Merge tag 'pci-v4.14-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53
54 #include "trace.h"
55 #include "pmu.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65         X86_FEATURE_MATCH(X86_FEATURE_VMX),
66         {}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72
73 static bool __read_mostly flexpriority_enabled = 1;
74 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
75
76 static bool __read_mostly enable_ept = 1;
77 module_param_named(ept, enable_ept, bool, S_IRUGO);
78
79 static bool __read_mostly enable_unrestricted_guest = 1;
80 module_param_named(unrestricted_guest,
81                         enable_unrestricted_guest, bool, S_IRUGO);
82
83 static bool __read_mostly enable_ept_ad_bits = 1;
84 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
86 static bool __read_mostly emulate_invalid_guest_state = true;
87 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
88
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98  * If nested=1, nested virtualization is supported, i.e., guests may use
99  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100  * use VMX instructions.
101  */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104
105 static u64 __read_mostly host_xss;
106
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109
110 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
111
112 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
113 static int __read_mostly cpu_preemption_timer_multi;
114 static bool __read_mostly enable_preemption_timer = 1;
115 #ifdef CONFIG_X86_64
116 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117 #endif
118
119 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
121 #define KVM_VM_CR0_ALWAYS_ON                                            \
122         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
123 #define KVM_CR4_GUEST_OWNED_BITS                                      \
124         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
125          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
126
127 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
130 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
132 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
134 /*
135  * Hyper-V requires all of these, so mark them as supported even though
136  * they are just treated the same as all-context.
137  */
138 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
139         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
140         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
141         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
142         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
144 /*
145  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146  * ple_gap:    upper bound on the amount of time between two successive
147  *             executions of PAUSE in a loop. Also indicate if ple enabled.
148  *             According to test, this time is usually smaller than 128 cycles.
149  * ple_window: upper bound on the amount of time a guest is allowed to execute
150  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
151  *             less than 2^12 cycles
152  * Time is measured based on a counter that runs at the same rate as the TSC,
153  * refer SDM volume 3b section 21.6.13 & 22.1.3.
154  */
155 #define KVM_VMX_DEFAULT_PLE_GAP           128
156 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
160                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
162 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163 module_param(ple_gap, int, S_IRUGO);
164
165 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166 module_param(ple_window, int, S_IRUGO);
167
168 /* Default doubles per-vcpu window every exit. */
169 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170 module_param(ple_window_grow, int, S_IRUGO);
171
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174 module_param(ple_window_shrink, int, S_IRUGO);
175
176 /* Default is to compute the maximum so we can never overflow. */
177 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, int, S_IRUGO);
180
181 extern const ulong vmx_return;
182
183 #define NR_AUTOLOAD_MSRS 8
184 #define VMCS02_POOL_SIZE 1
185
186 struct vmcs {
187         u32 revision_id;
188         u32 abort;
189         char data[0];
190 };
191
192 /*
193  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195  * loaded on this CPU (so we can clear them if the CPU goes down).
196  */
197 struct loaded_vmcs {
198         struct vmcs *vmcs;
199         struct vmcs *shadow_vmcs;
200         int cpu;
201         bool launched;
202         bool nmi_known_unmasked;
203         struct list_head loaded_vmcss_on_cpu_link;
204 };
205
206 struct shared_msr_entry {
207         unsigned index;
208         u64 data;
209         u64 mask;
210 };
211
212 /*
213  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
214  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
215  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
216  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
217  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
218  * More than one of these structures may exist, if L1 runs multiple L2 guests.
219  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
220  * underlying hardware which will be used to run L2.
221  * This structure is packed to ensure that its layout is identical across
222  * machines (necessary for live migration).
223  * If there are changes in this struct, VMCS12_REVISION must be changed.
224  */
225 typedef u64 natural_width;
226 struct __packed vmcs12 {
227         /* According to the Intel spec, a VMCS region must start with the
228          * following two fields. Then follow implementation-specific data.
229          */
230         u32 revision_id;
231         u32 abort;
232
233         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
234         u32 padding[7]; /* room for future expansion */
235
236         u64 io_bitmap_a;
237         u64 io_bitmap_b;
238         u64 msr_bitmap;
239         u64 vm_exit_msr_store_addr;
240         u64 vm_exit_msr_load_addr;
241         u64 vm_entry_msr_load_addr;
242         u64 tsc_offset;
243         u64 virtual_apic_page_addr;
244         u64 apic_access_addr;
245         u64 posted_intr_desc_addr;
246         u64 vm_function_control;
247         u64 ept_pointer;
248         u64 eoi_exit_bitmap0;
249         u64 eoi_exit_bitmap1;
250         u64 eoi_exit_bitmap2;
251         u64 eoi_exit_bitmap3;
252         u64 eptp_list_address;
253         u64 xss_exit_bitmap;
254         u64 guest_physical_address;
255         u64 vmcs_link_pointer;
256         u64 pml_address;
257         u64 guest_ia32_debugctl;
258         u64 guest_ia32_pat;
259         u64 guest_ia32_efer;
260         u64 guest_ia32_perf_global_ctrl;
261         u64 guest_pdptr0;
262         u64 guest_pdptr1;
263         u64 guest_pdptr2;
264         u64 guest_pdptr3;
265         u64 guest_bndcfgs;
266         u64 host_ia32_pat;
267         u64 host_ia32_efer;
268         u64 host_ia32_perf_global_ctrl;
269         u64 padding64[8]; /* room for future expansion */
270         /*
271          * To allow migration of L1 (complete with its L2 guests) between
272          * machines of different natural widths (32 or 64 bit), we cannot have
273          * unsigned long fields with no explict size. We use u64 (aliased
274          * natural_width) instead. Luckily, x86 is little-endian.
275          */
276         natural_width cr0_guest_host_mask;
277         natural_width cr4_guest_host_mask;
278         natural_width cr0_read_shadow;
279         natural_width cr4_read_shadow;
280         natural_width cr3_target_value0;
281         natural_width cr3_target_value1;
282         natural_width cr3_target_value2;
283         natural_width cr3_target_value3;
284         natural_width exit_qualification;
285         natural_width guest_linear_address;
286         natural_width guest_cr0;
287         natural_width guest_cr3;
288         natural_width guest_cr4;
289         natural_width guest_es_base;
290         natural_width guest_cs_base;
291         natural_width guest_ss_base;
292         natural_width guest_ds_base;
293         natural_width guest_fs_base;
294         natural_width guest_gs_base;
295         natural_width guest_ldtr_base;
296         natural_width guest_tr_base;
297         natural_width guest_gdtr_base;
298         natural_width guest_idtr_base;
299         natural_width guest_dr7;
300         natural_width guest_rsp;
301         natural_width guest_rip;
302         natural_width guest_rflags;
303         natural_width guest_pending_dbg_exceptions;
304         natural_width guest_sysenter_esp;
305         natural_width guest_sysenter_eip;
306         natural_width host_cr0;
307         natural_width host_cr3;
308         natural_width host_cr4;
309         natural_width host_fs_base;
310         natural_width host_gs_base;
311         natural_width host_tr_base;
312         natural_width host_gdtr_base;
313         natural_width host_idtr_base;
314         natural_width host_ia32_sysenter_esp;
315         natural_width host_ia32_sysenter_eip;
316         natural_width host_rsp;
317         natural_width host_rip;
318         natural_width paddingl[8]; /* room for future expansion */
319         u32 pin_based_vm_exec_control;
320         u32 cpu_based_vm_exec_control;
321         u32 exception_bitmap;
322         u32 page_fault_error_code_mask;
323         u32 page_fault_error_code_match;
324         u32 cr3_target_count;
325         u32 vm_exit_controls;
326         u32 vm_exit_msr_store_count;
327         u32 vm_exit_msr_load_count;
328         u32 vm_entry_controls;
329         u32 vm_entry_msr_load_count;
330         u32 vm_entry_intr_info_field;
331         u32 vm_entry_exception_error_code;
332         u32 vm_entry_instruction_len;
333         u32 tpr_threshold;
334         u32 secondary_vm_exec_control;
335         u32 vm_instruction_error;
336         u32 vm_exit_reason;
337         u32 vm_exit_intr_info;
338         u32 vm_exit_intr_error_code;
339         u32 idt_vectoring_info_field;
340         u32 idt_vectoring_error_code;
341         u32 vm_exit_instruction_len;
342         u32 vmx_instruction_info;
343         u32 guest_es_limit;
344         u32 guest_cs_limit;
345         u32 guest_ss_limit;
346         u32 guest_ds_limit;
347         u32 guest_fs_limit;
348         u32 guest_gs_limit;
349         u32 guest_ldtr_limit;
350         u32 guest_tr_limit;
351         u32 guest_gdtr_limit;
352         u32 guest_idtr_limit;
353         u32 guest_es_ar_bytes;
354         u32 guest_cs_ar_bytes;
355         u32 guest_ss_ar_bytes;
356         u32 guest_ds_ar_bytes;
357         u32 guest_fs_ar_bytes;
358         u32 guest_gs_ar_bytes;
359         u32 guest_ldtr_ar_bytes;
360         u32 guest_tr_ar_bytes;
361         u32 guest_interruptibility_info;
362         u32 guest_activity_state;
363         u32 guest_sysenter_cs;
364         u32 host_ia32_sysenter_cs;
365         u32 vmx_preemption_timer_value;
366         u32 padding32[7]; /* room for future expansion */
367         u16 virtual_processor_id;
368         u16 posted_intr_nv;
369         u16 guest_es_selector;
370         u16 guest_cs_selector;
371         u16 guest_ss_selector;
372         u16 guest_ds_selector;
373         u16 guest_fs_selector;
374         u16 guest_gs_selector;
375         u16 guest_ldtr_selector;
376         u16 guest_tr_selector;
377         u16 guest_intr_status;
378         u16 guest_pml_index;
379         u16 host_es_selector;
380         u16 host_cs_selector;
381         u16 host_ss_selector;
382         u16 host_ds_selector;
383         u16 host_fs_selector;
384         u16 host_gs_selector;
385         u16 host_tr_selector;
386 };
387
388 /*
389  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
390  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
391  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
392  */
393 #define VMCS12_REVISION 0x11e57ed0
394
395 /*
396  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
397  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
398  * current implementation, 4K are reserved to avoid future complications.
399  */
400 #define VMCS12_SIZE 0x1000
401
402 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
403 struct vmcs02_list {
404         struct list_head list;
405         gpa_t vmptr;
406         struct loaded_vmcs vmcs02;
407 };
408
409 /*
410  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
411  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
412  */
413 struct nested_vmx {
414         /* Has the level1 guest done vmxon? */
415         bool vmxon;
416         gpa_t vmxon_ptr;
417         bool pml_full;
418
419         /* The guest-physical address of the current VMCS L1 keeps for L2 */
420         gpa_t current_vmptr;
421         /*
422          * Cache of the guest's VMCS, existing outside of guest memory.
423          * Loaded from guest memory during VMPTRLD. Flushed to guest
424          * memory during VMCLEAR and VMPTRLD.
425          */
426         struct vmcs12 *cached_vmcs12;
427         /*
428          * Indicates if the shadow vmcs must be updated with the
429          * data hold by vmcs12
430          */
431         bool sync_shadow_vmcs;
432
433         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
434         struct list_head vmcs02_pool;
435         int vmcs02_num;
436         bool change_vmcs01_virtual_x2apic_mode;
437         /* L2 must run next, and mustn't decide to exit to L1. */
438         bool nested_run_pending;
439         /*
440          * Guest pages referred to in vmcs02 with host-physical pointers, so
441          * we must keep them pinned while L2 runs.
442          */
443         struct page *apic_access_page;
444         struct page *virtual_apic_page;
445         struct page *pi_desc_page;
446         struct pi_desc *pi_desc;
447         bool pi_pending;
448         u16 posted_intr_nv;
449
450         unsigned long *msr_bitmap;
451
452         struct hrtimer preemption_timer;
453         bool preemption_timer_expired;
454
455         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
456         u64 vmcs01_debugctl;
457
458         u16 vpid02;
459         u16 last_vpid;
460
461         /*
462          * We only store the "true" versions of the VMX capability MSRs. We
463          * generate the "non-true" versions by setting the must-be-1 bits
464          * according to the SDM.
465          */
466         u32 nested_vmx_procbased_ctls_low;
467         u32 nested_vmx_procbased_ctls_high;
468         u32 nested_vmx_secondary_ctls_low;
469         u32 nested_vmx_secondary_ctls_high;
470         u32 nested_vmx_pinbased_ctls_low;
471         u32 nested_vmx_pinbased_ctls_high;
472         u32 nested_vmx_exit_ctls_low;
473         u32 nested_vmx_exit_ctls_high;
474         u32 nested_vmx_entry_ctls_low;
475         u32 nested_vmx_entry_ctls_high;
476         u32 nested_vmx_misc_low;
477         u32 nested_vmx_misc_high;
478         u32 nested_vmx_ept_caps;
479         u32 nested_vmx_vpid_caps;
480         u64 nested_vmx_basic;
481         u64 nested_vmx_cr0_fixed0;
482         u64 nested_vmx_cr0_fixed1;
483         u64 nested_vmx_cr4_fixed0;
484         u64 nested_vmx_cr4_fixed1;
485         u64 nested_vmx_vmcs_enum;
486         u64 nested_vmx_vmfunc_controls;
487 };
488
489 #define POSTED_INTR_ON  0
490 #define POSTED_INTR_SN  1
491
492 /* Posted-Interrupt Descriptor */
493 struct pi_desc {
494         u32 pir[8];     /* Posted interrupt requested */
495         union {
496                 struct {
497                                 /* bit 256 - Outstanding Notification */
498                         u16     on      : 1,
499                                 /* bit 257 - Suppress Notification */
500                                 sn      : 1,
501                                 /* bit 271:258 - Reserved */
502                                 rsvd_1  : 14;
503                                 /* bit 279:272 - Notification Vector */
504                         u8      nv;
505                                 /* bit 287:280 - Reserved */
506                         u8      rsvd_2;
507                                 /* bit 319:288 - Notification Destination */
508                         u32     ndst;
509                 };
510                 u64 control;
511         };
512         u32 rsvd[6];
513 } __aligned(64);
514
515 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
516 {
517         return test_and_set_bit(POSTED_INTR_ON,
518                         (unsigned long *)&pi_desc->control);
519 }
520
521 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
522 {
523         return test_and_clear_bit(POSTED_INTR_ON,
524                         (unsigned long *)&pi_desc->control);
525 }
526
527 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
528 {
529         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
530 }
531
532 static inline void pi_clear_sn(struct pi_desc *pi_desc)
533 {
534         return clear_bit(POSTED_INTR_SN,
535                         (unsigned long *)&pi_desc->control);
536 }
537
538 static inline void pi_set_sn(struct pi_desc *pi_desc)
539 {
540         return set_bit(POSTED_INTR_SN,
541                         (unsigned long *)&pi_desc->control);
542 }
543
544 static inline void pi_clear_on(struct pi_desc *pi_desc)
545 {
546         clear_bit(POSTED_INTR_ON,
547                   (unsigned long *)&pi_desc->control);
548 }
549
550 static inline int pi_test_on(struct pi_desc *pi_desc)
551 {
552         return test_bit(POSTED_INTR_ON,
553                         (unsigned long *)&pi_desc->control);
554 }
555
556 static inline int pi_test_sn(struct pi_desc *pi_desc)
557 {
558         return test_bit(POSTED_INTR_SN,
559                         (unsigned long *)&pi_desc->control);
560 }
561
562 struct vcpu_vmx {
563         struct kvm_vcpu       vcpu;
564         unsigned long         host_rsp;
565         u8                    fail;
566         u32                   exit_intr_info;
567         u32                   idt_vectoring_info;
568         ulong                 rflags;
569         struct shared_msr_entry *guest_msrs;
570         int                   nmsrs;
571         int                   save_nmsrs;
572         unsigned long         host_idt_base;
573 #ifdef CONFIG_X86_64
574         u64                   msr_host_kernel_gs_base;
575         u64                   msr_guest_kernel_gs_base;
576 #endif
577         u32 vm_entry_controls_shadow;
578         u32 vm_exit_controls_shadow;
579         u32 secondary_exec_control;
580
581         /*
582          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
583          * non-nested (L1) guest, it always points to vmcs01. For a nested
584          * guest (L2), it points to a different VMCS.
585          */
586         struct loaded_vmcs    vmcs01;
587         struct loaded_vmcs   *loaded_vmcs;
588         bool                  __launched; /* temporary, used in vmx_vcpu_run */
589         struct msr_autoload {
590                 unsigned nr;
591                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
592                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
593         } msr_autoload;
594         struct {
595                 int           loaded;
596                 u16           fs_sel, gs_sel, ldt_sel;
597 #ifdef CONFIG_X86_64
598                 u16           ds_sel, es_sel;
599 #endif
600                 int           gs_ldt_reload_needed;
601                 int           fs_reload_needed;
602                 u64           msr_host_bndcfgs;
603                 unsigned long vmcs_host_cr3;    /* May not match real cr3 */
604                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
605         } host_state;
606         struct {
607                 int vm86_active;
608                 ulong save_rflags;
609                 struct kvm_segment segs[8];
610         } rmode;
611         struct {
612                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
613                 struct kvm_save_segment {
614                         u16 selector;
615                         unsigned long base;
616                         u32 limit;
617                         u32 ar;
618                 } seg[8];
619         } segment_cache;
620         int vpid;
621         bool emulation_required;
622
623         u32 exit_reason;
624
625         /* Posted interrupt descriptor */
626         struct pi_desc pi_desc;
627
628         /* Support for a guest hypervisor (nested VMX) */
629         struct nested_vmx nested;
630
631         /* Dynamic PLE window. */
632         int ple_window;
633         bool ple_window_dirty;
634
635         /* Support for PML */
636 #define PML_ENTITY_NUM          512
637         struct page *pml_pg;
638
639         /* apic deadline value in host tsc */
640         u64 hv_deadline_tsc;
641
642         u64 current_tsc_ratio;
643
644         u32 host_pkru;
645
646         /*
647          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
648          * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
649          * in msr_ia32_feature_control_valid_bits.
650          */
651         u64 msr_ia32_feature_control;
652         u64 msr_ia32_feature_control_valid_bits;
653 };
654
655 enum segment_cache_field {
656         SEG_FIELD_SEL = 0,
657         SEG_FIELD_BASE = 1,
658         SEG_FIELD_LIMIT = 2,
659         SEG_FIELD_AR = 3,
660
661         SEG_FIELD_NR = 4
662 };
663
664 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
665 {
666         return container_of(vcpu, struct vcpu_vmx, vcpu);
667 }
668
669 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
670 {
671         return &(to_vmx(vcpu)->pi_desc);
672 }
673
674 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
675 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
676 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
677                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
678
679
680 static unsigned long shadow_read_only_fields[] = {
681         /*
682          * We do NOT shadow fields that are modified when L0
683          * traps and emulates any vmx instruction (e.g. VMPTRLD,
684          * VMXON...) executed by L1.
685          * For example, VM_INSTRUCTION_ERROR is read
686          * by L1 if a vmx instruction fails (part of the error path).
687          * Note the code assumes this logic. If for some reason
688          * we start shadowing these fields then we need to
689          * force a shadow sync when L0 emulates vmx instructions
690          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
691          * by nested_vmx_failValid)
692          */
693         VM_EXIT_REASON,
694         VM_EXIT_INTR_INFO,
695         VM_EXIT_INSTRUCTION_LEN,
696         IDT_VECTORING_INFO_FIELD,
697         IDT_VECTORING_ERROR_CODE,
698         VM_EXIT_INTR_ERROR_CODE,
699         EXIT_QUALIFICATION,
700         GUEST_LINEAR_ADDRESS,
701         GUEST_PHYSICAL_ADDRESS
702 };
703 static int max_shadow_read_only_fields =
704         ARRAY_SIZE(shadow_read_only_fields);
705
706 static unsigned long shadow_read_write_fields[] = {
707         TPR_THRESHOLD,
708         GUEST_RIP,
709         GUEST_RSP,
710         GUEST_CR0,
711         GUEST_CR3,
712         GUEST_CR4,
713         GUEST_INTERRUPTIBILITY_INFO,
714         GUEST_RFLAGS,
715         GUEST_CS_SELECTOR,
716         GUEST_CS_AR_BYTES,
717         GUEST_CS_LIMIT,
718         GUEST_CS_BASE,
719         GUEST_ES_BASE,
720         GUEST_BNDCFGS,
721         CR0_GUEST_HOST_MASK,
722         CR0_READ_SHADOW,
723         CR4_READ_SHADOW,
724         TSC_OFFSET,
725         EXCEPTION_BITMAP,
726         CPU_BASED_VM_EXEC_CONTROL,
727         VM_ENTRY_EXCEPTION_ERROR_CODE,
728         VM_ENTRY_INTR_INFO_FIELD,
729         VM_ENTRY_INSTRUCTION_LEN,
730         VM_ENTRY_EXCEPTION_ERROR_CODE,
731         HOST_FS_BASE,
732         HOST_GS_BASE,
733         HOST_FS_SELECTOR,
734         HOST_GS_SELECTOR
735 };
736 static int max_shadow_read_write_fields =
737         ARRAY_SIZE(shadow_read_write_fields);
738
739 static const unsigned short vmcs_field_to_offset_table[] = {
740         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
741         FIELD(POSTED_INTR_NV, posted_intr_nv),
742         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
743         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
744         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
745         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
746         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
747         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
748         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
749         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
750         FIELD(GUEST_INTR_STATUS, guest_intr_status),
751         FIELD(GUEST_PML_INDEX, guest_pml_index),
752         FIELD(HOST_ES_SELECTOR, host_es_selector),
753         FIELD(HOST_CS_SELECTOR, host_cs_selector),
754         FIELD(HOST_SS_SELECTOR, host_ss_selector),
755         FIELD(HOST_DS_SELECTOR, host_ds_selector),
756         FIELD(HOST_FS_SELECTOR, host_fs_selector),
757         FIELD(HOST_GS_SELECTOR, host_gs_selector),
758         FIELD(HOST_TR_SELECTOR, host_tr_selector),
759         FIELD64(IO_BITMAP_A, io_bitmap_a),
760         FIELD64(IO_BITMAP_B, io_bitmap_b),
761         FIELD64(MSR_BITMAP, msr_bitmap),
762         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765         FIELD64(TSC_OFFSET, tsc_offset),
766         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
768         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
769         FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
770         FIELD64(EPT_POINTER, ept_pointer),
771         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
772         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
773         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
774         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
775         FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
776         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
777         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
778         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
779         FIELD64(PML_ADDRESS, pml_address),
780         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
781         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
782         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
783         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
784         FIELD64(GUEST_PDPTR0, guest_pdptr0),
785         FIELD64(GUEST_PDPTR1, guest_pdptr1),
786         FIELD64(GUEST_PDPTR2, guest_pdptr2),
787         FIELD64(GUEST_PDPTR3, guest_pdptr3),
788         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
789         FIELD64(HOST_IA32_PAT, host_ia32_pat),
790         FIELD64(HOST_IA32_EFER, host_ia32_efer),
791         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
792         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
793         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
794         FIELD(EXCEPTION_BITMAP, exception_bitmap),
795         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
796         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
797         FIELD(CR3_TARGET_COUNT, cr3_target_count),
798         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
799         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
800         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
801         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
802         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
803         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
804         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
805         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
806         FIELD(TPR_THRESHOLD, tpr_threshold),
807         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
808         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
809         FIELD(VM_EXIT_REASON, vm_exit_reason),
810         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
811         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
812         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
813         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
814         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
815         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
816         FIELD(GUEST_ES_LIMIT, guest_es_limit),
817         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
818         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
819         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
820         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
821         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
822         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
823         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
824         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
825         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
826         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
827         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
828         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
829         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
830         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
831         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
832         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
833         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
834         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
835         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
836         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
837         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
838         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
839         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
840         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
841         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
842         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
843         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
844         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
845         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
846         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
847         FIELD(EXIT_QUALIFICATION, exit_qualification),
848         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
849         FIELD(GUEST_CR0, guest_cr0),
850         FIELD(GUEST_CR3, guest_cr3),
851         FIELD(GUEST_CR4, guest_cr4),
852         FIELD(GUEST_ES_BASE, guest_es_base),
853         FIELD(GUEST_CS_BASE, guest_cs_base),
854         FIELD(GUEST_SS_BASE, guest_ss_base),
855         FIELD(GUEST_DS_BASE, guest_ds_base),
856         FIELD(GUEST_FS_BASE, guest_fs_base),
857         FIELD(GUEST_GS_BASE, guest_gs_base),
858         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
859         FIELD(GUEST_TR_BASE, guest_tr_base),
860         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
861         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
862         FIELD(GUEST_DR7, guest_dr7),
863         FIELD(GUEST_RSP, guest_rsp),
864         FIELD(GUEST_RIP, guest_rip),
865         FIELD(GUEST_RFLAGS, guest_rflags),
866         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
867         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
868         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
869         FIELD(HOST_CR0, host_cr0),
870         FIELD(HOST_CR3, host_cr3),
871         FIELD(HOST_CR4, host_cr4),
872         FIELD(HOST_FS_BASE, host_fs_base),
873         FIELD(HOST_GS_BASE, host_gs_base),
874         FIELD(HOST_TR_BASE, host_tr_base),
875         FIELD(HOST_GDTR_BASE, host_gdtr_base),
876         FIELD(HOST_IDTR_BASE, host_idtr_base),
877         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
878         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
879         FIELD(HOST_RSP, host_rsp),
880         FIELD(HOST_RIP, host_rip),
881 };
882
883 static inline short vmcs_field_to_offset(unsigned long field)
884 {
885         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
886
887         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
888             vmcs_field_to_offset_table[field] == 0)
889                 return -ENOENT;
890
891         return vmcs_field_to_offset_table[field];
892 }
893
894 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
895 {
896         return to_vmx(vcpu)->nested.cached_vmcs12;
897 }
898
899 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
900 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
901 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
902 static bool vmx_xsaves_supported(void);
903 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
904 static void vmx_set_segment(struct kvm_vcpu *vcpu,
905                             struct kvm_segment *var, int seg);
906 static void vmx_get_segment(struct kvm_vcpu *vcpu,
907                             struct kvm_segment *var, int seg);
908 static bool guest_state_valid(struct kvm_vcpu *vcpu);
909 static u32 vmx_segment_access_rights(struct kvm_segment *var);
910 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
911 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
912 static int alloc_identity_pagetable(struct kvm *kvm);
913 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
914 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
915 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
916                                             u16 error_code);
917
918 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
919 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
920 /*
921  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
922  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
923  */
924 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
925
926 /*
927  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
928  * can find which vCPU should be waken up.
