Merge branch 'for-3.17/core' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/i387.h>
44 #include <asm/xcr.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52 #define __ex_clear(x, reg) \
53         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 static const struct x86_cpu_id vmx_cpu_id[] = {
59         X86_FEATURE_MATCH(X86_FEATURE_VMX),
60         {}
61 };
62 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
64 static bool __read_mostly enable_vpid = 1;
65 module_param_named(vpid, enable_vpid, bool, 0444);
66
67 static bool __read_mostly flexpriority_enabled = 1;
68 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
69
70 static bool __read_mostly enable_ept = 1;
71 module_param_named(ept, enable_ept, bool, S_IRUGO);
72
73 static bool __read_mostly enable_unrestricted_guest = 1;
74 module_param_named(unrestricted_guest,
75                         enable_unrestricted_guest, bool, S_IRUGO);
76
77 static bool __read_mostly enable_ept_ad_bits = 1;
78 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
80 static bool __read_mostly emulate_invalid_guest_state = true;
81 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
82
83 static bool __read_mostly vmm_exclusive = 1;
84 module_param(vmm_exclusive, bool, S_IRUGO);
85
86 static bool __read_mostly fasteoi = 1;
87 module_param(fasteoi, bool, S_IRUGO);
88
89 static bool __read_mostly enable_apicv = 1;
90 module_param(enable_apicv, bool, S_IRUGO);
91
92 static bool __read_mostly enable_shadow_vmcs = 1;
93 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
94 /*
95  * If nested=1, nested virtualization is supported, i.e., guests may use
96  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97  * use VMX instructions.
98  */
99 static bool __read_mostly nested = 0;
100 module_param(nested, bool, S_IRUGO);
101
102 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
103 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
104 #define KVM_VM_CR0_ALWAYS_ON                                            \
105         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
106 #define KVM_CR4_GUEST_OWNED_BITS                                      \
107         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
108          | X86_CR4_OSXMMEXCPT)
109
110 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
111 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
112
113 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
114
115 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
116
117 /*
118  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119  * ple_gap:    upper bound on the amount of time between two successive
120  *             executions of PAUSE in a loop. Also indicate if ple enabled.
121  *             According to test, this time is usually smaller than 128 cycles.
122  * ple_window: upper bound on the amount of time a guest is allowed to execute
123  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
124  *             less than 2^12 cycles
125  * Time is measured based on a counter that runs at the same rate as the TSC,
126  * refer SDM volume 3b section 21.6.13 & 22.1.3.
127  */
128 #define KVM_VMX_DEFAULT_PLE_GAP    128
129 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
130 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
131 module_param(ple_gap, int, S_IRUGO);
132
133 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
134 module_param(ple_window, int, S_IRUGO);
135
136 extern const ulong vmx_return;
137
138 #define NR_AUTOLOAD_MSRS 8
139 #define VMCS02_POOL_SIZE 1
140
141 struct vmcs {
142         u32 revision_id;
143         u32 abort;
144         char data[0];
145 };
146
147 /*
148  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
149  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
150  * loaded on this CPU (so we can clear them if the CPU goes down).
151  */
152 struct loaded_vmcs {
153         struct vmcs *vmcs;
154         int cpu;
155         int launched;
156         struct list_head loaded_vmcss_on_cpu_link;
157 };
158
159 struct shared_msr_entry {
160         unsigned index;
161         u64 data;
162         u64 mask;
163 };
164
165 /*
166  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
167  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
168  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
169  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
170  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
171  * More than one of these structures may exist, if L1 runs multiple L2 guests.
172  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
173  * underlying hardware which will be used to run L2.
174  * This structure is packed to ensure that its layout is identical across
175  * machines (necessary for live migration).
176  * If there are changes in this struct, VMCS12_REVISION must be changed.
177  */
178 typedef u64 natural_width;
179 struct __packed vmcs12 {
180         /* According to the Intel spec, a VMCS region must start with the
181          * following two fields. Then follow implementation-specific data.
182          */
183         u32 revision_id;
184         u32 abort;
185
186         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
187         u32 padding[7]; /* room for future expansion */
188
189         u64 io_bitmap_a;
190         u64 io_bitmap_b;
191         u64 msr_bitmap;
192         u64 vm_exit_msr_store_addr;
193         u64 vm_exit_msr_load_addr;
194         u64 vm_entry_msr_load_addr;
195         u64 tsc_offset;
196         u64 virtual_apic_page_addr;
197         u64 apic_access_addr;
198         u64 ept_pointer;
199         u64 guest_physical_address;
200         u64 vmcs_link_pointer;
201         u64 guest_ia32_debugctl;
202         u64 guest_ia32_pat;
203         u64 guest_ia32_efer;
204         u64 guest_ia32_perf_global_ctrl;
205         u64 guest_pdptr0;
206         u64 guest_pdptr1;
207         u64 guest_pdptr2;
208         u64 guest_pdptr3;
209         u64 guest_bndcfgs;
210         u64 host_ia32_pat;
211         u64 host_ia32_efer;
212         u64 host_ia32_perf_global_ctrl;
213         u64 padding64[8]; /* room for future expansion */
214         /*
215          * To allow migration of L1 (complete with its L2 guests) between
216          * machines of different natural widths (32 or 64 bit), we cannot have
217          * unsigned long fields with no explict size. We use u64 (aliased
218          * natural_width) instead. Luckily, x86 is little-endian.
219          */
220         natural_width cr0_guest_host_mask;
221         natural_width cr4_guest_host_mask;
222         natural_width cr0_read_shadow;
223         natural_width cr4_read_shadow;
224         natural_width cr3_target_value0;
225         natural_width cr3_target_value1;
226         natural_width cr3_target_value2;
227         natural_width cr3_target_value3;
228         natural_width exit_qualification;
229         natural_width guest_linear_address;
230         natural_width guest_cr0;
231         natural_width guest_cr3;
232         natural_width guest_cr4;
233         natural_width guest_es_base;
234         natural_width guest_cs_base;
235         natural_width guest_ss_base;
236         natural_width guest_ds_base;
237         natural_width guest_fs_base;
238         natural_width guest_gs_base;
239         natural_width guest_ldtr_base;
240         natural_width guest_tr_base;
241         natural_width guest_gdtr_base;
242         natural_width guest_idtr_base;
243         natural_width guest_dr7;
244         natural_width guest_rsp;
245         natural_width guest_rip;
246         natural_width guest_rflags;
247         natural_width guest_pending_dbg_exceptions;
248         natural_width guest_sysenter_esp;
249         natural_width guest_sysenter_eip;
250         natural_width host_cr0;
251         natural_width host_cr3;
252         natural_width host_cr4;
253         natural_width host_fs_base;
254         natural_width host_gs_base;
255         natural_width host_tr_base;
256         natural_width host_gdtr_base;
257         natural_width host_idtr_base;
258         natural_width host_ia32_sysenter_esp;
259         natural_width host_ia32_sysenter_eip;
260         natural_width host_rsp;
261         natural_width host_rip;
262         natural_width paddingl[8]; /* room for future expansion */
263         u32 pin_based_vm_exec_control;
264         u32 cpu_based_vm_exec_control;
265         u32 exception_bitmap;
266         u32 page_fault_error_code_mask;
267         u32 page_fault_error_code_match;
268         u32 cr3_target_count;
269         u32 vm_exit_controls;
270         u32 vm_exit_msr_store_count;
271         u32 vm_exit_msr_load_count;
272         u32 vm_entry_controls;
273         u32 vm_entry_msr_load_count;
274         u32 vm_entry_intr_info_field;
275         u32 vm_entry_exception_error_code;
276         u32 vm_entry_instruction_len;
277         u32 tpr_threshold;
278         u32 secondary_vm_exec_control;
279         u32 vm_instruction_error;
280         u32 vm_exit_reason;
281         u32 vm_exit_intr_info;
282         u32 vm_exit_intr_error_code;
283         u32 idt_vectoring_info_field;
284         u32 idt_vectoring_error_code;
285         u32 vm_exit_instruction_len;
286         u32 vmx_instruction_info;
287         u32 guest_es_limit;
288         u32 guest_cs_limit;
289         u32 guest_ss_limit;
290         u32 guest_ds_limit;
291         u32 guest_fs_limit;
292         u32 guest_gs_limit;
293         u32 guest_ldtr_limit;
294         u32 guest_tr_limit;
295         u32 guest_gdtr_limit;
296         u32 guest_idtr_limit;
297         u32 guest_es_ar_bytes;
298         u32 guest_cs_ar_bytes;
299         u32 guest_ss_ar_bytes;
300         u32 guest_ds_ar_bytes;
301         u32 guest_fs_ar_bytes;
302         u32 guest_gs_ar_bytes;
303         u32 guest_ldtr_ar_bytes;
304         u32 guest_tr_ar_bytes;
305         u32 guest_interruptibility_info;
306         u32 guest_activity_state;
307         u32 guest_sysenter_cs;
308         u32 host_ia32_sysenter_cs;
309         u32 vmx_preemption_timer_value;
310         u32 padding32[7]; /* room for future expansion */
311         u16 virtual_processor_id;
312         u16 guest_es_selector;
313         u16 guest_cs_selector;
314         u16 guest_ss_selector;
315         u16 guest_ds_selector;
316         u16 guest_fs_selector;
317         u16 guest_gs_selector;
318         u16 guest_ldtr_selector;
319         u16 guest_tr_selector;
320         u16 host_es_selector;
321         u16 host_cs_selector;
322         u16 host_ss_selector;
323         u16 host_ds_selector;
324         u16 host_fs_selector;
325         u16 host_gs_selector;
326         u16 host_tr_selector;
327 };
328
329 /*
330  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
331  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
332  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
333  */
334 #define VMCS12_REVISION 0x11e57ed0
335
336 /*
337  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
338  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
339  * current implementation, 4K are reserved to avoid future complications.
340  */
341 #define VMCS12_SIZE 0x1000
342
343 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
344 struct vmcs02_list {
345         struct list_head list;
346         gpa_t vmptr;
347         struct loaded_vmcs vmcs02;
348 };
349
350 /*
351  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
352  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
353  */
354 struct nested_vmx {
355         /* Has the level1 guest done vmxon? */
356         bool vmxon;
357         gpa_t vmxon_ptr;
358
359         /* The guest-physical address of the current VMCS L1 keeps for L2 */
360         gpa_t current_vmptr;
361         /* The host-usable pointer to the above */
362         struct page *current_vmcs12_page;
363         struct vmcs12 *current_vmcs12;
364         struct vmcs *current_shadow_vmcs;
365         /*
366          * Indicates if the shadow vmcs must be updated with the
367          * data hold by vmcs12
368          */
369         bool sync_shadow_vmcs;
370
371         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
372         struct list_head vmcs02_pool;
373         int vmcs02_num;
374         u64 vmcs01_tsc_offset;
375         /* L2 must run next, and mustn't decide to exit to L1. */
376         bool nested_run_pending;
377         /*
378          * Guest pages referred to in vmcs02 with host-physical pointers, so
379          * we must keep them pinned while L2 runs.
380          */
381         struct page *apic_access_page;
382         u64 msr_ia32_feature_control;
383
384         struct hrtimer preemption_timer;
385         bool preemption_timer_expired;
386
387         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
388         u64 vmcs01_debugctl;
389 };
390
391 #define POSTED_INTR_ON  0
392 /* Posted-Interrupt Descriptor */
393 struct pi_desc {
394         u32 pir[8];     /* Posted interrupt requested */
395         u32 control;    /* bit 0 of control is outstanding notification bit */
396         u32 rsvd[7];
397 } __aligned(64);
398
399 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
400 {
401         return test_and_set_bit(POSTED_INTR_ON,
402                         (unsigned long *)&pi_desc->control);
403 }
404
405 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
406 {
407         return test_and_clear_bit(POSTED_INTR_ON,
408                         (unsigned long *)&pi_desc->control);
409 }
410
411 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
412 {
413         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
414 }
415
416 struct vcpu_vmx {
417         struct kvm_vcpu       vcpu;
418         unsigned long         host_rsp;
419         u8                    fail;
420         bool                  nmi_known_unmasked;
421         u32                   exit_intr_info;
422         u32                   idt_vectoring_info;
423         ulong                 rflags;
424         struct shared_msr_entry *guest_msrs;
425         int                   nmsrs;
426         int                   save_nmsrs;
427         unsigned long         host_idt_base;
428 #ifdef CONFIG_X86_64
429         u64                   msr_host_kernel_gs_base;
430         u64                   msr_guest_kernel_gs_base;
431 #endif
432         u32 vm_entry_controls_shadow;
433         u32 vm_exit_controls_shadow;
434         /*
435          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
436          * non-nested (L1) guest, it always points to vmcs01. For a nested
437          * guest (L2), it points to a different VMCS.
438          */
439         struct loaded_vmcs    vmcs01;
440         struct loaded_vmcs   *loaded_vmcs;
441         bool                  __launched; /* temporary, used in vmx_vcpu_run */
442         struct msr_autoload {
443                 unsigned nr;
444                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
445                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
446         } msr_autoload;
447         struct {
448                 int           loaded;
449                 u16           fs_sel, gs_sel, ldt_sel;
450 #ifdef CONFIG_X86_64
451                 u16           ds_sel, es_sel;
452 #endif
453                 int           gs_ldt_reload_needed;
454                 int           fs_reload_needed;
455                 u64           msr_host_bndcfgs;
456         } host_state;
457         struct {
458                 int vm86_active;
459                 ulong save_rflags;
460                 struct kvm_segment segs[8];
461         } rmode;
462         struct {
463                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
464                 struct kvm_save_segment {
465                         u16 selector;
466                         unsigned long base;
467                         u32 limit;
468                         u32 ar;
469                 } seg[8];
470         } segment_cache;
471         int vpid;
472         bool emulation_required;
473
474         /* Support for vnmi-less CPUs */
475         int soft_vnmi_blocked;
476         ktime_t entry_time;
477         s64 vnmi_blocked_time;
478         u32 exit_reason;
479
480         bool rdtscp_enabled;
481
482         /* Posted interrupt descriptor */
483         struct pi_desc pi_desc;
484
485         /* Support for a guest hypervisor (nested VMX) */
486         struct nested_vmx nested;
487 };
488
489 enum segment_cache_field {
490         SEG_FIELD_SEL = 0,
491         SEG_FIELD_BASE = 1,
492         SEG_FIELD_LIMIT = 2,
493         SEG_FIELD_AR = 3,
494
495         SEG_FIELD_NR = 4
496 };
497
498 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
499 {
500         return container_of(vcpu, struct vcpu_vmx, vcpu);
501 }
502
503 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
504 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
505 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
506                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
507
508
509 static unsigned long shadow_read_only_fields[] = {
510         /*
511          * We do NOT shadow fields that are modified when L0
512          * traps and emulates any vmx instruction (e.g. VMPTRLD,
513          * VMXON...) executed by L1.
514          * For example, VM_INSTRUCTION_ERROR is read
515          * by L1 if a vmx instruction fails (part of the error path).
516          * Note the code assumes this logic. If for some reason
517          * we start shadowing these fields then we need to
518          * force a shadow sync when L0 emulates vmx instructions
519          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
520          * by nested_vmx_failValid)
521          */
522         VM_EXIT_REASON,
523         VM_EXIT_INTR_INFO,
524         VM_EXIT_INSTRUCTION_LEN,
525         IDT_VECTORING_INFO_FIELD,
526         IDT_VECTORING_ERROR_CODE,
527         VM_EXIT_INTR_ERROR_CODE,
528         EXIT_QUALIFICATION,
529         GUEST_LINEAR_ADDRESS,
530         GUEST_PHYSICAL_ADDRESS
531 };
532 static int max_shadow_read_only_fields =
533         ARRAY_SIZE(shadow_read_only_fields);
534
535 static unsigned long shadow_read_write_fields[] = {
536         GUEST_RIP,
537         GUEST_RSP,
538         GUEST_CR0,
539         GUEST_CR3,
540         GUEST_CR4,
541         GUEST_INTERRUPTIBILITY_INFO,
542         GUEST_RFLAGS,
543         GUEST_CS_SELECTOR,
544         GUEST_CS_AR_BYTES,
545         GUEST_CS_LIMIT,
546         GUEST_CS_BASE,
547         GUEST_ES_BASE,
548         GUEST_BNDCFGS,
549         CR0_GUEST_HOST_MASK,
550         CR0_READ_SHADOW,
551         CR4_READ_SHADOW,
552         TSC_OFFSET,
553         EXCEPTION_BITMAP,
554         CPU_BASED_VM_EXEC_CONTROL,
555         VM_ENTRY_EXCEPTION_ERROR_CODE,
556         VM_ENTRY_INTR_INFO_FIELD,
557         VM_ENTRY_INSTRUCTION_LEN,
558         VM_ENTRY_EXCEPTION_ERROR_CODE,
559         HOST_FS_BASE,
560         HOST_GS_BASE,
561         HOST_FS_SELECTOR,
562         HOST_GS_SELECTOR
563 };
564 static int max_shadow_read_write_fields =
565         ARRAY_SIZE(shadow_read_write_fields);
566
567 static const unsigned short vmcs_field_to_offset_table[] = {
568         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
569         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
570         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
571         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
572         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
573         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
574         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
575         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
576         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
577         FIELD(HOST_ES_SELECTOR, host_es_selector),
578         FIELD(HOST_CS_SELECTOR, host_cs_selector),
579         FIELD(HOST_SS_SELECTOR, host_ss_selector),
580         FIELD(HOST_DS_SELECTOR, host_ds_selector),
581         FIELD(HOST_FS_SELECTOR, host_fs_selector),
582         FIELD(HOST_GS_SELECTOR, host_gs_selector),
583         FIELD(HOST_TR_SELECTOR, host_tr_selector),
584         FIELD64(IO_BITMAP_A, io_bitmap_a),
585         FIELD64(IO_BITMAP_B, io_bitmap_b),
586         FIELD64(MSR_BITMAP, msr_bitmap),
587         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
588         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
589         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
590         FIELD64(TSC_OFFSET, tsc_offset),
591         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
592         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
593         FIELD64(EPT_POINTER, ept_pointer),
594         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
595         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
596         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
597         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
598         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
599         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
600         FIELD64(GUEST_PDPTR0, guest_pdptr0),
601         FIELD64(GUEST_PDPTR1, guest_pdptr1),
602         FIELD64(GUEST_PDPTR2, guest_pdptr2),
603         FIELD64(GUEST_PDPTR3, guest_pdptr3),
604         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
605         FIELD64(HOST_IA32_PAT, host_ia32_pat),
606         FIELD64(HOST_IA32_EFER, host_ia32_efer),
607         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
608         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
609         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
610         FIELD(EXCEPTION_BITMAP, exception_bitmap),
611         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
612         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
613         FIELD(CR3_TARGET_COUNT, cr3_target_count),
614         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
615         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
616         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
617         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
618         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
619         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
620         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
621         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
622         FIELD(TPR_THRESHOLD, tpr_threshold),
623         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
624         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
625         FIELD(VM_EXIT_REASON, vm_exit_reason),
626         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
627         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
628         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
629         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
630         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
631         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
632         FIELD(GUEST_ES_LIMIT, guest_es_limit),
633         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
634         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
635         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
636         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
637         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
638         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
639         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
640         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
641         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
642         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
643         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
644         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
645         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
646         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
647         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
648         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
649         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
650         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
651         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
652         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
653         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
654         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
655         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
656         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
657         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
658         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
659         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
660         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
661         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
662         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
663         FIELD(EXIT_QUALIFICATION, exit_qualification),
664         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
665         FIELD(GUEST_CR0, guest_cr0),
666         FIELD(GUEST_CR3, guest_cr3),
667         FIELD(GUEST_CR4, guest_cr4),
668         FIELD(GUEST_ES_BASE, guest_es_base),
669         FIELD(GUEST_CS_BASE, guest_cs_base),
670         FIELD(GUEST_SS_BASE, guest_ss_base),
671         FIELD(GUEST_DS_BASE, guest_ds_base),
672         FIELD(GUEST_FS_BASE, guest_fs_base),
673         FIELD(GUEST_GS_BASE, guest_gs_base),
674         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
675         FIELD(GUEST_TR_BASE, guest_tr_base),
676         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
677         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
678         FIELD(GUEST_DR7, guest_dr7),
679         FIELD(GUEST_RSP, guest_rsp),
680         FIELD(GUEST_RIP, guest_rip),
681         FIELD(GUEST_RFLAGS, guest_rflags),
682         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
683         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
684         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
685         FIELD(HOST_CR0, host_cr0),
686         FIELD(HOST_CR3, host_cr3),
687         FIELD(HOST_CR4, host_cr4),
688         FIELD(HOST_FS_BASE, host_fs_base),
689         FIELD(HOST_GS_BASE, host_gs_base),
690         FIELD(HOST_TR_BASE, host_tr_base),
691         FIELD(HOST_GDTR_BASE, host_gdtr_base),
692         FIELD(HOST_IDTR_BASE, host_idtr_base),
693         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
694         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
695         FIELD(HOST_RSP, host_rsp),
696         FIELD(HOST_RIP, host_rip),
697 };
698 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
699
700 static inline short vmcs_field_to_offset(unsigned long field)
701 {
702         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
703                 return -1;
704         return vmcs_field_to_offset_table[field];
705 }
706
707 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
708 {
709         return to_vmx(vcpu)->nested.current_vmcs12;
710 }
711
712 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
713 {
714         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
715         if (is_error_page(page))
716                 return NULL;
717
718         return page;
719 }
720
721 static void nested_release_page(struct page *page)
722 {
723         kvm_release_page_dirty(page);
724 }
725
726 static void nested_release_page_clean(struct page *page)
727 {
728         kvm_release_page_clean(page);
729 }
730
731 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
732 static u64 construct_eptp(unsigned long root_hpa);
733 static void kvm_cpu_vmxon(u64 addr);
734 static void kvm_cpu_vmxoff(void);
735 static bool vmx_mpx_supported(void);
736 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
737 static void vmx_set_segment(struct kvm_vcpu *vcpu,
738                             struct kvm_segment *var, int seg);
739 static void vmx_get_segment(struct kvm_vcpu *vcpu,
740                             struct kvm_segment *var, int seg);
741 static bool guest_state_valid(struct kvm_vcpu *vcpu);
742 static u32 vmx_segment_access_rights(struct kvm_segment *var);
743 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
744 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
745 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
746
747 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
748 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
749 /*
750  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
751  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
752  */
753 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
754 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
755
756 static unsigned long *vmx_io_bitmap_a;
757 static unsigned long *vmx_io_bitmap_b;
758 static unsigned long *vmx_msr_bitmap_legacy;
759 static unsigned long *vmx_msr_bitmap_longmode;
760 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
761 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
762 static unsigned long *vmx_vmread_bitmap;
763 static unsigned long *vmx_vmwrite_bitmap;
764
765 static bool cpu_has_load_ia32_efer;
766 static bool cpu_has_load_perf_global_ctrl;
767
768 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
769 static DEFINE_SPINLOCK(vmx_vpid_lock);
770
771 static struct vmcs_config {
772         int size;
773         int order;
774         u32 revision_id;
775         u32 pin_based_exec_ctrl;
776         u32 cpu_based_exec_ctrl;
777         u32 cpu_based_2nd_exec_ctrl;
778         u32 vmexit_ctrl;
779         u32 vmentry_ctrl;
780 } vmcs_config;
781
782 static struct vmx_capability {
783         u32 ept;
784         u32 vpid;
785 } vmx_capability;
786
787 #define VMX_SEGMENT_FIELD(seg)                                  \
788         [VCPU_SREG_##seg] = {                                   \
789                 .selector = GUEST_##seg##_SELECTOR,             \
790                 .base = GUEST_##seg##_BASE,                     \
791                 .limit = GUEST_##seg##_LIMIT,                   \
792                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
793         }
794
795 static const struct kvm_vmx_segment_field {
796         unsigned selector;
797         unsigned base;
798         unsigned limit;
799         unsigned ar_bytes;
800 } kvm_vmx_segment_fields[] = {
801         VMX_SEGMENT_FIELD(CS),
802         VMX_SEGMENT_FIELD(DS),
803         VMX_SEGMENT_FIELD(ES),
804         VMX_SEGMENT_FIELD(FS),
805         VMX_SEGMENT_FIELD(GS),
806         VMX_SEGMENT_FIELD(SS),
807         VMX_SEGMENT_FIELD(TR),
808         VMX_SEGMENT_FIELD(LDTR),
809 };
810
811 static u64 host_efer;
812
813 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
814
815 /*
816  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
817  * away by decrementing the array size.
818  */
819 static const u32 vmx_msr_index[] = {
820 #ifdef CONFIG_X86_64
821         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
822 #endif
823         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
824 };
825
826 static inline bool is_page_fault(u32 intr_info)
827 {
828         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
829                              INTR_INFO_VALID_MASK)) ==
830                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
831 }
832
833 static inline bool is_no_device(u32 intr_info)
834 {
835         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
836                              INTR_INFO_VALID_MASK)) ==
837                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
838 }
839
840 static inline bool is_invalid_opcode(u32 intr_info)
841 {
842         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
843                              INTR_INFO_VALID_MASK)) ==
844                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
845 }
846
847 static inline bool is_external_interrupt(u32 intr_info)
848 {
849         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
850                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
851 }
852
853 static inline bool is_machine_check(u32 intr_info)
854 {
855         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
856                              INTR_INFO_VALID_MASK)) ==
857                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
858 }
859
860 static inline bool cpu_has_vmx_msr_bitmap(void)
861 {
862         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
863 }
864
865 static inline bool cpu_has_vmx_tpr_shadow(void)
866 {
867         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
868 }
869
870 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
871 {
872         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
873 }
874
875 static inline bool cpu_has_secondary_exec_ctrls(void)
876 {
877         return vmcs_config.cpu_based_exec_ctrl &
878                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
879 }
880
881 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
882 {
883         return vmcs_config.cpu_based_2nd_exec_ctrl &
884                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
885 }
886
887 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
888 {
889         return vmcs_config.cpu_based_2nd_exec_ctrl &
890                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
891 }
892
893 static inline bool cpu_has_vmx_apic_register_virt(void)
894 {
895         return vmcs_config.cpu_based_2nd_exec_ctrl &
896                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
897 }
898
899 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
900 {
901         return vmcs_config.cpu_based_2nd_exec_ctrl &
902                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
903 }
904
905 static inline bool cpu_has_vmx_posted_intr(void)
906 {
907         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
908 }
909
910 static inline bool cpu_has_vmx_apicv(void)
911 {
912         return cpu_has_vmx_apic_register_virt() &&
913                 cpu_has_vmx_virtual_intr_delivery() &&
914                 cpu_has_vmx_posted_intr();
915 }
916
917 static inline bool cpu_has_vmx_flexpriority(void)
918 {
919         return cpu_has_vmx_tpr_shadow() &&
920                 cpu_has_vmx_virtualize_apic_accesses();
921 }
922
923 static inline bool cpu_has_vmx_ept_execute_only(void)
924 {
925         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
926 }
927
928 static inline bool cpu_has_vmx_eptp_uncacheable(void)
929 {
930         return vmx_capability.ept & VMX_EPTP_UC_BIT;
931 }
932
933 static inline bool cpu_has_vmx_eptp_writeback(void)
934 {
935         return vmx_capability.ept & VMX_EPTP_WB_BIT;
936 }
937
938 static inline bool cpu_has_vmx_ept_2m_page(void)
939 {
940         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
941 }
942
943 static inline bool cpu_has_vmx_ept_1g_page(void)
944 {
945         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
946 }
947
948 static inline bool cpu_has_vmx_ept_4levels(void)
949 {
950         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
951 }
952
953 static inline bool cpu_has_vmx_ept_ad_bits(void)
954 {
955         return vmx_capability.ept & VMX_EPT_AD_BIT;
956 }
957
958 static inline bool cpu_has_vmx_invept_context(void)
959 {
960         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
961 }
962
963 static inline bool cpu_has_vmx_invept_global(void)
964 {
965         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
966 }
967
968 static inline bool cpu_has_vmx_invvpid_single(void)
969 {
970         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
971 }
972
973 static inline bool cpu_has_vmx_invvpid_global(void)
974 {
975         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
976 }
977
978 static inline bool cpu_has_vmx_ept(void)
979 {
980         return vmcs_config.cpu_based_2nd_exec_ctrl &
981                 SECONDARY_EXEC_ENABLE_EPT;
982 }
983
984 static inline bool cpu_has_vmx_unrestricted_guest(void)
985 {
986         return vmcs_config.cpu_based_2nd_exec_ctrl &
987                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
988 }
989
990 static inline bool cpu_has_vmx_ple(void)
991 {
992         return vmcs_config.cpu_based_2nd_exec_ctrl &
993                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
994 }
995
996 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
997 {
998         return flexpriority_enabled && irqchip_in_kernel(kvm);
999 }
1000
1001 static inline bool cpu_has_vmx_vpid(void)
1002 {
1003         return vmcs_config.cpu_based_2nd_exec_ctrl &
1004                 SECONDARY_EXEC_ENABLE_VPID;
1005 }
1006
1007 static inline bool cpu_has_vmx_rdtscp(void)
1008 {
1009         return vmcs_config.cpu_based_2nd_exec_ctrl &
1010                 SECONDARY_EXEC_RDTSCP;
1011 }
1012
1013 static inline bool cpu_has_vmx_invpcid(void)
1014 {
1015         return vmcs_config.cpu_based_2nd_exec_ctrl &
1016                 SECONDARY_EXEC_ENABLE_INVPCID;
1017 }
1018
1019 static inline bool cpu_has_virtual_nmis(void)
1020 {
1021         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1022 }
1023
1024 static inline bool cpu_has_vmx_wbinvd_exit(void)
1025 {
1026         return vmcs_config.cpu_based_2nd_exec_ctrl &
1027                 SECONDARY_EXEC_WBINVD_EXITING;
1028 }
1029
1030 static inline bool cpu_has_vmx_shadow_vmcs(void)
1031 {
1032         u64 vmx_msr;
1033         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1034         /* check if the cpu supports writing r/o exit information fields */
1035         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1036                 return false;
1037
1038         return vmcs_config.cpu_based_2nd_exec_ctrl &
1039                 SECONDARY_EXEC_SHADOW_VMCS;
1040 }
1041
1042 static inline bool report_flexpriority(void)
1043 {
1044         return flexpriority_enabled;
1045 }
1046
1047 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1048 {
1049         return vmcs12->cpu_based_vm_exec_control & bit;
1050 }
1051
1052 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1053 {
1054         return (vmcs12->cpu_based_vm_exec_control &
1055                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1056                 (vmcs12->secondary_vm_exec_control & bit);
1057 }
1058
1059 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1060 {
1061         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1062 }
1063
1064 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1065 {
1066         return vmcs12->pin_based_vm_exec_control &
1067                 PIN_BASED_VMX_PREEMPTION_TIMER;
1068 }
1069
1070 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1071 {
1072         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1073 }
1074
1075 static inline bool is_exception(u32 intr_info)
1076 {
1077         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1078                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1079 }
1080
1081 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1082                               u32 exit_intr_info,
1083                               unsigned long exit_qualification);
1084 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1085                         struct vmcs12 *vmcs12,
1086                         u32 reason, unsigned long qualification);
1087
1088 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1089 {
1090         int i;
1091
1092         for (i = 0; i < vmx->nmsrs; ++i)
1093                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1094                         return i;
1095         return -1;
1096 }
1097
1098 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1099 {
1100     struct {
1101         u64 vpid : 16;
1102         u64 rsvd : 48;
1103         u64 gva;
1104     } operand = { vpid, 0, gva };
1105
1106     asm volatile (__ex(ASM_VMX_INVVPID)
1107                   /* CF==1 or ZF==1 --> rc = -1 */
1108                   "; ja 1f ; ud2 ; 1:"
1109                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1110 }
1111
1112 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1113 {
1114         struct {
1115                 u64 eptp, gpa;
1116         } operand = {eptp, gpa};
1117
1118         asm volatile (__ex(ASM_VMX_INVEPT)
1119                         /* CF==1 or ZF==1 --> rc = -1 */
1120                         "; ja 1f ; ud2 ; 1:\n"
1121                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1122 }
1123
1124 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1125 {
1126         int i;
1127
1128         i = __find_msr_index(vmx, msr);
1129         if (i >= 0)
1130                 return &vmx->guest_msrs[i];
1131         return NULL;
1132 }
1133
1134 static void vmcs_clear(struct vmcs *vmcs)
1135 {
1136         u64 phys_addr = __pa(vmcs);
1137         u8 error;
1138
1139         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1140                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1141                       : "cc", "memory");
1142         if (error)
1143                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1144                        vmcs, phys_addr);
1145 }
1146
1147 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1148 {
1149         vmcs_clear(loaded_vmcs->vmcs);
1150         loaded_vmcs->cpu = -1;
1151         loaded_vmcs->launched = 0;
1152 }
1153
1154 static void vmcs_load(struct vmcs *vmcs)
1155 {
1156         u64 phys_addr = __pa(vmcs);
1157         u8 error;
1158
1159         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1160                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1161                         : "cc", "memory");
1162         if (error)
1163                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1164                        vmcs, phys_addr);
1165 }
1166
1167 #ifdef CONFIG_KEXEC
1168 /*
1169  * This bitmap is used to indicate whether the vmclear
1170  * operation is enabled on all cpus. All disabled by
1171  * default.
