3670                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3671                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3672                         SECONDARY_EXEC_RDTSCP |
3673                         SECONDARY_EXEC_ENABLE_INVPCID |
3674                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3675                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3676                         SECONDARY_EXEC_SHADOW_VMCS |
3677                         SECONDARY_EXEC_XSAVES |
3678                         SECONDARY_EXEC_RDSEED_EXITING |
3679                         SECONDARY_EXEC_RDRAND_EXITING |
3680                         SECONDARY_EXEC_ENABLE_PML |
3681                         SECONDARY_EXEC_TSC_SCALING |
3682                         SECONDARY_EXEC_ENABLE_VMFUNC;
3683                 if (adjust_vmx_controls(min2, opt2,
3684                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3685                                         &_cpu_based_2nd_exec_control) < 0)
3686                         return -EIO;
3687         }
3688 #ifndef CONFIG_X86_64
3689         if (!(_cpu_based_2nd_exec_control &
3690                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3691                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3692 #endif
3693
3694         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3695                 _cpu_based_2nd_exec_control &= ~(
3696                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3697                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3698                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3699
3700         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
3701                 &vmx_capability.ept, &vmx_capability.vpid);
3702
3703         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3704                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3705                    enabled */
3706                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3707                                              CPU_BASED_CR3_STORE_EXITING |
3708                                              CPU_BASED_INVLPG_EXITING);
3709         } else if (vmx_capability.ept) {
3710                 vmx_capability.ept = 0;
3711                 pr_warn_once("EPT CAP should not exist if not support "
3712                                 "1-setting enable EPT VM-execution control\n");
3713         }
3714         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
3715                 vmx_capability.vpid) {
3716                 vmx_capability.vpid = 0;
3717                 pr_warn_once("VPID CAP should not exist if not support "
3718                                 "1-setting enable VPID VM-execution control\n");
3719         }
3720
3721         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3722 #ifdef CONFIG_X86_64
3723         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3724 #endif
3725         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3726                 VM_EXIT_CLEAR_BNDCFGS;
3727         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3728                                 &_vmexit_control) < 0)
3729                 return -EIO;
3730
3731         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3732         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3733                  PIN_BASED_VMX_PREEMPTION_TIMER;
3734         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3735                                 &_pin_based_exec_control) < 0)
3736                 return -EIO;
3737
3738         if (cpu_has_broken_vmx_preemption_timer())
3739                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3740         if (!(_cpu_based_2nd_exec_control &
3741                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3742                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3743
3744         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3745         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3746         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3747                                 &_vmentry_control) < 0)
3748                 return -EIO;
3749
3750         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3751
3752         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3753         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3754                 return -EIO;
3755
3756 #ifdef CONFIG_X86_64
3757         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3758         if (vmx_msr_high & (1u<<16))
3759                 return -EIO;
3760 #endif
3761
3762         /* Require Write-Back (WB) memory type for VMCS accesses. */
3763         if (((vmx_msr_high >> 18) & 15) != 6)
3764                 return -EIO;
3765
3766         vmcs_conf->size = vmx_msr_high & 0x1fff;
3767         vmcs_conf->order = get_order(vmcs_conf->size);
3768         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3769         vmcs_conf->revision_id = vmx_msr_low;
3770
3771         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3772         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3773         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3774         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3775         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3776
3777         cpu_has_load_ia32_efer =
3778                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3779                                 VM_ENTRY_LOAD_IA32_EFER)
3780                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3781                                    VM_EXIT_LOAD_IA32_EFER);
3782
3783         cpu_has_load_perf_global_ctrl =
3784                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3785                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3786                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3787                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3788
3789         /*
3790          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3791          * but due to errata below it can't be used. Workaround is to use
3792          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3793          *
3794          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3795          *
3796          * AAK155             (model 26)
3797          * AAP115             (model 30)
3798          * AAT100             (model 37)
3799          * BC86,AAY89,BD102   (model 44)
3800          * BA97               (model 46)
3801          *
3802          */
3803         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3804                 switch (boot_cpu_data.x86_model) {
3805                 case 26:
3806                 case 30:
3807                 case 37:
3808                 case 44:
3809                 case 46:
3810                         cpu_has_load_perf_global_ctrl = false;
3811                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3812                                         "does not work properly. Using workaround\n");
3813                         break;
3814                 default:
3815                         break;
3816                 }
3817         }
3818
3819         if (boot_cpu_has(X86_FEATURE_XSAVES))
3820                 rdmsrl(MSR_IA32_XSS, host_xss);
3821
3822         return 0;
3823 }
3824
3825 static struct vmcs *alloc_vmcs_cpu(int cpu)
3826 {
3827         int node = cpu_to_node(cpu);
3828         struct page *pages;
3829         struct vmcs *vmcs;
3830
3831         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3832         if (!pages)
3833                 return NULL;
3834         vmcs = page_address(pages);
3835         memset(vmcs, 0, vmcs_config.size);
3836         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3837         return vmcs;
3838 }
3839
3840 static struct vmcs *alloc_vmcs(void)
3841 {
3842         return alloc_vmcs_cpu(raw_smp_processor_id());
3843 }
3844
3845 static void free_vmcs(struct vmcs *vmcs)
3846 {
3847         free_pages((unsigned long)vmcs, vmcs_config.order);
3848 }
3849
3850 /*
3851  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3852  */
3853 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3854 {
3855         if (!loaded_vmcs->vmcs)
3856                 return;
3857         loaded_vmcs_clear(loaded_vmcs);
3858         free_vmcs(loaded_vmcs->vmcs);
3859         loaded_vmcs->vmcs = NULL;
3860         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3861 }
3862
3863 static void free_kvm_area(void)
3864 {
3865         int cpu;
3866
3867         for_each_possible_cpu(cpu) {
3868                 free_vmcs(per_cpu(vmxarea, cpu));
3869                 per_cpu(vmxarea, cpu) = NULL;
3870         }
3871 }
3872
3873 enum vmcs_field_type {
3874         VMCS_FIELD_TYPE_U16 = 0,
3875         VMCS_FIELD_TYPE_U64 = 1,
3876         VMCS_FIELD_TYPE_U32 = 2,
3877         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3878 };
3879
3880 static inline int vmcs_field_type(unsigned long field)
3881 {
3882         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
3883                 return VMCS_FIELD_TYPE_U32;
3884         return (field >> 13) & 0x3 ;
3885 }
3886
3887 static inline int vmcs_field_readonly(unsigned long field)
3888 {
3889         return (((field >> 10) & 0x3) == 1);
3890 }
3891
3892 static void init_vmcs_shadow_fields(void)
3893 {
3894         int i, j;
3895
3896         /* No checks for read only fields yet */
3897
3898         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3899                 switch (shadow_read_write_fields[i]) {
3900                 case GUEST_BNDCFGS:
3901                         if (!kvm_mpx_supported())
3902                                 continue;
3903                         break;
3904                 default:
3905                         break;
3906                 }
3907
3908                 if (j < i)
3909                         shadow_read_write_fields[j] =
3910                                 shadow_read_write_fields[i];
3911                 j++;
3912         }
3913         max_shadow_read_write_fields = j;
3914
3915         /* shadowed fields guest access without vmexit */
3916         for (i = 0; i < max_shadow_read_write_fields; i++) {
3917                 unsigned long field = shadow_read_write_fields[i];
3918
3919                 clear_bit(field, vmx_vmwrite_bitmap);
3920                 clear_bit(field, vmx_vmread_bitmap);
3921                 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3922                         clear_bit(field + 1, vmx_vmwrite_bitmap);
3923                         clear_bit(field + 1, vmx_vmread_bitmap);
3924                 }
3925         }
3926         for (i = 0; i < max_shadow_read_only_fields; i++) {
3927                 unsigned long field = shadow_read_only_fields[i];
3928
3929                 clear_bit(field, vmx_vmread_bitmap);
3930                 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3931                         clear_bit(field + 1, vmx_vmread_bitmap);
3932         }
3933 }
3934
3935 static __init int alloc_kvm_area(void)
3936 {
3937         int cpu;
3938
3939         for_each_possible_cpu(cpu) {
3940                 struct vmcs *vmcs;
3941
3942                 vmcs = alloc_vmcs_cpu(cpu);
3943                 if (!vmcs) {
3944                         free_kvm_area();
3945                         return -ENOMEM;
3946                 }
3947
3948                 per_cpu(vmxarea, cpu) = vmcs;
3949         }
3950         return 0;
3951 }
3952
3953 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3954                 struct kvm_segment *save)
3955 {
3956         if (!emulate_invalid_guest_state) {
3957                 /*
3958                  * CS and SS RPL should be equal during guest entry according
3959                  * to VMX spec, but in reality it is not always so. Since vcpu
3960                  * is in the middle of the transition from real mode to
3961                  * protected mode it is safe to assume that RPL 0 is a good
3962                  * default value.
3963                  */
3964                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3965                         save->selector &= ~SEGMENT_RPL_MASK;
3966                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3967                 save->s = 1;
3968         }
3969         vmx_set_segment(vcpu, save, seg);
3970 }
3971
3972 static void enter_pmode(struct kvm_vcpu *vcpu)
3973 {
3974         unsigned long flags;
3975         struct vcpu_vmx *vmx = to_vmx(vcpu);
3976
3977         /*
3978          * Update real mode segment cache. It may be not up-to-date if sement
3979          * register was written while vcpu was in a guest mode.
3980          */
3981         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3982         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3983         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3984         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3985         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3986         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3987
3988         vmx->rmode.vm86_active = 0;
3989
3990         vmx_segment_cache_clear(vmx);
3991
3992         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3993
3994         flags = vmcs_readl(GUEST_RFLAGS);
3995         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3996         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3997         vmcs_writel(GUEST_RFLAGS, flags);
3998
3999         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
4000                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
4001
4002         update_exception_bitmap(vcpu);
4003
4004         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4005         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4006         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4007         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4008         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4009         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4010 }
4011
4012 static void fix_rmode_seg(int seg, struct kvm_segment *save)
4013 {
4014         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4015         struct kvm_segment var = *save;
4016
4017         var.dpl = 0x3;
4018         if (seg == VCPU_SREG_CS)
4019                 var.type = 0x3;
4020
4021         if (!emulate_invalid_guest_state) {
4022                 var.selector = var.base >> 4;
4023                 var.base = var.base & 0xffff0;
4024                 var.limit = 0xffff;
4025                 var.g = 0;
4026                 var.db = 0;
4027                 var.present = 1;
4028                 var.s = 1;
4029                 var.l = 0;
4030                 var.unusable = 0;
4031                 var.type = 0x3;
4032                 var.avl = 0;
4033                 if (save->base & 0xf)
4034                         printk_once(KERN_WARNING "kvm: segment base is not "
4035                                         "paragraph aligned when entering "
4036                                         "protected mode (seg=%d)", seg);
4037         }
4038
4039         vmcs_write16(sf->selector, var.selector);
4040         vmcs_writel(sf->base, var.base);
4041         vmcs_write32(sf->limit, var.limit);
4042         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
4043 }
4044
4045 static void enter_rmode(struct kvm_vcpu *vcpu)
4046 {
4047         unsigned long flags;
4048         struct vcpu_vmx *vmx = to_vmx(vcpu);
4049
4050         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4051         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4052         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4053         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4054         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4055         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4056         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4057
4058         vmx->rmode.vm86_active = 1;
4059
4060         /*
4061          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4062          * vcpu. Warn the user that an update is overdue.
4063          */
4064         if (!vcpu->kvm->arch.tss_addr)
4065                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4066                              "called before entering vcpu\n");
4067
4068         vmx_segment_cache_clear(vmx);
4069
4070         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
4071         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
4072         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4073
4074         flags = vmcs_readl(GUEST_RFLAGS);
4075         vmx->rmode.save_rflags = flags;
4076
4077         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
4078
4079         vmcs_writel(GUEST_RFLAGS, flags);
4080         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
4081         update_exception_bitmap(vcpu);
4082
4083         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4084         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4085         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4086         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4087         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4088         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4089
4090         kvm_mmu_reset_context(vcpu);
4091 }
4092
4093 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4094 {
4095         struct vcpu_vmx *vmx = to_vmx(vcpu);
4096         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4097
4098         if (!msr)
4099                 return;
4100
4101         /*
4102          * Force kernel_gs_base reloading before EFER changes, as control
4103          * of this msr depends on is_long_mode().
4104          */
4105         vmx_load_host_state(to_vmx(vcpu));
4106         vcpu->arch.efer = efer;
4107         if (efer & EFER_LMA) {
4108                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4109                 msr->data = efer;
4110         } else {
4111                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4112
4113                 msr->data = efer & ~EFER_LME;
4114         }
4115         setup_msrs(vmx);
4116 }
4117
4118 #ifdef CONFIG_X86_64
4119
4120 static void enter_lmode(struct kvm_vcpu *vcpu)
4121 {
4122         u32 guest_tr_ar;
4123
4124         vmx_segment_cache_clear(to_vmx(vcpu));
4125
4126         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4127         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4128                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4129                                      __func__);
4130                 vmcs_write32(GUEST_TR_AR_BYTES,
4131                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4132                              | VMX_AR_TYPE_BUSY_64_TSS);
4133         }
4134         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4135 }
4136
4137 static void exit_lmode(struct kvm_vcpu *vcpu)
4138 {
4139         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4140         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4141 }
4142
4143 #endif
4144
4145 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4146 {
4147         if (enable_ept) {
4148                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4149                         return;
4150                 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4151         } else {
4152                 vpid_sync_context(vpid);
4153         }
4154 }
4155
4156 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4157 {
4158         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4159 }
4160
4161 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4162 {
4163         if (enable_ept)
4164                 vmx_flush_tlb(vcpu);
4165 }
4166
4167 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4168 {
4169         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4170
4171         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4172         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4173 }
4174
4175 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4176 {
4177         if (enable_ept && is_paging(vcpu))
4178                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4179         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4180 }
4181
4182 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4183 {
4184         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4185
4186         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4187         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4188 }
4189
4190 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4191 {
4192         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4193
4194         if (!test_bit(VCPU_EXREG_PDPTR,
4195                       (unsigned long *)&vcpu->arch.regs_dirty))
4196                 return;
4197
4198         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4199                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4200                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4201                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4202                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4203         }
4204 }
4205
4206 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4207 {
4208         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4209
4210         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4211                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4212                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4213                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4214                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4215         }
4216
4217         __set_bit(VCPU_EXREG_PDPTR,
4218                   (unsigned long *)&vcpu->arch.regs_avail);
4219         __set_bit(VCPU_EXREG_PDPTR,
4220                   (unsigned long *)&vcpu->arch.regs_dirty);
4221 }
4222
4223 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4224 {
4225         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4226         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4227         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4228
4229         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4230                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4231             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4232                 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4233
4234         return fixed_bits_valid(val, fixed0, fixed1);
4235 }
4236
4237 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4238 {
4239         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4240         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4241
4242         return fixed_bits_valid(val, fixed0, fixed1);
4243 }
4244
4245 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4246 {
4247         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4248         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4249
4250         return fixed_bits_valid(val, fixed0, fixed1);
4251 }
4252
4253 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4254 #define nested_guest_cr4_valid  nested_cr4_valid
4255 #define nested_host_cr4_valid   nested_cr4_valid
4256
4257 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4258
4259 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4260                                         unsigned long cr0,
4261                                         struct kvm_vcpu *vcpu)
4262 {
4263         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4264                 vmx_decache_cr3(vcpu);
4265         if (!(cr0 & X86_CR0_PG)) {
4266                 /* From paging/starting to nonpaging */
4267                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4268                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4269                              (CPU_BASED_CR3_LOAD_EXITING |
4270                               CPU_BASED_CR3_STORE_EXITING));
4271                 vcpu->arch.cr0 = cr0;
4272                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4273         } else if (!is_paging(vcpu)) {
4274                 /* From nonpaging to paging */
4275                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4276                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4277                              ~(CPU_BASED_CR3_LOAD_EXITING |
4278                                CPU_BASED_CR3_STORE_EXITING));
4279                 vcpu->arch.cr0 = cr0;
4280                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4281         }
4282
4283         if (!(cr0 & X86_CR0_WP))
4284                 *hw_cr0 &= ~X86_CR0_WP;
4285 }
4286
4287 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4288 {
4289         struct vcpu_vmx *vmx = to_vmx(vcpu);
4290         unsigned long hw_cr0;
4291
4292         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4293         if (enable_unrestricted_guest)
4294                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4295         else {
4296                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4297
4298                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4299                         enter_pmode(vcpu);
4300
4301                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4302                         enter_rmode(vcpu);
4303         }
4304
4305 #ifdef CONFIG_X86_64
4306         if (vcpu->arch.efer & EFER_LME) {
4307                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4308                         enter_lmode(vcpu);
4309                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4310                         exit_lmode(vcpu);
4311         }
4312 #endif
4313
4314         if (enable_ept)
4315                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4316
4317         vmcs_writel(CR0_READ_SHADOW, cr0);
4318         vmcs_writel(GUEST_CR0, hw_cr0);
4319         vcpu->arch.cr0 = cr0;
4320
4321         /* depends on vcpu->arch.cr0 to be set to a new value */
4322         vmx->emulation_required = emulation_required(vcpu);
4323 }
4324
4325 static int get_ept_level(struct kvm_vcpu *vcpu)
4326 {
4327         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4328                 return 5;
4329         return 4;
4330 }
4331
4332 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4333 {
4334         u64 eptp = VMX_EPTP_MT_WB;
4335
4336         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
4337
4338         if (enable_ept_ad_bits &&
4339             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4340                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
4341         eptp |= (root_hpa & PAGE_MASK);
4342
4343         return eptp;
4344 }
4345
4346 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4347 {
4348         unsigned long guest_cr3;
4349         u64 eptp;
4350
4351         guest_cr3 = cr3;
4352         if (enable_ept) {
4353                 eptp = construct_eptp(vcpu, cr3);
4354                 vmcs_write64(EPT_POINTER, eptp);
4355                 if (is_paging(vcpu) || is_guest_mode(vcpu))
4356                         guest_cr3 = kvm_read_cr3(vcpu);
4357                 else
4358                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4359                 ept_load_pdptrs(vcpu);
4360         }
4361
4362         vmx_flush_tlb(vcpu);
4363         vmcs_writel(GUEST_CR3, guest_cr3);
4364 }
4365
4366 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4367 {
4368         /*
4369          * Pass through host's Machine Check Enable value to hw_cr4, which
4370          * is in force while we are in guest mode.  Do not let guests control
4371          * this bit, even if host CR4.MCE == 0.
4372          */
4373         unsigned long hw_cr4 =
4374                 (cr4_read_shadow() & X86_CR4_MCE) |
4375                 (cr4 & ~X86_CR4_MCE) |
4376                 (to_vmx(vcpu)->rmode.vm86_active ?
4377                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4378
4379         if (cr4 & X86_CR4_VMXE) {
4380                 /*
4381                  * To use VMXON (and later other VMX instructions), a guest
4382                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
4383                  * So basically the check on whether to allow nested VMX
4384                  * is here.
4385                  */
4386                 if (!nested_vmx_allowed(vcpu))
4387                         return 1;
4388         }
4389
4390         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4391                 return 1;
4392
4393         vcpu->arch.cr4 = cr4;
4394         if (enable_ept) {
4395                 if (!is_paging(vcpu)) {
4396                         hw_cr4 &= ~X86_CR4_PAE;
4397                         hw_cr4 |= X86_CR4_PSE;
4398                 } else if (!(cr4 & X86_CR4_PAE)) {
4399                         hw_cr4 &= ~X86_CR4_PAE;
4400                 }
4401         }
4402
4403         if (!enable_unrestricted_guest && !is_paging(vcpu))
4404                 /*
4405                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4406                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
4407                  * to be manually disabled when guest switches to non-paging
4408                  * mode.
4409                  *
4410                  * If !enable_unrestricted_guest, the CPU is always running
4411                  * with CR0.PG=1 and CR4 needs to be modified.
4412                  * If enable_unrestricted_guest, the CPU automatically
4413                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4414                  */
4415                 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4416
4417         vmcs_writel(CR4_READ_SHADOW, cr4);
4418         vmcs_writel(GUEST_CR4, hw_cr4);
4419         return 0;
4420 }
4421
4422 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4423                             struct kvm_segment *var, int seg)
4424 {
4425         struct vcpu_vmx *vmx = to_vmx(vcpu);
4426         u32 ar;
4427
4428         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4429                 *var = vmx->rmode.segs[seg];
4430                 if (seg == VCPU_SREG_TR
4431                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4432                         return;
4433                 var->base = vmx_read_guest_seg_base(vmx, seg);
4434                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4435                 return;
4436         }
4437         var->base = vmx_read_guest_seg_base(vmx, seg);
4438         var->limit = vmx_read_guest_seg_limit(vmx, seg);
4439         var->selector = vmx_read_guest_seg_selector(vmx, seg);
4440         ar = vmx_read_guest_seg_ar(vmx, seg);
4441         var->unusable = (ar >> 16) & 1;
4442         var->type = ar & 15;
4443         var->s = (ar >> 4) & 1;
4444         var->dpl = (ar >> 5) & 3;
4445         /*
4446          * Some userspaces do not preserve unusable property. Since usable
4447          * segment has to be present according to VMX spec we can use present
4448          * property to amend userspace bug by making unusable segment always
4449          * nonpresent. vmx_segment_access_rights() already marks nonpresent
4450          * segment as unusable.
4451          */
4452         var->present = !var->unusable;
4453         var->avl = (ar >> 12) & 1;
4454         var->l = (ar >> 13) & 1;
4455         var->db = (ar >> 14) & 1;
4456         var->g = (ar >> 15) & 1;
4457 }
4458
4459 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4460 {
4461         struct kvm_segment s;
4462
4463         if (to_vmx(vcpu)->rmode.vm86_active) {
4464                 vmx_get_segment(vcpu, &s, seg);
4465                 return s.base;
4466         }
4467         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4468 }
4469
4470 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4471 {
4472         struct vcpu_vmx *vmx = to_vmx(vcpu);
4473
4474         if (unlikely(vmx->rmode.vm86_active))
4475                 return 0;
4476         else {
4477                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4478                 return VMX_AR_DPL(ar);
4479         }
4480 }
4481
4482 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4483 {
4484         u32 ar;
4485
4486         if (var->unusable || !var->present)
4487                 ar = 1 << 16;
4488         else {
4489                 ar = var->type & 15;
4490                 ar |= (var->s & 1) << 4;
4491                 ar |= (var->dpl & 3) << 5;
4492                 ar |= (var->present & 1) << 7;
4493                 ar |= (var->avl & 1) << 12;
4494                 ar |= (var->l & 1) << 13;
4495                 ar |= (var->db & 1) << 14;
4496                 ar |= (var->g & 1) << 15;
4497         }
4498
4499         return ar;
4500 }
4501
4502 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4503                             struct kvm_segment *var, int seg)
4504 {
4505         struct vcpu_vmx *vmx = to_vmx(vcpu);
4506         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4507
4508         vmx_segment_cache_clear(vmx);
4509
4510         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4511                 vmx->rmode.segs[seg] = *var;
4512                 if (seg == VCPU_SREG_TR)
4513                         vmcs_write16(sf->selector, var->selector);
4514                 else if (var->s)
4515                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4516                 goto out;
4517         }
4518
4519         vmcs_writel(sf->base, var->base);
4520         vmcs_write32(sf->limit, var->limit);
4521         vmcs_write16(sf->selector, var->selector);
4522
4523         /*
4524          *   Fix the "Accessed" bit in AR field of segment registers for older
4525          * qemu binaries.
4526          *   IA32 arch specifies that at the time of processor reset the
4527          * "Accessed" bit in the AR field of segment registers is 1. And qemu
4528          * is setting it to 0 in the userland code. This causes invalid guest
4529          * state vmexit when "unrestricted guest" mode is turned on.
4530          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4531          * tree. Newer qemu binaries with that qemu fix would not need this
4532          * kvm hack.
4533          */
4534         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4535                 var->type |= 0x1; /* Accessed */
4536
4537         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4538
4539 out:
4540         vmx->emulation_required = emulation_required(vcpu);
4541 }
4542
4543 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4544 {
4545         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4546
4547         *db = (ar >> 14) & 1;
4548         *l = (ar >> 13) & 1;
4549 }
4550
4551 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4552 {
4553         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4554         dt->address = vmcs_readl(GUEST_IDTR_BASE);
4555 }
4556
4557 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4558 {
4559         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4560         vmcs_writel(GUEST_IDTR_BASE, dt->address);
4561 }
4562
4563 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4564 {
4565         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4566         dt->address = vmcs_readl(GUEST_GDTR_BASE);
4567 }
4568
4569 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4570 {
4571         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4572         vmcs_writel(GUEST_GDTR_BASE, dt->address);
4573 }
4574
4575 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4576 {
4577         struct kvm_segment var;
4578         u32 ar;
4579
4580         vmx_get_segment(vcpu, &var, seg);
4581         var.dpl = 0x3;
4582         if (seg == VCPU_SREG_CS)
4583                 var.type = 0x3;
4584         ar = vmx_segment_access_rights(&var);
4585
4586         if (var.base != (var.selector << 4))
4587                 return false;
4588         if (var.limit != 0xffff)
4589                 return false;
4590         if (ar != 0xf3)
4591                 return false;
4592
4593         return true;
4594 }
4595
4596 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4597 {
4598         struct kvm_segment cs;
4599         unsigned int cs_rpl;
4600
4601         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4602         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4603
4604         if (cs.unusable)
4605                 return false;
4606         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4607                 return false;
4608         if (!cs.s)
4609                 return false;
4610         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4611                 if (cs.dpl > cs_rpl)
4612                         return false;
4613         } else {
4614                 if (cs.dpl != cs_rpl)
4615                         return false;
4616         }
4617         if (!cs.present)
4618                 return false;
4619
4620         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4621         return true;
4622 }
4623
4624 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4625 {
4626         struct kvm_segment ss;
4627         unsigned int ss_rpl;
4628
4629         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4630         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4631
4632         if (ss.unusable)
4633                 return true;
4634         if (ss.type != 3 && ss.type != 7)
4635                 return false;
4636         if (!ss.s)
4637                 return false;
4638         if (ss.dpl != ss_rpl) /* DPL != RPL */
4639                 return false;
4640         if (!ss.present)
4641                 return false;
4642
4643         return true;
4644 }
4645
4646 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4647 {
4648         struct kvm_segment var;
4649         unsigned int rpl;
4650
4651         vmx_get_segment(vcpu, &var, seg);
4652         rpl = var.selector & SEGMENT_RPL_MASK;
4653
4654         if (var.unusable)
4655                 return true;
4656         if (!var.s)
4657                 return false;
4658         if (!var.present)
4659                 return false;
4660         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4661                 if (var.dpl < rpl) /* DPL < RPL */
4662                         return false;
4663         }
4664
4665         /* TODO: Add other members to kvm_segment_field to allow checking for other access
4666          * rights flags
4667          */
4668         return true;
4669 }
4670
4671 static bool tr_valid(struct kvm_vcpu *vcpu)
4672 {
4673         struct kvm_segment tr;
4674
4675         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4676
4677         if (tr.unusable)
4678                 return false;
4679         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4680                 return false;
4681         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4682                 return false;
4683         if (!tr.present)
4684                 return false;
4685
4686         return true;
4687 }
4688
4689 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4690 {
4691         struct kvm_segment ldtr;
4692
4693         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4694
4695         if (ldtr.unusable)
4696                 return true;
4697         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4698                 return false;
4699         if (ldtr.type != 2)
4700                 return false;
4701         if (!ldtr.present)
4702                 return false;
4703
4704         return true;
4705 }
4706
4707 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4708 {
4709         struct kvm_segment cs, ss;
4710
4711         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4712         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4713
4714         return ((cs.selector & SEGMENT_RPL_MASK) ==
4715                  (ss.selector & SEGMENT_RPL_MASK));
4716 }
4717
4718 /*
4719  * Check if guest state is valid. Returns true if valid, false if
4720  * not.
4721  * We assume that registers are always usable
4722  */
4723 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4724 {
4725         if (enable_unrestricted_guest)
4726                 return true;
4727
4728         /* real mode guest state checks */
4729         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4730                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4731                         return false;
4732                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4733                         return false;
4734                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4735                         return false;
4736                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4737                         return false;
4738                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4739                         return false;
4740                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4741                         return false;
4742         } else {
4743         /* protected mode guest state checks */
4744                 if (!cs_ss_rpl_check(vcpu))
4745                         return false;
4746                 if (!code_segment_valid(vcpu))
4747                         return false;
4748                 if (!stack_segment_valid(vcpu))
4749                         return false;
4750                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4751                         return false;
4752                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4753                         return false;
4754                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4755                         return false;
4756                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4757                         return false;
4758                 if (!tr_valid(vcpu))
4759                         return false;
4760                 if (!ldtr_valid(vcpu))
4761                         return false;
4762         }
4763         /* TODO:
4764          * - Add checks on RIP
4765          * - Add checks on RFLAGS
4766          */
4767
4768         return true;
4769 }
4770
4771 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4772 {
4773         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4774 }
4775
4776 static int init_rmode_tss(struct kvm *kvm)
4777 {
4778         gfn_t fn;
4779         u16 data = 0;
4780         int idx, r;
4781
4782         idx = srcu_read_lock(&kvm->srcu);
4783         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4784         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4785         if (r < 0)
4786                 goto out;
4787         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4788         r = kvm_write_guest_page(kvm, fn++, &data,
4789                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4790         if (r < 0)
4791                 goto out;
4792         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4793         if (r < 0)
4794                 goto out;
4795         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4796         if (r < 0)
4797                 goto out;
4798         data = ~0;
4799         r = kvm_write_guest_page(kvm, fn, &data,
4800                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4801                                  sizeof(u8));
4802 out:
4803         srcu_read_unlock(&kvm->srcu, idx);
4804         return r;
4805 }
4806
4807 static int init_rmode_identity_map(struct kvm *kvm)
4808 {
4809         int i, idx, r = 0;
4810         kvm_pfn_t identity_map_pfn;
4811         u32 tmp;
4812
4813         /* Protect kvm->arch.ept_identity_pagetable_done. */
4814         mutex_lock(&kvm->slots_lock);
4815
4816         if (likely(kvm->arch.ept_identity_pagetable_done))
4817                 goto out2;
4818
4819         if (!kvm->arch.ept_identity_map_addr)
4820                 kvm->arch.ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4821         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4822
4823         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4824                                     kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4825         if (r < 0)
4826                 goto out2;
4827
4828         idx = srcu_read_lock(&kvm->srcu);
4829         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4830         if (r < 0)
4831                 goto out;
4832         /* Set up identity-mapping pagetable for EPT in real mode */
4833         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4834                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4835                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4836                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4837                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4838                 if (r < 0)
4839                         goto out;
4840         }
4841         kvm->arch.ept_identity_pagetable_done = true;
4842
4843 out:
4844         srcu_read_unlock(&kvm->srcu, idx);
4845
4846 out2:
4847         mutex_unlock(&kvm->slots_lock);
4848         return r;
4849 }
4850
4851 static void seg_setup(int seg)
4852 {
4853         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4854         unsigned int ar;
4855
4856         vmcs_write16(sf->selector, 0);
4857         vmcs_writel(sf->base, 0);
4858         vmcs_write32(sf->limit, 0xffff);
4859         ar = 0x93;
4860         if (seg == VCPU_SREG_CS)
4861                 ar |= 0x08; /* code segment */
4862
4863         vmcs_write32(sf->ar_bytes, ar);
4864 }
4865
4866 static int alloc_apic_access_page(struct kvm *kvm)
4867 {
4868         struct page *page;
4869         int r = 0;
4870
4871         mutex_lock(&kvm->slots_lock);
4872         if (kvm->arch.apic_access_page_done)
4873                 goto out;
4874         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4875                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4876         if (r)
4877                 goto out;
4878
4879         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4880         if (is_error_page(page)) {
4881                 r = -EFAULT;
4882                 goto out;
4883         }
4884
4885         /*
4886          * Do not pin the page in memory, so that memory hot-unplug
4887          * is able to migrate it.