929  */
930 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
931 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
932
933 enum {
934         VMX_IO_BITMAP_A,
935         VMX_IO_BITMAP_B,
936         VMX_MSR_BITMAP_LEGACY,
937         VMX_MSR_BITMAP_LONGMODE,
938         VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
939         VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
940         VMX_MSR_BITMAP_LEGACY_X2APIC,
941         VMX_MSR_BITMAP_LONGMODE_X2APIC,
942         VMX_VMREAD_BITMAP,
943         VMX_VMWRITE_BITMAP,
944         VMX_BITMAP_NR
945 };
946
947 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
948
949 #define vmx_io_bitmap_a                      (vmx_bitmap[VMX_IO_BITMAP_A])
950 #define vmx_io_bitmap_b                      (vmx_bitmap[VMX_IO_BITMAP_B])
951 #define vmx_msr_bitmap_legacy                (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
952 #define vmx_msr_bitmap_longmode              (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
953 #define vmx_msr_bitmap_legacy_x2apic_apicv   (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
954 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
955 #define vmx_msr_bitmap_legacy_x2apic         (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
956 #define vmx_msr_bitmap_longmode_x2apic       (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
957 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
958 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
959
960 static bool cpu_has_load_ia32_efer;
961 static bool cpu_has_load_perf_global_ctrl;
962
963 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
964 static DEFINE_SPINLOCK(vmx_vpid_lock);
965
966 static struct vmcs_config {
967         int size;
968         int order;
969         u32 basic_cap;
970         u32 revision_id;
971         u32 pin_based_exec_ctrl;
972         u32 cpu_based_exec_ctrl;
973         u32 cpu_based_2nd_exec_ctrl;
974         u32 vmexit_ctrl;
975         u32 vmentry_ctrl;
976 } vmcs_config;
977
978 static struct vmx_capability {
979         u32 ept;
980         u32 vpid;
981 } vmx_capability;
982
983 #define VMX_SEGMENT_FIELD(seg)                                  \
984         [VCPU_SREG_##seg] = {                                   \
985                 .selector = GUEST_##seg##_SELECTOR,             \
986                 .base = GUEST_##seg##_BASE,                     \
987                 .limit = GUEST_##seg##_LIMIT,                   \
988                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
989         }
990
991 static const struct kvm_vmx_segment_field {
992         unsigned selector;
993         unsigned base;
994         unsigned limit;
995         unsigned ar_bytes;
996 } kvm_vmx_segment_fields[] = {
997         VMX_SEGMENT_FIELD(CS),
998         VMX_SEGMENT_FIELD(DS),
999         VMX_SEGMENT_FIELD(ES),
1000         VMX_SEGMENT_FIELD(FS),
1001         VMX_SEGMENT_FIELD(GS),
1002         VMX_SEGMENT_FIELD(SS),
1003         VMX_SEGMENT_FIELD(TR),
1004         VMX_SEGMENT_FIELD(LDTR),
1005 };
1006
1007 static u64 host_efer;
1008
1009 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1010
1011 /*
1012  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1013  * away by decrementing the array size.
1014  */
1015 static const u32 vmx_msr_index[] = {
1016 #ifdef CONFIG_X86_64
1017         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1018 #endif
1019         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1020 };
1021
1022 static inline bool is_exception_n(u32 intr_info, u8 vector)
1023 {
1024         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1025                              INTR_INFO_VALID_MASK)) ==
1026                 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1027 }
1028
1029 static inline bool is_debug(u32 intr_info)
1030 {
1031         return is_exception_n(intr_info, DB_VECTOR);
1032 }
1033
1034 static inline bool is_breakpoint(u32 intr_info)
1035 {
1036         return is_exception_n(intr_info, BP_VECTOR);
1037 }
1038
1039 static inline bool is_page_fault(u32 intr_info)
1040 {
1041         return is_exception_n(intr_info, PF_VECTOR);
1042 }
1043
1044 static inline bool is_no_device(u32 intr_info)
1045 {
1046         return is_exception_n(intr_info, NM_VECTOR);
1047 }
1048
1049 static inline bool is_invalid_opcode(u32 intr_info)
1050 {
1051         return is_exception_n(intr_info, UD_VECTOR);
1052 }
1053
1054 static inline bool is_external_interrupt(u32 intr_info)
1055 {
1056         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1057                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1058 }
1059
1060 static inline bool is_machine_check(u32 intr_info)
1061 {
1062         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1063                              INTR_INFO_VALID_MASK)) ==
1064                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1065 }
1066
1067 static inline bool cpu_has_vmx_msr_bitmap(void)
1068 {
1069         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1070 }
1071
1072 static inline bool cpu_has_vmx_tpr_shadow(void)
1073 {
1074         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1075 }
1076
1077 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1078 {
1079         return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1080 }
1081
1082 static inline bool cpu_has_secondary_exec_ctrls(void)
1083 {
1084         return vmcs_config.cpu_based_exec_ctrl &
1085                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1086 }
1087
1088 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1089 {
1090         return vmcs_config.cpu_based_2nd_exec_ctrl &
1091                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1092 }
1093
1094 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1095 {
1096         return vmcs_config.cpu_based_2nd_exec_ctrl &
1097                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1098 }
1099
1100 static inline bool cpu_has_vmx_apic_register_virt(void)
1101 {
1102         return vmcs_config.cpu_based_2nd_exec_ctrl &
1103                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1104 }
1105
1106 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1107 {
1108         return vmcs_config.cpu_based_2nd_exec_ctrl &
1109                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1110 }
1111
1112 /*
1113  * Comment's format: document - errata name - stepping - processor name.
1114  * Refer from
1115  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1116  */
1117 static u32 vmx_preemption_cpu_tfms[] = {
1118 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
1119 0x000206E6,
1120 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1121 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1122 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1123 0x00020652,
1124 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1125 0x00020655,
1126 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1127 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1128 /*
1129  * 320767.pdf - AAP86  - B1 -
1130  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1131  */
1132 0x000106E5,
1133 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1134 0x000106A0,
1135 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1136 0x000106A1,
1137 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1138 0x000106A4,
1139  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1140  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1141  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1142 0x000106A5,
1143 };
1144
1145 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1146 {
1147         u32 eax = cpuid_eax(0x00000001), i;
1148
1149         /* Clear the reserved bits */
1150         eax &= ~(0x3U << 14 | 0xfU << 28);
1151         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1152                 if (eax == vmx_preemption_cpu_tfms[i])
1153                         return true;
1154
1155         return false;
1156 }
1157
1158 static inline bool cpu_has_vmx_preemption_timer(void)
1159 {
1160         return vmcs_config.pin_based_exec_ctrl &
1161                 PIN_BASED_VMX_PREEMPTION_TIMER;
1162 }
1163
1164 static inline bool cpu_has_vmx_posted_intr(void)
1165 {
1166         return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1167                 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1168 }
1169
1170 static inline bool cpu_has_vmx_apicv(void)
1171 {
1172         return cpu_has_vmx_apic_register_virt() &&
1173                 cpu_has_vmx_virtual_intr_delivery() &&
1174                 cpu_has_vmx_posted_intr();
1175 }
1176
1177 static inline bool cpu_has_vmx_flexpriority(void)
1178 {
1179         return cpu_has_vmx_tpr_shadow() &&
1180                 cpu_has_vmx_virtualize_apic_accesses();
1181 }
1182
1183 static inline bool cpu_has_vmx_ept_execute_only(void)
1184 {
1185         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1186 }
1187
1188 static inline bool cpu_has_vmx_ept_2m_page(void)
1189 {
1190         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1191 }
1192
1193 static inline bool cpu_has_vmx_ept_1g_page(void)
1194 {
1195         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1196 }
1197
1198 static inline bool cpu_has_vmx_ept_4levels(void)
1199 {
1200         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1201 }
1202
1203 static inline bool cpu_has_vmx_ept_mt_wb(void)
1204 {
1205         return vmx_capability.ept & VMX_EPTP_WB_BIT;
1206 }
1207
1208 static inline bool cpu_has_vmx_ept_5levels(void)
1209 {
1210         return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1211 }
1212
1213 static inline bool cpu_has_vmx_ept_ad_bits(void)
1214 {
1215         return vmx_capability.ept & VMX_EPT_AD_BIT;
1216 }
1217
1218 static inline bool cpu_has_vmx_invept_context(void)
1219 {
1220         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1221 }
1222
1223 static inline bool cpu_has_vmx_invept_global(void)
1224 {
1225         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1226 }
1227
1228 static inline bool cpu_has_vmx_invvpid_single(void)
1229 {
1230         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1231 }
1232
1233 static inline bool cpu_has_vmx_invvpid_global(void)
1234 {
1235         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1236 }
1237
1238 static inline bool cpu_has_vmx_invvpid(void)
1239 {
1240         return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1241 }
1242
1243 static inline bool cpu_has_vmx_ept(void)
1244 {
1245         return vmcs_config.cpu_based_2nd_exec_ctrl &
1246                 SECONDARY_EXEC_ENABLE_EPT;
1247 }
1248
1249 static inline bool cpu_has_vmx_unrestricted_guest(void)
1250 {
1251         return vmcs_config.cpu_based_2nd_exec_ctrl &
1252                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1253 }
1254
1255 static inline bool cpu_has_vmx_ple(void)
1256 {
1257         return vmcs_config.cpu_based_2nd_exec_ctrl &
1258                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1259 }
1260
1261 static inline bool cpu_has_vmx_basic_inout(void)
1262 {
1263         return  (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1264 }
1265
1266 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1267 {
1268         return flexpriority_enabled && lapic_in_kernel(vcpu);
1269 }
1270
1271 static inline bool cpu_has_vmx_vpid(void)
1272 {
1273         return vmcs_config.cpu_based_2nd_exec_ctrl &
1274                 SECONDARY_EXEC_ENABLE_VPID;
1275 }
1276
1277 static inline bool cpu_has_vmx_rdtscp(void)
1278 {
1279         return vmcs_config.cpu_based_2nd_exec_ctrl &
1280                 SECONDARY_EXEC_RDTSCP;
1281 }
1282
1283 static inline bool cpu_has_vmx_invpcid(void)
1284 {
1285         return vmcs_config.cpu_based_2nd_exec_ctrl &
1286                 SECONDARY_EXEC_ENABLE_INVPCID;
1287 }
1288
1289 static inline bool cpu_has_vmx_wbinvd_exit(void)
1290 {
1291         return vmcs_config.cpu_based_2nd_exec_ctrl &
1292                 SECONDARY_EXEC_WBINVD_EXITING;
1293 }
1294
1295 static inline bool cpu_has_vmx_shadow_vmcs(void)
1296 {
1297         u64 vmx_msr;
1298         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1299         /* check if the cpu supports writing r/o exit information fields */
1300         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1301                 return false;
1302
1303         return vmcs_config.cpu_based_2nd_exec_ctrl &
1304                 SECONDARY_EXEC_SHADOW_VMCS;
1305 }
1306
1307 static inline bool cpu_has_vmx_pml(void)
1308 {
1309         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1310 }
1311
1312 static inline bool cpu_has_vmx_tsc_scaling(void)
1313 {
1314         return vmcs_config.cpu_based_2nd_exec_ctrl &
1315                 SECONDARY_EXEC_TSC_SCALING;
1316 }
1317
1318 static inline bool cpu_has_vmx_vmfunc(void)
1319 {
1320         return vmcs_config.cpu_based_2nd_exec_ctrl &
1321                 SECONDARY_EXEC_ENABLE_VMFUNC;
1322 }
1323
1324 static inline bool report_flexpriority(void)
1325 {
1326         return flexpriority_enabled;
1327 }
1328
1329 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1330 {
1331         return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1332 }
1333
1334 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1335 {
1336         return vmcs12->cpu_based_vm_exec_control & bit;
1337 }
1338
1339 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1340 {
1341         return (vmcs12->cpu_based_vm_exec_control &
1342                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1343                 (vmcs12->secondary_vm_exec_control & bit);
1344 }
1345
1346 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1347 {
1348         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1349 }
1350
1351 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1352 {
1353         return vmcs12->pin_based_vm_exec_control &
1354                 PIN_BASED_VMX_PREEMPTION_TIMER;
1355 }
1356
1357 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1358 {
1359         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1360 }
1361
1362 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1363 {
1364         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
1365 }
1366
1367 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1368 {
1369         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1370 }
1371
1372 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1373 {
1374         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1375 }
1376
1377 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1378 {
1379         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1380 }
1381
1382 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1383 {
1384         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1385 }
1386
1387 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1388 {
1389         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1390 }
1391
1392 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1393 {
1394         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1395 }
1396
1397 static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1398 {
1399         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1400 }
1401
1402 static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1403 {
1404         return nested_cpu_has_vmfunc(vmcs12) &&
1405                 (vmcs12->vm_function_control &
1406                  VMX_VMFUNC_EPTP_SWITCHING);
1407 }
1408
1409 static inline bool is_nmi(u32 intr_info)
1410 {
1411         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1412                 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1413 }
1414
1415 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1416                               u32 exit_intr_info,
1417                               unsigned long exit_qualification);
1418 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1419                         struct vmcs12 *vmcs12,
1420                         u32 reason, unsigned long qualification);
1421
1422 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1423 {
1424         int i;
1425
1426         for (i = 0; i < vmx->nmsrs; ++i)
1427                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1428                         return i;
1429         return -1;
1430 }
1431
1432 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1433 {
1434     struct {
1435         u64 vpid : 16;
1436         u64 rsvd : 48;
1437         u64 gva;
1438     } operand = { vpid, 0, gva };
1439
1440     asm volatile (__ex(ASM_VMX_INVVPID)
1441                   /* CF==1 or ZF==1 --> rc = -1 */
1442                   "; ja 1f ; ud2 ; 1:"
1443                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1444 }
1445
1446 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1447 {
1448         struct {
1449                 u64 eptp, gpa;
1450         } operand = {eptp, gpa};
1451
1452         asm volatile (__ex(ASM_VMX_INVEPT)
1453                         /* CF==1 or ZF==1 --> rc = -1 */
1454                         "; ja 1f ; ud2 ; 1:\n"
1455                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1456 }
1457
1458 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1459 {
1460         int i;
1461
1462         i = __find_msr_index(vmx, msr);
1463         if (i >= 0)
1464                 return &vmx->guest_msrs[i];
1465         return NULL;
1466 }
1467
1468 static void vmcs_clear(struct vmcs *vmcs)
1469 {
1470         u64 phys_addr = __pa(vmcs);
1471         u8 error;
1472
1473         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1474                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1475                       : "cc", "memory");
1476         if (error)
1477                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1478                        vmcs, phys_addr);
1479 }
1480
1481 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1482 {
1483         vmcs_clear(loaded_vmcs->vmcs);
1484         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1485                 vmcs_clear(loaded_vmcs->shadow_vmcs);
1486         loaded_vmcs->cpu = -1;
1487         loaded_vmcs->launched = 0;
1488 }
1489
1490 static void vmcs_load(struct vmcs *vmcs)
1491 {
1492         u64 phys_addr = __pa(vmcs);
1493         u8 error;
1494
1495         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1496                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1497                         : "cc", "memory");
1498         if (error)
1499                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1500                        vmcs, phys_addr);
1501 }
1502
1503 #ifdef CONFIG_KEXEC_CORE
1504 /*
1505  * This bitmap is used to indicate whether the vmclear
1506  * operation is enabled on all cpus. All disabled by
1507  * default.
1508  */
1509 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1510
1511 static inline void crash_enable_local_vmclear(int cpu)
1512 {
1513         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1514 }
1515
1516 static inline void crash_disable_local_vmclear(int cpu)
1517 {
1518         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1519 }
1520
1521 static inline int crash_local_vmclear_enabled(int cpu)
1522 {
1523         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1524 }
1525
1526 static void crash_vmclear_local_loaded_vmcss(void)
1527 {
1528         int cpu = raw_smp_processor_id();
1529         struct loaded_vmcs *v;
1530
1531         if (!crash_local_vmclear_enabled(cpu))
1532                 return;
1533
1534         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1535                             loaded_vmcss_on_cpu_link)
1536                 vmcs_clear(v->vmcs);
1537 }
1538 #else
1539 static inline void crash_enable_local_vmclear(int cpu) { }
1540 static inline void crash_disable_local_vmclear(int cpu) { }
1541 #endif /* CONFIG_KEXEC_CORE */
1542
1543 static void __loaded_vmcs_clear(void *arg)
1544 {
1545         struct loaded_vmcs *loaded_vmcs = arg;
1546         int cpu = raw_smp_processor_id();
1547
1548         if (loaded_vmcs->cpu != cpu)
1549                 return; /* vcpu migration can race with cpu offline */
1550         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1551                 per_cpu(current_vmcs, cpu) = NULL;
1552         crash_disable_local_vmclear(cpu);
1553         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1554
1555         /*
1556          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1557          * is before setting loaded_vmcs->vcpu to -1 which is done in
1558          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1559          * then adds the vmcs into percpu list before it is deleted.
1560          */
1561         smp_wmb();
1562
1563         loaded_vmcs_init(loaded_vmcs);
1564         crash_enable_local_vmclear(cpu);
1565 }
1566
1567 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1568 {
1569         int cpu = loaded_vmcs->cpu;
1570
1571         if (cpu != -1)
1572                 smp_call_function_single(cpu,
1573                          __loaded_vmcs_clear, loaded_vmcs, 1);
1574 }
1575
1576 static inline void vpid_sync_vcpu_single(int vpid)
1577 {
1578         if (vpid == 0)
1579                 return;
1580
1581         if (cpu_has_vmx_invvpid_single())
1582                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1583 }
1584
1585 static inline void vpid_sync_vcpu_global(void)
1586 {
1587         if (cpu_has_vmx_invvpid_global())
1588                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1589 }
1590
1591 static inline void vpid_sync_context(int vpid)
1592 {
1593         if (cpu_has_vmx_invvpid_single())
1594                 vpid_sync_vcpu_single(vpid);
1595         else
1596                 vpid_sync_vcpu_global();
1597 }
1598
1599 static inline void ept_sync_global(void)
1600 {
1601         if (cpu_has_vmx_invept_global())
1602                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1603 }
1604
1605 static inline void ept_sync_context(u64 eptp)
1606 {
1607         if (enable_ept) {
1608                 if (cpu_has_vmx_invept_context())
1609                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1610                 else
1611                         ept_sync_global();
1612         }
1613 }
1614
1615 static __always_inline void vmcs_check16(unsigned long field)
1616 {
1617         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1618                          "16-bit accessor invalid for 64-bit field");
1619         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1620                          "16-bit accessor invalid for 64-bit high field");
1621         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1622                          "16-bit accessor invalid for 32-bit high field");
1623         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1624                          "16-bit accessor invalid for natural width field");
1625 }
1626
1627 static __always_inline void vmcs_check32(unsigned long field)
1628 {
1629         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1630                          "32-bit accessor invalid for 16-bit field");
1631         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1632                          "32-bit accessor invalid for natural width field");
1633 }
1634
1635 static __always_inline void vmcs_check64(unsigned long field)
1636 {
1637         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1638                          "64-bit accessor invalid for 16-bit field");
1639         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1640                          "64-bit accessor invalid for 64-bit high field");
1641         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1642                          "64-bit accessor invalid for 32-bit field");
1643         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1644                          "64-bit accessor invalid for natural width field");
1645 }
1646
1647 static __always_inline void vmcs_checkl(unsigned long field)
1648 {
1649         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1650                          "Natural width accessor invalid for 16-bit field");
1651         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1652                          "Natural width accessor invalid for 64-bit field");
1653         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1654                          "Natural width accessor invalid for 64-bit high field");
1655         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1656                          "Natural width accessor invalid for 32-bit field");
1657 }
1658
1659 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1660 {
1661         unsigned long value;
1662
1663         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1664                       : "=a"(value) : "d"(field) : "cc");
1665         return value;
1666 }
1667
1668 static __always_inline u16 vmcs_read16(unsigned long field)
1669 {
1670         vmcs_check16(field);
1671         return __vmcs_readl(field);
1672 }
1673
1674 static __always_inline u32 vmcs_read32(unsigned long field)
1675 {
1676         vmcs_check32(field);
1677         return __vmcs_readl(field);
1678 }
1679
1680 static __always_inline u64 vmcs_read64(unsigned long field)
1681 {
1682         vmcs_check64(field);
1683 #ifdef CONFIG_X86_64
1684         return __vmcs_readl(field);
1685 #else
1686         return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1687 #endif
1688 }
1689
1690 static __always_inline unsigned long vmcs_readl(unsigned long field)
1691 {
1692         vmcs_checkl(field);
1693         return __vmcs_readl(field);
1694 }
1695
1696 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1697 {
1698         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1699                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1700         dump_stack();
1701 }
1702
1703 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1704 {
1705         u8 error;
1706
1707         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1708                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1709         if (unlikely(error))
1710                 vmwrite_error(field, value);
1711 }
1712
1713 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1714 {
1715         vmcs_check16(field);
1716         __vmcs_writel(field, value);
1717 }
1718
1719 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1720 {
1721         vmcs_check32(field);
1722         __vmcs_writel(field, value);
1723 }
1724
1725 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1726 {
1727         vmcs_check64(field);
1728         __vmcs_writel(field, value);
1729 #ifndef CONFIG_X86_64
1730         asm volatile ("");
1731         __vmcs_writel(field+1, value >> 32);
1732 #endif
1733 }
1734
1735 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1736 {
1737         vmcs_checkl(field);
1738         __vmcs_writel(field, value);
1739 }
1740
1741 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1742 {
1743         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1744                          "vmcs_clear_bits does not support 64-bit fields");
1745         __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1746 }
1747
1748 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1749 {
1750         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1751                          "vmcs_set_bits does not support 64-bit fields");
1752         __vmcs_writel(field, __vmcs_readl(field) | mask);
1753 }
1754
1755 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1756 {
1757         vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1758 }
1759
1760 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1761 {
1762         vmcs_write32(VM_ENTRY_CONTROLS, val);
1763         vmx->vm_entry_controls_shadow = val;
1764 }
1765
1766 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1767 {
1768         if (vmx->vm_entry_controls_shadow != val)
1769                 vm_entry_controls_init(vmx, val);
1770 }
1771
1772 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1773 {
1774         return vmx->vm_entry_controls_shadow;
1775 }
1776
1777
1778 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1779 {
1780         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1781 }
1782
1783 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1784 {
1785         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1786 }
1787
1788 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1789 {
1790         vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1791 }
1792
1793 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1794 {
1795         vmcs_write32(VM_EXIT_CONTROLS, val);
1796         vmx->vm_exit_controls_shadow = val;
1797 }
1798
1799 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1800 {
1801         if (vmx->vm_exit_controls_shadow != val)
1802                 vm_exit_controls_init(vmx, val);
1803 }
1804
1805 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1806 {
1807         return vmx->vm_exit_controls_shadow;
1808 }
1809
1810
1811 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1812 {
1813         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1814 }
1815
1816 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1817 {
1818         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1819 }
1820
1821 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1822 {
1823         vmx->segment_cache.bitmask = 0;
1824 }
1825
1826 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1827                                        unsigned field)
1828 {
1829         bool ret;
1830         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1831
1832         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1833                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1834                 vmx->segment_cache.bitmask = 0;
1835         }
1836         ret = vmx->segment_cache.bitmask & mask;
1837         vmx->segment_cache.bitmask |= mask;
1838         return ret;
1839 }
1840
1841 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1842 {
1843         u16 *p = &vmx->segment_cache.seg[seg].selector;
1844
1845         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1846                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1847         return *p;
1848 }
1849
1850 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1851 {
1852         ulong *p = &vmx->segment_cache.seg[seg].base;
1853
1854         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1855                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1856         return *p;
1857 }
1858
1859 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1860 {
1861         u32 *p = &vmx->segment_cache.seg[seg].limit;
1862
1863         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1864                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1865         return *p;
1866 }
1867
1868 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1869 {
1870         u32 *p = &vmx->segment_cache.seg[seg].ar;
1871
1872         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1873                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1874         return *p;
1875 }
1876
1877 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1878 {
1879         u32 eb;
1880
1881         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1882              (1u << DB_VECTOR) | (1u << AC_VECTOR);
1883         if ((vcpu->guest_debug &
1884              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1885             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1886                 eb |= 1u << BP_VECTOR;
1887         if (to_vmx(vcpu)->rmode.vm86_active)
1888                 eb = ~0;
1889         if (enable_ept)
1890                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1891
1892         /* When we are running a nested L2 guest and L1 specified for it a
1893          * certain exception bitmap, we must trap the same exceptions and pass
1894          * them to L1. When running L2, we will only handle the exceptions
1895          * specified above if L1 did not want them.