1172  */
1173 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1174
1175 static inline void crash_enable_local_vmclear(int cpu)
1176 {
1177         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1178 }
1179
1180 static inline void crash_disable_local_vmclear(int cpu)
1181 {
1182         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1183 }
1184
1185 static inline int crash_local_vmclear_enabled(int cpu)
1186 {
1187         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1188 }
1189
1190 static void crash_vmclear_local_loaded_vmcss(void)
1191 {
1192         int cpu = raw_smp_processor_id();
1193         struct loaded_vmcs *v;
1194
1195         if (!crash_local_vmclear_enabled(cpu))
1196                 return;
1197
1198         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1199                             loaded_vmcss_on_cpu_link)
1200                 vmcs_clear(v->vmcs);
1201 }
1202 #else
1203 static inline void crash_enable_local_vmclear(int cpu) { }
1204 static inline void crash_disable_local_vmclear(int cpu) { }
1205 #endif /* CONFIG_KEXEC */
1206
1207 static void __loaded_vmcs_clear(void *arg)
1208 {
1209         struct loaded_vmcs *loaded_vmcs = arg;
1210         int cpu = raw_smp_processor_id();
1211
1212         if (loaded_vmcs->cpu != cpu)
1213                 return; /* vcpu migration can race with cpu offline */
1214         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1215                 per_cpu(current_vmcs, cpu) = NULL;
1216         crash_disable_local_vmclear(cpu);
1217         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1218
1219         /*
1220          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1221          * is before setting loaded_vmcs->vcpu to -1 which is done in
1222          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1223          * then adds the vmcs into percpu list before it is deleted.
1224          */
1225         smp_wmb();
1226
1227         loaded_vmcs_init(loaded_vmcs);
1228         crash_enable_local_vmclear(cpu);
1229 }
1230
1231 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1232 {
1233         int cpu = loaded_vmcs->cpu;
1234
1235         if (cpu != -1)
1236                 smp_call_function_single(cpu,
1237                          __loaded_vmcs_clear, loaded_vmcs, 1);
1238 }
1239
1240 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1241 {
1242         if (vmx->vpid == 0)
1243                 return;
1244
1245         if (cpu_has_vmx_invvpid_single())
1246                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1247 }
1248
1249 static inline void vpid_sync_vcpu_global(void)
1250 {
1251         if (cpu_has_vmx_invvpid_global())
1252                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1253 }
1254
1255 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1256 {
1257         if (cpu_has_vmx_invvpid_single())
1258                 vpid_sync_vcpu_single(vmx);
1259         else
1260                 vpid_sync_vcpu_global();
1261 }
1262
1263 static inline void ept_sync_global(void)
1264 {
1265         if (cpu_has_vmx_invept_global())
1266                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1267 }
1268
1269 static inline void ept_sync_context(u64 eptp)
1270 {
1271         if (enable_ept) {
1272                 if (cpu_has_vmx_invept_context())
1273                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1274                 else
1275                         ept_sync_global();
1276         }
1277 }
1278
1279 static __always_inline unsigned long vmcs_readl(unsigned long field)
1280 {
1281         unsigned long value;
1282
1283         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1284                       : "=a"(value) : "d"(field) : "cc");
1285         return value;
1286 }
1287
1288 static __always_inline u16 vmcs_read16(unsigned long field)
1289 {
1290         return vmcs_readl(field);
1291 }
1292
1293 static __always_inline u32 vmcs_read32(unsigned long field)
1294 {
1295         return vmcs_readl(field);
1296 }
1297
1298 static __always_inline u64 vmcs_read64(unsigned long field)
1299 {
1300 #ifdef CONFIG_X86_64
1301         return vmcs_readl(field);
1302 #else
1303         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1304 #endif
1305 }
1306
1307 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1308 {
1309         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1310                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1311         dump_stack();
1312 }
1313
1314 static void vmcs_writel(unsigned long field, unsigned long value)
1315 {
1316         u8 error;
1317
1318         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1319                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1320         if (unlikely(error))
1321                 vmwrite_error(field, value);
1322 }
1323
1324 static void vmcs_write16(unsigned long field, u16 value)
1325 {
1326         vmcs_writel(field, value);
1327 }
1328
1329 static void vmcs_write32(unsigned long field, u32 value)
1330 {
1331         vmcs_writel(field, value);
1332 }
1333
1334 static void vmcs_write64(unsigned long field, u64 value)
1335 {
1336         vmcs_writel(field, value);
1337 #ifndef CONFIG_X86_64
1338         asm volatile ("");
1339         vmcs_writel(field+1, value >> 32);
1340 #endif
1341 }
1342
1343 static void vmcs_clear_bits(unsigned long field, u32 mask)
1344 {
1345         vmcs_writel(field, vmcs_readl(field) & ~mask);
1346 }
1347
1348 static void vmcs_set_bits(unsigned long field, u32 mask)
1349 {
1350         vmcs_writel(field, vmcs_readl(field) | mask);
1351 }
1352
1353 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1354 {
1355         vmcs_write32(VM_ENTRY_CONTROLS, val);
1356         vmx->vm_entry_controls_shadow = val;
1357 }
1358
1359 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1360 {
1361         if (vmx->vm_entry_controls_shadow != val)
1362                 vm_entry_controls_init(vmx, val);
1363 }
1364
1365 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1366 {
1367         return vmx->vm_entry_controls_shadow;
1368 }
1369
1370
1371 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1372 {
1373         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1374 }
1375
1376 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1377 {
1378         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1379 }
1380
1381 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1382 {
1383         vmcs_write32(VM_EXIT_CONTROLS, val);
1384         vmx->vm_exit_controls_shadow = val;
1385 }
1386
1387 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1388 {
1389         if (vmx->vm_exit_controls_shadow != val)
1390                 vm_exit_controls_init(vmx, val);
1391 }
1392
1393 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1394 {
1395         return vmx->vm_exit_controls_shadow;
1396 }
1397
1398
1399 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1400 {
1401         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1402 }
1403
1404 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1405 {
1406         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1407 }
1408
1409 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1410 {
1411         vmx->segment_cache.bitmask = 0;
1412 }
1413
1414 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1415                                        unsigned field)
1416 {
1417         bool ret;
1418         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1419
1420         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1421                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1422                 vmx->segment_cache.bitmask = 0;
1423         }
1424         ret = vmx->segment_cache.bitmask & mask;
1425         vmx->segment_cache.bitmask |= mask;
1426         return ret;
1427 }
1428
1429 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1430 {
1431         u16 *p = &vmx->segment_cache.seg[seg].selector;
1432
1433         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1434                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1435         return *p;
1436 }
1437
1438 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1439 {
1440         ulong *p = &vmx->segment_cache.seg[seg].base;
1441
1442         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1443                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1444         return *p;
1445 }
1446
1447 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1448 {
1449         u32 *p = &vmx->segment_cache.seg[seg].limit;
1450
1451         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1452                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1453         return *p;
1454 }
1455
1456 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1457 {
1458         u32 *p = &vmx->segment_cache.seg[seg].ar;
1459
1460         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1461                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1462         return *p;
1463 }
1464
1465 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1466 {
1467         u32 eb;
1468
1469         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1470              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1471         if ((vcpu->guest_debug &
1472              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1473             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1474                 eb |= 1u << BP_VECTOR;
1475         if (to_vmx(vcpu)->rmode.vm86_active)
1476                 eb = ~0;
1477         if (enable_ept)
1478                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1479         if (vcpu->fpu_active)
1480                 eb &= ~(1u << NM_VECTOR);
1481
1482         /* When we are running a nested L2 guest and L1 specified for it a
1483          * certain exception bitmap, we must trap the same exceptions and pass
1484          * them to L1. When running L2, we will only handle the exceptions
1485          * specified above if L1 did not want them.
1486          */
1487         if (is_guest_mode(vcpu))
1488                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1489
1490         vmcs_write32(EXCEPTION_BITMAP, eb);
1491 }
1492
1493 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1494                 unsigned long entry, unsigned long exit)
1495 {
1496         vm_entry_controls_clearbit(vmx, entry);
1497         vm_exit_controls_clearbit(vmx, exit);
1498 }
1499
1500 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1501 {
1502         unsigned i;
1503         struct msr_autoload *m = &vmx->msr_autoload;
1504
1505         switch (msr) {
1506         case MSR_EFER:
1507                 if (cpu_has_load_ia32_efer) {
1508                         clear_atomic_switch_msr_special(vmx,
1509                                         VM_ENTRY_LOAD_IA32_EFER,
1510                                         VM_EXIT_LOAD_IA32_EFER);
1511                         return;
1512                 }
1513                 break;
1514         case MSR_CORE_PERF_GLOBAL_CTRL:
1515                 if (cpu_has_load_perf_global_ctrl) {
1516                         clear_atomic_switch_msr_special(vmx,
1517                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1518                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1519                         return;
1520                 }
1521                 break;
1522         }
1523
1524         for (i = 0; i < m->nr; ++i)
1525                 if (m->guest[i].index == msr)
1526                         break;
1527
1528         if (i == m->nr)
1529                 return;
1530         --m->nr;
1531         m->guest[i] = m->guest[m->nr];
1532         m->host[i] = m->host[m->nr];
1533         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1534         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1535 }
1536
1537 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1538                 unsigned long entry, unsigned long exit,
1539                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1540                 u64 guest_val, u64 host_val)
1541 {
1542         vmcs_write64(guest_val_vmcs, guest_val);
1543         vmcs_write64(host_val_vmcs, host_val);
1544         vm_entry_controls_setbit(vmx, entry);
1545         vm_exit_controls_setbit(vmx, exit);
1546 }
1547
1548 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1549                                   u64 guest_val, u64 host_val)
1550 {
1551         unsigned i;
1552         struct msr_autoload *m = &vmx->msr_autoload;
1553
1554         switch (msr) {
1555         case MSR_EFER:
1556                 if (cpu_has_load_ia32_efer) {
1557                         add_atomic_switch_msr_special(vmx,
1558                                         VM_ENTRY_LOAD_IA32_EFER,
1559                                         VM_EXIT_LOAD_IA32_EFER,
1560                                         GUEST_IA32_EFER,
1561                                         HOST_IA32_EFER,
1562                                         guest_val, host_val);
1563                         return;
1564                 }
1565                 break;
1566         case MSR_CORE_PERF_GLOBAL_CTRL:
1567                 if (cpu_has_load_perf_global_ctrl) {
1568                         add_atomic_switch_msr_special(vmx,
1569                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1570                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1571                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1572                                         HOST_IA32_PERF_GLOBAL_CTRL,
1573                                         guest_val, host_val);
1574                         return;
1575                 }
1576                 break;
1577         }
1578
1579         for (i = 0; i < m->nr; ++i)
1580                 if (m->guest[i].index == msr)
1581                         break;
1582
1583         if (i == NR_AUTOLOAD_MSRS) {
1584                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1585                                 "Can't add msr %x\n", msr);
1586                 return;
1587         } else if (i == m->nr) {
1588                 ++m->nr;
1589                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1590                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1591         }
1592
1593         m->guest[i].index = msr;
1594         m->guest[i].value = guest_val;
1595         m->host[i].index = msr;
1596         m->host[i].value = host_val;
1597 }
1598
1599 static void reload_tss(void)
1600 {
1601         /*
1602          * VT restores TR but not its size.  Useless.
1603          */
1604         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1605         struct desc_struct *descs;
1606
1607         descs = (void *)gdt->address;
1608         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1609         load_TR_desc();
1610 }
1611
1612 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1613 {
1614         u64 guest_efer;
1615         u64 ignore_bits;
1616
1617         guest_efer = vmx->vcpu.arch.efer;
1618
1619         /*
1620          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1621          * outside long mode
1622          */
1623         ignore_bits = EFER_NX | EFER_SCE;
1624 #ifdef CONFIG_X86_64
1625         ignore_bits |= EFER_LMA | EFER_LME;
1626         /* SCE is meaningful only in long mode on Intel */
1627         if (guest_efer & EFER_LMA)
1628                 ignore_bits &= ~(u64)EFER_SCE;
1629 #endif
1630         guest_efer &= ~ignore_bits;
1631         guest_efer |= host_efer & ignore_bits;
1632         vmx->guest_msrs[efer_offset].data = guest_efer;
1633         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1634
1635         clear_atomic_switch_msr(vmx, MSR_EFER);
1636         /* On ept, can't emulate nx, and must switch nx atomically */
1637         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1638                 guest_efer = vmx->vcpu.arch.efer;
1639                 if (!(guest_efer & EFER_LMA))
1640                         guest_efer &= ~EFER_LME;
1641                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1642                 return false;
1643         }
1644
1645         return true;
1646 }
1647
1648 static unsigned long segment_base(u16 selector)
1649 {
1650         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1651         struct desc_struct *d;
1652         unsigned long table_base;
1653         unsigned long v;
1654
1655         if (!(selector & ~3))
1656                 return 0;
1657
1658         table_base = gdt->address;
1659
1660         if (selector & 4) {           /* from ldt */
1661                 u16 ldt_selector = kvm_read_ldt();
1662
1663                 if (!(ldt_selector & ~3))
1664                         return 0;
1665
1666                 table_base = segment_base(ldt_selector);
1667         }
1668         d = (struct desc_struct *)(table_base + (selector & ~7));
1669         v = get_desc_base(d);
1670 #ifdef CONFIG_X86_64
1671        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1672                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1673 #endif
1674         return v;
1675 }
1676
1677 static inline unsigned long kvm_read_tr_base(void)
1678 {
1679         u16 tr;
1680         asm("str %0" : "=g"(tr));
1681         return segment_base(tr);
1682 }
1683
1684 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1685 {
1686         struct vcpu_vmx *vmx = to_vmx(vcpu);
1687         int i;
1688
1689         if (vmx->host_state.loaded)
1690                 return;
1691
1692         vmx->host_state.loaded = 1;
1693         /*
1694          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1695          * allow segment selectors with cpl > 0 or ti == 1.
1696          */
1697         vmx->host_state.ldt_sel = kvm_read_ldt();
1698         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1699         savesegment(fs, vmx->host_state.fs_sel);
1700         if (!(vmx->host_state.fs_sel & 7)) {
1701                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1702                 vmx->host_state.fs_reload_needed = 0;
1703         } else {
1704                 vmcs_write16(HOST_FS_SELECTOR, 0);
1705                 vmx->host_state.fs_reload_needed = 1;
1706         }
1707         savesegment(gs, vmx->host_state.gs_sel);
1708         if (!(vmx->host_state.gs_sel & 7))
1709                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1710         else {
1711                 vmcs_write16(HOST_GS_SELECTOR, 0);
1712                 vmx->host_state.gs_ldt_reload_needed = 1;
1713         }
1714
1715 #ifdef CONFIG_X86_64
1716         savesegment(ds, vmx->host_state.ds_sel);
1717         savesegment(es, vmx->host_state.es_sel);
1718 #endif
1719
1720 #ifdef CONFIG_X86_64
1721         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1722         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1723 #else
1724         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1725         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1726 #endif
1727
1728 #ifdef CONFIG_X86_64
1729         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1730         if (is_long_mode(&vmx->vcpu))
1731                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1732 #endif
1733         if (boot_cpu_has(X86_FEATURE_MPX))
1734                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1735         for (i = 0; i < vmx->save_nmsrs; ++i)
1736                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1737                                    vmx->guest_msrs[i].data,
1738                                    vmx->guest_msrs[i].mask);
1739 }
1740
1741 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1742 {
1743         if (!vmx->host_state.loaded)
1744                 return;
1745
1746         ++vmx->vcpu.stat.host_state_reload;
1747         vmx->host_state.loaded = 0;
1748 #ifdef CONFIG_X86_64
1749         if (is_long_mode(&vmx->vcpu))
1750                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1751 #endif
1752         if (vmx->host_state.gs_ldt_reload_needed) {
1753                 kvm_load_ldt(vmx->host_state.ldt_sel);
1754 #ifdef CONFIG_X86_64
1755                 load_gs_index(vmx->host_state.gs_sel);
1756 #else
1757                 loadsegment(gs, vmx->host_state.gs_sel);
1758 #endif
1759         }
1760         if (vmx->host_state.fs_reload_needed)
1761                 loadsegment(fs, vmx->host_state.fs_sel);
1762 #ifdef CONFIG_X86_64
1763         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1764                 loadsegment(ds, vmx->host_state.ds_sel);
1765                 loadsegment(es, vmx->host_state.es_sel);
1766         }
1767 #endif
1768         reload_tss();
1769 #ifdef CONFIG_X86_64
1770         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1771 #endif
1772         if (vmx->host_state.msr_host_bndcfgs)
1773                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1774         /*
1775          * If the FPU is not active (through the host task or
1776          * the guest vcpu), then restore the cr0.TS bit.
1777          */
1778         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1779                 stts();
1780         load_gdt(&__get_cpu_var(host_gdt));
1781 }
1782
1783 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1784 {
1785         preempt_disable();
1786         __vmx_load_host_state(vmx);
1787         preempt_enable();
1788 }
1789
1790 /*
1791  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1792  * vcpu mutex is already taken.
1793  */
1794 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1795 {
1796         struct vcpu_vmx *vmx = to_vmx(vcpu);
1797         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1798
1799         if (!vmm_exclusive)
1800                 kvm_cpu_vmxon(phys_addr);
1801         else if (vmx->loaded_vmcs->cpu != cpu)
1802                 loaded_vmcs_clear(vmx->loaded_vmcs);
1803
1804         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1805                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1806                 vmcs_load(vmx->loaded_vmcs->vmcs);
1807         }
1808
1809         if (vmx->loaded_vmcs->cpu != cpu) {
1810                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1811                 unsigned long sysenter_esp;
1812
1813                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1814                 local_irq_disable();
1815                 crash_disable_local_vmclear(cpu);
1816
1817                 /*
1818                  * Read loaded_vmcs->cpu should be before fetching
1819                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1820                  * See the comments in __loaded_vmcs_clear().
1821                  */
1822                 smp_rmb();
1823
1824                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1825                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1826                 crash_enable_local_vmclear(cpu);
1827                 local_irq_enable();
1828
1829                 /*
1830                  * Linux uses per-cpu TSS and GDT, so set these when switching
1831                  * processors.
1832                  */
1833                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1834                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1835
1836                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1837                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1838                 vmx->loaded_vmcs->cpu = cpu;
1839         }
1840 }
1841
1842 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1843 {
1844         __vmx_load_host_state(to_vmx(vcpu));
1845         if (!vmm_exclusive) {
1846                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1847                 vcpu->cpu = -1;
1848                 kvm_cpu_vmxoff();
1849         }
1850 }
1851
1852 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1853 {
1854         ulong cr0;
1855
1856         if (vcpu->fpu_active)
1857                 return;
1858         vcpu->fpu_active = 1;
1859         cr0 = vmcs_readl(GUEST_CR0);
1860         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1861         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1862         vmcs_writel(GUEST_CR0, cr0);
1863         update_exception_bitmap(vcpu);
1864         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1865         if (is_guest_mode(vcpu))
1866                 vcpu->arch.cr0_guest_owned_bits &=
1867                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1868         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1869 }
1870
1871 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1872
1873 /*
1874  * Return the cr0 value that a nested guest would read. This is a combination
1875  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1876  * its hypervisor (cr0_read_shadow).
1877  */
1878 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1879 {
1880         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1881                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1882 }
1883 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1884 {
1885         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1886                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1887 }
1888
1889 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1890 {
1891         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1892          * set this *before* calling this function.
1893          */
1894         vmx_decache_cr0_guest_bits(vcpu);
1895         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1896         update_exception_bitmap(vcpu);
1897         vcpu->arch.cr0_guest_owned_bits = 0;
1898         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1899         if (is_guest_mode(vcpu)) {
1900                 /*
1901                  * L1's specified read shadow might not contain the TS bit,
1902                  * so now that we turned on shadowing of this bit, we need to
1903                  * set this bit of the shadow. Like in nested_vmx_run we need
1904                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1905                  * up-to-date here because we just decached cr0.TS (and we'll
1906                  * only update vmcs12->guest_cr0 on nested exit).
1907                  */
1908                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1909                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1910                         (vcpu->arch.cr0 & X86_CR0_TS);
1911                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1912         } else
1913                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1914 }
1915
1916 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1917 {
1918         unsigned long rflags, save_rflags;
1919
1920         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1921                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1922                 rflags = vmcs_readl(GUEST_RFLAGS);
1923                 if (to_vmx(vcpu)->rmode.vm86_active) {
1924                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1925                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1926                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1927                 }
1928                 to_vmx(vcpu)->rflags = rflags;
1929         }
1930         return to_vmx(vcpu)->rflags;
1931 }
1932
1933 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1934 {
1935         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1936         to_vmx(vcpu)->rflags = rflags;
1937         if (to_vmx(vcpu)->rmode.vm86_active) {
1938                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1939                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1940         }
1941         vmcs_writel(GUEST_RFLAGS, rflags);
1942 }
1943
1944 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1945 {
1946         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1947         int ret = 0;
1948
1949         if (interruptibility & GUEST_INTR_STATE_STI)
1950                 ret |= KVM_X86_SHADOW_INT_STI;
1951         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1952                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1953
1954         return ret;
1955 }
1956
1957 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1958 {
1959         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1960         u32 interruptibility = interruptibility_old;
1961
1962         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1963
1964         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1965                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1966         else if (mask & KVM_X86_SHADOW_INT_STI)
1967                 interruptibility |= GUEST_INTR_STATE_STI;
1968
1969         if ((interruptibility != interruptibility_old))
1970                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1971 }
1972
1973 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1974 {
1975         unsigned long rip;
1976
1977         rip = kvm_rip_read(vcpu);
1978         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1979         kvm_rip_write(vcpu, rip);
1980
1981         /* skipping an emulated instruction also counts */
1982         vmx_set_interrupt_shadow(vcpu, 0);
1983 }
1984
1985 /*
1986  * KVM wants to inject page-faults which it got to the guest. This function
1987  * checks whether in a nested guest, we need to inject them to L1 or L2.
1988  */
1989 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
1990 {
1991         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1992
1993         if (!(vmcs12->exception_bitmap & (1u << nr)))
1994                 return 0;
1995
1996         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
1997                           vmcs_read32(VM_EXIT_INTR_INFO),
1998                           vmcs_readl(EXIT_QUALIFICATION));
1999         return 1;
2000 }
2001
2002 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2003                                 bool has_error_code, u32 error_code,
2004                                 bool reinject)
2005 {
2006         struct vcpu_vmx *vmx = to_vmx(vcpu);
2007         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2008
2009         if (!reinject && is_guest_mode(vcpu) &&
2010             nested_vmx_check_exception(vcpu, nr))
2011                 return;
2012
2013         if (has_error_code) {
2014                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2015                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2016         }
2017
2018         if (vmx->rmode.vm86_active) {
2019                 int inc_eip = 0;
2020                 if (kvm_exception_is_soft(nr))
2021                         inc_eip = vcpu->arch.event_exit_inst_len;
2022                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2023                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2024                 return;
2025         }
2026
2027         if (kvm_exception_is_soft(nr)) {
2028                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2029                              vmx->vcpu.arch.event_exit_inst_len);
2030                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2031         } else
2032                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2033
2034         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2035 }
2036
2037 static bool vmx_rdtscp_supported(void)
2038 {
2039         return cpu_has_vmx_rdtscp();
2040 }
2041
2042 static bool vmx_invpcid_supported(void)
2043 {
2044         return cpu_has_vmx_invpcid() && enable_ept;
2045 }
2046
2047 /*
2048  * Swap MSR entry in host/guest MSR entry array.
2049  */
2050 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2051 {
2052         struct shared_msr_entry tmp;
2053
2054         tmp = vmx->guest_msrs[to];
2055         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2056         vmx->guest_msrs[from] = tmp;
2057 }
2058
2059 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2060 {
2061         unsigned long *msr_bitmap;
2062
2063         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2064                 if (is_long_mode(vcpu))
2065                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2066                 else
2067                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2068         } else {
2069                 if (is_long_mode(vcpu))
2070                         msr_bitmap = vmx_msr_bitmap_longmode;
2071                 else
2072                         msr_bitmap = vmx_msr_bitmap_legacy;
2073         }
2074
2075         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2076 }
2077
2078 /*
2079  * Set up the vmcs to automatically save and restore system
2080  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2081  * mode, as fiddling with msrs is very expensive.
2082  */
2083 static void setup_msrs(struct vcpu_vmx *vmx)
2084 {
2085         int save_nmsrs, index;
2086
2087         save_nmsrs = 0;
2088 #ifdef CONFIG_X86_64
2089         if (is_long_mode(&vmx->vcpu)) {
2090                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2091                 if (index >= 0)
2092                         move_msr_up(vmx, index, save_nmsrs++);
2093                 index = __find_msr_index(vmx, MSR_LSTAR);
2094                 if (index >= 0)
2095                         move_msr_up(vmx, index, save_nmsrs++);
2096                 index = __find_msr_index(vmx, MSR_CSTAR);
2097                 if (index >= 0)
2098                         move_msr_up(vmx, index, save_nmsrs++);
2099                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2100                 if (index >= 0 && vmx->rdtscp_enabled)
2101                         move_msr_up(vmx, index, save_nmsrs++);
2102                 /*
2103                  * MSR_STAR is only needed on long mode guests, and only
2104                  * if efer.sce is enabled.
2105                  */
2106                 index = __find_msr_index(vmx, MSR_STAR);
2107                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2108                         move_msr_up(vmx, index, save_nmsrs++);
2109         }
2110 #endif
2111         index = __find_msr_index(vmx, MSR_EFER);
2112         if (index >= 0 && update_transition_efer(vmx, index))
2113                 move_msr_up(vmx, index, save_nmsrs++);
2114
2115         vmx->save_nmsrs = save_nmsrs;
2116
2117         if (cpu_has_vmx_msr_bitmap())
2118                 vmx_set_msr_bitmap(&vmx->vcpu);
2119 }
2120
2121 /*
2122  * reads and returns guest's timestamp counter "register"
2123  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2124  */
2125 static u64 guest_read_tsc(void)
2126 {
2127         u64 host_tsc, tsc_offset;
2128
2129         rdtscll(host_tsc);
2130         tsc_offset = vmcs_read64(TSC_OFFSET);
2131         return host_tsc + tsc_offset;
2132 }
2133
2134 /*
2135  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2136  * counter, even if a nested guest (L2) is currently running.
2137  */
2138 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2139 {
2140         u64 tsc_offset;
2141
2142         tsc_offset = is_guest_mode(vcpu) ?
2143                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2144                 vmcs_read64(TSC_OFFSET);
2145         return host_tsc + tsc_offset;
2146 }
2147
2148 /*
2149  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2150  * software catchup for faster rates on slower CPUs.
2151  */
2152 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2153 {
2154         if (!scale)
2155                 return;
2156
2157         if (user_tsc_khz > tsc_khz) {
2158                 vcpu->arch.tsc_catchup = 1;
2159                 vcpu->arch.tsc_always_catchup = 1;
2160         } else
2161                 WARN(1, "user requested TSC rate below hardware speed\n");
2162 }
2163
2164 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2165 {
2166         return vmcs_read64(TSC_OFFSET);
2167 }
2168
2169 /*
2170  * writes 'offset' into guest's timestamp counter offset register
2171  */
2172 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2173 {
2174         if (is_guest_mode(vcpu)) {
2175                 /*
2176                  * We're here if L1 chose not to trap WRMSR to TSC. According
2177                  * to the spec, this should set L1's TSC; The offset that L1
2178                  * set for L2 remains unchanged, and still needs to be added
2179                  * to the newly set TSC to get L2's TSC.
2180                  */
2181                 struct vmcs12 *vmcs12;
2182                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2183                 /* recalculate vmcs02.TSC_OFFSET: */
2184                 vmcs12 = get_vmcs12(vcpu);
2185                 vmcs_write64(TSC_OFFSET, offset +
2186                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2187                          vmcs12->tsc_offset : 0));
2188         } else {
2189                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2190                                            vmcs_read64(TSC_OFFSET), offset);
2191                 vmcs_write64(TSC_OFFSET, offset);
2192         }
2193 }
2194
2195 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2196 {
2197         u64 offset = vmcs_read64(TSC_OFFSET);
2198
2199         vmcs_write64(TSC_OFFSET, offset + adjustment);
2200         if (is_guest_mode(vcpu)) {
2201                 /* Even when running L2, the adjustment needs to apply to L1 */
2202                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2203         } else
2204                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2205                                            offset + adjustment);
2206 }
2207
2208 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2209 {
2210         return target_tsc - native_read_tsc();
2211 }
2212
2213 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2214 {
2215         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2216         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2217 }
2218
2219 /*
2220  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2221  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2222  * all guests if the "nested" module option is off, and can also be disabled
2223  * for a single guest by disabling its VMX cpuid bit.
2224  */
2225 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2226 {
2227         return nested && guest_cpuid_has_vmx(vcpu);
2228 }
2229
2230 /*
2231  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2232  * returned for the various VMX controls MSRs when nested VMX is enabled.
2233  * The same values should also be used to verify that vmcs12 control fields are
2234  * valid during nested entry from L1 to L2.
2235  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2236  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2237  * bit in the high half is on if the corresponding bit in the control field
2238  * may be on. See also vmx_control_verify().
2239  * TODO: allow these variables to be modified (downgraded) by module options
2240  * or other means.
2241  */
2242 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2243 static u32 nested_vmx_true_procbased_ctls_low;
2244 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2245 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2246 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2247 static u32 nested_vmx_true_exit_ctls_low;
2248 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2249 static u32 nested_vmx_true_entry_ctls_low;
2250 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2251 static u32 nested_vmx_ept_caps;
2252 static __init void nested_vmx_setup_ctls_msrs(void)
2253 {
2254         /*
2255          * Note that as a general rule, the high half of the MSRs (bits in
2256          * the control fields which may be 1) should be initialized by the
2257          * intersection of the underlying hardware's MSR (i.e., features which
2258          * can be supported) and the list of features we want to expose -
2259          * because they are known to be properly supported in our code.
2260          * Also, usually, the low half of the MSRs (bits which must be 1) can
2261          * be set to 0, meaning that L1 may turn off any of these bits. The
2262          * reason is that if one of these bits is necessary, it will appear
2263          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2264          * fields of vmcs01 and vmcs02, will turn these bits off - and
2265          * nested_vmx_exit_handled() will not pass related exits to L1.
2266          * These rules have exceptions below.