4888          */
4889         put_page(page);
4890         kvm->arch.apic_access_page_done = true;
4891 out:
4892         mutex_unlock(&kvm->slots_lock);
4893         return r;
4894 }
4895
4896 static int allocate_vpid(void)
4897 {
4898         int vpid;
4899
4900         if (!enable_vpid)
4901                 return 0;
4902         spin_lock(&vmx_vpid_lock);
4903         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4904         if (vpid < VMX_NR_VPIDS)
4905                 __set_bit(vpid, vmx_vpid_bitmap);
4906         else
4907                 vpid = 0;
4908         spin_unlock(&vmx_vpid_lock);
4909         return vpid;
4910 }
4911
4912 static void free_vpid(int vpid)
4913 {
4914         if (!enable_vpid || vpid == 0)
4915                 return;
4916         spin_lock(&vmx_vpid_lock);
4917         __clear_bit(vpid, vmx_vpid_bitmap);
4918         spin_unlock(&vmx_vpid_lock);
4919 }
4920
4921 #define MSR_TYPE_R      1
4922 #define MSR_TYPE_W      2
4923 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4924                                                 u32 msr, int type)
4925 {
4926         int f = sizeof(unsigned long);
4927
4928         if (!cpu_has_vmx_msr_bitmap())
4929                 return;
4930
4931         /*
4932          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4933          * have the write-low and read-high bitmap offsets the wrong way round.
4934          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4935          */
4936         if (msr <= 0x1fff) {
4937                 if (type & MSR_TYPE_R)
4938                         /* read-low */
4939                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4940
4941                 if (type & MSR_TYPE_W)
4942                         /* write-low */
4943                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4944
4945         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4946                 msr &= 0x1fff;
4947                 if (type & MSR_TYPE_R)
4948                         /* read-high */
4949                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4950
4951                 if (type & MSR_TYPE_W)
4952                         /* write-high */
4953                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4954
4955         }
4956 }
4957
4958 /*
4959  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4960  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4961  */
4962 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4963                                                unsigned long *msr_bitmap_nested,
4964                                                u32 msr, int type)
4965 {
4966         int f = sizeof(unsigned long);
4967
4968         if (!cpu_has_vmx_msr_bitmap()) {
4969                 WARN_ON(1);
4970                 return;
4971         }
4972
4973         /*
4974          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4975          * have the write-low and read-high bitmap offsets the wrong way round.
4976          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4977          */
4978         if (msr <= 0x1fff) {
4979                 if (type & MSR_TYPE_R &&
4980                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4981                         /* read-low */
4982                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4983
4984                 if (type & MSR_TYPE_W &&
4985                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4986                         /* write-low */
4987                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4988
4989         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4990                 msr &= 0x1fff;
4991                 if (type & MSR_TYPE_R &&
4992                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4993                         /* read-high */
4994                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4995
4996                 if (type & MSR_TYPE_W &&
4997                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4998                         /* write-high */
4999                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
5000
5001         }
5002 }
5003
5004 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
5005 {
5006         if (!longmode_only)
5007                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
5008                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
5009         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
5010                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
5011 }
5012
5013 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
5014 {
5015         if (apicv_active) {
5016                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
5017                                 msr, type);
5018                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
5019                                 msr, type);
5020         } else {
5021                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
5022                                 msr, type);
5023                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
5024                                 msr, type);
5025         }
5026 }
5027
5028 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
5029 {
5030         return enable_apicv;
5031 }
5032
5033 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5034 {
5035         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5036         gfn_t gfn;
5037
5038         /*
5039          * Don't need to mark the APIC access page dirty; it is never
5040          * written to by the CPU during APIC virtualization.
5041          */
5042
5043         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5044                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5045                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5046         }
5047
5048         if (nested_cpu_has_posted_intr(vmcs12)) {
5049                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5050                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5051         }
5052 }
5053
5054
5055 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
5056 {
5057         struct vcpu_vmx *vmx = to_vmx(vcpu);
5058         int max_irr;
5059         void *vapic_page;
5060         u16 status;
5061
5062         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5063                 return;
5064
5065         vmx->nested.pi_pending = false;
5066         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5067                 return;
5068
5069         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5070         if (max_irr != 256) {
5071                 vapic_page = kmap(vmx->nested.virtual_apic_page);
5072                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5073                 kunmap(vmx->nested.virtual_apic_page);
5074
5075                 status = vmcs_read16(GUEST_INTR_STATUS);
5076                 if ((u8)max_irr > ((u8)status & 0xff)) {
5077                         status &= ~0xff;
5078                         status |= (u8)max_irr;
5079                         vmcs_write16(GUEST_INTR_STATUS, status);
5080                 }
5081         }
5082
5083         nested_mark_vmcs12_pages_dirty(vcpu);
5084 }
5085
5086 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5087                                                      bool nested)
5088 {
5089 #ifdef CONFIG_SMP
5090         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5091
5092         if (vcpu->mode == IN_GUEST_MODE) {
5093                 /*
5094                  * The vector of interrupt to be delivered to vcpu had
5095                  * been set in PIR before this function.
5096                  *
5097                  * Following cases will be reached in this block, and
5098                  * we always send a notification event in all cases as
5099                  * explained below.
5100                  *
5101                  * Case 1: vcpu keeps in non-root mode. Sending a
5102                  * notification event posts the interrupt to vcpu.
5103                  *
5104                  * Case 2: vcpu exits to root mode and is still
5105                  * runnable. PIR will be synced to vIRR before the
5106                  * next vcpu entry. Sending a notification event in
5107                  * this case has no effect, as vcpu is not in root
5108                  * mode.
5109                  *
5110                  * Case 3: vcpu exits to root mode and is blocked.
5111                  * vcpu_block() has already synced PIR to vIRR and
5112                  * never blocks vcpu if vIRR is not cleared. Therefore,
5113                  * a blocked vcpu here does not wait for any requested
5114                  * interrupts in PIR, and sending a notification event
5115                  * which has no effect is safe here.
5116                  */
5117
5118                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
5119                 return true;
5120         }
5121 #endif
5122         return false;
5123 }
5124
5125 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5126                                                 int vector)
5127 {
5128         struct vcpu_vmx *vmx = to_vmx(vcpu);
5129
5130         if (is_guest_mode(vcpu) &&
5131             vector == vmx->nested.posted_intr_nv) {
5132                 /* the PIR and ON have been set by L1. */
5133                 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
5134                 /*
5135                  * If a posted intr is not recognized by hardware,
5136                  * we will accomplish it in the next vmentry.
5137                  */
5138                 vmx->nested.pi_pending = true;
5139                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5140                 return 0;
5141         }
5142         return -1;
5143 }
5144 /*
5145  * Send interrupt to vcpu via posted interrupt way.
5146  * 1. If target vcpu is running(non-root mode), send posted interrupt
5147  * notification to vcpu and hardware will sync PIR to vIRR atomically.
5148  * 2. If target vcpu isn't running(root mode), kick it to pick up the
5149  * interrupt from PIR in next vmentry.
5150  */
5151 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5152 {
5153         struct vcpu_vmx *vmx = to_vmx(vcpu);
5154         int r;
5155
5156         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5157         if (!r)
5158                 return;
5159
5160         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5161                 return;
5162
5163         /* If a previous notification has sent the IPI, nothing to do.  */
5164         if (pi_test_and_set_on(&vmx->pi_desc))
5165                 return;
5166
5167         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
5168                 kvm_vcpu_kick(vcpu);
5169 }
5170
5171 /*
5172  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5173  * will not change in the lifetime of the guest.
5174  * Note that host-state that does change is set elsewhere. E.g., host-state
5175  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5176  */
5177 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5178 {
5179         u32 low32, high32;
5180         unsigned long tmpl;
5181         struct desc_ptr dt;
5182         unsigned long cr0, cr3, cr4;
5183
5184         cr0 = read_cr0();
5185         WARN_ON(cr0 & X86_CR0_TS);
5186         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
5187
5188         /*
5189          * Save the most likely value for this task's CR3 in the VMCS.
5190          * We can't use __get_current_cr3_fast() because we're not atomic.
5191          */
5192         cr3 = __read_cr3();
5193         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
5194         vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
5195
5196         /* Save the most likely value for this task's CR4 in the VMCS. */
5197         cr4 = cr4_read_shadow();
5198         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
5199         vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
5200
5201         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
5202 #ifdef CONFIG_X86_64
5203         /*
5204          * Load null selectors, so we can avoid reloading them in
5205          * __vmx_load_host_state(), in case userspace uses the null selectors
5206          * too (the expected case).
5207          */
5208         vmcs_write16(HOST_DS_SELECTOR, 0);
5209         vmcs_write16(HOST_ES_SELECTOR, 0);
5210 #else
5211         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5212         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5213 #endif
5214         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5215         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
5216
5217         store_idt(&dt);
5218         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
5219         vmx->host_idt_base = dt.address;
5220
5221         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5222
5223         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5224         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5225         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5226         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
5227
5228         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5229                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5230                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5231         }
5232 }
5233
5234 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5235 {
5236         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5237         if (enable_ept)
5238                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5239         if (is_guest_mode(&vmx->vcpu))
5240                 vmx->vcpu.arch.cr4_guest_owned_bits &=
5241                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5242         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5243 }
5244
5245 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5246 {
5247         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5248
5249         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5250                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5251
5252         if (!enable_vnmi)
5253                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
5254
5255         /* Enable the preemption timer dynamically */
5256         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5257         return pin_based_exec_ctrl;
5258 }
5259
5260 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5261 {
5262         struct vcpu_vmx *vmx = to_vmx(vcpu);
5263
5264         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5265         if (cpu_has_secondary_exec_ctrls()) {
5266                 if (kvm_vcpu_apicv_active(vcpu))
5267                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5268                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
5269                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5270                 else
5271                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5272                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
5273                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5274         }
5275
5276         if (cpu_has_vmx_msr_bitmap())
5277                 vmx_set_msr_bitmap(vcpu);
5278 }
5279
5280 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5281 {
5282         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5283
5284         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5285                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5286
5287         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5288                 exec_control &= ~CPU_BASED_TPR_SHADOW;
5289 #ifdef CONFIG_X86_64
5290                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5291                                 CPU_BASED_CR8_LOAD_EXITING;
5292 #endif
5293         }
5294         if (!enable_ept)
5295                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5296                                 CPU_BASED_CR3_LOAD_EXITING  |
5297                                 CPU_BASED_INVLPG_EXITING;
5298         return exec_control;
5299 }
5300
5301 static bool vmx_rdrand_supported(void)
5302 {
5303         return vmcs_config.cpu_based_2nd_exec_ctrl &
5304                 SECONDARY_EXEC_RDRAND_EXITING;
5305 }
5306
5307 static bool vmx_rdseed_supported(void)
5308 {
5309         return vmcs_config.cpu_based_2nd_exec_ctrl &
5310                 SECONDARY_EXEC_RDSEED_EXITING;
5311 }
5312
5313 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
5314 {
5315         struct kvm_vcpu *vcpu = &vmx->vcpu;
5316
5317         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5318         if (!cpu_need_virtualize_apic_accesses(vcpu))
5319                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5320         if (vmx->vpid == 0)
5321                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5322         if (!enable_ept) {
5323                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5324                 enable_unrestricted_guest = 0;
5325                 /* Enable INVPCID for non-ept guests may cause performance regression. */
5326                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5327         }
5328         if (!enable_unrestricted_guest)
5329                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5330         if (!ple_gap)
5331                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5332         if (!kvm_vcpu_apicv_active(vcpu))
5333                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5334                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5335         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5336         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5337            (handle_vmptrld).
5338            We can NOT enable shadow_vmcs here because we don't have yet
5339            a current VMCS12
5340         */
5341         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5342
5343         if (!enable_pml)
5344                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5345
5346         if (vmx_xsaves_supported()) {
5347                 /* Exposing XSAVES only when XSAVE is exposed */
5348                 bool xsaves_enabled =
5349                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5350                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5351
5352                 if (!xsaves_enabled)
5353                         exec_control &= ~SECONDARY_EXEC_XSAVES;
5354
5355                 if (nested) {
5356                         if (xsaves_enabled)
5357                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5358                                         SECONDARY_EXEC_XSAVES;
5359                         else
5360                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5361                                         ~SECONDARY_EXEC_XSAVES;
5362                 }
5363         }
5364
5365         if (vmx_rdtscp_supported()) {
5366                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5367                 if (!rdtscp_enabled)
5368                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
5369
5370                 if (nested) {
5371                         if (rdtscp_enabled)
5372                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5373                                         SECONDARY_EXEC_RDTSCP;
5374                         else
5375                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5376                                         ~SECONDARY_EXEC_RDTSCP;
5377                 }
5378         }
5379
5380         if (vmx_invpcid_supported()) {
5381                 /* Exposing INVPCID only when PCID is exposed */
5382                 bool invpcid_enabled =
5383                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5384                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5385
5386                 if (!invpcid_enabled) {
5387                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5388                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5389                 }
5390
5391                 if (nested) {
5392                         if (invpcid_enabled)
5393                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5394                                         SECONDARY_EXEC_ENABLE_INVPCID;
5395                         else
5396                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5397                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
5398                 }
5399         }
5400
5401         if (vmx_rdrand_supported()) {
5402                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5403                 if (rdrand_enabled)
5404                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
5405
5406                 if (nested) {
5407                         if (rdrand_enabled)
5408                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5409                                         SECONDARY_EXEC_RDRAND_EXITING;
5410                         else
5411                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5412                                         ~SECONDARY_EXEC_RDRAND_EXITING;
5413                 }
5414         }
5415
5416         if (vmx_rdseed_supported()) {
5417                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5418                 if (rdseed_enabled)
5419                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
5420
5421                 if (nested) {
5422                         if (rdseed_enabled)
5423                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5424                                         SECONDARY_EXEC_RDSEED_EXITING;
5425                         else
5426                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5427                                         ~SECONDARY_EXEC_RDSEED_EXITING;
5428                 }
5429         }
5430
5431         vmx->secondary_exec_control = exec_control;
5432 }
5433
5434 static void ept_set_mmio_spte_mask(void)
5435 {
5436         /*
5437          * EPT Misconfigurations can be generated if the value of bits 2:0
5438          * of an EPT paging-structure entry is 110b (write/execute).
5439          */
5440         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5441                                    VMX_EPT_MISCONFIG_WX_VALUE);
5442 }
5443
5444 #define VMX_XSS_EXIT_BITMAP 0
5445 /*
5446  * Sets up the vmcs for emulated real mode.
5447  */
5448 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
5449 {
5450 #ifdef CONFIG_X86_64
5451         unsigned long a;
5452 #endif
5453         int i;
5454
5455         /* I/O */
5456         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5457         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5458
5459         if (enable_shadow_vmcs) {
5460                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5461                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5462         }
5463         if (cpu_has_vmx_msr_bitmap())
5464                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5465
5466         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5467
5468         /* Control */
5469         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5470         vmx->hv_deadline_tsc = -1;
5471
5472         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5473
5474         if (cpu_has_secondary_exec_ctrls()) {
5475                 vmx_compute_secondary_exec_control(vmx);
5476                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5477                              vmx->secondary_exec_control);
5478         }
5479
5480         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5481                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5482                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5483                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5484                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5485
5486                 vmcs_write16(GUEST_INTR_STATUS, 0);
5487
5488                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5489                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5490         }
5491
5492         if (ple_gap) {
5493                 vmcs_write32(PLE_GAP, ple_gap);
5494                 vmx->ple_window = ple_window;
5495                 vmx->ple_window_dirty = true;
5496         }
5497
5498         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5499         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5500         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
5501
5502         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5503         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5504         vmx_set_constant_host_state(vmx);
5505 #ifdef CONFIG_X86_64
5506         rdmsrl(MSR_FS_BASE, a);
5507         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5508         rdmsrl(MSR_GS_BASE, a);
5509         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5510 #else
5511         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5512         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5513 #endif
5514
5515         if (cpu_has_vmx_vmfunc())
5516                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5517
5518         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5519         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5520         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5521         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5522         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5523
5524         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5525                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5526
5527         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5528                 u32 index = vmx_msr_index[i];
5529                 u32 data_low, data_high;
5530                 int j = vmx->nmsrs;
5531
5532                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5533                         continue;
5534                 if (wrmsr_safe(index, data_low, data_high) < 0)
5535                         continue;
5536                 vmx->guest_msrs[j].index = i;
5537                 vmx->guest_msrs[j].data = 0;
5538                 vmx->guest_msrs[j].mask = -1ull;
5539                 ++vmx->nmsrs;
5540         }
5541
5542
5543         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5544
5545         /* 22.2.1, 20.8.1 */
5546         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5547
5548         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5549         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5550
5551         set_cr4_guest_host_mask(vmx);
5552
5553         if (vmx_xsaves_supported())
5554                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5555
5556         if (enable_pml) {
5557                 ASSERT(vmx->pml_pg);
5558                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5559                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5560         }
5561 }
5562
5563 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5564 {
5565         struct vcpu_vmx *vmx = to_vmx(vcpu);
5566         struct msr_data apic_base_msr;
5567         u64 cr0;
5568
5569         vmx->rmode.vm86_active = 0;
5570
5571         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5572         kvm_set_cr8(vcpu, 0);
5573
5574         if (!init_event) {
5575                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5576                                      MSR_IA32_APICBASE_ENABLE;
5577                 if (kvm_vcpu_is_reset_bsp(vcpu))
5578                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5579                 apic_base_msr.host_initiated = true;
5580                 kvm_set_apic_base(vcpu, &apic_base_msr);
5581         }
5582
5583         vmx_segment_cache_clear(vmx);
5584
5585         seg_setup(VCPU_SREG_CS);
5586         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5587         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5588
5589         seg_setup(VCPU_SREG_DS);
5590         seg_setup(VCPU_SREG_ES);
5591         seg_setup(VCPU_SREG_FS);
5592         seg_setup(VCPU_SREG_GS);
5593         seg_setup(VCPU_SREG_SS);
5594
5595         vmcs_write16(GUEST_TR_SELECTOR, 0);
5596         vmcs_writel(GUEST_TR_BASE, 0);
5597         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5598         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5599
5600         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5601         vmcs_writel(GUEST_LDTR_BASE, 0);
5602         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5603         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5604
5605         if (!init_event) {
5606                 vmcs_write32(GUEST_SYSENTER_CS, 0);
5607                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5608                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5609                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5610         }
5611
5612         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
5613         kvm_rip_write(vcpu, 0xfff0);
5614
5615         vmcs_writel(GUEST_GDTR_BASE, 0);
5616         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5617
5618         vmcs_writel(GUEST_IDTR_BASE, 0);
5619         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5620
5621         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5622         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5623         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5624         if (kvm_mpx_supported())
5625                 vmcs_write64(GUEST_BNDCFGS, 0);
5626
5627         setup_msrs(vmx);
5628
5629         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5630
5631         if (cpu_has_vmx_tpr_shadow() && !init_event) {
5632                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5633                 if (cpu_need_tpr_shadow(vcpu))
5634                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5635                                      __pa(vcpu->arch.apic->regs));
5636                 vmcs_write32(TPR_THRESHOLD, 0);
5637         }
5638
5639         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5640
5641         if (vmx->vpid != 0)
5642                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5643
5644         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5645         vmx->vcpu.arch.cr0 = cr0;
5646         vmx_set_cr0(vcpu, cr0); /* enter rmode */
5647         vmx_set_cr4(vcpu, 0);
5648         vmx_set_efer(vcpu, 0);
5649
5650         update_exception_bitmap(vcpu);
5651
5652         vpid_sync_context(vmx->vpid);
5653 }
5654
5655 /*
5656  * In nested virtualization, check if L1 asked to exit on external interrupts.
5657  * For most existing hypervisors, this will always return true.
5658  */
5659 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5660 {
5661         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5662                 PIN_BASED_EXT_INTR_MASK;
5663 }
5664
5665 /*
5666  * In nested virtualization, check if L1 has set
5667  * VM_EXIT_ACK_INTR_ON_EXIT
5668  */
5669 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5670 {
5671         return get_vmcs12(vcpu)->vm_exit_controls &
5672                 VM_EXIT_ACK_INTR_ON_EXIT;
5673 }
5674
5675 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5676 {
5677         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5678                 PIN_BASED_NMI_EXITING;
5679 }
5680
5681 static void enable_irq_window(struct kvm_vcpu *vcpu)
5682 {
5683         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5684                       CPU_BASED_VIRTUAL_INTR_PENDING);
5685 }
5686
5687 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5688 {
5689         if (!enable_vnmi ||
5690             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5691                 enable_irq_window(vcpu);
5692                 return;
5693         }
5694
5695         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5696                       CPU_BASED_VIRTUAL_NMI_PENDING);
5697 }
5698
5699 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5700 {
5701         struct vcpu_vmx *vmx = to_vmx(vcpu);
5702         uint32_t intr;
5703         int irq = vcpu->arch.interrupt.nr;
5704
5705         trace_kvm_inj_virq(irq);
5706
5707         ++vcpu->stat.irq_injections;
5708         if (vmx->rmode.vm86_active) {
5709                 int inc_eip = 0;
5710                 if (vcpu->arch.interrupt.soft)
5711                         inc_eip = vcpu->arch.event_exit_inst_len;
5712                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5713                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5714                 return;
5715         }
5716         intr = irq | INTR_INFO_VALID_MASK;
5717         if (vcpu->arch.interrupt.soft) {
5718                 intr |= INTR_TYPE_SOFT_INTR;
5719                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5720                              vmx->vcpu.arch.event_exit_inst_len);
5721         } else
5722                 intr |= INTR_TYPE_EXT_INTR;
5723         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5724 }
5725
5726 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5727 {
5728         struct vcpu_vmx *vmx = to_vmx(vcpu);
5729
5730         if (!enable_vnmi) {
5731                 /*
5732                  * Tracking the NMI-blocked state in software is built upon
5733                  * finding the next open IRQ window. This, in turn, depends on
5734                  * well-behaving guests: They have to keep IRQs disabled at
5735                  * least as long as the NMI handler runs. Otherwise we may
5736                  * cause NMI nesting, maybe breaking the guest. But as this is
5737                  * highly unlikely, we can live with the residual risk.
5738                  */
5739                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
5740                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5741         }
5742
5743         ++vcpu->stat.nmi_injections;
5744         vmx->loaded_vmcs->nmi_known_unmasked = false;
5745
5746         if (vmx->rmode.vm86_active) {
5747                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5748                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5749                 return;
5750         }
5751
5752         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5753                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5754 }
5755
5756 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5757 {
5758         struct vcpu_vmx *vmx = to_vmx(vcpu);
5759         bool masked;
5760
5761         if (!enable_vnmi)
5762                 return vmx->loaded_vmcs->soft_vnmi_blocked;
5763         if (vmx->loaded_vmcs->nmi_known_unmasked)
5764                 return false;
5765         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5766         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5767         return masked;
5768 }
5769
5770 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5771 {
5772         struct vcpu_vmx *vmx = to_vmx(vcpu);
5773
5774         if (!enable_vnmi) {
5775                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5776                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5777                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
5778                 }
5779         } else {
5780                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5781                 if (masked)
5782                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5783                                       GUEST_INTR_STATE_NMI);
5784                 else
5785                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5786                                         GUEST_INTR_STATE_NMI);
5787         }
5788 }
5789
5790 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5791 {
5792         if (to_vmx(vcpu)->nested.nested_run_pending)
5793                 return 0;
5794
5795         if (!enable_vnmi &&
5796             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5797                 return 0;
5798
5799         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5800                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5801                    | GUEST_INTR_STATE_NMI));
5802 }
5803
5804 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5805 {
5806         return (!to_vmx(vcpu)->nested.nested_run_pending &&
5807                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5808                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5809                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5810 }
5811
5812 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5813 {
5814         int ret;
5815
5816         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5817                                     PAGE_SIZE * 3);
5818         if (ret)
5819                 return ret;
5820         kvm->arch.tss_addr = addr;
5821         return init_rmode_tss(kvm);
5822 }
5823
5824 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5825 {
5826         switch (vec) {
5827         case BP_VECTOR:
5828                 /*
5829                  * Update instruction length as we may reinject the exception
5830                  * from user space while in guest debugging mode.
5831                  */
5832                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5833                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5834                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5835                         return false;
5836                 /* fall through */
5837         case DB_VECTOR:
5838                 if (vcpu->guest_debug &
5839                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5840                         return false;
5841                 /* fall through */
5842         case DE_VECTOR:
5843         case OF_VECTOR:
5844         case BR_VECTOR:
5845         case UD_VECTOR:
5846         case DF_VECTOR:
5847         case SS_VECTOR:
5848         case GP_VECTOR:
5849         case MF_VECTOR:
5850                 return true;
5851         break;
5852         }
5853         return false;
5854 }
5855
5856 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5857                                   int vec, u32 err_code)
5858 {
5859         /*
5860          * Instruction with address size override prefix opcode 0x67
5861          * Cause the #SS fault with 0 error code in VM86 mode.
5862          */
5863         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5864                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5865                         if (vcpu->arch.halt_request) {
5866                                 vcpu->arch.halt_request = 0;
5867                                 return kvm_vcpu_halt(vcpu);
5868                         }
5869                         return 1;
5870                 }
5871                 return 0;
5872         }
5873
5874         /*
5875          * Forward all other exceptions that are valid in real mode.
5876          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5877          *        the required debugging infrastructure rework.
5878          */
5879         kvm_queue_exception(vcpu, vec);
5880         return 1;
5881 }
5882
5883 /*
5884  * Trigger machine check on the host. We assume all the MSRs are already set up
5885  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5886  * We pass a fake environment to the machine check handler because we want
5887  * the guest to be always treated like user space, no matter what context
5888  * it used internally.
5889  */
5890 static void kvm_machine_check(void)
5891 {
5892 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5893         struct pt_regs regs = {
5894                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5895                 .flags = X86_EFLAGS_IF,
5896         };
5897
5898         do_machine_check(&regs, 0);
5899 #endif
5900 }
5901
5902 static int handle_machine_check(struct kvm_vcpu *vcpu)
5903 {
5904         /* already handled by vcpu_run */
5905         return 1;
5906 }
5907
5908 static int handle_exception(struct kvm_vcpu *vcpu)
5909 {
5910         struct vcpu_vmx *vmx = to_vmx(vcpu);
5911         struct kvm_run *kvm_run = vcpu->run;
5912         u32 intr_info, ex_no, error_code;
5913         unsigned long cr2, rip, dr6;
5914         u32 vect_info;
5915         enum emulation_result er;
5916
5917         vect_info = vmx->idt_vectoring_info;
5918         intr_info = vmx->exit_intr_info;
5919
5920         if (is_machine_check(intr_info))
5921                 return handle_machine_check(vcpu);
5922
5923         if (is_nmi(intr_info))
5924                 return 1;  /* already handled by vmx_vcpu_run() */
5925
5926         if (is_invalid_opcode(intr_info)) {
5927                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5928                 if (er == EMULATE_USER_EXIT)
5929                         return 0;
5930                 if (er != EMULATE_DONE)
5931                         kvm_queue_exception(vcpu, UD_VECTOR);
5932                 return 1;
5933         }
5934
5935         error_code = 0;
5936         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5937                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5938
5939         /*
5940          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5941          * MMIO, it is better to report an internal error.
5942          * See the comments in vmx_handle_exit.
5943          */
5944         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5945             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5946                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5947                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5948                 vcpu->run->internal.ndata = 3;
5949                 vcpu->run->internal.data[0] = vect_info;
5950                 vcpu->run->internal.data[1] = intr_info;
5951                 vcpu->run->internal.data[2] = error_code;
5952                 return 0;
5953         }
5954
5955         if (is_page_fault(intr_info)) {
5956                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5957                 /* EPT won't cause page fault directly */
5958                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5959                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5960         }
5961
5962         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5963
5964         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5965                 return handle_rmode_exception(vcpu, ex_no, error_code);
5966
5967         switch (ex_no) {
5968         case AC_VECTOR:
5969                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5970                 return 1;
5971         case DB_VECTOR:
5972                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5973                 if (!(vcpu->guest_debug &
5974                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5975                         vcpu->arch.dr6 &= ~15;
5976                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5977                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5978                                 skip_emulated_instruction(vcpu);
5979
5980                         kvm_queue_exception(vcpu, DB_VECTOR);
5981                         return 1;
5982                 }
5983                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5984                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5985                 /* fall through */
5986         case BP_VECTOR:
5987                 /*
5988                  * Update instruction length as we may reinject #BP from
5989                  * user space while in guest debugging mode. Reading it for
5990                  * #DB as well causes no harm, it is not used in that case.