1896          */
1897         if (is_guest_mode(vcpu))
1898                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1899
1900         vmcs_write32(EXCEPTION_BITMAP, eb);
1901 }
1902
1903 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1904                 unsigned long entry, unsigned long exit)
1905 {
1906         vm_entry_controls_clearbit(vmx, entry);
1907         vm_exit_controls_clearbit(vmx, exit);
1908 }
1909
1910 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1911 {
1912         unsigned i;
1913         struct msr_autoload *m = &vmx->msr_autoload;
1914
1915         switch (msr) {
1916         case MSR_EFER:
1917                 if (cpu_has_load_ia32_efer) {
1918                         clear_atomic_switch_msr_special(vmx,
1919                                         VM_ENTRY_LOAD_IA32_EFER,
1920                                         VM_EXIT_LOAD_IA32_EFER);
1921                         return;
1922                 }
1923                 break;
1924         case MSR_CORE_PERF_GLOBAL_CTRL:
1925                 if (cpu_has_load_perf_global_ctrl) {
1926                         clear_atomic_switch_msr_special(vmx,
1927                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1928                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1929                         return;
1930                 }
1931                 break;
1932         }
1933
1934         for (i = 0; i < m->nr; ++i)
1935                 if (m->guest[i].index == msr)
1936                         break;
1937
1938         if (i == m->nr)
1939                 return;
1940         --m->nr;
1941         m->guest[i] = m->guest[m->nr];
1942         m->host[i] = m->host[m->nr];
1943         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1944         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1945 }
1946
1947 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1948                 unsigned long entry, unsigned long exit,
1949                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1950                 u64 guest_val, u64 host_val)
1951 {
1952         vmcs_write64(guest_val_vmcs, guest_val);
1953         vmcs_write64(host_val_vmcs, host_val);
1954         vm_entry_controls_setbit(vmx, entry);
1955         vm_exit_controls_setbit(vmx, exit);
1956 }
1957
1958 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1959                                   u64 guest_val, u64 host_val)
1960 {
1961         unsigned i;
1962         struct msr_autoload *m = &vmx->msr_autoload;
1963
1964         switch (msr) {
1965         case MSR_EFER:
1966                 if (cpu_has_load_ia32_efer) {
1967                         add_atomic_switch_msr_special(vmx,
1968                                         VM_ENTRY_LOAD_IA32_EFER,
1969                                         VM_EXIT_LOAD_IA32_EFER,
1970                                         GUEST_IA32_EFER,
1971                                         HOST_IA32_EFER,
1972                                         guest_val, host_val);
1973                         return;
1974                 }
1975                 break;
1976         case MSR_CORE_PERF_GLOBAL_CTRL:
1977                 if (cpu_has_load_perf_global_ctrl) {
1978                         add_atomic_switch_msr_special(vmx,
1979                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1980                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1981                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1982                                         HOST_IA32_PERF_GLOBAL_CTRL,
1983                                         guest_val, host_val);
1984                         return;
1985                 }
1986                 break;
1987         case MSR_IA32_PEBS_ENABLE:
1988                 /* PEBS needs a quiescent period after being disabled (to write
1989                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1990                  * provide that period, so a CPU could write host's record into
1991                  * guest's memory.
1992                  */
1993                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1994         }
1995
1996         for (i = 0; i < m->nr; ++i)
1997                 if (m->guest[i].index == msr)
1998                         break;
1999
2000         if (i == NR_AUTOLOAD_MSRS) {
2001                 printk_once(KERN_WARNING "Not enough msr switch entries. "
2002                                 "Can't add msr %x\n", msr);
2003                 return;
2004         } else if (i == m->nr) {
2005                 ++m->nr;
2006                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2007                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2008         }
2009
2010         m->guest[i].index = msr;
2011         m->guest[i].value = guest_val;
2012         m->host[i].index = msr;
2013         m->host[i].value = host_val;
2014 }
2015
2016 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2017 {
2018         u64 guest_efer = vmx->vcpu.arch.efer;
2019         u64 ignore_bits = 0;
2020
2021         if (!enable_ept) {
2022                 /*
2023                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
2024                  * host CPUID is more efficient than testing guest CPUID
2025                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
2026                  */
2027                 if (boot_cpu_has(X86_FEATURE_SMEP))
2028                         guest_efer |= EFER_NX;
2029                 else if (!(guest_efer & EFER_NX))
2030                         ignore_bits |= EFER_NX;
2031         }
2032
2033         /*
2034          * LMA and LME handled by hardware; SCE meaningless outside long mode.
2035          */
2036         ignore_bits |= EFER_SCE;
2037 #ifdef CONFIG_X86_64
2038         ignore_bits |= EFER_LMA | EFER_LME;
2039         /* SCE is meaningful only in long mode on Intel */
2040         if (guest_efer & EFER_LMA)
2041                 ignore_bits &= ~(u64)EFER_SCE;
2042 #endif
2043
2044         clear_atomic_switch_msr(vmx, MSR_EFER);
2045
2046         /*
2047          * On EPT, we can't emulate NX, so we must switch EFER atomically.
2048          * On CPUs that support "load IA32_EFER", always switch EFER
2049          * atomically, since it's faster than switching it manually.
2050          */
2051         if (cpu_has_load_ia32_efer ||
2052             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2053                 if (!(guest_efer & EFER_LMA))
2054                         guest_efer &= ~EFER_LME;
2055                 if (guest_efer != host_efer)
2056                         add_atomic_switch_msr(vmx, MSR_EFER,
2057                                               guest_efer, host_efer);
2058                 return false;
2059         } else {
2060                 guest_efer &= ~ignore_bits;
2061                 guest_efer |= host_efer & ignore_bits;
2062
2063                 vmx->guest_msrs[efer_offset].data = guest_efer;
2064                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2065
2066                 return true;
2067         }
2068 }
2069
2070 #ifdef CONFIG_X86_32
2071 /*
2072  * On 32-bit kernels, VM exits still load the FS and GS bases from the
2073  * VMCS rather than the segment table.  KVM uses this helper to figure
2074  * out the current bases to poke them into the VMCS before entry.
2075  */
2076 static unsigned long segment_base(u16 selector)
2077 {
2078         struct desc_struct *table;
2079         unsigned long v;
2080
2081         if (!(selector & ~SEGMENT_RPL_MASK))
2082                 return 0;
2083
2084         table = get_current_gdt_ro();
2085
2086         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2087                 u16 ldt_selector = kvm_read_ldt();
2088
2089                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2090                         return 0;
2091
2092                 table = (struct desc_struct *)segment_base(ldt_selector);
2093         }
2094         v = get_desc_base(&table[selector >> 3]);
2095         return v;
2096 }
2097 #endif
2098
2099 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2100 {
2101         struct vcpu_vmx *vmx = to_vmx(vcpu);
2102         int i;
2103
2104         if (vmx->host_state.loaded)
2105                 return;
2106
2107         vmx->host_state.loaded = 1;
2108         /*
2109          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2110          * allow segment selectors with cpl > 0 or ti == 1.
2111          */
2112         vmx->host_state.ldt_sel = kvm_read_ldt();
2113         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2114         savesegment(fs, vmx->host_state.fs_sel);
2115         if (!(vmx->host_state.fs_sel & 7)) {
2116                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2117                 vmx->host_state.fs_reload_needed = 0;
2118         } else {
2119                 vmcs_write16(HOST_FS_SELECTOR, 0);
2120                 vmx->host_state.fs_reload_needed = 1;
2121         }
2122         savesegment(gs, vmx->host_state.gs_sel);
2123         if (!(vmx->host_state.gs_sel & 7))
2124                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2125         else {
2126                 vmcs_write16(HOST_GS_SELECTOR, 0);
2127                 vmx->host_state.gs_ldt_reload_needed = 1;
2128         }
2129
2130 #ifdef CONFIG_X86_64
2131         savesegment(ds, vmx->host_state.ds_sel);
2132         savesegment(es, vmx->host_state.es_sel);
2133 #endif
2134
2135 #ifdef CONFIG_X86_64
2136         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2137         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2138 #else
2139         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2140         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2141 #endif
2142
2143 #ifdef CONFIG_X86_64
2144         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2145         if (is_long_mode(&vmx->vcpu))
2146                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2147 #endif
2148         if (boot_cpu_has(X86_FEATURE_MPX))
2149                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2150         for (i = 0; i < vmx->save_nmsrs; ++i)
2151                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2152                                    vmx->guest_msrs[i].data,
2153                                    vmx->guest_msrs[i].mask);
2154 }
2155
2156 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2157 {
2158         if (!vmx->host_state.loaded)
2159                 return;
2160
2161         ++vmx->vcpu.stat.host_state_reload;
2162         vmx->host_state.loaded = 0;
2163 #ifdef CONFIG_X86_64
2164         if (is_long_mode(&vmx->vcpu))
2165                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2166 #endif
2167         if (vmx->host_state.gs_ldt_reload_needed) {
2168                 kvm_load_ldt(vmx->host_state.ldt_sel);
2169 #ifdef CONFIG_X86_64
2170                 load_gs_index(vmx->host_state.gs_sel);
2171 #else
2172                 loadsegment(gs, vmx->host_state.gs_sel);
2173 #endif
2174         }
2175         if (vmx->host_state.fs_reload_needed)
2176                 loadsegment(fs, vmx->host_state.fs_sel);
2177 #ifdef CONFIG_X86_64
2178         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2179                 loadsegment(ds, vmx->host_state.ds_sel);
2180                 loadsegment(es, vmx->host_state.es_sel);
2181         }
2182 #endif
2183         invalidate_tss_limit();
2184 #ifdef CONFIG_X86_64
2185         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2186 #endif
2187         if (vmx->host_state.msr_host_bndcfgs)
2188                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2189         load_fixmap_gdt(raw_smp_processor_id());
2190 }
2191
2192 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2193 {
2194         preempt_disable();
2195         __vmx_load_host_state(vmx);
2196         preempt_enable();
2197 }
2198
2199 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2200 {
2201         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2202         struct pi_desc old, new;
2203         unsigned int dest;
2204
2205         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2206                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2207                 !kvm_vcpu_apicv_active(vcpu))
2208                 return;
2209
2210         do {
2211                 old.control = new.control = pi_desc->control;
2212
2213                 /*
2214                  * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2215                  * are two possible cases:
2216                  * 1. After running 'pre_block', context switch
2217                  *    happened. For this case, 'sn' was set in
2218                  *    vmx_vcpu_put(), so we need to clear it here.
2219                  * 2. After running 'pre_block', we were blocked,
2220                  *    and woken up by some other guy. For this case,
2221                  *    we don't need to do anything, 'pi_post_block'
2222                  *    will do everything for us. However, we cannot
2223                  *    check whether it is case #1 or case #2 here
2224                  *    (maybe, not needed), so we also clear sn here,
2225                  *    I think it is not a big deal.
2226                  */
2227                 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2228                         if (vcpu->cpu != cpu) {
2229                                 dest = cpu_physical_id(cpu);
2230
2231                                 if (x2apic_enabled())
2232                                         new.ndst = dest;
2233                                 else
2234                                         new.ndst = (dest << 8) & 0xFF00;
2235                         }
2236
2237                         /* set 'NV' to 'notification vector' */
2238                         new.nv = POSTED_INTR_VECTOR;
2239                 }
2240
2241                 /* Allow posting non-urgent interrupts */
2242                 new.sn = 0;
2243         } while (cmpxchg(&pi_desc->control, old.control,
2244                         new.control) != old.control);
2245 }
2246
2247 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2248 {
2249         vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2250         vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2251 }
2252
2253 /*
2254  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2255  * vcpu mutex is already taken.
2256  */
2257 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2258 {
2259         struct vcpu_vmx *vmx = to_vmx(vcpu);
2260         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2261
2262         if (!already_loaded) {
2263                 loaded_vmcs_clear(vmx->loaded_vmcs);
2264                 local_irq_disable();
2265                 crash_disable_local_vmclear(cpu);
2266
2267                 /*
2268                  * Read loaded_vmcs->cpu should be before fetching
2269                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
2270                  * See the comments in __loaded_vmcs_clear().
2271                  */
2272                 smp_rmb();
2273
2274                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2275                          &per_cpu(loaded_vmcss_on_cpu, cpu));
2276                 crash_enable_local_vmclear(cpu);
2277                 local_irq_enable();
2278         }
2279
2280         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2281                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2282                 vmcs_load(vmx->loaded_vmcs->vmcs);
2283         }
2284
2285         if (!already_loaded) {
2286                 void *gdt = get_current_gdt_ro();
2287                 unsigned long sysenter_esp;
2288
2289                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2290
2291                 /*
2292                  * Linux uses per-cpu TSS and GDT, so set these when switching
2293                  * processors.  See 22.2.4.
2294                  */
2295                 vmcs_writel(HOST_TR_BASE,
2296                             (unsigned long)this_cpu_ptr(&cpu_tss));
2297                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
2298
2299                 /*
2300                  * VM exits change the host TR limit to 0x67 after a VM
2301                  * exit.  This is okay, since 0x67 covers everything except
2302                  * the IO bitmap and have have code to handle the IO bitmap
2303                  * being lost after a VM exit.
2304                  */
2305                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2306
2307                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2308                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2309
2310                 vmx->loaded_vmcs->cpu = cpu;
2311         }
2312
2313         /* Setup TSC multiplier */
2314         if (kvm_has_tsc_control &&
2315             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2316                 decache_tsc_multiplier(vmx);
2317
2318         vmx_vcpu_pi_load(vcpu, cpu);
2319         vmx->host_pkru = read_pkru();
2320 }
2321
2322 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2323 {
2324         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2325
2326         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2327                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2328                 !kvm_vcpu_apicv_active(vcpu))
2329                 return;
2330
2331         /* Set SN when the vCPU is preempted */
2332         if (vcpu->preempted)
2333                 pi_set_sn(pi_desc);
2334 }
2335
2336 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2337 {
2338         vmx_vcpu_pi_put(vcpu);
2339
2340         __vmx_load_host_state(to_vmx(vcpu));
2341 }
2342
2343 static bool emulation_required(struct kvm_vcpu *vcpu)
2344 {
2345         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2346 }
2347
2348 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2349
2350 /*
2351  * Return the cr0 value that a nested guest would read. This is a combination
2352  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2353  * its hypervisor (cr0_read_shadow).
2354  */
2355 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2356 {
2357         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2358                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2359 }
2360 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2361 {
2362         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2363                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2364 }
2365
2366 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2367 {
2368         unsigned long rflags, save_rflags;
2369
2370         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2371                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2372                 rflags = vmcs_readl(GUEST_RFLAGS);
2373                 if (to_vmx(vcpu)->rmode.vm86_active) {
2374                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2375                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2376                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2377                 }
2378                 to_vmx(vcpu)->rflags = rflags;
2379         }
2380         return to_vmx(vcpu)->rflags;
2381 }
2382
2383 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2384 {
2385         unsigned long old_rflags = vmx_get_rflags(vcpu);
2386
2387         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2388         to_vmx(vcpu)->rflags = rflags;
2389         if (to_vmx(vcpu)->rmode.vm86_active) {
2390                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2391                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2392         }
2393         vmcs_writel(GUEST_RFLAGS, rflags);
2394
2395         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2396                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2397 }
2398
2399 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2400 {
2401         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2402         int ret = 0;
2403
2404         if (interruptibility & GUEST_INTR_STATE_STI)
2405                 ret |= KVM_X86_SHADOW_INT_STI;
2406         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2407                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2408
2409         return ret;
2410 }
2411
2412 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2413 {
2414         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2415         u32 interruptibility = interruptibility_old;
2416
2417         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2418
2419         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2420                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2421         else if (mask & KVM_X86_SHADOW_INT_STI)
2422                 interruptibility |= GUEST_INTR_STATE_STI;
2423
2424         if ((interruptibility != interruptibility_old))
2425                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2426 }
2427
2428 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2429 {
2430         unsigned long rip;
2431
2432         rip = kvm_rip_read(vcpu);
2433         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2434         kvm_rip_write(vcpu, rip);
2435
2436         /* skipping an emulated instruction also counts */
2437         vmx_set_interrupt_shadow(vcpu, 0);
2438 }
2439
2440 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2441                                                unsigned long exit_qual)
2442 {
2443         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2444         unsigned int nr = vcpu->arch.exception.nr;
2445         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2446
2447         if (vcpu->arch.exception.has_error_code) {
2448                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2449                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2450         }
2451
2452         if (kvm_exception_is_soft(nr))
2453                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2454         else
2455                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2456
2457         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2458             vmx_get_nmi_mask(vcpu))
2459                 intr_info |= INTR_INFO_UNBLOCK_NMI;
2460
2461         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2462 }
2463
2464 /*
2465  * KVM wants to inject page-faults which it got to the guest. This function
2466  * checks whether in a nested guest, we need to inject them to L1 or L2.
2467  */
2468 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
2469 {
2470         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2471         unsigned int nr = vcpu->arch.exception.nr;
2472
2473         if (nr == PF_VECTOR) {
2474                 if (vcpu->arch.exception.nested_apf) {
2475                         *exit_qual = vcpu->arch.apf.nested_apf_token;
2476                         return 1;
2477                 }
2478                 /*
2479                  * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2480                  * The fix is to add the ancillary datum (CR2 or DR6) to structs
2481                  * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2482                  * can be written only when inject_pending_event runs.  This should be
2483                  * conditional on a new capability---if the capability is disabled,
2484                  * kvm_multiple_exception would write the ancillary information to
2485                  * CR2 or DR6, for backwards ABI-compatibility.
2486                  */
2487                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2488                                                     vcpu->arch.exception.error_code)) {
2489                         *exit_qual = vcpu->arch.cr2;
2490                         return 1;
2491                 }
2492         } else {
2493                 if (vmcs12->exception_bitmap & (1u << nr)) {
2494                         if (nr == DB_VECTOR)
2495                                 *exit_qual = vcpu->arch.dr6;
2496                         else
2497                                 *exit_qual = 0;
2498                         return 1;
2499                 }
2500         }
2501
2502         return 0;
2503 }
2504
2505 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2506 {
2507         struct vcpu_vmx *vmx = to_vmx(vcpu);
2508         unsigned nr = vcpu->arch.exception.nr;
2509         bool has_error_code = vcpu->arch.exception.has_error_code;
2510         u32 error_code = vcpu->arch.exception.error_code;
2511         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2512
2513         if (has_error_code) {
2514                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2515                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2516         }
2517
2518         if (vmx->rmode.vm86_active) {
2519                 int inc_eip = 0;
2520                 if (kvm_exception_is_soft(nr))
2521                         inc_eip = vcpu->arch.event_exit_inst_len;
2522                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2523                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2524                 return;
2525         }
2526
2527         if (kvm_exception_is_soft(nr)) {
2528                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2529                              vmx->vcpu.arch.event_exit_inst_len);
2530                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2531         } else
2532                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2533
2534         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2535 }
2536
2537 static bool vmx_rdtscp_supported(void)
2538 {
2539         return cpu_has_vmx_rdtscp();
2540 }
2541
2542 static bool vmx_invpcid_supported(void)
2543 {
2544         return cpu_has_vmx_invpcid() && enable_ept;
2545 }
2546
2547 /*
2548  * Swap MSR entry in host/guest MSR entry array.
2549  */
2550 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2551 {
2552         struct shared_msr_entry tmp;
2553
2554         tmp = vmx->guest_msrs[to];
2555         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2556         vmx->guest_msrs[from] = tmp;
2557 }
2558
2559 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2560 {
2561         unsigned long *msr_bitmap;
2562
2563         if (is_guest_mode(vcpu))
2564                 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2565         else if (cpu_has_secondary_exec_ctrls() &&
2566                  (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2567                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2568                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2569                         if (is_long_mode(vcpu))
2570                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2571                         else
2572                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2573                 } else {
2574                         if (is_long_mode(vcpu))
2575                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2576                         else
2577                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2578                 }
2579         } else {
2580                 if (is_long_mode(vcpu))
2581                         msr_bitmap = vmx_msr_bitmap_longmode;
2582                 else
2583                         msr_bitmap = vmx_msr_bitmap_legacy;
2584         }
2585
2586         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2587 }
2588
2589 /*
2590  * Set up the vmcs to automatically save and restore system
2591  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2592  * mode, as fiddling with msrs is very expensive.
2593  */
2594 static void setup_msrs(struct vcpu_vmx *vmx)
2595 {
2596         int save_nmsrs, index;
2597
2598         save_nmsrs = 0;
2599 #ifdef CONFIG_X86_64
2600         if (is_long_mode(&vmx->vcpu)) {
2601                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2602                 if (index >= 0)
2603                         move_msr_up(vmx, index, save_nmsrs++);
2604                 index = __find_msr_index(vmx, MSR_LSTAR);
2605                 if (index >= 0)
2606                         move_msr_up(vmx, index, save_nmsrs++);
2607                 index = __find_msr_index(vmx, MSR_CSTAR);
2608                 if (index >= 0)
2609                         move_msr_up(vmx, index, save_nmsrs++);
2610                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2611                 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
2612                         move_msr_up(vmx, index, save_nmsrs++);
2613                 /*
2614                  * MSR_STAR is only needed on long mode guests, and only
2615                  * if efer.sce is enabled.
2616                  */
2617                 index = __find_msr_index(vmx, MSR_STAR);
2618                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2619                         move_msr_up(vmx, index, save_nmsrs++);
2620         }
2621 #endif
2622         index = __find_msr_index(vmx, MSR_EFER);
2623         if (index >= 0 && update_transition_efer(vmx, index))
2624                 move_msr_up(vmx, index, save_nmsrs++);
2625
2626         vmx->save_nmsrs = save_nmsrs;
2627
2628         if (cpu_has_vmx_msr_bitmap())
2629                 vmx_set_msr_bitmap(&vmx->vcpu);
2630 }
2631
2632 /*
2633  * reads and returns guest's timestamp counter "register"
2634  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2635  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2636  */
2637 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2638 {
2639         u64 host_tsc, tsc_offset;
2640
2641         host_tsc = rdtsc();
2642         tsc_offset = vmcs_read64(TSC_OFFSET);
2643         return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2644 }
2645
2646 /*
2647  * writes 'offset' into guest's timestamp counter offset register
2648  */
2649 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2650 {
2651         if (is_guest_mode(vcpu)) {
2652                 /*
2653                  * We're here if L1 chose not to trap WRMSR to TSC. According
2654                  * to the spec, this should set L1's TSC; The offset that L1
2655                  * set for L2 remains unchanged, and still needs to be added
2656                  * to the newly set TSC to get L2's TSC.
2657                  */
2658                 struct vmcs12 *vmcs12;
2659                 /* recalculate vmcs02.TSC_OFFSET: */
2660                 vmcs12 = get_vmcs12(vcpu);
2661                 vmcs_write64(TSC_OFFSET, offset +
2662                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2663                          vmcs12->tsc_offset : 0));
2664         } else {
2665                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2666                                            vmcs_read64(TSC_OFFSET), offset);
2667                 vmcs_write64(TSC_OFFSET, offset);
2668         }
2669 }
2670
2671 /*
2672  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2673  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2674  * all guests if the "nested" module option is off, and can also be disabled
2675  * for a single guest by disabling its VMX cpuid bit.
2676  */
2677 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2678 {
2679         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
2680 }
2681
2682 /*
2683  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2684  * returned for the various VMX controls MSRs when nested VMX is enabled.
2685  * The same values should also be used to verify that vmcs12 control fields are
2686  * valid during nested entry from L1 to L2.
2687  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2688  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2689  * bit in the high half is on if the corresponding bit in the control field
2690  * may be on. See also vmx_control_verify().
2691  */
2692 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2693 {
2694         /*
2695          * Note that as a general rule, the high half of the MSRs (bits in
2696          * the control fields which may be 1) should be initialized by the
2697          * intersection of the underlying hardware's MSR (i.e., features which
2698          * can be supported) and the list of features we want to expose -
2699          * because they are known to be properly supported in our code.
2700          * Also, usually, the low half of the MSRs (bits which must be 1) can
2701          * be set to 0, meaning that L1 may turn off any of these bits. The
2702          * reason is that if one of these bits is necessary, it will appear
2703          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2704          * fields of vmcs01 and vmcs02, will turn these bits off - and
2705          * nested_vmx_exit_reflected() will not pass related exits to L1.
2706          * These rules have exceptions below.