2267          */
2268
2269         /* pin-based controls */
2270         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2271               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2272         nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2273         nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2274                 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2275         nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2276                 PIN_BASED_VMX_PREEMPTION_TIMER;
2277
2278         /* exit controls */
2279         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2280                 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2281         nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2282
2283         nested_vmx_exit_ctls_high &=
2284 #ifdef CONFIG_X86_64
2285                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2286 #endif
2287                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2288         nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2289                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2290                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2291
2292         if (vmx_mpx_supported())
2293                 nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2294
2295         /* We support free control of debug control saving. */
2296         nested_vmx_true_exit_ctls_low = nested_vmx_exit_ctls_low &
2297                 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2298
2299         /* entry controls */
2300         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2301                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2302         nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2303         nested_vmx_entry_ctls_high &=
2304 #ifdef CONFIG_X86_64
2305                 VM_ENTRY_IA32E_MODE |
2306 #endif
2307                 VM_ENTRY_LOAD_IA32_PAT;
2308         nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2309                                        VM_ENTRY_LOAD_IA32_EFER);
2310         if (vmx_mpx_supported())
2311                 nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2312
2313         /* We support free control of debug control loading. */
2314         nested_vmx_true_entry_ctls_low = nested_vmx_entry_ctls_low &
2315                 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2316
2317         /* cpu-based controls */
2318         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2319                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2320         nested_vmx_procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2321         nested_vmx_procbased_ctls_high &=
2322                 CPU_BASED_VIRTUAL_INTR_PENDING |
2323                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2324                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2325                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2326                 CPU_BASED_CR3_STORE_EXITING |
2327 #ifdef CONFIG_X86_64
2328                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2329 #endif
2330                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2331                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2332                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2333                 CPU_BASED_PAUSE_EXITING |
2334                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2335         /*
2336          * We can allow some features even when not supported by the
2337          * hardware. For example, L1 can specify an MSR bitmap - and we
2338          * can use it to avoid exits to L1 - even when L0 runs L2
2339          * without MSR bitmaps.
2340          */
2341         nested_vmx_procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2342                 CPU_BASED_USE_MSR_BITMAPS;
2343
2344         /* We support free control of CR3 access interception. */
2345         nested_vmx_true_procbased_ctls_low = nested_vmx_procbased_ctls_low &
2346                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2347
2348         /* secondary cpu-based controls */
2349         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2350                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2351         nested_vmx_secondary_ctls_low = 0;
2352         nested_vmx_secondary_ctls_high &=
2353                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2354                 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2355                 SECONDARY_EXEC_WBINVD_EXITING;
2356
2357         if (enable_ept) {
2358                 /* nested EPT: emulate EPT also to L1 */
2359                 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2360                 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2361                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2362                          VMX_EPT_INVEPT_BIT;
2363                 nested_vmx_ept_caps &= vmx_capability.ept;
2364                 /*
2365                  * For nested guests, we don't do anything specific
2366                  * for single context invalidation. Hence, only advertise
2367                  * support for global context invalidation.
2368                  */
2369                 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2370         } else
2371                 nested_vmx_ept_caps = 0;
2372
2373         /* miscellaneous data */
2374         rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2375         nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2376         nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2377                 VMX_MISC_ACTIVITY_HLT;
2378         nested_vmx_misc_high = 0;
2379 }
2380
2381 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2382 {
2383         /*
2384          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2385          */
2386         return ((control & high) | low) == control;
2387 }
2388
2389 static inline u64 vmx_control_msr(u32 low, u32 high)
2390 {
2391         return low | ((u64)high << 32);
2392 }
2393
2394 /* Returns 0 on success, non-0 otherwise. */
2395 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2396 {
2397         switch (msr_index) {
2398         case MSR_IA32_VMX_BASIC:
2399                 /*
2400                  * This MSR reports some information about VMX support. We
2401                  * should return information about the VMX we emulate for the
2402                  * guest, and the VMCS structure we give it - not about the
2403                  * VMX support of the underlying hardware.
2404                  */
2405                 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2406                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2407                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2408                 break;
2409         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2410         case MSR_IA32_VMX_PINBASED_CTLS:
2411                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2412                                         nested_vmx_pinbased_ctls_high);
2413                 break;
2414         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2415                 *pdata = vmx_control_msr(nested_vmx_true_procbased_ctls_low,
2416                                         nested_vmx_procbased_ctls_high);
2417                 break;
2418         case MSR_IA32_VMX_PROCBASED_CTLS:
2419                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2420                                         nested_vmx_procbased_ctls_high);
2421                 break;
2422         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2423                 *pdata = vmx_control_msr(nested_vmx_true_exit_ctls_low,
2424                                         nested_vmx_exit_ctls_high);
2425                 break;
2426         case MSR_IA32_VMX_EXIT_CTLS:
2427                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2428                                         nested_vmx_exit_ctls_high);
2429                 break;
2430         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2431                 *pdata = vmx_control_msr(nested_vmx_true_entry_ctls_low,
2432                                         nested_vmx_entry_ctls_high);
2433                 break;
2434         case MSR_IA32_VMX_ENTRY_CTLS:
2435                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2436                                         nested_vmx_entry_ctls_high);
2437                 break;
2438         case MSR_IA32_VMX_MISC:
2439                 *pdata = vmx_control_msr(nested_vmx_misc_low,
2440                                          nested_vmx_misc_high);
2441                 break;
2442         /*
2443          * These MSRs specify bits which the guest must keep fixed (on or off)
2444          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2445          * We picked the standard core2 setting.
2446          */
2447 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2448 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2449         case MSR_IA32_VMX_CR0_FIXED0:
2450                 *pdata = VMXON_CR0_ALWAYSON;
2451                 break;
2452         case MSR_IA32_VMX_CR0_FIXED1:
2453                 *pdata = -1ULL;
2454                 break;
2455         case MSR_IA32_VMX_CR4_FIXED0:
2456                 *pdata = VMXON_CR4_ALWAYSON;
2457                 break;
2458         case MSR_IA32_VMX_CR4_FIXED1:
2459                 *pdata = -1ULL;
2460                 break;
2461         case MSR_IA32_VMX_VMCS_ENUM:
2462                 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2463                 break;
2464         case MSR_IA32_VMX_PROCBASED_CTLS2:
2465                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2466                                         nested_vmx_secondary_ctls_high);
2467                 break;
2468         case MSR_IA32_VMX_EPT_VPID_CAP:
2469                 /* Currently, no nested vpid support */
2470                 *pdata = nested_vmx_ept_caps;
2471                 break;
2472         default:
2473                 return 1;
2474         }
2475
2476         return 0;
2477 }
2478
2479 /*
2480  * Reads an msr value (of 'msr_index') into 'pdata'.
2481  * Returns 0 on success, non-0 otherwise.
2482  * Assumes vcpu_load() was already called.
2483  */
2484 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2485 {
2486         u64 data;
2487         struct shared_msr_entry *msr;
2488
2489         if (!pdata) {
2490                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2491                 return -EINVAL;
2492         }
2493
2494         switch (msr_index) {
2495 #ifdef CONFIG_X86_64
2496         case MSR_FS_BASE:
2497                 data = vmcs_readl(GUEST_FS_BASE);
2498                 break;
2499         case MSR_GS_BASE:
2500                 data = vmcs_readl(GUEST_GS_BASE);
2501                 break;
2502         case MSR_KERNEL_GS_BASE:
2503                 vmx_load_host_state(to_vmx(vcpu));
2504                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2505                 break;
2506 #endif
2507         case MSR_EFER:
2508                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2509         case MSR_IA32_TSC:
2510                 data = guest_read_tsc();
2511                 break;
2512         case MSR_IA32_SYSENTER_CS:
2513                 data = vmcs_read32(GUEST_SYSENTER_CS);
2514                 break;
2515         case MSR_IA32_SYSENTER_EIP:
2516                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2517                 break;
2518         case MSR_IA32_SYSENTER_ESP:
2519                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2520                 break;
2521         case MSR_IA32_BNDCFGS:
2522                 if (!vmx_mpx_supported())
2523                         return 1;
2524                 data = vmcs_read64(GUEST_BNDCFGS);
2525                 break;
2526         case MSR_IA32_FEATURE_CONTROL:
2527                 if (!nested_vmx_allowed(vcpu))
2528                         return 1;
2529                 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2530                 break;
2531         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2532                 if (!nested_vmx_allowed(vcpu))
2533                         return 1;
2534                 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2535         case MSR_TSC_AUX:
2536                 if (!to_vmx(vcpu)->rdtscp_enabled)
2537                         return 1;
2538                 /* Otherwise falls through */
2539         default:
2540                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2541                 if (msr) {
2542                         data = msr->data;
2543                         break;
2544                 }
2545                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2546         }
2547
2548         *pdata = data;
2549         return 0;
2550 }
2551
2552 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2553
2554 /*
2555  * Writes msr value into into the appropriate "register".
2556  * Returns 0 on success, non-0 otherwise.
2557  * Assumes vcpu_load() was already called.
2558  */
2559 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2560 {
2561         struct vcpu_vmx *vmx = to_vmx(vcpu);
2562         struct shared_msr_entry *msr;
2563         int ret = 0;
2564         u32 msr_index = msr_info->index;
2565         u64 data = msr_info->data;
2566
2567         switch (msr_index) {
2568         case MSR_EFER:
2569                 ret = kvm_set_msr_common(vcpu, msr_info);
2570                 break;
2571 #ifdef CONFIG_X86_64
2572         case MSR_FS_BASE:
2573                 vmx_segment_cache_clear(vmx);
2574                 vmcs_writel(GUEST_FS_BASE, data);
2575                 break;
2576         case MSR_GS_BASE:
2577                 vmx_segment_cache_clear(vmx);
2578                 vmcs_writel(GUEST_GS_BASE, data);
2579                 break;
2580         case MSR_KERNEL_GS_BASE:
2581                 vmx_load_host_state(vmx);
2582                 vmx->msr_guest_kernel_gs_base = data;
2583                 break;
2584 #endif
2585         case MSR_IA32_SYSENTER_CS:
2586                 vmcs_write32(GUEST_SYSENTER_CS, data);
2587                 break;
2588         case MSR_IA32_SYSENTER_EIP:
2589                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2590                 break;
2591         case MSR_IA32_SYSENTER_ESP:
2592                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2593                 break;
2594         case MSR_IA32_BNDCFGS:
2595                 if (!vmx_mpx_supported())
2596                         return 1;
2597                 vmcs_write64(GUEST_BNDCFGS, data);
2598                 break;
2599         case MSR_IA32_TSC:
2600                 kvm_write_tsc(vcpu, msr_info);
2601                 break;
2602         case MSR_IA32_CR_PAT:
2603                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2604                         vmcs_write64(GUEST_IA32_PAT, data);
2605                         vcpu->arch.pat = data;
2606                         break;
2607                 }
2608                 ret = kvm_set_msr_common(vcpu, msr_info);
2609                 break;
2610         case MSR_IA32_TSC_ADJUST:
2611                 ret = kvm_set_msr_common(vcpu, msr_info);
2612                 break;
2613         case MSR_IA32_FEATURE_CONTROL:
2614                 if (!nested_vmx_allowed(vcpu) ||
2615                     (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2616                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2617                         return 1;
2618                 vmx->nested.msr_ia32_feature_control = data;
2619                 if (msr_info->host_initiated && data == 0)
2620                         vmx_leave_nested(vcpu);
2621                 break;
2622         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2623                 return 1; /* they are read-only */
2624         case MSR_TSC_AUX:
2625                 if (!vmx->rdtscp_enabled)
2626                         return 1;
2627                 /* Check reserved bit, higher 32 bits should be zero */
2628                 if ((data >> 32) != 0)
2629                         return 1;
2630                 /* Otherwise falls through */
2631         default:
2632                 msr = find_msr_entry(vmx, msr_index);
2633                 if (msr) {
2634                         msr->data = data;
2635                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2636                                 preempt_disable();
2637                                 kvm_set_shared_msr(msr->index, msr->data,
2638                                                    msr->mask);
2639                                 preempt_enable();
2640                         }
2641                         break;
2642                 }
2643                 ret = kvm_set_msr_common(vcpu, msr_info);
2644         }
2645
2646         return ret;
2647 }
2648
2649 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2650 {
2651         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2652         switch (reg) {
2653         case VCPU_REGS_RSP:
2654                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2655                 break;
2656         case VCPU_REGS_RIP:
2657                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2658                 break;
2659         case VCPU_EXREG_PDPTR:
2660                 if (enable_ept)
2661                         ept_save_pdptrs(vcpu);
2662                 break;
2663         default:
2664                 break;
2665         }
2666 }
2667
2668 static __init int cpu_has_kvm_support(void)
2669 {
2670         return cpu_has_vmx();
2671 }
2672
2673 static __init int vmx_disabled_by_bios(void)
2674 {
2675         u64 msr;
2676
2677         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2678         if (msr & FEATURE_CONTROL_LOCKED) {
2679                 /* launched w/ TXT and VMX disabled */
2680                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2681                         && tboot_enabled())
2682                         return 1;
2683                 /* launched w/o TXT and VMX only enabled w/ TXT */
2684                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2685                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2686                         && !tboot_enabled()) {
2687                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2688                                 "activate TXT before enabling KVM\n");
2689                         return 1;
2690                 }
2691                 /* launched w/o TXT and VMX disabled */
2692                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2693                         && !tboot_enabled())
2694                         return 1;
2695         }
2696
2697         return 0;
2698 }
2699
2700 static void kvm_cpu_vmxon(u64 addr)
2701 {
2702         asm volatile (ASM_VMX_VMXON_RAX
2703                         : : "a"(&addr), "m"(addr)
2704                         : "memory", "cc");
2705 }
2706
2707 static int hardware_enable(void *garbage)
2708 {
2709         int cpu = raw_smp_processor_id();
2710         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2711         u64 old, test_bits;
2712
2713         if (read_cr4() & X86_CR4_VMXE)
2714                 return -EBUSY;
2715
2716         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2717
2718         /*
2719          * Now we can enable the vmclear operation in kdump
2720          * since the loaded_vmcss_on_cpu list on this cpu
2721          * has been initialized.
2722          *
2723          * Though the cpu is not in VMX operation now, there
2724          * is no problem to enable the vmclear operation
2725          * for the loaded_vmcss_on_cpu list is empty!
2726          */
2727         crash_enable_local_vmclear(cpu);
2728
2729         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2730
2731         test_bits = FEATURE_CONTROL_LOCKED;
2732         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2733         if (tboot_enabled())
2734                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2735
2736         if ((old & test_bits) != test_bits) {
2737                 /* enable and lock */
2738                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2739         }
2740         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2741
2742         if (vmm_exclusive) {
2743                 kvm_cpu_vmxon(phys_addr);
2744                 ept_sync_global();
2745         }
2746
2747         native_store_gdt(&__get_cpu_var(host_gdt));
2748
2749         return 0;
2750 }
2751
2752 static void vmclear_local_loaded_vmcss(void)
2753 {
2754         int cpu = raw_smp_processor_id();
2755         struct loaded_vmcs *v, *n;
2756
2757         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2758                                  loaded_vmcss_on_cpu_link)
2759                 __loaded_vmcs_clear(v);
2760 }
2761
2762
2763 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2764  * tricks.
2765  */
2766 static void kvm_cpu_vmxoff(void)
2767 {
2768         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2769 }
2770
2771 static void hardware_disable(void *garbage)
2772 {
2773         if (vmm_exclusive) {
2774                 vmclear_local_loaded_vmcss();
2775                 kvm_cpu_vmxoff();
2776         }
2777         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2778 }
2779
2780 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2781                                       u32 msr, u32 *result)
2782 {
2783         u32 vmx_msr_low, vmx_msr_high;
2784         u32 ctl = ctl_min | ctl_opt;
2785
2786         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2787
2788         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2789         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2790
2791         /* Ensure minimum (required) set of control bits are supported. */
2792         if (ctl_min & ~ctl)
2793                 return -EIO;
2794
2795         *result = ctl;
2796         return 0;
2797 }
2798
2799 static __init bool allow_1_setting(u32 msr, u32 ctl)
2800 {
2801         u32 vmx_msr_low, vmx_msr_high;
2802
2803         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2804         return vmx_msr_high & ctl;
2805 }
2806
2807 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2808 {
2809         u32 vmx_msr_low, vmx_msr_high;
2810         u32 min, opt, min2, opt2;
2811         u32 _pin_based_exec_control = 0;
2812         u32 _cpu_based_exec_control = 0;
2813         u32 _cpu_based_2nd_exec_control = 0;
2814         u32 _vmexit_control = 0;
2815         u32 _vmentry_control = 0;
2816
2817         min = CPU_BASED_HLT_EXITING |
2818 #ifdef CONFIG_X86_64
2819               CPU_BASED_CR8_LOAD_EXITING |
2820               CPU_BASED_CR8_STORE_EXITING |
2821 #endif
2822               CPU_BASED_CR3_LOAD_EXITING |
2823               CPU_BASED_CR3_STORE_EXITING |
2824               CPU_BASED_USE_IO_BITMAPS |
2825               CPU_BASED_MOV_DR_EXITING |
2826               CPU_BASED_USE_TSC_OFFSETING |
2827               CPU_BASED_MWAIT_EXITING |
2828               CPU_BASED_MONITOR_EXITING |
2829               CPU_BASED_INVLPG_EXITING |
2830               CPU_BASED_RDPMC_EXITING;
2831
2832         opt = CPU_BASED_TPR_SHADOW |
2833               CPU_BASED_USE_MSR_BITMAPS |
2834               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2835         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2836                                 &_cpu_based_exec_control) < 0)
2837                 return -EIO;
2838 #ifdef CONFIG_X86_64
2839         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2840                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2841                                            ~CPU_BASED_CR8_STORE_EXITING;
2842 #endif
2843         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2844                 min2 = 0;
2845                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2846                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2847                         SECONDARY_EXEC_WBINVD_EXITING |
2848                         SECONDARY_EXEC_ENABLE_VPID |
2849                         SECONDARY_EXEC_ENABLE_EPT |
2850                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2851                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2852                         SECONDARY_EXEC_RDTSCP |
2853                         SECONDARY_EXEC_ENABLE_INVPCID |
2854                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2855                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2856                         SECONDARY_EXEC_SHADOW_VMCS;
2857                 if (adjust_vmx_controls(min2, opt2,
2858                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2859                                         &_cpu_based_2nd_exec_control) < 0)
2860                         return -EIO;
2861         }
2862 #ifndef CONFIG_X86_64
2863         if (!(_cpu_based_2nd_exec_control &
2864                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2865                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2866 #endif
2867
2868         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2869                 _cpu_based_2nd_exec_control &= ~(
2870                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2871                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2872                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2873
2874         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2875                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2876                    enabled */
2877                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2878                                              CPU_BASED_CR3_STORE_EXITING |
2879                                              CPU_BASED_INVLPG_EXITING);
2880                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2881                       vmx_capability.ept, vmx_capability.vpid);
2882         }
2883
2884         min = VM_EXIT_SAVE_DEBUG_CONTROLS;
2885 #ifdef CONFIG_X86_64
2886         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2887 #endif
2888         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2889                 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2890         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2891                                 &_vmexit_control) < 0)
2892                 return -EIO;
2893
2894         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2895         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2896         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2897                                 &_pin_based_exec_control) < 0)
2898                 return -EIO;
2899
2900         if (!(_cpu_based_2nd_exec_control &
2901                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2902                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2903                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2904
2905         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2906         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2907         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2908                                 &_vmentry_control) < 0)
2909                 return -EIO;
2910
2911         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2912
2913         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2914         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2915                 return -EIO;
2916
2917 #ifdef CONFIG_X86_64
2918         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2919         if (vmx_msr_high & (1u<<16))
2920                 return -EIO;
2921 #endif
2922
2923         /* Require Write-Back (WB) memory type for VMCS accesses. */
2924         if (((vmx_msr_high >> 18) & 15) != 6)
2925                 return -EIO;
2926
2927         vmcs_conf->size = vmx_msr_high & 0x1fff;
2928         vmcs_conf->order = get_order(vmcs_config.size);
2929         vmcs_conf->revision_id = vmx_msr_low;
2930
2931         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2932         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2933         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2934         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2935         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2936
2937         cpu_has_load_ia32_efer =
2938                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2939                                 VM_ENTRY_LOAD_IA32_EFER)
2940                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2941                                    VM_EXIT_LOAD_IA32_EFER);
2942
2943         cpu_has_load_perf_global_ctrl =
2944                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2945                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2946                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2947                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2948
2949         /*
2950          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2951          * but due to arrata below it can't be used. Workaround is to use
2952          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2953          *
2954          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2955          *
2956          * AAK155             (model 26)
2957          * AAP115             (model 30)
2958          * AAT100             (model 37)
2959          * BC86,AAY89,BD102   (model 44)
2960          * BA97               (model 46)
2961          *
2962          */
2963         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2964                 switch (boot_cpu_data.x86_model) {
2965                 case 26:
2966                 case 30:
2967                 case 37:
2968                 case 44:
2969                 case 46:
2970                         cpu_has_load_perf_global_ctrl = false;
2971                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2972                                         "does not work properly. Using workaround\n");
2973                         break;
2974                 default:
2975                         break;
2976                 }
2977         }
2978
2979         return 0;
2980 }
2981
2982 static struct vmcs *alloc_vmcs_cpu(int cpu)
2983 {
2984         int node = cpu_to_node(cpu);
2985         struct page *pages;
2986         struct vmcs *vmcs;
2987
2988         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2989         if (!pages)
2990                 return NULL;
2991         vmcs = page_address(pages);
2992         memset(vmcs, 0, vmcs_config.size);
2993         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2994         return vmcs;
2995 }
2996
2997 static struct vmcs *alloc_vmcs(void)
2998 {
2999         return alloc_vmcs_cpu(raw_smp_processor_id());
3000 }
3001
3002 static void free_vmcs(struct vmcs *vmcs)
3003 {
3004         free_pages((unsigned long)vmcs, vmcs_config.order);
3005 }
3006
3007 /*
3008  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3009  */
3010 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3011 {
3012         if (!loaded_vmcs->vmcs)
3013                 return;
3014         loaded_vmcs_clear(loaded_vmcs);
3015         free_vmcs(loaded_vmcs->vmcs);
3016         loaded_vmcs->vmcs = NULL;
3017 }
3018
3019 static void free_kvm_area(void)
3020 {
3021         int cpu;
3022
3023         for_each_possible_cpu(cpu) {
3024                 free_vmcs(per_cpu(vmxarea, cpu));
3025                 per_cpu(vmxarea, cpu) = NULL;
3026         }
3027 }
3028
3029 static void init_vmcs_shadow_fields(void)
3030 {
3031         int i, j;
3032
3033         /* No checks for read only fields yet */
3034
3035         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3036                 switch (shadow_read_write_fields[i]) {
3037                 case GUEST_BNDCFGS:
3038                         if (!vmx_mpx_supported())
3039                                 continue;
3040                         break;
3041                 default:
3042                         break;
3043                 }
3044
3045                 if (j < i)
3046                         shadow_read_write_fields[j] =
3047                                 shadow_read_write_fields[i];
3048                 j++;
3049         }
3050         max_shadow_read_write_fields = j;
3051
3052         /* shadowed fields guest access without vmexit */
3053         for (i = 0; i < max_shadow_read_write_fields; i++) {
3054                 clear_bit(shadow_read_write_fields[i],
3055                           vmx_vmwrite_bitmap);
3056                 clear_bit(shadow_read_write_fields[i],
3057                           vmx_vmread_bitmap);
3058         }
3059         for (i = 0; i < max_shadow_read_only_fields; i++)
3060                 clear_bit(shadow_read_only_fields[i],
3061                           vmx_vmread_bitmap);
3062 }
3063
3064 static __init int alloc_kvm_area(void)
3065 {
3066         int cpu;
3067
3068         for_each_possible_cpu(cpu) {
3069                 struct vmcs *vmcs;
3070
3071                 vmcs = alloc_vmcs_cpu(cpu);
3072                 if (!vmcs) {
3073                         free_kvm_area();
3074                         return -ENOMEM;
3075                 }
3076
3077                 per_cpu(vmxarea, cpu) = vmcs;
3078         }
3079         return 0;
3080 }
3081
3082 static __init int hardware_setup(void)
3083 {
3084         if (setup_vmcs_config(&vmcs_config) < 0)
3085                 return -EIO;
3086
3087         if (boot_cpu_has(X86_FEATURE_NX))
3088                 kvm_enable_efer_bits(EFER_NX);
3089
3090         if (!cpu_has_vmx_vpid())
3091                 enable_vpid = 0;
3092         if (!cpu_has_vmx_shadow_vmcs())
3093                 enable_shadow_vmcs = 0;
3094         if (enable_shadow_vmcs)
3095                 init_vmcs_shadow_fields();
3096
3097         if (!cpu_has_vmx_ept() ||
3098             !cpu_has_vmx_ept_4levels()) {
3099                 enable_ept = 0;
3100                 enable_unrestricted_guest = 0;
3101                 enable_ept_ad_bits = 0;
3102         }
3103
3104         if (!cpu_has_vmx_ept_ad_bits())
3105                 enable_ept_ad_bits = 0;
3106
3107         if (!cpu_has_vmx_unrestricted_guest())
3108                 enable_unrestricted_guest = 0;
3109
3110         if (!cpu_has_vmx_flexpriority())
3111                 flexpriority_enabled = 0;
3112
3113         if (!cpu_has_vmx_tpr_shadow())
3114                 kvm_x86_ops->update_cr8_intercept = NULL;
3115
3116         if (enable_ept && !cpu_has_vmx_ept_2m_page())
3117                 kvm_disable_largepages();
3118
3119         if (!cpu_has_vmx_ple())
3120                 ple_gap = 0;
3121
3122         if (!cpu_has_vmx_apicv())
3123                 enable_apicv = 0;
3124
3125         if (enable_apicv)
3126                 kvm_x86_ops->update_cr8_intercept = NULL;
3127         else {
3128                 kvm_x86_ops->hwapic_irr_update = NULL;
3129                 kvm_x86_ops->deliver_posted_interrupt = NULL;
3130                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3131         }
3132
3133         if (nested)
3134                 nested_vmx_setup_ctls_msrs();
3135
3136         return alloc_kvm_area();
3137 }
3138
3139 static __exit void hardware_unsetup(void)
3140 {
3141         free_kvm_area();
3142 }
3143
3144 static bool emulation_required(struct kvm_vcpu *vcpu)
3145 {
3146         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3147 }
3148
3149 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3150                 struct kvm_segment *save)
3151 {
3152         if (!emulate_invalid_guest_state) {
3153                 /*
3154                  * CS and SS RPL should be equal during guest entry according
3155                  * to VMX spec, but in reality it is not always so. Since vcpu
3156                  * is in the middle of the transition from real mode to
3157                  * protected mode it is safe to assume that RPL 0 is a good
3158                  * default value.
3159                  */
3160                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3161                         save->selector &= ~SELECTOR_RPL_MASK;
3162                 save->dpl = save->selector & SELECTOR_RPL_MASK;
3163                 save->s = 1;
3164         }
3165         vmx_set_segment(vcpu, save, seg);
3166 }
3167
3168 static void enter_pmode(struct kvm_vcpu *vcpu)
3169 {
3170         unsigned long flags;
3171         struct vcpu_vmx *vmx = to_vmx(vcpu);
3172
3173         /*
3174          * Update real mode segment cache. It may be not up-to-date if sement
3175          * register was written while vcpu was in a guest mode.
3176          */
3177         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3178         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3179         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3180         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3181         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3182         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3183
3184         vmx->rmode.vm86_active = 0;
3185
3186         vmx_segment_cache_clear(vmx);
3187
3188         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3189
3190         flags = vmcs_readl(GUEST_RFLAGS);
3191         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3192         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3193         vmcs_writel(GUEST_RFLAGS, flags);
3194
3195         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3196                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3197
3198         update_exception_bitmap(vcpu);
3199
3200         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3201         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3202         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3203         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3204         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3205         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3206 }
3207
3208 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3209 {
3210         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3211         struct kvm_segment var = *save;
3212
3213         var.dpl = 0x3;
3214         if (seg == VCPU_SREG_CS)
3215                 var.type = 0x3;
3216
3217         if (!emulate_invalid_guest_state) {
3218                 var.selector = var.base >> 4;
3219                 var.base = var.base & 0xffff0;
3220                 var.limit = 0xffff;
3221                 var.g = 0;
3222                 var.db = 0;
3223                 var.present = 1;
3224                 var.s = 1;
3225                 var.l = 0;
3226                 var.unusable = 0;
3227                 var.type = 0x3;
3228                 var.avl = 0;
3229                 if (save->base & 0xf)
3230                         printk_once(KERN_WARNING "kvm: segment base is not "
3231                                         "paragraph aligned when entering "
3232                                         "protected mode (seg=%d)", seg);
3233         }
3234
3235         vmcs_write16(sf->selector, var.selector);
3236         vmcs_write32(sf->base, var.base);
3237         vmcs_write32(sf->limit, var.limit);
3238         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3239 }
3240
3241 static void enter_rmode(struct kvm_vcpu *vcpu)
3242 {
3243         unsigned long flags;
3244         struct vcpu_vmx *vmx = to_vmx(vcpu);
3245
3246         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3247         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3248         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3249         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3250         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3251         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3252         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3253
3254         vmx->rmode.vm86_active = 1;
3255
3256         /*
3257          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3258          * vcpu. Warn the user that an update is overdue.
3259          */
3260         if (!vcpu->kvm->arch.tss_addr)
3261                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3262                              "called before entering vcpu\n");
3263
3264         vmx_segment_cache_clear(vmx);
3265
3266         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3267         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3268         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3269
3270         flags = vmcs_readl(GUEST_RFLAGS);
3271         vmx->rmode.save_rflags = flags;
3272
3273         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3274
3275         vmcs_writel(GUEST_RFLAGS, flags);
3276         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3277         update_exception_bitmap(vcpu);
3278
3279         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3280         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3281         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3282         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3283         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3284         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3285
3286         kvm_mmu_reset_context(vcpu);
3287 }
3288
3289 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3290 {
3291         struct vcpu_vmx *vmx = to_vmx(vcpu);
3292         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3293
3294         if (!msr)
3295                 return;
3296
3297         /*
3298          * Force kernel_gs_base reloading before EFER changes, as control
3299          * of this msr depends on is_long_mode().