5991                  */
5992                 vmx->vcpu.arch.event_exit_inst_len =
5993                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5994                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5995                 rip = kvm_rip_read(vcpu);
5996                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5997                 kvm_run->debug.arch.exception = ex_no;
5998                 break;
5999         default:
6000                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
6001                 kvm_run->ex.exception = ex_no;
6002                 kvm_run->ex.error_code = error_code;
6003                 break;
6004         }
6005         return 0;
6006 }
6007
6008 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6009 {
6010         ++vcpu->stat.irq_exits;
6011         return 1;
6012 }
6013
6014 static int handle_triple_fault(struct kvm_vcpu *vcpu)
6015 {
6016         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6017         vcpu->mmio_needed = 0;
6018         return 0;
6019 }
6020
6021 static int handle_io(struct kvm_vcpu *vcpu)
6022 {
6023         unsigned long exit_qualification;
6024         int size, in, string, ret;
6025         unsigned port;
6026
6027         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6028         string = (exit_qualification & 16) != 0;
6029         in = (exit_qualification & 8) != 0;
6030
6031         ++vcpu->stat.io_exits;
6032
6033         if (string || in)
6034                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6035
6036         port = exit_qualification >> 16;
6037         size = (exit_qualification & 7) + 1;
6038
6039         ret = kvm_skip_emulated_instruction(vcpu);
6040
6041         /*
6042          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6043          * KVM_EXIT_DEBUG here.
6044          */
6045         return kvm_fast_pio_out(vcpu, size, port) && ret;
6046 }
6047
6048 static void
6049 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6050 {
6051         /*
6052          * Patch in the VMCALL instruction:
6053          */
6054         hypercall[0] = 0x0f;
6055         hypercall[1] = 0x01;
6056         hypercall[2] = 0xc1;
6057 }
6058
6059 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
6060 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6061 {
6062         if (is_guest_mode(vcpu)) {
6063                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6064                 unsigned long orig_val = val;
6065
6066                 /*
6067                  * We get here when L2 changed cr0 in a way that did not change
6068                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
6069                  * but did change L0 shadowed bits. So we first calculate the
6070                  * effective cr0 value that L1 would like to write into the
6071                  * hardware. It consists of the L2-owned bits from the new
6072                  * value combined with the L1-owned bits from L1's guest_cr0.
6073                  */
6074                 val = (val & ~vmcs12->cr0_guest_host_mask) |
6075                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6076
6077                 if (!nested_guest_cr0_valid(vcpu, val))
6078                         return 1;
6079
6080                 if (kvm_set_cr0(vcpu, val))
6081                         return 1;
6082                 vmcs_writel(CR0_READ_SHADOW, orig_val);
6083                 return 0;
6084         } else {
6085                 if (to_vmx(vcpu)->nested.vmxon &&
6086                     !nested_host_cr0_valid(vcpu, val))
6087                         return 1;
6088
6089                 return kvm_set_cr0(vcpu, val);
6090         }
6091 }
6092
6093 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6094 {
6095         if (is_guest_mode(vcpu)) {
6096                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6097                 unsigned long orig_val = val;
6098
6099                 /* analogously to handle_set_cr0 */
6100                 val = (val & ~vmcs12->cr4_guest_host_mask) |
6101                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6102                 if (kvm_set_cr4(vcpu, val))
6103                         return 1;
6104                 vmcs_writel(CR4_READ_SHADOW, orig_val);
6105                 return 0;
6106         } else
6107                 return kvm_set_cr4(vcpu, val);
6108 }
6109
6110 static int handle_cr(struct kvm_vcpu *vcpu)
6111 {
6112         unsigned long exit_qualification, val;
6113         int cr;
6114         int reg;
6115         int err;
6116         int ret;
6117
6118         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6119         cr = exit_qualification & 15;
6120         reg = (exit_qualification >> 8) & 15;
6121         switch ((exit_qualification >> 4) & 3) {
6122         case 0: /* mov to cr */
6123                 val = kvm_register_readl(vcpu, reg);
6124                 trace_kvm_cr_write(cr, val);
6125                 switch (cr) {
6126                 case 0:
6127                         err = handle_set_cr0(vcpu, val);
6128                         return kvm_complete_insn_gp(vcpu, err);
6129                 case 3:
6130                         err = kvm_set_cr3(vcpu, val);
6131                         return kvm_complete_insn_gp(vcpu, err);
6132                 case 4:
6133                         err = handle_set_cr4(vcpu, val);
6134                         return kvm_complete_insn_gp(vcpu, err);
6135                 case 8: {
6136                                 u8 cr8_prev = kvm_get_cr8(vcpu);
6137                                 u8 cr8 = (u8)val;
6138                                 err = kvm_set_cr8(vcpu, cr8);
6139                                 ret = kvm_complete_insn_gp(vcpu, err);
6140                                 if (lapic_in_kernel(vcpu))
6141                                         return ret;
6142                                 if (cr8_prev <= cr8)
6143                                         return ret;
6144                                 /*
6145                                  * TODO: we might be squashing a
6146                                  * KVM_GUESTDBG_SINGLESTEP-triggered
6147                                  * KVM_EXIT_DEBUG here.
6148                                  */
6149                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
6150                                 return 0;
6151                         }
6152                 }
6153                 break;
6154         case 2: /* clts */
6155                 WARN_ONCE(1, "Guest should always own CR0.TS");
6156                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
6157                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6158                 return kvm_skip_emulated_instruction(vcpu);
6159         case 1: /*mov from cr*/
6160                 switch (cr) {
6161                 case 3:
6162                         val = kvm_read_cr3(vcpu);
6163                         kvm_register_write(vcpu, reg, val);
6164                         trace_kvm_cr_read(cr, val);
6165                         return kvm_skip_emulated_instruction(vcpu);
6166                 case 8:
6167                         val = kvm_get_cr8(vcpu);
6168                         kvm_register_write(vcpu, reg, val);
6169                         trace_kvm_cr_read(cr, val);
6170                         return kvm_skip_emulated_instruction(vcpu);
6171                 }
6172                 break;
6173         case 3: /* lmsw */
6174                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6175                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
6176                 kvm_lmsw(vcpu, val);
6177
6178                 return kvm_skip_emulated_instruction(vcpu);
6179         default:
6180                 break;
6181         }
6182         vcpu->run->exit_reason = 0;
6183         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6184                (int)(exit_qualification >> 4) & 3, cr);
6185         return 0;
6186 }
6187
6188 static int handle_dr(struct kvm_vcpu *vcpu)
6189 {
6190         unsigned long exit_qualification;
6191         int dr, dr7, reg;
6192
6193         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6194         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6195
6196         /* First, if DR does not exist, trigger UD */
6197         if (!kvm_require_dr(vcpu, dr))
6198                 return 1;
6199
6200         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
6201         if (!kvm_require_cpl(vcpu, 0))
6202                 return 1;
6203         dr7 = vmcs_readl(GUEST_DR7);
6204         if (dr7 & DR7_GD) {
6205                 /*
6206                  * As the vm-exit takes precedence over the debug trap, we
6207                  * need to emulate the latter, either for the host or the
6208                  * guest debugging itself.
6209                  */
6210                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6211                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
6212                         vcpu->run->debug.arch.dr7 = dr7;
6213                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6214                         vcpu->run->debug.arch.exception = DB_VECTOR;
6215                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
6216                         return 0;
6217                 } else {
6218                         vcpu->arch.dr6 &= ~15;
6219                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
6220                         kvm_queue_exception(vcpu, DB_VECTOR);
6221                         return 1;
6222                 }
6223         }
6224
6225         if (vcpu->guest_debug == 0) {
6226                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6227                                 CPU_BASED_MOV_DR_EXITING);
6228
6229                 /*
6230                  * No more DR vmexits; force a reload of the debug registers
6231                  * and reenter on this instruction.  The next vmexit will
6232                  * retrieve the full state of the debug registers.
6233                  */
6234                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6235                 return 1;
6236         }
6237
6238         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6239         if (exit_qualification & TYPE_MOV_FROM_DR) {
6240                 unsigned long val;
6241
6242                 if (kvm_get_dr(vcpu, dr, &val))
6243                         return 1;
6244                 kvm_register_write(vcpu, reg, val);
6245         } else
6246                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6247                         return 1;
6248
6249         return kvm_skip_emulated_instruction(vcpu);
6250 }
6251
6252 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6253 {
6254         return vcpu->arch.dr6;
6255 }
6256
6257 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6258 {
6259 }
6260
6261 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6262 {
6263         get_debugreg(vcpu->arch.db[0], 0);
6264         get_debugreg(vcpu->arch.db[1], 1);
6265         get_debugreg(vcpu->arch.db[2], 2);
6266         get_debugreg(vcpu->arch.db[3], 3);
6267         get_debugreg(vcpu->arch.dr6, 6);
6268         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6269
6270         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6271         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6272 }
6273
6274 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6275 {
6276         vmcs_writel(GUEST_DR7, val);
6277 }
6278
6279 static int handle_cpuid(struct kvm_vcpu *vcpu)
6280 {
6281         return kvm_emulate_cpuid(vcpu);
6282 }
6283
6284 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6285 {
6286         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6287         struct msr_data msr_info;
6288
6289         msr_info.index = ecx;
6290         msr_info.host_initiated = false;
6291         if (vmx_get_msr(vcpu, &msr_info)) {
6292                 trace_kvm_msr_read_ex(ecx);
6293                 kvm_inject_gp(vcpu, 0);
6294                 return 1;
6295         }
6296
6297         trace_kvm_msr_read(ecx, msr_info.data);
6298
6299         /* FIXME: handling of bits 32:63 of rax, rdx */
6300         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6301         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6302         return kvm_skip_emulated_instruction(vcpu);
6303 }
6304
6305 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6306 {
6307         struct msr_data msr;
6308         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6309         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6310                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6311
6312         msr.data = data;
6313         msr.index = ecx;
6314         msr.host_initiated = false;
6315         if (kvm_set_msr(vcpu, &msr) != 0) {
6316                 trace_kvm_msr_write_ex(ecx, data);
6317                 kvm_inject_gp(vcpu, 0);
6318                 return 1;
6319         }
6320
6321         trace_kvm_msr_write(ecx, data);
6322         return kvm_skip_emulated_instruction(vcpu);
6323 }
6324
6325 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6326 {
6327         kvm_apic_update_ppr(vcpu);
6328         return 1;
6329 }
6330
6331 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6332 {
6333         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6334                         CPU_BASED_VIRTUAL_INTR_PENDING);
6335
6336         kvm_make_request(KVM_REQ_EVENT, vcpu);
6337
6338         ++vcpu->stat.irq_window_exits;
6339         return 1;
6340 }
6341
6342 static int handle_halt(struct kvm_vcpu *vcpu)
6343 {
6344         return kvm_emulate_halt(vcpu);
6345 }
6346
6347 static int handle_vmcall(struct kvm_vcpu *vcpu)
6348 {
6349         return kvm_emulate_hypercall(vcpu);
6350 }
6351
6352 static int handle_invd(struct kvm_vcpu *vcpu)
6353 {
6354         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6355 }
6356
6357 static int handle_invlpg(struct kvm_vcpu *vcpu)
6358 {
6359         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6360
6361         kvm_mmu_invlpg(vcpu, exit_qualification);
6362         return kvm_skip_emulated_instruction(vcpu);
6363 }
6364
6365 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6366 {
6367         int err;
6368
6369         err = kvm_rdpmc(vcpu);
6370         return kvm_complete_insn_gp(vcpu, err);
6371 }
6372
6373 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6374 {
6375         return kvm_emulate_wbinvd(vcpu);
6376 }
6377
6378 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6379 {
6380         u64 new_bv = kvm_read_edx_eax(vcpu);
6381         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6382
6383         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6384                 return kvm_skip_emulated_instruction(vcpu);
6385         return 1;
6386 }
6387
6388 static int handle_xsaves(struct kvm_vcpu *vcpu)
6389 {
6390         kvm_skip_emulated_instruction(vcpu);
6391         WARN(1, "this should never happen\n");
6392         return 1;
6393 }
6394
6395 static int handle_xrstors(struct kvm_vcpu *vcpu)
6396 {
6397         kvm_skip_emulated_instruction(vcpu);
6398         WARN(1, "this should never happen\n");
6399         return 1;
6400 }
6401
6402 static int handle_apic_access(struct kvm_vcpu *vcpu)
6403 {
6404         if (likely(fasteoi)) {
6405                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6406                 int access_type, offset;
6407
6408                 access_type = exit_qualification & APIC_ACCESS_TYPE;
6409                 offset = exit_qualification & APIC_ACCESS_OFFSET;
6410                 /*
6411                  * Sane guest uses MOV to write EOI, with written value
6412                  * not cared. So make a short-circuit here by avoiding
6413                  * heavy instruction emulation.
6414                  */
6415                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6416                     (offset == APIC_EOI)) {
6417                         kvm_lapic_set_eoi(vcpu);
6418                         return kvm_skip_emulated_instruction(vcpu);
6419                 }
6420         }
6421         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6422 }
6423
6424 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6425 {
6426         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6427         int vector = exit_qualification & 0xff;
6428
6429         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6430         kvm_apic_set_eoi_accelerated(vcpu, vector);
6431         return 1;
6432 }
6433
6434 static int handle_apic_write(struct kvm_vcpu *vcpu)
6435 {
6436         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6437         u32 offset = exit_qualification & 0xfff;
6438
6439         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6440         kvm_apic_write_nodecode(vcpu, offset);
6441         return 1;
6442 }
6443
6444 static int handle_task_switch(struct kvm_vcpu *vcpu)
6445 {
6446         struct vcpu_vmx *vmx = to_vmx(vcpu);
6447         unsigned long exit_qualification;
6448         bool has_error_code = false;
6449         u32 error_code = 0;
6450         u16 tss_selector;
6451         int reason, type, idt_v, idt_index;
6452
6453         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6454         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6455         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6456
6457         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6458
6459         reason = (u32)exit_qualification >> 30;
6460         if (reason == TASK_SWITCH_GATE && idt_v) {
6461                 switch (type) {
6462                 case INTR_TYPE_NMI_INTR:
6463                         vcpu->arch.nmi_injected = false;
6464                         vmx_set_nmi_mask(vcpu, true);
6465                         break;
6466                 case INTR_TYPE_EXT_INTR:
6467                 case INTR_TYPE_SOFT_INTR:
6468                         kvm_clear_interrupt_queue(vcpu);
6469                         break;
6470                 case INTR_TYPE_HARD_EXCEPTION:
6471                         if (vmx->idt_vectoring_info &
6472                             VECTORING_INFO_DELIVER_CODE_MASK) {
6473                                 has_error_code = true;
6474                                 error_code =
6475                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
6476                         }
6477                         /* fall through */
6478                 case INTR_TYPE_SOFT_EXCEPTION:
6479                         kvm_clear_exception_queue(vcpu);
6480                         break;
6481                 default:
6482                         break;
6483                 }
6484         }
6485         tss_selector = exit_qualification;
6486
6487         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6488                        type != INTR_TYPE_EXT_INTR &&
6489                        type != INTR_TYPE_NMI_INTR))
6490                 skip_emulated_instruction(vcpu);
6491
6492         if (kvm_task_switch(vcpu, tss_selector,
6493                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6494                             has_error_code, error_code) == EMULATE_FAIL) {
6495                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6496                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6497                 vcpu->run->internal.ndata = 0;
6498                 return 0;
6499         }
6500
6501         /*
6502          * TODO: What about debug traps on tss switch?
6503          *       Are we supposed to inject them and update dr6?
6504          */
6505
6506         return 1;
6507 }
6508
6509 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6510 {
6511         unsigned long exit_qualification;
6512         gpa_t gpa;
6513         u64 error_code;
6514
6515         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6516
6517         /*
6518          * EPT violation happened while executing iret from NMI,
6519          * "blocked by NMI" bit has to be set before next VM entry.
6520          * There are errata that may cause this bit to not be set:
6521          * AAK134, BY25.
6522          */
6523         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6524                         enable_vnmi &&
6525                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6526                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6527
6528         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6529         trace_kvm_page_fault(gpa, exit_qualification);
6530
6531         /* Is it a read fault? */
6532         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6533                      ? PFERR_USER_MASK : 0;
6534         /* Is it a write fault? */
6535         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6536                       ? PFERR_WRITE_MASK : 0;
6537         /* Is it a fetch fault? */
6538         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6539                       ? PFERR_FETCH_MASK : 0;
6540         /* ept page table entry is present? */
6541         error_code |= (exit_qualification &
6542                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6543                         EPT_VIOLATION_EXECUTABLE))
6544                       ? PFERR_PRESENT_MASK : 0;
6545
6546         error_code |= (exit_qualification & 0x100) != 0 ?
6547                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
6548
6549         vcpu->arch.exit_qualification = exit_qualification;
6550         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6551 }
6552
6553 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6554 {
6555         int ret;
6556         gpa_t gpa;
6557
6558         /*
6559          * A nested guest cannot optimize MMIO vmexits, because we have an
6560          * nGPA here instead of the required GPA.
6561          */
6562         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6563         if (!is_guest_mode(vcpu) &&
6564             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6565                 trace_kvm_fast_mmio(gpa);
6566                 return kvm_skip_emulated_instruction(vcpu);
6567         }
6568
6569         ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6570         if (ret >= 0)
6571                 return ret;
6572
6573         /* It is the real ept misconfig */
6574         WARN_ON(1);
6575
6576         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6577         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6578
6579         return 0;
6580 }
6581
6582 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6583 {
6584         WARN_ON_ONCE(!enable_vnmi);
6585         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6586                         CPU_BASED_VIRTUAL_NMI_PENDING);
6587         ++vcpu->stat.nmi_window_exits;
6588         kvm_make_request(KVM_REQ_EVENT, vcpu);
6589
6590         return 1;
6591 }
6592
6593 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6594 {
6595         struct vcpu_vmx *vmx = to_vmx(vcpu);
6596         enum emulation_result err = EMULATE_DONE;
6597         int ret = 1;
6598         u32 cpu_exec_ctrl;
6599         bool intr_window_requested;
6600         unsigned count = 130;
6601
6602         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6603         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6604
6605         while (vmx->emulation_required && count-- != 0) {
6606                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6607                         return handle_interrupt_window(&vmx->vcpu);
6608
6609                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6610                         return 1;
6611
6612                 err = emulate_instruction(vcpu, 0);
6613
6614                 if (err == EMULATE_USER_EXIT) {
6615                         ++vcpu->stat.mmio_exits;
6616                         ret = 0;
6617                         goto out;
6618                 }
6619
6620                 if (err != EMULATE_DONE) {
6621                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6622                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6623                         vcpu->run->internal.ndata = 0;
6624                         return 0;
6625                 }
6626
6627                 if (vcpu->arch.halt_request) {
6628                         vcpu->arch.halt_request = 0;
6629                         ret = kvm_vcpu_halt(vcpu);
6630                         goto out;
6631                 }
6632
6633                 if (signal_pending(current))
6634                         goto out;
6635                 if (need_resched())
6636                         schedule();
6637         }
6638
6639 out:
6640         return ret;
6641 }
6642
6643 static int __grow_ple_window(int val)
6644 {
6645         if (ple_window_grow < 1)
6646                 return ple_window;
6647
6648         val = min(val, ple_window_actual_max);
6649
6650         if (ple_window_grow < ple_window)
6651                 val *= ple_window_grow;
6652         else
6653                 val += ple_window_grow;
6654
6655         return val;
6656 }
6657
6658 static int __shrink_ple_window(int val, int modifier, int minimum)
6659 {
6660         if (modifier < 1)
6661                 return ple_window;
6662
6663         if (modifier < ple_window)
6664                 val /= modifier;
6665         else
6666                 val -= modifier;
6667
6668         return max(val, minimum);
6669 }
6670
6671 static void grow_ple_window(struct kvm_vcpu *vcpu)
6672 {
6673         struct vcpu_vmx *vmx = to_vmx(vcpu);
6674         int old = vmx->ple_window;
6675
6676         vmx->ple_window = __grow_ple_window(old);
6677
6678         if (vmx->ple_window != old)
6679                 vmx->ple_window_dirty = true;
6680
6681         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6682 }
6683
6684 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6685 {
6686         struct vcpu_vmx *vmx = to_vmx(vcpu);
6687         int old = vmx->ple_window;
6688
6689         vmx->ple_window = __shrink_ple_window(old,
6690                                               ple_window_shrink, ple_window);
6691
6692         if (vmx->ple_window != old)
6693                 vmx->ple_window_dirty = true;
6694
6695         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6696 }
6697
6698 /*
6699  * ple_window_actual_max is computed to be one grow_ple_window() below
6700  * ple_window_max. (See __grow_ple_window for the reason.)
6701  * This prevents overflows, because ple_window_max is int.
6702  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6703  * this process.
6704  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6705  */
6706 static void update_ple_window_actual_max(void)
6707 {
6708         ple_window_actual_max =
6709                         __shrink_ple_window(max(ple_window_max, ple_window),
6710                                             ple_window_grow, INT_MIN);
6711 }
6712
6713 /*
6714  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6715  */
6716 static void wakeup_handler(void)
6717 {
6718         struct kvm_vcpu *vcpu;
6719         int cpu = smp_processor_id();
6720
6721         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6722         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6723                         blocked_vcpu_list) {
6724                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6725
6726                 if (pi_test_on(pi_desc) == 1)
6727                         kvm_vcpu_kick(vcpu);
6728         }
6729         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6730 }
6731
6732 void vmx_enable_tdp(void)
6733 {
6734         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6735                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6736                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6737                 0ull, VMX_EPT_EXECUTABLE_MASK,
6738                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6739                 VMX_EPT_RWX_MASK, 0ull);
6740
6741         ept_set_mmio_spte_mask();
6742         kvm_enable_tdp();
6743 }
6744
6745 static __init int hardware_setup(void)
6746 {
6747         int r = -ENOMEM, i, msr;
6748
6749         rdmsrl_safe(MSR_EFER, &host_efer);
6750
6751         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6752                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6753
6754         for (i = 0; i < VMX_BITMAP_NR; i++) {
6755                 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6756                 if (!vmx_bitmap[i])
6757                         goto out;
6758         }
6759
6760         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6761         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6762
6763         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6764
6765         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6766
6767         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6768         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6769
6770         if (setup_vmcs_config(&vmcs_config) < 0) {
6771                 r = -EIO;
6772                 goto out;
6773         }
6774
6775         if (boot_cpu_has(X86_FEATURE_NX))
6776                 kvm_enable_efer_bits(EFER_NX);
6777
6778         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6779                 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6780                 enable_vpid = 0;
6781
6782         if (!cpu_has_vmx_shadow_vmcs())
6783                 enable_shadow_vmcs = 0;
6784         if (enable_shadow_vmcs)
6785                 init_vmcs_shadow_fields();
6786
6787         if (!cpu_has_vmx_ept() ||
6788             !cpu_has_vmx_ept_4levels() ||
6789             !cpu_has_vmx_ept_mt_wb() ||
6790             !cpu_has_vmx_invept_global())
6791                 enable_ept = 0;
6792
6793         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6794                 enable_ept_ad_bits = 0;
6795
6796         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
6797                 enable_unrestricted_guest = 0;
6798
6799         if (!cpu_has_vmx_flexpriority())
6800                 flexpriority_enabled = 0;
6801
6802         if (!cpu_has_virtual_nmis())
6803                 enable_vnmi = 0;
6804
6805         /*
6806          * set_apic_access_page_addr() is used to reload apic access
6807          * page upon invalidation.  No need to do anything if not
6808          * using the APIC_ACCESS_ADDR VMCS field.
6809          */
6810         if (!flexpriority_enabled)
6811                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6812
6813         if (!cpu_has_vmx_tpr_shadow())
6814                 kvm_x86_ops->update_cr8_intercept = NULL;
6815
6816         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6817                 kvm_disable_largepages();
6818
6819         if (!cpu_has_vmx_ple()) {
6820                 ple_gap = 0;
6821                 ple_window = 0;
6822                 ple_window_grow = 0;
6823                 ple_window_max = 0;
6824                 ple_window_shrink = 0;
6825         }
6826
6827         if (!cpu_has_vmx_apicv()) {
6828                 enable_apicv = 0;
6829                 kvm_x86_ops->sync_pir_to_irr = NULL;
6830         }
6831
6832         if (cpu_has_vmx_tsc_scaling()) {
6833                 kvm_has_tsc_control = true;
6834                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6835                 kvm_tsc_scaling_ratio_frac_bits = 48;
6836         }
6837
6838         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6839         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6840         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6841         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6842         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6843         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6844
6845         memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6846                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6847         memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6848                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6849         memcpy(vmx_msr_bitmap_legacy_x2apic,
6850                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6851         memcpy(vmx_msr_bitmap_longmode_x2apic,
6852                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6853
6854         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6855
6856         for (msr = 0x800; msr <= 0x8ff; msr++) {
6857                 if (msr == 0x839 /* TMCCT */)
6858                         continue;
6859                 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6860         }
6861
6862         /*
6863          * TPR reads and writes can be virtualized even if virtual interrupt
6864          * delivery is not in use.
6865          */
6866         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6867         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6868
6869         /* EOI */
6870         vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6871         /* SELF-IPI */
6872         vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6873
6874         if (enable_ept)
6875                 vmx_enable_tdp();
6876         else
6877                 kvm_disable_tdp();
6878
6879         update_ple_window_actual_max();
6880
6881         /*
6882          * Only enable PML when hardware supports PML feature, and both EPT
6883          * and EPT A/D bit features are enabled -- PML depends on them to work.
6884          */
6885         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6886                 enable_pml = 0;
6887
6888         if (!enable_pml) {
6889                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6890                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6891                 kvm_x86_ops->flush_log_dirty = NULL;
6892                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6893         }
6894
6895         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6896                 u64 vmx_msr;
6897
6898                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6899                 cpu_preemption_timer_multi =
6900                          vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6901         } else {
6902                 kvm_x86_ops->set_hv_timer = NULL;
6903                 kvm_x86_ops->cancel_hv_timer = NULL;
6904         }
6905
6906         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6907
6908         kvm_mce_cap_supported |= MCG_LMCE_P;
6909
6910         return alloc_kvm_area();
6911
6912 out:
6913         for (i = 0; i < VMX_BITMAP_NR; i++)
6914                 free_page((unsigned long)vmx_bitmap[i]);
6915
6916     return r;
6917 }
6918
6919 static __exit void hardware_unsetup(void)
6920 {
6921         int i;
6922
6923         for (i = 0; i < VMX_BITMAP_NR; i++)
6924                 free_page((unsigned long)vmx_bitmap[i]);
6925
6926         free_kvm_area();
6927 }
6928
6929 /*
6930  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6931  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6932  */
6933 static int handle_pause(struct kvm_vcpu *vcpu)
6934 {
6935         if (ple_gap)
6936                 grow_ple_window(vcpu);
6937
6938         /*
6939          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6940          * VM-execution control is ignored if CPL > 0. OTOH, KVM
6941          * never set PAUSE_EXITING and just set PLE if supported,
6942          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6943          */
6944         kvm_vcpu_on_spin(vcpu, true);
6945         return kvm_skip_emulated_instruction(vcpu);
6946 }
6947
6948 static int handle_nop(struct kvm_vcpu *vcpu)
6949 {
6950         return kvm_skip_emulated_instruction(vcpu);
6951 }
6952
6953 static int handle_mwait(struct kvm_vcpu *vcpu)
6954 {
6955         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6956         return handle_nop(vcpu);
6957 }
6958
6959 static int handle_invalid_op(struct kvm_vcpu *vcpu)
6960 {
6961         kvm_queue_exception(vcpu, UD_VECTOR);
6962         return 1;
6963 }
6964
6965 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6966 {
6967         return 1;
6968 }
6969
6970 static int handle_monitor(struct kvm_vcpu *vcpu)
6971 {
6972         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6973         return handle_nop(vcpu);
6974 }
6975
6976 /*
6977  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6978  * We could reuse a single VMCS for all the L2 guests, but we also want the
6979  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6980  * allows keeping them loaded on the processor, and in the future will allow
6981  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6982  * every entry if they never change.
6983  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6984  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6985  *
6986  * The following functions allocate and free a vmcs02 in this pool.
6987  */
6988
6989 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6990 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6991 {
6992         struct vmcs02_list *item;
6993         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6994                 if (item->vmptr == vmx->nested.current_vmptr) {
6995                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6996                         return &item->vmcs02;
6997                 }
6998
6999         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
7000                 /* Recycle the least recently used VMCS. */
7001                 item = list_last_entry(&vmx->nested.vmcs02_pool,
7002                                        struct vmcs02_list, list);
7003                 item->vmptr = vmx->nested.current_vmptr;
7004                 list_move(&item->list, &vmx->nested.vmcs02_pool);
7005                 return &item->vmcs02;
7006         }
7007
7008         /* Create a new VMCS */
7009         item = kzalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
7010         if (!item)
7011                 return NULL;
7012         item->vmcs02.vmcs = alloc_vmcs();
7013         item->vmcs02.shadow_vmcs = NULL;
7014         if (!item->vmcs02.vmcs) {
7015                 kfree(item);
7016                 return NULL;
7017         }
7018         loaded_vmcs_init(&item->vmcs02);
7019         item->vmptr = vmx->nested.current_vmptr;
7020         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
7021         vmx->nested.vmcs02_num++;
7022         return &item->vmcs02;
7023 }
7024
7025 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
7026 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
7027 {
7028         struct vmcs02_list *item;
7029         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
7030                 if (item->vmptr == vmptr) {
7031                         free_loaded_vmcs(&item->vmcs02);
7032                         list_del(&item->list);
7033                         kfree(item);
7034                         vmx->nested.vmcs02_num--;
7035                         return;
7036                 }
7037 }
7038
7039 /*
7040  * Free all VMCSs saved for this vcpu, except the one pointed by
7041  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
7042  * must be &vmx->vmcs01.
7043  */
7044 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
7045 {
7046         struct vmcs02_list *item, *n;
7047
7048         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
7049         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
7050                 /*
7051                  * Something will leak if the above WARN triggers.  Better than
7052                  * a use-after-free.
7053                  */
7054                 if (vmx->loaded_vmcs == &item->vmcs02)
7055                         continue;
7056
7057                 free_loaded_vmcs(&item->vmcs02);
7058                 list_del(&item->list);
7059                 kfree(item);
7060                 vmx->nested.vmcs02_num--;
7061         }
7062 }
7063
7064 /*
7065  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7066  * set the success or error code of an emulated VMX instruction, as specified
7067  * by Vol 2B, VMX Instruction Reference, "Conventions".
7068  */
7069 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7070 {
7071         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7072                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7073                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7074 }
7075
7076 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7077 {
7078         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7079                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7080                             X86_EFLAGS_SF | X86_EFLAGS_OF))
7081                         | X86_EFLAGS_CF);
7082 }
7083
7084 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
7085                                         u32 vm_instruction_error)
7086 {
7087         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7088                 /*
7089                  * failValid writes the error number to the current VMCS, which
7090                  * can't be done there isn't a current VMCS.