2707          */
2708
2709         /* pin-based controls */
2710         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2711                 vmx->nested.nested_vmx_pinbased_ctls_low,
2712                 vmx->nested.nested_vmx_pinbased_ctls_high);
2713         vmx->nested.nested_vmx_pinbased_ctls_low |=
2714                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2715         vmx->nested.nested_vmx_pinbased_ctls_high &=
2716                 PIN_BASED_EXT_INTR_MASK |
2717                 PIN_BASED_NMI_EXITING |
2718                 PIN_BASED_VIRTUAL_NMIS;
2719         vmx->nested.nested_vmx_pinbased_ctls_high |=
2720                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2721                 PIN_BASED_VMX_PREEMPTION_TIMER;
2722         if (kvm_vcpu_apicv_active(&vmx->vcpu))
2723                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2724                         PIN_BASED_POSTED_INTR;
2725
2726         /* exit controls */
2727         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2728                 vmx->nested.nested_vmx_exit_ctls_low,
2729                 vmx->nested.nested_vmx_exit_ctls_high);
2730         vmx->nested.nested_vmx_exit_ctls_low =
2731                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2732
2733         vmx->nested.nested_vmx_exit_ctls_high &=
2734 #ifdef CONFIG_X86_64
2735                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2736 #endif
2737                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2738         vmx->nested.nested_vmx_exit_ctls_high |=
2739                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2740                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2741                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2742
2743         if (kvm_mpx_supported())
2744                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2745
2746         /* We support free control of debug control saving. */
2747         vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2748
2749         /* entry controls */
2750         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2751                 vmx->nested.nested_vmx_entry_ctls_low,
2752                 vmx->nested.nested_vmx_entry_ctls_high);
2753         vmx->nested.nested_vmx_entry_ctls_low =
2754                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2755         vmx->nested.nested_vmx_entry_ctls_high &=
2756 #ifdef CONFIG_X86_64
2757                 VM_ENTRY_IA32E_MODE |
2758 #endif
2759                 VM_ENTRY_LOAD_IA32_PAT;
2760         vmx->nested.nested_vmx_entry_ctls_high |=
2761                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2762         if (kvm_mpx_supported())
2763                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2764
2765         /* We support free control of debug control loading. */
2766         vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2767
2768         /* cpu-based controls */
2769         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2770                 vmx->nested.nested_vmx_procbased_ctls_low,
2771                 vmx->nested.nested_vmx_procbased_ctls_high);
2772         vmx->nested.nested_vmx_procbased_ctls_low =
2773                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2774         vmx->nested.nested_vmx_procbased_ctls_high &=
2775                 CPU_BASED_VIRTUAL_INTR_PENDING |
2776                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2777                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2778                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2779                 CPU_BASED_CR3_STORE_EXITING |
2780 #ifdef CONFIG_X86_64
2781                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2782 #endif
2783                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2784                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2785                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2786                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2787                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2788         /*
2789          * We can allow some features even when not supported by the
2790          * hardware. For example, L1 can specify an MSR bitmap - and we
2791          * can use it to avoid exits to L1 - even when L0 runs L2
2792          * without MSR bitmaps.
2793          */
2794         vmx->nested.nested_vmx_procbased_ctls_high |=
2795                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2796                 CPU_BASED_USE_MSR_BITMAPS;
2797
2798         /* We support free control of CR3 access interception. */
2799         vmx->nested.nested_vmx_procbased_ctls_low &=
2800                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2801
2802         /*
2803          * secondary cpu-based controls.  Do not include those that
2804          * depend on CPUID bits, they are added later by vmx_cpuid_update.
2805          */
2806         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2807                 vmx->nested.nested_vmx_secondary_ctls_low,
2808                 vmx->nested.nested_vmx_secondary_ctls_high);
2809         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2810         vmx->nested.nested_vmx_secondary_ctls_high &=
2811                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2812                 SECONDARY_EXEC_DESC |
2813                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2814                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2815                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2816                 SECONDARY_EXEC_WBINVD_EXITING;
2817
2818         if (enable_ept) {
2819                 /* nested EPT: emulate EPT also to L1 */
2820                 vmx->nested.nested_vmx_secondary_ctls_high |=
2821                         SECONDARY_EXEC_ENABLE_EPT;
2822                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2823                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2824                 if (cpu_has_vmx_ept_execute_only())
2825                         vmx->nested.nested_vmx_ept_caps |=
2826                                 VMX_EPT_EXECUTE_ONLY_BIT;
2827                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2828                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2829                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2830                         VMX_EPT_1GB_PAGE_BIT;
2831                 if (enable_ept_ad_bits) {
2832                         vmx->nested.nested_vmx_secondary_ctls_high |=
2833                                 SECONDARY_EXEC_ENABLE_PML;
2834                         vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2835                 }
2836         } else
2837                 vmx->nested.nested_vmx_ept_caps = 0;
2838
2839         if (cpu_has_vmx_vmfunc()) {
2840                 vmx->nested.nested_vmx_secondary_ctls_high |=
2841                         SECONDARY_EXEC_ENABLE_VMFUNC;
2842                 /*
2843                  * Advertise EPTP switching unconditionally
2844                  * since we emulate it
2845                  */
2846                 vmx->nested.nested_vmx_vmfunc_controls =
2847                         VMX_VMFUNC_EPTP_SWITCHING;
2848         }
2849
2850         /*
2851          * Old versions of KVM use the single-context version without
2852          * checking for support, so declare that it is supported even
2853          * though it is treated as global context.  The alternative is
2854          * not failing the single-context invvpid, and it is worse.
2855          */
2856         if (enable_vpid) {
2857                 vmx->nested.nested_vmx_secondary_ctls_high |=
2858                         SECONDARY_EXEC_ENABLE_VPID;
2859                 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2860                         VMX_VPID_EXTENT_SUPPORTED_MASK;
2861         } else
2862                 vmx->nested.nested_vmx_vpid_caps = 0;
2863
2864         if (enable_unrestricted_guest)
2865                 vmx->nested.nested_vmx_secondary_ctls_high |=
2866                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2867
2868         /* miscellaneous data */
2869         rdmsr(MSR_IA32_VMX_MISC,
2870                 vmx->nested.nested_vmx_misc_low,
2871                 vmx->nested.nested_vmx_misc_high);
2872         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2873         vmx->nested.nested_vmx_misc_low |=
2874                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2875                 VMX_MISC_ACTIVITY_HLT;
2876         vmx->nested.nested_vmx_misc_high = 0;
2877
2878         /*
2879          * This MSR reports some information about VMX support. We
2880          * should return information about the VMX we emulate for the
2881          * guest, and the VMCS structure we give it - not about the
2882          * VMX support of the underlying hardware.
2883          */
2884         vmx->nested.nested_vmx_basic =
2885                 VMCS12_REVISION |
2886                 VMX_BASIC_TRUE_CTLS |
2887                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2888                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2889
2890         if (cpu_has_vmx_basic_inout())
2891                 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2892
2893         /*
2894          * These MSRs specify bits which the guest must keep fixed on
2895          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2896          * We picked the standard core2 setting.
2897          */
2898 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2899 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
2900         vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2901         vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2902
2903         /* These MSRs specify bits which the guest must keep fixed off. */
2904         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2905         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2906
2907         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2908         vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2909 }
2910
2911 /*
2912  * if fixed0[i] == 1: val[i] must be 1
2913  * if fixed1[i] == 0: val[i] must be 0
2914  */
2915 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2916 {
2917         return ((val & fixed1) | fixed0) == val;
2918 }
2919
2920 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2921 {
2922         return fixed_bits_valid(control, low, high);
2923 }
2924
2925 static inline u64 vmx_control_msr(u32 low, u32 high)
2926 {
2927         return low | ((u64)high << 32);
2928 }
2929
2930 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2931 {
2932         superset &= mask;
2933         subset &= mask;
2934
2935         return (superset | subset) == superset;
2936 }
2937
2938 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2939 {
2940         const u64 feature_and_reserved =
2941                 /* feature (except bit 48; see below) */
2942                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2943                 /* reserved */
2944                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2945         u64 vmx_basic = vmx->nested.nested_vmx_basic;
2946
2947         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2948                 return -EINVAL;
2949
2950         /*
2951          * KVM does not emulate a version of VMX that constrains physical
2952          * addresses of VMX structures (e.g. VMCS) to 32-bits.
2953          */
2954         if (data & BIT_ULL(48))
2955                 return -EINVAL;
2956
2957         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2958             vmx_basic_vmcs_revision_id(data))
2959                 return -EINVAL;
2960
2961         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2962                 return -EINVAL;
2963
2964         vmx->nested.nested_vmx_basic = data;
2965         return 0;
2966 }
2967
2968 static int
2969 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2970 {
2971         u64 supported;
2972         u32 *lowp, *highp;
2973
2974         switch (msr_index) {
2975         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2976                 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2977                 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2978                 break;
2979         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2980                 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2981                 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2982                 break;
2983         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2984                 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2985                 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2986                 break;
2987         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2988                 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2989                 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2990                 break;
2991         case MSR_IA32_VMX_PROCBASED_CTLS2:
2992                 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2993                 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2994                 break;
2995         default:
2996                 BUG();
2997         }
2998
2999         supported = vmx_control_msr(*lowp, *highp);
3000
3001         /* Check must-be-1 bits are still 1. */
3002         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3003                 return -EINVAL;
3004
3005         /* Check must-be-0 bits are still 0. */
3006         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3007                 return -EINVAL;
3008
3009         *lowp = data;
3010         *highp = data >> 32;
3011         return 0;
3012 }
3013
3014 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3015 {
3016         const u64 feature_and_reserved_bits =
3017                 /* feature */
3018                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3019                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3020                 /* reserved */
3021                 GENMASK_ULL(13, 9) | BIT_ULL(31);
3022         u64 vmx_misc;
3023
3024         vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3025                                    vmx->nested.nested_vmx_misc_high);
3026
3027         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3028                 return -EINVAL;
3029
3030         if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3031              PIN_BASED_VMX_PREEMPTION_TIMER) &&
3032             vmx_misc_preemption_timer_rate(data) !=
3033             vmx_misc_preemption_timer_rate(vmx_misc))
3034                 return -EINVAL;
3035
3036         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3037                 return -EINVAL;
3038
3039         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3040                 return -EINVAL;
3041
3042         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3043                 return -EINVAL;
3044
3045         vmx->nested.nested_vmx_misc_low = data;
3046         vmx->nested.nested_vmx_misc_high = data >> 32;
3047         return 0;
3048 }
3049
3050 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3051 {
3052         u64 vmx_ept_vpid_cap;
3053
3054         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3055                                            vmx->nested.nested_vmx_vpid_caps);
3056
3057         /* Every bit is either reserved or a feature bit. */
3058         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3059                 return -EINVAL;
3060
3061         vmx->nested.nested_vmx_ept_caps = data;
3062         vmx->nested.nested_vmx_vpid_caps = data >> 32;
3063         return 0;
3064 }
3065
3066 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3067 {
3068         u64 *msr;
3069
3070         switch (msr_index) {
3071         case MSR_IA32_VMX_CR0_FIXED0:
3072                 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3073                 break;
3074         case MSR_IA32_VMX_CR4_FIXED0:
3075                 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3076                 break;
3077         default:
3078                 BUG();
3079         }
3080
3081         /*
3082          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3083          * must be 1 in the restored value.
3084          */
3085         if (!is_bitwise_subset(data, *msr, -1ULL))
3086                 return -EINVAL;
3087
3088         *msr = data;
3089         return 0;
3090 }
3091
3092 /*
3093  * Called when userspace is restoring VMX MSRs.
3094  *
3095  * Returns 0 on success, non-0 otherwise.
3096  */
3097 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3098 {
3099         struct vcpu_vmx *vmx = to_vmx(vcpu);
3100
3101         switch (msr_index) {
3102         case MSR_IA32_VMX_BASIC:
3103                 return vmx_restore_vmx_basic(vmx, data);
3104         case MSR_IA32_VMX_PINBASED_CTLS:
3105         case MSR_IA32_VMX_PROCBASED_CTLS:
3106         case MSR_IA32_VMX_EXIT_CTLS:
3107         case MSR_IA32_VMX_ENTRY_CTLS:
3108                 /*
3109                  * The "non-true" VMX capability MSRs are generated from the
3110                  * "true" MSRs, so we do not support restoring them directly.
3111                  *
3112                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3113                  * should restore the "true" MSRs with the must-be-1 bits
3114                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3115                  * DEFAULT SETTINGS".
3116                  */
3117                 return -EINVAL;
3118         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3119         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3120         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3121         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3122         case MSR_IA32_VMX_PROCBASED_CTLS2:
3123                 return vmx_restore_control_msr(vmx, msr_index, data);
3124         case MSR_IA32_VMX_MISC:
3125                 return vmx_restore_vmx_misc(vmx, data);
3126         case MSR_IA32_VMX_CR0_FIXED0:
3127         case MSR_IA32_VMX_CR4_FIXED0:
3128                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3129         case MSR_IA32_VMX_CR0_FIXED1:
3130         case MSR_IA32_VMX_CR4_FIXED1:
3131                 /*
3132                  * These MSRs are generated based on the vCPU's CPUID, so we
3133                  * do not support restoring them directly.
3134                  */
3135                 return -EINVAL;
3136         case MSR_IA32_VMX_EPT_VPID_CAP:
3137                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3138         case MSR_IA32_VMX_VMCS_ENUM:
3139                 vmx->nested.nested_vmx_vmcs_enum = data;
3140                 return 0;
3141         default:
3142                 /*
3143                  * The rest of the VMX capability MSRs do not support restore.
3144                  */
3145                 return -EINVAL;
3146         }
3147 }
3148
3149 /* Returns 0 on success, non-0 otherwise. */
3150 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3151 {
3152         struct vcpu_vmx *vmx = to_vmx(vcpu);
3153
3154         switch (msr_index) {
3155         case MSR_IA32_VMX_BASIC:
3156                 *pdata = vmx->nested.nested_vmx_basic;
3157                 break;
3158         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3159         case MSR_IA32_VMX_PINBASED_CTLS:
3160                 *pdata = vmx_control_msr(
3161                         vmx->nested.nested_vmx_pinbased_ctls_low,
3162                         vmx->nested.nested_vmx_pinbased_ctls_high);
3163                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3164                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3165                 break;
3166         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3167         case MSR_IA32_VMX_PROCBASED_CTLS:
3168                 *pdata = vmx_control_msr(
3169                         vmx->nested.nested_vmx_procbased_ctls_low,
3170                         vmx->nested.nested_vmx_procbased_ctls_high);
3171                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3172                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3173                 break;
3174         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3175         case MSR_IA32_VMX_EXIT_CTLS:
3176                 *pdata = vmx_control_msr(
3177                         vmx->nested.nested_vmx_exit_ctls_low,
3178                         vmx->nested.nested_vmx_exit_ctls_high);
3179                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3180                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3181                 break;
3182         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3183         case MSR_IA32_VMX_ENTRY_CTLS:
3184                 *pdata = vmx_control_msr(
3185                         vmx->nested.nested_vmx_entry_ctls_low,
3186                         vmx->nested.nested_vmx_entry_ctls_high);
3187                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3188                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3189                 break;
3190         case MSR_IA32_VMX_MISC:
3191                 *pdata = vmx_control_msr(
3192                         vmx->nested.nested_vmx_misc_low,
3193                         vmx->nested.nested_vmx_misc_high);
3194                 break;
3195         case MSR_IA32_VMX_CR0_FIXED0:
3196                 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3197                 break;
3198         case MSR_IA32_VMX_CR0_FIXED1:
3199                 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3200                 break;
3201         case MSR_IA32_VMX_CR4_FIXED0:
3202                 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3203                 break;
3204         case MSR_IA32_VMX_CR4_FIXED1:
3205                 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3206                 break;
3207         case MSR_IA32_VMX_VMCS_ENUM:
3208                 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3209                 break;
3210         case MSR_IA32_VMX_PROCBASED_CTLS2:
3211                 *pdata = vmx_control_msr(
3212                         vmx->nested.nested_vmx_secondary_ctls_low,
3213                         vmx->nested.nested_vmx_secondary_ctls_high);
3214                 break;
3215         case MSR_IA32_VMX_EPT_VPID_CAP:
3216                 *pdata = vmx->nested.nested_vmx_ept_caps |
3217                         ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3218                 break;
3219         case MSR_IA32_VMX_VMFUNC:
3220                 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3221                 break;
3222         default:
3223                 return 1;
3224         }
3225
3226         return 0;
3227 }
3228
3229 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3230                                                  uint64_t val)
3231 {
3232         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3233
3234         return !(val & ~valid_bits);
3235 }
3236
3237 /*
3238  * Reads an msr value (of 'msr_index') into 'pdata'.
3239  * Returns 0 on success, non-0 otherwise.
3240  * Assumes vcpu_load() was already called.
3241  */
3242 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3243 {
3244         struct shared_msr_entry *msr;
3245
3246         switch (msr_info->index) {
3247 #ifdef CONFIG_X86_64
3248         case MSR_FS_BASE:
3249                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3250                 break;
3251         case MSR_GS_BASE:
3252                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3253                 break;
3254         case MSR_KERNEL_GS_BASE:
3255                 vmx_load_host_state(to_vmx(vcpu));
3256                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3257                 break;
3258 #endif
3259         case MSR_EFER:
3260                 return kvm_get_msr_common(vcpu, msr_info);
3261         case MSR_IA32_TSC:
3262                 msr_info->data = guest_read_tsc(vcpu);
3263                 break;
3264         case MSR_IA32_SYSENTER_CS:
3265                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3266                 break;
3267         case MSR_IA32_SYSENTER_EIP:
3268                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3269                 break;
3270         case MSR_IA32_SYSENTER_ESP:
3271                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3272                 break;
3273         case MSR_IA32_BNDCFGS:
3274                 if (!kvm_mpx_supported() ||
3275                     (!msr_info->host_initiated &&
3276                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3277                         return 1;
3278                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3279                 break;
3280         case MSR_IA32_MCG_EXT_CTL:
3281                 if (!msr_info->host_initiated &&
3282                     !(to_vmx(vcpu)->msr_ia32_feature_control &
3283                       FEATURE_CONTROL_LMCE))
3284                         return 1;
3285                 msr_info->data = vcpu->arch.mcg_ext_ctl;
3286                 break;
3287         case MSR_IA32_FEATURE_CONTROL:
3288                 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3289                 break;
3290         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3291                 if (!nested_vmx_allowed(vcpu))
3292                         return 1;
3293                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3294         case MSR_IA32_XSS:
3295                 if (!vmx_xsaves_supported())
3296                         return 1;
3297                 msr_info->data = vcpu->arch.ia32_xss;
3298                 break;
3299         case MSR_TSC_AUX:
3300                 if (!msr_info->host_initiated &&
3301                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3302                         return 1;
3303                 /* Otherwise falls through */
3304         default:
3305                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3306                 if (msr) {
3307                         msr_info->data = msr->data;
3308                         break;
3309                 }
3310                 return kvm_get_msr_common(vcpu, msr_info);
3311         }
3312
3313         return 0;
3314 }
3315
3316 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3317
3318 /*
3319  * Writes msr value into into the appropriate "register".
3320  * Returns 0 on success, non-0 otherwise.
3321  * Assumes vcpu_load() was already called.
3322  */
3323 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3324 {
3325         struct vcpu_vmx *vmx = to_vmx(vcpu);
3326         struct shared_msr_entry *msr;
3327         int ret = 0;
3328         u32 msr_index = msr_info->index;
3329         u64 data = msr_info->data;
3330
3331         switch (msr_index) {
3332         case MSR_EFER:
3333                 ret = kvm_set_msr_common(vcpu, msr_info);
3334                 break;
3335 #ifdef CONFIG_X86_64
3336         case MSR_FS_BASE:
3337                 vmx_segment_cache_clear(vmx);
3338                 vmcs_writel(GUEST_FS_BASE, data);
3339                 break;
3340         case MSR_GS_BASE:
3341                 vmx_segment_cache_clear(vmx);
3342                 vmcs_writel(GUEST_GS_BASE, data);
3343                 break;
3344         case MSR_KERNEL_GS_BASE:
3345                 vmx_load_host_state(vmx);
3346                 vmx->msr_guest_kernel_gs_base = data;
3347                 break;
3348 #endif
3349         case MSR_IA32_SYSENTER_CS:
3350                 vmcs_write32(GUEST_SYSENTER_CS, data);
3351                 break;
3352         case MSR_IA32_SYSENTER_EIP:
3353                 vmcs_writel(GUEST_SYSENTER_EIP, data);
3354                 break;
3355         case MSR_IA32_SYSENTER_ESP:
3356                 vmcs_writel(GUEST_SYSENTER_ESP, data);
3357                 break;
3358         case MSR_IA32_BNDCFGS:
3359                 if (!kvm_mpx_supported() ||
3360                     (!msr_info->host_initiated &&
3361                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3362                         return 1;
3363                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
3364                     (data & MSR_IA32_BNDCFGS_RSVD))
3365                         return 1;
3366                 vmcs_write64(GUEST_BNDCFGS, data);
3367                 break;
3368         case MSR_IA32_TSC:
3369                 kvm_write_tsc(vcpu, msr_info);
3370                 break;
3371         case MSR_IA32_CR_PAT:
3372                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3373                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3374                                 return 1;
3375                         vmcs_write64(GUEST_IA32_PAT, data);
3376                         vcpu->arch.pat = data;
3377                         break;
3378                 }
3379                 ret = kvm_set_msr_common(vcpu, msr_info);
3380                 break;
3381         case MSR_IA32_TSC_ADJUST:
3382                 ret = kvm_set_msr_common(vcpu, msr_info);
3383                 break;
3384         case MSR_IA32_MCG_EXT_CTL:
3385                 if ((!msr_info->host_initiated &&
3386                      !(to_vmx(vcpu)->msr_ia32_feature_control &
3387                        FEATURE_CONTROL_LMCE)) ||
3388                     (data & ~MCG_EXT_CTL_LMCE_EN))
3389                         return 1;
3390                 vcpu->arch.mcg_ext_ctl = data;
3391                 break;
3392         case MSR_IA32_FEATURE_CONTROL:
3393                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3394                     (to_vmx(vcpu)->msr_ia32_feature_control &
3395                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3396                         return 1;
3397                 vmx->msr_ia32_feature_control = data;
3398                 if (msr_info->host_initiated && data == 0)
3399                         vmx_leave_nested(vcpu);
3400                 break;
3401         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3402                 if (!msr_info->host_initiated)
3403                         return 1; /* they are read-only */
3404                 if (!nested_vmx_allowed(vcpu))
3405                         return 1;
3406                 return vmx_set_vmx_msr(vcpu, msr_index, data);
3407         case MSR_IA32_XSS:
3408                 if (!vmx_xsaves_supported())
3409                         return 1;
3410                 /*
3411                  * The only supported bit as of Skylake is bit 8, but
3412                  * it is not supported on KVM.
3413                  */
3414                 if (data != 0)
3415                         return 1;
3416                 vcpu->arch.ia32_xss = data;
3417                 if (vcpu->arch.ia32_xss != host_xss)
3418                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3419                                 vcpu->arch.ia32_xss, host_xss);
3420                 else
3421                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3422                 break;
3423         case MSR_TSC_AUX:
3424                 if (!msr_info->host_initiated &&
3425                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3426                         return 1;
3427                 /* Check reserved bit, higher 32 bits should be zero */
3428                 if ((data >> 32) != 0)
3429                         return 1;
3430                 /* Otherwise falls through */
3431         default:
3432                 msr = find_msr_entry(vmx, msr_index);
3433                 if (msr) {
3434                         u64 old_msr_data = msr->data;
3435                         msr->data = data;
3436                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3437                                 preempt_disable();
3438                                 ret = kvm_set_shared_msr(msr->index, msr->data,
3439                                                          msr->mask);
3440                                 preempt_enable();
3441                                 if (ret)
3442                                         msr->data = old_msr_data;
3443                         }
3444                         break;
3445                 }
3446                 ret = kvm_set_msr_common(vcpu, msr_info);
3447         }
3448
3449         return ret;
3450 }
3451
3452 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3453 {
3454         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3455         switch (reg) {
3456         case VCPU_REGS_RSP:
3457                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3458                 break;
3459         case VCPU_REGS_RIP:
3460                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3461                 break;
3462         case VCPU_EXREG_PDPTR:
3463                 if (enable_ept)
3464                         ept_save_pdptrs(vcpu);
3465                 break;
3466         default:
3467                 break;
3468         }
3469 }
3470
3471 static __init int cpu_has_kvm_support(void)
3472 {
3473         return cpu_has_vmx();
3474 }
3475
3476 static __init int vmx_disabled_by_bios(void)
3477 {
3478         u64 msr;
3479
3480         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3481         if (msr & FEATURE_CONTROL_LOCKED) {
3482                 /* launched w/ TXT and VMX disabled */
3483                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3484                         && tboot_enabled())
3485                         return 1;
3486                 /* launched w/o TXT and VMX only enabled w/ TXT */
3487                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3488                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3489                         && !tboot_enabled()) {
3490                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3491                                 "activate TXT before enabling KVM\n");
3492                         return 1;
3493                 }
3494                 /* launched w/o TXT and VMX disabled */
3495                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3496                         && !tboot_enabled())
3497                         return 1;
3498         }
3499
3500         return 0;
3501 }
3502
3503 static void kvm_cpu_vmxon(u64 addr)
3504 {
3505         cr4_set_bits(X86_CR4_VMXE);
3506         intel_pt_handle_vmx(1);
3507
3508         asm volatile (ASM_VMX_VMXON_RAX
3509                         : : "a"(&addr), "m"(addr)
3510                         : "memory", "cc");
3511 }
3512
3513 static int hardware_enable(void)
3514 {
3515         int cpu = raw_smp_processor_id();
3516         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3517         u64 old, test_bits;
3518
3519         if (cr4_read_shadow() & X86_CR4_VMXE)
3520                 return -EBUSY;
3521
3522         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3523         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3524         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3525
3526         /*
3527          * Now we can enable the vmclear operation in kdump
3528          * since the loaded_vmcss_on_cpu list on this cpu
3529          * has been initialized.
3530          *
3531          * Though the cpu is not in VMX operation now, there
3532          * is no problem to enable the vmclear operation
3533          * for the loaded_vmcss_on_cpu list is empty!