3300          */
3301         vmx_load_host_state(to_vmx(vcpu));
3302         vcpu->arch.efer = efer;
3303         if (efer & EFER_LMA) {
3304                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3305                 msr->data = efer;
3306         } else {
3307                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3308
3309                 msr->data = efer & ~EFER_LME;
3310         }
3311         setup_msrs(vmx);
3312 }
3313
3314 #ifdef CONFIG_X86_64
3315
3316 static void enter_lmode(struct kvm_vcpu *vcpu)
3317 {
3318         u32 guest_tr_ar;
3319
3320         vmx_segment_cache_clear(to_vmx(vcpu));
3321
3322         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3323         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3324                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3325                                      __func__);
3326                 vmcs_write32(GUEST_TR_AR_BYTES,
3327                              (guest_tr_ar & ~AR_TYPE_MASK)
3328                              | AR_TYPE_BUSY_64_TSS);
3329         }
3330         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3331 }
3332
3333 static void exit_lmode(struct kvm_vcpu *vcpu)
3334 {
3335         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3336         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3337 }
3338
3339 #endif
3340
3341 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3342 {
3343         vpid_sync_context(to_vmx(vcpu));
3344         if (enable_ept) {
3345                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3346                         return;
3347                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3348         }
3349 }
3350
3351 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3352 {
3353         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3354
3355         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3356         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3357 }
3358
3359 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3360 {
3361         if (enable_ept && is_paging(vcpu))
3362                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3363         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3364 }
3365
3366 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3367 {
3368         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3369
3370         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3371         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3372 }
3373
3374 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3375 {
3376         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3377
3378         if (!test_bit(VCPU_EXREG_PDPTR,
3379                       (unsigned long *)&vcpu->arch.regs_dirty))
3380                 return;
3381
3382         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3383                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3384                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3385                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3386                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3387         }
3388 }
3389
3390 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3391 {
3392         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3393
3394         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3395                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3396                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3397                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3398                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3399         }
3400
3401         __set_bit(VCPU_EXREG_PDPTR,
3402                   (unsigned long *)&vcpu->arch.regs_avail);
3403         __set_bit(VCPU_EXREG_PDPTR,
3404                   (unsigned long *)&vcpu->arch.regs_dirty);
3405 }
3406
3407 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3408
3409 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3410                                         unsigned long cr0,
3411                                         struct kvm_vcpu *vcpu)
3412 {
3413         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3414                 vmx_decache_cr3(vcpu);
3415         if (!(cr0 & X86_CR0_PG)) {
3416                 /* From paging/starting to nonpaging */
3417                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3418                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3419                              (CPU_BASED_CR3_LOAD_EXITING |
3420                               CPU_BASED_CR3_STORE_EXITING));
3421                 vcpu->arch.cr0 = cr0;
3422                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3423         } else if (!is_paging(vcpu)) {
3424                 /* From nonpaging to paging */
3425                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3426                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3427                              ~(CPU_BASED_CR3_LOAD_EXITING |
3428                                CPU_BASED_CR3_STORE_EXITING));
3429                 vcpu->arch.cr0 = cr0;
3430                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3431         }
3432
3433         if (!(cr0 & X86_CR0_WP))
3434                 *hw_cr0 &= ~X86_CR0_WP;
3435 }
3436
3437 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3438 {
3439         struct vcpu_vmx *vmx = to_vmx(vcpu);
3440         unsigned long hw_cr0;
3441
3442         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3443         if (enable_unrestricted_guest)
3444                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3445         else {
3446                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3447
3448                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3449                         enter_pmode(vcpu);
3450
3451                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3452                         enter_rmode(vcpu);
3453         }
3454
3455 #ifdef CONFIG_X86_64
3456         if (vcpu->arch.efer & EFER_LME) {
3457                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3458                         enter_lmode(vcpu);
3459                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3460                         exit_lmode(vcpu);
3461         }
3462 #endif
3463
3464         if (enable_ept)
3465                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3466
3467         if (!vcpu->fpu_active)
3468                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3469
3470         vmcs_writel(CR0_READ_SHADOW, cr0);
3471         vmcs_writel(GUEST_CR0, hw_cr0);
3472         vcpu->arch.cr0 = cr0;
3473
3474         /* depends on vcpu->arch.cr0 to be set to a new value */
3475         vmx->emulation_required = emulation_required(vcpu);
3476 }
3477
3478 static u64 construct_eptp(unsigned long root_hpa)
3479 {
3480         u64 eptp;
3481
3482         /* TODO write the value reading from MSR */
3483         eptp = VMX_EPT_DEFAULT_MT |
3484                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3485         if (enable_ept_ad_bits)
3486                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3487         eptp |= (root_hpa & PAGE_MASK);
3488
3489         return eptp;
3490 }
3491
3492 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3493 {
3494         unsigned long guest_cr3;
3495         u64 eptp;
3496
3497         guest_cr3 = cr3;
3498         if (enable_ept) {
3499                 eptp = construct_eptp(cr3);
3500                 vmcs_write64(EPT_POINTER, eptp);
3501                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3502                         guest_cr3 = kvm_read_cr3(vcpu);
3503                 else
3504                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3505                 ept_load_pdptrs(vcpu);
3506         }
3507
3508         vmx_flush_tlb(vcpu);
3509         vmcs_writel(GUEST_CR3, guest_cr3);
3510 }
3511
3512 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3513 {
3514         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3515                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3516
3517         if (cr4 & X86_CR4_VMXE) {
3518                 /*
3519                  * To use VMXON (and later other VMX instructions), a guest
3520                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3521                  * So basically the check on whether to allow nested VMX
3522                  * is here.
3523                  */
3524                 if (!nested_vmx_allowed(vcpu))
3525                         return 1;
3526         }
3527         if (to_vmx(vcpu)->nested.vmxon &&
3528             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3529                 return 1;
3530
3531         vcpu->arch.cr4 = cr4;
3532         if (enable_ept) {
3533                 if (!is_paging(vcpu)) {
3534                         hw_cr4 &= ~X86_CR4_PAE;
3535                         hw_cr4 |= X86_CR4_PSE;
3536                         /*
3537                          * SMEP/SMAP is disabled if CPU is in non-paging mode
3538                          * in hardware. However KVM always uses paging mode to
3539                          * emulate guest non-paging mode with TDP.
3540                          * To emulate this behavior, SMEP/SMAP needs to be
3541                          * manually disabled when guest switches to non-paging
3542                          * mode.
3543                          */
3544                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3545                 } else if (!(cr4 & X86_CR4_PAE)) {
3546                         hw_cr4 &= ~X86_CR4_PAE;
3547                 }
3548         }
3549
3550         vmcs_writel(CR4_READ_SHADOW, cr4);
3551         vmcs_writel(GUEST_CR4, hw_cr4);
3552         return 0;
3553 }
3554
3555 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3556                             struct kvm_segment *var, int seg)
3557 {
3558         struct vcpu_vmx *vmx = to_vmx(vcpu);
3559         u32 ar;
3560
3561         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3562                 *var = vmx->rmode.segs[seg];
3563                 if (seg == VCPU_SREG_TR
3564                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3565                         return;
3566                 var->base = vmx_read_guest_seg_base(vmx, seg);
3567                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3568                 return;
3569         }
3570         var->base = vmx_read_guest_seg_base(vmx, seg);
3571         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3572         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3573         ar = vmx_read_guest_seg_ar(vmx, seg);
3574         var->unusable = (ar >> 16) & 1;
3575         var->type = ar & 15;
3576         var->s = (ar >> 4) & 1;
3577         var->dpl = (ar >> 5) & 3;
3578         /*
3579          * Some userspaces do not preserve unusable property. Since usable
3580          * segment has to be present according to VMX spec we can use present
3581          * property to amend userspace bug by making unusable segment always
3582          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3583          * segment as unusable.
3584          */
3585         var->present = !var->unusable;
3586         var->avl = (ar >> 12) & 1;
3587         var->l = (ar >> 13) & 1;
3588         var->db = (ar >> 14) & 1;
3589         var->g = (ar >> 15) & 1;
3590 }
3591
3592 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3593 {
3594         struct kvm_segment s;
3595
3596         if (to_vmx(vcpu)->rmode.vm86_active) {
3597                 vmx_get_segment(vcpu, &s, seg);
3598                 return s.base;
3599         }
3600         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3601 }
3602
3603 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3604 {
3605         struct vcpu_vmx *vmx = to_vmx(vcpu);
3606
3607         if (unlikely(vmx->rmode.vm86_active))
3608                 return 0;
3609         else {
3610                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3611                 return AR_DPL(ar);
3612         }
3613 }
3614
3615 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3616 {
3617         u32 ar;
3618
3619         if (var->unusable || !var->present)
3620                 ar = 1 << 16;
3621         else {
3622                 ar = var->type & 15;
3623                 ar |= (var->s & 1) << 4;
3624                 ar |= (var->dpl & 3) << 5;
3625                 ar |= (var->present & 1) << 7;
3626                 ar |= (var->avl & 1) << 12;
3627                 ar |= (var->l & 1) << 13;
3628                 ar |= (var->db & 1) << 14;
3629                 ar |= (var->g & 1) << 15;
3630         }
3631
3632         return ar;
3633 }
3634
3635 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3636                             struct kvm_segment *var, int seg)
3637 {
3638         struct vcpu_vmx *vmx = to_vmx(vcpu);
3639         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3640
3641         vmx_segment_cache_clear(vmx);
3642
3643         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3644                 vmx->rmode.segs[seg] = *var;
3645                 if (seg == VCPU_SREG_TR)
3646                         vmcs_write16(sf->selector, var->selector);
3647                 else if (var->s)
3648                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3649                 goto out;
3650         }
3651
3652         vmcs_writel(sf->base, var->base);
3653         vmcs_write32(sf->limit, var->limit);
3654         vmcs_write16(sf->selector, var->selector);
3655
3656         /*
3657          *   Fix the "Accessed" bit in AR field of segment registers for older
3658          * qemu binaries.
3659          *   IA32 arch specifies that at the time of processor reset the
3660          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3661          * is setting it to 0 in the userland code. This causes invalid guest
3662          * state vmexit when "unrestricted guest" mode is turned on.
3663          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3664          * tree. Newer qemu binaries with that qemu fix would not need this
3665          * kvm hack.
3666          */
3667         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3668                 var->type |= 0x1; /* Accessed */
3669
3670         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3671
3672 out:
3673         vmx->emulation_required = emulation_required(vcpu);
3674 }
3675
3676 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3677 {
3678         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3679
3680         *db = (ar >> 14) & 1;
3681         *l = (ar >> 13) & 1;
3682 }
3683
3684 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3685 {
3686         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3687         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3688 }
3689
3690 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3691 {
3692         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3693         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3694 }
3695
3696 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3697 {
3698         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3699         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3700 }
3701
3702 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3703 {
3704         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3705         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3706 }
3707
3708 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3709 {
3710         struct kvm_segment var;
3711         u32 ar;
3712
3713         vmx_get_segment(vcpu, &var, seg);
3714         var.dpl = 0x3;
3715         if (seg == VCPU_SREG_CS)
3716                 var.type = 0x3;
3717         ar = vmx_segment_access_rights(&var);
3718
3719         if (var.base != (var.selector << 4))
3720                 return false;
3721         if (var.limit != 0xffff)
3722                 return false;
3723         if (ar != 0xf3)
3724                 return false;
3725
3726         return true;
3727 }
3728
3729 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3730 {
3731         struct kvm_segment cs;
3732         unsigned int cs_rpl;
3733
3734         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3735         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3736
3737         if (cs.unusable)
3738                 return false;
3739         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3740                 return false;
3741         if (!cs.s)
3742                 return false;
3743         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3744                 if (cs.dpl > cs_rpl)
3745                         return false;
3746         } else {
3747                 if (cs.dpl != cs_rpl)
3748                         return false;
3749         }
3750         if (!cs.present)
3751                 return false;
3752
3753         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3754         return true;
3755 }
3756
3757 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3758 {
3759         struct kvm_segment ss;
3760         unsigned int ss_rpl;
3761
3762         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3763         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3764
3765         if (ss.unusable)
3766                 return true;
3767         if (ss.type != 3 && ss.type != 7)
3768                 return false;
3769         if (!ss.s)
3770                 return false;
3771         if (ss.dpl != ss_rpl) /* DPL != RPL */
3772                 return false;
3773         if (!ss.present)
3774                 return false;
3775
3776         return true;
3777 }
3778
3779 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3780 {
3781         struct kvm_segment var;
3782         unsigned int rpl;
3783
3784         vmx_get_segment(vcpu, &var, seg);
3785         rpl = var.selector & SELECTOR_RPL_MASK;
3786
3787         if (var.unusable)
3788                 return true;
3789         if (!var.s)
3790                 return false;
3791         if (!var.present)
3792                 return false;
3793         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3794                 if (var.dpl < rpl) /* DPL < RPL */
3795                         return false;
3796         }
3797
3798         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3799          * rights flags
3800          */
3801         return true;
3802 }
3803
3804 static bool tr_valid(struct kvm_vcpu *vcpu)
3805 {
3806         struct kvm_segment tr;
3807
3808         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3809
3810         if (tr.unusable)
3811                 return false;
3812         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3813                 return false;
3814         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3815                 return false;
3816         if (!tr.present)
3817                 return false;
3818
3819         return true;
3820 }
3821
3822 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3823 {
3824         struct kvm_segment ldtr;
3825
3826         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3827
3828         if (ldtr.unusable)
3829                 return true;
3830         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3831                 return false;
3832         if (ldtr.type != 2)
3833                 return false;
3834         if (!ldtr.present)
3835                 return false;
3836
3837         return true;
3838 }
3839
3840 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3841 {
3842         struct kvm_segment cs, ss;
3843
3844         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3845         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3846
3847         return ((cs.selector & SELECTOR_RPL_MASK) ==
3848                  (ss.selector & SELECTOR_RPL_MASK));
3849 }
3850
3851 /*
3852  * Check if guest state is valid. Returns true if valid, false if
3853  * not.
3854  * We assume that registers are always usable
3855  */
3856 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3857 {
3858         if (enable_unrestricted_guest)
3859                 return true;
3860
3861         /* real mode guest state checks */
3862         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3863                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3864                         return false;
3865                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3866                         return false;
3867                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3868                         return false;
3869                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3870                         return false;
3871                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3872                         return false;
3873                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3874                         return false;
3875         } else {
3876         /* protected mode guest state checks */
3877                 if (!cs_ss_rpl_check(vcpu))
3878                         return false;
3879                 if (!code_segment_valid(vcpu))
3880                         return false;
3881                 if (!stack_segment_valid(vcpu))
3882                         return false;
3883                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3884                         return false;
3885                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3886                         return false;
3887                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3888                         return false;
3889                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3890                         return false;
3891                 if (!tr_valid(vcpu))
3892                         return false;
3893                 if (!ldtr_valid(vcpu))
3894                         return false;
3895         }
3896         /* TODO:
3897          * - Add checks on RIP
3898          * - Add checks on RFLAGS
3899          */
3900
3901         return true;
3902 }
3903
3904 static int init_rmode_tss(struct kvm *kvm)
3905 {
3906         gfn_t fn;
3907         u16 data = 0;
3908         int r, idx, ret = 0;
3909
3910         idx = srcu_read_lock(&kvm->srcu);
3911         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3912         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3913         if (r < 0)
3914                 goto out;
3915         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3916         r = kvm_write_guest_page(kvm, fn++, &data,
3917                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3918         if (r < 0)
3919                 goto out;
3920         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3921         if (r < 0)
3922                 goto out;
3923         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3924         if (r < 0)
3925                 goto out;
3926         data = ~0;
3927         r = kvm_write_guest_page(kvm, fn, &data,
3928                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3929                                  sizeof(u8));
3930         if (r < 0)
3931                 goto out;
3932
3933         ret = 1;
3934 out:
3935         srcu_read_unlock(&kvm->srcu, idx);
3936         return ret;
3937 }
3938
3939 static int init_rmode_identity_map(struct kvm *kvm)
3940 {
3941         int i, idx, r, ret;
3942         pfn_t identity_map_pfn;
3943         u32 tmp;
3944
3945         if (!enable_ept)
3946                 return 1;
3947         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3948                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3949                         "haven't been allocated!\n");
3950                 return 0;
3951         }
3952         if (likely(kvm->arch.ept_identity_pagetable_done))
3953                 return 1;
3954         ret = 0;
3955         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3956         idx = srcu_read_lock(&kvm->srcu);
3957         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3958         if (r < 0)
3959                 goto out;
3960         /* Set up identity-mapping pagetable for EPT in real mode */
3961         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3962                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3963                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3964                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3965                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3966                 if (r < 0)
3967                         goto out;
3968         }
3969         kvm->arch.ept_identity_pagetable_done = true;
3970         ret = 1;
3971 out:
3972         srcu_read_unlock(&kvm->srcu, idx);
3973         return ret;
3974 }
3975
3976 static void seg_setup(int seg)
3977 {
3978         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3979         unsigned int ar;
3980
3981         vmcs_write16(sf->selector, 0);
3982         vmcs_writel(sf->base, 0);
3983         vmcs_write32(sf->limit, 0xffff);
3984         ar = 0x93;
3985         if (seg == VCPU_SREG_CS)
3986                 ar |= 0x08; /* code segment */
3987
3988         vmcs_write32(sf->ar_bytes, ar);
3989 }
3990
3991 static int alloc_apic_access_page(struct kvm *kvm)
3992 {
3993         struct page *page;
3994         struct kvm_userspace_memory_region kvm_userspace_mem;
3995         int r = 0;
3996
3997         mutex_lock(&kvm->slots_lock);
3998         if (kvm->arch.apic_access_page)
3999                 goto out;
4000         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4001         kvm_userspace_mem.flags = 0;
4002         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
4003         kvm_userspace_mem.memory_size = PAGE_SIZE;
4004         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4005         if (r)
4006                 goto out;
4007
4008         page = gfn_to_page(kvm, 0xfee00);
4009         if (is_error_page(page)) {
4010                 r = -EFAULT;
4011                 goto out;
4012         }
4013
4014         kvm->arch.apic_access_page = page;
4015 out:
4016         mutex_unlock(&kvm->slots_lock);
4017         return r;
4018 }
4019
4020 static int alloc_identity_pagetable(struct kvm *kvm)
4021 {
4022         struct page *page;
4023         struct kvm_userspace_memory_region kvm_userspace_mem;
4024         int r = 0;
4025
4026         mutex_lock(&kvm->slots_lock);
4027         if (kvm->arch.ept_identity_pagetable)
4028                 goto out;
4029         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4030         kvm_userspace_mem.flags = 0;
4031         kvm_userspace_mem.guest_phys_addr =
4032                 kvm->arch.ept_identity_map_addr;
4033         kvm_userspace_mem.memory_size = PAGE_SIZE;
4034         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4035         if (r)
4036                 goto out;
4037
4038         page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
4039         if (is_error_page(page)) {
4040                 r = -EFAULT;
4041                 goto out;
4042         }
4043
4044         kvm->arch.ept_identity_pagetable = page;
4045 out:
4046         mutex_unlock(&kvm->slots_lock);
4047         return r;
4048 }
4049
4050 static void allocate_vpid(struct vcpu_vmx *vmx)
4051 {
4052         int vpid;
4053
4054         vmx->vpid = 0;
4055         if (!enable_vpid)
4056                 return;
4057         spin_lock(&vmx_vpid_lock);
4058         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4059         if (vpid < VMX_NR_VPIDS) {
4060                 vmx->vpid = vpid;
4061                 __set_bit(vpid, vmx_vpid_bitmap);
4062         }
4063         spin_unlock(&vmx_vpid_lock);
4064 }
4065
4066 static void free_vpid(struct vcpu_vmx *vmx)
4067 {
4068         if (!enable_vpid)
4069                 return;
4070         spin_lock(&vmx_vpid_lock);
4071         if (vmx->vpid != 0)
4072                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4073         spin_unlock(&vmx_vpid_lock);
4074 }
4075
4076 #define MSR_TYPE_R      1
4077 #define MSR_TYPE_W      2
4078 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4079                                                 u32 msr, int type)
4080 {
4081         int f = sizeof(unsigned long);
4082
4083         if (!cpu_has_vmx_msr_bitmap())
4084                 return;
4085
4086         /*
4087          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4088          * have the write-low and read-high bitmap offsets the wrong way round.
4089          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4090          */
4091         if (msr <= 0x1fff) {
4092                 if (type & MSR_TYPE_R)
4093                         /* read-low */
4094                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4095
4096                 if (type & MSR_TYPE_W)
4097                         /* write-low */
4098                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4099
4100         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4101                 msr &= 0x1fff;
4102                 if (type & MSR_TYPE_R)
4103                         /* read-high */
4104                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4105
4106                 if (type & MSR_TYPE_W)
4107                         /* write-high */
4108                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4109
4110         }
4111 }
4112
4113 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4114                                                 u32 msr, int type)
4115 {
4116         int f = sizeof(unsigned long);
4117
4118         if (!cpu_has_vmx_msr_bitmap())
4119                 return;
4120
4121         /*
4122          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4123          * have the write-low and read-high bitmap offsets the wrong way round.
4124          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4125          */
4126         if (msr <= 0x1fff) {
4127                 if (type & MSR_TYPE_R)
4128                         /* read-low */
4129                         __set_bit(msr, msr_bitmap + 0x000 / f);
4130
4131                 if (type & MSR_TYPE_W)
4132                         /* write-low */
4133                         __set_bit(msr, msr_bitmap + 0x800 / f);
4134
4135         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4136                 msr &= 0x1fff;
4137                 if (type & MSR_TYPE_R)
4138                         /* read-high */
4139                         __set_bit(msr, msr_bitmap + 0x400 / f);
4140
4141                 if (type & MSR_TYPE_W)
4142                         /* write-high */
4143                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4144
4145         }
4146 }
4147
4148 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4149 {
4150         if (!longmode_only)
4151                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4152                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4153         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4154                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4155 }
4156
4157 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4158 {
4159         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4160                         msr, MSR_TYPE_R);
4161         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4162                         msr, MSR_TYPE_R);
4163 }
4164
4165 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4166 {
4167         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4168                         msr, MSR_TYPE_R);
4169         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4170                         msr, MSR_TYPE_R);
4171 }
4172
4173 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4174 {
4175         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4176                         msr, MSR_TYPE_W);
4177         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4178                         msr, MSR_TYPE_W);
4179 }
4180
4181 static int vmx_vm_has_apicv(struct kvm *kvm)
4182 {
4183         return enable_apicv && irqchip_in_kernel(kvm);
4184 }
4185
4186 /*
4187  * Send interrupt to vcpu via posted interrupt way.
4188  * 1. If target vcpu is running(non-root mode), send posted interrupt
4189  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4190  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4191  * interrupt from PIR in next vmentry.
4192  */
4193 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4194 {
4195         struct vcpu_vmx *vmx = to_vmx(vcpu);
4196         int r;
4197
4198         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4199                 return;
4200
4201         r = pi_test_and_set_on(&vmx->pi_desc);
4202         kvm_make_request(KVM_REQ_EVENT, vcpu);
4203 #ifdef CONFIG_SMP
4204         if (!r && (vcpu->mode == IN_GUEST_MODE))
4205                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4206                                 POSTED_INTR_VECTOR);
4207         else
4208 #endif
4209                 kvm_vcpu_kick(vcpu);
4210 }
4211
4212 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4213 {
4214         struct vcpu_vmx *vmx = to_vmx(vcpu);
4215
4216         if (!pi_test_and_clear_on(&vmx->pi_desc))
4217                 return;
4218
4219         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4220 }
4221
4222 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4223 {
4224         return;
4225 }
4226
4227 /*
4228  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4229  * will not change in the lifetime of the guest.
4230  * Note that host-state that does change is set elsewhere. E.g., host-state
4231  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4232  */
4233 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4234 {
4235         u32 low32, high32;
4236         unsigned long tmpl;
4237         struct desc_ptr dt;
4238
4239         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4240         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
4241         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4242
4243         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4244 #ifdef CONFIG_X86_64
4245         /*
4246          * Load null selectors, so we can avoid reloading them in
4247          * __vmx_load_host_state(), in case userspace uses the null selectors
4248          * too (the expected case).
4249          */
4250         vmcs_write16(HOST_DS_SELECTOR, 0);
4251         vmcs_write16(HOST_ES_SELECTOR, 0);
4252 #else
4253         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4254         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4255 #endif
4256         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4257         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4258
4259         native_store_idt(&dt);
4260         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4261         vmx->host_idt_base = dt.address;
4262
4263         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4264
4265         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4266         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4267         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4268         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4269
4270         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4271                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4272                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4273         }
4274 }
4275
4276 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4277 {
4278         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4279         if (enable_ept)
4280                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4281         if (is_guest_mode(&vmx->vcpu))
4282                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4283                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4284         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4285 }
4286
4287 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4288 {
4289         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4290
4291         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4292                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4293         return pin_based_exec_ctrl;
4294 }
4295
4296 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4297 {
4298         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4299
4300         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4301                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4302
4303         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4304                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4305 #ifdef CONFIG_X86_64
4306                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4307                                 CPU_BASED_CR8_LOAD_EXITING;
4308 #endif
4309         }
4310         if (!enable_ept)
4311                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4312                                 CPU_BASED_CR3_LOAD_EXITING  |
4313                                 CPU_BASED_INVLPG_EXITING;
4314         return exec_control;
4315 }
4316
4317 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4318 {
4319         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4320         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4321                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4322         if (vmx->vpid == 0)
4323                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4324         if (!enable_ept) {
4325                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4326                 enable_unrestricted_guest = 0;
4327                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4328                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4329         }
4330         if (!enable_unrestricted_guest)
4331                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4332         if (!ple_gap)
4333                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4334         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4335                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4336                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4337         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4338         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4339            (handle_vmptrld).
4340            We can NOT enable shadow_vmcs here because we don't have yet
4341            a current VMCS12
4342         */
4343         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4344         return exec_control;
4345 }
4346
4347 static void ept_set_mmio_spte_mask(void)
4348 {
4349         /*
4350          * EPT Misconfigurations can be generated if the value of bits 2:0
4351          * of an EPT paging-structure entry is 110b (write/execute).
4352          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4353          * spte.
4354          */
4355         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4356 }
4357
4358 /*
4359  * Sets up the vmcs for emulated real mode.
4360  */
4361 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4362 {
4363 #ifdef CONFIG_X86_64
4364         unsigned long a;
4365 #endif
4366         int i;
4367
4368         /* I/O */
4369         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4370         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4371
4372         if (enable_shadow_vmcs) {
4373                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4374                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4375         }
4376         if (cpu_has_vmx_msr_bitmap())
4377                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4378
4379         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4380
4381         /* Control */
4382         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4383
4384         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4385
4386         if (cpu_has_secondary_exec_ctrls()) {
4387                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4388                                 vmx_secondary_exec_control(vmx));
4389         }
4390
4391         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4392                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4393                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4394                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4395                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4396
4397                 vmcs_write16(GUEST_INTR_STATUS, 0);
4398
4399                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4400                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4401         }
4402
4403         if (ple_gap) {
4404                 vmcs_write32(PLE_GAP, ple_gap);
4405                 vmcs_write32(PLE_WINDOW, ple_window);
4406         }
4407
4408         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4409         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4410         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4411
4412         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4413         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4414         vmx_set_constant_host_state(vmx);
4415 #ifdef CONFIG_X86_64
4416         rdmsrl(MSR_FS_BASE, a);
4417         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4418         rdmsrl(MSR_GS_BASE, a);
4419         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4420 #else
4421         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4422         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4423 #endif
4424
4425         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4426         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4427         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4428         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4429         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4430
4431         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4432                 u32 msr_low, msr_high;
4433                 u64 host_pat;
4434                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4435                 host_pat = msr_low | ((u64) msr_high << 32);
4436                 /* Write the default value follow host pat */
4437                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4438                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4439                 vmx->vcpu.arch.pat = host_pat;
4440         }
4441
4442         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4443                 u32 index = vmx_msr_index[i];
4444                 u32 data_low, data_high;
4445                 int j = vmx->nmsrs;
4446
4447                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4448                         continue;
4449                 if (wrmsr_safe(index, data_low, data_high) < 0)
4450                         continue;
4451                 vmx->guest_msrs[j].index = i;
4452                 vmx->guest_msrs[j].data = 0;
4453                 vmx->guest_msrs[j].mask = -1ull;
4454                 ++vmx->nmsrs;
4455         }
4456
4457
4458         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4459
4460         /* 22.2.1, 20.8.1 */
4461         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4462
4463         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4464         set_cr4_guest_host_mask(vmx);
4465
4466         return 0;
4467 }
4468
4469 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4470 {
4471         struct vcpu_vmx *vmx = to_vmx(vcpu);
4472         struct msr_data apic_base_msr;
4473
4474         vmx->rmode.vm86_active = 0;
4475
4476         vmx->soft_vnmi_blocked = 0;
4477
4478         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4479         kvm_set_cr8(&vmx->vcpu, 0);
4480         apic_base_msr.data = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4481         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4482                 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4483         apic_base_msr.host_initiated = true;
4484         kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4485
4486         vmx_segment_cache_clear(vmx);
4487
4488         seg_setup(VCPU_SREG_CS);
4489         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4490         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4491
4492         seg_setup(VCPU_SREG_DS);
4493         seg_setup(VCPU_SREG_ES);
4494         seg_setup(VCPU_SREG_FS);
4495         seg_setup(VCPU_SREG_GS);
4496         seg_setup(VCPU_SREG_SS);
4497
4498         vmcs_write16(GUEST_TR_SELECTOR, 0);
4499         vmcs_writel(GUEST_TR_BASE, 0);
4500         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4501         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4502
4503         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4504         vmcs_writel(GUEST_LDTR_BASE, 0);
4505         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4506         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4507
4508         vmcs_write32(GUEST_SYSENTER_CS, 0);
4509         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4510         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4511
4512         vmcs_writel(GUEST_RFLAGS, 0x02);
4513         kvm_rip_write(vcpu, 0xfff0);
4514
4515         vmcs_writel(GUEST_GDTR_BASE, 0);
4516         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4517
4518         vmcs_writel(GUEST_IDTR_BASE, 0);
4519         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4520
4521         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4522         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4523         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4524
4525         /* Special registers */
4526         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4527
4528         setup_msrs(vmx);
4529
4530         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4531
4532         if (cpu_has_vmx_tpr_shadow()) {
4533                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4534                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4535                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4536                                      __pa(vmx->vcpu.arch.apic->regs));
4537                 vmcs_write32(TPR_THRESHOLD, 0);
4538         }
4539
4540         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4541                 vmcs_write64(APIC_ACCESS_ADDR,
4542                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4543
4544         if (vmx_vm_has_apicv(vcpu->kvm))
4545                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4546
4547         if (vmx->vpid != 0)
4548                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4549
4550         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4551         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4552         vmx_set_cr4(&vmx->vcpu, 0);
4553         vmx_set_efer(&vmx->vcpu, 0);
4554         vmx_fpu_activate(&vmx->vcpu);
4555         update_exception_bitmap(&vmx->vcpu);
4556
4557         vpid_sync_context(vmx);
4558 }
4559
4560 /*
4561  * In nested virtualization, check if L1 asked to exit on external interrupts.
4562  * For most existing hypervisors, this will always return true.
4563  */
4564 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4565 {
4566         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4567                 PIN_BASED_EXT_INTR_MASK;
4568 }
4569
4570 /*
4571  * In nested virtualization, check if L1 has set
4572  * VM_EXIT_ACK_INTR_ON_EXIT
4573  */
4574 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4575 {
4576         return get_vmcs12(vcpu)->vm_exit_controls &
4577                 VM_EXIT_ACK_INTR_ON_EXIT;
4578 }
4579
4580 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4581 {
4582         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4583                 PIN_BASED_NMI_EXITING;
4584 }
4585
4586 static void enable_irq_window(struct kvm_vcpu *vcpu)
4587 {
4588         u32 cpu_based_vm_exec_control;
4589
4590         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4591         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4592         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4593 }
4594
4595 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4596 {
4597         u32 cpu_based_vm_exec_control;
4598
4599         if (!cpu_has_virtual_nmis() ||
4600             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4601                 enable_irq_window(vcpu);
4602                 return;
4603         }
4604
4605         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4606         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4607         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4608 }
4609
4610 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4611 {
4612         struct vcpu_vmx *vmx = to_vmx(vcpu);
4613         uint32_t intr;
4614         int irq = vcpu->arch.interrupt.nr;
4615
4616         trace_kvm_inj_virq(irq);
4617
4618         ++vcpu->stat.irq_injections;
4619         if (vmx->rmode.vm86_active) {
4620                 int inc_eip = 0;
4621                 if (vcpu->arch.interrupt.soft)
4622                         inc_eip = vcpu->arch.event_exit_inst_len;
4623                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4624                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4625                 return;
4626         }
4627         intr = irq | INTR_INFO_VALID_MASK;
4628         if (vcpu->arch.interrupt.soft) {
4629                 intr |= INTR_TYPE_SOFT_INTR;
4630                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4631                              vmx->vcpu.arch.event_exit_inst_len);
4632         } else
4633                 intr |= INTR_TYPE_EXT_INTR;
4634         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4635 }
4636
4637 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4638 {
4639         struct vcpu_vmx *vmx = to_vmx(vcpu);
4640
4641         if (is_guest_mode(vcpu))
4642                 return;
4643
4644         if (!cpu_has_virtual_nmis()) {
4645                 /*
4646                  * Tracking the NMI-blocked state in software is built upon
4647                  * finding the next open IRQ window. This, in turn, depends on
4648                  * well-behaving guests: They have to keep IRQs disabled at
4649                  * least as long as the NMI handler runs. Otherwise we may
4650                  * cause NMI nesting, maybe breaking the guest. But as this is
4651                  * highly unlikely, we can live with the residual risk.