7091                  */
7092                 nested_vmx_failInvalid(vcpu);
7093                 return;
7094         }
7095         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7096                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7097                             X86_EFLAGS_SF | X86_EFLAGS_OF))
7098                         | X86_EFLAGS_ZF);
7099         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7100         /*
7101          * We don't need to force a shadow sync because
7102          * VM_INSTRUCTION_ERROR is not shadowed
7103          */
7104 }
7105
7106 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7107 {
7108         /* TODO: not to reset guest simply here. */
7109         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7110         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
7111 }
7112
7113 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7114 {
7115         struct vcpu_vmx *vmx =
7116                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7117
7118         vmx->nested.preemption_timer_expired = true;
7119         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7120         kvm_vcpu_kick(&vmx->vcpu);
7121
7122         return HRTIMER_NORESTART;
7123 }
7124
7125 /*
7126  * Decode the memory-address operand of a vmx instruction, as recorded on an
7127  * exit caused by such an instruction (run by a guest hypervisor).
7128  * On success, returns 0. When the operand is invalid, returns 1 and throws
7129  * #UD or #GP.
7130  */
7131 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7132                                  unsigned long exit_qualification,
7133                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
7134 {
7135         gva_t off;
7136         bool exn;
7137         struct kvm_segment s;
7138
7139         /*
7140          * According to Vol. 3B, "Information for VM Exits Due to Instruction
7141          * Execution", on an exit, vmx_instruction_info holds most of the
7142          * addressing components of the operand. Only the displacement part
7143          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7144          * For how an actual address is calculated from all these components,
7145          * refer to Vol. 1, "Operand Addressing".
7146          */
7147         int  scaling = vmx_instruction_info & 3;
7148         int  addr_size = (vmx_instruction_info >> 7) & 7;
7149         bool is_reg = vmx_instruction_info & (1u << 10);
7150         int  seg_reg = (vmx_instruction_info >> 15) & 7;
7151         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
7152         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7153         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
7154         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
7155
7156         if (is_reg) {
7157                 kvm_queue_exception(vcpu, UD_VECTOR);
7158                 return 1;
7159         }
7160
7161         /* Addr = segment_base + offset */
7162         /* offset = base + [index * scale] + displacement */
7163         off = exit_qualification; /* holds the displacement */
7164         if (base_is_valid)
7165                 off += kvm_register_read(vcpu, base_reg);
7166         if (index_is_valid)
7167                 off += kvm_register_read(vcpu, index_reg)<<scaling;
7168         vmx_get_segment(vcpu, &s, seg_reg);
7169         *ret = s.base + off;
7170
7171         if (addr_size == 1) /* 32 bit */
7172                 *ret &= 0xffffffff;
7173
7174         /* Checks for #GP/#SS exceptions. */
7175         exn = false;
7176         if (is_long_mode(vcpu)) {
7177                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7178                  * non-canonical form. This is the only check on the memory
7179                  * destination for long mode!
7180                  */
7181                 exn = is_noncanonical_address(*ret, vcpu);
7182         } else if (is_protmode(vcpu)) {
7183                 /* Protected mode: apply checks for segment validity in the
7184                  * following order:
7185                  * - segment type check (#GP(0) may be thrown)
7186                  * - usability check (#GP(0)/#SS(0))
7187                  * - limit check (#GP(0)/#SS(0))
7188                  */
7189                 if (wr)
7190                         /* #GP(0) if the destination operand is located in a
7191                          * read-only data segment or any code segment.
7192                          */
7193                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
7194                 else
7195                         /* #GP(0) if the source operand is located in an
7196                          * execute-only code segment
7197                          */
7198                         exn = ((s.type & 0xa) == 8);
7199                 if (exn) {
7200                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7201                         return 1;
7202                 }
7203                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7204                  */
7205                 exn = (s.unusable != 0);
7206                 /* Protected mode: #GP(0)/#SS(0) if the memory
7207                  * operand is outside the segment limit.
7208                  */
7209                 exn = exn || (off + sizeof(u64) > s.limit);
7210         }
7211         if (exn) {
7212                 kvm_queue_exception_e(vcpu,
7213                                       seg_reg == VCPU_SREG_SS ?
7214                                                 SS_VECTOR : GP_VECTOR,
7215                                       0);
7216                 return 1;
7217         }
7218
7219         return 0;
7220 }
7221
7222 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
7223 {
7224         gva_t gva;
7225         struct x86_exception e;
7226
7227         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7228                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
7229                 return 1;
7230
7231         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7232                                 sizeof(*vmpointer), &e)) {
7233                 kvm_inject_page_fault(vcpu, &e);
7234                 return 1;
7235         }
7236
7237         return 0;
7238 }
7239
7240 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7241 {
7242         struct vcpu_vmx *vmx = to_vmx(vcpu);
7243         struct vmcs *shadow_vmcs;
7244
7245         if (cpu_has_vmx_msr_bitmap()) {
7246                 vmx->nested.msr_bitmap =
7247                                 (unsigned long *)__get_free_page(GFP_KERNEL);
7248                 if (!vmx->nested.msr_bitmap)
7249                         goto out_msr_bitmap;
7250         }
7251
7252         vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7253         if (!vmx->nested.cached_vmcs12)
7254                 goto out_cached_vmcs12;
7255
7256         if (enable_shadow_vmcs) {
7257                 shadow_vmcs = alloc_vmcs();
7258                 if (!shadow_vmcs)
7259                         goto out_shadow_vmcs;
7260                 /* mark vmcs as shadow */
7261                 shadow_vmcs->revision_id |= (1u << 31);
7262                 /* init shadow vmcs */
7263                 vmcs_clear(shadow_vmcs);
7264                 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7265         }
7266
7267         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7268         vmx->nested.vmcs02_num = 0;
7269
7270         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7271                      HRTIMER_MODE_REL_PINNED);
7272         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7273
7274         vmx->nested.vmxon = true;
7275         return 0;
7276
7277 out_shadow_vmcs:
7278         kfree(vmx->nested.cached_vmcs12);
7279
7280 out_cached_vmcs12:
7281         free_page((unsigned long)vmx->nested.msr_bitmap);
7282
7283 out_msr_bitmap:
7284         return -ENOMEM;
7285 }
7286
7287 /*
7288  * Emulate the VMXON instruction.
7289  * Currently, we just remember that VMX is active, and do not save or even
7290  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7291  * do not currently need to store anything in that guest-allocated memory
7292  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7293  * argument is different from the VMXON pointer (which the spec says they do).
7294  */
7295 static int handle_vmon(struct kvm_vcpu *vcpu)
7296 {
7297         int ret;
7298         gpa_t vmptr;
7299         struct page *page;
7300         struct vcpu_vmx *vmx = to_vmx(vcpu);
7301         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7302                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7303
7304         /*
7305          * The Intel VMX Instruction Reference lists a bunch of bits that are
7306          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7307          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7308          * Otherwise, we should fail with #UD.  But most faulting conditions
7309          * have already been checked by hardware, prior to the VM-exit for
7310          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
7311          * that bit set to 1 in non-root mode.
7312          */
7313         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7314                 kvm_queue_exception(vcpu, UD_VECTOR);
7315                 return 1;
7316         }
7317
7318         if (vmx->nested.vmxon) {
7319                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7320                 return kvm_skip_emulated_instruction(vcpu);
7321         }
7322
7323         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7324                         != VMXON_NEEDED_FEATURES) {
7325                 kvm_inject_gp(vcpu, 0);
7326                 return 1;
7327         }
7328
7329         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7330                 return 1;
7331
7332         /*
7333          * SDM 3: 24.11.5
7334          * The first 4 bytes of VMXON region contain the supported
7335          * VMCS revision identifier
7336          *
7337          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7338          * which replaces physical address width with 32
7339          */
7340         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7341                 nested_vmx_failInvalid(vcpu);
7342                 return kvm_skip_emulated_instruction(vcpu);
7343         }
7344
7345         page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7346         if (is_error_page(page)) {
7347                 nested_vmx_failInvalid(vcpu);
7348                 return kvm_skip_emulated_instruction(vcpu);
7349         }
7350         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7351                 kunmap(page);
7352                 kvm_release_page_clean(page);
7353                 nested_vmx_failInvalid(vcpu);
7354                 return kvm_skip_emulated_instruction(vcpu);
7355         }
7356         kunmap(page);
7357         kvm_release_page_clean(page);
7358
7359         vmx->nested.vmxon_ptr = vmptr;
7360         ret = enter_vmx_operation(vcpu);
7361         if (ret)
7362                 return ret;
7363
7364         nested_vmx_succeed(vcpu);
7365         return kvm_skip_emulated_instruction(vcpu);
7366 }
7367
7368 /*
7369  * Intel's VMX Instruction Reference specifies a common set of prerequisites
7370  * for running VMX instructions (except VMXON, whose prerequisites are
7371  * slightly different). It also specifies what exception to inject otherwise.
7372  * Note that many of these exceptions have priority over VM exits, so they
7373  * don't have to be checked again here.
7374  */
7375 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7376 {
7377         if (!to_vmx(vcpu)->nested.vmxon) {
7378                 kvm_queue_exception(vcpu, UD_VECTOR);
7379                 return 0;
7380         }
7381         return 1;
7382 }
7383
7384 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7385 {
7386         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7387         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7388 }
7389
7390 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7391 {
7392         if (vmx->nested.current_vmptr == -1ull)
7393                 return;
7394
7395         if (enable_shadow_vmcs) {
7396                 /* copy to memory all shadowed fields in case
7397                    they were modified */
7398                 copy_shadow_to_vmcs12(vmx);
7399                 vmx->nested.sync_shadow_vmcs = false;
7400                 vmx_disable_shadow_vmcs(vmx);
7401         }
7402         vmx->nested.posted_intr_nv = -1;
7403
7404         /* Flush VMCS12 to guest memory */
7405         kvm_vcpu_write_guest_page(&vmx->vcpu,
7406                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
7407                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
7408
7409         vmx->nested.current_vmptr = -1ull;
7410 }
7411
7412 /*
7413  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7414  * just stops using VMX.
7415  */
7416 static void free_nested(struct vcpu_vmx *vmx)
7417 {
7418         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
7419                 return;
7420
7421         vmx->nested.vmxon = false;
7422         vmx->nested.smm.vmxon = false;
7423         free_vpid(vmx->nested.vpid02);
7424         vmx->nested.posted_intr_nv = -1;
7425         vmx->nested.current_vmptr = -1ull;
7426         if (vmx->nested.msr_bitmap) {
7427                 free_page((unsigned long)vmx->nested.msr_bitmap);
7428                 vmx->nested.msr_bitmap = NULL;
7429         }
7430         if (enable_shadow_vmcs) {
7431                 vmx_disable_shadow_vmcs(vmx);
7432                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7433                 free_vmcs(vmx->vmcs01.shadow_vmcs);
7434                 vmx->vmcs01.shadow_vmcs = NULL;
7435         }
7436         kfree(vmx->nested.cached_vmcs12);
7437         /* Unpin physical memory we referred to in current vmcs02 */
7438         if (vmx->nested.apic_access_page) {
7439                 kvm_release_page_dirty(vmx->nested.apic_access_page);
7440                 vmx->nested.apic_access_page = NULL;
7441         }
7442         if (vmx->nested.virtual_apic_page) {
7443                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
7444                 vmx->nested.virtual_apic_page = NULL;
7445         }
7446         if (vmx->nested.pi_desc_page) {
7447                 kunmap(vmx->nested.pi_desc_page);
7448                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
7449                 vmx->nested.pi_desc_page = NULL;
7450                 vmx->nested.pi_desc = NULL;
7451         }
7452
7453         nested_free_all_saved_vmcss(vmx);
7454 }
7455
7456 /* Emulate the VMXOFF instruction */
7457 static int handle_vmoff(struct kvm_vcpu *vcpu)
7458 {
7459         if (!nested_vmx_check_permission(vcpu))
7460                 return 1;
7461         free_nested(to_vmx(vcpu));
7462         nested_vmx_succeed(vcpu);
7463         return kvm_skip_emulated_instruction(vcpu);
7464 }
7465
7466 /* Emulate the VMCLEAR instruction */
7467 static int handle_vmclear(struct kvm_vcpu *vcpu)
7468 {
7469         struct vcpu_vmx *vmx = to_vmx(vcpu);
7470         u32 zero = 0;
7471         gpa_t vmptr;
7472
7473         if (!nested_vmx_check_permission(vcpu))
7474                 return 1;
7475
7476         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7477                 return 1;
7478
7479         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7480                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7481                 return kvm_skip_emulated_instruction(vcpu);
7482         }
7483
7484         if (vmptr == vmx->nested.vmxon_ptr) {
7485                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7486                 return kvm_skip_emulated_instruction(vcpu);
7487         }
7488
7489         if (vmptr == vmx->nested.current_vmptr)
7490                 nested_release_vmcs12(vmx);
7491
7492         kvm_vcpu_write_guest(vcpu,
7493                         vmptr + offsetof(struct vmcs12, launch_state),
7494                         &zero, sizeof(zero));
7495
7496         nested_free_vmcs02(vmx, vmptr);
7497
7498         nested_vmx_succeed(vcpu);
7499         return kvm_skip_emulated_instruction(vcpu);
7500 }
7501
7502 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7503
7504 /* Emulate the VMLAUNCH instruction */
7505 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7506 {
7507         return nested_vmx_run(vcpu, true);
7508 }
7509
7510 /* Emulate the VMRESUME instruction */
7511 static int handle_vmresume(struct kvm_vcpu *vcpu)
7512 {
7513
7514         return nested_vmx_run(vcpu, false);
7515 }
7516
7517 /*
7518  * Read a vmcs12 field. Since these can have varying lengths and we return
7519  * one type, we chose the biggest type (u64) and zero-extend the return value
7520  * to that size. Note that the caller, handle_vmread, might need to use only
7521  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7522  * 64-bit fields are to be returned).
7523  */
7524 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7525                                   unsigned long field, u64 *ret)
7526 {
7527         short offset = vmcs_field_to_offset(field);
7528         char *p;
7529
7530         if (offset < 0)
7531                 return offset;
7532
7533         p = ((char *)(get_vmcs12(vcpu))) + offset;
7534
7535         switch (vmcs_field_type(field)) {
7536         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7537                 *ret = *((natural_width *)p);
7538                 return 0;
7539         case VMCS_FIELD_TYPE_U16:
7540                 *ret = *((u16 *)p);
7541                 return 0;
7542         case VMCS_FIELD_TYPE_U32:
7543                 *ret = *((u32 *)p);
7544                 return 0;
7545         case VMCS_FIELD_TYPE_U64:
7546                 *ret = *((u64 *)p);
7547                 return 0;
7548         default:
7549                 WARN_ON(1);
7550                 return -ENOENT;
7551         }
7552 }
7553
7554
7555 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7556                                    unsigned long field, u64 field_value){
7557         short offset = vmcs_field_to_offset(field);
7558         char *p = ((char *) get_vmcs12(vcpu)) + offset;
7559         if (offset < 0)
7560                 return offset;
7561
7562         switch (vmcs_field_type(field)) {
7563         case VMCS_FIELD_TYPE_U16:
7564                 *(u16 *)p = field_value;
7565                 return 0;
7566         case VMCS_FIELD_TYPE_U32:
7567                 *(u32 *)p = field_value;
7568                 return 0;
7569         case VMCS_FIELD_TYPE_U64:
7570                 *(u64 *)p = field_value;
7571                 return 0;
7572         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7573                 *(natural_width *)p = field_value;
7574                 return 0;
7575         default:
7576                 WARN_ON(1);
7577                 return -ENOENT;
7578         }
7579
7580 }
7581
7582 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7583 {
7584         int i;
7585         unsigned long field;
7586         u64 field_value;
7587         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7588         const unsigned long *fields = shadow_read_write_fields;
7589         const int num_fields = max_shadow_read_write_fields;
7590
7591         preempt_disable();
7592
7593         vmcs_load(shadow_vmcs);
7594
7595         for (i = 0; i < num_fields; i++) {
7596                 field = fields[i];
7597                 switch (vmcs_field_type(field)) {
7598                 case VMCS_FIELD_TYPE_U16:
7599                         field_value = vmcs_read16(field);
7600                         break;
7601                 case VMCS_FIELD_TYPE_U32:
7602                         field_value = vmcs_read32(field);
7603                         break;
7604                 case VMCS_FIELD_TYPE_U64:
7605                         field_value = vmcs_read64(field);
7606                         break;
7607                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7608                         field_value = vmcs_readl(field);
7609                         break;
7610                 default:
7611                         WARN_ON(1);
7612                         continue;
7613                 }
7614                 vmcs12_write_any(&vmx->vcpu, field, field_value);
7615         }
7616
7617         vmcs_clear(shadow_vmcs);
7618         vmcs_load(vmx->loaded_vmcs->vmcs);
7619
7620         preempt_enable();
7621 }
7622
7623 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7624 {
7625         const unsigned long *fields[] = {
7626                 shadow_read_write_fields,
7627                 shadow_read_only_fields
7628         };
7629         const int max_fields[] = {
7630                 max_shadow_read_write_fields,
7631                 max_shadow_read_only_fields
7632         };
7633         int i, q;
7634         unsigned long field;
7635         u64 field_value = 0;
7636         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7637
7638         vmcs_load(shadow_vmcs);
7639
7640         for (q = 0; q < ARRAY_SIZE(fields); q++) {
7641                 for (i = 0; i < max_fields[q]; i++) {
7642                         field = fields[q][i];
7643                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
7644
7645                         switch (vmcs_field_type(field)) {
7646                         case VMCS_FIELD_TYPE_U16:
7647                                 vmcs_write16(field, (u16)field_value);
7648                                 break;
7649                         case VMCS_FIELD_TYPE_U32:
7650                                 vmcs_write32(field, (u32)field_value);
7651                                 break;
7652                         case VMCS_FIELD_TYPE_U64:
7653                                 vmcs_write64(field, (u64)field_value);
7654                                 break;
7655                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7656                                 vmcs_writel(field, (long)field_value);
7657                                 break;
7658                         default:
7659                                 WARN_ON(1);
7660                                 break;
7661                         }
7662                 }
7663         }
7664
7665         vmcs_clear(shadow_vmcs);
7666         vmcs_load(vmx->loaded_vmcs->vmcs);
7667 }
7668
7669 /*
7670  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7671  * used before) all generate the same failure when it is missing.
7672  */
7673 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7674 {
7675         struct vcpu_vmx *vmx = to_vmx(vcpu);
7676         if (vmx->nested.current_vmptr == -1ull) {
7677                 nested_vmx_failInvalid(vcpu);
7678                 return 0;
7679         }
7680         return 1;
7681 }
7682
7683 static int handle_vmread(struct kvm_vcpu *vcpu)
7684 {
7685         unsigned long field;
7686         u64 field_value;
7687         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7688         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7689         gva_t gva = 0;
7690
7691         if (!nested_vmx_check_permission(vcpu))
7692                 return 1;
7693
7694         if (!nested_vmx_check_vmcs12(vcpu))
7695                 return kvm_skip_emulated_instruction(vcpu);
7696
7697         /* Decode instruction info and find the field to read */
7698         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7699         /* Read the field, zero-extended to a u64 field_value */
7700         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7701                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7702                 return kvm_skip_emulated_instruction(vcpu);
7703         }
7704         /*
7705          * Now copy part of this value to register or memory, as requested.
7706          * Note that the number of bits actually copied is 32 or 64 depending
7707          * on the guest's mode (32 or 64 bit), not on the given field's length.
7708          */
7709         if (vmx_instruction_info & (1u << 10)) {
7710                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7711                         field_value);
7712         } else {
7713                 if (get_vmx_mem_address(vcpu, exit_qualification,
7714                                 vmx_instruction_info, true, &gva))
7715                         return 1;
7716                 /* _system ok, as hardware has verified cpl=0 */
7717                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7718                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7719         }
7720
7721         nested_vmx_succeed(vcpu);
7722         return kvm_skip_emulated_instruction(vcpu);
7723 }
7724
7725
7726 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7727 {
7728         unsigned long field;
7729         gva_t gva;
7730         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7731         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7732         /* The value to write might be 32 or 64 bits, depending on L1's long
7733          * mode, and eventually we need to write that into a field of several
7734          * possible lengths. The code below first zero-extends the value to 64
7735          * bit (field_value), and then copies only the appropriate number of
7736          * bits into the vmcs12 field.
7737          */
7738         u64 field_value = 0;
7739         struct x86_exception e;
7740
7741         if (!nested_vmx_check_permission(vcpu))
7742                 return 1;
7743
7744         if (!nested_vmx_check_vmcs12(vcpu))
7745                 return kvm_skip_emulated_instruction(vcpu);
7746
7747         if (vmx_instruction_info & (1u << 10))
7748                 field_value = kvm_register_readl(vcpu,
7749                         (((vmx_instruction_info) >> 3) & 0xf));
7750         else {
7751                 if (get_vmx_mem_address(vcpu, exit_qualification,
7752                                 vmx_instruction_info, false, &gva))
7753                         return 1;
7754                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7755                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7756                         kvm_inject_page_fault(vcpu, &e);
7757                         return 1;
7758                 }
7759         }
7760
7761
7762         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7763         if (vmcs_field_readonly(field)) {
7764                 nested_vmx_failValid(vcpu,
7765                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7766                 return kvm_skip_emulated_instruction(vcpu);
7767         }
7768
7769         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7770                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7771                 return kvm_skip_emulated_instruction(vcpu);
7772         }
7773
7774         nested_vmx_succeed(vcpu);
7775         return kvm_skip_emulated_instruction(vcpu);
7776 }
7777
7778 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7779 {
7780         vmx->nested.current_vmptr = vmptr;
7781         if (enable_shadow_vmcs) {
7782                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7783                               SECONDARY_EXEC_SHADOW_VMCS);
7784                 vmcs_write64(VMCS_LINK_POINTER,
7785                              __pa(vmx->vmcs01.shadow_vmcs));
7786                 vmx->nested.sync_shadow_vmcs = true;
7787         }
7788 }
7789
7790 /* Emulate the VMPTRLD instruction */
7791 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7792 {
7793         struct vcpu_vmx *vmx = to_vmx(vcpu);
7794         gpa_t vmptr;
7795
7796         if (!nested_vmx_check_permission(vcpu))
7797                 return 1;
7798
7799         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7800                 return 1;
7801
7802         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7803                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7804                 return kvm_skip_emulated_instruction(vcpu);
7805         }
7806
7807         if (vmptr == vmx->nested.vmxon_ptr) {
7808                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7809                 return kvm_skip_emulated_instruction(vcpu);
7810         }
7811
7812         if (vmx->nested.current_vmptr != vmptr) {
7813                 struct vmcs12 *new_vmcs12;
7814                 struct page *page;
7815                 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7816                 if (is_error_page(page)) {
7817                         nested_vmx_failInvalid(vcpu);
7818                         return kvm_skip_emulated_instruction(vcpu);
7819                 }
7820                 new_vmcs12 = kmap(page);
7821                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7822                         kunmap(page);
7823                         kvm_release_page_clean(page);
7824                         nested_vmx_failValid(vcpu,
7825                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7826                         return kvm_skip_emulated_instruction(vcpu);
7827                 }
7828
7829                 nested_release_vmcs12(vmx);
7830                 /*
7831                  * Load VMCS12 from guest memory since it is not already
7832                  * cached.
7833                  */
7834                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7835                 kunmap(page);
7836                 kvm_release_page_clean(page);
7837
7838                 set_current_vmptr(vmx, vmptr);
7839         }
7840
7841         nested_vmx_succeed(vcpu);
7842         return kvm_skip_emulated_instruction(vcpu);
7843 }
7844
7845 /* Emulate the VMPTRST instruction */
7846 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7847 {
7848         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7849         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7850         gva_t vmcs_gva;
7851         struct x86_exception e;
7852
7853         if (!nested_vmx_check_permission(vcpu))
7854                 return 1;
7855
7856         if (get_vmx_mem_address(vcpu, exit_qualification,
7857                         vmx_instruction_info, true, &vmcs_gva))
7858                 return 1;
7859         /* ok to use *_system, as hardware has verified cpl=0 */
7860         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7861                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7862                                  sizeof(u64), &e)) {
7863                 kvm_inject_page_fault(vcpu, &e);
7864                 return 1;
7865         }
7866         nested_vmx_succeed(vcpu);
7867         return kvm_skip_emulated_instruction(vcpu);
7868 }
7869
7870 /* Emulate the INVEPT instruction */
7871 static int handle_invept(struct kvm_vcpu *vcpu)
7872 {
7873         struct vcpu_vmx *vmx = to_vmx(vcpu);
7874         u32 vmx_instruction_info, types;
7875         unsigned long type;
7876         gva_t gva;
7877         struct x86_exception e;
7878         struct {
7879                 u64 eptp, gpa;
7880         } operand;
7881
7882         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7883               SECONDARY_EXEC_ENABLE_EPT) ||
7884             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7885                 kvm_queue_exception(vcpu, UD_VECTOR);
7886                 return 1;
7887         }
7888
7889         if (!nested_vmx_check_permission(vcpu))
7890                 return 1;
7891
7892         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7893         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7894
7895         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7896
7897         if (type >= 32 || !(types & (1 << type))) {
7898                 nested_vmx_failValid(vcpu,
7899                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7900                 return kvm_skip_emulated_instruction(vcpu);
7901         }
7902
7903         /* According to the Intel VMX instruction reference, the memory
7904          * operand is read even if it isn't needed (e.g., for type==global)
7905          */
7906         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7907                         vmx_instruction_info, false, &gva))
7908                 return 1;
7909         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7910                                 sizeof(operand), &e)) {
7911                 kvm_inject_page_fault(vcpu, &e);
7912                 return 1;
7913         }
7914
7915         switch (type) {
7916         case VMX_EPT_EXTENT_GLOBAL:
7917         /*
7918          * TODO: track mappings and invalidate
7919          * single context requests appropriately
7920          */
7921         case VMX_EPT_EXTENT_CONTEXT:
7922                 kvm_mmu_sync_roots(vcpu);
7923                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7924                 nested_vmx_succeed(vcpu);
7925                 break;
7926         default:
7927                 BUG_ON(1);
7928                 break;
7929         }
7930
7931         return kvm_skip_emulated_instruction(vcpu);
7932 }
7933
7934 static int handle_invvpid(struct kvm_vcpu *vcpu)
7935 {
7936         struct vcpu_vmx *vmx = to_vmx(vcpu);
7937         u32 vmx_instruction_info;
7938         unsigned long type, types;
7939         gva_t gva;
7940         struct x86_exception e;
7941         struct {
7942                 u64 vpid;
7943                 u64 gla;
7944         } operand;
7945
7946         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7947               SECONDARY_EXEC_ENABLE_VPID) ||
7948                         !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7949                 kvm_queue_exception(vcpu, UD_VECTOR);
7950                 return 1;
7951         }
7952
7953         if (!nested_vmx_check_permission(vcpu))
7954                 return 1;
7955
7956         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7957         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7958
7959         types = (vmx->nested.nested_vmx_vpid_caps &
7960                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7961
7962         if (type >= 32 || !(types & (1 << type))) {
7963                 nested_vmx_failValid(vcpu,
7964                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7965                 return kvm_skip_emulated_instruction(vcpu);
7966         }
7967
7968         /* according to the intel vmx instruction reference, the memory
7969          * operand is read even if it isn't needed (e.g., for type==global)
7970          */
7971         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7972                         vmx_instruction_info, false, &gva))
7973                 return 1;
7974         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7975                                 sizeof(operand), &e)) {
7976                 kvm_inject_page_fault(vcpu, &e);
7977                 return 1;
7978         }
7979         if (operand.vpid >> 16) {
7980                 nested_vmx_failValid(vcpu,
7981                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7982                 return kvm_skip_emulated_instruction(vcpu);
7983         }
7984
7985         switch (type) {
7986         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7987                 if (is_noncanonical_address(operand.gla, vcpu)) {
7988                         nested_vmx_failValid(vcpu,
7989                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7990                         return kvm_skip_emulated_instruction(vcpu);
7991                 }
7992                 /* fall through */
7993         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7994         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7995                 if (!operand.vpid) {
7996                         nested_vmx_failValid(vcpu,
7997                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7998                         return kvm_skip_emulated_instruction(vcpu);
7999                 }
8000                 break;
8001         case VMX_VPID_EXTENT_ALL_CONTEXT:
8002                 break;
8003         default:
8004                 WARN_ON_ONCE(1);
8005                 return kvm_skip_emulated_instruction(vcpu);
8006         }
8007
8008         __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
8009         nested_vmx_succeed(vcpu);
8010
8011         return kvm_skip_emulated_instruction(vcpu);
8012 }
8013
8014 static int handle_pml_full(struct kvm_vcpu *vcpu)
8015 {
8016         unsigned long exit_qualification;
8017
8018         trace_kvm_pml_full(vcpu->vcpu_id);
8019
8020         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8021
8022         /*
8023          * PML buffer FULL happened while executing iret from NMI,
8024          * "blocked by NMI" bit has to be set before next VM entry.
8025          */
8026         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
8027                         enable_vnmi &&
8028                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
8029                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8030                                 GUEST_INTR_STATE_NMI);
8031
8032         /*
8033          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
8034          * here.., and there's no userspace involvement needed for PML.