3534          */
3535         crash_enable_local_vmclear(cpu);
3536
3537         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3538
3539         test_bits = FEATURE_CONTROL_LOCKED;
3540         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3541         if (tboot_enabled())
3542                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3543
3544         if ((old & test_bits) != test_bits) {
3545                 /* enable and lock */
3546                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3547         }
3548         kvm_cpu_vmxon(phys_addr);
3549         ept_sync_global();
3550
3551         return 0;
3552 }
3553
3554 static void vmclear_local_loaded_vmcss(void)
3555 {
3556         int cpu = raw_smp_processor_id();
3557         struct loaded_vmcs *v, *n;
3558
3559         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3560                                  loaded_vmcss_on_cpu_link)
3561                 __loaded_vmcs_clear(v);
3562 }
3563
3564
3565 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3566  * tricks.
3567  */
3568 static void kvm_cpu_vmxoff(void)
3569 {
3570         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3571
3572         intel_pt_handle_vmx(0);
3573         cr4_clear_bits(X86_CR4_VMXE);
3574 }
3575
3576 static void hardware_disable(void)
3577 {
3578         vmclear_local_loaded_vmcss();
3579         kvm_cpu_vmxoff();
3580 }
3581
3582 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3583                                       u32 msr, u32 *result)
3584 {
3585         u32 vmx_msr_low, vmx_msr_high;
3586         u32 ctl = ctl_min | ctl_opt;
3587
3588         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3589
3590         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3591         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3592
3593         /* Ensure minimum (required) set of control bits are supported. */
3594         if (ctl_min & ~ctl)
3595                 return -EIO;
3596
3597         *result = ctl;
3598         return 0;
3599 }
3600
3601 static __init bool allow_1_setting(u32 msr, u32 ctl)
3602 {
3603         u32 vmx_msr_low, vmx_msr_high;
3604
3605         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3606         return vmx_msr_high & ctl;
3607 }
3608
3609 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3610 {
3611         u32 vmx_msr_low, vmx_msr_high;
3612         u32 min, opt, min2, opt2;
3613         u32 _pin_based_exec_control = 0;
3614         u32 _cpu_based_exec_control = 0;
3615         u32 _cpu_based_2nd_exec_control = 0;
3616         u32 _vmexit_control = 0;
3617         u32 _vmentry_control = 0;
3618
3619         min = CPU_BASED_HLT_EXITING |
3620 #ifdef CONFIG_X86_64
3621               CPU_BASED_CR8_LOAD_EXITING |
3622               CPU_BASED_CR8_STORE_EXITING |
3623 #endif
3624               CPU_BASED_CR3_LOAD_EXITING |
3625               CPU_BASED_CR3_STORE_EXITING |
3626               CPU_BASED_USE_IO_BITMAPS |
3627               CPU_BASED_MOV_DR_EXITING |
3628               CPU_BASED_USE_TSC_OFFSETING |
3629               CPU_BASED_INVLPG_EXITING |
3630               CPU_BASED_RDPMC_EXITING;
3631
3632         if (!kvm_mwait_in_guest())
3633                 min |= CPU_BASED_MWAIT_EXITING |
3634                         CPU_BASED_MONITOR_EXITING;
3635
3636         opt = CPU_BASED_TPR_SHADOW |
3637               CPU_BASED_USE_MSR_BITMAPS |
3638               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3639         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3640                                 &_cpu_based_exec_control) < 0)
3641                 return -EIO;
3642 #ifdef CONFIG_X86_64
3643         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3644                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3645                                            ~CPU_BASED_CR8_STORE_EXITING;
3646 #endif
3647         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3648                 min2 = 0;
3649                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3650                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3651                         SECONDARY_EXEC_WBINVD_EXITING |
3652                         SECONDARY_EXEC_ENABLE_VPID |
3653                         SECONDARY_EXEC_ENABLE_EPT |
3654                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3655                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3656                         SECONDARY_EXEC_RDTSCP |
3657                         SECONDARY_EXEC_ENABLE_INVPCID |
3658                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3659                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3660                         SECONDARY_EXEC_SHADOW_VMCS |
3661                         SECONDARY_EXEC_XSAVES |
3662                         SECONDARY_EXEC_RDSEED |
3663                         SECONDARY_EXEC_RDRAND |
3664                         SECONDARY_EXEC_ENABLE_PML |
3665                         SECONDARY_EXEC_TSC_SCALING |
3666                         SECONDARY_EXEC_ENABLE_VMFUNC;
3667                 if (adjust_vmx_controls(min2, opt2,
3668                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3669                                         &_cpu_based_2nd_exec_control) < 0)
3670                         return -EIO;
3671         }
3672 #ifndef CONFIG_X86_64
3673         if (!(_cpu_based_2nd_exec_control &
3674                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3675                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3676 #endif
3677
3678         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3679                 _cpu_based_2nd_exec_control &= ~(
3680                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3681                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3682                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3683
3684         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3685                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3686                    enabled */
3687                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3688                                              CPU_BASED_CR3_STORE_EXITING |
3689                                              CPU_BASED_INVLPG_EXITING);
3690                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3691                       vmx_capability.ept, vmx_capability.vpid);
3692         }
3693
3694         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3695 #ifdef CONFIG_X86_64
3696         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3697 #endif
3698         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3699                 VM_EXIT_CLEAR_BNDCFGS;
3700         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3701                                 &_vmexit_control) < 0)
3702                 return -EIO;
3703
3704         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3705                 PIN_BASED_VIRTUAL_NMIS;
3706         opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
3707         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3708                                 &_pin_based_exec_control) < 0)
3709                 return -EIO;
3710
3711         if (cpu_has_broken_vmx_preemption_timer())
3712                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3713         if (!(_cpu_based_2nd_exec_control &
3714                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3715                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3716
3717         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3718         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3719         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3720                                 &_vmentry_control) < 0)
3721                 return -EIO;
3722
3723         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3724
3725         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3726         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3727                 return -EIO;
3728
3729 #ifdef CONFIG_X86_64
3730         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3731         if (vmx_msr_high & (1u<<16))
3732                 return -EIO;
3733 #endif
3734
3735         /* Require Write-Back (WB) memory type for VMCS accesses. */
3736         if (((vmx_msr_high >> 18) & 15) != 6)
3737                 return -EIO;
3738
3739         vmcs_conf->size = vmx_msr_high & 0x1fff;
3740         vmcs_conf->order = get_order(vmcs_conf->size);
3741         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3742         vmcs_conf->revision_id = vmx_msr_low;
3743
3744         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3745         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3746         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3747         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3748         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3749
3750         cpu_has_load_ia32_efer =
3751                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3752                                 VM_ENTRY_LOAD_IA32_EFER)
3753                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3754                                    VM_EXIT_LOAD_IA32_EFER);
3755
3756         cpu_has_load_perf_global_ctrl =
3757                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3758                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3759                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3760                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3761
3762         /*
3763          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3764          * but due to errata below it can't be used. Workaround is to use
3765          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3766          *
3767          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3768          *
3769          * AAK155             (model 26)
3770          * AAP115             (model 30)
3771          * AAT100             (model 37)
3772          * BC86,AAY89,BD102   (model 44)
3773          * BA97               (model 46)
3774          *
3775          */
3776         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3777                 switch (boot_cpu_data.x86_model) {
3778                 case 26:
3779                 case 30:
3780                 case 37:
3781                 case 44:
3782                 case 46:
3783                         cpu_has_load_perf_global_ctrl = false;
3784                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3785                                         "does not work properly. Using workaround\n");
3786                         break;
3787                 default:
3788                         break;
3789                 }
3790         }
3791
3792         if (boot_cpu_has(X86_FEATURE_XSAVES))
3793                 rdmsrl(MSR_IA32_XSS, host_xss);
3794
3795         return 0;
3796 }
3797
3798 static struct vmcs *alloc_vmcs_cpu(int cpu)
3799 {
3800         int node = cpu_to_node(cpu);
3801         struct page *pages;
3802         struct vmcs *vmcs;
3803
3804         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3805         if (!pages)
3806                 return NULL;
3807         vmcs = page_address(pages);
3808         memset(vmcs, 0, vmcs_config.size);
3809         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3810         return vmcs;
3811 }
3812
3813 static struct vmcs *alloc_vmcs(void)
3814 {
3815         return alloc_vmcs_cpu(raw_smp_processor_id());
3816 }
3817
3818 static void free_vmcs(struct vmcs *vmcs)
3819 {
3820         free_pages((unsigned long)vmcs, vmcs_config.order);
3821 }
3822
3823 /*
3824  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3825  */
3826 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3827 {
3828         if (!loaded_vmcs->vmcs)
3829                 return;
3830         loaded_vmcs_clear(loaded_vmcs);
3831         free_vmcs(loaded_vmcs->vmcs);
3832         loaded_vmcs->vmcs = NULL;
3833         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3834 }
3835
3836 static void free_kvm_area(void)
3837 {
3838         int cpu;
3839
3840         for_each_possible_cpu(cpu) {
3841                 free_vmcs(per_cpu(vmxarea, cpu));
3842                 per_cpu(vmxarea, cpu) = NULL;
3843         }
3844 }
3845
3846 enum vmcs_field_type {
3847         VMCS_FIELD_TYPE_U16 = 0,
3848         VMCS_FIELD_TYPE_U64 = 1,
3849         VMCS_FIELD_TYPE_U32 = 2,
3850         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3851 };
3852
3853 static inline int vmcs_field_type(unsigned long field)
3854 {
3855         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
3856                 return VMCS_FIELD_TYPE_U32;
3857         return (field >> 13) & 0x3 ;
3858 }
3859
3860 static inline int vmcs_field_readonly(unsigned long field)
3861 {
3862         return (((field >> 10) & 0x3) == 1);
3863 }
3864
3865 static void init_vmcs_shadow_fields(void)
3866 {
3867         int i, j;
3868
3869         /* No checks for read only fields yet */
3870
3871         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3872                 switch (shadow_read_write_fields[i]) {
3873                 case GUEST_BNDCFGS:
3874                         if (!kvm_mpx_supported())
3875                                 continue;
3876                         break;
3877                 default:
3878                         break;
3879                 }
3880
3881                 if (j < i)
3882                         shadow_read_write_fields[j] =
3883                                 shadow_read_write_fields[i];
3884                 j++;
3885         }
3886         max_shadow_read_write_fields = j;
3887
3888         /* shadowed fields guest access without vmexit */
3889         for (i = 0; i < max_shadow_read_write_fields; i++) {
3890                 unsigned long field = shadow_read_write_fields[i];
3891
3892                 clear_bit(field, vmx_vmwrite_bitmap);
3893                 clear_bit(field, vmx_vmread_bitmap);
3894                 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3895                         clear_bit(field + 1, vmx_vmwrite_bitmap);
3896                         clear_bit(field + 1, vmx_vmread_bitmap);
3897                 }
3898         }
3899         for (i = 0; i < max_shadow_read_only_fields; i++) {
3900                 unsigned long field = shadow_read_only_fields[i];
3901
3902                 clear_bit(field, vmx_vmread_bitmap);
3903                 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3904                         clear_bit(field + 1, vmx_vmread_bitmap);
3905         }
3906 }
3907
3908 static __init int alloc_kvm_area(void)
3909 {
3910         int cpu;
3911
3912         for_each_possible_cpu(cpu) {
3913                 struct vmcs *vmcs;
3914
3915                 vmcs = alloc_vmcs_cpu(cpu);
3916                 if (!vmcs) {
3917                         free_kvm_area();
3918                         return -ENOMEM;
3919                 }
3920
3921                 per_cpu(vmxarea, cpu) = vmcs;
3922         }
3923         return 0;
3924 }
3925
3926 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3927                 struct kvm_segment *save)
3928 {
3929         if (!emulate_invalid_guest_state) {
3930                 /*
3931                  * CS and SS RPL should be equal during guest entry according
3932                  * to VMX spec, but in reality it is not always so. Since vcpu
3933                  * is in the middle of the transition from real mode to
3934                  * protected mode it is safe to assume that RPL 0 is a good
3935                  * default value.
3936                  */
3937                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3938                         save->selector &= ~SEGMENT_RPL_MASK;
3939                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3940                 save->s = 1;
3941         }
3942         vmx_set_segment(vcpu, save, seg);
3943 }
3944
3945 static void enter_pmode(struct kvm_vcpu *vcpu)
3946 {
3947         unsigned long flags;
3948         struct vcpu_vmx *vmx = to_vmx(vcpu);
3949
3950         /*
3951          * Update real mode segment cache. It may be not up-to-date if sement
3952          * register was written while vcpu was in a guest mode.
3953          */
3954         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3955         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3956         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3957         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3958         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3959         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3960
3961         vmx->rmode.vm86_active = 0;
3962
3963         vmx_segment_cache_clear(vmx);
3964
3965         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3966
3967         flags = vmcs_readl(GUEST_RFLAGS);
3968         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3969         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3970         vmcs_writel(GUEST_RFLAGS, flags);
3971
3972         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3973                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3974
3975         update_exception_bitmap(vcpu);
3976
3977         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3978         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3979         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3980         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3981         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3982         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3983 }
3984
3985 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3986 {
3987         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3988         struct kvm_segment var = *save;
3989
3990         var.dpl = 0x3;
3991         if (seg == VCPU_SREG_CS)
3992                 var.type = 0x3;
3993
3994         if (!emulate_invalid_guest_state) {
3995                 var.selector = var.base >> 4;
3996                 var.base = var.base & 0xffff0;
3997                 var.limit = 0xffff;
3998                 var.g = 0;
3999                 var.db = 0;
4000                 var.present = 1;
4001                 var.s = 1;
4002                 var.l = 0;
4003                 var.unusable = 0;
4004                 var.type = 0x3;
4005                 var.avl = 0;
4006                 if (save->base & 0xf)
4007                         printk_once(KERN_WARNING "kvm: segment base is not "
4008                                         "paragraph aligned when entering "
4009                                         "protected mode (seg=%d)", seg);
4010         }
4011
4012         vmcs_write16(sf->selector, var.selector);
4013         vmcs_writel(sf->base, var.base);
4014         vmcs_write32(sf->limit, var.limit);
4015         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
4016 }
4017
4018 static void enter_rmode(struct kvm_vcpu *vcpu)
4019 {
4020         unsigned long flags;
4021         struct vcpu_vmx *vmx = to_vmx(vcpu);
4022
4023         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4024         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4025         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4026         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4027         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4028         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4029         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4030
4031         vmx->rmode.vm86_active = 1;
4032
4033         /*
4034          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4035          * vcpu. Warn the user that an update is overdue.
4036          */
4037         if (!vcpu->kvm->arch.tss_addr)
4038                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4039                              "called before entering vcpu\n");
4040
4041         vmx_segment_cache_clear(vmx);
4042
4043         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
4044         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
4045         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4046
4047         flags = vmcs_readl(GUEST_RFLAGS);
4048         vmx->rmode.save_rflags = flags;
4049
4050         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
4051
4052         vmcs_writel(GUEST_RFLAGS, flags);
4053         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
4054         update_exception_bitmap(vcpu);
4055
4056         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4057         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4058         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4059         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4060         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4061         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4062
4063         kvm_mmu_reset_context(vcpu);
4064 }
4065
4066 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4067 {
4068         struct vcpu_vmx *vmx = to_vmx(vcpu);
4069         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4070
4071         if (!msr)
4072                 return;
4073
4074         /*
4075          * Force kernel_gs_base reloading before EFER changes, as control
4076          * of this msr depends on is_long_mode().
4077          */
4078         vmx_load_host_state(to_vmx(vcpu));
4079         vcpu->arch.efer = efer;
4080         if (efer & EFER_LMA) {
4081                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4082                 msr->data = efer;
4083         } else {
4084                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4085
4086                 msr->data = efer & ~EFER_LME;
4087         }
4088         setup_msrs(vmx);
4089 }
4090
4091 #ifdef CONFIG_X86_64
4092
4093 static void enter_lmode(struct kvm_vcpu *vcpu)
4094 {
4095         u32 guest_tr_ar;
4096
4097         vmx_segment_cache_clear(to_vmx(vcpu));
4098
4099         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4100         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4101                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4102                                      __func__);
4103                 vmcs_write32(GUEST_TR_AR_BYTES,
4104                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4105                              | VMX_AR_TYPE_BUSY_64_TSS);
4106         }
4107         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4108 }
4109
4110 static void exit_lmode(struct kvm_vcpu *vcpu)
4111 {
4112         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4113         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4114 }
4115
4116 #endif
4117
4118 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4119 {
4120         if (enable_ept) {
4121                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4122                         return;
4123                 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4124         } else {
4125                 vpid_sync_context(vpid);
4126         }
4127 }
4128
4129 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4130 {
4131         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4132 }
4133
4134 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4135 {
4136         if (enable_ept)
4137                 vmx_flush_tlb(vcpu);
4138 }
4139
4140 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4141 {
4142         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4143
4144         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4145         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4146 }
4147
4148 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4149 {
4150         if (enable_ept && is_paging(vcpu))
4151                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4152         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4153 }
4154
4155 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4156 {
4157         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4158
4159         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4160         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4161 }
4162
4163 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4164 {
4165         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4166
4167         if (!test_bit(VCPU_EXREG_PDPTR,
4168                       (unsigned long *)&vcpu->arch.regs_dirty))
4169                 return;
4170
4171         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4172                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4173                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4174                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4175                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4176         }
4177 }
4178
4179 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4180 {
4181         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4182
4183         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4184                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4185                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4186                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4187                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4188         }
4189
4190         __set_bit(VCPU_EXREG_PDPTR,
4191                   (unsigned long *)&vcpu->arch.regs_avail);
4192         __set_bit(VCPU_EXREG_PDPTR,
4193                   (unsigned long *)&vcpu->arch.regs_dirty);
4194 }
4195
4196 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4197 {
4198         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4199         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4200         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4201
4202         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4203                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4204             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4205                 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4206
4207         return fixed_bits_valid(val, fixed0, fixed1);
4208 }
4209
4210 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4211 {
4212         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4213         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4214
4215         return fixed_bits_valid(val, fixed0, fixed1);
4216 }
4217
4218 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4219 {
4220         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4221         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4222
4223         return fixed_bits_valid(val, fixed0, fixed1);
4224 }
4225
4226 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4227 #define nested_guest_cr4_valid  nested_cr4_valid
4228 #define nested_host_cr4_valid   nested_cr4_valid
4229
4230 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4231
4232 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4233                                         unsigned long cr0,
4234                                         struct kvm_vcpu *vcpu)
4235 {
4236         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4237                 vmx_decache_cr3(vcpu);
4238         if (!(cr0 & X86_CR0_PG)) {
4239                 /* From paging/starting to nonpaging */
4240                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4241                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4242                              (CPU_BASED_CR3_LOAD_EXITING |
4243                               CPU_BASED_CR3_STORE_EXITING));
4244                 vcpu->arch.cr0 = cr0;
4245                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4246         } else if (!is_paging(vcpu)) {
4247                 /* From nonpaging to paging */
4248                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4249                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4250                              ~(CPU_BASED_CR3_LOAD_EXITING |
4251                                CPU_BASED_CR3_STORE_EXITING));
4252                 vcpu->arch.cr0 = cr0;
4253                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4254         }
4255
4256         if (!(cr0 & X86_CR0_WP))
4257                 *hw_cr0 &= ~X86_CR0_WP;
4258 }
4259
4260 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4261 {
4262         struct vcpu_vmx *vmx = to_vmx(vcpu);
4263         unsigned long hw_cr0;
4264
4265         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4266         if (enable_unrestricted_guest)
4267                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4268         else {
4269                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4270
4271                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4272                         enter_pmode(vcpu);
4273
4274                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4275                         enter_rmode(vcpu);
4276         }
4277
4278 #ifdef CONFIG_X86_64
4279         if (vcpu->arch.efer & EFER_LME) {
4280                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4281                         enter_lmode(vcpu);
4282                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4283                         exit_lmode(vcpu);
4284         }
4285 #endif
4286
4287         if (enable_ept)
4288                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4289
4290         vmcs_writel(CR0_READ_SHADOW, cr0);
4291         vmcs_writel(GUEST_CR0, hw_cr0);
4292         vcpu->arch.cr0 = cr0;
4293
4294         /* depends on vcpu->arch.cr0 to be set to a new value */
4295         vmx->emulation_required = emulation_required(vcpu);
4296 }
4297
4298 static int get_ept_level(struct kvm_vcpu *vcpu)
4299 {
4300         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4301                 return 5;
4302         return 4;
4303 }
4304
4305 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4306 {
4307         u64 eptp = VMX_EPTP_MT_WB;
4308
4309         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
4310
4311         if (enable_ept_ad_bits &&
4312             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4313                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
4314         eptp |= (root_hpa & PAGE_MASK);
4315
4316         return eptp;
4317 }
4318
4319 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4320 {
4321         unsigned long guest_cr3;
4322         u64 eptp;
4323
4324         guest_cr3 = cr3;
4325         if (enable_ept) {
4326                 eptp = construct_eptp(vcpu, cr3);
4327                 vmcs_write64(EPT_POINTER, eptp);
4328                 if (is_paging(vcpu) || is_guest_mode(vcpu))
4329                         guest_cr3 = kvm_read_cr3(vcpu);
4330                 else
4331                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4332                 ept_load_pdptrs(vcpu);
4333         }
4334
4335         vmx_flush_tlb(vcpu);
4336         vmcs_writel(GUEST_CR3, guest_cr3);
4337 }
4338
4339 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4340 {
4341         /*
4342          * Pass through host's Machine Check Enable value to hw_cr4, which
4343          * is in force while we are in guest mode.  Do not let guests control
4344          * this bit, even if host CR4.MCE == 0.
4345          */
4346         unsigned long hw_cr4 =
4347                 (cr4_read_shadow() & X86_CR4_MCE) |
4348                 (cr4 & ~X86_CR4_MCE) |
4349                 (to_vmx(vcpu)->rmode.vm86_active ?
4350                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4351
4352         if (cr4 & X86_CR4_VMXE) {
4353                 /*
4354                  * To use VMXON (and later other VMX instructions), a guest
4355                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
4356                  * So basically the check on whether to allow nested VMX
4357                  * is here.
4358                  */
4359                 if (!nested_vmx_allowed(vcpu))
4360                         return 1;
4361         }
4362
4363         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4364                 return 1;
4365
4366         vcpu->arch.cr4 = cr4;
4367         if (enable_ept) {
4368                 if (!is_paging(vcpu)) {
4369                         hw_cr4 &= ~X86_CR4_PAE;
4370                         hw_cr4 |= X86_CR4_PSE;
4371                 } else if (!(cr4 & X86_CR4_PAE)) {
4372                         hw_cr4 &= ~X86_CR4_PAE;
4373                 }
4374         }
4375
4376         if (!enable_unrestricted_guest && !is_paging(vcpu))
4377                 /*
4378                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4379                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
4380                  * to be manually disabled when guest switches to non-paging
4381                  * mode.
4382                  *
4383                  * If !enable_unrestricted_guest, the CPU is always running
4384                  * with CR0.PG=1 and CR4 needs to be modified.
4385                  * If enable_unrestricted_guest, the CPU automatically
4386                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4387                  */
4388                 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4389
4390         vmcs_writel(CR4_READ_SHADOW, cr4);
4391         vmcs_writel(GUEST_CR4, hw_cr4);
4392         return 0;
4393 }
4394
4395 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4396                             struct kvm_segment *var, int seg)
4397 {
4398         struct vcpu_vmx *vmx = to_vmx(vcpu);
4399         u32 ar;
4400
4401         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4402                 *var = vmx->rmode.segs[seg];
4403                 if (seg == VCPU_SREG_TR
4404                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4405                         return;
4406                 var->base = vmx_read_guest_seg_base(vmx, seg);
4407                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4408                 return;
4409         }
4410         var->base = vmx_read_guest_seg_base(vmx, seg);
4411         var->limit = vmx_read_guest_seg_limit(vmx, seg);
4412         var->selector = vmx_read_guest_seg_selector(vmx, seg);
4413         ar = vmx_read_guest_seg_ar(vmx, seg);
4414         var->unusable = (ar >> 16) & 1;
4415         var->type = ar & 15;
4416         var->s = (ar >> 4) & 1;
4417         var->dpl = (ar >> 5) & 3;
4418         /*
4419          * Some userspaces do not preserve unusable property. Since usable
4420          * segment has to be present according to VMX spec we can use present
4421          * property to amend userspace bug by making unusable segment always
4422          * nonpresent. vmx_segment_access_rights() already marks nonpresent
4423          * segment as unusable.
4424          */
4425         var->present = !var->unusable;
4426         var->avl = (ar >> 12) & 1;
4427         var->l = (ar >> 13) & 1;
4428         var->db = (ar >> 14) & 1;
4429         var->g = (ar >> 15) & 1;
4430 }
4431
4432 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4433 {
4434         struct kvm_segment s;
4435
4436         if (to_vmx(vcpu)->rmode.vm86_active) {
4437                 vmx_get_segment(vcpu, &s, seg);
4438                 return s.base;
4439         }
4440         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4441 }
4442
4443 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4444 {
4445         struct vcpu_vmx *vmx = to_vmx(vcpu);
4446
4447         if (unlikely(vmx->rmode.vm86_active))
4448                 return 0;
4449         else {
4450                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4451                 return VMX_AR_DPL(ar);
4452         }
4453 }
4454
4455 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4456 {
4457         u32 ar;
4458
4459         if (var->unusable || !var->present)
4460                 ar = 1 << 16;
4461         else {
4462                 ar = var->type & 15;
4463                 ar |= (var->s & 1) << 4;
4464                 ar |= (var->dpl & 3) << 5;
4465                 ar |= (var->present & 1) << 7;
4466                 ar |= (var->avl & 1) << 12;
4467                 ar |= (var->l & 1) << 13;
4468                 ar |= (var->db & 1) << 14;
4469                 ar |= (var->g & 1) << 15;
4470         }
4471
4472         return ar;
4473 }
4474
4475 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4476                             struct kvm_segment *var, int seg)
4477 {
4478         struct vcpu_vmx *vmx = to_vmx(vcpu);
4479         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4480
4481         vmx_segment_cache_clear(vmx);
4482
4483         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4484                 vmx->rmode.segs[seg] = *var;
4485                 if (seg == VCPU_SREG_TR)
4486                         vmcs_write16(sf->selector, var->selector);
4487                 else if (var->s)
4488                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4489                 goto out;
4490         }
4491
4492         vmcs_writel(sf->base, var->base);
4493         vmcs_write32(sf->limit, var->limit);
4494         vmcs_write16(sf->selector, var->selector);
4495
4496         /*
4497          *   Fix the "Accessed" bit in AR field of segment registers for older
4498          * qemu binaries.