4652                  */
4653                 vmx->soft_vnmi_blocked = 1;
4654                 vmx->vnmi_blocked_time = 0;
4655         }
4656
4657         ++vcpu->stat.nmi_injections;
4658         vmx->nmi_known_unmasked = false;
4659         if (vmx->rmode.vm86_active) {
4660                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4661                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4662                 return;
4663         }
4664         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4665                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4666 }
4667
4668 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4669 {
4670         if (!cpu_has_virtual_nmis())
4671                 return to_vmx(vcpu)->soft_vnmi_blocked;
4672         if (to_vmx(vcpu)->nmi_known_unmasked)
4673                 return false;
4674         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4675 }
4676
4677 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4678 {
4679         struct vcpu_vmx *vmx = to_vmx(vcpu);
4680
4681         if (!cpu_has_virtual_nmis()) {
4682                 if (vmx->soft_vnmi_blocked != masked) {
4683                         vmx->soft_vnmi_blocked = masked;
4684                         vmx->vnmi_blocked_time = 0;
4685                 }
4686         } else {
4687                 vmx->nmi_known_unmasked = !masked;
4688                 if (masked)
4689                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4690                                       GUEST_INTR_STATE_NMI);
4691                 else
4692                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4693                                         GUEST_INTR_STATE_NMI);
4694         }
4695 }
4696
4697 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4698 {
4699         if (to_vmx(vcpu)->nested.nested_run_pending)
4700                 return 0;
4701
4702         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4703                 return 0;
4704
4705         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4706                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4707                    | GUEST_INTR_STATE_NMI));
4708 }
4709
4710 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4711 {
4712         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4713                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4714                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4715                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4716 }
4717
4718 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4719 {
4720         int ret;
4721         struct kvm_userspace_memory_region tss_mem = {
4722                 .slot = TSS_PRIVATE_MEMSLOT,
4723                 .guest_phys_addr = addr,
4724                 .memory_size = PAGE_SIZE * 3,
4725                 .flags = 0,
4726         };
4727
4728         ret = kvm_set_memory_region(kvm, &tss_mem);
4729         if (ret)
4730                 return ret;
4731         kvm->arch.tss_addr = addr;
4732         if (!init_rmode_tss(kvm))
4733                 return  -ENOMEM;
4734
4735         return 0;
4736 }
4737
4738 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4739 {
4740         switch (vec) {
4741         case BP_VECTOR:
4742                 /*
4743                  * Update instruction length as we may reinject the exception
4744                  * from user space while in guest debugging mode.
4745                  */
4746                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4747                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4748                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4749                         return false;
4750                 /* fall through */
4751         case DB_VECTOR:
4752                 if (vcpu->guest_debug &
4753                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4754                         return false;
4755                 /* fall through */
4756         case DE_VECTOR:
4757         case OF_VECTOR:
4758         case BR_VECTOR:
4759         case UD_VECTOR:
4760         case DF_VECTOR:
4761         case SS_VECTOR:
4762         case GP_VECTOR:
4763         case MF_VECTOR:
4764                 return true;
4765         break;
4766         }
4767         return false;
4768 }
4769
4770 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4771                                   int vec, u32 err_code)
4772 {
4773         /*
4774          * Instruction with address size override prefix opcode 0x67
4775          * Cause the #SS fault with 0 error code in VM86 mode.
4776          */
4777         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4778                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4779                         if (vcpu->arch.halt_request) {
4780                                 vcpu->arch.halt_request = 0;
4781                                 return kvm_emulate_halt(vcpu);
4782                         }
4783                         return 1;
4784                 }
4785                 return 0;
4786         }
4787
4788         /*
4789          * Forward all other exceptions that are valid in real mode.
4790          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4791          *        the required debugging infrastructure rework.
4792          */
4793         kvm_queue_exception(vcpu, vec);
4794         return 1;
4795 }
4796
4797 /*
4798  * Trigger machine check on the host. We assume all the MSRs are already set up
4799  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4800  * We pass a fake environment to the machine check handler because we want
4801  * the guest to be always treated like user space, no matter what context
4802  * it used internally.
4803  */
4804 static void kvm_machine_check(void)
4805 {
4806 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4807         struct pt_regs regs = {
4808                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4809                 .flags = X86_EFLAGS_IF,
4810         };
4811
4812         do_machine_check(&regs, 0);
4813 #endif
4814 }
4815
4816 static int handle_machine_check(struct kvm_vcpu *vcpu)
4817 {
4818         /* already handled by vcpu_run */
4819         return 1;
4820 }
4821
4822 static int handle_exception(struct kvm_vcpu *vcpu)
4823 {
4824         struct vcpu_vmx *vmx = to_vmx(vcpu);
4825         struct kvm_run *kvm_run = vcpu->run;
4826         u32 intr_info, ex_no, error_code;
4827         unsigned long cr2, rip, dr6;
4828         u32 vect_info;
4829         enum emulation_result er;
4830
4831         vect_info = vmx->idt_vectoring_info;
4832         intr_info = vmx->exit_intr_info;
4833
4834         if (is_machine_check(intr_info))
4835                 return handle_machine_check(vcpu);
4836
4837         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4838                 return 1;  /* already handled by vmx_vcpu_run() */
4839
4840         if (is_no_device(intr_info)) {
4841                 vmx_fpu_activate(vcpu);
4842                 return 1;
4843         }
4844
4845         if (is_invalid_opcode(intr_info)) {
4846                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4847                 if (er != EMULATE_DONE)
4848                         kvm_queue_exception(vcpu, UD_VECTOR);
4849                 return 1;
4850         }
4851
4852         error_code = 0;
4853         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4854                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4855
4856         /*
4857          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4858          * MMIO, it is better to report an internal error.
4859          * See the comments in vmx_handle_exit.
4860          */
4861         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4862             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4863                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4864                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4865                 vcpu->run->internal.ndata = 2;
4866                 vcpu->run->internal.data[0] = vect_info;
4867                 vcpu->run->internal.data[1] = intr_info;
4868                 return 0;
4869         }
4870
4871         if (is_page_fault(intr_info)) {
4872                 /* EPT won't cause page fault directly */
4873                 BUG_ON(enable_ept);
4874                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4875                 trace_kvm_page_fault(cr2, error_code);
4876
4877                 if (kvm_event_needs_reinjection(vcpu))
4878                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4879                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4880         }
4881
4882         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4883
4884         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4885                 return handle_rmode_exception(vcpu, ex_no, error_code);
4886
4887         switch (ex_no) {
4888         case DB_VECTOR:
4889                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4890                 if (!(vcpu->guest_debug &
4891                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4892                         vcpu->arch.dr6 &= ~15;
4893                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4894                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4895                                 skip_emulated_instruction(vcpu);
4896
4897                         kvm_queue_exception(vcpu, DB_VECTOR);
4898                         return 1;
4899                 }
4900                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4901                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4902                 /* fall through */
4903         case BP_VECTOR:
4904                 /*
4905                  * Update instruction length as we may reinject #BP from
4906                  * user space while in guest debugging mode. Reading it for
4907                  * #DB as well causes no harm, it is not used in that case.
4908                  */
4909                 vmx->vcpu.arch.event_exit_inst_len =
4910                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4911                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4912                 rip = kvm_rip_read(vcpu);
4913                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4914                 kvm_run->debug.arch.exception = ex_no;
4915                 break;
4916         default:
4917                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4918                 kvm_run->ex.exception = ex_no;
4919                 kvm_run->ex.error_code = error_code;
4920                 break;
4921         }
4922         return 0;
4923 }
4924
4925 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4926 {
4927         ++vcpu->stat.irq_exits;
4928         return 1;
4929 }
4930
4931 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4932 {
4933         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4934         return 0;
4935 }
4936
4937 static int handle_io(struct kvm_vcpu *vcpu)
4938 {
4939         unsigned long exit_qualification;
4940         int size, in, string;
4941         unsigned port;
4942
4943         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4944         string = (exit_qualification & 16) != 0;
4945         in = (exit_qualification & 8) != 0;
4946
4947         ++vcpu->stat.io_exits;
4948
4949         if (string || in)
4950                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4951
4952         port = exit_qualification >> 16;
4953         size = (exit_qualification & 7) + 1;
4954         skip_emulated_instruction(vcpu);
4955
4956         return kvm_fast_pio_out(vcpu, size, port);
4957 }
4958
4959 static void
4960 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4961 {
4962         /*
4963          * Patch in the VMCALL instruction:
4964          */
4965         hypercall[0] = 0x0f;
4966         hypercall[1] = 0x01;
4967         hypercall[2] = 0xc1;
4968 }
4969
4970 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4971 {
4972         unsigned long always_on = VMXON_CR0_ALWAYSON;
4973
4974         if (nested_vmx_secondary_ctls_high &
4975                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4976             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4977                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4978         return (val & always_on) == always_on;
4979 }
4980
4981 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4982 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4983 {
4984         if (is_guest_mode(vcpu)) {
4985                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4986                 unsigned long orig_val = val;
4987
4988                 /*
4989                  * We get here when L2 changed cr0 in a way that did not change
4990                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4991                  * but did change L0 shadowed bits. So we first calculate the
4992                  * effective cr0 value that L1 would like to write into the
4993                  * hardware. It consists of the L2-owned bits from the new
4994                  * value combined with the L1-owned bits from L1's guest_cr0.
4995                  */
4996                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4997                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4998
4999                 if (!nested_cr0_valid(vmcs12, val))
5000                         return 1;
5001
5002                 if (kvm_set_cr0(vcpu, val))
5003                         return 1;
5004                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5005                 return 0;
5006         } else {
5007                 if (to_vmx(vcpu)->nested.vmxon &&
5008                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5009                         return 1;
5010                 return kvm_set_cr0(vcpu, val);
5011         }
5012 }
5013
5014 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5015 {
5016         if (is_guest_mode(vcpu)) {
5017                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5018                 unsigned long orig_val = val;
5019
5020                 /* analogously to handle_set_cr0 */
5021                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5022                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5023                 if (kvm_set_cr4(vcpu, val))
5024                         return 1;
5025                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5026                 return 0;
5027         } else
5028                 return kvm_set_cr4(vcpu, val);
5029 }
5030
5031 /* called to set cr0 as approriate for clts instruction exit. */
5032 static void handle_clts(struct kvm_vcpu *vcpu)
5033 {
5034         if (is_guest_mode(vcpu)) {
5035                 /*
5036                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5037                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5038                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5039                  */
5040                 vmcs_writel(CR0_READ_SHADOW,
5041                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5042                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5043         } else
5044                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5045 }
5046
5047 static int handle_cr(struct kvm_vcpu *vcpu)
5048 {
5049         unsigned long exit_qualification, val;
5050         int cr;
5051         int reg;
5052         int err;
5053
5054         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5055         cr = exit_qualification & 15;
5056         reg = (exit_qualification >> 8) & 15;
5057         switch ((exit_qualification >> 4) & 3) {
5058         case 0: /* mov to cr */
5059                 val = kvm_register_readl(vcpu, reg);
5060                 trace_kvm_cr_write(cr, val);
5061                 switch (cr) {
5062                 case 0:
5063                         err = handle_set_cr0(vcpu, val);
5064                         kvm_complete_insn_gp(vcpu, err);
5065                         return 1;
5066                 case 3:
5067                         err = kvm_set_cr3(vcpu, val);
5068                         kvm_complete_insn_gp(vcpu, err);
5069                         return 1;
5070                 case 4:
5071                         err = handle_set_cr4(vcpu, val);
5072                         kvm_complete_insn_gp(vcpu, err);
5073                         return 1;
5074                 case 8: {
5075                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5076                                 u8 cr8 = (u8)val;
5077                                 err = kvm_set_cr8(vcpu, cr8);
5078                                 kvm_complete_insn_gp(vcpu, err);
5079                                 if (irqchip_in_kernel(vcpu->kvm))
5080                                         return 1;
5081                                 if (cr8_prev <= cr8)
5082                                         return 1;
5083                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5084                                 return 0;
5085                         }
5086                 }
5087                 break;
5088         case 2: /* clts */
5089                 handle_clts(vcpu);
5090                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5091                 skip_emulated_instruction(vcpu);
5092                 vmx_fpu_activate(vcpu);
5093                 return 1;
5094         case 1: /*mov from cr*/
5095                 switch (cr) {
5096                 case 3:
5097                         val = kvm_read_cr3(vcpu);
5098                         kvm_register_write(vcpu, reg, val);
5099                         trace_kvm_cr_read(cr, val);
5100                         skip_emulated_instruction(vcpu);
5101                         return 1;
5102                 case 8:
5103                         val = kvm_get_cr8(vcpu);
5104                         kvm_register_write(vcpu, reg, val);
5105                         trace_kvm_cr_read(cr, val);
5106                         skip_emulated_instruction(vcpu);
5107                         return 1;
5108                 }
5109                 break;
5110         case 3: /* lmsw */
5111                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5112                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5113                 kvm_lmsw(vcpu, val);
5114
5115                 skip_emulated_instruction(vcpu);
5116                 return 1;
5117         default:
5118                 break;
5119         }
5120         vcpu->run->exit_reason = 0;
5121         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5122                (int)(exit_qualification >> 4) & 3, cr);
5123         return 0;
5124 }
5125
5126 static int handle_dr(struct kvm_vcpu *vcpu)
5127 {
5128         unsigned long exit_qualification;
5129         int dr, reg;
5130
5131         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5132         if (!kvm_require_cpl(vcpu, 0))
5133                 return 1;
5134         dr = vmcs_readl(GUEST_DR7);
5135         if (dr & DR7_GD) {
5136                 /*
5137                  * As the vm-exit takes precedence over the debug trap, we
5138                  * need to emulate the latter, either for the host or the
5139                  * guest debugging itself.
5140                  */
5141                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5142                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5143                         vcpu->run->debug.arch.dr7 = dr;
5144                         vcpu->run->debug.arch.pc =
5145                                 vmcs_readl(GUEST_CS_BASE) +
5146                                 vmcs_readl(GUEST_RIP);
5147                         vcpu->run->debug.arch.exception = DB_VECTOR;
5148                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5149                         return 0;
5150                 } else {
5151                         vcpu->arch.dr7 &= ~DR7_GD;
5152                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5153                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5154                         kvm_queue_exception(vcpu, DB_VECTOR);
5155                         return 1;
5156                 }
5157         }
5158
5159         if (vcpu->guest_debug == 0) {
5160                 u32 cpu_based_vm_exec_control;
5161
5162                 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5163                 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5164                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5165
5166                 /*
5167                  * No more DR vmexits; force a reload of the debug registers
5168                  * and reenter on this instruction.  The next vmexit will
5169                  * retrieve the full state of the debug registers.
5170                  */
5171                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5172                 return 1;
5173         }
5174
5175         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5176         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5177         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5178         if (exit_qualification & TYPE_MOV_FROM_DR) {
5179                 unsigned long val;
5180
5181                 if (kvm_get_dr(vcpu, dr, &val))
5182                         return 1;
5183                 kvm_register_write(vcpu, reg, val);
5184         } else
5185                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5186                         return 1;
5187
5188         skip_emulated_instruction(vcpu);
5189         return 1;
5190 }
5191
5192 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5193 {
5194         return vcpu->arch.dr6;
5195 }
5196
5197 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5198 {
5199 }
5200
5201 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5202 {
5203         u32 cpu_based_vm_exec_control;
5204
5205         get_debugreg(vcpu->arch.db[0], 0);
5206         get_debugreg(vcpu->arch.db[1], 1);
5207         get_debugreg(vcpu->arch.db[2], 2);
5208         get_debugreg(vcpu->arch.db[3], 3);
5209         get_debugreg(vcpu->arch.dr6, 6);
5210         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5211
5212         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5213
5214         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5215         cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5216         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5217 }
5218
5219 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5220 {
5221         vmcs_writel(GUEST_DR7, val);
5222 }
5223
5224 static int handle_cpuid(struct kvm_vcpu *vcpu)
5225 {
5226         kvm_emulate_cpuid(vcpu);
5227         return 1;
5228 }
5229
5230 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5231 {
5232         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5233         u64 data;
5234
5235         if (vmx_get_msr(vcpu, ecx, &data)) {
5236                 trace_kvm_msr_read_ex(ecx);
5237                 kvm_inject_gp(vcpu, 0);
5238                 return 1;
5239         }
5240
5241         trace_kvm_msr_read(ecx, data);
5242
5243         /* FIXME: handling of bits 32:63 of rax, rdx */
5244         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5245         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5246         skip_emulated_instruction(vcpu);
5247         return 1;
5248 }
5249
5250 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5251 {
5252         struct msr_data msr;
5253         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5254         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5255                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5256
5257         msr.data = data;
5258         msr.index = ecx;
5259         msr.host_initiated = false;
5260         if (vmx_set_msr(vcpu, &msr) != 0) {
5261                 trace_kvm_msr_write_ex(ecx, data);
5262                 kvm_inject_gp(vcpu, 0);
5263                 return 1;
5264         }
5265
5266         trace_kvm_msr_write(ecx, data);
5267         skip_emulated_instruction(vcpu);
5268         return 1;
5269 }
5270
5271 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5272 {
5273         kvm_make_request(KVM_REQ_EVENT, vcpu);
5274         return 1;
5275 }
5276
5277 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5278 {
5279         u32 cpu_based_vm_exec_control;
5280
5281         /* clear pending irq */
5282         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5283         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5284         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5285
5286         kvm_make_request(KVM_REQ_EVENT, vcpu);
5287
5288         ++vcpu->stat.irq_window_exits;
5289
5290         /*
5291          * If the user space waits to inject interrupts, exit as soon as
5292          * possible
5293          */
5294         if (!irqchip_in_kernel(vcpu->kvm) &&
5295             vcpu->run->request_interrupt_window &&
5296             !kvm_cpu_has_interrupt(vcpu)) {
5297                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5298                 return 0;
5299         }
5300         return 1;
5301 }
5302
5303 static int handle_halt(struct kvm_vcpu *vcpu)
5304 {
5305         skip_emulated_instruction(vcpu);
5306         return kvm_emulate_halt(vcpu);
5307 }
5308
5309 static int handle_vmcall(struct kvm_vcpu *vcpu)
5310 {
5311         skip_emulated_instruction(vcpu);
5312         kvm_emulate_hypercall(vcpu);
5313         return 1;
5314 }
5315
5316 static int handle_invd(struct kvm_vcpu *vcpu)
5317 {
5318         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5319 }
5320
5321 static int handle_invlpg(struct kvm_vcpu *vcpu)
5322 {
5323         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5324
5325         kvm_mmu_invlpg(vcpu, exit_qualification);
5326         skip_emulated_instruction(vcpu);
5327         return 1;
5328 }
5329
5330 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5331 {
5332         int err;
5333
5334         err = kvm_rdpmc(vcpu);
5335         kvm_complete_insn_gp(vcpu, err);
5336
5337         return 1;
5338 }
5339
5340 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5341 {
5342         skip_emulated_instruction(vcpu);
5343         kvm_emulate_wbinvd(vcpu);
5344         return 1;
5345 }
5346
5347 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5348 {
5349         u64 new_bv = kvm_read_edx_eax(vcpu);
5350         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5351
5352         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5353                 skip_emulated_instruction(vcpu);
5354         return 1;
5355 }
5356
5357 static int handle_apic_access(struct kvm_vcpu *vcpu)
5358 {
5359         if (likely(fasteoi)) {
5360                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5361                 int access_type, offset;
5362
5363                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5364                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5365                 /*
5366                  * Sane guest uses MOV to write EOI, with written value
5367                  * not cared. So make a short-circuit here by avoiding
5368                  * heavy instruction emulation.
5369                  */
5370                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5371                     (offset == APIC_EOI)) {
5372                         kvm_lapic_set_eoi(vcpu);
5373                         skip_emulated_instruction(vcpu);
5374                         return 1;
5375                 }
5376         }
5377         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5378 }
5379
5380 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5381 {
5382         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5383         int vector = exit_qualification & 0xff;
5384
5385         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5386         kvm_apic_set_eoi_accelerated(vcpu, vector);
5387         return 1;
5388 }
5389
5390 static int handle_apic_write(struct kvm_vcpu *vcpu)
5391 {
5392         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5393         u32 offset = exit_qualification & 0xfff;
5394
5395         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5396         kvm_apic_write_nodecode(vcpu, offset);
5397         return 1;
5398 }
5399
5400 static int handle_task_switch(struct kvm_vcpu *vcpu)
5401 {
5402         struct vcpu_vmx *vmx = to_vmx(vcpu);
5403         unsigned long exit_qualification;
5404         bool has_error_code = false;
5405         u32 error_code = 0;
5406         u16 tss_selector;
5407         int reason, type, idt_v, idt_index;
5408
5409         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5410         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5411         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5412
5413         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5414
5415         reason = (u32)exit_qualification >> 30;
5416         if (reason == TASK_SWITCH_GATE && idt_v) {
5417                 switch (type) {
5418                 case INTR_TYPE_NMI_INTR:
5419                         vcpu->arch.nmi_injected = false;
5420                         vmx_set_nmi_mask(vcpu, true);
5421                         break;
5422                 case INTR_TYPE_EXT_INTR:
5423                 case INTR_TYPE_SOFT_INTR:
5424                         kvm_clear_interrupt_queue(vcpu);
5425                         break;
5426                 case INTR_TYPE_HARD_EXCEPTION:
5427                         if (vmx->idt_vectoring_info &
5428                             VECTORING_INFO_DELIVER_CODE_MASK) {
5429                                 has_error_code = true;
5430                                 error_code =
5431                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5432                         }
5433                         /* fall through */
5434                 case INTR_TYPE_SOFT_EXCEPTION:
5435                         kvm_clear_exception_queue(vcpu);
5436                         break;
5437                 default:
5438                         break;
5439                 }
5440         }
5441         tss_selector = exit_qualification;
5442
5443         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5444                        type != INTR_TYPE_EXT_INTR &&
5445                        type != INTR_TYPE_NMI_INTR))
5446                 skip_emulated_instruction(vcpu);
5447
5448         if (kvm_task_switch(vcpu, tss_selector,
5449                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5450                             has_error_code, error_code) == EMULATE_FAIL) {
5451                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5452                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5453                 vcpu->run->internal.ndata = 0;
5454                 return 0;
5455         }
5456
5457         /* clear all local breakpoint enable flags */
5458         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x55);
5459
5460         /*
5461          * TODO: What about debug traps on tss switch?
5462          *       Are we supposed to inject them and update dr6?
5463          */
5464
5465         return 1;
5466 }
5467
5468 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5469 {
5470         unsigned long exit_qualification;
5471         gpa_t gpa;
5472         u32 error_code;
5473         int gla_validity;
5474
5475         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5476
5477         gla_validity = (exit_qualification >> 7) & 0x3;
5478         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5479                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5480                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5481                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5482                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5483                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5484                         (long unsigned int)exit_qualification);
5485                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5486                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5487                 return 0;
5488         }
5489
5490         /*
5491          * EPT violation happened while executing iret from NMI,
5492          * "blocked by NMI" bit has to be set before next VM entry.
5493          * There are errata that may cause this bit to not be set:
5494          * AAK134, BY25.
5495          */
5496         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5497                         cpu_has_virtual_nmis() &&
5498                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5499                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5500
5501         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5502         trace_kvm_page_fault(gpa, exit_qualification);
5503
5504         /* It is a write fault? */
5505         error_code = exit_qualification & (1U << 1);
5506         /* It is a fetch fault? */
5507         error_code |= (exit_qualification & (1U << 2)) << 2;
5508         /* ept page table is present? */
5509         error_code |= (exit_qualification >> 3) & 0x1;
5510
5511         vcpu->arch.exit_qualification = exit_qualification;
5512
5513         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5514 }
5515
5516 static u64 ept_rsvd_mask(u64 spte, int level)
5517 {
5518         int i;
5519         u64 mask = 0;
5520
5521         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5522                 mask |= (1ULL << i);
5523
5524         if (level > 2)
5525                 /* bits 7:3 reserved */
5526                 mask |= 0xf8;
5527         else if (level == 2) {
5528                 if (spte & (1ULL << 7))
5529                         /* 2MB ref, bits 20:12 reserved */
5530                         mask |= 0x1ff000;
5531                 else
5532                         /* bits 6:3 reserved */
5533                         mask |= 0x78;
5534         }
5535
5536         return mask;
5537 }
5538
5539 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5540                                        int level)
5541 {
5542         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5543
5544         /* 010b (write-only) */
5545         WARN_ON((spte & 0x7) == 0x2);
5546
5547         /* 110b (write/execute) */
5548         WARN_ON((spte & 0x7) == 0x6);
5549
5550         /* 100b (execute-only) and value not supported by logical processor */
5551         if (!cpu_has_vmx_ept_execute_only())
5552                 WARN_ON((spte & 0x7) == 0x4);
5553
5554         /* not 000b */
5555         if ((spte & 0x7)) {
5556                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5557
5558                 if (rsvd_bits != 0) {
5559                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5560                                          __func__, rsvd_bits);
5561                         WARN_ON(1);
5562                 }
5563
5564                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5565                         u64 ept_mem_type = (spte & 0x38) >> 3;
5566
5567                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5568                             ept_mem_type == 7) {
5569                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5570                                                 __func__, ept_mem_type);
5571                                 WARN_ON(1);
5572                         }
5573                 }
5574         }
5575 }
5576
5577 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5578 {
5579         u64 sptes[4];
5580         int nr_sptes, i, ret;
5581         gpa_t gpa;
5582
5583         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5584         if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5585                 skip_emulated_instruction(vcpu);
5586                 return 1;
5587         }
5588
5589         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5590         if (likely(ret == RET_MMIO_PF_EMULATE))
5591                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5592                                               EMULATE_DONE;
5593
5594         if (unlikely(ret == RET_MMIO_PF_INVALID))
5595                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5596
5597         if (unlikely(ret == RET_MMIO_PF_RETRY))
5598                 return 1;
5599
5600         /* It is the real ept misconfig */
5601         printk(KERN_ERR "EPT: Misconfiguration.\n");
5602         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5603
5604         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5605
5606         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5607                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5608
5609         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5610         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5611
5612         return 0;
5613 }
5614
5615 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5616 {
5617         u32 cpu_based_vm_exec_control;
5618
5619         /* clear pending NMI */
5620         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5621         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5622         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5623         ++vcpu->stat.nmi_window_exits;
5624         kvm_make_request(KVM_REQ_EVENT, vcpu);
5625
5626         return 1;
5627 }
5628
5629 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5630 {
5631         struct vcpu_vmx *vmx = to_vmx(vcpu);
5632         enum emulation_result err = EMULATE_DONE;
5633         int ret = 1;
5634         u32 cpu_exec_ctrl;
5635         bool intr_window_requested;
5636         unsigned count = 130;
5637
5638         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5639         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5640
5641         while (vmx->emulation_required && count-- != 0) {
5642                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5643                         return handle_interrupt_window(&vmx->vcpu);
5644
5645                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5646                         return 1;
5647
5648                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5649
5650                 if (err == EMULATE_USER_EXIT) {
5651                         ++vcpu->stat.mmio_exits;
5652                         ret = 0;
5653                         goto out;
5654                 }
5655
5656                 if (err != EMULATE_DONE) {
5657                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5658                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5659                         vcpu->run->internal.ndata = 0;
5660                         return 0;
5661                 }
5662
5663                 if (vcpu->arch.halt_request) {
5664                         vcpu->arch.halt_request = 0;
5665                         ret = kvm_emulate_halt(vcpu);
5666                         goto out;
5667                 }
5668
5669                 if (signal_pending(current))
5670                         goto out;
5671                 if (need_resched())
5672                         schedule();
5673         }
5674
5675 out:
5676         return ret;
5677 }
5678
5679 /*
5680  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5681  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5682  */
5683 static int handle_pause(struct kvm_vcpu *vcpu)
5684 {
5685         skip_emulated_instruction(vcpu);
5686         kvm_vcpu_on_spin(vcpu);
5687
5688         return 1;
5689 }
5690
5691 static int handle_nop(struct kvm_vcpu *vcpu)
5692 {
5693         skip_emulated_instruction(vcpu);
5694         return 1;
5695 }
5696
5697 static int handle_mwait(struct kvm_vcpu *vcpu)
5698 {
5699         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5700         return handle_nop(vcpu);
5701 }
5702
5703 static int handle_monitor(struct kvm_vcpu *vcpu)
5704 {
5705         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5706         return handle_nop(vcpu);
5707 }
5708
5709 /*
5710  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5711  * We could reuse a single VMCS for all the L2 guests, but we also want the
5712  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5713  * allows keeping them loaded on the processor, and in the future will allow
5714  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5715  * every entry if they never change.
5716  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5717  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5718  *
5719  * The following functions allocate and free a vmcs02 in this pool.
5720  */
5721
5722 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5723 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5724 {
5725         struct vmcs02_list *item;
5726         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5727                 if (item->vmptr == vmx->nested.current_vmptr) {
5728                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5729                         return &item->vmcs02;
5730                 }
5731
5732         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5733                 /* Recycle the least recently used VMCS. */
5734                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5735                         struct vmcs02_list, list);
5736                 item->vmptr = vmx->nested.current_vmptr;
5737                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5738                 return &item->vmcs02;
5739         }
5740
5741         /* Create a new VMCS */
5742         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5743         if (!item)
5744                 return NULL;
5745         item->vmcs02.vmcs = alloc_vmcs();
5746         if (!item->vmcs02.vmcs) {
5747                 kfree(item);
5748                 return NULL;
5749         }
5750         loaded_vmcs_init(&item->vmcs02);
5751         item->vmptr = vmx->nested.current_vmptr;
5752         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5753         vmx->nested.vmcs02_num++;
5754         return &item->vmcs02;
5755 }
5756
5757 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5758 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5759 {
5760         struct vmcs02_list *item;
5761         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5762                 if (item->vmptr == vmptr) {
5763                         free_loaded_vmcs(&item->vmcs02);
5764                         list_del(&item->list);
5765                         kfree(item);
5766                         vmx->nested.vmcs02_num--;
5767                         return;
5768                 }
5769 }
5770
5771 /*
5772  * Free all VMCSs saved for this vcpu, except the one pointed by
5773  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
5774  * must be &vmx->vmcs01.
5775  */
5776 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5777 {
5778         struct vmcs02_list *item, *n;
5779
5780         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
5781         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5782                 /*
5783                  * Something will leak if the above WARN triggers.  Better than
5784                  * a use-after-free.
5785                  */
5786                 if (vmx->loaded_vmcs == &item->vmcs02)
5787                         continue;
5788
5789                 free_loaded_vmcs(&item->vmcs02);
5790                 list_del(&item->list);
5791                 kfree(item);
5792                 vmx->nested.vmcs02_num--;
5793         }
5794 }
5795
5796 /*
5797  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5798  * set the success or error code of an emulated VMX instruction, as specified
5799  * by Vol 2B, VMX Instruction Reference, "Conventions".
5800  */
5801 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5802 {
5803         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5804                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5805                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5806 }
5807
5808 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5809 {
5810         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5811                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5812                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5813                         | X86_EFLAGS_CF);
5814 }
5815
5816 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5817                                         u32 vm_instruction_error)
5818 {
5819         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5820                 /*
5821                  * failValid writes the error number to the current VMCS, which
5822                  * can't be done there isn't a current VMCS.
5823                  */
5824                 nested_vmx_failInvalid(vcpu);
5825                 return;
5826         }
5827         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5828                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5829                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5830                         | X86_EFLAGS_ZF);
5831         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5832         /*
5833          * We don't need to force a shadow sync because
5834          * VM_INSTRUCTION_ERROR is not shadowed
5835          */
5836 }
5837
5838 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
5839 {
5840         struct vcpu_vmx *vmx =
5841                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
5842
5843         vmx->nested.preemption_timer_expired = true;
5844         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5845         kvm_vcpu_kick(&vmx->vcpu);
5846
5847         return HRTIMER_NORESTART;
5848 }
5849
5850 /*
5851  * Decode the memory-address operand of a vmx instruction, as recorded on an
5852  * exit caused by such an instruction (run by a guest hypervisor).
5853  * On success, returns 0. When the operand is invalid, returns 1 and throws
5854  * #UD or #GP.