8035          */
8036         return 1;
8037 }
8038
8039 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
8040 {
8041         kvm_lapic_expired_hv_timer(vcpu);
8042         return 1;
8043 }
8044
8045 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8046 {
8047         struct vcpu_vmx *vmx = to_vmx(vcpu);
8048         int maxphyaddr = cpuid_maxphyaddr(vcpu);
8049
8050         /* Check for memory type validity */
8051         switch (address & VMX_EPTP_MT_MASK) {
8052         case VMX_EPTP_MT_UC:
8053                 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8054                         return false;
8055                 break;
8056         case VMX_EPTP_MT_WB:
8057                 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8058                         return false;
8059                 break;
8060         default:
8061                 return false;
8062         }
8063
8064         /* only 4 levels page-walk length are valid */
8065         if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
8066                 return false;
8067
8068         /* Reserved bits should not be set */
8069         if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8070                 return false;
8071
8072         /* AD, if set, should be supported */
8073         if (address & VMX_EPTP_AD_ENABLE_BIT) {
8074                 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8075                         return false;
8076         }
8077
8078         return true;
8079 }
8080
8081 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8082                                      struct vmcs12 *vmcs12)
8083 {
8084         u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8085         u64 address;
8086         bool accessed_dirty;
8087         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8088
8089         if (!nested_cpu_has_eptp_switching(vmcs12) ||
8090             !nested_cpu_has_ept(vmcs12))
8091                 return 1;
8092
8093         if (index >= VMFUNC_EPTP_ENTRIES)
8094                 return 1;
8095
8096
8097         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8098                                      &address, index * 8, 8))
8099                 return 1;
8100
8101         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
8102
8103         /*
8104          * If the (L2) guest does a vmfunc to the currently
8105          * active ept pointer, we don't have to do anything else
8106          */
8107         if (vmcs12->ept_pointer != address) {
8108                 if (!valid_ept_address(vcpu, address))
8109                         return 1;
8110
8111                 kvm_mmu_unload(vcpu);
8112                 mmu->ept_ad = accessed_dirty;
8113                 mmu->base_role.ad_disabled = !accessed_dirty;
8114                 vmcs12->ept_pointer = address;
8115                 /*
8116                  * TODO: Check what's the correct approach in case
8117                  * mmu reload fails. Currently, we just let the next
8118                  * reload potentially fail
8119                  */
8120                 kvm_mmu_reload(vcpu);
8121         }
8122
8123         return 0;
8124 }
8125
8126 static int handle_vmfunc(struct kvm_vcpu *vcpu)
8127 {
8128         struct vcpu_vmx *vmx = to_vmx(vcpu);
8129         struct vmcs12 *vmcs12;
8130         u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8131
8132         /*
8133          * VMFUNC is only supported for nested guests, but we always enable the
8134          * secondary control for simplicity; for non-nested mode, fake that we
8135          * didn't by injecting #UD.
8136          */
8137         if (!is_guest_mode(vcpu)) {
8138                 kvm_queue_exception(vcpu, UD_VECTOR);
8139                 return 1;
8140         }
8141
8142         vmcs12 = get_vmcs12(vcpu);
8143         if ((vmcs12->vm_function_control & (1 << function)) == 0)
8144                 goto fail;
8145
8146         switch (function) {
8147         case 0:
8148                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8149                         goto fail;
8150                 break;
8151         default:
8152                 goto fail;
8153         }
8154         return kvm_skip_emulated_instruction(vcpu);
8155
8156 fail:
8157         nested_vmx_vmexit(vcpu, vmx->exit_reason,
8158                           vmcs_read32(VM_EXIT_INTR_INFO),
8159                           vmcs_readl(EXIT_QUALIFICATION));
8160         return 1;
8161 }
8162
8163 /*
8164  * The exit handlers return 1 if the exit was handled fully and guest execution
8165  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
8166  * to be done to userspace and return 0.
8167  */
8168 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
8169         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
8170         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
8171         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
8172         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
8173         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
8174         [EXIT_REASON_CR_ACCESS]               = handle_cr,
8175         [EXIT_REASON_DR_ACCESS]               = handle_dr,
8176         [EXIT_REASON_CPUID]                   = handle_cpuid,
8177         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
8178         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
8179         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
8180         [EXIT_REASON_HLT]                     = handle_halt,
8181         [EXIT_REASON_INVD]                    = handle_invd,
8182         [EXIT_REASON_INVLPG]                  = handle_invlpg,
8183         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
8184         [EXIT_REASON_VMCALL]                  = handle_vmcall,
8185         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
8186         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
8187         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
8188         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
8189         [EXIT_REASON_VMREAD]                  = handle_vmread,
8190         [EXIT_REASON_VMRESUME]                = handle_vmresume,
8191         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
8192         [EXIT_REASON_VMOFF]                   = handle_vmoff,
8193         [EXIT_REASON_VMON]                    = handle_vmon,
8194         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
8195         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
8196         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
8197         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
8198         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
8199         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
8200         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
8201         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
8202         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
8203         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
8204         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
8205         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
8206         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
8207         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
8208         [EXIT_REASON_INVEPT]                  = handle_invept,
8209         [EXIT_REASON_INVVPID]                 = handle_invvpid,
8210         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
8211         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
8212         [EXIT_REASON_XSAVES]                  = handle_xsaves,
8213         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
8214         [EXIT_REASON_PML_FULL]                = handle_pml_full,
8215         [EXIT_REASON_VMFUNC]                  = handle_vmfunc,
8216         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
8217 };
8218
8219 static const int kvm_vmx_max_exit_handlers =
8220         ARRAY_SIZE(kvm_vmx_exit_handlers);
8221
8222 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8223                                        struct vmcs12 *vmcs12)
8224 {
8225         unsigned long exit_qualification;
8226         gpa_t bitmap, last_bitmap;
8227         unsigned int port;
8228         int size;
8229         u8 b;
8230
8231         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8232                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8233
8234         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8235
8236         port = exit_qualification >> 16;
8237         size = (exit_qualification & 7) + 1;
8238
8239         last_bitmap = (gpa_t)-1;
8240         b = -1;
8241
8242         while (size > 0) {
8243                 if (port < 0x8000)
8244                         bitmap = vmcs12->io_bitmap_a;
8245                 else if (port < 0x10000)
8246                         bitmap = vmcs12->io_bitmap_b;
8247                 else
8248                         return true;
8249                 bitmap += (port & 0x7fff) / 8;
8250
8251                 if (last_bitmap != bitmap)
8252                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
8253                                 return true;
8254                 if (b & (1 << (port & 7)))
8255                         return true;
8256
8257                 port++;
8258                 size--;
8259                 last_bitmap = bitmap;
8260         }
8261
8262         return false;
8263 }
8264
8265 /*
8266  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8267  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8268  * disinterest in the current event (read or write a specific MSR) by using an
8269  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8270  */
8271 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8272         struct vmcs12 *vmcs12, u32 exit_reason)
8273 {
8274         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8275         gpa_t bitmap;
8276
8277         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8278                 return true;
8279
8280         /*
8281          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8282          * for the four combinations of read/write and low/high MSR numbers.
8283          * First we need to figure out which of the four to use:
8284          */
8285         bitmap = vmcs12->msr_bitmap;
8286         if (exit_reason == EXIT_REASON_MSR_WRITE)
8287                 bitmap += 2048;
8288         if (msr_index >= 0xc0000000) {
8289                 msr_index -= 0xc0000000;
8290                 bitmap += 1024;
8291         }
8292
8293         /* Then read the msr_index'th bit from this bitmap: */
8294         if (msr_index < 1024*8) {
8295                 unsigned char b;
8296                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
8297                         return true;
8298                 return 1 & (b >> (msr_index & 7));
8299         } else
8300                 return true; /* let L1 handle the wrong parameter */
8301 }
8302
8303 /*
8304  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8305  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8306  * intercept (via guest_host_mask etc.) the current event.
8307  */
8308 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8309         struct vmcs12 *vmcs12)
8310 {
8311         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8312         int cr = exit_qualification & 15;
8313         int reg;
8314         unsigned long val;
8315
8316         switch ((exit_qualification >> 4) & 3) {
8317         case 0: /* mov to cr */
8318                 reg = (exit_qualification >> 8) & 15;
8319                 val = kvm_register_readl(vcpu, reg);
8320                 switch (cr) {
8321                 case 0:
8322                         if (vmcs12->cr0_guest_host_mask &
8323                             (val ^ vmcs12->cr0_read_shadow))
8324                                 return true;
8325                         break;
8326                 case 3:
8327                         if ((vmcs12->cr3_target_count >= 1 &&
8328                                         vmcs12->cr3_target_value0 == val) ||
8329                                 (vmcs12->cr3_target_count >= 2 &&
8330                                         vmcs12->cr3_target_value1 == val) ||
8331                                 (vmcs12->cr3_target_count >= 3 &&
8332                                         vmcs12->cr3_target_value2 == val) ||
8333                                 (vmcs12->cr3_target_count >= 4 &&
8334                                         vmcs12->cr3_target_value3 == val))
8335                                 return false;
8336                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
8337                                 return true;
8338                         break;
8339                 case 4:
8340                         if (vmcs12->cr4_guest_host_mask &
8341                             (vmcs12->cr4_read_shadow ^ val))
8342                                 return true;
8343                         break;
8344                 case 8:
8345                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
8346                                 return true;
8347                         break;
8348                 }
8349                 break;
8350         case 2: /* clts */
8351                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8352                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
8353                         return true;
8354                 break;
8355         case 1: /* mov from cr */
8356                 switch (cr) {
8357                 case 3:
8358                         if (vmcs12->cpu_based_vm_exec_control &
8359                             CPU_BASED_CR3_STORE_EXITING)
8360                                 return true;
8361                         break;
8362                 case 8:
8363                         if (vmcs12->cpu_based_vm_exec_control &
8364                             CPU_BASED_CR8_STORE_EXITING)
8365                                 return true;
8366                         break;
8367                 }
8368                 break;
8369         case 3: /* lmsw */
8370                 /*
8371                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8372                  * cr0. Other attempted changes are ignored, with no exit.
8373                  */
8374                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
8375                 if (vmcs12->cr0_guest_host_mask & 0xe &
8376                     (val ^ vmcs12->cr0_read_shadow))
8377                         return true;
8378                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8379                     !(vmcs12->cr0_read_shadow & 0x1) &&
8380                     (val & 0x1))
8381                         return true;
8382                 break;
8383         }
8384         return false;
8385 }
8386
8387 /*
8388  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8389  * should handle it ourselves in L0 (and then continue L2). Only call this
8390  * when in is_guest_mode (L2).
8391  */
8392 static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
8393 {
8394         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8395         struct vcpu_vmx *vmx = to_vmx(vcpu);
8396         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8397
8398         if (vmx->nested.nested_run_pending)
8399                 return false;
8400
8401         if (unlikely(vmx->fail)) {
8402                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8403                                     vmcs_read32(VM_INSTRUCTION_ERROR));
8404                 return true;
8405         }
8406
8407         /*
8408          * The host physical addresses of some pages of guest memory
8409          * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8410          * may write to these pages via their host physical address while
8411          * L2 is running, bypassing any address-translation-based dirty
8412          * tracking (e.g. EPT write protection).
8413          *
8414          * Mark them dirty on every exit from L2 to prevent them from
8415          * getting out of sync with dirty tracking.
8416          */
8417         nested_mark_vmcs12_pages_dirty(vcpu);
8418
8419         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8420                                 vmcs_readl(EXIT_QUALIFICATION),
8421                                 vmx->idt_vectoring_info,
8422                                 intr_info,
8423                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8424                                 KVM_ISA_VMX);
8425
8426         switch (exit_reason) {
8427         case EXIT_REASON_EXCEPTION_NMI:
8428                 if (is_nmi(intr_info))
8429                         return false;
8430                 else if (is_page_fault(intr_info))
8431                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
8432                 else if (is_no_device(intr_info) &&
8433                          !(vmcs12->guest_cr0 & X86_CR0_TS))
8434                         return false;
8435                 else if (is_debug(intr_info) &&
8436                          vcpu->guest_debug &
8437                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8438                         return false;
8439                 else if (is_breakpoint(intr_info) &&
8440                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8441                         return false;
8442                 return vmcs12->exception_bitmap &
8443                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8444         case EXIT_REASON_EXTERNAL_INTERRUPT:
8445                 return false;
8446         case EXIT_REASON_TRIPLE_FAULT:
8447                 return true;
8448         case EXIT_REASON_PENDING_INTERRUPT:
8449                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8450         case EXIT_REASON_NMI_WINDOW:
8451                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8452         case EXIT_REASON_TASK_SWITCH:
8453                 return true;
8454         case EXIT_REASON_CPUID:
8455                 return true;
8456         case EXIT_REASON_HLT:
8457                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8458         case EXIT_REASON_INVD:
8459                 return true;
8460         case EXIT_REASON_INVLPG:
8461                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8462         case EXIT_REASON_RDPMC:
8463                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8464         case EXIT_REASON_RDRAND:
8465                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
8466         case EXIT_REASON_RDSEED:
8467                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
8468         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8469                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8470         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8471         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8472         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8473         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8474         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8475         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8476                 /*
8477                  * VMX instructions trap unconditionally. This allows L1 to
8478                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
8479                  */
8480                 return true;
8481         case EXIT_REASON_CR_ACCESS:
8482                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8483         case EXIT_REASON_DR_ACCESS:
8484                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8485         case EXIT_REASON_IO_INSTRUCTION:
8486                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8487         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8488                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8489         case EXIT_REASON_MSR_READ:
8490         case EXIT_REASON_MSR_WRITE:
8491                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8492         case EXIT_REASON_INVALID_STATE:
8493                 return true;
8494         case EXIT_REASON_MWAIT_INSTRUCTION:
8495                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8496         case EXIT_REASON_MONITOR_TRAP_FLAG:
8497                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8498         case EXIT_REASON_MONITOR_INSTRUCTION:
8499                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8500         case EXIT_REASON_PAUSE_INSTRUCTION:
8501                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8502                         nested_cpu_has2(vmcs12,
8503                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8504         case EXIT_REASON_MCE_DURING_VMENTRY:
8505                 return false;
8506         case EXIT_REASON_TPR_BELOW_THRESHOLD:
8507                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8508         case EXIT_REASON_APIC_ACCESS:
8509                 return nested_cpu_has2(vmcs12,
8510                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8511         case EXIT_REASON_APIC_WRITE:
8512         case EXIT_REASON_EOI_INDUCED:
8513                 /* apic_write and eoi_induced should exit unconditionally. */
8514                 return true;
8515         case EXIT_REASON_EPT_VIOLATION:
8516                 /*
8517                  * L0 always deals with the EPT violation. If nested EPT is
8518                  * used, and the nested mmu code discovers that the address is
8519                  * missing in the guest EPT table (EPT12), the EPT violation
8520                  * will be injected with nested_ept_inject_page_fault()
8521                  */
8522                 return false;
8523         case EXIT_REASON_EPT_MISCONFIG:
8524                 /*
8525                  * L2 never uses directly L1's EPT, but rather L0's own EPT
8526                  * table (shadow on EPT) or a merged EPT table that L0 built
8527                  * (EPT on EPT). So any problems with the structure of the
8528                  * table is L0's fault.
8529                  */
8530                 return false;
8531         case EXIT_REASON_INVPCID:
8532                 return
8533                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8534                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8535         case EXIT_REASON_WBINVD:
8536                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8537         case EXIT_REASON_XSETBV:
8538                 return true;
8539         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8540                 /*
8541                  * This should never happen, since it is not possible to
8542                  * set XSS to a non-zero value---neither in L1 nor in L2.
8543                  * If if it were, XSS would have to be checked against
8544                  * the XSS exit bitmap in vmcs12.
8545                  */
8546                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8547         case EXIT_REASON_PREEMPTION_TIMER:
8548                 return false;
8549         case EXIT_REASON_PML_FULL:
8550                 /* We emulate PML support to L1. */
8551                 return false;
8552         case EXIT_REASON_VMFUNC:
8553                 /* VM functions are emulated through L2->L0 vmexits. */
8554                 return false;
8555         default:
8556                 return true;
8557         }
8558 }
8559
8560 static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8561 {
8562         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8563
8564         /*
8565          * At this point, the exit interruption info in exit_intr_info
8566          * is only valid for EXCEPTION_NMI exits.  For EXTERNAL_INTERRUPT
8567          * we need to query the in-kernel LAPIC.
8568          */
8569         WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8570         if ((exit_intr_info &
8571              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8572             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8573                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8574                 vmcs12->vm_exit_intr_error_code =
8575                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8576         }
8577
8578         nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8579                           vmcs_readl(EXIT_QUALIFICATION));
8580         return 1;
8581 }
8582
8583 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8584 {
8585         *info1 = vmcs_readl(EXIT_QUALIFICATION);
8586         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8587 }
8588
8589 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8590 {
8591         if (vmx->pml_pg) {
8592                 __free_page(vmx->pml_pg);
8593                 vmx->pml_pg = NULL;
8594         }
8595 }
8596
8597 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8598 {
8599         struct vcpu_vmx *vmx = to_vmx(vcpu);
8600         u64 *pml_buf;
8601         u16 pml_idx;
8602
8603         pml_idx = vmcs_read16(GUEST_PML_INDEX);
8604
8605         /* Do nothing if PML buffer is empty */
8606         if (pml_idx == (PML_ENTITY_NUM - 1))
8607                 return;
8608
8609         /* PML index always points to next available PML buffer entity */
8610         if (pml_idx >= PML_ENTITY_NUM)
8611                 pml_idx = 0;
8612         else
8613                 pml_idx++;
8614
8615         pml_buf = page_address(vmx->pml_pg);
8616         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8617                 u64 gpa;
8618
8619                 gpa = pml_buf[pml_idx];
8620                 WARN_ON(gpa & (PAGE_SIZE - 1));
8621                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8622         }
8623
8624         /* reset PML index */
8625         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8626 }
8627
8628 /*
8629  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8630  * Called before reporting dirty_bitmap to userspace.
8631  */
8632 static void kvm_flush_pml_buffers(struct kvm *kvm)
8633 {
8634         int i;
8635         struct kvm_vcpu *vcpu;
8636         /*
8637          * We only need to kick vcpu out of guest mode here, as PML buffer
8638          * is flushed at beginning of all VMEXITs, and it's obvious that only
8639          * vcpus running in guest are possible to have unflushed GPAs in PML
8640          * buffer.
8641          */
8642         kvm_for_each_vcpu(i, vcpu, kvm)
8643                 kvm_vcpu_kick(vcpu);
8644 }
8645
8646 static void vmx_dump_sel(char *name, uint32_t sel)
8647 {
8648         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8649                name, vmcs_read16(sel),
8650                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8651                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8652                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8653 }
8654
8655 static void vmx_dump_dtsel(char *name, uint32_t limit)
8656 {
8657         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8658                name, vmcs_read32(limit),
8659                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8660 }
8661
8662 static void dump_vmcs(void)
8663 {
8664         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8665         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8666         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8667         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8668         u32 secondary_exec_control = 0;
8669         unsigned long cr4 = vmcs_readl(GUEST_CR4);
8670         u64 efer = vmcs_read64(GUEST_IA32_EFER);
8671         int i, n;
8672
8673         if (cpu_has_secondary_exec_ctrls())
8674                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8675
8676         pr_err("*** Guest State ***\n");
8677         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8678                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8679                vmcs_readl(CR0_GUEST_HOST_MASK));
8680         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8681                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8682         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8683         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8684             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8685         {
8686                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8687                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8688                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8689                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8690         }
8691         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8692                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8693         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8694                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8695         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8696                vmcs_readl(GUEST_SYSENTER_ESP),
8697                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8698         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8699         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8700         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8701         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8702         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8703         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8704         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8705         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8706         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8707         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8708         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8709             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8710                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8711                        efer, vmcs_read64(GUEST_IA32_PAT));
8712         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8713                vmcs_read64(GUEST_IA32_DEBUGCTL),
8714                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8715         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8716                 pr_err("PerfGlobCtl = 0x%016llx\n",
8717                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8718         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8719                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8720         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8721                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8722                vmcs_read32(GUEST_ACTIVITY_STATE));
8723         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8724                 pr_err("InterruptStatus = %04x\n",
8725                        vmcs_read16(GUEST_INTR_STATUS));
8726
8727         pr_err("*** Host State ***\n");
8728         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8729                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8730         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8731                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8732                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8733                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8734                vmcs_read16(HOST_TR_SELECTOR));
8735         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8736                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8737                vmcs_readl(HOST_TR_BASE));
8738         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8739                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8740         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8741                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8742                vmcs_readl(HOST_CR4));
8743         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8744                vmcs_readl(HOST_IA32_SYSENTER_ESP),
8745                vmcs_read32(HOST_IA32_SYSENTER_CS),
8746                vmcs_readl(HOST_IA32_SYSENTER_EIP));
8747         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8748                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8749                        vmcs_read64(HOST_IA32_EFER),
8750                        vmcs_read64(HOST_IA32_PAT));
8751         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8752                 pr_err("PerfGlobCtl = 0x%016llx\n",
8753                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8754
8755         pr_err("*** Control State ***\n");
8756         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8757                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8758         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8759         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8760                vmcs_read32(EXCEPTION_BITMAP),
8761                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8762                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8763         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8764                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8765                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8766                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8767         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8768                vmcs_read32(VM_EXIT_INTR_INFO),
8769                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8770                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8771         pr_err("        reason=%08x qualification=%016lx\n",
8772                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8773         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8774                vmcs_read32(IDT_VECTORING_INFO_FIELD),
8775                vmcs_read32(IDT_VECTORING_ERROR_CODE));
8776         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8777         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8778                 pr_err("TSC Multiplier = 0x%016llx\n",
8779                        vmcs_read64(TSC_MULTIPLIER));
8780         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8781                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8782         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8783                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8784         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8785                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8786         n = vmcs_read32(CR3_TARGET_COUNT);
8787         for (i = 0; i + 1 < n; i += 4)
8788                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8789                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8790                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8791         if (i < n)
8792                 pr_err("CR3 target%u=%016lx\n",
8793                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8794         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8795                 pr_err("PLE Gap=%08x Window=%08x\n",
8796                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8797         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8798                 pr_err("Virtual processor ID = 0x%04x\n",
8799                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
8800 }
8801
8802 /*
8803  * The guest has exited.  See if we can fix it or if we need userspace
8804  * assistance.
8805  */
8806 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8807 {
8808         struct vcpu_vmx *vmx = to_vmx(vcpu);
8809         u32 exit_reason = vmx->exit_reason;
8810         u32 vectoring_info = vmx->idt_vectoring_info;
8811
8812         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8813
8814         /*
8815          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8816          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8817          * querying dirty_bitmap, we only need to kick all vcpus out of guest
8818          * mode as if vcpus is in root mode, the PML buffer must has been
8819          * flushed already.
8820          */
8821         if (enable_pml)
8822                 vmx_flush_pml_buffer(vcpu);
8823
8824         /* If guest state is invalid, start emulating */
8825         if (vmx->emulation_required)
8826                 return handle_invalid_guest_state(vcpu);
8827
8828         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8829                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
8830
8831         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8832                 dump_vmcs();
8833                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8834                 vcpu->run->fail_entry.hardware_entry_failure_reason
8835                         = exit_reason;
8836                 return 0;
8837         }
8838
8839         if (unlikely(vmx->fail)) {
8840                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8841                 vcpu->run->fail_entry.hardware_entry_failure_reason
8842                         = vmcs_read32(VM_INSTRUCTION_ERROR);
8843                 return 0;
8844         }
8845
8846         /*
8847          * Note:
8848          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8849          * delivery event since it indicates guest is accessing MMIO.
8850          * The vm-exit can be triggered again after return to guest that
8851          * will cause infinite loop.
8852          */
8853         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8854                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8855                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
8856                         exit_reason != EXIT_REASON_PML_FULL &&
8857                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
8858                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8859                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8860                 vcpu->run->internal.ndata = 3;
8861                 vcpu->run->internal.data[0] = vectoring_info;
8862                 vcpu->run->internal.data[1] = exit_reason;
8863                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8864                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8865                         vcpu->run->internal.ndata++;
8866                         vcpu->run->internal.data[3] =
8867                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8868                 }
8869                 return 0;
8870         }
8871
8872         if (unlikely(!enable_vnmi &&
8873                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
8874                 if (vmx_interrupt_allowed(vcpu)) {
8875                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
8876                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
8877                            vcpu->arch.nmi_pending) {
8878                         /*
8879                          * This CPU don't support us in finding the end of an
8880                          * NMI-blocked window if the guest runs with IRQs
8881                          * disabled. So we pull the trigger after 1 s of
8882                          * futile waiting, but inform the user about this.
8883                          */
8884                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8885                                "state on VCPU %d after 1 s timeout\n",
8886                                __func__, vcpu->vcpu_id);
8887                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
8888                 }
8889         }
8890
8891         if (exit_reason < kvm_vmx_max_exit_handlers
8892             && kvm_vmx_exit_handlers[exit_reason])
8893                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8894         else {
8895                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8896                                 exit_reason);
8897                 kvm_queue_exception(vcpu, UD_VECTOR);
8898                 return 1;
8899         }
8900 }
8901
8902 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8903 {
8904         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8905
8906         if (is_guest_mode(vcpu) &&
8907                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8908                 return;
8909
8910         if (irr == -1 || tpr < irr) {
8911                 vmcs_write32(TPR_THRESHOLD, 0);
8912                 return;
8913         }
8914
8915         vmcs_write32(TPR_THRESHOLD, irr);
8916 }
8917
8918 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8919 {
8920         u32 sec_exec_control;
8921
8922         /* Postpone execution until vmcs01 is the current VMCS. */
8923         if (is_guest_mode(vcpu)) {
8924                 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8925                 return;
8926         }
8927
8928         if (!cpu_has_vmx_virtualize_x2apic_mode())
8929                 return;
8930
8931         if (!cpu_need_tpr_shadow(vcpu))
8932                 return;
8933
8934         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8935
8936         if (set) {
8937                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8938                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8939         } else {
8940                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8941                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8942                 vmx_flush_tlb_ept_only(vcpu);
8943         }
8944         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8945
8946         vmx_set_msr_bitmap(vcpu);
8947 }
8948
8949 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8950 {
8951         struct vcpu_vmx *vmx = to_vmx(vcpu);
8952
8953         /*
8954          * Currently we do not handle the nested case where L2 has an
8955          * APIC access page of its own; that page is still pinned.
8956          * Hence, we skip the case where the VCPU is in guest mode _and_
8957          * L1 prepared an APIC access page for L2.
8958          *
8959          * For the case where L1 and L2 share the same APIC access page
8960          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8961          * in the vmcs12), this function will only update either the vmcs01
8962          * or the vmcs02.  If the former, the vmcs02 will be updated by
8963          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8964          * the next L2->L1 exit.
8965          */
8966         if (!is_guest_mode(vcpu) ||
8967             !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8968                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8969                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8970                 vmx_flush_tlb_ept_only(vcpu);
8971         }
8972 }
8973
8974 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8975 {
8976         u16 status;
8977         u8 old;
8978
8979         if (max_isr == -1)
8980                 max_isr = 0;
8981
8982         status = vmcs_read16(GUEST_INTR_STATUS);
8983         old = status >> 8;
8984         if (max_isr != old) {
8985                 status &= 0xff;
8986                 status |= max_isr << 8;
8987                 vmcs_write16(GUEST_INTR_STATUS, status);
8988         }
8989 }
8990
8991 static void vmx_set_rvi(int vector)
8992 {
8993         u16 status;
8994         u8 old;
8995
8996         if (vector == -1)
8997                 vector = 0;
8998
8999         status = vmcs_read16(GUEST_INTR_STATUS);
9000         old = (u8)status & 0xff;
9001         if ((u8)vector != old) {
9002                 status &= ~0xff;
9003                 status |= (u8)vector;
9004                 vmcs_write16(GUEST_INTR_STATUS, status);
9005         }
9006 }
9007
9008 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
9009 {
9010         if (!is_guest_mode(vcpu)) {
9011                 vmx_set_rvi(max_irr);
9012                 return;
9013         }
9014
9015         if (max_irr == -1)
9016                 return;
9017
9018         /*
9019          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
9020          * handles it.
9021          */
9022         if (nested_exit_on_intr(vcpu))
9023                 return;
9024
9025         /*
9026          * Else, fall back to pre-APICv interrupt injection since L2
9027          * is run without virtual interrupt delivery.
9028          */
9029         if (!kvm_event_needs_reinjection(vcpu) &&
9030             vmx_interrupt_allowed(vcpu)) {
9031                 kvm_queue_interrupt(vcpu, max_irr, false);
9032                 vmx_inject_irq(vcpu);
9033         }
9034 }
9035
9036 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
9037 {
9038         struct vcpu_vmx *vmx = to_vmx(vcpu);
9039         int max_irr;
9040
9041         WARN_ON(!vcpu->arch.apicv_active);
9042         if (pi_test_on(&vmx->pi_desc)) {
9043                 pi_clear_on(&vmx->pi_desc);
9044                 /*
9045                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
9046                  * But on x86 this is just a compiler barrier anyway.
9047                  */
9048                 smp_mb__after_atomic();
9049                 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
9050         } else {
9051                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9052         }
9053         vmx_hwapic_irr_update(vcpu, max_irr);
9054         return max_irr;
9055 }
9056
9057 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
9058 {
9059         if (!kvm_vcpu_apicv_active(vcpu))
9060                 return;
9061
9062         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9063         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9064         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9065         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9066 }
9067
9068 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9069 {
9070         struct vcpu_vmx *vmx = to_vmx(vcpu);
9071
9072         pi_clear_on(&vmx->pi_desc);
9073         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9074 }
9075
9076 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
9077 {
9078         u32 exit_intr_info = 0;
9079         u16 basic_exit_reason = (u16)vmx->exit_reason;
9080
9081         if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9082               || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
9083                 return;
9084
9085         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9086                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9087         vmx->exit_intr_info = exit_intr_info;
9088
9089         /* if exit due to PF check for async PF */
9090         if (is_page_fault(exit_intr_info))
9091                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9092
9093         /* Handle machine checks before interrupts are enabled */
9094         if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9095             is_machine_check(exit_intr_info))
9096                 kvm_machine_check();
9097
9098         /* We need to handle NMIs before interrupts are enabled */
9099         if (is_nmi(exit_intr_info)) {
9100                 kvm_before_handle_nmi(&vmx->vcpu);
9101                 asm("int $2");
9102                 kvm_after_handle_nmi(&vmx->vcpu);
9103         }
9104 }
9105
9106 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9107 {
9108         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9109
9110         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9111                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9112                 unsigned int vector;
9113                 unsigned long entry;
9114                 gate_desc *desc;
9115                 struct vcpu_vmx *vmx = to_vmx(vcpu);
9116 #ifdef CONFIG_X86_64
9117                 unsigned long tmp;
9118 #endif
9119
9120                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
9121                 desc = (gate_desc *)vmx->host_idt_base + vector;
9122                 entry = gate_offset(desc);
9123                 asm volatile(
9124 #ifdef CONFIG_X86_64
9125                         "mov %%" _ASM_SP ", %[sp]\n\t"
9126                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9127                         "push $%c[ss]\n\t"
9128                         "push %[sp]\n\t"
9129 #endif
9130                         "pushf\n\t"
9131                         __ASM_SIZE(push) " $%c[cs]\n\t"
9132                         "call *%[entry]\n\t"
9133                         :
9134 #ifdef CONFIG_X86_64
9135                         [sp]"=&r"(tmp),
9136 #endif
9137                         ASM_CALL_CONSTRAINT
9138                         :
9139                         [entry]"r"(entry),
9140                         [ss]"i"(__KERNEL_DS),
9141                         [cs]"i"(__KERNEL_CS)
9142                         );
9143         }
9144 }
9145 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
9146
9147 static bool vmx_has_high_real_mode_segbase(void)
9148 {
9149         return enable_unrestricted_guest || emulate_invalid_guest_state;
9150 }
9151
9152 static bool vmx_mpx_supported(void)
9153 {
9154         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9155                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9156 }
9157
9158 static bool vmx_xsaves_supported(void)
9159 {
9160         return vmcs_config.cpu_based_2nd_exec_ctrl &
9161                 SECONDARY_EXEC_XSAVES;
9162 }
9163
9164 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9165 {
9166         u32 exit_intr_info;
9167         bool unblock_nmi;
9168         u8 vector;
9169         bool idtv_info_valid;
9170
9171         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9172
9173         if (enable_vnmi) {
9174                 if (vmx->loaded_vmcs->nmi_known_unmasked)
9175                         return;
9176                 /*
9177                  * Can't use vmx->exit_intr_info since we're not sure what
9178                  * the exit reason is.