4499          *   IA32 arch specifies that at the time of processor reset the
4500          * "Accessed" bit in the AR field of segment registers is 1. And qemu
4501          * is setting it to 0 in the userland code. This causes invalid guest
4502          * state vmexit when "unrestricted guest" mode is turned on.
4503          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4504          * tree. Newer qemu binaries with that qemu fix would not need this
4505          * kvm hack.
4506          */
4507         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4508                 var->type |= 0x1; /* Accessed */
4509
4510         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4511
4512 out:
4513         vmx->emulation_required = emulation_required(vcpu);
4514 }
4515
4516 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4517 {
4518         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4519
4520         *db = (ar >> 14) & 1;
4521         *l = (ar >> 13) & 1;
4522 }
4523
4524 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4525 {
4526         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4527         dt->address = vmcs_readl(GUEST_IDTR_BASE);
4528 }
4529
4530 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4531 {
4532         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4533         vmcs_writel(GUEST_IDTR_BASE, dt->address);
4534 }
4535
4536 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4537 {
4538         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4539         dt->address = vmcs_readl(GUEST_GDTR_BASE);
4540 }
4541
4542 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4543 {
4544         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4545         vmcs_writel(GUEST_GDTR_BASE, dt->address);
4546 }
4547
4548 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4549 {
4550         struct kvm_segment var;
4551         u32 ar;
4552
4553         vmx_get_segment(vcpu, &var, seg);
4554         var.dpl = 0x3;
4555         if (seg == VCPU_SREG_CS)
4556                 var.type = 0x3;
4557         ar = vmx_segment_access_rights(&var);
4558
4559         if (var.base != (var.selector << 4))
4560                 return false;
4561         if (var.limit != 0xffff)
4562                 return false;
4563         if (ar != 0xf3)
4564                 return false;
4565
4566         return true;
4567 }
4568
4569 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4570 {
4571         struct kvm_segment cs;
4572         unsigned int cs_rpl;
4573
4574         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4575         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4576
4577         if (cs.unusable)
4578                 return false;
4579         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4580                 return false;
4581         if (!cs.s)
4582                 return false;
4583         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4584                 if (cs.dpl > cs_rpl)
4585                         return false;
4586         } else {
4587                 if (cs.dpl != cs_rpl)
4588                         return false;
4589         }
4590         if (!cs.present)
4591                 return false;
4592
4593         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4594         return true;
4595 }
4596
4597 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4598 {
4599         struct kvm_segment ss;
4600         unsigned int ss_rpl;
4601
4602         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4603         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4604
4605         if (ss.unusable)
4606                 return true;
4607         if (ss.type != 3 && ss.type != 7)
4608                 return false;
4609         if (!ss.s)
4610                 return false;
4611         if (ss.dpl != ss_rpl) /* DPL != RPL */
4612                 return false;
4613         if (!ss.present)
4614                 return false;
4615
4616         return true;
4617 }
4618
4619 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4620 {
4621         struct kvm_segment var;
4622         unsigned int rpl;
4623
4624         vmx_get_segment(vcpu, &var, seg);
4625         rpl = var.selector & SEGMENT_RPL_MASK;
4626
4627         if (var.unusable)
4628                 return true;
4629         if (!var.s)
4630                 return false;
4631         if (!var.present)
4632                 return false;
4633         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4634                 if (var.dpl < rpl) /* DPL < RPL */
4635                         return false;
4636         }
4637
4638         /* TODO: Add other members to kvm_segment_field to allow checking for other access
4639          * rights flags
4640          */
4641         return true;
4642 }
4643
4644 static bool tr_valid(struct kvm_vcpu *vcpu)
4645 {
4646         struct kvm_segment tr;
4647
4648         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4649
4650         if (tr.unusable)
4651                 return false;
4652         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4653                 return false;
4654         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4655                 return false;
4656         if (!tr.present)
4657                 return false;
4658
4659         return true;
4660 }
4661
4662 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4663 {
4664         struct kvm_segment ldtr;
4665
4666         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4667
4668         if (ldtr.unusable)
4669                 return true;
4670         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4671                 return false;
4672         if (ldtr.type != 2)
4673                 return false;
4674         if (!ldtr.present)
4675                 return false;
4676
4677         return true;
4678 }
4679
4680 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4681 {
4682         struct kvm_segment cs, ss;
4683
4684         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4685         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4686
4687         return ((cs.selector & SEGMENT_RPL_MASK) ==
4688                  (ss.selector & SEGMENT_RPL_MASK));
4689 }
4690
4691 /*
4692  * Check if guest state is valid. Returns true if valid, false if
4693  * not.
4694  * We assume that registers are always usable
4695  */
4696 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4697 {
4698         if (enable_unrestricted_guest)
4699                 return true;
4700
4701         /* real mode guest state checks */
4702         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4703                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4704                         return false;
4705                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4706                         return false;
4707                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4708                         return false;
4709                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4710                         return false;
4711                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4712                         return false;
4713                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4714                         return false;
4715         } else {
4716         /* protected mode guest state checks */
4717                 if (!cs_ss_rpl_check(vcpu))
4718                         return false;
4719                 if (!code_segment_valid(vcpu))
4720                         return false;
4721                 if (!stack_segment_valid(vcpu))
4722                         return false;
4723                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4724                         return false;
4725                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4726                         return false;
4727                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4728                         return false;
4729                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4730                         return false;
4731                 if (!tr_valid(vcpu))
4732                         return false;
4733                 if (!ldtr_valid(vcpu))
4734                         return false;
4735         }
4736         /* TODO:
4737          * - Add checks on RIP
4738          * - Add checks on RFLAGS
4739          */
4740
4741         return true;
4742 }
4743
4744 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4745 {
4746         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4747 }
4748
4749 static int init_rmode_tss(struct kvm *kvm)
4750 {
4751         gfn_t fn;
4752         u16 data = 0;
4753         int idx, r;
4754
4755         idx = srcu_read_lock(&kvm->srcu);
4756         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4757         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4758         if (r < 0)
4759                 goto out;
4760         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4761         r = kvm_write_guest_page(kvm, fn++, &data,
4762                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4763         if (r < 0)
4764                 goto out;
4765         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4766         if (r < 0)
4767                 goto out;
4768         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4769         if (r < 0)
4770                 goto out;
4771         data = ~0;
4772         r = kvm_write_guest_page(kvm, fn, &data,
4773                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4774                                  sizeof(u8));
4775 out:
4776         srcu_read_unlock(&kvm->srcu, idx);
4777         return r;
4778 }
4779
4780 static int init_rmode_identity_map(struct kvm *kvm)
4781 {
4782         int i, idx, r = 0;
4783         kvm_pfn_t identity_map_pfn;
4784         u32 tmp;
4785
4786         if (!enable_ept)
4787                 return 0;
4788
4789         /* Protect kvm->arch.ept_identity_pagetable_done. */
4790         mutex_lock(&kvm->slots_lock);
4791
4792         if (likely(kvm->arch.ept_identity_pagetable_done))
4793                 goto out2;
4794
4795         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4796
4797         r = alloc_identity_pagetable(kvm);
4798         if (r < 0)
4799                 goto out2;
4800
4801         idx = srcu_read_lock(&kvm->srcu);
4802         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4803         if (r < 0)
4804                 goto out;
4805         /* Set up identity-mapping pagetable for EPT in real mode */
4806         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4807                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4808                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4809                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4810                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4811                 if (r < 0)
4812                         goto out;
4813         }
4814         kvm->arch.ept_identity_pagetable_done = true;
4815
4816 out:
4817         srcu_read_unlock(&kvm->srcu, idx);
4818
4819 out2:
4820         mutex_unlock(&kvm->slots_lock);
4821         return r;
4822 }
4823
4824 static void seg_setup(int seg)
4825 {
4826         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4827         unsigned int ar;
4828
4829         vmcs_write16(sf->selector, 0);
4830         vmcs_writel(sf->base, 0);
4831         vmcs_write32(sf->limit, 0xffff);
4832         ar = 0x93;
4833         if (seg == VCPU_SREG_CS)
4834                 ar |= 0x08; /* code segment */
4835
4836         vmcs_write32(sf->ar_bytes, ar);
4837 }
4838
4839 static int alloc_apic_access_page(struct kvm *kvm)
4840 {
4841         struct page *page;
4842         int r = 0;
4843
4844         mutex_lock(&kvm->slots_lock);
4845         if (kvm->arch.apic_access_page_done)
4846                 goto out;
4847         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4848                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4849         if (r)
4850                 goto out;
4851
4852         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4853         if (is_error_page(page)) {
4854                 r = -EFAULT;
4855                 goto out;
4856         }
4857
4858         /*
4859          * Do not pin the page in memory, so that memory hot-unplug
4860          * is able to migrate it.
4861          */
4862         put_page(page);
4863         kvm->arch.apic_access_page_done = true;
4864 out:
4865         mutex_unlock(&kvm->slots_lock);
4866         return r;
4867 }
4868
4869 static int alloc_identity_pagetable(struct kvm *kvm)
4870 {
4871         /* Called with kvm->slots_lock held. */
4872
4873         int r = 0;
4874
4875         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4876
4877         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4878                                     kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4879
4880         return r;
4881 }
4882
4883 static int allocate_vpid(void)
4884 {
4885         int vpid;
4886
4887         if (!enable_vpid)
4888                 return 0;
4889         spin_lock(&vmx_vpid_lock);
4890         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4891         if (vpid < VMX_NR_VPIDS)
4892                 __set_bit(vpid, vmx_vpid_bitmap);
4893         else
4894                 vpid = 0;
4895         spin_unlock(&vmx_vpid_lock);
4896         return vpid;
4897 }
4898
4899 static void free_vpid(int vpid)
4900 {
4901         if (!enable_vpid || vpid == 0)
4902                 return;
4903         spin_lock(&vmx_vpid_lock);
4904         __clear_bit(vpid, vmx_vpid_bitmap);
4905         spin_unlock(&vmx_vpid_lock);
4906 }
4907
4908 #define MSR_TYPE_R      1
4909 #define MSR_TYPE_W      2
4910 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4911                                                 u32 msr, int type)
4912 {
4913         int f = sizeof(unsigned long);
4914
4915         if (!cpu_has_vmx_msr_bitmap())
4916                 return;
4917
4918         /*
4919          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4920          * have the write-low and read-high bitmap offsets the wrong way round.
4921          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4922          */
4923         if (msr <= 0x1fff) {
4924                 if (type & MSR_TYPE_R)
4925                         /* read-low */
4926                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4927
4928                 if (type & MSR_TYPE_W)
4929                         /* write-low */
4930                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4931
4932         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4933                 msr &= 0x1fff;
4934                 if (type & MSR_TYPE_R)
4935                         /* read-high */
4936                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4937
4938                 if (type & MSR_TYPE_W)
4939                         /* write-high */
4940                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4941
4942         }
4943 }
4944
4945 /*
4946  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4947  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4948  */
4949 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4950                                                unsigned long *msr_bitmap_nested,
4951                                                u32 msr, int type)
4952 {
4953         int f = sizeof(unsigned long);
4954
4955         if (!cpu_has_vmx_msr_bitmap()) {
4956                 WARN_ON(1);
4957                 return;
4958         }
4959
4960         /*
4961          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4962          * have the write-low and read-high bitmap offsets the wrong way round.
4963          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4964          */
4965         if (msr <= 0x1fff) {
4966                 if (type & MSR_TYPE_R &&
4967                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4968                         /* read-low */
4969                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4970
4971                 if (type & MSR_TYPE_W &&
4972                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4973                         /* write-low */
4974                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4975
4976         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4977                 msr &= 0x1fff;
4978                 if (type & MSR_TYPE_R &&
4979                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4980                         /* read-high */
4981                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4982
4983                 if (type & MSR_TYPE_W &&
4984                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4985                         /* write-high */
4986                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4987
4988         }
4989 }
4990
4991 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4992 {
4993         if (!longmode_only)
4994                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4995                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4996         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4997                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4998 }
4999
5000 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
5001 {
5002         if (apicv_active) {
5003                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
5004                                 msr, type);
5005                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
5006                                 msr, type);
5007         } else {
5008                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
5009                                 msr, type);
5010                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
5011                                 msr, type);
5012         }
5013 }
5014
5015 static bool vmx_get_enable_apicv(void)
5016 {
5017         return enable_apicv;
5018 }
5019
5020 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5021 {
5022         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5023         gfn_t gfn;
5024
5025         /*
5026          * Don't need to mark the APIC access page dirty; it is never
5027          * written to by the CPU during APIC virtualization.
5028          */
5029
5030         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5031                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5032                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5033         }
5034
5035         if (nested_cpu_has_posted_intr(vmcs12)) {
5036                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5037                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5038         }
5039 }
5040
5041
5042 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
5043 {
5044         struct vcpu_vmx *vmx = to_vmx(vcpu);
5045         int max_irr;
5046         void *vapic_page;
5047         u16 status;
5048
5049         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5050                 return;
5051
5052         vmx->nested.pi_pending = false;
5053         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5054                 return;
5055
5056         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5057         if (max_irr != 256) {
5058                 vapic_page = kmap(vmx->nested.virtual_apic_page);
5059                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5060                 kunmap(vmx->nested.virtual_apic_page);
5061
5062                 status = vmcs_read16(GUEST_INTR_STATUS);
5063                 if ((u8)max_irr > ((u8)status & 0xff)) {
5064                         status &= ~0xff;
5065                         status |= (u8)max_irr;
5066                         vmcs_write16(GUEST_INTR_STATUS, status);
5067                 }
5068         }
5069
5070         nested_mark_vmcs12_pages_dirty(vcpu);
5071 }
5072
5073 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5074                                                      bool nested)
5075 {
5076 #ifdef CONFIG_SMP
5077         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5078
5079         if (vcpu->mode == IN_GUEST_MODE) {
5080                 struct vcpu_vmx *vmx = to_vmx(vcpu);
5081
5082                 /*
5083                  * Currently, we don't support urgent interrupt,
5084                  * all interrupts are recognized as non-urgent
5085                  * interrupt, so we cannot post interrupts when
5086                  * 'SN' is set.
5087                  *
5088                  * If the vcpu is in guest mode, it means it is
5089                  * running instead of being scheduled out and
5090                  * waiting in the run queue, and that's the only
5091                  * case when 'SN' is set currently, warning if
5092                  * 'SN' is set.
5093                  */
5094                 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
5095
5096                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
5097                 return true;
5098         }
5099 #endif
5100         return false;
5101 }
5102
5103 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5104                                                 int vector)
5105 {
5106         struct vcpu_vmx *vmx = to_vmx(vcpu);
5107
5108         if (is_guest_mode(vcpu) &&
5109             vector == vmx->nested.posted_intr_nv) {
5110                 /* the PIR and ON have been set by L1. */
5111                 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
5112                 /*
5113                  * If a posted intr is not recognized by hardware,
5114                  * we will accomplish it in the next vmentry.
5115                  */
5116                 vmx->nested.pi_pending = true;
5117                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5118                 return 0;
5119         }
5120         return -1;
5121 }
5122 /*
5123  * Send interrupt to vcpu via posted interrupt way.
5124  * 1. If target vcpu is running(non-root mode), send posted interrupt
5125  * notification to vcpu and hardware will sync PIR to vIRR atomically.
5126  * 2. If target vcpu isn't running(root mode), kick it to pick up the
5127  * interrupt from PIR in next vmentry.
5128  */
5129 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5130 {
5131         struct vcpu_vmx *vmx = to_vmx(vcpu);
5132         int r;
5133
5134         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5135         if (!r)
5136                 return;
5137
5138         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5139                 return;
5140
5141         /* If a previous notification has sent the IPI, nothing to do.  */
5142         if (pi_test_and_set_on(&vmx->pi_desc))
5143                 return;
5144
5145         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
5146                 kvm_vcpu_kick(vcpu);
5147 }
5148
5149 /*
5150  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5151  * will not change in the lifetime of the guest.
5152  * Note that host-state that does change is set elsewhere. E.g., host-state
5153  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5154  */
5155 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5156 {
5157         u32 low32, high32;
5158         unsigned long tmpl;
5159         struct desc_ptr dt;
5160         unsigned long cr0, cr3, cr4;
5161
5162         cr0 = read_cr0();
5163         WARN_ON(cr0 & X86_CR0_TS);
5164         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
5165
5166         /*
5167          * Save the most likely value for this task's CR3 in the VMCS.
5168          * We can't use __get_current_cr3_fast() because we're not atomic.
5169          */
5170         cr3 = __read_cr3();
5171         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
5172         vmx->host_state.vmcs_host_cr3 = cr3;
5173
5174         /* Save the most likely value for this task's CR4 in the VMCS. */
5175         cr4 = cr4_read_shadow();
5176         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
5177         vmx->host_state.vmcs_host_cr4 = cr4;
5178
5179         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
5180 #ifdef CONFIG_X86_64
5181         /*
5182          * Load null selectors, so we can avoid reloading them in
5183          * __vmx_load_host_state(), in case userspace uses the null selectors
5184          * too (the expected case).
5185          */
5186         vmcs_write16(HOST_DS_SELECTOR, 0);
5187         vmcs_write16(HOST_ES_SELECTOR, 0);
5188 #else
5189         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5190         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5191 #endif
5192         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5193         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
5194
5195         native_store_idt(&dt);
5196         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
5197         vmx->host_idt_base = dt.address;
5198
5199         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5200
5201         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5202         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5203         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5204         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
5205
5206         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5207                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5208                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5209         }
5210 }
5211
5212 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5213 {
5214         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5215         if (enable_ept)
5216                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5217         if (is_guest_mode(&vmx->vcpu))
5218                 vmx->vcpu.arch.cr4_guest_owned_bits &=
5219                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5220         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5221 }
5222
5223 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5224 {
5225         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5226
5227         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5228                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5229         /* Enable the preemption timer dynamically */
5230         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5231         return pin_based_exec_ctrl;
5232 }
5233
5234 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5235 {
5236         struct vcpu_vmx *vmx = to_vmx(vcpu);
5237
5238         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5239         if (cpu_has_secondary_exec_ctrls()) {
5240                 if (kvm_vcpu_apicv_active(vcpu))
5241                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5242                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
5243                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5244                 else
5245                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5246                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
5247                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5248         }
5249
5250         if (cpu_has_vmx_msr_bitmap())
5251                 vmx_set_msr_bitmap(vcpu);
5252 }
5253
5254 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5255 {
5256         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5257
5258         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5259                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5260
5261         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5262                 exec_control &= ~CPU_BASED_TPR_SHADOW;
5263 #ifdef CONFIG_X86_64
5264                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5265                                 CPU_BASED_CR8_LOAD_EXITING;
5266 #endif
5267         }
5268         if (!enable_ept)
5269                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5270                                 CPU_BASED_CR3_LOAD_EXITING  |
5271                                 CPU_BASED_INVLPG_EXITING;
5272         return exec_control;
5273 }
5274
5275 static bool vmx_rdrand_supported(void)
5276 {
5277         return vmcs_config.cpu_based_2nd_exec_ctrl &
5278                 SECONDARY_EXEC_RDRAND;
5279 }
5280
5281 static bool vmx_rdseed_supported(void)
5282 {
5283         return vmcs_config.cpu_based_2nd_exec_ctrl &
5284                 SECONDARY_EXEC_RDSEED;
5285 }
5286
5287 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
5288 {
5289         struct kvm_vcpu *vcpu = &vmx->vcpu;
5290
5291         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5292         if (!cpu_need_virtualize_apic_accesses(vcpu))
5293                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5294         if (vmx->vpid == 0)
5295                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5296         if (!enable_ept) {
5297                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5298                 enable_unrestricted_guest = 0;
5299                 /* Enable INVPCID for non-ept guests may cause performance regression. */
5300                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5301         }
5302         if (!enable_unrestricted_guest)
5303                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5304         if (!ple_gap)
5305                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5306         if (!kvm_vcpu_apicv_active(vcpu))
5307                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5308                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5309         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5310         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5311            (handle_vmptrld).
5312            We can NOT enable shadow_vmcs here because we don't have yet
5313            a current VMCS12
5314         */
5315         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5316
5317         if (!enable_pml)
5318                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5319
5320         if (vmx_xsaves_supported()) {
5321                 /* Exposing XSAVES only when XSAVE is exposed */
5322                 bool xsaves_enabled =
5323                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5324                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5325
5326                 if (!xsaves_enabled)
5327                         exec_control &= ~SECONDARY_EXEC_XSAVES;
5328
5329                 if (nested) {
5330                         if (xsaves_enabled)
5331                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5332                                         SECONDARY_EXEC_XSAVES;
5333                         else
5334                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5335                                         ~SECONDARY_EXEC_XSAVES;
5336                 }
5337         }
5338
5339         if (vmx_rdtscp_supported()) {
5340                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5341                 if (!rdtscp_enabled)
5342                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
5343
5344                 if (nested) {
5345                         if (rdtscp_enabled)
5346                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5347                                         SECONDARY_EXEC_RDTSCP;
5348                         else
5349                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5350                                         ~SECONDARY_EXEC_RDTSCP;
5351                 }
5352         }
5353
5354         if (vmx_invpcid_supported()) {
5355                 /* Exposing INVPCID only when PCID is exposed */
5356                 bool invpcid_enabled =
5357                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5358                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5359
5360                 if (!invpcid_enabled) {
5361                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5362                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5363                 }
5364
5365                 if (nested) {
5366                         if (invpcid_enabled)
5367                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5368                                         SECONDARY_EXEC_ENABLE_INVPCID;
5369                         else
5370                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5371                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
5372                 }
5373         }
5374
5375         if (vmx_rdrand_supported()) {
5376                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5377                 if (rdrand_enabled)
5378                         exec_control &= ~SECONDARY_EXEC_RDRAND;
5379
5380                 if (nested) {
5381                         if (rdrand_enabled)
5382                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5383                                         SECONDARY_EXEC_RDRAND;
5384                         else
5385                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5386                                         ~SECONDARY_EXEC_RDRAND;
5387                 }
5388         }
5389
5390         if (vmx_rdseed_supported()) {
5391                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5392                 if (rdseed_enabled)
5393                         exec_control &= ~SECONDARY_EXEC_RDSEED;
5394
5395                 if (nested) {
5396                         if (rdseed_enabled)
5397                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5398                                         SECONDARY_EXEC_RDSEED;
5399                         else
5400                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5401                                         ~SECONDARY_EXEC_RDSEED;
5402                 }
5403         }
5404
5405         vmx->secondary_exec_control = exec_control;
5406 }
5407
5408 static void ept_set_mmio_spte_mask(void)
5409 {
5410         /*
5411          * EPT Misconfigurations can be generated if the value of bits 2:0
5412          * of an EPT paging-structure entry is 110b (write/execute).
5413          */
5414         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5415                                    VMX_EPT_MISCONFIG_WX_VALUE);
5416 }
5417
5418 #define VMX_XSS_EXIT_BITMAP 0
5419 /*
5420  * Sets up the vmcs for emulated real mode.