5855  */
5856 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5857                                  unsigned long exit_qualification,
5858                                  u32 vmx_instruction_info, gva_t *ret)
5859 {
5860         /*
5861          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5862          * Execution", on an exit, vmx_instruction_info holds most of the
5863          * addressing components of the operand. Only the displacement part
5864          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5865          * For how an actual address is calculated from all these components,
5866          * refer to Vol. 1, "Operand Addressing".
5867          */
5868         int  scaling = vmx_instruction_info & 3;
5869         int  addr_size = (vmx_instruction_info >> 7) & 7;
5870         bool is_reg = vmx_instruction_info & (1u << 10);
5871         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5872         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5873         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5874         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5875         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5876
5877         if (is_reg) {
5878                 kvm_queue_exception(vcpu, UD_VECTOR);
5879                 return 1;
5880         }
5881
5882         /* Addr = segment_base + offset */
5883         /* offset = base + [index * scale] + displacement */
5884         *ret = vmx_get_segment_base(vcpu, seg_reg);
5885         if (base_is_valid)
5886                 *ret += kvm_register_read(vcpu, base_reg);
5887         if (index_is_valid)
5888                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5889         *ret += exit_qualification; /* holds the displacement */
5890
5891         if (addr_size == 1) /* 32 bit */
5892                 *ret &= 0xffffffff;
5893
5894         /*
5895          * TODO: throw #GP (and return 1) in various cases that the VM*
5896          * instructions require it - e.g., offset beyond segment limit,
5897          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5898          * address, and so on. Currently these are not checked.
5899          */
5900         return 0;
5901 }
5902
5903 /*
5904  * This function performs the various checks including
5905  * - if it's 4KB aligned
5906  * - No bits beyond the physical address width are set
5907  * - Returns 0 on success or else 1
5908  * (Intel SDM Section 30.3)
5909  */
5910 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
5911                                   gpa_t *vmpointer)
5912 {
5913         gva_t gva;
5914         gpa_t vmptr;
5915         struct x86_exception e;
5916         struct page *page;
5917         struct vcpu_vmx *vmx = to_vmx(vcpu);
5918         int maxphyaddr = cpuid_maxphyaddr(vcpu);
5919
5920         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5921                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5922                 return 1;
5923
5924         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5925                                 sizeof(vmptr), &e)) {
5926                 kvm_inject_page_fault(vcpu, &e);
5927                 return 1;
5928         }
5929
5930         switch (exit_reason) {
5931         case EXIT_REASON_VMON:
5932                 /*
5933                  * SDM 3: 24.11.5
5934                  * The first 4 bytes of VMXON region contain the supported
5935                  * VMCS revision identifier
5936                  *
5937                  * Note - IA32_VMX_BASIC[48] will never be 1
5938                  * for the nested case;
5939                  * which replaces physical address width with 32
5940                  *
5941                  */
5942                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
5943                         nested_vmx_failInvalid(vcpu);
5944                         skip_emulated_instruction(vcpu);
5945                         return 1;
5946                 }
5947
5948                 page = nested_get_page(vcpu, vmptr);
5949                 if (page == NULL ||
5950                     *(u32 *)kmap(page) != VMCS12_REVISION) {
5951                         nested_vmx_failInvalid(vcpu);
5952                         kunmap(page);
5953                         skip_emulated_instruction(vcpu);
5954                         return 1;
5955                 }
5956                 kunmap(page);
5957                 vmx->nested.vmxon_ptr = vmptr;
5958                 break;
5959         case EXIT_REASON_VMCLEAR:
5960                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
5961                         nested_vmx_failValid(vcpu,
5962                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
5963                         skip_emulated_instruction(vcpu);
5964                         return 1;
5965                 }
5966
5967                 if (vmptr == vmx->nested.vmxon_ptr) {
5968                         nested_vmx_failValid(vcpu,
5969                                              VMXERR_VMCLEAR_VMXON_POINTER);
5970                         skip_emulated_instruction(vcpu);
5971                         return 1;
5972                 }
5973                 break;
5974         case EXIT_REASON_VMPTRLD:
5975                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
5976                         nested_vmx_failValid(vcpu,
5977                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
5978                         skip_emulated_instruction(vcpu);
5979                         return 1;
5980                 }
5981
5982                 if (vmptr == vmx->nested.vmxon_ptr) {
5983                         nested_vmx_failValid(vcpu,
5984                                              VMXERR_VMCLEAR_VMXON_POINTER);
5985                         skip_emulated_instruction(vcpu);
5986                         return 1;
5987                 }
5988                 break;
5989         default:
5990                 return 1; /* shouldn't happen */
5991         }
5992
5993         if (vmpointer)
5994                 *vmpointer = vmptr;
5995         return 0;
5996 }
5997
5998 /*
5999  * Emulate the VMXON instruction.
6000  * Currently, we just remember that VMX is active, and do not save or even
6001  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6002  * do not currently need to store anything in that guest-allocated memory
6003  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6004  * argument is different from the VMXON pointer (which the spec says they do).
6005  */
6006 static int handle_vmon(struct kvm_vcpu *vcpu)
6007 {
6008         struct kvm_segment cs;
6009         struct vcpu_vmx *vmx = to_vmx(vcpu);
6010         struct vmcs *shadow_vmcs;
6011         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6012                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6013
6014         /* The Intel VMX Instruction Reference lists a bunch of bits that
6015          * are prerequisite to running VMXON, most notably cr4.VMXE must be
6016          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6017          * Otherwise, we should fail with #UD. We test these now:
6018          */
6019         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6020             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6021             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6022                 kvm_queue_exception(vcpu, UD_VECTOR);
6023                 return 1;
6024         }
6025
6026         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6027         if (is_long_mode(vcpu) && !cs.l) {
6028                 kvm_queue_exception(vcpu, UD_VECTOR);
6029                 return 1;
6030         }
6031
6032         if (vmx_get_cpl(vcpu)) {
6033                 kvm_inject_gp(vcpu, 0);
6034                 return 1;
6035         }
6036
6037         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6038                 return 1;
6039
6040         if (vmx->nested.vmxon) {
6041                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6042                 skip_emulated_instruction(vcpu);
6043                 return 1;
6044         }
6045
6046         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6047                         != VMXON_NEEDED_FEATURES) {
6048                 kvm_inject_gp(vcpu, 0);
6049                 return 1;
6050         }
6051
6052         if (enable_shadow_vmcs) {
6053                 shadow_vmcs = alloc_vmcs();
6054                 if (!shadow_vmcs)
6055                         return -ENOMEM;
6056                 /* mark vmcs as shadow */
6057                 shadow_vmcs->revision_id |= (1u << 31);
6058                 /* init shadow vmcs */
6059                 vmcs_clear(shadow_vmcs);
6060                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6061         }
6062
6063         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6064         vmx->nested.vmcs02_num = 0;
6065
6066         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6067                      HRTIMER_MODE_REL);
6068         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6069
6070         vmx->nested.vmxon = true;
6071
6072         skip_emulated_instruction(vcpu);
6073         nested_vmx_succeed(vcpu);
6074         return 1;
6075 }
6076
6077 /*
6078  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6079  * for running VMX instructions (except VMXON, whose prerequisites are
6080  * slightly different). It also specifies what exception to inject otherwise.
6081  */
6082 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6083 {
6084         struct kvm_segment cs;
6085         struct vcpu_vmx *vmx = to_vmx(vcpu);
6086
6087         if (!vmx->nested.vmxon) {
6088                 kvm_queue_exception(vcpu, UD_VECTOR);
6089                 return 0;
6090         }
6091
6092         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6093         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6094             (is_long_mode(vcpu) && !cs.l)) {
6095                 kvm_queue_exception(vcpu, UD_VECTOR);
6096                 return 0;
6097         }
6098
6099         if (vmx_get_cpl(vcpu)) {
6100                 kvm_inject_gp(vcpu, 0);
6101                 return 0;
6102         }
6103
6104         return 1;
6105 }
6106
6107 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6108 {
6109         u32 exec_control;
6110         if (vmx->nested.current_vmptr == -1ull)
6111                 return;
6112
6113         /* current_vmptr and current_vmcs12 are always set/reset together */
6114         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6115                 return;
6116
6117         if (enable_shadow_vmcs) {
6118                 /* copy to memory all shadowed fields in case
6119                    they were modified */
6120                 copy_shadow_to_vmcs12(vmx);
6121                 vmx->nested.sync_shadow_vmcs = false;
6122                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6123                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6124                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6125                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6126         }
6127         kunmap(vmx->nested.current_vmcs12_page);
6128         nested_release_page(vmx->nested.current_vmcs12_page);
6129         vmx->nested.current_vmptr = -1ull;
6130         vmx->nested.current_vmcs12 = NULL;
6131 }
6132
6133 /*
6134  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6135  * just stops using VMX.
6136  */
6137 static void free_nested(struct vcpu_vmx *vmx)
6138 {
6139         if (!vmx->nested.vmxon)
6140                 return;
6141
6142         vmx->nested.vmxon = false;
6143         nested_release_vmcs12(vmx);
6144         if (enable_shadow_vmcs)
6145                 free_vmcs(vmx->nested.current_shadow_vmcs);
6146         /* Unpin physical memory we referred to in current vmcs02 */
6147         if (vmx->nested.apic_access_page) {
6148                 nested_release_page(vmx->nested.apic_access_page);
6149                 vmx->nested.apic_access_page = 0;
6150         }
6151
6152         nested_free_all_saved_vmcss(vmx);
6153 }
6154
6155 /* Emulate the VMXOFF instruction */
6156 static int handle_vmoff(struct kvm_vcpu *vcpu)
6157 {
6158         if (!nested_vmx_check_permission(vcpu))
6159                 return 1;
6160         free_nested(to_vmx(vcpu));
6161         skip_emulated_instruction(vcpu);
6162         nested_vmx_succeed(vcpu);
6163         return 1;
6164 }
6165
6166 /* Emulate the VMCLEAR instruction */
6167 static int handle_vmclear(struct kvm_vcpu *vcpu)
6168 {
6169         struct vcpu_vmx *vmx = to_vmx(vcpu);
6170         gpa_t vmptr;
6171         struct vmcs12 *vmcs12;
6172         struct page *page;
6173
6174         if (!nested_vmx_check_permission(vcpu))
6175                 return 1;
6176
6177         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6178                 return 1;
6179
6180         if (vmptr == vmx->nested.current_vmptr)
6181                 nested_release_vmcs12(vmx);
6182
6183         page = nested_get_page(vcpu, vmptr);
6184         if (page == NULL) {
6185                 /*
6186                  * For accurate processor emulation, VMCLEAR beyond available
6187                  * physical memory should do nothing at all. However, it is
6188                  * possible that a nested vmx bug, not a guest hypervisor bug,
6189                  * resulted in this case, so let's shut down before doing any
6190                  * more damage:
6191                  */
6192                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6193                 return 1;
6194         }
6195         vmcs12 = kmap(page);
6196         vmcs12->launch_state = 0;
6197         kunmap(page);
6198         nested_release_page(page);
6199
6200         nested_free_vmcs02(vmx, vmptr);
6201
6202         skip_emulated_instruction(vcpu);
6203         nested_vmx_succeed(vcpu);
6204         return 1;
6205 }
6206
6207 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6208
6209 /* Emulate the VMLAUNCH instruction */
6210 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6211 {
6212         return nested_vmx_run(vcpu, true);
6213 }
6214
6215 /* Emulate the VMRESUME instruction */
6216 static int handle_vmresume(struct kvm_vcpu *vcpu)
6217 {
6218
6219         return nested_vmx_run(vcpu, false);
6220 }
6221
6222 enum vmcs_field_type {
6223         VMCS_FIELD_TYPE_U16 = 0,
6224         VMCS_FIELD_TYPE_U64 = 1,
6225         VMCS_FIELD_TYPE_U32 = 2,
6226         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6227 };
6228
6229 static inline int vmcs_field_type(unsigned long field)
6230 {
6231         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6232                 return VMCS_FIELD_TYPE_U32;
6233         return (field >> 13) & 0x3 ;
6234 }
6235
6236 static inline int vmcs_field_readonly(unsigned long field)
6237 {
6238         return (((field >> 10) & 0x3) == 1);
6239 }
6240
6241 /*
6242  * Read a vmcs12 field. Since these can have varying lengths and we return
6243  * one type, we chose the biggest type (u64) and zero-extend the return value
6244  * to that size. Note that the caller, handle_vmread, might need to use only
6245  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6246  * 64-bit fields are to be returned).
6247  */
6248 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6249                                         unsigned long field, u64 *ret)
6250 {
6251         short offset = vmcs_field_to_offset(field);
6252         char *p;
6253
6254         if (offset < 0)
6255                 return 0;
6256
6257         p = ((char *)(get_vmcs12(vcpu))) + offset;
6258
6259         switch (vmcs_field_type(field)) {
6260         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6261                 *ret = *((natural_width *)p);
6262                 return 1;
6263         case VMCS_FIELD_TYPE_U16:
6264                 *ret = *((u16 *)p);
6265                 return 1;
6266         case VMCS_FIELD_TYPE_U32:
6267                 *ret = *((u32 *)p);
6268                 return 1;
6269         case VMCS_FIELD_TYPE_U64:
6270                 *ret = *((u64 *)p);
6271                 return 1;
6272         default:
6273                 return 0; /* can never happen. */
6274         }
6275 }
6276
6277
6278 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6279                                     unsigned long field, u64 field_value){
6280         short offset = vmcs_field_to_offset(field);
6281         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6282         if (offset < 0)
6283                 return false;
6284
6285         switch (vmcs_field_type(field)) {
6286         case VMCS_FIELD_TYPE_U16:
6287                 *(u16 *)p = field_value;
6288                 return true;
6289         case VMCS_FIELD_TYPE_U32:
6290                 *(u32 *)p = field_value;
6291                 return true;
6292         case VMCS_FIELD_TYPE_U64:
6293                 *(u64 *)p = field_value;
6294                 return true;
6295         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6296                 *(natural_width *)p = field_value;
6297                 return true;
6298         default:
6299                 return false; /* can never happen. */
6300         }
6301
6302 }
6303
6304 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6305 {
6306         int i;
6307         unsigned long field;
6308         u64 field_value;
6309         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6310         const unsigned long *fields = shadow_read_write_fields;
6311         const int num_fields = max_shadow_read_write_fields;
6312
6313         vmcs_load(shadow_vmcs);
6314
6315         for (i = 0; i < num_fields; i++) {
6316                 field = fields[i];
6317                 switch (vmcs_field_type(field)) {
6318                 case VMCS_FIELD_TYPE_U16:
6319                         field_value = vmcs_read16(field);
6320                         break;
6321                 case VMCS_FIELD_TYPE_U32:
6322                         field_value = vmcs_read32(field);
6323                         break;
6324                 case VMCS_FIELD_TYPE_U64:
6325                         field_value = vmcs_read64(field);
6326                         break;
6327                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6328                         field_value = vmcs_readl(field);
6329                         break;
6330                 }
6331                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6332         }
6333
6334         vmcs_clear(shadow_vmcs);
6335         vmcs_load(vmx->loaded_vmcs->vmcs);
6336 }
6337
6338 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6339 {
6340         const unsigned long *fields[] = {
6341                 shadow_read_write_fields,
6342                 shadow_read_only_fields
6343         };
6344         const int max_fields[] = {
6345                 max_shadow_read_write_fields,
6346                 max_shadow_read_only_fields
6347         };
6348         int i, q;
6349         unsigned long field;
6350         u64 field_value = 0;
6351         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6352
6353         vmcs_load(shadow_vmcs);
6354
6355         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6356                 for (i = 0; i < max_fields[q]; i++) {
6357                         field = fields[q][i];
6358                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6359
6360                         switch (vmcs_field_type(field)) {
6361                         case VMCS_FIELD_TYPE_U16:
6362                                 vmcs_write16(field, (u16)field_value);
6363                                 break;
6364                         case VMCS_FIELD_TYPE_U32:
6365                                 vmcs_write32(field, (u32)field_value);
6366                                 break;
6367                         case VMCS_FIELD_TYPE_U64:
6368                                 vmcs_write64(field, (u64)field_value);
6369                                 break;
6370                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6371                                 vmcs_writel(field, (long)field_value);
6372                                 break;
6373                         }
6374                 }
6375         }
6376
6377         vmcs_clear(shadow_vmcs);
6378         vmcs_load(vmx->loaded_vmcs->vmcs);
6379 }
6380
6381 /*
6382  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6383  * used before) all generate the same failure when it is missing.
6384  */
6385 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6386 {
6387         struct vcpu_vmx *vmx = to_vmx(vcpu);
6388         if (vmx->nested.current_vmptr == -1ull) {
6389                 nested_vmx_failInvalid(vcpu);
6390                 skip_emulated_instruction(vcpu);
6391                 return 0;
6392         }
6393         return 1;
6394 }
6395
6396 static int handle_vmread(struct kvm_vcpu *vcpu)
6397 {
6398         unsigned long field;
6399         u64 field_value;
6400         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6401         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6402         gva_t gva = 0;
6403
6404         if (!nested_vmx_check_permission(vcpu) ||
6405             !nested_vmx_check_vmcs12(vcpu))
6406                 return 1;
6407
6408         /* Decode instruction info and find the field to read */
6409         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6410         /* Read the field, zero-extended to a u64 field_value */
6411         if (!vmcs12_read_any(vcpu, field, &field_value)) {
6412                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6413                 skip_emulated_instruction(vcpu);
6414                 return 1;
6415         }
6416         /*
6417          * Now copy part of this value to register or memory, as requested.
6418          * Note that the number of bits actually copied is 32 or 64 depending
6419          * on the guest's mode (32 or 64 bit), not on the given field's length.
6420          */
6421         if (vmx_instruction_info & (1u << 10)) {
6422                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6423                         field_value);
6424         } else {
6425                 if (get_vmx_mem_address(vcpu, exit_qualification,
6426                                 vmx_instruction_info, &gva))
6427                         return 1;
6428                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6429                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6430                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6431         }
6432
6433         nested_vmx_succeed(vcpu);
6434         skip_emulated_instruction(vcpu);
6435         return 1;
6436 }
6437
6438
6439 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6440 {
6441         unsigned long field;
6442         gva_t gva;
6443         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6444         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6445         /* The value to write might be 32 or 64 bits, depending on L1's long
6446          * mode, and eventually we need to write that into a field of several
6447          * possible lengths. The code below first zero-extends the value to 64
6448          * bit (field_value), and then copies only the approriate number of
6449          * bits into the vmcs12 field.
6450          */
6451         u64 field_value = 0;
6452         struct x86_exception e;
6453
6454         if (!nested_vmx_check_permission(vcpu) ||
6455             !nested_vmx_check_vmcs12(vcpu))
6456                 return 1;
6457
6458         if (vmx_instruction_info & (1u << 10))
6459                 field_value = kvm_register_readl(vcpu,
6460                         (((vmx_instruction_info) >> 3) & 0xf));
6461         else {
6462                 if (get_vmx_mem_address(vcpu, exit_qualification,
6463                                 vmx_instruction_info, &gva))
6464                         return 1;
6465                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6466                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
6467                         kvm_inject_page_fault(vcpu, &e);
6468                         return 1;
6469                 }
6470         }
6471
6472
6473         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6474         if (vmcs_field_readonly(field)) {
6475                 nested_vmx_failValid(vcpu,
6476                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6477                 skip_emulated_instruction(vcpu);
6478                 return 1;
6479         }
6480
6481         if (!vmcs12_write_any(vcpu, field, field_value)) {
6482                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6483                 skip_emulated_instruction(vcpu);
6484                 return 1;
6485         }
6486
6487         nested_vmx_succeed(vcpu);
6488         skip_emulated_instruction(vcpu);
6489         return 1;
6490 }
6491
6492 /* Emulate the VMPTRLD instruction */
6493 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6494 {
6495         struct vcpu_vmx *vmx = to_vmx(vcpu);
6496         gpa_t vmptr;
6497         u32 exec_control;
6498
6499         if (!nested_vmx_check_permission(vcpu))
6500                 return 1;
6501
6502         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
6503                 return 1;
6504
6505         if (vmx->nested.current_vmptr != vmptr) {
6506                 struct vmcs12 *new_vmcs12;
6507                 struct page *page;
6508                 page = nested_get_page(vcpu, vmptr);
6509                 if (page == NULL) {
6510                         nested_vmx_failInvalid(vcpu);
6511                         skip_emulated_instruction(vcpu);
6512                         return 1;
6513                 }
6514                 new_vmcs12 = kmap(page);
6515                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6516                         kunmap(page);
6517                         nested_release_page_clean(page);
6518                         nested_vmx_failValid(vcpu,
6519                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6520                         skip_emulated_instruction(vcpu);
6521                         return 1;
6522                 }
6523
6524                 nested_release_vmcs12(vmx);
6525                 vmx->nested.current_vmptr = vmptr;
6526                 vmx->nested.current_vmcs12 = new_vmcs12;
6527                 vmx->nested.current_vmcs12_page = page;
6528                 if (enable_shadow_vmcs) {
6529                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6530                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6531                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6532                         vmcs_write64(VMCS_LINK_POINTER,
6533                                      __pa(vmx->nested.current_shadow_vmcs));
6534                         vmx->nested.sync_shadow_vmcs = true;
6535                 }
6536         }
6537
6538         nested_vmx_succeed(vcpu);
6539         skip_emulated_instruction(vcpu);
6540         return 1;
6541 }
6542
6543 /* Emulate the VMPTRST instruction */
6544 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6545 {
6546         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6547         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6548         gva_t vmcs_gva;
6549         struct x86_exception e;
6550
6551         if (!nested_vmx_check_permission(vcpu))
6552                 return 1;
6553
6554         if (get_vmx_mem_address(vcpu, exit_qualification,
6555                         vmx_instruction_info, &vmcs_gva))
6556                 return 1;
6557         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6558         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6559                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
6560                                  sizeof(u64), &e)) {
6561                 kvm_inject_page_fault(vcpu, &e);
6562                 return 1;
6563         }
6564         nested_vmx_succeed(vcpu);
6565         skip_emulated_instruction(vcpu);
6566         return 1;
6567 }
6568
6569 /* Emulate the INVEPT instruction */
6570 static int handle_invept(struct kvm_vcpu *vcpu)
6571 {
6572         u32 vmx_instruction_info, types;
6573         unsigned long type;
6574         gva_t gva;
6575         struct x86_exception e;
6576         struct {
6577                 u64 eptp, gpa;
6578         } operand;
6579
6580         if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6581             !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6582                 kvm_queue_exception(vcpu, UD_VECTOR);
6583                 return 1;
6584         }
6585
6586         if (!nested_vmx_check_permission(vcpu))
6587                 return 1;
6588
6589         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6590                 kvm_queue_exception(vcpu, UD_VECTOR);
6591                 return 1;
6592         }
6593
6594         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6595         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
6596
6597         types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6598
6599         if (!(types & (1UL << type))) {
6600                 nested_vmx_failValid(vcpu,
6601                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6602                 return 1;
6603         }
6604
6605         /* According to the Intel VMX instruction reference, the memory
6606          * operand is read even if it isn't needed (e.g., for type==global)
6607          */
6608         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6609                         vmx_instruction_info, &gva))
6610                 return 1;
6611         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6612                                 sizeof(operand), &e)) {
6613                 kvm_inject_page_fault(vcpu, &e);
6614                 return 1;
6615         }
6616
6617         switch (type) {
6618         case VMX_EPT_EXTENT_GLOBAL:
6619                 kvm_mmu_sync_roots(vcpu);
6620                 kvm_mmu_flush_tlb(vcpu);
6621                 nested_vmx_succeed(vcpu);
6622                 break;
6623         default:
6624                 /* Trap single context invalidation invept calls */
6625                 BUG_ON(1);
6626                 break;
6627         }
6628
6629         skip_emulated_instruction(vcpu);
6630         return 1;
6631 }
6632
6633 /*
6634  * The exit handlers return 1 if the exit was handled fully and guest execution
6635  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6636  * to be done to userspace and return 0.
6637  */
6638 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6639         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6640         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6641         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6642         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6643         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6644         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6645         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6646         [EXIT_REASON_CPUID]                   = handle_cpuid,
6647         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6648         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6649         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6650         [EXIT_REASON_HLT]                     = handle_halt,
6651         [EXIT_REASON_INVD]                    = handle_invd,
6652         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6653         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6654         [EXIT_REASON_VMCALL]                  = handle_vmcall,
6655         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6656         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6657         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6658         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6659         [EXIT_REASON_VMREAD]                  = handle_vmread,
6660         [EXIT_REASON_VMRESUME]                = handle_vmresume,
6661         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6662         [EXIT_REASON_VMOFF]                   = handle_vmoff,
6663         [EXIT_REASON_VMON]                    = handle_vmon,
6664         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6665         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6666         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6667         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6668         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6669         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6670         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6671         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6672         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6673         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6674         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6675         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
6676         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
6677         [EXIT_REASON_INVEPT]                  = handle_invept,
6678 };
6679
6680 static const int kvm_vmx_max_exit_handlers =
6681         ARRAY_SIZE(kvm_vmx_exit_handlers);
6682
6683 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6684                                        struct vmcs12 *vmcs12)
6685 {
6686         unsigned long exit_qualification;
6687         gpa_t bitmap, last_bitmap;
6688         unsigned int port;
6689         int size;
6690         u8 b;
6691
6692         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6693                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6694
6695         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6696
6697         port = exit_qualification >> 16;
6698         size = (exit_qualification & 7) + 1;
6699
6700         last_bitmap = (gpa_t)-1;
6701         b = -1;
6702
6703         while (size > 0) {
6704                 if (port < 0x8000)
6705                         bitmap = vmcs12->io_bitmap_a;
6706                 else if (port < 0x10000)
6707                         bitmap = vmcs12->io_bitmap_b;
6708                 else
6709                         return 1;
6710                 bitmap += (port & 0x7fff) / 8;
6711
6712                 if (last_bitmap != bitmap)
6713                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6714                                 return 1;
6715                 if (b & (1 << (port & 7)))
6716                         return 1;
6717
6718                 port++;
6719                 size--;
6720                 last_bitmap = bitmap;
6721         }
6722
6723         return 0;
6724 }
6725
6726 /*
6727  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6728  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6729  * disinterest in the current event (read or write a specific MSR) by using an
6730  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6731  */
6732 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6733         struct vmcs12 *vmcs12, u32 exit_reason)
6734 {
6735         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6736         gpa_t bitmap;
6737
6738         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6739                 return 1;
6740
6741         /*
6742          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6743          * for the four combinations of read/write and low/high MSR numbers.
6744          * First we need to figure out which of the four to use:
6745          */
6746         bitmap = vmcs12->msr_bitmap;
6747         if (exit_reason == EXIT_REASON_MSR_WRITE)
6748                 bitmap += 2048;
6749         if (msr_index >= 0xc0000000) {
6750                 msr_index -= 0xc0000000;
6751                 bitmap += 1024;
6752         }
6753
6754         /* Then read the msr_index'th bit from this bitmap: */
6755         if (msr_index < 1024*8) {
6756                 unsigned char b;
6757                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6758                         return 1;
6759                 return 1 & (b >> (msr_index & 7));
6760         } else
6761                 return 1; /* let L1 handle the wrong parameter */
6762 }
6763
6764 /*
6765  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6766  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6767  * intercept (via guest_host_mask etc.) the current event.
6768  */
6769 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6770         struct vmcs12 *vmcs12)
6771 {
6772         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6773         int cr = exit_qualification & 15;
6774         int reg = (exit_qualification >> 8) & 15;
6775         unsigned long val = kvm_register_readl(vcpu, reg);
6776
6777         switch ((exit_qualification >> 4) & 3) {
6778         case 0: /* mov to cr */
6779                 switch (cr) {
6780                 case 0:
6781                         if (vmcs12->cr0_guest_host_mask &
6782                             (val ^ vmcs12->cr0_read_shadow))
6783                                 return 1;
6784                         break;
6785                 case 3:
6786                         if ((vmcs12->cr3_target_count >= 1 &&
6787                                         vmcs12->cr3_target_value0 == val) ||
6788                                 (vmcs12->cr3_target_count >= 2 &&
6789                                         vmcs12->cr3_target_value1 == val) ||
6790                                 (vmcs12->cr3_target_count >= 3 &&
6791                                         vmcs12->cr3_target_value2 == val) ||
6792                                 (vmcs12->cr3_target_count >= 4 &&
6793                                         vmcs12->cr3_target_value3 == val))
6794                                 return 0;
6795                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6796                                 return 1;
6797                         break;
6798                 case 4:
6799                         if (vmcs12->cr4_guest_host_mask &
6800                             (vmcs12->cr4_read_shadow ^ val))
6801                                 return 1;
6802                         break;
6803                 case 8:
6804                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6805                                 return 1;
6806                         break;
6807                 }
6808                 break;
6809         case 2: /* clts */
6810                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6811                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6812                         return 1;
6813                 break;
6814         case 1: /* mov from cr */
6815                 switch (cr) {
6816                 case 3:
6817                         if (vmcs12->cpu_based_vm_exec_control &
6818                             CPU_BASED_CR3_STORE_EXITING)
6819                                 return 1;
6820                         break;
6821                 case 8:
6822                         if (vmcs12->cpu_based_vm_exec_control &
6823                             CPU_BASED_CR8_STORE_EXITING)
6824                                 return 1;
6825                         break;
6826                 }
6827                 break;
6828         case 3: /* lmsw */
6829                 /*
6830                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6831                  * cr0. Other attempted changes are ignored, with no exit.
6832                  */
6833                 if (vmcs12->cr0_guest_host_mask & 0xe &
6834                     (val ^ vmcs12->cr0_read_shadow))
6835                         return 1;
6836                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6837                     !(vmcs12->cr0_read_shadow & 0x1) &&
6838                     (val & 0x1))
6839                         return 1;
6840                 break;
6841         }
6842         return 0;
6843 }
6844
6845 /*
6846  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6847  * should handle it ourselves in L0 (and then continue L2). Only call this
6848  * when in is_guest_mode (L2).
6849  */
6850 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6851 {
6852         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6853         struct vcpu_vmx *vmx = to_vmx(vcpu);
6854         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6855         u32 exit_reason = vmx->exit_reason;
6856
6857         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
6858                                 vmcs_readl(EXIT_QUALIFICATION),
6859                                 vmx->idt_vectoring_info,
6860                                 intr_info,
6861                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6862                                 KVM_ISA_VMX);
6863
6864         if (vmx->nested.nested_run_pending)
6865                 return 0;
6866
6867         if (unlikely(vmx->fail)) {
6868                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6869                                     vmcs_read32(VM_INSTRUCTION_ERROR));
6870                 return 1;
6871         }
6872
6873         switch (exit_reason) {
6874         case EXIT_REASON_EXCEPTION_NMI:
6875                 if (!is_exception(intr_info))
6876                         return 0;
6877                 else if (is_page_fault(intr_info))
6878                         return enable_ept;
6879                 else if (is_no_device(intr_info) &&
6880                          !(vmcs12->guest_cr0 & X86_CR0_TS))
6881                         return 0;
6882                 return vmcs12->exception_bitmap &
6883                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6884         case EXIT_REASON_EXTERNAL_INTERRUPT:
6885                 return 0;
6886         case EXIT_REASON_TRIPLE_FAULT:
6887                 return 1;
6888         case EXIT_REASON_PENDING_INTERRUPT:
6889                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6890         case EXIT_REASON_NMI_WINDOW:
6891                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6892         case EXIT_REASON_TASK_SWITCH:
6893                 return 1;
6894         case EXIT_REASON_CPUID:
6895                 return 1;
6896         case EXIT_REASON_HLT:
6897                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6898         case EXIT_REASON_INVD:
6899                 return 1;
6900         case EXIT_REASON_INVLPG:
6901                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6902         case EXIT_REASON_RDPMC:
6903                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6904         case EXIT_REASON_RDTSC:
6905                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6906         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6907         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6908         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6909         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6910         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6911         case EXIT_REASON_INVEPT:
6912                 /*
6913                  * VMX instructions trap unconditionally. This allows L1 to
6914                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6915                  */
6916                 return 1;
6917         case EXIT_REASON_CR_ACCESS:
6918                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6919         case EXIT_REASON_DR_ACCESS:
6920                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6921         case EXIT_REASON_IO_INSTRUCTION:
6922                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6923         case EXIT_REASON_MSR_READ:
6924         case EXIT_REASON_MSR_WRITE:
6925                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6926         case EXIT_REASON_INVALID_STATE:
6927                 return 1;
6928         case EXIT_REASON_MWAIT_INSTRUCTION:
6929                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6930         case EXIT_REASON_MONITOR_INSTRUCTION:
6931                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6932         case EXIT_REASON_PAUSE_INSTRUCTION:
6933                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6934                         nested_cpu_has2(vmcs12,
6935                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6936         case EXIT_REASON_MCE_DURING_VMENTRY:
6937                 return 0;
6938         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6939                 return 1;
6940         case EXIT_REASON_APIC_ACCESS:
6941                 return nested_cpu_has2(vmcs12,
6942                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6943         case EXIT_REASON_EPT_VIOLATION:
6944                 /*
6945                  * L0 always deals with the EPT violation. If nested EPT is
6946                  * used, and the nested mmu code discovers that the address is
6947                  * missing in the guest EPT table (EPT12), the EPT violation
6948                  * will be injected with nested_ept_inject_page_fault()
6949                  */
6950                 return 0;
6951         case EXIT_REASON_EPT_MISCONFIG:
6952                 /*
6953                  * L2 never uses directly L1's EPT, but rather L0's own EPT
6954                  * table (shadow on EPT) or a merged EPT table that L0 built
6955                  * (EPT on EPT). So any problems with the structure of the
6956                  * table is L0's fault.