9179                  */
9180                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9181                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9182                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9183                 /*
9184                  * SDM 3: 27.7.1.2 (September 2008)
9185                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
9186                  * a guest IRET fault.
9187                  * SDM 3: 23.2.2 (September 2008)
9188                  * Bit 12 is undefined in any of the following cases:
9189                  *  If the VM exit sets the valid bit in the IDT-vectoring
9190                  *   information field.
9191                  *  If the VM exit is due to a double fault.
9192                  */
9193                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9194                     vector != DF_VECTOR && !idtv_info_valid)
9195                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9196                                       GUEST_INTR_STATE_NMI);
9197                 else
9198                         vmx->loaded_vmcs->nmi_known_unmasked =
9199                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9200                                   & GUEST_INTR_STATE_NMI);
9201         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
9202                 vmx->loaded_vmcs->vnmi_blocked_time +=
9203                         ktime_to_ns(ktime_sub(ktime_get(),
9204                                               vmx->loaded_vmcs->entry_time));
9205 }
9206
9207 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
9208                                       u32 idt_vectoring_info,
9209                                       int instr_len_field,
9210                                       int error_code_field)
9211 {
9212         u8 vector;
9213         int type;
9214         bool idtv_info_valid;
9215
9216         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9217
9218         vcpu->arch.nmi_injected = false;
9219         kvm_clear_exception_queue(vcpu);
9220         kvm_clear_interrupt_queue(vcpu);
9221
9222         if (!idtv_info_valid)
9223                 return;
9224
9225         kvm_make_request(KVM_REQ_EVENT, vcpu);
9226
9227         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9228         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
9229
9230         switch (type) {
9231         case INTR_TYPE_NMI_INTR:
9232                 vcpu->arch.nmi_injected = true;
9233                 /*
9234                  * SDM 3: 27.7.1.2 (September 2008)
9235                  * Clear bit "block by NMI" before VM entry if a NMI
9236                  * delivery faulted.
9237                  */
9238                 vmx_set_nmi_mask(vcpu, false);
9239                 break;
9240         case INTR_TYPE_SOFT_EXCEPTION:
9241                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9242                 /* fall through */
9243         case INTR_TYPE_HARD_EXCEPTION:
9244                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
9245                         u32 err = vmcs_read32(error_code_field);
9246                         kvm_requeue_exception_e(vcpu, vector, err);
9247                 } else
9248                         kvm_requeue_exception(vcpu, vector);
9249                 break;
9250         case INTR_TYPE_SOFT_INTR:
9251                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9252                 /* fall through */
9253         case INTR_TYPE_EXT_INTR:
9254                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
9255                 break;
9256         default:
9257                 break;
9258         }
9259 }
9260
9261 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9262 {
9263         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
9264                                   VM_EXIT_INSTRUCTION_LEN,
9265                                   IDT_VECTORING_ERROR_CODE);
9266 }
9267
9268 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9269 {
9270         __vmx_complete_interrupts(vcpu,
9271                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9272                                   VM_ENTRY_INSTRUCTION_LEN,
9273                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
9274
9275         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9276 }
9277
9278 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9279 {
9280         int i, nr_msrs;
9281         struct perf_guest_switch_msr *msrs;
9282
9283         msrs = perf_guest_get_msrs(&nr_msrs);
9284
9285         if (!msrs)
9286                 return;
9287
9288         for (i = 0; i < nr_msrs; i++)
9289                 if (msrs[i].host == msrs[i].guest)
9290                         clear_atomic_switch_msr(vmx, msrs[i].msr);
9291                 else
9292                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9293                                         msrs[i].host);
9294 }
9295
9296 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
9297 {
9298         struct vcpu_vmx *vmx = to_vmx(vcpu);
9299         u64 tscl;
9300         u32 delta_tsc;
9301
9302         if (vmx->hv_deadline_tsc == -1)
9303                 return;
9304
9305         tscl = rdtsc();
9306         if (vmx->hv_deadline_tsc > tscl)
9307                 /* sure to be 32 bit only because checked on set_hv_timer */
9308                 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9309                         cpu_preemption_timer_multi);
9310         else
9311                 delta_tsc = 0;
9312
9313         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9314 }
9315
9316 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
9317 {
9318         struct vcpu_vmx *vmx = to_vmx(vcpu);
9319         unsigned long debugctlmsr, cr3, cr4;
9320
9321         /* Record the guest's net vcpu time for enforced NMI injections. */
9322         if (unlikely(!enable_vnmi &&
9323                      vmx->loaded_vmcs->soft_vnmi_blocked))
9324                 vmx->loaded_vmcs->entry_time = ktime_get();
9325
9326         /* Don't enter VMX if guest state is invalid, let the exit handler
9327            start emulation until we arrive back to a valid state */
9328         if (vmx->emulation_required)
9329                 return;
9330
9331         if (vmx->ple_window_dirty) {
9332                 vmx->ple_window_dirty = false;
9333                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9334         }
9335
9336         if (vmx->nested.sync_shadow_vmcs) {
9337                 copy_vmcs12_to_shadow(vmx);
9338                 vmx->nested.sync_shadow_vmcs = false;
9339         }
9340
9341         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9342                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9343         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9344                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9345
9346         cr3 = __get_current_cr3_fast();
9347         if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
9348                 vmcs_writel(HOST_CR3, cr3);
9349                 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
9350         }
9351
9352         cr4 = cr4_read_shadow();
9353         if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
9354                 vmcs_writel(HOST_CR4, cr4);
9355                 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
9356         }
9357
9358         /* When single-stepping over STI and MOV SS, we must clear the
9359          * corresponding interruptibility bits in the guest state. Otherwise
9360          * vmentry fails as it then expects bit 14 (BS) in pending debug
9361          * exceptions being set, but that's not correct for the guest debugging
9362          * case. */
9363         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9364                 vmx_set_interrupt_shadow(vcpu, 0);
9365
9366         if (static_cpu_has(X86_FEATURE_PKU) &&
9367             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9368             vcpu->arch.pkru != vmx->host_pkru)
9369                 __write_pkru(vcpu->arch.pkru);
9370
9371         atomic_switch_perf_msrs(vmx);
9372         debugctlmsr = get_debugctlmsr();
9373
9374         vmx_arm_hv_timer(vcpu);
9375
9376         vmx->__launched = vmx->loaded_vmcs->launched;
9377         asm(
9378                 /* Store host registers */
9379                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9380                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9381                 "push %%" _ASM_CX " \n\t"
9382                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9383                 "je 1f \n\t"
9384                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9385                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
9386                 "1: \n\t"
9387                 /* Reload cr2 if changed */
9388                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9389                 "mov %%cr2, %%" _ASM_DX " \n\t"
9390                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
9391                 "je 2f \n\t"
9392                 "mov %%" _ASM_AX", %%cr2 \n\t"
9393                 "2: \n\t"
9394                 /* Check if vmlaunch of vmresume is needed */
9395                 "cmpl $0, %c[launched](%0) \n\t"
9396                 /* Load guest registers.  Don't clobber flags. */
9397                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9398                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9399                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9400                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9401                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9402                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
9403 #ifdef CONFIG_X86_64
9404                 "mov %c[r8](%0),  %%r8  \n\t"
9405                 "mov %c[r9](%0),  %%r9  \n\t"
9406                 "mov %c[r10](%0), %%r10 \n\t"
9407                 "mov %c[r11](%0), %%r11 \n\t"
9408                 "mov %c[r12](%0), %%r12 \n\t"
9409                 "mov %c[r13](%0), %%r13 \n\t"
9410                 "mov %c[r14](%0), %%r14 \n\t"
9411                 "mov %c[r15](%0), %%r15 \n\t"
9412 #endif
9413                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
9414
9415                 /* Enter guest mode */
9416                 "jne 1f \n\t"
9417                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
9418                 "jmp 2f \n\t"
9419                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9420                 "2: "
9421                 /* Save guest registers, load host registers, keep flags */
9422                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
9423                 "pop %0 \n\t"
9424                 "setbe %c[fail](%0)\n\t"
9425                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9426                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9427                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9428                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9429                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9430                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9431                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
9432 #ifdef CONFIG_X86_64
9433                 "mov %%r8,  %c[r8](%0) \n\t"
9434                 "mov %%r9,  %c[r9](%0) \n\t"
9435                 "mov %%r10, %c[r10](%0) \n\t"
9436                 "mov %%r11, %c[r11](%0) \n\t"
9437                 "mov %%r12, %c[r12](%0) \n\t"
9438                 "mov %%r13, %c[r13](%0) \n\t"
9439                 "mov %%r14, %c[r14](%0) \n\t"
9440                 "mov %%r15, %c[r15](%0) \n\t"
9441                 "xor %%r8d,  %%r8d \n\t"
9442                 "xor %%r9d,  %%r9d \n\t"
9443                 "xor %%r10d, %%r10d \n\t"
9444                 "xor %%r11d, %%r11d \n\t"
9445                 "xor %%r12d, %%r12d \n\t"
9446                 "xor %%r13d, %%r13d \n\t"
9447                 "xor %%r14d, %%r14d \n\t"
9448                 "xor %%r15d, %%r15d \n\t"
9449 #endif
9450                 "mov %%cr2, %%" _ASM_AX "   \n\t"
9451                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9452
9453                 "xor %%eax, %%eax \n\t"
9454                 "xor %%ebx, %%ebx \n\t"
9455                 "xor %%esi, %%esi \n\t"
9456                 "xor %%edi, %%edi \n\t"
9457                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
9458                 ".pushsection .rodata \n\t"
9459                 ".global vmx_return \n\t"
9460                 "vmx_return: " _ASM_PTR " 2b \n\t"
9461                 ".popsection"
9462               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9463                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9464                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9465                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9466                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9467                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9468                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9469                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9470                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9471                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9472                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9473 #ifdef CONFIG_X86_64
9474                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9475                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9476                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9477                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9478                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9479                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9480                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9481                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9482 #endif
9483                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9484                 [wordsize]"i"(sizeof(ulong))
9485               : "cc", "memory"
9486 #ifdef CONFIG_X86_64
9487                 , "rax", "rbx", "rdi", "rsi"
9488                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9489 #else
9490                 , "eax", "ebx", "edi", "esi"
9491 #endif
9492               );
9493
9494         /* Eliminate branch target predictions from guest mode */
9495         vmexit_fill_RSB();
9496
9497         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9498         if (debugctlmsr)
9499                 update_debugctlmsr(debugctlmsr);
9500
9501 #ifndef CONFIG_X86_64
9502         /*
9503          * The sysexit path does not restore ds/es, so we must set them to
9504          * a reasonable value ourselves.
9505          *
9506          * We can't defer this to vmx_load_host_state() since that function
9507          * may be executed in interrupt context, which saves and restore segments
9508          * around it, nullifying its effect.
9509          */
9510         loadsegment(ds, __USER_DS);
9511         loadsegment(es, __USER_DS);
9512 #endif
9513
9514         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9515                                   | (1 << VCPU_EXREG_RFLAGS)
9516                                   | (1 << VCPU_EXREG_PDPTR)
9517                                   | (1 << VCPU_EXREG_SEGMENTS)
9518                                   | (1 << VCPU_EXREG_CR3));
9519         vcpu->arch.regs_dirty = 0;
9520
9521         /*
9522          * eager fpu is enabled if PKEY is supported and CR4 is switched
9523          * back on host, so it is safe to read guest PKRU from current
9524          * XSAVE.
9525          */
9526         if (static_cpu_has(X86_FEATURE_PKU) &&
9527             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9528                 vcpu->arch.pkru = __read_pkru();
9529                 if (vcpu->arch.pkru != vmx->host_pkru)
9530                         __write_pkru(vmx->host_pkru);
9531         }
9532
9533         /*
9534          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9535          * we did not inject a still-pending event to L1 now because of
9536          * nested_run_pending, we need to re-enable this bit.
9537          */
9538         if (vmx->nested.nested_run_pending)
9539                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9540
9541         vmx->nested.nested_run_pending = 0;
9542         vmx->idt_vectoring_info = 0;
9543
9544         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9545         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9546                 return;
9547
9548         vmx->loaded_vmcs->launched = 1;
9549         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9550
9551         vmx_complete_atomic_exit(vmx);
9552         vmx_recover_nmi_blocking(vmx);
9553         vmx_complete_interrupts(vmx);
9554 }
9555 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9556
9557 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9558 {
9559         struct vcpu_vmx *vmx = to_vmx(vcpu);
9560         int cpu;
9561
9562         if (vmx->loaded_vmcs == vmcs)
9563                 return;
9564
9565         cpu = get_cpu();
9566         vmx->loaded_vmcs = vmcs;
9567         vmx_vcpu_put(vcpu);
9568         vmx_vcpu_load(vcpu, cpu);
9569         put_cpu();
9570 }
9571
9572 /*
9573  * Ensure that the current vmcs of the logical processor is the
9574  * vmcs01 of the vcpu before calling free_nested().
9575  */
9576 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9577 {
9578        struct vcpu_vmx *vmx = to_vmx(vcpu);
9579        int r;
9580
9581        r = vcpu_load(vcpu);
9582        BUG_ON(r);
9583        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9584        free_nested(vmx);
9585        vcpu_put(vcpu);
9586 }
9587
9588 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9589 {
9590         struct vcpu_vmx *vmx = to_vmx(vcpu);
9591
9592         if (enable_pml)
9593                 vmx_destroy_pml_buffer(vmx);
9594         free_vpid(vmx->vpid);
9595         leave_guest_mode(vcpu);
9596         vmx_free_vcpu_nested(vcpu);
9597         free_loaded_vmcs(vmx->loaded_vmcs);
9598         kfree(vmx->guest_msrs);
9599         kvm_vcpu_uninit(vcpu);
9600         kmem_cache_free(kvm_vcpu_cache, vmx);
9601 }
9602
9603 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9604 {
9605         int err;
9606         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9607         int cpu;
9608
9609         if (!vmx)
9610                 return ERR_PTR(-ENOMEM);
9611
9612         vmx->vpid = allocate_vpid();
9613
9614         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9615         if (err)
9616                 goto free_vcpu;
9617
9618         err = -ENOMEM;
9619
9620         /*
9621          * If PML is turned on, failure on enabling PML just results in failure
9622          * of creating the vcpu, therefore we can simplify PML logic (by
9623          * avoiding dealing with cases, such as enabling PML partially on vcpus
9624          * for the guest, etc.
9625          */
9626         if (enable_pml) {
9627                 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9628                 if (!vmx->pml_pg)
9629                         goto uninit_vcpu;
9630         }
9631
9632         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9633         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9634                      > PAGE_SIZE);
9635
9636         if (!vmx->guest_msrs)
9637                 goto free_pml;
9638
9639         vmx->loaded_vmcs = &vmx->vmcs01;
9640         vmx->loaded_vmcs->vmcs = alloc_vmcs();
9641         vmx->loaded_vmcs->shadow_vmcs = NULL;
9642         if (!vmx->loaded_vmcs->vmcs)
9643                 goto free_msrs;
9644         loaded_vmcs_init(vmx->loaded_vmcs);
9645
9646         cpu = get_cpu();
9647         vmx_vcpu_load(&vmx->vcpu, cpu);
9648         vmx->vcpu.cpu = cpu;
9649         vmx_vcpu_setup(vmx);
9650         vmx_vcpu_put(&vmx->vcpu);
9651         put_cpu();
9652         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9653                 err = alloc_apic_access_page(kvm);
9654                 if (err)
9655                         goto free_vmcs;
9656         }
9657
9658         if (enable_ept) {
9659                 err = init_rmode_identity_map(kvm);
9660                 if (err)
9661                         goto free_vmcs;
9662         }
9663
9664         if (nested) {
9665                 nested_vmx_setup_ctls_msrs(vmx);
9666                 vmx->nested.vpid02 = allocate_vpid();
9667         }
9668
9669         vmx->nested.posted_intr_nv = -1;
9670         vmx->nested.current_vmptr = -1ull;
9671
9672         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9673
9674         /*
9675          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9676          * or POSTED_INTR_WAKEUP_VECTOR.
9677          */
9678         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
9679         vmx->pi_desc.sn = 1;
9680
9681         return &vmx->vcpu;
9682
9683 free_vmcs:
9684         free_vpid(vmx->nested.vpid02);
9685         free_loaded_vmcs(vmx->loaded_vmcs);
9686 free_msrs:
9687         kfree(vmx->guest_msrs);
9688 free_pml:
9689         vmx_destroy_pml_buffer(vmx);
9690 uninit_vcpu:
9691         kvm_vcpu_uninit(&vmx->vcpu);
9692 free_vcpu:
9693         free_vpid(vmx->vpid);
9694         kmem_cache_free(kvm_vcpu_cache, vmx);
9695         return ERR_PTR(err);
9696 }
9697
9698 static void __init vmx_check_processor_compat(void *rtn)
9699 {
9700         struct vmcs_config vmcs_conf;
9701
9702         *(int *)rtn = 0;
9703         if (setup_vmcs_config(&vmcs_conf) < 0)
9704                 *(int *)rtn = -EIO;
9705         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9706                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9707                                 smp_processor_id());
9708                 *(int *)rtn = -EIO;
9709         }
9710 }
9711
9712 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9713 {
9714         u8 cache;
9715         u64 ipat = 0;
9716
9717         /* For VT-d and EPT combination
9718          * 1. MMIO: always map as UC
9719          * 2. EPT with VT-d:
9720          *   a. VT-d without snooping control feature: can't guarantee the
9721          *      result, try to trust guest.
9722          *   b. VT-d with snooping control feature: snooping control feature of
9723          *      VT-d engine can guarantee the cache correctness. Just set it
9724          *      to WB to keep consistent with host. So the same as item 3.
9725          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9726          *    consistent with host MTRR
9727          */
9728         if (is_mmio) {
9729                 cache = MTRR_TYPE_UNCACHABLE;
9730                 goto exit;
9731         }
9732
9733         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9734                 ipat = VMX_EPT_IPAT_BIT;
9735                 cache = MTRR_TYPE_WRBACK;
9736                 goto exit;
9737         }
9738
9739         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9740                 ipat = VMX_EPT_IPAT_BIT;
9741                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9742                         cache = MTRR_TYPE_WRBACK;
9743                 else
9744                         cache = MTRR_TYPE_UNCACHABLE;
9745                 goto exit;
9746         }
9747
9748         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9749
9750 exit:
9751         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9752 }
9753
9754 static int vmx_get_lpage_level(void)
9755 {
9756         if (enable_ept && !cpu_has_vmx_ept_1g_page())
9757                 return PT_DIRECTORY_LEVEL;
9758         else
9759                 /* For shadow and EPT supported 1GB page */
9760                 return PT_PDPE_LEVEL;
9761 }
9762
9763 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9764 {
9765         /*
9766          * These bits in the secondary execution controls field
9767          * are dynamic, the others are mostly based on the hypervisor
9768          * architecture and the guest's CPUID.  Do not touch the
9769          * dynamic bits.
9770          */
9771         u32 mask =
9772                 SECONDARY_EXEC_SHADOW_VMCS |
9773                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9774                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9775
9776         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9777
9778         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9779                      (new_ctl & ~mask) | (cur_ctl & mask));
9780 }
9781
9782 /*
9783  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9784  * (indicating "allowed-1") if they are supported in the guest's CPUID.
9785  */
9786 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9787 {
9788         struct vcpu_vmx *vmx = to_vmx(vcpu);
9789         struct kvm_cpuid_entry2 *entry;
9790
9791         vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9792         vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9793
9794 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
9795         if (entry && (entry->_reg & (_cpuid_mask)))                     \
9796                 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask);       \
9797 } while (0)
9798
9799         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9800         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
9801         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
9802         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
9803         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
9804         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
9805         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
9806         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
9807         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
9808         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
9809         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9810         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
9811         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
9812         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
9813         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
9814
9815         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9816         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
9817         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
9818         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
9819         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
9820         cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
9821
9822 #undef cr4_fixed1_update
9823 }
9824
9825 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9826 {
9827         struct vcpu_vmx *vmx = to_vmx(vcpu);
9828
9829         if (cpu_has_secondary_exec_ctrls()) {
9830                 vmx_compute_secondary_exec_control(vmx);
9831                 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
9832         }
9833
9834         if (nested_vmx_allowed(vcpu))
9835                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9836                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9837         else
9838                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9839                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9840
9841         if (nested_vmx_allowed(vcpu))
9842                 nested_vmx_cr_fixed1_bits_update(vcpu);
9843 }
9844
9845 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9846 {
9847         if (func == 1 && nested)
9848                 entry->ecx |= bit(X86_FEATURE_VMX);
9849 }
9850
9851 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9852                 struct x86_exception *fault)
9853 {
9854         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9855         struct vcpu_vmx *vmx = to_vmx(vcpu);
9856         u32 exit_reason;
9857         unsigned long exit_qualification = vcpu->arch.exit_qualification;
9858
9859         if (vmx->nested.pml_full) {
9860                 exit_reason = EXIT_REASON_PML_FULL;
9861                 vmx->nested.pml_full = false;
9862                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9863         } else if (fault->error_code & PFERR_RSVD_MASK)
9864                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9865         else
9866                 exit_reason = EXIT_REASON_EPT_VIOLATION;
9867
9868         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9869         vmcs12->guest_physical_address = fault->address;
9870 }
9871
9872 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9873 {
9874         return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
9875 }
9876
9877 /* Callbacks for nested_ept_init_mmu_context: */
9878
9879 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9880 {
9881         /* return the page table to be shadowed - in our case, EPT12 */
9882         return get_vmcs12(vcpu)->ept_pointer;
9883 }
9884
9885 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9886 {
9887         WARN_ON(mmu_is_nested(vcpu));
9888         if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
9889                 return 1;
9890
9891         kvm_mmu_unload(vcpu);
9892         kvm_init_shadow_ept_mmu(vcpu,
9893                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9894                         VMX_EPT_EXECUTE_ONLY_BIT,
9895                         nested_ept_ad_enabled(vcpu));
9896         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9897         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9898         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9899
9900         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9901         return 0;
9902 }
9903
9904 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9905 {
9906         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9907 }
9908
9909 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9910                                             u16 error_code)
9911 {
9912         bool inequality, bit;
9913
9914         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9915         inequality =
9916                 (error_code & vmcs12->page_fault_error_code_mask) !=
9917                  vmcs12->page_fault_error_code_match;
9918         return inequality ^ bit;
9919 }
9920
9921 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9922                 struct x86_exception *fault)
9923 {
9924         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9925
9926         WARN_ON(!is_guest_mode(vcpu));
9927
9928         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
9929                 !to_vmx(vcpu)->nested.nested_run_pending) {
9930                 vmcs12->vm_exit_intr_error_code = fault->error_code;
9931                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9932                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9933                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9934                                   fault->address);
9935         } else {
9936                 kvm_inject_page_fault(vcpu, fault);
9937         }
9938 }
9939
9940 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9941                                                struct vmcs12 *vmcs12);
9942
9943 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9944                                         struct vmcs12 *vmcs12)
9945 {
9946         struct vcpu_vmx *vmx = to_vmx(vcpu);
9947         struct page *page;
9948         u64 hpa;
9949
9950         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9951                 /*
9952                  * Translate L1 physical address to host physical
9953                  * address for vmcs02. Keep the page pinned, so this
9954                  * physical address remains valid. We keep a reference
9955                  * to it so we can release it later.
9956                  */
9957                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
9958                         kvm_release_page_dirty(vmx->nested.apic_access_page);
9959                         vmx->nested.apic_access_page = NULL;
9960                 }
9961                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
9962                 /*
9963                  * If translation failed, no matter: This feature asks
9964                  * to exit when accessing the given address, and if it
9965                  * can never be accessed, this feature won't do
9966                  * anything anyway.
9967                  */
9968                 if (!is_error_page(page)) {
9969                         vmx->nested.apic_access_page = page;
9970                         hpa = page_to_phys(vmx->nested.apic_access_page);
9971                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
9972                 } else {
9973                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9974                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9975                 }
9976         } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9977                    cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9978                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9979                               SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9980                 kvm_vcpu_reload_apic_access_page(vcpu);
9981         }
9982
9983         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9984                 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
9985                         kvm_release_page_dirty(vmx->nested.virtual_apic_page);
9986                         vmx->nested.virtual_apic_page = NULL;
9987                 }
9988                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
9989
9990                 /*
9991                  * If translation failed, VM entry will fail because
9992                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9993                  * Failing the vm entry is _not_ what the processor
9994                  * does but it's basically the only possibility we
9995                  * have.  We could still enter the guest if CR8 load
9996                  * exits are enabled, CR8 store exits are enabled, and
9997                  * virtualize APIC access is disabled; in this case
9998                  * the processor would never use the TPR shadow and we
9999                  * could simply clear the bit from the execution
10000                  * control.  But such a configuration is useless, so
10001                  * let's keep the code simple.
10002                  */
10003                 if (!is_error_page(page)) {
10004                         vmx->nested.virtual_apic_page = page;
10005                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
10006                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
10007                 }
10008         }
10009
10010         if (nested_cpu_has_posted_intr(vmcs12)) {
10011                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
10012                         kunmap(vmx->nested.pi_desc_page);
10013                         kvm_release_page_dirty(vmx->nested.pi_desc_page);
10014                         vmx->nested.pi_desc_page = NULL;
10015                 }
10016                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
10017                 if (is_error_page(page))
10018                         return;
10019                 vmx->nested.pi_desc_page = page;
10020                 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
10021                 vmx->nested.pi_desc =
10022                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
10023                         (unsigned long)(vmcs12->posted_intr_desc_addr &
10024                         (PAGE_SIZE - 1)));
10025                 vmcs_write64(POSTED_INTR_DESC_ADDR,
10026                         page_to_phys(vmx->nested.pi_desc_page) +
10027                         (unsigned long)(vmcs12->posted_intr_desc_addr &
10028                         (PAGE_SIZE - 1)));
10029         }
10030         if (cpu_has_vmx_msr_bitmap() &&
10031             nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
10032             nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
10033                 ;
10034         else
10035                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
10036                                 CPU_BASED_USE_MSR_BITMAPS);
10037 }
10038
10039 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
10040 {
10041         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
10042         struct vcpu_vmx *vmx = to_vmx(vcpu);
10043
10044         if (vcpu->arch.virtual_tsc_khz == 0)
10045                 return;
10046
10047         /* Make sure short timeouts reliably trigger an immediate vmexit.
10048          * hrtimer_start does not guarantee this. */
10049         if (preemption_timeout <= 1) {
10050                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
10051                 return;
10052         }
10053
10054         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10055         preemption_timeout *= 1000000;
10056         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
10057         hrtimer_start(&vmx->nested.preemption_timer,
10058                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
10059 }
10060
10061 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
10062                                                struct vmcs12 *vmcs12)
10063 {
10064         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
10065                 return 0;
10066
10067         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
10068             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
10069                 return -EINVAL;
10070
10071         return 0;
10072 }
10073
10074 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
10075                                                 struct vmcs12 *vmcs12)
10076 {
10077         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10078                 return 0;
10079
10080         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
10081                 return -EINVAL;
10082
10083         return 0;
10084 }
10085
10086 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10087                                                 struct vmcs12 *vmcs12)
10088 {
10089         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10090                 return 0;
10091
10092         if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10093                 return -EINVAL;
10094
10095         return 0;
10096 }
10097
10098 /*
10099  * Merge L0's and L1's MSR bitmap, return false to indicate that
10100  * we do not use the hardware.
10101  */
10102 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10103                                                struct vmcs12 *vmcs12)
10104 {
10105         int msr;
10106         struct page *page;
10107         unsigned long *msr_bitmap_l1;
10108         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
10109
10110         /* This shortcut is ok because we support only x2APIC MSRs so far. */
10111         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
10112                 return false;
10113
10114         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10115         if (is_error_page(page))
10116                 return false;
10117         msr_bitmap_l1 = (unsigned long *)kmap(page);
10118
10119         memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10120
10121         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
10122                 if (nested_cpu_has_apic_reg_virt(vmcs12))
10123                         for (msr = 0x800; msr <= 0x8ff; msr++)
10124                                 nested_vmx_disable_intercept_for_msr(
10125                                         msr_bitmap_l1, msr_bitmap_l0,
10126                                         msr, MSR_TYPE_R);
10127
10128                 nested_vmx_disable_intercept_for_msr(
10129                                 msr_bitmap_l1, msr_bitmap_l0,
10130                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10131                                 MSR_TYPE_R | MSR_TYPE_W);
10132
10133                 if (nested_cpu_has_vid(vmcs12)) {
10134                         nested_vmx_disable_intercept_for_msr(
10135                                 msr_bitmap_l1, msr_bitmap_l0,
10136                                 APIC_BASE_MSR + (APIC_EOI >> 4),
10137                                 MSR_TYPE_W);
10138                         nested_vmx_disable_intercept_for_msr(
10139                                 msr_bitmap_l1, msr_bitmap_l0,
10140                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10141                                 MSR_TYPE_W);
10142                 }
10143         }
10144         kunmap(page);
10145         kvm_release_page_clean(page);
10146
10147         return true;
10148 }
10149
10150 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10151                                            struct vmcs12 *vmcs12)
10152 {
10153         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10154             !nested_cpu_has_apic_reg_virt(vmcs12) &&
10155             !nested_cpu_has_vid(vmcs12) &&
10156             !nested_cpu_has_posted_intr(vmcs12))
10157                 return 0;
10158
10159         /*
10160          * If virtualize x2apic mode is enabled,
10161          * virtualize apic access must be disabled.