5421  */
5422 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5423 {
5424 #ifdef CONFIG_X86_64
5425         unsigned long a;
5426 #endif
5427         int i;
5428
5429         /* I/O */
5430         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5431         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5432
5433         if (enable_shadow_vmcs) {
5434                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5435                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5436         }
5437         if (cpu_has_vmx_msr_bitmap())
5438                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5439
5440         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5441
5442         /* Control */
5443         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5444         vmx->hv_deadline_tsc = -1;
5445
5446         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5447
5448         if (cpu_has_secondary_exec_ctrls()) {
5449                 vmx_compute_secondary_exec_control(vmx);
5450                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5451                              vmx->secondary_exec_control);
5452         }
5453
5454         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5455                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5456                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5457                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5458                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5459
5460                 vmcs_write16(GUEST_INTR_STATUS, 0);
5461
5462                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5463                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5464         }
5465
5466         if (ple_gap) {
5467                 vmcs_write32(PLE_GAP, ple_gap);
5468                 vmx->ple_window = ple_window;
5469                 vmx->ple_window_dirty = true;
5470         }
5471
5472         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5473         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5474         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
5475
5476         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5477         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5478         vmx_set_constant_host_state(vmx);
5479 #ifdef CONFIG_X86_64
5480         rdmsrl(MSR_FS_BASE, a);
5481         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5482         rdmsrl(MSR_GS_BASE, a);
5483         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5484 #else
5485         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5486         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5487 #endif
5488
5489         if (cpu_has_vmx_vmfunc())
5490                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5491
5492         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5493         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5494         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5495         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5496         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5497
5498         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5499                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5500
5501         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5502                 u32 index = vmx_msr_index[i];
5503                 u32 data_low, data_high;
5504                 int j = vmx->nmsrs;
5505
5506                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5507                         continue;
5508                 if (wrmsr_safe(index, data_low, data_high) < 0)
5509                         continue;
5510                 vmx->guest_msrs[j].index = i;
5511                 vmx->guest_msrs[j].data = 0;
5512                 vmx->guest_msrs[j].mask = -1ull;
5513                 ++vmx->nmsrs;
5514         }
5515
5516
5517         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5518
5519         /* 22.2.1, 20.8.1 */
5520         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5521
5522         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5523         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5524
5525         set_cr4_guest_host_mask(vmx);
5526
5527         if (vmx_xsaves_supported())
5528                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5529
5530         if (enable_pml) {
5531                 ASSERT(vmx->pml_pg);
5532                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5533                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5534         }
5535
5536         return 0;
5537 }
5538
5539 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5540 {
5541         struct vcpu_vmx *vmx = to_vmx(vcpu);
5542         struct msr_data apic_base_msr;
5543         u64 cr0;
5544
5545         vmx->rmode.vm86_active = 0;
5546
5547         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5548         kvm_set_cr8(vcpu, 0);
5549
5550         if (!init_event) {
5551                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5552                                      MSR_IA32_APICBASE_ENABLE;
5553                 if (kvm_vcpu_is_reset_bsp(vcpu))
5554                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5555                 apic_base_msr.host_initiated = true;
5556                 kvm_set_apic_base(vcpu, &apic_base_msr);
5557         }
5558
5559         vmx_segment_cache_clear(vmx);
5560
5561         seg_setup(VCPU_SREG_CS);
5562         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5563         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5564
5565         seg_setup(VCPU_SREG_DS);
5566         seg_setup(VCPU_SREG_ES);
5567         seg_setup(VCPU_SREG_FS);
5568         seg_setup(VCPU_SREG_GS);
5569         seg_setup(VCPU_SREG_SS);
5570
5571         vmcs_write16(GUEST_TR_SELECTOR, 0);
5572         vmcs_writel(GUEST_TR_BASE, 0);
5573         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5574         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5575
5576         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5577         vmcs_writel(GUEST_LDTR_BASE, 0);
5578         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5579         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5580
5581         if (!init_event) {
5582                 vmcs_write32(GUEST_SYSENTER_CS, 0);
5583                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5584                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5585                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5586         }
5587
5588         vmcs_writel(GUEST_RFLAGS, 0x02);
5589         kvm_rip_write(vcpu, 0xfff0);
5590
5591         vmcs_writel(GUEST_GDTR_BASE, 0);
5592         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5593
5594         vmcs_writel(GUEST_IDTR_BASE, 0);
5595         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5596
5597         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5598         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5599         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5600
5601         setup_msrs(vmx);
5602
5603         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5604
5605         if (cpu_has_vmx_tpr_shadow() && !init_event) {
5606                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5607                 if (cpu_need_tpr_shadow(vcpu))
5608                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5609                                      __pa(vcpu->arch.apic->regs));
5610                 vmcs_write32(TPR_THRESHOLD, 0);
5611         }
5612
5613         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5614
5615         if (kvm_vcpu_apicv_active(vcpu))
5616                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5617
5618         if (vmx->vpid != 0)
5619                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5620
5621         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5622         vmx->vcpu.arch.cr0 = cr0;
5623         vmx_set_cr0(vcpu, cr0); /* enter rmode */
5624         vmx_set_cr4(vcpu, 0);
5625         vmx_set_efer(vcpu, 0);
5626
5627         update_exception_bitmap(vcpu);
5628
5629         vpid_sync_context(vmx->vpid);
5630 }
5631
5632 /*
5633  * In nested virtualization, check if L1 asked to exit on external interrupts.
5634  * For most existing hypervisors, this will always return true.
5635  */
5636 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5637 {
5638         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5639                 PIN_BASED_EXT_INTR_MASK;
5640 }
5641
5642 /*
5643  * In nested virtualization, check if L1 has set
5644  * VM_EXIT_ACK_INTR_ON_EXIT
5645  */
5646 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5647 {
5648         return get_vmcs12(vcpu)->vm_exit_controls &
5649                 VM_EXIT_ACK_INTR_ON_EXIT;
5650 }
5651
5652 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5653 {
5654         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5655                 PIN_BASED_NMI_EXITING;
5656 }
5657
5658 static void enable_irq_window(struct kvm_vcpu *vcpu)
5659 {
5660         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5661                       CPU_BASED_VIRTUAL_INTR_PENDING);
5662 }
5663
5664 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5665 {
5666         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5667                 enable_irq_window(vcpu);
5668                 return;
5669         }
5670
5671         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5672                       CPU_BASED_VIRTUAL_NMI_PENDING);
5673 }
5674
5675 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5676 {
5677         struct vcpu_vmx *vmx = to_vmx(vcpu);
5678         uint32_t intr;
5679         int irq = vcpu->arch.interrupt.nr;
5680
5681         trace_kvm_inj_virq(irq);
5682
5683         ++vcpu->stat.irq_injections;
5684         if (vmx->rmode.vm86_active) {
5685                 int inc_eip = 0;
5686                 if (vcpu->arch.interrupt.soft)
5687                         inc_eip = vcpu->arch.event_exit_inst_len;
5688                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5689                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5690                 return;
5691         }
5692         intr = irq | INTR_INFO_VALID_MASK;
5693         if (vcpu->arch.interrupt.soft) {
5694                 intr |= INTR_TYPE_SOFT_INTR;
5695                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5696                              vmx->vcpu.arch.event_exit_inst_len);
5697         } else
5698                 intr |= INTR_TYPE_EXT_INTR;
5699         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5700 }
5701
5702 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5703 {
5704         struct vcpu_vmx *vmx = to_vmx(vcpu);
5705
5706         ++vcpu->stat.nmi_injections;
5707         vmx->loaded_vmcs->nmi_known_unmasked = false;
5708
5709         if (vmx->rmode.vm86_active) {
5710                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5711                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5712                 return;
5713         }
5714
5715         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5716                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5717 }
5718
5719 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5720 {
5721         struct vcpu_vmx *vmx = to_vmx(vcpu);
5722         bool masked;
5723
5724         if (vmx->loaded_vmcs->nmi_known_unmasked)
5725                 return false;
5726         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5727         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5728         return masked;
5729 }
5730
5731 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5732 {
5733         struct vcpu_vmx *vmx = to_vmx(vcpu);
5734
5735         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5736         if (masked)
5737                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5738                               GUEST_INTR_STATE_NMI);
5739         else
5740                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5741                                 GUEST_INTR_STATE_NMI);
5742 }
5743
5744 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5745 {
5746         if (to_vmx(vcpu)->nested.nested_run_pending)
5747                 return 0;
5748
5749         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5750                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5751                    | GUEST_INTR_STATE_NMI));
5752 }
5753
5754 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5755 {
5756         return (!to_vmx(vcpu)->nested.nested_run_pending &&
5757                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5758                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5759                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5760 }
5761
5762 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5763 {
5764         int ret;
5765
5766         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5767                                     PAGE_SIZE * 3);
5768         if (ret)
5769                 return ret;
5770         kvm->arch.tss_addr = addr;
5771         return init_rmode_tss(kvm);
5772 }
5773
5774 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5775 {
5776         switch (vec) {
5777         case BP_VECTOR:
5778                 /*
5779                  * Update instruction length as we may reinject the exception
5780                  * from user space while in guest debugging mode.
5781                  */
5782                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5783                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5784                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5785                         return false;
5786                 /* fall through */
5787         case DB_VECTOR:
5788                 if (vcpu->guest_debug &
5789                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5790                         return false;
5791                 /* fall through */
5792         case DE_VECTOR:
5793         case OF_VECTOR:
5794         case BR_VECTOR:
5795         case UD_VECTOR:
5796         case DF_VECTOR:
5797         case SS_VECTOR:
5798         case GP_VECTOR:
5799         case MF_VECTOR:
5800                 return true;
5801         break;
5802         }
5803         return false;
5804 }
5805
5806 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5807                                   int vec, u32 err_code)
5808 {
5809         /*
5810          * Instruction with address size override prefix opcode 0x67
5811          * Cause the #SS fault with 0 error code in VM86 mode.
5812          */
5813         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5814                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5815                         if (vcpu->arch.halt_request) {
5816                                 vcpu->arch.halt_request = 0;
5817                                 return kvm_vcpu_halt(vcpu);
5818                         }
5819                         return 1;
5820                 }
5821                 return 0;
5822         }
5823
5824         /*
5825          * Forward all other exceptions that are valid in real mode.
5826          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5827          *        the required debugging infrastructure rework.
5828          */
5829         kvm_queue_exception(vcpu, vec);
5830         return 1;
5831 }
5832
5833 /*
5834  * Trigger machine check on the host. We assume all the MSRs are already set up
5835  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5836  * We pass a fake environment to the machine check handler because we want
5837  * the guest to be always treated like user space, no matter what context
5838  * it used internally.
5839  */
5840 static void kvm_machine_check(void)
5841 {
5842 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5843         struct pt_regs regs = {
5844                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5845                 .flags = X86_EFLAGS_IF,
5846         };
5847
5848         do_machine_check(&regs, 0);
5849 #endif
5850 }
5851
5852 static int handle_machine_check(struct kvm_vcpu *vcpu)
5853 {
5854         /* already handled by vcpu_run */
5855         return 1;
5856 }
5857
5858 static int handle_exception(struct kvm_vcpu *vcpu)
5859 {
5860         struct vcpu_vmx *vmx = to_vmx(vcpu);
5861         struct kvm_run *kvm_run = vcpu->run;
5862         u32 intr_info, ex_no, error_code;
5863         unsigned long cr2, rip, dr6;
5864         u32 vect_info;
5865         enum emulation_result er;
5866
5867         vect_info = vmx->idt_vectoring_info;
5868         intr_info = vmx->exit_intr_info;
5869
5870         if (is_machine_check(intr_info))
5871                 return handle_machine_check(vcpu);
5872
5873         if (is_nmi(intr_info))
5874                 return 1;  /* already handled by vmx_vcpu_run() */
5875
5876         if (is_invalid_opcode(intr_info)) {
5877                 if (is_guest_mode(vcpu)) {
5878                         kvm_queue_exception(vcpu, UD_VECTOR);
5879                         return 1;
5880                 }
5881                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5882                 if (er != EMULATE_DONE)
5883                         kvm_queue_exception(vcpu, UD_VECTOR);
5884                 return 1;
5885         }
5886
5887         error_code = 0;
5888         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5889                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5890
5891         /*
5892          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5893          * MMIO, it is better to report an internal error.
5894          * See the comments in vmx_handle_exit.
5895          */
5896         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5897             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5898                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5899                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5900                 vcpu->run->internal.ndata = 3;
5901                 vcpu->run->internal.data[0] = vect_info;
5902                 vcpu->run->internal.data[1] = intr_info;
5903                 vcpu->run->internal.data[2] = error_code;
5904                 return 0;
5905         }
5906
5907         if (is_page_fault(intr_info)) {
5908                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5909                 /* EPT won't cause page fault directly */
5910                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5911                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5912                                 true);
5913         }
5914
5915         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5916
5917         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5918                 return handle_rmode_exception(vcpu, ex_no, error_code);
5919
5920         switch (ex_no) {
5921         case AC_VECTOR:
5922                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5923                 return 1;
5924         case DB_VECTOR:
5925                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5926                 if (!(vcpu->guest_debug &
5927                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5928                         vcpu->arch.dr6 &= ~15;
5929                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5930                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5931                                 skip_emulated_instruction(vcpu);
5932
5933                         kvm_queue_exception(vcpu, DB_VECTOR);
5934                         return 1;
5935                 }
5936                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5937                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5938                 /* fall through */
5939         case BP_VECTOR:
5940                 /*
5941                  * Update instruction length as we may reinject #BP from
5942                  * user space while in guest debugging mode. Reading it for
5943                  * #DB as well causes no harm, it is not used in that case.
5944                  */
5945                 vmx->vcpu.arch.event_exit_inst_len =
5946                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5947                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5948                 rip = kvm_rip_read(vcpu);
5949                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5950                 kvm_run->debug.arch.exception = ex_no;
5951                 break;
5952         default:
5953                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5954                 kvm_run->ex.exception = ex_no;
5955                 kvm_run->ex.error_code = error_code;
5956                 break;
5957         }
5958         return 0;
5959 }
5960
5961 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5962 {
5963         ++vcpu->stat.irq_exits;
5964         return 1;
5965 }
5966
5967 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5968 {
5969         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5970         vcpu->mmio_needed = 0;
5971         return 0;
5972 }
5973
5974 static int handle_io(struct kvm_vcpu *vcpu)
5975 {
5976         unsigned long exit_qualification;
5977         int size, in, string, ret;
5978         unsigned port;
5979
5980         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5981         string = (exit_qualification & 16) != 0;
5982         in = (exit_qualification & 8) != 0;
5983
5984         ++vcpu->stat.io_exits;
5985
5986         if (string || in)
5987                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5988
5989         port = exit_qualification >> 16;
5990         size = (exit_qualification & 7) + 1;
5991
5992         ret = kvm_skip_emulated_instruction(vcpu);
5993
5994         /*
5995          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5996          * KVM_EXIT_DEBUG here.
5997          */
5998         return kvm_fast_pio_out(vcpu, size, port) && ret;
5999 }
6000
6001 static void
6002 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6003 {
6004         /*
6005          * Patch in the VMCALL instruction:
6006          */
6007         hypercall[0] = 0x0f;
6008         hypercall[1] = 0x01;
6009         hypercall[2] = 0xc1;
6010 }
6011
6012 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
6013 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6014 {
6015         if (is_guest_mode(vcpu)) {
6016                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6017                 unsigned long orig_val = val;
6018
6019                 /*
6020                  * We get here when L2 changed cr0 in a way that did not change
6021                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
6022                  * but did change L0 shadowed bits. So we first calculate the
6023                  * effective cr0 value that L1 would like to write into the
6024                  * hardware. It consists of the L2-owned bits from the new
6025                  * value combined with the L1-owned bits from L1's guest_cr0.
6026                  */
6027                 val = (val & ~vmcs12->cr0_guest_host_mask) |
6028                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6029
6030                 if (!nested_guest_cr0_valid(vcpu, val))
6031                         return 1;
6032
6033                 if (kvm_set_cr0(vcpu, val))
6034                         return 1;
6035                 vmcs_writel(CR0_READ_SHADOW, orig_val);
6036                 return 0;
6037         } else {
6038                 if (to_vmx(vcpu)->nested.vmxon &&
6039                     !nested_host_cr0_valid(vcpu, val))
6040                         return 1;
6041
6042                 return kvm_set_cr0(vcpu, val);
6043         }
6044 }
6045
6046 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6047 {
6048         if (is_guest_mode(vcpu)) {
6049                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6050                 unsigned long orig_val = val;
6051
6052                 /* analogously to handle_set_cr0 */
6053                 val = (val & ~vmcs12->cr4_guest_host_mask) |
6054                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6055                 if (kvm_set_cr4(vcpu, val))
6056                         return 1;
6057                 vmcs_writel(CR4_READ_SHADOW, orig_val);
6058                 return 0;
6059         } else
6060                 return kvm_set_cr4(vcpu, val);
6061 }
6062
6063 static int handle_cr(struct kvm_vcpu *vcpu)
6064 {
6065         unsigned long exit_qualification, val;
6066         int cr;
6067         int reg;
6068         int err;
6069         int ret;
6070
6071         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6072         cr = exit_qualification & 15;
6073         reg = (exit_qualification >> 8) & 15;
6074         switch ((exit_qualification >> 4) & 3) {
6075         case 0: /* mov to cr */
6076                 val = kvm_register_readl(vcpu, reg);
6077                 trace_kvm_cr_write(cr, val);
6078                 switch (cr) {
6079                 case 0:
6080                         err = handle_set_cr0(vcpu, val);
6081                         return kvm_complete_insn_gp(vcpu, err);
6082                 case 3:
6083                         err = kvm_set_cr3(vcpu, val);
6084                         return kvm_complete_insn_gp(vcpu, err);
6085                 case 4:
6086                         err = handle_set_cr4(vcpu, val);
6087                         return kvm_complete_insn_gp(vcpu, err);
6088                 case 8: {
6089                                 u8 cr8_prev = kvm_get_cr8(vcpu);
6090                                 u8 cr8 = (u8)val;
6091                                 err = kvm_set_cr8(vcpu, cr8);
6092                                 ret = kvm_complete_insn_gp(vcpu, err);
6093                                 if (lapic_in_kernel(vcpu))
6094                                         return ret;
6095                                 if (cr8_prev <= cr8)
6096                                         return ret;
6097                                 /*
6098                                  * TODO: we might be squashing a
6099                                  * KVM_GUESTDBG_SINGLESTEP-triggered
6100                                  * KVM_EXIT_DEBUG here.
6101                                  */
6102                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
6103                                 return 0;
6104                         }
6105                 }
6106                 break;
6107         case 2: /* clts */
6108                 WARN_ONCE(1, "Guest should always own CR0.TS");
6109                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
6110                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6111                 return kvm_skip_emulated_instruction(vcpu);
6112         case 1: /*mov from cr*/
6113                 switch (cr) {
6114                 case 3:
6115                         val = kvm_read_cr3(vcpu);
6116                         kvm_register_write(vcpu, reg, val);
6117                         trace_kvm_cr_read(cr, val);
6118                         return kvm_skip_emulated_instruction(vcpu);
6119                 case 8:
6120                         val = kvm_get_cr8(vcpu);
6121                         kvm_register_write(vcpu, reg, val);
6122                         trace_kvm_cr_read(cr, val);
6123                         return kvm_skip_emulated_instruction(vcpu);
6124                 }
6125                 break;
6126         case 3: /* lmsw */
6127                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6128                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
6129                 kvm_lmsw(vcpu, val);
6130
6131                 return kvm_skip_emulated_instruction(vcpu);
6132         default:
6133                 break;
6134         }
6135         vcpu->run->exit_reason = 0;
6136         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6137                (int)(exit_qualification >> 4) & 3, cr);
6138         return 0;
6139 }
6140
6141 static int handle_dr(struct kvm_vcpu *vcpu)
6142 {
6143         unsigned long exit_qualification;
6144         int dr, dr7, reg;
6145
6146         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6147         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6148
6149         /* First, if DR does not exist, trigger UD */
6150         if (!kvm_require_dr(vcpu, dr))
6151                 return 1;
6152
6153         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
6154         if (!kvm_require_cpl(vcpu, 0))
6155                 return 1;
6156         dr7 = vmcs_readl(GUEST_DR7);
6157         if (dr7 & DR7_GD) {
6158                 /*
6159                  * As the vm-exit takes precedence over the debug trap, we
6160                  * need to emulate the latter, either for the host or the
6161                  * guest debugging itself.
6162                  */
6163                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6164                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
6165                         vcpu->run->debug.arch.dr7 = dr7;
6166                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6167                         vcpu->run->debug.arch.exception = DB_VECTOR;
6168                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
6169                         return 0;
6170                 } else {
6171                         vcpu->arch.dr6 &= ~15;
6172                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
6173                         kvm_queue_exception(vcpu, DB_VECTOR);
6174                         return 1;
6175                 }
6176         }
6177
6178         if (vcpu->guest_debug == 0) {
6179                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6180                                 CPU_BASED_MOV_DR_EXITING);
6181
6182                 /*
6183                  * No more DR vmexits; force a reload of the debug registers
6184                  * and reenter on this instruction.  The next vmexit will
6185                  * retrieve the full state of the debug registers.
6186                  */
6187                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6188                 return 1;
6189         }
6190
6191         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6192         if (exit_qualification & TYPE_MOV_FROM_DR) {
6193                 unsigned long val;
6194
6195                 if (kvm_get_dr(vcpu, dr, &val))
6196                         return 1;
6197                 kvm_register_write(vcpu, reg, val);
6198         } else
6199                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6200                         return 1;
6201
6202         return kvm_skip_emulated_instruction(vcpu);
6203 }
6204
6205 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6206 {
6207         return vcpu->arch.dr6;
6208 }
6209
6210 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6211 {
6212 }
6213
6214 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6215 {
6216         get_debugreg(vcpu->arch.db[0], 0);
6217         get_debugreg(vcpu->arch.db[1], 1);
6218         get_debugreg(vcpu->arch.db[2], 2);
6219         get_debugreg(vcpu->arch.db[3], 3);
6220         get_debugreg(vcpu->arch.dr6, 6);
6221         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6222
6223         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6224         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6225 }
6226
6227 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6228 {
6229         vmcs_writel(GUEST_DR7, val);
6230 }
6231
6232 static int handle_cpuid(struct kvm_vcpu *vcpu)
6233 {
6234         return kvm_emulate_cpuid(vcpu);
6235 }
6236
6237 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6238 {
6239         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6240         struct msr_data msr_info;
6241
6242         msr_info.index = ecx;
6243         msr_info.host_initiated = false;
6244         if (vmx_get_msr(vcpu, &msr_info)) {
6245                 trace_kvm_msr_read_ex(ecx);
6246                 kvm_inject_gp(vcpu, 0);
6247                 return 1;
6248         }
6249
6250         trace_kvm_msr_read(ecx, msr_info.data);
6251
6252         /* FIXME: handling of bits 32:63 of rax, rdx */
6253         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6254         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6255         return kvm_skip_emulated_instruction(vcpu);
6256 }
6257
6258 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6259 {
6260         struct msr_data msr;
6261         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6262         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6263                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6264
6265         msr.data = data;
6266         msr.index = ecx;
6267         msr.host_initiated = false;
6268         if (kvm_set_msr(vcpu, &msr) != 0) {
6269                 trace_kvm_msr_write_ex(ecx, data);
6270                 kvm_inject_gp(vcpu, 0);
6271                 return 1;
6272         }
6273
6274         trace_kvm_msr_write(ecx, data);
6275         return kvm_skip_emulated_instruction(vcpu);
6276 }
6277
6278 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6279 {
6280         kvm_apic_update_ppr(vcpu);
6281         return 1;
6282 }
6283
6284 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6285 {
6286         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6287                         CPU_BASED_VIRTUAL_INTR_PENDING);
6288
6289         kvm_make_request(KVM_REQ_EVENT, vcpu);
6290
6291         ++vcpu->stat.irq_window_exits;
6292         return 1;
6293 }
6294
6295 static int handle_halt(struct kvm_vcpu *vcpu)
6296 {
6297         return kvm_emulate_halt(vcpu);
6298 }
6299
6300 static int handle_vmcall(struct kvm_vcpu *vcpu)
6301 {
6302         return kvm_emulate_hypercall(vcpu);
6303 }
6304
6305 static int handle_invd(struct kvm_vcpu *vcpu)
6306 {
6307         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6308 }
6309
6310 static int handle_invlpg(struct kvm_vcpu *vcpu)
6311 {
6312         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6313
6314         kvm_mmu_invlpg(vcpu, exit_qualification);
6315         return kvm_skip_emulated_instruction(vcpu);
6316 }
6317
6318 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6319 {
6320         int err;
6321
6322         err = kvm_rdpmc(vcpu);
6323         return kvm_complete_insn_gp(vcpu, err);
6324 }
6325
6326 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6327 {
6328         return kvm_emulate_wbinvd(vcpu);
6329 }
6330
6331 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6332 {
6333         u64 new_bv = kvm_read_edx_eax(vcpu);
6334         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6335
6336         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6337                 return kvm_skip_emulated_instruction(vcpu);
6338         return 1;
6339 }
6340
6341 static int handle_xsaves(struct kvm_vcpu *vcpu)
6342 {
6343         kvm_skip_emulated_instruction(vcpu);
6344         WARN(1, "this should never happen\n");
6345         return 1;
6346 }
6347
6348 static int handle_xrstors(struct kvm_vcpu *vcpu)
6349 {
6350         kvm_skip_emulated_instruction(vcpu);
6351         WARN(1, "this should never happen\n");
6352         return 1;
6353 }
6354
6355 static int handle_apic_access(struct kvm_vcpu *vcpu)
6356 {
6357         if (likely(fasteoi)) {
6358                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6359                 int access_type, offset;
6360
6361                 access_type = exit_qualification & APIC_ACCESS_TYPE;
6362                 offset = exit_qualification & APIC_ACCESS_OFFSET;
6363                 /*
6364                  * Sane guest uses MOV to write EOI, with written value
6365                  * not cared. So make a short-circuit here by avoiding
6366                  * heavy instruction emulation.