6957                  */
6958                 return 0;
6959         case EXIT_REASON_WBINVD:
6960                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6961         case EXIT_REASON_XSETBV:
6962                 return 1;
6963         default:
6964                 return 1;
6965         }
6966 }
6967
6968 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6969 {
6970         *info1 = vmcs_readl(EXIT_QUALIFICATION);
6971         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6972 }
6973
6974 /*
6975  * The guest has exited.  See if we can fix it or if we need userspace
6976  * assistance.
6977  */
6978 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6979 {
6980         struct vcpu_vmx *vmx = to_vmx(vcpu);
6981         u32 exit_reason = vmx->exit_reason;
6982         u32 vectoring_info = vmx->idt_vectoring_info;
6983
6984         /* If guest state is invalid, start emulating */
6985         if (vmx->emulation_required)
6986                 return handle_invalid_guest_state(vcpu);
6987
6988         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6989                 nested_vmx_vmexit(vcpu, exit_reason,
6990                                   vmcs_read32(VM_EXIT_INTR_INFO),
6991                                   vmcs_readl(EXIT_QUALIFICATION));
6992                 return 1;
6993         }
6994
6995         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6996                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6997                 vcpu->run->fail_entry.hardware_entry_failure_reason
6998                         = exit_reason;
6999                 return 0;
7000         }
7001
7002         if (unlikely(vmx->fail)) {
7003                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7004                 vcpu->run->fail_entry.hardware_entry_failure_reason
7005                         = vmcs_read32(VM_INSTRUCTION_ERROR);
7006                 return 0;
7007         }
7008
7009         /*
7010          * Note:
7011          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7012          * delivery event since it indicates guest is accessing MMIO.
7013          * The vm-exit can be triggered again after return to guest that
7014          * will cause infinite loop.
7015          */
7016         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7017                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7018                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
7019                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
7020                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7021                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7022                 vcpu->run->internal.ndata = 2;
7023                 vcpu->run->internal.data[0] = vectoring_info;
7024                 vcpu->run->internal.data[1] = exit_reason;
7025                 return 0;
7026         }
7027
7028         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7029             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7030                                         get_vmcs12(vcpu))))) {
7031                 if (vmx_interrupt_allowed(vcpu)) {
7032                         vmx->soft_vnmi_blocked = 0;
7033                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7034                            vcpu->arch.nmi_pending) {
7035                         /*
7036                          * This CPU don't support us in finding the end of an
7037                          * NMI-blocked window if the guest runs with IRQs
7038                          * disabled. So we pull the trigger after 1 s of
7039                          * futile waiting, but inform the user about this.
7040                          */
7041                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7042                                "state on VCPU %d after 1 s timeout\n",
7043                                __func__, vcpu->vcpu_id);
7044                         vmx->soft_vnmi_blocked = 0;
7045                 }
7046         }
7047
7048         if (exit_reason < kvm_vmx_max_exit_handlers
7049             && kvm_vmx_exit_handlers[exit_reason])
7050                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7051         else {
7052                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
7053                 vcpu->run->hw.hardware_exit_reason = exit_reason;
7054         }
7055         return 0;
7056 }
7057
7058 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7059 {
7060         if (irr == -1 || tpr < irr) {
7061                 vmcs_write32(TPR_THRESHOLD, 0);
7062                 return;
7063         }
7064
7065         vmcs_write32(TPR_THRESHOLD, irr);
7066 }
7067
7068 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7069 {
7070         u32 sec_exec_control;
7071
7072         /*
7073          * There is not point to enable virtualize x2apic without enable
7074          * apicv
7075          */
7076         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7077                                 !vmx_vm_has_apicv(vcpu->kvm))
7078                 return;
7079
7080         if (!vm_need_tpr_shadow(vcpu->kvm))
7081                 return;
7082
7083         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7084
7085         if (set) {
7086                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7087                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7088         } else {
7089                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7090                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7091         }
7092         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7093
7094         vmx_set_msr_bitmap(vcpu);
7095 }
7096
7097 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7098 {
7099         u16 status;
7100         u8 old;
7101
7102         if (!vmx_vm_has_apicv(kvm))
7103                 return;
7104
7105         if (isr == -1)
7106                 isr = 0;
7107
7108         status = vmcs_read16(GUEST_INTR_STATUS);
7109         old = status >> 8;
7110         if (isr != old) {
7111                 status &= 0xff;
7112                 status |= isr << 8;
7113                 vmcs_write16(GUEST_INTR_STATUS, status);
7114         }
7115 }
7116
7117 static void vmx_set_rvi(int vector)
7118 {
7119         u16 status;
7120         u8 old;
7121
7122         status = vmcs_read16(GUEST_INTR_STATUS);
7123         old = (u8)status & 0xff;
7124         if ((u8)vector != old) {
7125                 status &= ~0xff;
7126                 status |= (u8)vector;
7127                 vmcs_write16(GUEST_INTR_STATUS, status);
7128         }
7129 }
7130
7131 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7132 {
7133         if (max_irr == -1)
7134                 return;
7135
7136         /*
7137          * If a vmexit is needed, vmx_check_nested_events handles it.
7138          */
7139         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
7140                 return;
7141
7142         if (!is_guest_mode(vcpu)) {
7143                 vmx_set_rvi(max_irr);
7144                 return;
7145         }
7146
7147         /*
7148          * Fall back to pre-APICv interrupt injection since L2
7149          * is run without virtual interrupt delivery.
7150          */
7151         if (!kvm_event_needs_reinjection(vcpu) &&
7152             vmx_interrupt_allowed(vcpu)) {
7153                 kvm_queue_interrupt(vcpu, max_irr, false);
7154                 vmx_inject_irq(vcpu);
7155         }
7156 }
7157
7158 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7159 {
7160         if (!vmx_vm_has_apicv(vcpu->kvm))
7161                 return;
7162
7163         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7164         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7165         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7166         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7167 }
7168
7169 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7170 {
7171         u32 exit_intr_info;
7172
7173         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7174               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7175                 return;
7176
7177         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7178         exit_intr_info = vmx->exit_intr_info;
7179
7180         /* Handle machine checks before interrupts are enabled */
7181         if (is_machine_check(exit_intr_info))
7182                 kvm_machine_check();
7183
7184         /* We need to handle NMIs before interrupts are enabled */
7185         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7186             (exit_intr_info & INTR_INFO_VALID_MASK)) {
7187                 kvm_before_handle_nmi(&vmx->vcpu);
7188                 asm("int $2");
7189                 kvm_after_handle_nmi(&vmx->vcpu);
7190         }
7191 }
7192
7193 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7194 {
7195         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7196
7197         /*
7198          * If external interrupt exists, IF bit is set in rflags/eflags on the
7199          * interrupt stack frame, and interrupt will be enabled on a return
7200          * from interrupt handler.
7201          */
7202         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7203                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7204                 unsigned int vector;
7205                 unsigned long entry;
7206                 gate_desc *desc;
7207                 struct vcpu_vmx *vmx = to_vmx(vcpu);
7208 #ifdef CONFIG_X86_64
7209                 unsigned long tmp;
7210 #endif
7211
7212                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
7213                 desc = (gate_desc *)vmx->host_idt_base + vector;
7214                 entry = gate_offset(*desc);
7215                 asm volatile(
7216 #ifdef CONFIG_X86_64
7217                         "mov %%" _ASM_SP ", %[sp]\n\t"
7218                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7219                         "push $%c[ss]\n\t"
7220                         "push %[sp]\n\t"
7221 #endif
7222                         "pushf\n\t"
7223                         "orl $0x200, (%%" _ASM_SP ")\n\t"
7224                         __ASM_SIZE(push) " $%c[cs]\n\t"
7225                         "call *%[entry]\n\t"
7226                         :
7227 #ifdef CONFIG_X86_64
7228                         [sp]"=&r"(tmp)
7229 #endif
7230                         :
7231                         [entry]"r"(entry),
7232                         [ss]"i"(__KERNEL_DS),
7233                         [cs]"i"(__KERNEL_CS)
7234                         );
7235         } else
7236                 local_irq_enable();
7237 }
7238
7239 static bool vmx_mpx_supported(void)
7240 {
7241         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7242                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7243 }
7244
7245 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7246 {
7247         u32 exit_intr_info;
7248         bool unblock_nmi;
7249         u8 vector;
7250         bool idtv_info_valid;
7251
7252         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7253
7254         if (cpu_has_virtual_nmis()) {
7255                 if (vmx->nmi_known_unmasked)
7256                         return;
7257                 /*
7258                  * Can't use vmx->exit_intr_info since we're not sure what
7259                  * the exit reason is.
7260                  */
7261                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7262                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7263                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7264                 /*
7265                  * SDM 3: 27.7.1.2 (September 2008)
7266                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
7267                  * a guest IRET fault.
7268                  * SDM 3: 23.2.2 (September 2008)
7269                  * Bit 12 is undefined in any of the following cases:
7270                  *  If the VM exit sets the valid bit in the IDT-vectoring
7271                  *   information field.
7272                  *  If the VM exit is due to a double fault.
7273                  */
7274                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7275                     vector != DF_VECTOR && !idtv_info_valid)
7276                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7277                                       GUEST_INTR_STATE_NMI);
7278                 else
7279                         vmx->nmi_known_unmasked =
7280                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7281                                   & GUEST_INTR_STATE_NMI);
7282         } else if (unlikely(vmx->soft_vnmi_blocked))
7283                 vmx->vnmi_blocked_time +=
7284                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7285 }
7286
7287 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7288                                       u32 idt_vectoring_info,
7289                                       int instr_len_field,
7290                                       int error_code_field)
7291 {
7292         u8 vector;
7293         int type;
7294         bool idtv_info_valid;
7295
7296         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7297
7298         vcpu->arch.nmi_injected = false;
7299         kvm_clear_exception_queue(vcpu);
7300         kvm_clear_interrupt_queue(vcpu);
7301
7302         if (!idtv_info_valid)
7303                 return;
7304
7305         kvm_make_request(KVM_REQ_EVENT, vcpu);
7306
7307         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7308         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7309
7310         switch (type) {
7311         case INTR_TYPE_NMI_INTR:
7312                 vcpu->arch.nmi_injected = true;
7313                 /*
7314                  * SDM 3: 27.7.1.2 (September 2008)
7315                  * Clear bit "block by NMI" before VM entry if a NMI
7316                  * delivery faulted.
7317                  */
7318                 vmx_set_nmi_mask(vcpu, false);
7319                 break;
7320         case INTR_TYPE_SOFT_EXCEPTION:
7321                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7322                 /* fall through */
7323         case INTR_TYPE_HARD_EXCEPTION:
7324                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7325                         u32 err = vmcs_read32(error_code_field);
7326                         kvm_requeue_exception_e(vcpu, vector, err);
7327                 } else
7328                         kvm_requeue_exception(vcpu, vector);
7329                 break;
7330         case INTR_TYPE_SOFT_INTR:
7331                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7332                 /* fall through */
7333         case INTR_TYPE_EXT_INTR:
7334                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7335                 break;
7336         default:
7337                 break;
7338         }
7339 }
7340
7341 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7342 {
7343         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7344                                   VM_EXIT_INSTRUCTION_LEN,
7345                                   IDT_VECTORING_ERROR_CODE);
7346 }
7347
7348 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7349 {
7350         __vmx_complete_interrupts(vcpu,
7351                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7352                                   VM_ENTRY_INSTRUCTION_LEN,
7353                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7354
7355         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7356 }
7357
7358 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7359 {
7360         int i, nr_msrs;
7361         struct perf_guest_switch_msr *msrs;
7362
7363         msrs = perf_guest_get_msrs(&nr_msrs);
7364
7365         if (!msrs)
7366                 return;
7367
7368         for (i = 0; i < nr_msrs; i++)
7369                 if (msrs[i].host == msrs[i].guest)
7370                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7371                 else
7372                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7373                                         msrs[i].host);
7374 }
7375
7376 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7377 {
7378         struct vcpu_vmx *vmx = to_vmx(vcpu);
7379         unsigned long debugctlmsr;
7380
7381         /* Record the guest's net vcpu time for enforced NMI injections. */
7382         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7383                 vmx->entry_time = ktime_get();
7384
7385         /* Don't enter VMX if guest state is invalid, let the exit handler
7386            start emulation until we arrive back to a valid state */
7387         if (vmx->emulation_required)
7388                 return;
7389
7390         if (vmx->nested.sync_shadow_vmcs) {
7391                 copy_vmcs12_to_shadow(vmx);
7392                 vmx->nested.sync_shadow_vmcs = false;
7393         }
7394
7395         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7396                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7397         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7398                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7399
7400         /* When single-stepping over STI and MOV SS, we must clear the
7401          * corresponding interruptibility bits in the guest state. Otherwise
7402          * vmentry fails as it then expects bit 14 (BS) in pending debug
7403          * exceptions being set, but that's not correct for the guest debugging
7404          * case. */
7405         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7406                 vmx_set_interrupt_shadow(vcpu, 0);
7407
7408         atomic_switch_perf_msrs(vmx);
7409         debugctlmsr = get_debugctlmsr();
7410
7411         vmx->__launched = vmx->loaded_vmcs->launched;
7412         asm(
7413                 /* Store host registers */
7414                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7415                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7416                 "push %%" _ASM_CX " \n\t"
7417                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7418                 "je 1f \n\t"
7419                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7420                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7421                 "1: \n\t"
7422                 /* Reload cr2 if changed */
7423                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7424                 "mov %%cr2, %%" _ASM_DX " \n\t"
7425                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7426                 "je 2f \n\t"
7427                 "mov %%" _ASM_AX", %%cr2 \n\t"
7428                 "2: \n\t"
7429                 /* Check if vmlaunch of vmresume is needed */
7430                 "cmpl $0, %c[launched](%0) \n\t"
7431                 /* Load guest registers.  Don't clobber flags. */
7432                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7433                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7434                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7435                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7436                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7437                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7438 #ifdef CONFIG_X86_64
7439                 "mov %c[r8](%0),  %%r8  \n\t"
7440                 "mov %c[r9](%0),  %%r9  \n\t"
7441                 "mov %c[r10](%0), %%r10 \n\t"
7442                 "mov %c[r11](%0), %%r11 \n\t"
7443                 "mov %c[r12](%0), %%r12 \n\t"
7444                 "mov %c[r13](%0), %%r13 \n\t"
7445                 "mov %c[r14](%0), %%r14 \n\t"
7446                 "mov %c[r15](%0), %%r15 \n\t"
7447 #endif
7448                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7449
7450                 /* Enter guest mode */
7451                 "jne 1f \n\t"
7452                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7453                 "jmp 2f \n\t"
7454                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7455                 "2: "
7456                 /* Save guest registers, load host registers, keep flags */
7457                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7458                 "pop %0 \n\t"
7459                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7460                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7461                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7462                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7463                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7464                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7465                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7466 #ifdef CONFIG_X86_64
7467                 "mov %%r8,  %c[r8](%0) \n\t"
7468                 "mov %%r9,  %c[r9](%0) \n\t"
7469                 "mov %%r10, %c[r10](%0) \n\t"
7470                 "mov %%r11, %c[r11](%0) \n\t"
7471                 "mov %%r12, %c[r12](%0) \n\t"
7472                 "mov %%r13, %c[r13](%0) \n\t"
7473                 "mov %%r14, %c[r14](%0) \n\t"
7474                 "mov %%r15, %c[r15](%0) \n\t"
7475 #endif
7476                 "mov %%cr2, %%" _ASM_AX "   \n\t"
7477                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7478
7479                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7480                 "setbe %c[fail](%0) \n\t"
7481                 ".pushsection .rodata \n\t"
7482                 ".global vmx_return \n\t"
7483                 "vmx_return: " _ASM_PTR " 2b \n\t"
7484                 ".popsection"
7485               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7486                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7487                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7488                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7489                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7490                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7491                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7492                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7493                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7494                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7495                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7496 #ifdef CONFIG_X86_64
7497                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7498                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7499                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7500                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7501                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7502                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7503                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7504                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7505 #endif
7506                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7507                 [wordsize]"i"(sizeof(ulong))
7508               : "cc", "memory"
7509 #ifdef CONFIG_X86_64
7510                 , "rax", "rbx", "rdi", "rsi"
7511                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7512 #else
7513                 , "eax", "ebx", "edi", "esi"
7514 #endif
7515               );
7516
7517         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7518         if (debugctlmsr)
7519                 update_debugctlmsr(debugctlmsr);
7520
7521 #ifndef CONFIG_X86_64
7522         /*
7523          * The sysexit path does not restore ds/es, so we must set them to
7524          * a reasonable value ourselves.
7525          *
7526          * We can't defer this to vmx_load_host_state() since that function
7527          * may be executed in interrupt context, which saves and restore segments
7528          * around it, nullifying its effect.
7529          */
7530         loadsegment(ds, __USER_DS);
7531         loadsegment(es, __USER_DS);
7532 #endif
7533
7534         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7535                                   | (1 << VCPU_EXREG_RFLAGS)
7536                                   | (1 << VCPU_EXREG_PDPTR)
7537                                   | (1 << VCPU_EXREG_SEGMENTS)
7538                                   | (1 << VCPU_EXREG_CR3));
7539         vcpu->arch.regs_dirty = 0;
7540
7541         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7542
7543         vmx->loaded_vmcs->launched = 1;
7544
7545         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7546         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7547
7548         /*
7549          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7550          * we did not inject a still-pending event to L1 now because of
7551          * nested_run_pending, we need to re-enable this bit.
7552          */
7553         if (vmx->nested.nested_run_pending)
7554                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7555
7556         vmx->nested.nested_run_pending = 0;
7557
7558         vmx_complete_atomic_exit(vmx);
7559         vmx_recover_nmi_blocking(vmx);
7560         vmx_complete_interrupts(vmx);
7561 }
7562
7563 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
7564 {
7565         struct vcpu_vmx *vmx = to_vmx(vcpu);
7566         int cpu;
7567
7568         if (vmx->loaded_vmcs == &vmx->vmcs01)
7569                 return;
7570
7571         cpu = get_cpu();
7572         vmx->loaded_vmcs = &vmx->vmcs01;
7573         vmx_vcpu_put(vcpu);
7574         vmx_vcpu_load(vcpu, cpu);
7575         vcpu->cpu = cpu;
7576         put_cpu();
7577 }
7578
7579 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7580 {
7581         struct vcpu_vmx *vmx = to_vmx(vcpu);
7582
7583         free_vpid(vmx);
7584         leave_guest_mode(vcpu);
7585         vmx_load_vmcs01(vcpu);
7586         free_nested(vmx);
7587         free_loaded_vmcs(vmx->loaded_vmcs);
7588         kfree(vmx->guest_msrs);
7589         kvm_vcpu_uninit(vcpu);
7590         kmem_cache_free(kvm_vcpu_cache, vmx);
7591 }
7592
7593 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7594 {
7595         int err;
7596         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7597         int cpu;
7598
7599         if (!vmx)
7600                 return ERR_PTR(-ENOMEM);
7601
7602         allocate_vpid(vmx);
7603
7604         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7605         if (err)
7606                 goto free_vcpu;
7607
7608         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7609         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
7610                      > PAGE_SIZE);
7611
7612         err = -ENOMEM;
7613         if (!vmx->guest_msrs) {
7614                 goto uninit_vcpu;
7615         }
7616
7617         vmx->loaded_vmcs = &vmx->vmcs01;
7618         vmx->loaded_vmcs->vmcs = alloc_vmcs();
7619         if (!vmx->loaded_vmcs->vmcs)
7620                 goto free_msrs;
7621         if (!vmm_exclusive)
7622                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7623         loaded_vmcs_init(vmx->loaded_vmcs);
7624         if (!vmm_exclusive)
7625                 kvm_cpu_vmxoff();
7626
7627         cpu = get_cpu();
7628         vmx_vcpu_load(&vmx->vcpu, cpu);
7629         vmx->vcpu.cpu = cpu;
7630         err = vmx_vcpu_setup(vmx);
7631         vmx_vcpu_put(&vmx->vcpu);
7632         put_cpu();
7633         if (err)
7634                 goto free_vmcs;
7635         if (vm_need_virtualize_apic_accesses(kvm)) {
7636                 err = alloc_apic_access_page(kvm);
7637                 if (err)
7638                         goto free_vmcs;
7639         }
7640
7641         if (enable_ept) {
7642                 if (!kvm->arch.ept_identity_map_addr)
7643                         kvm->arch.ept_identity_map_addr =
7644                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7645                 err = -ENOMEM;
7646                 if (alloc_identity_pagetable(kvm) != 0)
7647                         goto free_vmcs;
7648                 if (!init_rmode_identity_map(kvm))
7649                         goto free_vmcs;
7650         }
7651
7652         vmx->nested.current_vmptr = -1ull;
7653         vmx->nested.current_vmcs12 = NULL;
7654
7655         return &vmx->vcpu;
7656
7657 free_vmcs:
7658         free_loaded_vmcs(vmx->loaded_vmcs);
7659 free_msrs:
7660         kfree(vmx->guest_msrs);
7661 uninit_vcpu:
7662         kvm_vcpu_uninit(&vmx->vcpu);
7663 free_vcpu:
7664         free_vpid(vmx);
7665         kmem_cache_free(kvm_vcpu_cache, vmx);
7666         return ERR_PTR(err);
7667 }
7668
7669 static void __init vmx_check_processor_compat(void *rtn)
7670 {
7671         struct vmcs_config vmcs_conf;
7672
7673         *(int *)rtn = 0;
7674         if (setup_vmcs_config(&vmcs_conf) < 0)
7675                 *(int *)rtn = -EIO;
7676         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7677                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7678                                 smp_processor_id());
7679                 *(int *)rtn = -EIO;
7680         }
7681 }
7682
7683 static int get_ept_level(void)
7684 {
7685         return VMX_EPT_DEFAULT_GAW + 1;
7686 }
7687
7688 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7689 {
7690         u64 ret;
7691
7692         /* For VT-d and EPT combination
7693          * 1. MMIO: always map as UC
7694          * 2. EPT with VT-d:
7695          *   a. VT-d without snooping control feature: can't guarantee the
7696          *      result, try to trust guest.
7697          *   b. VT-d with snooping control feature: snooping control feature of
7698          *      VT-d engine can guarantee the cache correctness. Just set it
7699          *      to WB to keep consistent with host. So the same as item 3.
7700          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7701          *    consistent with host MTRR
7702          */
7703         if (is_mmio)
7704                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7705         else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7706                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7707                       VMX_EPT_MT_EPTE_SHIFT;
7708         else
7709                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7710                         | VMX_EPT_IPAT_BIT;
7711
7712         return ret;
7713 }
7714
7715 static int vmx_get_lpage_level(void)
7716 {
7717         if (enable_ept && !cpu_has_vmx_ept_1g_page())
7718                 return PT_DIRECTORY_LEVEL;
7719         else
7720                 /* For shadow and EPT supported 1GB page */
7721                 return PT_PDPE_LEVEL;
7722 }
7723
7724 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7725 {
7726         struct kvm_cpuid_entry2 *best;
7727         struct vcpu_vmx *vmx = to_vmx(vcpu);
7728         u32 exec_control;
7729
7730         vmx->rdtscp_enabled = false;
7731         if (vmx_rdtscp_supported()) {
7732                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7733                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7734                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7735                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7736                                 vmx->rdtscp_enabled = true;
7737                         else {
7738                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7739                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7740                                                 exec_control);
7741                         }
7742                 }
7743         }
7744
7745         /* Exposing INVPCID only when PCID is exposed */
7746         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7747         if (vmx_invpcid_supported() &&
7748             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7749             guest_cpuid_has_pcid(vcpu)) {
7750                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7751                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7752                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7753                              exec_control);
7754         } else {
7755                 if (cpu_has_secondary_exec_ctrls()) {
7756                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7757                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7758                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7759                                      exec_control);
7760                 }
7761                 if (best)
7762                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
7763         }
7764 }
7765
7766 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7767 {
7768         if (func == 1 && nested)
7769                 entry->ecx |= bit(X86_FEATURE_VMX);
7770 }
7771
7772 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7773                 struct x86_exception *fault)
7774 {
7775         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7776         u32 exit_reason;
7777
7778         if (fault->error_code & PFERR_RSVD_MASK)
7779                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
7780         else
7781                 exit_reason = EXIT_REASON_EPT_VIOLATION;
7782         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
7783         vmcs12->guest_physical_address = fault->address;
7784 }
7785
7786 /* Callbacks for nested_ept_init_mmu_context: */
7787
7788 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7789 {
7790         /* return the page table to be shadowed - in our case, EPT12 */
7791         return get_vmcs12(vcpu)->ept_pointer;
7792 }
7793
7794 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7795 {
7796         kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7797                         nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7798
7799         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
7800         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
7801         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7802
7803         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
7804 }
7805
7806 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7807 {
7808         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7809 }
7810
7811 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7812                 struct x86_exception *fault)
7813 {
7814         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7815
7816         WARN_ON(!is_guest_mode(vcpu));
7817
7818         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7819         if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7820                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
7821                                   vmcs_read32(VM_EXIT_INTR_INFO),
7822                                   vmcs_readl(EXIT_QUALIFICATION));
7823         else
7824                 kvm_inject_page_fault(vcpu, fault);
7825 }
7826
7827 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
7828 {
7829         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
7830         struct vcpu_vmx *vmx = to_vmx(vcpu);
7831
7832         if (vcpu->arch.virtual_tsc_khz == 0)
7833                 return;
7834
7835         /* Make sure short timeouts reliably trigger an immediate vmexit.
7836          * hrtimer_start does not guarantee this. */
7837         if (preemption_timeout <= 1) {
7838                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
7839                 return;
7840         }
7841
7842         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
7843         preemption_timeout *= 1000000;
7844         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
7845         hrtimer_start(&vmx->nested.preemption_timer,
7846                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
7847 }
7848
7849 /*
7850  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7851  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7852  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7853  * guest in a way that will both be appropriate to L1's requests, and our
7854  * needs. In addition to modifying the active vmcs (which is vmcs02), this
7855  * function also has additional necessary side-effects, like setting various
7856  * vcpu->arch fields.
7857  */
7858 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7859 {
7860         struct vcpu_vmx *vmx = to_vmx(vcpu);
7861         u32 exec_control;
7862
7863         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7864         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7865         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7866         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7867         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7868         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7869         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7870         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7871         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7872         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7873         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7874         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7875         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7876         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7877         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7878         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7879         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7880         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7881         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7882         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7883         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7884         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7885         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7886         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7887         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7888         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7889         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7890         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7891         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7892         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7893         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7894         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7895         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7896         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7897         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7898         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7899
7900         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
7901                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7902                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7903         } else {
7904                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
7905                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
7906         }
7907         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7908                 vmcs12->vm_entry_intr_info_field);
7909         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7910                 vmcs12->vm_entry_exception_error_code);
7911         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7912                 vmcs12->vm_entry_instruction_len);
7913         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7914                 vmcs12->guest_interruptibility_info);
7915         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7916         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
7917         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7918                 vmcs12->guest_pending_dbg_exceptions);
7919         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7920         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7921
7922         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7923
7924         exec_control = vmcs12->pin_based_vm_exec_control;
7925         exec_control |= vmcs_config.pin_based_exec_ctrl;
7926         exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
7927                           PIN_BASED_POSTED_INTR);
7928         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
7929
7930         vmx->nested.preemption_timer_expired = false;
7931         if (nested_cpu_has_preemption_timer(vmcs12))
7932                 vmx_start_preemption_timer(vcpu);
7933
7934         /*
7935          * Whether page-faults are trapped is determined by a combination of
7936          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7937          * If enable_ept, L0 doesn't care about page faults and we should
7938          * set all of these to L1's desires. However, if !enable_ept, L0 does
7939          * care about (at least some) page faults, and because it is not easy
7940          * (if at all possible?) to merge L0 and L1's desires, we simply ask
7941          * to exit on each and every L2 page fault. This is done by setting
7942          * MASK=MATCH=0 and (see below) EB.PF=1.
7943          * Note that below we don't need special code to set EB.PF beyond the
7944          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7945          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7946          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7947          *
7948          * A problem with this approach (when !enable_ept) is that L1 may be
7949          * injected with more page faults than it asked for. This could have
7950          * caused problems, but in practice existing hypervisors don't care.
7951          * To fix this, we will need to emulate the PFEC checking (on the L1
7952          * page tables), using walk_addr(), when injecting PFs to L1.
7953          */
7954         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7955                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7956         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7957                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7958
7959         if (cpu_has_secondary_exec_ctrls()) {
7960                 exec_control = vmx_secondary_exec_control(vmx);
7961                 if (!vmx->rdtscp_enabled)
7962                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
7963                 /* Take the following fields only from vmcs12 */
7964                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7965                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
7966                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
7967                 if (nested_cpu_has(vmcs12,
7968                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7969                         exec_control |= vmcs12->secondary_vm_exec_control;
7970
7971                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7972                         /*
7973                          * Translate L1 physical address to host physical
7974                          * address for vmcs02. Keep the page pinned, so this
7975                          * physical address remains valid. We keep a reference
7976                          * to it so we can release it later.
7977                          */
7978                         if (vmx->nested.apic_access_page) /* shouldn't happen */
7979                                 nested_release_page(vmx->nested.apic_access_page);
7980                         vmx->nested.apic_access_page =
7981                                 nested_get_page(vcpu, vmcs12->apic_access_addr);
7982                         /*
7983                          * If translation failed, no matter: This feature asks
7984                          * to exit when accessing the given address, and if it
7985                          * can never be accessed, this feature won't do
7986                          * anything anyway.
7987                          */
7988                         if (!vmx->nested.apic_access_page)
7989                                 exec_control &=
7990                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7991                         else
7992                                 vmcs_write64(APIC_ACCESS_ADDR,
7993                                   page_to_phys(vmx->nested.apic_access_page));
7994                 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
7995                         exec_control |=
7996                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7997                         vmcs_write64(APIC_ACCESS_ADDR,
7998                                 page_to_phys(vcpu->kvm->arch.apic_access_page));
7999                 }
8000
8001                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
8002         }
8003
8004
8005         /*
8006          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
8007          * Some constant fields are set here by vmx_set_constant_host_state().
8008          * Other fields are different per CPU, and will be set later when
8009          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
8010          */
8011         vmx_set_constant_host_state(vmx);
8012
8013         /*
8014          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
8015          * entry, but only if the current (host) sp changed from the value
8016          * we wrote last (vmx->host_rsp). This cache is no longer relevant
8017          * if we switch vmcs, and rather than hold a separate cache per vmcs,
8018          * here we just force the write to happen on entry.