10162          */
10163         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10164             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
10165                 return -EINVAL;
10166
10167         /*
10168          * If virtual interrupt delivery is enabled,
10169          * we must exit on external interrupts.
10170          */
10171         if (nested_cpu_has_vid(vmcs12) &&
10172            !nested_exit_on_intr(vcpu))
10173                 return -EINVAL;
10174
10175         /*
10176          * bits 15:8 should be zero in posted_intr_nv,
10177          * the descriptor address has been already checked
10178          * in nested_get_vmcs12_pages.
10179          */
10180         if (nested_cpu_has_posted_intr(vmcs12) &&
10181            (!nested_cpu_has_vid(vmcs12) ||
10182             !nested_exit_intr_ack_set(vcpu) ||
10183             vmcs12->posted_intr_nv & 0xff00))
10184                 return -EINVAL;
10185
10186         /* tpr shadow is needed by all apicv features. */
10187         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10188                 return -EINVAL;
10189
10190         return 0;
10191 }
10192
10193 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10194                                        unsigned long count_field,
10195                                        unsigned long addr_field)
10196 {
10197         int maxphyaddr;
10198         u64 count, addr;
10199
10200         if (vmcs12_read_any(vcpu, count_field, &count) ||
10201             vmcs12_read_any(vcpu, addr_field, &addr)) {
10202                 WARN_ON(1);
10203                 return -EINVAL;
10204         }
10205         if (count == 0)
10206                 return 0;
10207         maxphyaddr = cpuid_maxphyaddr(vcpu);
10208         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10209             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
10210                 pr_debug_ratelimited(
10211                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10212                         addr_field, maxphyaddr, count, addr);
10213                 return -EINVAL;
10214         }
10215         return 0;
10216 }
10217
10218 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10219                                                 struct vmcs12 *vmcs12)
10220 {
10221         if (vmcs12->vm_exit_msr_load_count == 0 &&
10222             vmcs12->vm_exit_msr_store_count == 0 &&
10223             vmcs12->vm_entry_msr_load_count == 0)
10224                 return 0; /* Fast path */
10225         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
10226                                         VM_EXIT_MSR_LOAD_ADDR) ||
10227             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
10228                                         VM_EXIT_MSR_STORE_ADDR) ||
10229             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
10230                                         VM_ENTRY_MSR_LOAD_ADDR))
10231                 return -EINVAL;
10232         return 0;
10233 }
10234
10235 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10236                                          struct vmcs12 *vmcs12)
10237 {
10238         u64 address = vmcs12->pml_address;
10239         int maxphyaddr = cpuid_maxphyaddr(vcpu);
10240
10241         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10242                 if (!nested_cpu_has_ept(vmcs12) ||
10243                     !IS_ALIGNED(address, 4096)  ||
10244                     address >> maxphyaddr)
10245                         return -EINVAL;
10246         }
10247
10248         return 0;
10249 }
10250
10251 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10252                                        struct vmx_msr_entry *e)
10253 {
10254         /* x2APIC MSR accesses are not allowed */
10255         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
10256                 return -EINVAL;
10257         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10258             e->index == MSR_IA32_UCODE_REV)
10259                 return -EINVAL;
10260         if (e->reserved != 0)
10261                 return -EINVAL;
10262         return 0;
10263 }
10264
10265 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10266                                      struct vmx_msr_entry *e)
10267 {
10268         if (e->index == MSR_FS_BASE ||
10269             e->index == MSR_GS_BASE ||
10270             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10271             nested_vmx_msr_check_common(vcpu, e))
10272                 return -EINVAL;
10273         return 0;
10274 }
10275
10276 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10277                                       struct vmx_msr_entry *e)
10278 {
10279         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10280             nested_vmx_msr_check_common(vcpu, e))
10281                 return -EINVAL;
10282         return 0;
10283 }
10284
10285 /*
10286  * Load guest's/host's msr at nested entry/exit.
10287  * return 0 for success, entry index for failure.
10288  */
10289 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10290 {
10291         u32 i;
10292         struct vmx_msr_entry e;
10293         struct msr_data msr;
10294
10295         msr.host_initiated = false;
10296         for (i = 0; i < count; i++) {
10297                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10298                                         &e, sizeof(e))) {
10299                         pr_debug_ratelimited(
10300                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10301                                 __func__, i, gpa + i * sizeof(e));
10302                         goto fail;
10303                 }
10304                 if (nested_vmx_load_msr_check(vcpu, &e)) {
10305                         pr_debug_ratelimited(
10306                                 "%s check failed (%u, 0x%x, 0x%x)\n",
10307                                 __func__, i, e.index, e.reserved);
10308                         goto fail;
10309                 }
10310                 msr.index = e.index;
10311                 msr.data = e.value;
10312                 if (kvm_set_msr(vcpu, &msr)) {
10313                         pr_debug_ratelimited(
10314                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10315                                 __func__, i, e.index, e.value);
10316                         goto fail;
10317                 }
10318         }
10319         return 0;
10320 fail:
10321         return i + 1;
10322 }
10323
10324 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10325 {
10326         u32 i;
10327         struct vmx_msr_entry e;
10328
10329         for (i = 0; i < count; i++) {
10330                 struct msr_data msr_info;
10331                 if (kvm_vcpu_read_guest(vcpu,
10332                                         gpa + i * sizeof(e),
10333                                         &e, 2 * sizeof(u32))) {
10334                         pr_debug_ratelimited(
10335                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10336                                 __func__, i, gpa + i * sizeof(e));
10337                         return -EINVAL;
10338                 }
10339                 if (nested_vmx_store_msr_check(vcpu, &e)) {
10340                         pr_debug_ratelimited(
10341                                 "%s check failed (%u, 0x%x, 0x%x)\n",
10342                                 __func__, i, e.index, e.reserved);
10343                         return -EINVAL;
10344                 }
10345                 msr_info.host_initiated = false;
10346                 msr_info.index = e.index;
10347                 if (kvm_get_msr(vcpu, &msr_info)) {
10348                         pr_debug_ratelimited(
10349                                 "%s cannot read MSR (%u, 0x%x)\n",
10350                                 __func__, i, e.index);
10351                         return -EINVAL;
10352                 }
10353                 if (kvm_vcpu_write_guest(vcpu,
10354                                          gpa + i * sizeof(e) +
10355                                              offsetof(struct vmx_msr_entry, value),
10356                                          &msr_info.data, sizeof(msr_info.data))) {
10357                         pr_debug_ratelimited(
10358                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10359                                 __func__, i, e.index, msr_info.data);
10360                         return -EINVAL;
10361                 }
10362         }
10363         return 0;
10364 }
10365
10366 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10367 {
10368         unsigned long invalid_mask;
10369
10370         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10371         return (val & invalid_mask) == 0;
10372 }
10373
10374 /*
10375  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10376  * emulating VM entry into a guest with EPT enabled.
10377  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10378  * is assigned to entry_failure_code on failure.
10379  */
10380 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
10381                                u32 *entry_failure_code)
10382 {
10383         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
10384                 if (!nested_cr3_valid(vcpu, cr3)) {
10385                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10386                         return 1;
10387                 }
10388
10389                 /*
10390                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10391                  * must not be dereferenced.
10392                  */
10393                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10394                     !nested_ept) {
10395                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10396                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
10397                                 return 1;
10398                         }
10399                 }
10400
10401                 vcpu->arch.cr3 = cr3;
10402                 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10403         }
10404
10405         kvm_mmu_reset_context(vcpu);
10406         return 0;
10407 }
10408
10409 /*
10410  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10411  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
10412  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
10413  * guest in a way that will both be appropriate to L1's requests, and our
10414  * needs. In addition to modifying the active vmcs (which is vmcs02), this
10415  * function also has additional necessary side-effects, like setting various
10416  * vcpu->arch fields.
10417  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10418  * is assigned to entry_failure_code on failure.
10419  */
10420 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10421                           bool from_vmentry, u32 *entry_failure_code)
10422 {
10423         struct vcpu_vmx *vmx = to_vmx(vcpu);
10424         u32 exec_control, vmcs12_exec_ctrl;
10425
10426         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10427         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10428         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10429         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10430         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10431         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10432         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10433         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10434         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10435         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10436         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10437         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10438         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10439         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10440         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10441         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10442         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10443         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10444         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10445         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10446         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10447         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10448         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10449         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10450         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10451         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10452         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10453         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10454         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10455         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10456         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10457         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10458         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10459         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10460         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10461         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10462
10463         if (from_vmentry &&
10464             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10465                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10466                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10467         } else {
10468                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10469                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10470         }
10471         if (from_vmentry) {
10472                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10473                              vmcs12->vm_entry_intr_info_field);
10474                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10475                              vmcs12->vm_entry_exception_error_code);
10476                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10477                              vmcs12->vm_entry_instruction_len);
10478                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10479                              vmcs12->guest_interruptibility_info);
10480                 vmx->loaded_vmcs->nmi_known_unmasked =
10481                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
10482         } else {
10483                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10484         }
10485         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10486         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10487         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10488                 vmcs12->guest_pending_dbg_exceptions);
10489         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10490         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10491
10492         if (nested_cpu_has_xsaves(vmcs12))
10493                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10494         vmcs_write64(VMCS_LINK_POINTER, -1ull);
10495
10496         exec_control = vmcs12->pin_based_vm_exec_control;
10497
10498         /* Preemption timer setting is only taken from vmcs01.  */
10499         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10500         exec_control |= vmcs_config.pin_based_exec_ctrl;
10501         if (vmx->hv_deadline_tsc == -1)
10502                 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10503
10504         /* Posted interrupts setting is only taken from vmcs12.  */
10505         if (nested_cpu_has_posted_intr(vmcs12)) {
10506                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10507                 vmx->nested.pi_pending = false;
10508                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
10509         } else {
10510                 exec_control &= ~PIN_BASED_POSTED_INTR;
10511         }
10512
10513         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10514
10515         vmx->nested.preemption_timer_expired = false;
10516         if (nested_cpu_has_preemption_timer(vmcs12))
10517                 vmx_start_preemption_timer(vcpu);
10518
10519         /*
10520          * Whether page-faults are trapped is determined by a combination of
10521          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10522          * If enable_ept, L0 doesn't care about page faults and we should
10523          * set all of these to L1's desires. However, if !enable_ept, L0 does
10524          * care about (at least some) page faults, and because it is not easy
10525          * (if at all possible?) to merge L0 and L1's desires, we simply ask
10526          * to exit on each and every L2 page fault. This is done by setting
10527          * MASK=MATCH=0 and (see below) EB.PF=1.
10528          * Note that below we don't need special code to set EB.PF beyond the
10529          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10530          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10531          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10532          */
10533         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10534                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10535         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10536                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10537
10538         if (cpu_has_secondary_exec_ctrls()) {
10539                 exec_control = vmx->secondary_exec_control;
10540
10541                 /* Take the following fields only from vmcs12 */
10542                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10543                                   SECONDARY_EXEC_ENABLE_INVPCID |
10544                                   SECONDARY_EXEC_RDTSCP |
10545                                   SECONDARY_EXEC_XSAVES |
10546                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10547                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
10548                                   SECONDARY_EXEC_ENABLE_VMFUNC);
10549                 if (nested_cpu_has(vmcs12,
10550                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10551                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10552                                 ~SECONDARY_EXEC_ENABLE_PML;
10553                         exec_control |= vmcs12_exec_ctrl;
10554                 }
10555
10556                 /* All VMFUNCs are currently emulated through L0 vmexits.  */
10557                 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10558                         vmcs_write64(VM_FUNCTION_CONTROL, 0);
10559
10560                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10561                         vmcs_write64(EOI_EXIT_BITMAP0,
10562                                 vmcs12->eoi_exit_bitmap0);
10563                         vmcs_write64(EOI_EXIT_BITMAP1,
10564                                 vmcs12->eoi_exit_bitmap1);
10565                         vmcs_write64(EOI_EXIT_BITMAP2,
10566                                 vmcs12->eoi_exit_bitmap2);
10567                         vmcs_write64(EOI_EXIT_BITMAP3,
10568                                 vmcs12->eoi_exit_bitmap3);
10569                         vmcs_write16(GUEST_INTR_STATUS,
10570                                 vmcs12->guest_intr_status);
10571                 }
10572
10573                 /*
10574                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
10575                  * nested_get_vmcs12_pages will either fix it up or
10576                  * remove the VM execution control.
10577                  */
10578                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10579                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10580
10581                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10582         }
10583
10584
10585         /*
10586          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10587          * Some constant fields are set here by vmx_set_constant_host_state().
10588          * Other fields are different per CPU, and will be set later when
10589          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10590          */
10591         vmx_set_constant_host_state(vmx);
10592
10593         /*
10594          * Set the MSR load/store lists to match L0's settings.
10595          */
10596         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10597         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10598         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10599         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10600         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10601
10602         /*
10603          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10604          * entry, but only if the current (host) sp changed from the value
10605          * we wrote last (vmx->host_rsp). This cache is no longer relevant
10606          * if we switch vmcs, and rather than hold a separate cache per vmcs,
10607          * here we just force the write to happen on entry.
10608          */
10609         vmx->host_rsp = 0;
10610
10611         exec_control = vmx_exec_control(vmx); /* L0's desires */
10612         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10613         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10614         exec_control &= ~CPU_BASED_TPR_SHADOW;
10615         exec_control |= vmcs12->cpu_based_vm_exec_control;
10616
10617         /*
10618          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10619          * nested_get_vmcs12_pages can't fix it up, the illegal value
10620          * will result in a VM entry failure.
10621          */
10622         if (exec_control & CPU_BASED_TPR_SHADOW) {
10623                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10624                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10625         } else {
10626 #ifdef CONFIG_X86_64
10627                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
10628                                 CPU_BASED_CR8_STORE_EXITING;
10629 #endif
10630         }
10631
10632         /*
10633          * Merging of IO bitmap not currently supported.
10634          * Rather, exit every time.
10635          */
10636         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10637         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10638
10639         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10640
10641         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10642          * bitwise-or of what L1 wants to trap for L2, and what we want to
10643          * trap. Note that CR0.TS also needs updating - we do this later.
10644          */
10645         update_exception_bitmap(vcpu);
10646         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10647         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10648
10649         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10650          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10651          * bits are further modified by vmx_set_efer() below.
10652          */
10653         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10654
10655         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10656          * emulated by vmx_set_efer(), below.
10657          */
10658         vm_entry_controls_init(vmx, 
10659                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10660                         ~VM_ENTRY_IA32E_MODE) |
10661                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10662
10663         if (from_vmentry &&
10664             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10665                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10666                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10667         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10668                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10669         }
10670
10671         set_cr4_guest_host_mask(vmx);
10672
10673         if (from_vmentry &&
10674             vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10675                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10676
10677         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10678                 vmcs_write64(TSC_OFFSET,
10679                         vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10680         else
10681                 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10682         if (kvm_has_tsc_control)
10683                 decache_tsc_multiplier(vmx);
10684
10685         if (enable_vpid) {
10686                 /*
10687                  * There is no direct mapping between vpid02 and vpid12, the
10688                  * vpid02 is per-vCPU for L0 and reused while the value of
10689                  * vpid12 is changed w/ one invvpid during nested vmentry.
10690                  * The vpid12 is allocated by L1 for L2, so it will not
10691                  * influence global bitmap(for vpid01 and vpid02 allocation)
10692                  * even if spawn a lot of nested vCPUs.
10693                  */
10694                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10695                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10696                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10697                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10698                                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10699                         }
10700                 } else {
10701                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10702                         vmx_flush_tlb(vcpu);
10703                 }
10704
10705         }
10706
10707         if (enable_pml) {
10708                 /*
10709                  * Conceptually we want to copy the PML address and index from
10710                  * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10711                  * since we always flush the log on each vmexit, this happens
10712                  * to be equivalent to simply resetting the fields in vmcs02.
10713                  */
10714                 ASSERT(vmx->pml_pg);
10715                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10716                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10717         }
10718
10719         if (nested_cpu_has_ept(vmcs12)) {
10720                 if (nested_ept_init_mmu_context(vcpu)) {
10721                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10722                         return 1;
10723                 }
10724         } else if (nested_cpu_has2(vmcs12,
10725                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10726                 vmx_flush_tlb_ept_only(vcpu);
10727         }
10728
10729         /*
10730          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10731          * bits which we consider mandatory enabled.
10732          * The CR0_READ_SHADOW is what L2 should have expected to read given
10733          * the specifications by L1; It's not enough to take
10734          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10735          * have more bits than L1 expected.
10736          */
10737         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10738         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10739
10740         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10741         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10742
10743         if (from_vmentry &&
10744             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10745                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10746         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10747                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10748         else
10749                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10750         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10751         vmx_set_efer(vcpu, vcpu->arch.efer);
10752
10753         /* Shadow page tables on either EPT or shadow page tables. */
10754         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10755                                 entry_failure_code))
10756                 return 1;
10757
10758         if (!enable_ept)
10759                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10760
10761         /*
10762          * L1 may access the L2's PDPTR, so save them to construct vmcs12
10763          */
10764         if (enable_ept) {
10765                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10766                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10767                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10768                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10769         }
10770
10771         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10772         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10773         return 0;
10774 }
10775
10776 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10777 {
10778         struct vcpu_vmx *vmx = to_vmx(vcpu);
10779
10780         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10781             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10782                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10783
10784         if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10785                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10786
10787         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10788                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10789
10790         if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
10791                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10792
10793         if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10794                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10795
10796         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10797                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10798
10799         if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10800                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10801
10802         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10803                                 vmx->nested.nested_vmx_procbased_ctls_low,
10804                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
10805             (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10806              !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10807                                  vmx->nested.nested_vmx_secondary_ctls_low,
10808                                  vmx->nested.nested_vmx_secondary_ctls_high)) ||
10809             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10810                                 vmx->nested.nested_vmx_pinbased_ctls_low,
10811                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10812             !vmx_control_verify(vmcs12->vm_exit_controls,
10813                                 vmx->nested.nested_vmx_exit_ctls_low,
10814                                 vmx->nested.nested_vmx_exit_ctls_high) ||
10815             !vmx_control_verify(vmcs12->vm_entry_controls,
10816                                 vmx->nested.nested_vmx_entry_ctls_low,
10817                                 vmx->nested.nested_vmx_entry_ctls_high))
10818                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10819
10820         if (nested_cpu_has_vmfunc(vmcs12)) {
10821                 if (vmcs12->vm_function_control &
10822                     ~vmx->nested.nested_vmx_vmfunc_controls)
10823                         return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10824
10825                 if (nested_cpu_has_eptp_switching(vmcs12)) {
10826                         if (!nested_cpu_has_ept(vmcs12) ||
10827                             !page_address_valid(vcpu, vmcs12->eptp_list_address))
10828                                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10829                 }
10830         }
10831
10832         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10833                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10834
10835         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10836             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10837             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10838                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10839
10840         return 0;
10841 }
10842
10843 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10844                                   u32 *exit_qual)
10845 {
10846         bool ia32e;
10847
10848         *exit_qual = ENTRY_FAIL_DEFAULT;
10849
10850         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10851             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10852                 return 1;
10853
10854         if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10855             vmcs12->vmcs_link_pointer != -1ull) {
10856                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10857                 return 1;
10858         }
10859
10860         /*
10861          * If the load IA32_EFER VM-entry control is 1, the following checks
10862          * are performed on the field for the IA32_EFER MSR:
10863          * - Bits reserved in the IA32_EFER MSR must be 0.
10864          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10865          *   the IA-32e mode guest VM-exit control. It must also be identical
10866          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10867          *   CR0.PG) is 1.
10868          */
10869         if (to_vmx(vcpu)->nested.nested_run_pending &&
10870             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10871                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10872                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10873                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10874                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10875                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10876                         return 1;
10877         }
10878
10879         /*
10880          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10881          * IA32_EFER MSR must be 0 in the field for that register. In addition,
10882          * the values of the LMA and LME bits in the field must each be that of
10883          * the host address-space size VM-exit control.
10884          */
10885         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10886                 ia32e = (vmcs12->vm_exit_controls &
10887                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10888                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10889                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10890                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10891                         return 1;
10892         }
10893
10894         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
10895                 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
10896                 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
10897                         return 1;
10898
10899         return 0;
10900 }
10901
10902 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10903 {
10904         struct vcpu_vmx *vmx = to_vmx(vcpu);
10905         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10906         struct loaded_vmcs *vmcs02;
10907         u32 msr_entry_idx;
10908         u32 exit_qual;
10909
10910         vmcs02 = nested_get_current_vmcs02(vmx);
10911         if (!vmcs02)
10912                 return -ENOMEM;
10913
10914         enter_guest_mode(vcpu);
10915
10916         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10917                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10918
10919         vmx_switch_vmcs(vcpu, vmcs02);
10920         vmx_segment_cache_clear(vmx);
10921
10922         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10923                 leave_guest_mode(vcpu);
10924                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10925                 nested_vmx_entry_failure(vcpu, vmcs12,
10926                                          EXIT_REASON_INVALID_STATE, exit_qual);
10927                 return 1;
10928         }
10929
10930         nested_get_vmcs12_pages(vcpu, vmcs12);
10931
10932         msr_entry_idx = nested_vmx_load_msr(vcpu,
10933                                             vmcs12->vm_entry_msr_load_addr,
10934                                             vmcs12->vm_entry_msr_load_count);
10935         if (msr_entry_idx) {
10936                 leave_guest_mode(vcpu);
10937                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10938                 nested_vmx_entry_failure(vcpu, vmcs12,
10939                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10940                 return 1;
10941         }
10942
10943         /*
10944          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10945          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10946          * returned as far as L1 is concerned. It will only return (and set
10947          * the success flag) when L2 exits (see nested_vmx_vmexit()).
10948          */
10949         return 0;
10950 }
10951
10952 /*
10953  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10954  * for running an L2 nested guest.
10955  */
10956 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10957 {
10958         struct vmcs12 *vmcs12;
10959         struct vcpu_vmx *vmx = to_vmx(vcpu);
10960         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
10961         u32 exit_qual;
10962         int ret;
10963
10964         if (!nested_vmx_check_permission(vcpu))
10965                 return 1;
10966
10967         if (!nested_vmx_check_vmcs12(vcpu))
10968                 goto out;
10969
10970         vmcs12 = get_vmcs12(vcpu);
10971
10972         if (enable_shadow_vmcs)
10973                 copy_shadow_to_vmcs12(vmx);
10974
10975         /*
10976          * The nested entry process starts with enforcing various prerequisites
10977          * on vmcs12 as required by the Intel SDM, and act appropriately when
10978          * they fail: As the SDM explains, some conditions should cause the
10979          * instruction to fail, while others will cause the instruction to seem
10980          * to succeed, but return an EXIT_REASON_INVALID_STATE.
10981          * To speed up the normal (success) code path, we should avoid checking
10982          * for misconfigurations which will anyway be caught by the processor
10983          * when using the merged vmcs02.
10984          */
10985         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10986                 nested_vmx_failValid(vcpu,
10987                                      VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10988                 goto out;
10989         }
10990
10991         if (vmcs12->launch_state == launch) {
10992                 nested_vmx_failValid(vcpu,
10993                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10994                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10995                 goto out;
10996         }
10997
10998         ret = check_vmentry_prereqs(vcpu, vmcs12);
10999         if (ret) {
11000                 nested_vmx_failValid(vcpu, ret);
11001                 goto out;
11002         }
11003
11004         /*
11005          * After this point, the trap flag no longer triggers a singlestep trap
11006          * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
11007          * This is not 100% correct; for performance reasons, we delegate most
11008          * of the checks on host state to the processor.  If those fail,
11009          * the singlestep trap is missed.
11010          */
11011         skip_emulated_instruction(vcpu);
11012
11013         ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
11014         if (ret) {
11015                 nested_vmx_entry_failure(vcpu, vmcs12,
11016                                          EXIT_REASON_INVALID_STATE, exit_qual);
11017                 return 1;
11018         }
11019
11020         /*
11021          * We're finally done with prerequisite checking, and can start with
11022          * the nested entry.
11023          */
11024
11025         ret = enter_vmx_non_root_mode(vcpu, true);
11026         if (ret)
11027                 return ret;
11028
11029         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
11030                 return kvm_vcpu_halt(vcpu);
11031
11032         vmx->nested.nested_run_pending = 1;
11033
11034         return 1;
11035
11036 out:
11037         return kvm_skip_emulated_instruction(vcpu);
11038 }
11039
11040 /*
11041  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
11042  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
11043  * This function returns the new value we should put in vmcs12.guest_cr0.
11044  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
11045  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
11046  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
11047  *     didn't trap the bit, because if L1 did, so would L0).
11048  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
11049  *     been modified by L2, and L1 knows it. So just leave the old value of
11050  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
11051  *     isn't relevant, because if L0 traps this bit it can set it to anything.
11052  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
11053  *     changed these bits, and therefore they need to be updated, but L0
11054  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
11055  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
11056  */
11057 static inline unsigned long
11058 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11059 {
11060         return
11061         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
11062         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
11063         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
11064                         vcpu->arch.cr0_guest_owned_bits));
11065 }
11066
11067 static inline unsigned long
11068 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11069 {
11070         return
11071         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
11072         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
11073         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
11074                         vcpu->arch.cr4_guest_owned_bits));
11075 }
11076
11077 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
11078                                        struct vmcs12 *vmcs12)
11079 {
11080         u32 idt_vectoring;
11081         unsigned int nr;
11082
11083         if (vcpu->arch.exception.injected) {
11084                 nr = vcpu->arch.exception.nr;
11085                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11086
11087                 if (kvm_exception_is_soft(nr)) {
11088                         vmcs12->vm_exit_instruction_len =
11089                                 vcpu->arch.event_exit_inst_len;
11090                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11091                 } else
11092                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11093
11094                 if (vcpu->arch.exception.has_error_code) {
11095                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11096                         vmcs12->idt_vectoring_error_code =
11097                                 vcpu->arch.exception.error_code;
11098                 }
11099
11100                 vmcs12->idt_vectoring_info_field = idt_vectoring;
11101         } else if (vcpu->arch.nmi_injected) {
11102                 vmcs12->idt_vectoring_info_field =
11103                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
11104         } else if (vcpu->arch.interrupt.pending) {
11105                 nr = vcpu->arch.interrupt.nr;
11106                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11107
11108                 if (vcpu->arch.interrupt.soft) {
11109                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
11110                         vmcs12->vm_entry_instruction_len =
11111                                 vcpu->arch.event_exit_inst_len;
11112                 } else
11113                         idt_vectoring |= INTR_TYPE_EXT_INTR;
11114
11115                 vmcs12->idt_vectoring_info_field = idt_vectoring;
11116         }
11117 }
11118
11119 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11120 {
11121         struct vcpu_vmx *vmx = to_vmx(vcpu);
11122         unsigned long exit_qual;
11123         bool block_nested_events =
11124             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
11125
11126         if (vcpu->arch.exception.pending &&
11127                 nested_vmx_check_exception(vcpu, &exit_qual)) {
11128                 if (block_nested_events)
11129                         return -EBUSY;
11130                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11131                 vcpu->arch.exception.pending = false;
11132                 return 0;
11133         }
11134
11135         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11136             vmx->nested.preemption_timer_expired) {
11137                 if (block_nested_events)
11138                         return -EBUSY;
11139                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11140                 return 0;
11141         }
11142
11143         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
11144                 if (block_nested_events)
11145                         return -EBUSY;
11146                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11147                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
11148                                   INTR_INFO_VALID_MASK, 0);
11149                 /*
11150                  * The NMI-triggered VM exit counts as injection:
11151                  * clear this one and block further NMIs.
11152                  */
11153                 vcpu->arch.nmi_pending = 0;
11154                 vmx_set_nmi_mask(vcpu, true);
11155                 return 0;
11156         }
11157
11158         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11159             nested_exit_on_intr(vcpu)) {
11160                 if (block_nested_events)
11161                         return -EBUSY;
11162                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
11163                 return 0;
11164         }
11165
11166         vmx_complete_nested_posted_interrupt(vcpu);
11167         return 0;
11168 }
11169
11170 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11171 {
11172         ktime_t remaining =
11173                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11174         u64 value;
11175
11176         if (ktime_to_ns(remaining) <= 0)
11177                 return 0;
11178
11179         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11180         do_div(value, 1000000);
11181         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11182 }
11183
11184 /*
11185  * Update the guest state fields of vmcs12 to reflect changes that
11186  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11187  * VM-entry controls is also updated, since this is really a guest
11188  * state bit.)
11189  */
11190 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11191 {
11192         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11193         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11194
11195         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11196         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11197         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11198
11199         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11200         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11201         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11202         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11203         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11204         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11205         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11206         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11207         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11208         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11209         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11210         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11211         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11212         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11213         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11214         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11215         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11216         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11217         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11218         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11219         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11220         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11221         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11222         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11223         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11224         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11225         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11226         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11227         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11228         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11229         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11230         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11231         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11232         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11233         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11234         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11235
11236         vmcs12->guest_interruptibility_info =
11237                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11238         vmcs12->guest_pending_dbg_exceptions =
11239                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
11240         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11241                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11242         else
11243                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
11244
11245         if (nested_cpu_has_preemption_timer(vmcs12)) {
11246                 if (vmcs12->vm_exit_controls &
11247                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11248                         vmcs12->vmx_preemption_timer_value =
11249                                 vmx_get_preemption_timer_value(vcpu);
11250                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11251         }
11252
11253         /*
11254          * In some cases (usually, nested EPT), L2 is allowed to change its
11255          * own CR3 without exiting. If it has changed it, we must keep it.
11256          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11257          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11258          *
11259          * Additionally, restore L2's PDPTR to vmcs12.
11260          */
11261         if (enable_ept) {
11262                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
11263                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11264                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11265                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11266                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11267         }
11268
11269         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
11270
11271         if (nested_cpu_has_vid(vmcs12))
11272                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11273
11274         vmcs12->vm_entry_controls =
11275                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
11276                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
11277
11278         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11279                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11280                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11281         }
11282
11283         /* TODO: These cannot have changed unless we have MSR bitmaps and
11284          * the relevant bit asks not to trap the change */
11285         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
11286                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
11287         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11288                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
11289         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11290         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11291         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
11292         if (kvm_mpx_supported())
11293                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
11294 }
11295
11296 /*
11297  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11298  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11299  * and this function updates it to reflect the changes to the guest state while
11300  * L2 was running (and perhaps made some exits which were handled directly by L0
11301  * without going back to L1), and to reflect the exit reason.
11302  * Note that we do not have to copy here all VMCS fields, just those that
11303  * could have changed by the L2 guest or the exit - i.e., the guest-state and
11304  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11305  * which already writes to vmcs12 directly.