8019          */
8020         vmx->host_rsp = 0;
8021
8022         exec_control = vmx_exec_control(vmx); /* L0's desires */
8023         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
8024         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
8025         exec_control &= ~CPU_BASED_TPR_SHADOW;
8026         exec_control |= vmcs12->cpu_based_vm_exec_control;
8027         /*
8028          * Merging of IO and MSR bitmaps not currently supported.
8029          * Rather, exit every time.
8030          */
8031         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
8032         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
8033         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
8034
8035         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
8036
8037         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
8038          * bitwise-or of what L1 wants to trap for L2, and what we want to
8039          * trap. Note that CR0.TS also needs updating - we do this later.
8040          */
8041         update_exception_bitmap(vcpu);
8042         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
8043         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8044
8045         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8046          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8047          * bits are further modified by vmx_set_efer() below.
8048          */
8049         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8050
8051         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8052          * emulated by vmx_set_efer(), below.
8053          */
8054         vm_entry_controls_init(vmx, 
8055                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
8056                         ~VM_ENTRY_IA32E_MODE) |
8057                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
8058
8059         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
8060                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
8061                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
8062         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
8063                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
8064
8065
8066         set_cr4_guest_host_mask(vmx);
8067
8068         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8069                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8070
8071         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8072                 vmcs_write64(TSC_OFFSET,
8073                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8074         else
8075                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8076
8077         if (enable_vpid) {
8078                 /*
8079                  * Trivially support vpid by letting L2s share their parent
8080                  * L1's vpid. TODO: move to a more elaborate solution, giving
8081                  * each L2 its own vpid and exposing the vpid feature to L1.
8082                  */
8083                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8084                 vmx_flush_tlb(vcpu);
8085         }
8086
8087         if (nested_cpu_has_ept(vmcs12)) {
8088                 kvm_mmu_unload(vcpu);
8089                 nested_ept_init_mmu_context(vcpu);
8090         }
8091
8092         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8093                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
8094         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
8095                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8096         else
8097                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8098         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8099         vmx_set_efer(vcpu, vcpu->arch.efer);
8100
8101         /*
8102          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8103          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8104          * The CR0_READ_SHADOW is what L2 should have expected to read given
8105          * the specifications by L1; It's not enough to take
8106          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8107          * have more bits than L1 expected.
8108          */
8109         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8110         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8111
8112         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8113         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8114
8115         /* shadow page tables on either EPT or shadow page tables */
8116         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8117         kvm_mmu_reset_context(vcpu);
8118
8119         if (!enable_ept)
8120                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8121
8122         /*
8123          * L1 may access the L2's PDPTR, so save them to construct vmcs12
8124          */
8125         if (enable_ept) {
8126                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8127                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8128                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8129                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8130         }
8131
8132         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8133         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8134 }
8135
8136 /*
8137  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8138  * for running an L2 nested guest.
8139  */
8140 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8141 {
8142         struct vmcs12 *vmcs12;
8143         struct vcpu_vmx *vmx = to_vmx(vcpu);
8144         int cpu;
8145         struct loaded_vmcs *vmcs02;
8146         bool ia32e;
8147
8148         if (!nested_vmx_check_permission(vcpu) ||
8149             !nested_vmx_check_vmcs12(vcpu))
8150                 return 1;
8151
8152         skip_emulated_instruction(vcpu);
8153         vmcs12 = get_vmcs12(vcpu);
8154
8155         if (enable_shadow_vmcs)
8156                 copy_shadow_to_vmcs12(vmx);
8157
8158         /*
8159          * The nested entry process starts with enforcing various prerequisites
8160          * on vmcs12 as required by the Intel SDM, and act appropriately when
8161          * they fail: As the SDM explains, some conditions should cause the
8162          * instruction to fail, while others will cause the instruction to seem
8163          * to succeed, but return an EXIT_REASON_INVALID_STATE.
8164          * To speed up the normal (success) code path, we should avoid checking
8165          * for misconfigurations which will anyway be caught by the processor
8166          * when using the merged vmcs02.
8167          */
8168         if (vmcs12->launch_state == launch) {
8169                 nested_vmx_failValid(vcpu,
8170                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8171                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8172                 return 1;
8173         }
8174
8175         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8176             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
8177                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8178                 return 1;
8179         }
8180
8181         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
8182                         !PAGE_ALIGNED(vmcs12->msr_bitmap)) {
8183                 /*TODO: Also verify bits beyond physical address width are 0*/
8184                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8185                 return 1;
8186         }
8187
8188         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
8189                         !PAGE_ALIGNED(vmcs12->apic_access_addr)) {
8190                 /*TODO: Also verify bits beyond physical address width are 0*/
8191                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8192                 return 1;
8193         }
8194
8195         if (vmcs12->vm_entry_msr_load_count > 0 ||
8196             vmcs12->vm_exit_msr_load_count > 0 ||
8197             vmcs12->vm_exit_msr_store_count > 0) {
8198                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8199                                     __func__);
8200                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8201                 return 1;
8202         }
8203
8204         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
8205                                 nested_vmx_true_procbased_ctls_low,
8206                                 nested_vmx_procbased_ctls_high) ||
8207             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8208               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8209             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8210               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8211             !vmx_control_verify(vmcs12->vm_exit_controls,
8212                                 nested_vmx_true_exit_ctls_low,
8213                                 nested_vmx_exit_ctls_high) ||
8214             !vmx_control_verify(vmcs12->vm_entry_controls,
8215                                 nested_vmx_true_entry_ctls_low,
8216                                 nested_vmx_entry_ctls_high))
8217         {
8218                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8219                 return 1;
8220         }
8221
8222         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8223             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8224                 nested_vmx_failValid(vcpu,
8225                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8226                 return 1;
8227         }
8228
8229         if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8230             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8231                 nested_vmx_entry_failure(vcpu, vmcs12,
8232                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8233                 return 1;
8234         }
8235         if (vmcs12->vmcs_link_pointer != -1ull) {
8236                 nested_vmx_entry_failure(vcpu, vmcs12,
8237                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8238                 return 1;
8239         }
8240
8241         /*
8242          * If the load IA32_EFER VM-entry control is 1, the following checks
8243          * are performed on the field for the IA32_EFER MSR:
8244          * - Bits reserved in the IA32_EFER MSR must be 0.
8245          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8246          *   the IA-32e mode guest VM-exit control. It must also be identical
8247          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8248          *   CR0.PG) is 1.
8249          */
8250         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8251                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8252                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8253                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8254                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8255                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8256                         nested_vmx_entry_failure(vcpu, vmcs12,
8257                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8258                         return 1;
8259                 }
8260         }
8261
8262         /*
8263          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8264          * IA32_EFER MSR must be 0 in the field for that register. In addition,
8265          * the values of the LMA and LME bits in the field must each be that of
8266          * the host address-space size VM-exit control.
8267          */
8268         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8269                 ia32e = (vmcs12->vm_exit_controls &
8270                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8271                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8272                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8273                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8274                         nested_vmx_entry_failure(vcpu, vmcs12,
8275                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8276                         return 1;
8277                 }
8278         }
8279
8280         /*
8281          * We're finally done with prerequisite checking, and can start with
8282          * the nested entry.
8283          */
8284
8285         vmcs02 = nested_get_current_vmcs02(vmx);
8286         if (!vmcs02)
8287                 return -ENOMEM;
8288
8289         enter_guest_mode(vcpu);
8290
8291         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8292
8293         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
8294                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8295
8296         cpu = get_cpu();
8297         vmx->loaded_vmcs = vmcs02;
8298         vmx_vcpu_put(vcpu);
8299         vmx_vcpu_load(vcpu, cpu);
8300         vcpu->cpu = cpu;
8301         put_cpu();
8302
8303         vmx_segment_cache_clear(vmx);
8304
8305         vmcs12->launch_state = 1;
8306
8307         prepare_vmcs02(vcpu, vmcs12);
8308
8309         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8310                 return kvm_emulate_halt(vcpu);
8311
8312         vmx->nested.nested_run_pending = 1;
8313
8314         /*
8315          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8316          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8317          * returned as far as L1 is concerned. It will only return (and set
8318          * the success flag) when L2 exits (see nested_vmx_vmexit()).
8319          */
8320         return 1;
8321 }
8322
8323 /*
8324  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8325  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8326  * This function returns the new value we should put in vmcs12.guest_cr0.
8327  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8328  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8329  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8330  *     didn't trap the bit, because if L1 did, so would L0).
8331  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8332  *     been modified by L2, and L1 knows it. So just leave the old value of
8333  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8334  *     isn't relevant, because if L0 traps this bit it can set it to anything.
8335  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8336  *     changed these bits, and therefore they need to be updated, but L0
8337  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8338  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8339  */
8340 static inline unsigned long
8341 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8342 {
8343         return
8344         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8345         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8346         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8347                         vcpu->arch.cr0_guest_owned_bits));
8348 }
8349
8350 static inline unsigned long
8351 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8352 {
8353         return
8354         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8355         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8356         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8357                         vcpu->arch.cr4_guest_owned_bits));
8358 }
8359
8360 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8361                                        struct vmcs12 *vmcs12)
8362 {
8363         u32 idt_vectoring;
8364         unsigned int nr;
8365
8366         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8367                 nr = vcpu->arch.exception.nr;
8368                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8369
8370                 if (kvm_exception_is_soft(nr)) {
8371                         vmcs12->vm_exit_instruction_len =
8372                                 vcpu->arch.event_exit_inst_len;
8373                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8374                 } else
8375                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8376
8377                 if (vcpu->arch.exception.has_error_code) {
8378                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8379                         vmcs12->idt_vectoring_error_code =
8380                                 vcpu->arch.exception.error_code;
8381                 }
8382
8383                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8384         } else if (vcpu->arch.nmi_injected) {
8385                 vmcs12->idt_vectoring_info_field =
8386                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8387         } else if (vcpu->arch.interrupt.pending) {
8388                 nr = vcpu->arch.interrupt.nr;
8389                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8390
8391                 if (vcpu->arch.interrupt.soft) {
8392                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
8393                         vmcs12->vm_entry_instruction_len =
8394                                 vcpu->arch.event_exit_inst_len;
8395                 } else
8396                         idt_vectoring |= INTR_TYPE_EXT_INTR;
8397
8398                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8399         }
8400 }
8401
8402 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8403 {
8404         struct vcpu_vmx *vmx = to_vmx(vcpu);
8405
8406         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8407             vmx->nested.preemption_timer_expired) {
8408                 if (vmx->nested.nested_run_pending)
8409                         return -EBUSY;
8410                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8411                 return 0;
8412         }
8413
8414         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
8415                 if (vmx->nested.nested_run_pending ||
8416                     vcpu->arch.interrupt.pending)
8417                         return -EBUSY;
8418                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8419                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
8420                                   INTR_INFO_VALID_MASK, 0);
8421                 /*
8422                  * The NMI-triggered VM exit counts as injection:
8423                  * clear this one and block further NMIs.
8424                  */
8425                 vcpu->arch.nmi_pending = 0;
8426                 vmx_set_nmi_mask(vcpu, true);
8427                 return 0;
8428         }
8429
8430         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8431             nested_exit_on_intr(vcpu)) {
8432                 if (vmx->nested.nested_run_pending)
8433                         return -EBUSY;
8434                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8435         }
8436
8437         return 0;
8438 }
8439
8440 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8441 {
8442         ktime_t remaining =
8443                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8444         u64 value;
8445
8446         if (ktime_to_ns(remaining) <= 0)
8447                 return 0;
8448
8449         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8450         do_div(value, 1000000);
8451         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8452 }
8453
8454 /*
8455  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8456  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8457  * and this function updates it to reflect the changes to the guest state while
8458  * L2 was running (and perhaps made some exits which were handled directly by L0
8459  * without going back to L1), and to reflect the exit reason.
8460  * Note that we do not have to copy here all VMCS fields, just those that
8461  * could have changed by the L2 guest or the exit - i.e., the guest-state and
8462  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8463  * which already writes to vmcs12 directly.
8464  */
8465 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8466                            u32 exit_reason, u32 exit_intr_info,
8467                            unsigned long exit_qualification)
8468 {
8469         /* update guest state fields: */
8470         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8471         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8472
8473         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8474         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8475         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8476
8477         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8478         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8479         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8480         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8481         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8482         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8483         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8484         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8485         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8486         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8487         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8488         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8489         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8490         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8491         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8492         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8493         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8494         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8495         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8496         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8497         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8498         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8499         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8500         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8501         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8502         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8503         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8504         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8505         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8506         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8507         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8508         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8509         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8510         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8511         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8512         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8513
8514         vmcs12->guest_interruptibility_info =
8515                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8516         vmcs12->guest_pending_dbg_exceptions =
8517                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8518         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8519                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8520         else
8521                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8522
8523         if (nested_cpu_has_preemption_timer(vmcs12)) {
8524                 if (vmcs12->vm_exit_controls &
8525                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8526                         vmcs12->vmx_preemption_timer_value =
8527                                 vmx_get_preemption_timer_value(vcpu);
8528                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8529         }
8530
8531         /*
8532          * In some cases (usually, nested EPT), L2 is allowed to change its
8533          * own CR3 without exiting. If it has changed it, we must keep it.
8534          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8535          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8536          *
8537          * Additionally, restore L2's PDPTR to vmcs12.
8538          */
8539         if (enable_ept) {
8540                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8541                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8542                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8543                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8544                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8545         }
8546
8547         vmcs12->vm_entry_controls =
8548                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8549                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8550
8551         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
8552                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8553                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8554         }
8555
8556         /* TODO: These cannot have changed unless we have MSR bitmaps and
8557          * the relevant bit asks not to trap the change */
8558         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8559                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8560         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8561                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8562         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8563         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8564         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8565         if (vmx_mpx_supported())
8566                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
8567
8568         /* update exit information fields: */
8569
8570         vmcs12->vm_exit_reason = exit_reason;
8571         vmcs12->exit_qualification = exit_qualification;
8572
8573         vmcs12->vm_exit_intr_info = exit_intr_info;
8574         if ((vmcs12->vm_exit_intr_info &
8575              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8576             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8577                 vmcs12->vm_exit_intr_error_code =
8578                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8579         vmcs12->idt_vectoring_info_field = 0;
8580         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8581         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8582
8583         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8584                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8585                  * instead of reading the real value. */
8586                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8587
8588                 /*
8589                  * Transfer the event that L0 or L1 may wanted to inject into
8590                  * L2 to IDT_VECTORING_INFO_FIELD.
8591                  */
8592                 vmcs12_save_pending_event(vcpu, vmcs12);
8593         }
8594
8595         /*
8596          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8597          * preserved above and would only end up incorrectly in L1.
8598          */
8599         vcpu->arch.nmi_injected = false;
8600         kvm_clear_exception_queue(vcpu);
8601         kvm_clear_interrupt_queue(vcpu);
8602 }
8603
8604 /*
8605  * A part of what we need to when the nested L2 guest exits and we want to
8606  * run its L1 parent, is to reset L1's guest state to the host state specified
8607  * in vmcs12.
8608  * This function is to be called not only on normal nested exit, but also on
8609  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8610  * Failures During or After Loading Guest State").
8611  * This function should be called when the active VMCS is L1's (vmcs01).
8612  */
8613 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8614                                    struct vmcs12 *vmcs12)
8615 {
8616         struct kvm_segment seg;
8617
8618         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8619                 vcpu->arch.efer = vmcs12->host_ia32_efer;
8620         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8621                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8622         else
8623                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8624         vmx_set_efer(vcpu, vcpu->arch.efer);
8625
8626         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8627         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8628         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8629         /*
8630          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8631          * actually changed, because it depends on the current state of
8632          * fpu_active (which may have changed).
8633          * Note that vmx_set_cr0 refers to efer set above.
8634          */
8635         vmx_set_cr0(vcpu, vmcs12->host_cr0);
8636         /*
8637          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8638          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8639          * but we also need to update cr0_guest_host_mask and exception_bitmap.
8640          */
8641         update_exception_bitmap(vcpu);
8642         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8643         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8644
8645         /*
8646          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8647          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8648          */
8649         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8650         kvm_set_cr4(vcpu, vmcs12->host_cr4);
8651
8652         nested_ept_uninit_mmu_context(vcpu);
8653
8654         kvm_set_cr3(vcpu, vmcs12->host_cr3);
8655         kvm_mmu_reset_context(vcpu);
8656
8657         if (!enable_ept)
8658                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8659
8660         if (enable_vpid) {
8661                 /*
8662                  * Trivially support vpid by letting L2s share their parent
8663                  * L1's vpid. TODO: move to a more elaborate solution, giving
8664                  * each L2 its own vpid and exposing the vpid feature to L1.
8665                  */
8666                 vmx_flush_tlb(vcpu);
8667         }
8668
8669
8670         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8671         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8672         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8673         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8674         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8675
8676         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
8677         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
8678                 vmcs_write64(GUEST_BNDCFGS, 0);
8679
8680         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8681                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8682                 vcpu->arch.pat = vmcs12->host_ia32_pat;
8683         }
8684         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8685                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8686                         vmcs12->host_ia32_perf_global_ctrl);
8687
8688         /* Set L1 segment info according to Intel SDM
8689             27.5.2 Loading Host Segment and Descriptor-Table Registers */
8690         seg = (struct kvm_segment) {
8691                 .base = 0,
8692                 .limit = 0xFFFFFFFF,
8693                 .selector = vmcs12->host_cs_selector,
8694                 .type = 11,
8695                 .present = 1,
8696                 .s = 1,
8697                 .g = 1
8698         };
8699         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8700                 seg.l = 1;
8701         else
8702                 seg.db = 1;
8703         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8704         seg = (struct kvm_segment) {
8705                 .base = 0,
8706                 .limit = 0xFFFFFFFF,
8707                 .type = 3,
8708                 .present = 1,
8709                 .s = 1,
8710                 .db = 1,
8711                 .g = 1
8712         };
8713         seg.selector = vmcs12->host_ds_selector;
8714         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8715         seg.selector = vmcs12->host_es_selector;
8716         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8717         seg.selector = vmcs12->host_ss_selector;
8718         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8719         seg.selector = vmcs12->host_fs_selector;
8720         seg.base = vmcs12->host_fs_base;
8721         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8722         seg.selector = vmcs12->host_gs_selector;
8723         seg.base = vmcs12->host_gs_base;
8724         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8725         seg = (struct kvm_segment) {
8726                 .base = vmcs12->host_tr_base,
8727                 .limit = 0x67,
8728                 .selector = vmcs12->host_tr_selector,
8729                 .type = 11,
8730                 .present = 1
8731         };
8732         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8733
8734         kvm_set_dr(vcpu, 7, 0x400);
8735         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8736 }
8737
8738 /*
8739  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8740  * and modify vmcs12 to make it see what it would expect to see there if
8741  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8742  */
8743 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
8744                               u32 exit_intr_info,
8745                               unsigned long exit_qualification)
8746 {
8747         struct vcpu_vmx *vmx = to_vmx(vcpu);
8748         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8749
8750         /* trying to cancel vmlaunch/vmresume is a bug */
8751         WARN_ON_ONCE(vmx->nested.nested_run_pending);
8752
8753         leave_guest_mode(vcpu);
8754         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
8755                        exit_qualification);
8756
8757         vmx_load_vmcs01(vcpu);
8758
8759         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
8760             && nested_exit_intr_ack_set(vcpu)) {
8761                 int irq = kvm_cpu_get_interrupt(vcpu);
8762                 WARN_ON(irq < 0);
8763                 vmcs12->vm_exit_intr_info = irq |
8764                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
8765         }
8766
8767         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
8768                                        vmcs12->exit_qualification,
8769                                        vmcs12->idt_vectoring_info_field,
8770                                        vmcs12->vm_exit_intr_info,
8771                                        vmcs12->vm_exit_intr_error_code,
8772                                        KVM_ISA_VMX);
8773
8774         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8775         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
8776         vmx_segment_cache_clear(vmx);
8777
8778         /* if no vmcs02 cache requested, remove the one we used */
8779         if (VMCS02_POOL_SIZE == 0)
8780                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8781
8782         load_vmcs12_host_state(vcpu, vmcs12);
8783
8784         /* Update TSC_OFFSET if TSC was changed while L2 ran */
8785         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8786
8787         /* This is needed for same reason as it was needed in prepare_vmcs02 */
8788         vmx->host_rsp = 0;
8789
8790         /* Unpin physical memory we referred to in vmcs02 */
8791         if (vmx->nested.apic_access_page) {
8792                 nested_release_page(vmx->nested.apic_access_page);
8793                 vmx->nested.apic_access_page = 0;
8794         }
8795
8796         /*
8797          * Exiting from L2 to L1, we're now back to L1 which thinks it just
8798          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8799          * success or failure flag accordingly.
8800          */
8801         if (unlikely(vmx->fail)) {
8802                 vmx->fail = 0;
8803                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8804         } else
8805                 nested_vmx_succeed(vcpu);
8806         if (enable_shadow_vmcs)
8807                 vmx->nested.sync_shadow_vmcs = true;
8808
8809         /* in case we halted in L2 */
8810         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8811 }
8812
8813 /*
8814  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
8815  */
8816 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
8817 {
8818         if (is_guest_mode(vcpu))
8819                 nested_vmx_vmexit(vcpu, -1, 0, 0);
8820         free_nested(to_vmx(vcpu));
8821 }
8822
8823 /*
8824  * L1's failure to enter L2 is a subset of a normal exit, as explained in
8825  * 23.7 "VM-entry failures during or after loading guest state" (this also
8826  * lists the acceptable exit-reason and exit-qualification parameters).
8827  * It should only be called before L2 actually succeeded to run, and when
8828  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8829  */
8830 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8831                         struct vmcs12 *vmcs12,
8832                         u32 reason, unsigned long qualification)
8833 {
8834         load_vmcs12_host_state(vcpu, vmcs12);
8835         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8836         vmcs12->exit_qualification = qualification;
8837         nested_vmx_succeed(vcpu);
8838         if (enable_shadow_vmcs)
8839                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8840 }
8841
8842 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8843                                struct x86_instruction_info *info,
8844                                enum x86_intercept_stage stage)
8845 {
8846         return X86EMUL_CONTINUE;
8847 }
8848
8849 static struct kvm_x86_ops vmx_x86_ops = {
8850         .cpu_has_kvm_support = cpu_has_kvm_support,
8851         .disabled_by_bios = vmx_disabled_by_bios,
8852         .hardware_setup = hardware_setup,
8853         .hardware_unsetup = hardware_unsetup,
8854         .check_processor_compatibility = vmx_check_processor_compat,
8855         .hardware_enable = hardware_enable,
8856         .hardware_disable = hardware_disable,
8857         .cpu_has_accelerated_tpr = report_flexpriority,
8858
8859         .vcpu_create = vmx_create_vcpu,
8860         .vcpu_free = vmx_free_vcpu,
8861         .vcpu_reset = vmx_vcpu_reset,
8862
8863         .prepare_guest_switch = vmx_save_host_state,
8864         .vcpu_load = vmx_vcpu_load,
8865         .vcpu_put = vmx_vcpu_put,
8866
8867         .update_db_bp_intercept = update_exception_bitmap,
8868         .get_msr = vmx_get_msr,
8869         .set_msr = vmx_set_msr,
8870         .get_segment_base = vmx_get_segment_base,
8871         .get_segment = vmx_get_segment,
8872         .set_segment = vmx_set_segment,
8873         .get_cpl = vmx_get_cpl,
8874         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8875         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8876         .decache_cr3 = vmx_decache_cr3,
8877         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8878         .set_cr0 = vmx_set_cr0,
8879         .set_cr3 = vmx_set_cr3,
8880         .set_cr4 = vmx_set_cr4,
8881         .set_efer = vmx_set_efer,
8882         .get_idt = vmx_get_idt,
8883         .set_idt = vmx_set_idt,
8884         .get_gdt = vmx_get_gdt,
8885         .set_gdt = vmx_set_gdt,
8886         .get_dr6 = vmx_get_dr6,
8887         .set_dr6 = vmx_set_dr6,
8888         .set_dr7 = vmx_set_dr7,
8889         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8890         .cache_reg = vmx_cache_reg,
8891         .get_rflags = vmx_get_rflags,
8892         .set_rflags = vmx_set_rflags,
8893         .fpu_activate = vmx_fpu_activate,
8894         .fpu_deactivate = vmx_fpu_deactivate,
8895
8896         .tlb_flush = vmx_flush_tlb,
8897
8898         .run = vmx_vcpu_run,
8899         .handle_exit = vmx_handle_exit,
8900         .skip_emulated_instruction = skip_emulated_instruction,
8901         .set_interrupt_shadow = vmx_set_interrupt_shadow,
8902         .get_interrupt_shadow = vmx_get_interrupt_shadow,
8903         .patch_hypercall = vmx_patch_hypercall,
8904         .set_irq = vmx_inject_irq,
8905         .set_nmi = vmx_inject_nmi,
8906         .queue_exception = vmx_queue_exception,
8907         .cancel_injection = vmx_cancel_injection,
8908         .interrupt_allowed = vmx_interrupt_allowed,
8909         .nmi_allowed = vmx_nmi_allowed,
8910         .get_nmi_mask = vmx_get_nmi_mask,
8911         .set_nmi_mask = vmx_set_nmi_mask,
8912         .enable_nmi_window = enable_nmi_window,
8913         .enable_irq_window = enable_irq_window,
8914         .update_cr8_intercept = update_cr8_intercept,
8915         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8916         .vm_has_apicv = vmx_vm_has_apicv,
8917         .load_eoi_exitmap = vmx_load_eoi_exitmap,
8918         .hwapic_irr_update = vmx_hwapic_irr_update,
8919         .hwapic_isr_update = vmx_hwapic_isr_update,
8920         .sync_pir_to_irr = vmx_sync_pir_to_irr,
8921         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8922
8923         .set_tss_addr = vmx_set_tss_addr,
8924         .get_tdp_level = get_ept_level,
8925         .get_mt_mask = vmx_get_mt_mask,
8926
8927         .get_exit_info = vmx_get_exit_info,
8928
8929         .get_lpage_level = vmx_get_lpage_level,
8930
8931         .cpuid_update = vmx_cpuid_update,
8932
8933         .rdtscp_supported = vmx_rdtscp_supported,
8934         .invpcid_supported = vmx_invpcid_supported,
8935
8936         .set_supported_cpuid = vmx_set_supported_cpuid,
8937
8938         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8939
8940         .set_tsc_khz = vmx_set_tsc_khz,
8941         .read_tsc_offset = vmx_read_tsc_offset,
8942         .write_tsc_offset = vmx_write_tsc_offset,
8943         .adjust_tsc_offset = vmx_adjust_tsc_offset,
8944         .compute_tsc_offset = vmx_compute_tsc_offset,
8945         .read_l1_tsc = vmx_read_l1_tsc,
8946
8947         .set_tdp_cr3 = vmx_set_cr3,
8948
8949         .check_intercept = vmx_check_intercept,
8950         .handle_external_intr = vmx_handle_external_intr,
8951         .mpx_supported = vmx_mpx_supported,
8952
8953         .check_nested_events = vmx_check_nested_events,
8954 };
8955
8956 static int __init vmx_init(void)
8957 {
8958         int r, i, msr;
8959
8960         rdmsrl_safe(MSR_EFER, &host_efer);
8961
8962         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
8963                 kvm_define_shared_msr(i, vmx_msr_index[i]);
8964
8965         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8966         if (!vmx_io_bitmap_a)
8967                 return -ENOMEM;
8968
8969         r = -ENOMEM;
8970
8971         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8972         if (!vmx_io_bitmap_b)
8973                 goto out;
8974
8975         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8976         if (!vmx_msr_bitmap_legacy)
8977                 goto out1;
8978
8979         vmx_msr_bitmap_legacy_x2apic =
8980                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8981         if (!vmx_msr_bitmap_legacy_x2apic)
8982                 goto out2;
8983
8984         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8985         if (!vmx_msr_bitmap_longmode)
8986                 goto out3;
8987
8988         vmx_msr_bitmap_longmode_x2apic =
8989                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8990         if (!vmx_msr_bitmap_longmode_x2apic)
8991                 goto out4;
8992         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8993         if (!vmx_vmread_bitmap)
8994                 goto out5;
8995
8996         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8997         if (!vmx_vmwrite_bitmap)
8998                 goto out6;
8999
9000         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
9001         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
9002
9003         /*
9004          * Allow direct access to the PC debug port (it is often used for I/O
9005          * delays, but the vmexits simply slow things down).
9006          */
9007         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
9008         clear_bit(0x80, vmx_io_bitmap_a);
9009
9010         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
9011
9012         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
9013         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
9014
9015         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
9016
9017         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
9018                      __alignof__(struct vcpu_vmx), THIS_MODULE);
9019         if (r)
9020                 goto out7;
9021
9022 #ifdef CONFIG_KEXEC
9023         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
9024                            crash_vmclear_local_loaded_vmcss);
9025 #endif
9026
9027         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
9028         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
9029         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
9030         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
9031         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
9032         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
9033         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
9034
9035         memcpy(vmx_msr_bitmap_legacy_x2apic,
9036                         vmx_msr_bitmap_legacy, PAGE_SIZE);
9037         memcpy(vmx_msr_bitmap_longmode_x2apic,
9038                         vmx_msr_bitmap_longmode, PAGE_SIZE);
9039
9040         if (enable_apicv) {
9041                 for (msr = 0x800; msr <= 0x8ff; msr++)
9042                         vmx_disable_intercept_msr_read_x2apic(msr);
9043
9044                 /* According SDM, in x2apic mode, the whole id reg is used.
9045                  * But in KVM, it only use the highest eight bits. Need to
9046                  * intercept it */
9047                 vmx_enable_intercept_msr_read_x2apic(0x802);
9048                 /* TMCCT */
9049                 vmx_enable_intercept_msr_read_x2apic(0x839);
9050                 /* TPR */
9051                 vmx_disable_intercept_msr_write_x2apic(0x808);
9052                 /* EOI */
9053                 vmx_disable_intercept_msr_write_x2apic(0x80b);
9054                 /* SELF-IPI */
9055                 vmx_disable_intercept_msr_write_x2apic(0x83f);
9056         }
9057
9058         if (enable_ept) {
9059                 kvm_mmu_set_mask_ptes(0ull,
9060                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
9061                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
9062                         0ull, VMX_EPT_EXECUTABLE_MASK);
9063                 ept_set_mmio_spte_mask();
9064                 kvm_enable_tdp();
9065         } else
9066                 kvm_disable_tdp();
9067
9068         return 0;
9069
9070 out7:
9071         free_page((unsigned long)vmx_vmwrite_bitmap);
9072 out6:
9073         free_page((unsigned long)vmx_vmread_bitmap);
9074 out5:
9075         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9076 out4:
9077         free_page((unsigned long)vmx_msr_bitmap_longmode);
9078 out3:
9079         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9080 out2:
9081         free_page((unsigned long)vmx_msr_bitmap_legacy);
9082 out1:
9083         free_page((unsigned long)vmx_io_bitmap_b);
9084 out:
9085         free_page((unsigned long)vmx_io_bitmap_a);
9086         return r;
9087 }
9088
9089 static void __exit vmx_exit(void)
9090 {
9091         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9092         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9093         free_page((unsigned long)vmx_msr_bitmap_legacy);
9094         free_page((unsigned long)vmx_msr_bitmap_longmode);
9095         free_page((unsigned long)vmx_io_bitmap_b);
9096         free_page((unsigned long)vmx_io_bitmap_a);
9097         free_page((unsigned long)vmx_vmwrite_bitmap);
9098         free_page((unsigned long)vmx_vmread_bitmap);
9099
9100 #ifdef CONFIG_KEXEC
9101         rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
9102         synchronize_rcu();
9103 #endif
9104
9105         kvm_exit();
9106 }
9107
9108 module_init(vmx_init)
9109 module_exit(vmx_exit)