11306  */
11307 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11308                            u32 exit_reason, u32 exit_intr_info,
11309                            unsigned long exit_qualification)
11310 {
11311         /* update guest state fields: */
11312         sync_vmcs12(vcpu, vmcs12);
11313
11314         /* update exit information fields: */
11315
11316         vmcs12->vm_exit_reason = exit_reason;
11317         vmcs12->exit_qualification = exit_qualification;
11318         vmcs12->vm_exit_intr_info = exit_intr_info;
11319
11320         vmcs12->idt_vectoring_info_field = 0;
11321         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11322         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11323
11324         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
11325                 vmcs12->launch_state = 1;
11326
11327                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11328                  * instead of reading the real value. */
11329                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
11330
11331                 /*
11332                  * Transfer the event that L0 or L1 may wanted to inject into
11333                  * L2 to IDT_VECTORING_INFO_FIELD.
11334                  */
11335                 vmcs12_save_pending_event(vcpu, vmcs12);
11336         }
11337
11338         /*
11339          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11340          * preserved above and would only end up incorrectly in L1.
11341          */
11342         vcpu->arch.nmi_injected = false;
11343         kvm_clear_exception_queue(vcpu);
11344         kvm_clear_interrupt_queue(vcpu);
11345 }
11346
11347 static void load_vmcs12_mmu_host_state(struct kvm_vcpu *vcpu,
11348                         struct vmcs12 *vmcs12)
11349 {
11350         u32 entry_failure_code;
11351
11352         nested_ept_uninit_mmu_context(vcpu);
11353
11354         /*
11355          * Only PDPTE load can fail as the value of cr3 was checked on entry and
11356          * couldn't have changed.
11357          */
11358         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11359                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
11360
11361         if (!enable_ept)
11362                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11363 }
11364
11365 /*
11366  * A part of what we need to when the nested L2 guest exits and we want to
11367  * run its L1 parent, is to reset L1's guest state to the host state specified
11368  * in vmcs12.
11369  * This function is to be called not only on normal nested exit, but also on
11370  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11371  * Failures During or After Loading Guest State").
11372  * This function should be called when the active VMCS is L1's (vmcs01).
11373  */
11374 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11375                                    struct vmcs12 *vmcs12)
11376 {
11377         struct kvm_segment seg;
11378
11379         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11380                 vcpu->arch.efer = vmcs12->host_ia32_efer;
11381         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11382                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11383         else
11384                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11385         vmx_set_efer(vcpu, vcpu->arch.efer);
11386
11387         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11388         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
11389         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
11390         /*
11391          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
11392          * actually changed, because vmx_set_cr0 refers to efer set above.
11393          *
11394          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11395          * (KVM doesn't change it);
11396          */
11397         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
11398         vmx_set_cr0(vcpu, vmcs12->host_cr0);
11399
11400         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
11401         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
11402         vmx_set_cr4(vcpu, vmcs12->host_cr4);
11403
11404         load_vmcs12_mmu_host_state(vcpu, vmcs12);
11405
11406         if (enable_vpid) {
11407                 /*
11408                  * Trivially support vpid by letting L2s share their parent
11409                  * L1's vpid. TODO: move to a more elaborate solution, giving
11410                  * each L2 its own vpid and exposing the vpid feature to L1.
11411                  */
11412                 vmx_flush_tlb(vcpu);
11413         }
11414         /* Restore posted intr vector. */
11415         if (nested_cpu_has_posted_intr(vmcs12))
11416                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
11417
11418         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11419         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11420         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11421         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11422         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
11423         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
11424         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
11425
11426         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
11427         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11428                 vmcs_write64(GUEST_BNDCFGS, 0);
11429
11430         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
11431                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
11432                 vcpu->arch.pat = vmcs12->host_ia32_pat;
11433         }
11434         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11435                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11436                         vmcs12->host_ia32_perf_global_ctrl);
11437
11438         /* Set L1 segment info according to Intel SDM
11439             27.5.2 Loading Host Segment and Descriptor-Table Registers */
11440         seg = (struct kvm_segment) {
11441                 .base = 0,
11442                 .limit = 0xFFFFFFFF,
11443                 .selector = vmcs12->host_cs_selector,
11444                 .type = 11,
11445                 .present = 1,
11446                 .s = 1,
11447                 .g = 1
11448         };
11449         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11450                 seg.l = 1;
11451         else
11452                 seg.db = 1;
11453         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11454         seg = (struct kvm_segment) {
11455                 .base = 0,
11456                 .limit = 0xFFFFFFFF,
11457                 .type = 3,
11458                 .present = 1,
11459                 .s = 1,
11460                 .db = 1,
11461                 .g = 1
11462         };
11463         seg.selector = vmcs12->host_ds_selector;
11464         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11465         seg.selector = vmcs12->host_es_selector;
11466         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11467         seg.selector = vmcs12->host_ss_selector;
11468         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11469         seg.selector = vmcs12->host_fs_selector;
11470         seg.base = vmcs12->host_fs_base;
11471         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11472         seg.selector = vmcs12->host_gs_selector;
11473         seg.base = vmcs12->host_gs_base;
11474         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11475         seg = (struct kvm_segment) {
11476                 .base = vmcs12->host_tr_base,
11477                 .limit = 0x67,
11478                 .selector = vmcs12->host_tr_selector,
11479                 .type = 11,
11480                 .present = 1
11481         };
11482         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11483
11484         kvm_set_dr(vcpu, 7, 0x400);
11485         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
11486
11487         if (cpu_has_vmx_msr_bitmap())
11488                 vmx_set_msr_bitmap(vcpu);
11489
11490         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11491                                 vmcs12->vm_exit_msr_load_count))
11492                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
11493 }
11494
11495 /*
11496  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11497  * and modify vmcs12 to make it see what it would expect to see there if
11498  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11499  */
11500 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11501                               u32 exit_intr_info,
11502                               unsigned long exit_qualification)
11503 {
11504         struct vcpu_vmx *vmx = to_vmx(vcpu);
11505         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11506
11507         /* trying to cancel vmlaunch/vmresume is a bug */
11508         WARN_ON_ONCE(vmx->nested.nested_run_pending);
11509
11510         /*
11511          * The only expected VM-instruction error is "VM entry with
11512          * invalid control field(s)." Anything else indicates a
11513          * problem with L0.
11514          */
11515         WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
11516                                    VMXERR_ENTRY_INVALID_CONTROL_FIELD));
11517
11518         leave_guest_mode(vcpu);
11519
11520         if (likely(!vmx->fail)) {
11521                 if (exit_reason == -1)
11522                         sync_vmcs12(vcpu, vmcs12);
11523                 else
11524                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11525                                        exit_qualification);
11526
11527                 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11528                                          vmcs12->vm_exit_msr_store_count))
11529                         nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11530         }
11531
11532         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11533         vm_entry_controls_reset_shadow(vmx);
11534         vm_exit_controls_reset_shadow(vmx);
11535         vmx_segment_cache_clear(vmx);
11536
11537         /* if no vmcs02 cache requested, remove the one we used */
11538         if (VMCS02_POOL_SIZE == 0)
11539                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11540
11541         /* Update any VMCS fields that might have changed while L2 ran */
11542         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11543         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11544         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11545         if (vmx->hv_deadline_tsc == -1)
11546                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11547                                 PIN_BASED_VMX_PREEMPTION_TIMER);
11548         else
11549                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11550                               PIN_BASED_VMX_PREEMPTION_TIMER);
11551         if (kvm_has_tsc_control)
11552                 decache_tsc_multiplier(vmx);
11553
11554         if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11555                 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11556                 vmx_set_virtual_x2apic_mode(vcpu,
11557                                 vcpu->arch.apic_base & X2APIC_ENABLE);
11558         } else if (!nested_cpu_has_ept(vmcs12) &&
11559                    nested_cpu_has2(vmcs12,
11560                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11561                 vmx_flush_tlb_ept_only(vcpu);
11562         }
11563
11564         /* This is needed for same reason as it was needed in prepare_vmcs02 */
11565         vmx->host_rsp = 0;
11566
11567         /* Unpin physical memory we referred to in vmcs02 */
11568         if (vmx->nested.apic_access_page) {
11569                 kvm_release_page_dirty(vmx->nested.apic_access_page);
11570                 vmx->nested.apic_access_page = NULL;
11571         }
11572         if (vmx->nested.virtual_apic_page) {
11573                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
11574                 vmx->nested.virtual_apic_page = NULL;
11575         }
11576         if (vmx->nested.pi_desc_page) {
11577                 kunmap(vmx->nested.pi_desc_page);
11578                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
11579                 vmx->nested.pi_desc_page = NULL;
11580                 vmx->nested.pi_desc = NULL;
11581         }
11582
11583         /*
11584          * We are now running in L2, mmu_notifier will force to reload the
11585          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11586          */
11587         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11588
11589         if (enable_shadow_vmcs && exit_reason != -1)
11590                 vmx->nested.sync_shadow_vmcs = true;
11591
11592         /* in case we halted in L2 */
11593         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11594
11595         if (likely(!vmx->fail)) {
11596                 /*
11597                  * TODO: SDM says that with acknowledge interrupt on
11598                  * exit, bit 31 of the VM-exit interrupt information
11599                  * (valid interrupt) is always set to 1 on
11600                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
11601                  * need kvm_cpu_has_interrupt().  See the commit
11602                  * message for details.
11603                  */
11604                 if (nested_exit_intr_ack_set(vcpu) &&
11605                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11606                     kvm_cpu_has_interrupt(vcpu)) {
11607                         int irq = kvm_cpu_get_interrupt(vcpu);
11608                         WARN_ON(irq < 0);
11609                         vmcs12->vm_exit_intr_info = irq |
11610                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11611                 }
11612
11613                 if (exit_reason != -1)
11614                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11615                                                        vmcs12->exit_qualification,
11616                                                        vmcs12->idt_vectoring_info_field,
11617                                                        vmcs12->vm_exit_intr_info,
11618                                                        vmcs12->vm_exit_intr_error_code,
11619                                                        KVM_ISA_VMX);
11620
11621                 load_vmcs12_host_state(vcpu, vmcs12);
11622
11623                 return;
11624         }
11625         
11626         /*
11627          * After an early L2 VM-entry failure, we're now back
11628          * in L1 which thinks it just finished a VMLAUNCH or
11629          * VMRESUME instruction, so we need to set the failure
11630          * flag and the VM-instruction error field of the VMCS
11631          * accordingly.
11632          */
11633         nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
11634
11635         load_vmcs12_mmu_host_state(vcpu, vmcs12);
11636
11637         /*
11638          * The emulated instruction was already skipped in
11639          * nested_vmx_run, but the updated RIP was never
11640          * written back to the vmcs01.
11641          */
11642         skip_emulated_instruction(vcpu);
11643         vmx->fail = 0;
11644 }
11645
11646 /*
11647  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11648  */
11649 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11650 {
11651         if (is_guest_mode(vcpu)) {
11652                 to_vmx(vcpu)->nested.nested_run_pending = 0;
11653                 nested_vmx_vmexit(vcpu, -1, 0, 0);
11654         }
11655         free_nested(to_vmx(vcpu));
11656 }
11657
11658 /*
11659  * L1's failure to enter L2 is a subset of a normal exit, as explained in
11660  * 23.7 "VM-entry failures during or after loading guest state" (this also
11661  * lists the acceptable exit-reason and exit-qualification parameters).
11662  * It should only be called before L2 actually succeeded to run, and when
11663  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11664  */
11665 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11666                         struct vmcs12 *vmcs12,
11667                         u32 reason, unsigned long qualification)
11668 {
11669         load_vmcs12_host_state(vcpu, vmcs12);
11670         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11671         vmcs12->exit_qualification = qualification;
11672         nested_vmx_succeed(vcpu);
11673         if (enable_shadow_vmcs)
11674                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11675 }
11676
11677 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11678                                struct x86_instruction_info *info,
11679                                enum x86_intercept_stage stage)
11680 {
11681         return X86EMUL_CONTINUE;
11682 }
11683
11684 #ifdef CONFIG_X86_64
11685 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11686 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11687                                   u64 divisor, u64 *result)
11688 {
11689         u64 low = a << shift, high = a >> (64 - shift);
11690
11691         /* To avoid the overflow on divq */
11692         if (high >= divisor)
11693                 return 1;
11694
11695         /* Low hold the result, high hold rem which is discarded */
11696         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11697             "rm" (divisor), "0" (low), "1" (high));
11698         *result = low;
11699
11700         return 0;
11701 }
11702
11703 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11704 {
11705         struct vcpu_vmx *vmx = to_vmx(vcpu);
11706         u64 tscl = rdtsc();
11707         u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11708         u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11709
11710         /* Convert to host delta tsc if tsc scaling is enabled */
11711         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11712                         u64_shl_div_u64(delta_tsc,
11713                                 kvm_tsc_scaling_ratio_frac_bits,
11714                                 vcpu->arch.tsc_scaling_ratio,
11715                                 &delta_tsc))
11716                 return -ERANGE;
11717
11718         /*
11719          * If the delta tsc can't fit in the 32 bit after the multi shift,
11720          * we can't use the preemption timer.
11721          * It's possible that it fits on later vmentries, but checking
11722          * on every vmentry is costly so we just use an hrtimer.
11723          */
11724         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11725                 return -ERANGE;
11726
11727         vmx->hv_deadline_tsc = tscl + delta_tsc;
11728         vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11729                         PIN_BASED_VMX_PREEMPTION_TIMER);
11730
11731         return delta_tsc == 0;
11732 }
11733
11734 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11735 {
11736         struct vcpu_vmx *vmx = to_vmx(vcpu);
11737         vmx->hv_deadline_tsc = -1;
11738         vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11739                         PIN_BASED_VMX_PREEMPTION_TIMER);
11740 }
11741 #endif
11742
11743 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11744 {
11745         if (ple_gap)
11746                 shrink_ple_window(vcpu);
11747 }
11748
11749 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11750                                      struct kvm_memory_slot *slot)
11751 {
11752         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11753         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11754 }
11755
11756 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11757                                        struct kvm_memory_slot *slot)
11758 {
11759         kvm_mmu_slot_set_dirty(kvm, slot);
11760 }
11761
11762 static void vmx_flush_log_dirty(struct kvm *kvm)
11763 {
11764         kvm_flush_pml_buffers(kvm);
11765 }
11766
11767 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11768 {
11769         struct vmcs12 *vmcs12;
11770         struct vcpu_vmx *vmx = to_vmx(vcpu);
11771         gpa_t gpa;
11772         struct page *page = NULL;
11773         u64 *pml_address;
11774
11775         if (is_guest_mode(vcpu)) {
11776                 WARN_ON_ONCE(vmx->nested.pml_full);
11777
11778                 /*
11779                  * Check if PML is enabled for the nested guest.
11780                  * Whether eptp bit 6 is set is already checked
11781                  * as part of A/D emulation.
11782                  */
11783                 vmcs12 = get_vmcs12(vcpu);
11784                 if (!nested_cpu_has_pml(vmcs12))
11785                         return 0;
11786
11787                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11788                         vmx->nested.pml_full = true;
11789                         return 1;
11790                 }
11791
11792                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11793
11794                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11795                 if (is_error_page(page))
11796                         return 0;
11797
11798                 pml_address = kmap(page);
11799                 pml_address[vmcs12->guest_pml_index--] = gpa;
11800                 kunmap(page);
11801                 kvm_release_page_clean(page);
11802         }
11803
11804         return 0;
11805 }
11806
11807 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11808                                            struct kvm_memory_slot *memslot,
11809                                            gfn_t offset, unsigned long mask)
11810 {
11811         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11812 }
11813
11814 static void __pi_post_block(struct kvm_vcpu *vcpu)
11815 {
11816         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11817         struct pi_desc old, new;
11818         unsigned int dest;
11819
11820         do {
11821                 old.control = new.control = pi_desc->control;
11822                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
11823                      "Wakeup handler not enabled while the VCPU is blocked\n");
11824
11825                 dest = cpu_physical_id(vcpu->cpu);
11826
11827                 if (x2apic_enabled())
11828                         new.ndst = dest;
11829                 else
11830                         new.ndst = (dest << 8) & 0xFF00;
11831
11832                 /* set 'NV' to 'notification vector' */
11833                 new.nv = POSTED_INTR_VECTOR;
11834         } while (cmpxchg64(&pi_desc->control, old.control,
11835                            new.control) != old.control);
11836
11837         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
11838                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11839                 list_del(&vcpu->blocked_vcpu_list);
11840                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11841                 vcpu->pre_pcpu = -1;
11842         }
11843 }
11844
11845 /*
11846  * This routine does the following things for vCPU which is going
11847  * to be blocked if VT-d PI is enabled.
11848  * - Store the vCPU to the wakeup list, so when interrupts happen
11849  *   we can find the right vCPU to wake up.
11850  * - Change the Posted-interrupt descriptor as below:
11851  *      'NDST' <-- vcpu->pre_pcpu
11852  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11853  * - If 'ON' is set during this process, which means at least one
11854  *   interrupt is posted for this vCPU, we cannot block it, in
11855  *   this case, return 1, otherwise, return 0.
11856  *
11857  */
11858 static int pi_pre_block(struct kvm_vcpu *vcpu)
11859 {
11860         unsigned int dest;
11861         struct pi_desc old, new;
11862         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11863
11864         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11865                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11866                 !kvm_vcpu_apicv_active(vcpu))
11867                 return 0;
11868
11869         WARN_ON(irqs_disabled());
11870         local_irq_disable();
11871         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
11872                 vcpu->pre_pcpu = vcpu->cpu;
11873                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11874                 list_add_tail(&vcpu->blocked_vcpu_list,
11875                               &per_cpu(blocked_vcpu_on_cpu,
11876                                        vcpu->pre_pcpu));
11877                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11878         }
11879
11880         do {
11881                 old.control = new.control = pi_desc->control;
11882
11883                 WARN((pi_desc->sn == 1),
11884                      "Warning: SN field of posted-interrupts "
11885                      "is set before blocking\n");
11886
11887                 /*
11888                  * Since vCPU can be preempted during this process,
11889                  * vcpu->cpu could be different with pre_pcpu, we
11890                  * need to set pre_pcpu as the destination of wakeup
11891                  * notification event, then we can find the right vCPU
11892                  * to wakeup in wakeup handler if interrupts happen
11893                  * when the vCPU is in blocked state.
11894                  */
11895                 dest = cpu_physical_id(vcpu->pre_pcpu);
11896
11897                 if (x2apic_enabled())
11898                         new.ndst = dest;
11899                 else
11900                         new.ndst = (dest << 8) & 0xFF00;
11901
11902                 /* set 'NV' to 'wakeup vector' */
11903                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11904         } while (cmpxchg64(&pi_desc->control, old.control,
11905                            new.control) != old.control);
11906
11907         /* We should not block the vCPU if an interrupt is posted for it.  */
11908         if (pi_test_on(pi_desc) == 1)
11909                 __pi_post_block(vcpu);
11910
11911         local_irq_enable();
11912         return (vcpu->pre_pcpu == -1);
11913 }
11914
11915 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11916 {
11917         if (pi_pre_block(vcpu))
11918                 return 1;
11919
11920         if (kvm_lapic_hv_timer_in_use(vcpu))
11921                 kvm_lapic_switch_to_sw_timer(vcpu);
11922
11923         return 0;
11924 }
11925
11926 static void pi_post_block(struct kvm_vcpu *vcpu)
11927 {
11928         if (vcpu->pre_pcpu == -1)
11929                 return;
11930
11931         WARN_ON(irqs_disabled());
11932         local_irq_disable();
11933         __pi_post_block(vcpu);
11934         local_irq_enable();
11935 }
11936
11937 static void vmx_post_block(struct kvm_vcpu *vcpu)
11938 {
11939         if (kvm_x86_ops->set_hv_timer)
11940                 kvm_lapic_switch_to_hv_timer(vcpu);
11941
11942         pi_post_block(vcpu);
11943 }
11944
11945 /*
11946  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11947  *
11948  * @kvm: kvm
11949  * @host_irq: host irq of the interrupt
11950  * @guest_irq: gsi of the interrupt
11951  * @set: set or unset PI
11952  * returns 0 on success, < 0 on failure
11953  */
11954 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11955                               uint32_t guest_irq, bool set)
11956 {
11957         struct kvm_kernel_irq_routing_entry *e;
11958         struct kvm_irq_routing_table *irq_rt;
11959         struct kvm_lapic_irq irq;
11960         struct kvm_vcpu *vcpu;
11961         struct vcpu_data vcpu_info;
11962         int idx, ret = 0;
11963
11964         if (!kvm_arch_has_assigned_device(kvm) ||
11965                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11966                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11967                 return 0;
11968
11969         idx = srcu_read_lock(&kvm->irq_srcu);
11970         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11971         if (guest_irq >= irq_rt->nr_rt_entries ||
11972             hlist_empty(&irq_rt->map[guest_irq])) {
11973                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11974                              guest_irq, irq_rt->nr_rt_entries);
11975                 goto out;
11976         }
11977
11978         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11979                 if (e->type != KVM_IRQ_ROUTING_MSI)
11980                         continue;
11981                 /*
11982                  * VT-d PI cannot support posting multicast/broadcast
11983                  * interrupts to a vCPU, we still use interrupt remapping
11984                  * for these kind of interrupts.
11985                  *
11986                  * For lowest-priority interrupts, we only support
11987                  * those with single CPU as the destination, e.g. user
11988                  * configures the interrupts via /proc/irq or uses
11989                  * irqbalance to make the interrupts single-CPU.
11990                  *
11991                  * We will support full lowest-priority interrupt later.
11992                  */
11993
11994                 kvm_set_msi_irq(kvm, e, &irq);
11995                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11996                         /*
11997                          * Make sure the IRTE is in remapped mode if
11998                          * we don't handle it in posted mode.
11999                          */
12000                         ret = irq_set_vcpu_affinity(host_irq, NULL);
12001                         if (ret < 0) {
12002                                 printk(KERN_INFO
12003                                    "failed to back to remapped mode, irq: %u\n",
12004                                    host_irq);
12005                                 goto out;
12006                         }
12007
12008                         continue;
12009                 }
12010
12011                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
12012                 vcpu_info.vector = irq.vector;
12013
12014                 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
12015                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
12016
12017                 if (set)
12018                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
12019                 else
12020                         ret = irq_set_vcpu_affinity(host_irq, NULL);
12021
12022                 if (ret < 0) {
12023                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
12024                                         __func__);
12025                         goto out;
12026                 }
12027         }
12028
12029         ret = 0;
12030 out:
12031         srcu_read_unlock(&kvm->irq_srcu, idx);
12032         return ret;
12033 }
12034
12035 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
12036 {
12037         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
12038                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
12039                         FEATURE_CONTROL_LMCE;
12040         else
12041                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
12042                         ~FEATURE_CONTROL_LMCE;
12043 }
12044
12045 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
12046 {
12047         /* we need a nested vmexit to enter SMM, postpone if run is pending */
12048         if (to_vmx(vcpu)->nested.nested_run_pending)
12049                 return 0;
12050         return 1;
12051 }
12052
12053 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
12054 {
12055         struct vcpu_vmx *vmx = to_vmx(vcpu);
12056
12057         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
12058         if (vmx->nested.smm.guest_mode)
12059                 nested_vmx_vmexit(vcpu, -1, 0, 0);
12060
12061         vmx->nested.smm.vmxon = vmx->nested.vmxon;
12062         vmx->nested.vmxon = false;
12063         return 0;
12064 }
12065
12066 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
12067 {
12068         struct vcpu_vmx *vmx = to_vmx(vcpu);
12069         int ret;
12070
12071         if (vmx->nested.smm.vmxon) {
12072                 vmx->nested.vmxon = true;
12073                 vmx->nested.smm.vmxon = false;
12074         }
12075
12076         if (vmx->nested.smm.guest_mode) {
12077                 vcpu->arch.hflags &= ~HF_SMM_MASK;
12078                 ret = enter_vmx_non_root_mode(vcpu, false);
12079                 vcpu->arch.hflags |= HF_SMM_MASK;
12080                 if (ret)
12081                         return ret;
12082
12083                 vmx->nested.smm.guest_mode = false;
12084         }
12085         return 0;
12086 }
12087
12088 static int enable_smi_window(struct kvm_vcpu *vcpu)
12089 {
12090         return 0;
12091 }
12092
12093 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
12094         .cpu_has_kvm_support = cpu_has_kvm_support,
12095         .disabled_by_bios = vmx_disabled_by_bios,
12096         .hardware_setup = hardware_setup,
12097         .hardware_unsetup = hardware_unsetup,
12098         .check_processor_compatibility = vmx_check_processor_compat,
12099         .hardware_enable = hardware_enable,
12100         .hardware_disable = hardware_disable,
12101         .cpu_has_accelerated_tpr = report_flexpriority,
12102         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
12103
12104         .vcpu_create = vmx_create_vcpu,
12105         .vcpu_free = vmx_free_vcpu,
12106         .vcpu_reset = vmx_vcpu_reset,
12107
12108         .prepare_guest_switch = vmx_save_host_state,
12109         .vcpu_load = vmx_vcpu_load,
12110         .vcpu_put = vmx_vcpu_put,
12111
12112         .update_bp_intercept = update_exception_bitmap,
12113         .get_msr = vmx_get_msr,
12114         .set_msr = vmx_set_msr,
12115         .get_segment_base = vmx_get_segment_base,
12116         .get_segment = vmx_get_segment,
12117         .set_segment = vmx_set_segment,
12118         .get_cpl = vmx_get_cpl,
12119         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
12120         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
12121         .decache_cr3 = vmx_decache_cr3,
12122         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
12123         .set_cr0 = vmx_set_cr0,
12124         .set_cr3 = vmx_set_cr3,
12125         .set_cr4 = vmx_set_cr4,
12126         .set_efer = vmx_set_efer,
12127         .get_idt = vmx_get_idt,
12128         .set_idt = vmx_set_idt,
12129         .get_gdt = vmx_get_gdt,
12130         .set_gdt = vmx_set_gdt,
12131         .get_dr6 = vmx_get_dr6,
12132         .set_dr6 = vmx_set_dr6,
12133         .set_dr7 = vmx_set_dr7,
12134         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
12135         .cache_reg = vmx_cache_reg,
12136         .get_rflags = vmx_get_rflags,
12137         .set_rflags = vmx_set_rflags,
12138
12139         .tlb_flush = vmx_flush_tlb,
12140
12141         .run = vmx_vcpu_run,
12142         .handle_exit = vmx_handle_exit,
12143         .skip_emulated_instruction = skip_emulated_instruction,
12144         .set_interrupt_shadow = vmx_set_interrupt_shadow,
12145         .get_interrupt_shadow = vmx_get_interrupt_shadow,
12146         .patch_hypercall = vmx_patch_hypercall,
12147         .set_irq = vmx_inject_irq,
12148         .set_nmi = vmx_inject_nmi,
12149         .queue_exception = vmx_queue_exception,
12150         .cancel_injection = vmx_cancel_injection,
12151         .interrupt_allowed = vmx_interrupt_allowed,
12152         .nmi_allowed = vmx_nmi_allowed,
12153         .get_nmi_mask = vmx_get_nmi_mask,
12154         .set_nmi_mask = vmx_set_nmi_mask,
12155         .enable_nmi_window = enable_nmi_window,
12156         .enable_irq_window = enable_irq_window,
12157         .update_cr8_intercept = update_cr8_intercept,
12158         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
12159         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
12160         .get_enable_apicv = vmx_get_enable_apicv,
12161         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
12162         .load_eoi_exitmap = vmx_load_eoi_exitmap,
12163         .apicv_post_state_restore = vmx_apicv_post_state_restore,
12164         .hwapic_irr_update = vmx_hwapic_irr_update,
12165         .hwapic_isr_update = vmx_hwapic_isr_update,
12166         .sync_pir_to_irr = vmx_sync_pir_to_irr,
12167         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
12168
12169         .set_tss_addr = vmx_set_tss_addr,
12170         .get_tdp_level = get_ept_level,
12171         .get_mt_mask = vmx_get_mt_mask,
12172
12173         .get_exit_info = vmx_get_exit_info,
12174
12175         .get_lpage_level = vmx_get_lpage_level,
12176
12177         .cpuid_update = vmx_cpuid_update,
12178
12179         .rdtscp_supported = vmx_rdtscp_supported,
12180         .invpcid_supported = vmx_invpcid_supported,
12181
12182         .set_supported_cpuid = vmx_set_supported_cpuid,
12183
12184         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
12185
12186         .write_tsc_offset = vmx_write_tsc_offset,
12187
12188         .set_tdp_cr3 = vmx_set_cr3,
12189
12190         .check_intercept = vmx_check_intercept,
12191         .handle_external_intr = vmx_handle_external_intr,
12192         .mpx_supported = vmx_mpx_supported,
12193         .xsaves_supported = vmx_xsaves_supported,
12194
12195         .check_nested_events = vmx_check_nested_events,
12196
12197         .sched_in = vmx_sched_in,
12198
12199         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12200         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12201         .flush_log_dirty = vmx_flush_log_dirty,
12202         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
12203         .write_log_dirty = vmx_write_pml_buffer,
12204
12205         .pre_block = vmx_pre_block,
12206         .post_block = vmx_post_block,
12207
12208         .pmu_ops = &intel_pmu_ops,
12209
12210         .update_pi_irte = vmx_update_pi_irte,
12211
12212 #ifdef CONFIG_X86_64
12213         .set_hv_timer = vmx_set_hv_timer,
12214         .cancel_hv_timer = vmx_cancel_hv_timer,
12215 #endif
12216
12217         .setup_mce = vmx_setup_mce,
12218
12219         .smi_allowed = vmx_smi_allowed,
12220         .pre_enter_smm = vmx_pre_enter_smm,
12221         .pre_leave_smm = vmx_pre_leave_smm,
12222         .enable_smi_window = enable_smi_window,
12223 };
12224
12225 static int __init vmx_init(void)
12226 {
12227         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12228                      __alignof__(struct vcpu_vmx), THIS_MODULE);
12229         if (r)
12230                 return r;
12231
12232 #ifdef CONFIG_KEXEC_CORE
12233         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12234                            crash_vmclear_local_loaded_vmcss);
12235 #endif
12236
12237         return 0;
12238 }
12239
12240 static void __exit vmx_exit(void)
12241 {
12242 #ifdef CONFIG_KEXEC_CORE
12243         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
12244         synchronize_rcu();
12245 #endif
12246
12247         kvm_exit();
12248 }
12249
12250 module_init(vmx_init)
12251 module_exit(vmx_exit)