6367                  */
6368                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6369                     (offset == APIC_EOI)) {
6370                         kvm_lapic_set_eoi(vcpu);
6371                         return kvm_skip_emulated_instruction(vcpu);
6372                 }
6373         }
6374         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6375 }
6376
6377 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6378 {
6379         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6380         int vector = exit_qualification & 0xff;
6381
6382         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6383         kvm_apic_set_eoi_accelerated(vcpu, vector);
6384         return 1;
6385 }
6386
6387 static int handle_apic_write(struct kvm_vcpu *vcpu)
6388 {
6389         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6390         u32 offset = exit_qualification & 0xfff;
6391
6392         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6393         kvm_apic_write_nodecode(vcpu, offset);
6394         return 1;
6395 }
6396
6397 static int handle_task_switch(struct kvm_vcpu *vcpu)
6398 {
6399         struct vcpu_vmx *vmx = to_vmx(vcpu);
6400         unsigned long exit_qualification;
6401         bool has_error_code = false;
6402         u32 error_code = 0;
6403         u16 tss_selector;
6404         int reason, type, idt_v, idt_index;
6405
6406         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6407         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6408         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6409
6410         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6411
6412         reason = (u32)exit_qualification >> 30;
6413         if (reason == TASK_SWITCH_GATE && idt_v) {
6414                 switch (type) {
6415                 case INTR_TYPE_NMI_INTR:
6416                         vcpu->arch.nmi_injected = false;
6417                         vmx_set_nmi_mask(vcpu, true);
6418                         break;
6419                 case INTR_TYPE_EXT_INTR:
6420                 case INTR_TYPE_SOFT_INTR:
6421                         kvm_clear_interrupt_queue(vcpu);
6422                         break;
6423                 case INTR_TYPE_HARD_EXCEPTION:
6424                         if (vmx->idt_vectoring_info &
6425                             VECTORING_INFO_DELIVER_CODE_MASK) {
6426                                 has_error_code = true;
6427                                 error_code =
6428                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
6429                         }
6430                         /* fall through */
6431                 case INTR_TYPE_SOFT_EXCEPTION:
6432                         kvm_clear_exception_queue(vcpu);
6433                         break;
6434                 default:
6435                         break;
6436                 }
6437         }
6438         tss_selector = exit_qualification;
6439
6440         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6441                        type != INTR_TYPE_EXT_INTR &&
6442                        type != INTR_TYPE_NMI_INTR))
6443                 skip_emulated_instruction(vcpu);
6444
6445         if (kvm_task_switch(vcpu, tss_selector,
6446                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6447                             has_error_code, error_code) == EMULATE_FAIL) {
6448                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6449                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6450                 vcpu->run->internal.ndata = 0;
6451                 return 0;
6452         }
6453
6454         /*
6455          * TODO: What about debug traps on tss switch?
6456          *       Are we supposed to inject them and update dr6?
6457          */
6458
6459         return 1;
6460 }
6461
6462 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6463 {
6464         unsigned long exit_qualification;
6465         gpa_t gpa;
6466         u64 error_code;
6467
6468         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6469
6470         /*
6471          * EPT violation happened while executing iret from NMI,
6472          * "blocked by NMI" bit has to be set before next VM entry.
6473          * There are errata that may cause this bit to not be set:
6474          * AAK134, BY25.
6475          */
6476         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6477                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6478                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6479
6480         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6481         trace_kvm_page_fault(gpa, exit_qualification);
6482
6483         /* Is it a read fault? */
6484         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6485                      ? PFERR_USER_MASK : 0;
6486         /* Is it a write fault? */
6487         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6488                       ? PFERR_WRITE_MASK : 0;
6489         /* Is it a fetch fault? */
6490         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6491                       ? PFERR_FETCH_MASK : 0;
6492         /* ept page table entry is present? */
6493         error_code |= (exit_qualification &
6494                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6495                         EPT_VIOLATION_EXECUTABLE))
6496                       ? PFERR_PRESENT_MASK : 0;
6497
6498         error_code |= (exit_qualification & 0x100) != 0 ?
6499                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
6500
6501         vcpu->arch.exit_qualification = exit_qualification;
6502         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6503 }
6504
6505 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6506 {
6507         int ret;
6508         gpa_t gpa;
6509
6510         /*
6511          * A nested guest cannot optimize MMIO vmexits, because we have an
6512          * nGPA here instead of the required GPA.
6513          */
6514         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6515         if (!is_guest_mode(vcpu) &&
6516             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6517                 trace_kvm_fast_mmio(gpa);
6518                 return kvm_skip_emulated_instruction(vcpu);
6519         }
6520
6521         ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6522         if (ret >= 0)
6523                 return ret;
6524
6525         /* It is the real ept misconfig */
6526         WARN_ON(1);
6527
6528         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6529         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6530
6531         return 0;
6532 }
6533
6534 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6535 {
6536         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6537                         CPU_BASED_VIRTUAL_NMI_PENDING);
6538         ++vcpu->stat.nmi_window_exits;
6539         kvm_make_request(KVM_REQ_EVENT, vcpu);
6540
6541         return 1;
6542 }
6543
6544 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6545 {
6546         struct vcpu_vmx *vmx = to_vmx(vcpu);
6547         enum emulation_result err = EMULATE_DONE;
6548         int ret = 1;
6549         u32 cpu_exec_ctrl;
6550         bool intr_window_requested;
6551         unsigned count = 130;
6552
6553         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6554         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6555
6556         while (vmx->emulation_required && count-- != 0) {
6557                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6558                         return handle_interrupt_window(&vmx->vcpu);
6559
6560                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6561                         return 1;
6562
6563                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6564
6565                 if (err == EMULATE_USER_EXIT) {
6566                         ++vcpu->stat.mmio_exits;
6567                         ret = 0;
6568                         goto out;
6569                 }
6570
6571                 if (err != EMULATE_DONE) {
6572                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6573                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6574                         vcpu->run->internal.ndata = 0;
6575                         return 0;
6576                 }
6577
6578                 if (vcpu->arch.halt_request) {
6579                         vcpu->arch.halt_request = 0;
6580                         ret = kvm_vcpu_halt(vcpu);
6581                         goto out;
6582                 }
6583
6584                 if (signal_pending(current))
6585                         goto out;
6586                 if (need_resched())
6587                         schedule();
6588         }
6589
6590 out:
6591         return ret;
6592 }
6593
6594 static int __grow_ple_window(int val)
6595 {
6596         if (ple_window_grow < 1)
6597                 return ple_window;
6598
6599         val = min(val, ple_window_actual_max);
6600
6601         if (ple_window_grow < ple_window)
6602                 val *= ple_window_grow;
6603         else
6604                 val += ple_window_grow;
6605
6606         return val;
6607 }
6608
6609 static int __shrink_ple_window(int val, int modifier, int minimum)
6610 {
6611         if (modifier < 1)
6612                 return ple_window;
6613
6614         if (modifier < ple_window)
6615                 val /= modifier;
6616         else
6617                 val -= modifier;
6618
6619         return max(val, minimum);
6620 }
6621
6622 static void grow_ple_window(struct kvm_vcpu *vcpu)
6623 {
6624         struct vcpu_vmx *vmx = to_vmx(vcpu);
6625         int old = vmx->ple_window;
6626
6627         vmx->ple_window = __grow_ple_window(old);
6628
6629         if (vmx->ple_window != old)
6630                 vmx->ple_window_dirty = true;
6631
6632         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6633 }
6634
6635 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6636 {
6637         struct vcpu_vmx *vmx = to_vmx(vcpu);
6638         int old = vmx->ple_window;
6639
6640         vmx->ple_window = __shrink_ple_window(old,
6641                                               ple_window_shrink, ple_window);
6642
6643         if (vmx->ple_window != old)
6644                 vmx->ple_window_dirty = true;
6645
6646         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6647 }
6648
6649 /*
6650  * ple_window_actual_max is computed to be one grow_ple_window() below
6651  * ple_window_max. (See __grow_ple_window for the reason.)
6652  * This prevents overflows, because ple_window_max is int.
6653  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6654  * this process.
6655  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6656  */
6657 static void update_ple_window_actual_max(void)
6658 {
6659         ple_window_actual_max =
6660                         __shrink_ple_window(max(ple_window_max, ple_window),
6661                                             ple_window_grow, INT_MIN);
6662 }
6663
6664 /*
6665  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6666  */
6667 static void wakeup_handler(void)
6668 {
6669         struct kvm_vcpu *vcpu;
6670         int cpu = smp_processor_id();
6671
6672         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6673         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6674                         blocked_vcpu_list) {
6675                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6676
6677                 if (pi_test_on(pi_desc) == 1)
6678                         kvm_vcpu_kick(vcpu);
6679         }
6680         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6681 }
6682
6683 void vmx_enable_tdp(void)
6684 {
6685         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6686                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6687                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6688                 0ull, VMX_EPT_EXECUTABLE_MASK,
6689                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6690                 VMX_EPT_RWX_MASK, 0ull);
6691
6692         ept_set_mmio_spte_mask();
6693         kvm_enable_tdp();
6694 }
6695
6696 static __init int hardware_setup(void)
6697 {
6698         int r = -ENOMEM, i, msr;
6699
6700         rdmsrl_safe(MSR_EFER, &host_efer);
6701
6702         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6703                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6704
6705         for (i = 0; i < VMX_BITMAP_NR; i++) {
6706                 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6707                 if (!vmx_bitmap[i])
6708                         goto out;
6709         }
6710
6711         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6712         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6713         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6714
6715         /*
6716          * Allow direct access to the PC debug port (it is often used for I/O
6717          * delays, but the vmexits simply slow things down).
6718          */
6719         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6720         clear_bit(0x80, vmx_io_bitmap_a);
6721
6722         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6723
6724         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6725         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6726
6727         if (setup_vmcs_config(&vmcs_config) < 0) {
6728                 r = -EIO;
6729                 goto out;
6730         }
6731
6732         if (boot_cpu_has(X86_FEATURE_NX))
6733                 kvm_enable_efer_bits(EFER_NX);
6734
6735         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6736                 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6737                 enable_vpid = 0;
6738
6739         if (!cpu_has_vmx_shadow_vmcs())
6740                 enable_shadow_vmcs = 0;
6741         if (enable_shadow_vmcs)
6742                 init_vmcs_shadow_fields();
6743
6744         if (!cpu_has_vmx_ept() ||
6745             !cpu_has_vmx_ept_4levels() ||
6746             !cpu_has_vmx_ept_mt_wb()) {
6747                 enable_ept = 0;
6748                 enable_unrestricted_guest = 0;
6749                 enable_ept_ad_bits = 0;
6750         }
6751
6752         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6753                 enable_ept_ad_bits = 0;
6754
6755         if (!cpu_has_vmx_unrestricted_guest())
6756                 enable_unrestricted_guest = 0;
6757
6758         if (!cpu_has_vmx_flexpriority())
6759                 flexpriority_enabled = 0;
6760
6761         /*
6762          * set_apic_access_page_addr() is used to reload apic access
6763          * page upon invalidation.  No need to do anything if not
6764          * using the APIC_ACCESS_ADDR VMCS field.
6765          */
6766         if (!flexpriority_enabled)
6767                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6768
6769         if (!cpu_has_vmx_tpr_shadow())
6770                 kvm_x86_ops->update_cr8_intercept = NULL;
6771
6772         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6773                 kvm_disable_largepages();
6774
6775         if (!cpu_has_vmx_ple())
6776                 ple_gap = 0;
6777
6778         if (!cpu_has_vmx_apicv()) {
6779                 enable_apicv = 0;
6780                 kvm_x86_ops->sync_pir_to_irr = NULL;
6781         }
6782
6783         if (cpu_has_vmx_tsc_scaling()) {
6784                 kvm_has_tsc_control = true;
6785                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6786                 kvm_tsc_scaling_ratio_frac_bits = 48;
6787         }
6788
6789         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6790         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6791         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6792         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6793         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6794         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6795
6796         memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6797                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6798         memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6799                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6800         memcpy(vmx_msr_bitmap_legacy_x2apic,
6801                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6802         memcpy(vmx_msr_bitmap_longmode_x2apic,
6803                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6804
6805         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6806
6807         for (msr = 0x800; msr <= 0x8ff; msr++) {
6808                 if (msr == 0x839 /* TMCCT */)
6809                         continue;
6810                 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6811         }
6812
6813         /*
6814          * TPR reads and writes can be virtualized even if virtual interrupt
6815          * delivery is not in use.
6816          */
6817         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6818         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6819
6820         /* EOI */
6821         vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6822         /* SELF-IPI */
6823         vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6824
6825         if (enable_ept)
6826                 vmx_enable_tdp();
6827         else
6828                 kvm_disable_tdp();
6829
6830         update_ple_window_actual_max();
6831
6832         /*
6833          * Only enable PML when hardware supports PML feature, and both EPT
6834          * and EPT A/D bit features are enabled -- PML depends on them to work.
6835          */
6836         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6837                 enable_pml = 0;
6838
6839         if (!enable_pml) {
6840                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6841                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6842                 kvm_x86_ops->flush_log_dirty = NULL;
6843                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6844         }
6845
6846         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6847                 u64 vmx_msr;
6848
6849                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6850                 cpu_preemption_timer_multi =
6851                          vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6852         } else {
6853                 kvm_x86_ops->set_hv_timer = NULL;
6854                 kvm_x86_ops->cancel_hv_timer = NULL;
6855         }
6856
6857         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6858
6859         kvm_mce_cap_supported |= MCG_LMCE_P;
6860
6861         return alloc_kvm_area();
6862
6863 out:
6864         for (i = 0; i < VMX_BITMAP_NR; i++)
6865                 free_page((unsigned long)vmx_bitmap[i]);
6866
6867     return r;
6868 }
6869
6870 static __exit void hardware_unsetup(void)
6871 {
6872         int i;
6873
6874         for (i = 0; i < VMX_BITMAP_NR; i++)
6875                 free_page((unsigned long)vmx_bitmap[i]);
6876
6877         free_kvm_area();
6878 }
6879
6880 /*
6881  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6882  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6883  */
6884 static int handle_pause(struct kvm_vcpu *vcpu)
6885 {
6886         if (ple_gap)
6887                 grow_ple_window(vcpu);
6888
6889         /*
6890          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6891          * VM-execution control is ignored if CPL > 0. OTOH, KVM
6892          * never set PAUSE_EXITING and just set PLE if supported,
6893          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6894          */
6895         kvm_vcpu_on_spin(vcpu, true);
6896         return kvm_skip_emulated_instruction(vcpu);
6897 }
6898
6899 static int handle_nop(struct kvm_vcpu *vcpu)
6900 {
6901         return kvm_skip_emulated_instruction(vcpu);
6902 }
6903
6904 static int handle_mwait(struct kvm_vcpu *vcpu)
6905 {
6906         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6907         return handle_nop(vcpu);
6908 }
6909
6910 static int handle_invalid_op(struct kvm_vcpu *vcpu)
6911 {
6912         kvm_queue_exception(vcpu, UD_VECTOR);
6913         return 1;
6914 }
6915
6916 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6917 {
6918         return 1;
6919 }
6920
6921 static int handle_monitor(struct kvm_vcpu *vcpu)
6922 {
6923         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6924         return handle_nop(vcpu);
6925 }
6926
6927 /*
6928  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6929  * We could reuse a single VMCS for all the L2 guests, but we also want the
6930  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6931  * allows keeping them loaded on the processor, and in the future will allow
6932  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6933  * every entry if they never change.
6934  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6935  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6936  *
6937  * The following functions allocate and free a vmcs02 in this pool.
6938  */
6939
6940 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6941 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6942 {
6943         struct vmcs02_list *item;
6944         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6945                 if (item->vmptr == vmx->nested.current_vmptr) {
6946                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6947                         return &item->vmcs02;
6948                 }
6949
6950         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6951                 /* Recycle the least recently used VMCS. */
6952                 item = list_last_entry(&vmx->nested.vmcs02_pool,
6953                                        struct vmcs02_list, list);
6954                 item->vmptr = vmx->nested.current_vmptr;
6955                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6956                 return &item->vmcs02;
6957         }
6958
6959         /* Create a new VMCS */
6960         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6961         if (!item)
6962                 return NULL;
6963         item->vmcs02.vmcs = alloc_vmcs();
6964         item->vmcs02.shadow_vmcs = NULL;
6965         if (!item->vmcs02.vmcs) {
6966                 kfree(item);
6967                 return NULL;
6968         }
6969         loaded_vmcs_init(&item->vmcs02);
6970         item->vmptr = vmx->nested.current_vmptr;
6971         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6972         vmx->nested.vmcs02_num++;
6973         return &item->vmcs02;
6974 }
6975
6976 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6977 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6978 {
6979         struct vmcs02_list *item;
6980         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6981                 if (item->vmptr == vmptr) {
6982                         free_loaded_vmcs(&item->vmcs02);
6983                         list_del(&item->list);
6984                         kfree(item);
6985                         vmx->nested.vmcs02_num--;
6986                         return;
6987                 }
6988 }
6989
6990 /*
6991  * Free all VMCSs saved for this vcpu, except the one pointed by
6992  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6993  * must be &vmx->vmcs01.
6994  */
6995 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6996 {
6997         struct vmcs02_list *item, *n;
6998
6999         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
7000         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
7001                 /*
7002                  * Something will leak if the above WARN triggers.  Better than
7003                  * a use-after-free.
7004                  */
7005                 if (vmx->loaded_vmcs == &item->vmcs02)
7006                         continue;
7007
7008                 free_loaded_vmcs(&item->vmcs02);
7009                 list_del(&item->list);
7010                 kfree(item);
7011                 vmx->nested.vmcs02_num--;
7012         }
7013 }
7014
7015 /*
7016  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7017  * set the success or error code of an emulated VMX instruction, as specified
7018  * by Vol 2B, VMX Instruction Reference, "Conventions".
7019  */
7020 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7021 {
7022         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7023                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7024                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7025 }
7026
7027 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7028 {
7029         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7030                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7031                             X86_EFLAGS_SF | X86_EFLAGS_OF))
7032                         | X86_EFLAGS_CF);
7033 }
7034
7035 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
7036                                         u32 vm_instruction_error)
7037 {
7038         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7039                 /*
7040                  * failValid writes the error number to the current VMCS, which
7041                  * can't be done there isn't a current VMCS.
7042                  */
7043                 nested_vmx_failInvalid(vcpu);
7044                 return;
7045         }
7046         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7047                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7048                             X86_EFLAGS_SF | X86_EFLAGS_OF))
7049                         | X86_EFLAGS_ZF);
7050         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7051         /*
7052          * We don't need to force a shadow sync because
7053          * VM_INSTRUCTION_ERROR is not shadowed
7054          */
7055 }
7056
7057 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7058 {
7059         /* TODO: not to reset guest simply here. */
7060         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7061         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
7062 }
7063
7064 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7065 {
7066         struct vcpu_vmx *vmx =
7067                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7068
7069         vmx->nested.preemption_timer_expired = true;
7070         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7071         kvm_vcpu_kick(&vmx->vcpu);
7072
7073         return HRTIMER_NORESTART;
7074 }
7075
7076 /*
7077  * Decode the memory-address operand of a vmx instruction, as recorded on an
7078  * exit caused by such an instruction (run by a guest hypervisor).
7079  * On success, returns 0. When the operand is invalid, returns 1 and throws
7080  * #UD or #GP.
7081  */
7082 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7083                                  unsigned long exit_qualification,
7084                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
7085 {
7086         gva_t off;
7087         bool exn;
7088         struct kvm_segment s;
7089
7090         /*
7091          * According to Vol. 3B, "Information for VM Exits Due to Instruction
7092          * Execution", on an exit, vmx_instruction_info holds most of the
7093          * addressing components of the operand. Only the displacement part
7094          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7095          * For how an actual address is calculated from all these components,
7096          * refer to Vol. 1, "Operand Addressing".
7097          */
7098         int  scaling = vmx_instruction_info & 3;
7099         int  addr_size = (vmx_instruction_info >> 7) & 7;
7100         bool is_reg = vmx_instruction_info & (1u << 10);
7101         int  seg_reg = (vmx_instruction_info >> 15) & 7;
7102         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
7103         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7104         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
7105         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
7106
7107         if (is_reg) {
7108                 kvm_queue_exception(vcpu, UD_VECTOR);
7109                 return 1;
7110         }
7111
7112         /* Addr = segment_base + offset */
7113         /* offset = base + [index * scale] + displacement */
7114         off = exit_qualification; /* holds the displacement */
7115         if (base_is_valid)
7116                 off += kvm_register_read(vcpu, base_reg);
7117         if (index_is_valid)
7118                 off += kvm_register_read(vcpu, index_reg)<<scaling;
7119         vmx_get_segment(vcpu, &s, seg_reg);
7120         *ret = s.base + off;
7121
7122         if (addr_size == 1) /* 32 bit */
7123                 *ret &= 0xffffffff;
7124
7125         /* Checks for #GP/#SS exceptions. */
7126         exn = false;
7127         if (is_long_mode(vcpu)) {
7128                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7129                  * non-canonical form. This is the only check on the memory
7130                  * destination for long mode!
7131                  */
7132                 exn = is_noncanonical_address(*ret, vcpu);
7133         } else if (is_protmode(vcpu)) {
7134                 /* Protected mode: apply checks for segment validity in the
7135                  * following order:
7136                  * - segment type check (#GP(0) may be thrown)
7137                  * - usability check (#GP(0)/#SS(0))
7138                  * - limit check (#GP(0)/#SS(0))
7139                  */
7140                 if (wr)
7141                         /* #GP(0) if the destination operand is located in a
7142                          * read-only data segment or any code segment.
7143                          */
7144                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
7145                 else
7146                         /* #GP(0) if the source operand is located in an
7147                          * execute-only code segment
7148                          */
7149                         exn = ((s.type & 0xa) == 8);
7150                 if (exn) {
7151                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7152                         return 1;
7153                 }
7154                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7155                  */
7156                 exn = (s.unusable != 0);
7157                 /* Protected mode: #GP(0)/#SS(0) if the memory
7158                  * operand is outside the segment limit.
7159                  */
7160                 exn = exn || (off + sizeof(u64) > s.limit);
7161         }
7162         if (exn) {
7163                 kvm_queue_exception_e(vcpu,
7164                                       seg_reg == VCPU_SREG_SS ?
7165                                                 SS_VECTOR : GP_VECTOR,
7166                                       0);
7167                 return 1;
7168         }
7169
7170         return 0;
7171 }
7172
7173 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
7174 {
7175         gva_t gva;
7176         struct x86_exception e;
7177
7178         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7179                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
7180                 return 1;
7181
7182         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7183                                 sizeof(*vmpointer), &e)) {
7184                 kvm_inject_page_fault(vcpu, &e);
7185                 return 1;
7186         }
7187
7188         return 0;
7189 }
7190
7191 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7192 {
7193         struct vcpu_vmx *vmx = to_vmx(vcpu);
7194         struct vmcs *shadow_vmcs;
7195
7196         if (cpu_has_vmx_msr_bitmap()) {
7197                 vmx->nested.msr_bitmap =
7198                                 (unsigned long *)__get_free_page(GFP_KERNEL);
7199                 if (!vmx->nested.msr_bitmap)
7200                         goto out_msr_bitmap;
7201         }
7202
7203         vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7204         if (!vmx->nested.cached_vmcs12)
7205                 goto out_cached_vmcs12;
7206
7207         if (enable_shadow_vmcs) {
7208                 shadow_vmcs = alloc_vmcs();
7209                 if (!shadow_vmcs)
7210                         goto out_shadow_vmcs;
7211                 /* mark vmcs as shadow */
7212                 shadow_vmcs->revision_id |= (1u << 31);
7213                 /* init shadow vmcs */
7214                 vmcs_clear(shadow_vmcs);
7215                 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7216         }
7217
7218         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7219         vmx->nested.vmcs02_num = 0;
7220
7221         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7222                      HRTIMER_MODE_REL_PINNED);
7223         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7224
7225         vmx->nested.vmxon = true;
7226         return 0;
7227
7228 out_shadow_vmcs:
7229         kfree(vmx->nested.cached_vmcs12);
7230
7231 out_cached_vmcs12:
7232         free_page((unsigned long)vmx->nested.msr_bitmap);
7233
7234 out_msr_bitmap:
7235         return -ENOMEM;
7236 }
7237
7238 /*
7239  * Emulate the VMXON instruction.
7240  * Currently, we just remember that VMX is active, and do not save or even
7241  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7242  * do not currently need to store anything in that guest-allocated memory
7243  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7244  * argument is different from the VMXON pointer (which the spec says they do).
7245  */
7246 static int handle_vmon(struct kvm_vcpu *vcpu)
7247 {
7248         int ret;
7249         gpa_t vmptr;
7250         struct page *page;
7251         struct vcpu_vmx *vmx = to_vmx(vcpu);
7252         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7253                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7254
7255         /*
7256          * The Intel VMX Instruction Reference lists a bunch of bits that are
7257          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7258          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7259          * Otherwise, we should fail with #UD.  But most faulting conditions
7260          * have already been checked by hardware, prior to the VM-exit for
7261          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
7262          * that bit set to 1 in non-root mode.
7263          */
7264         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7265                 kvm_queue_exception(vcpu, UD_VECTOR);
7266                 return 1;
7267         }
7268
7269         if (vmx->nested.vmxon) {
7270                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7271                 return kvm_skip_emulated_instruction(vcpu);
7272         }
7273
7274         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7275                         != VMXON_NEEDED_FEATURES) {
7276                 kvm_inject_gp(vcpu, 0);
7277                 return 1;
7278         }
7279
7280         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7281                 return 1;
7282
7283         /*
7284          * SDM 3: 24.11.5
7285          * The first 4 bytes of VMXON region contain the supported
7286          * VMCS revision identifier
7287          *
7288          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7289          * which replaces physical address width with 32
7290          */
7291         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7292                 nested_vmx_failInvalid(vcpu);
7293                 return kvm_skip_emulated_instruction(vcpu);
7294         }
7295
7296         page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7297         if (is_error_page(page)) {
7298                 nested_vmx_failInvalid(vcpu);
7299                 return kvm_skip_emulated_instruction(vcpu);
7300         }
7301         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7302                 kunmap(page);
7303                 kvm_release_page_clean(page);
7304                 nested_vmx_failInvalid(vcpu);
7305                 return kvm_skip_emulated_instruction(vcpu);
7306         }
7307         kunmap(page);
7308         kvm_release_page_clean(page);
7309
7310         vmx->nested.vmxon_ptr = vmptr;
7311         ret = enter_vmx_operation(vcpu);
7312         if (ret)
7313                 return ret;
7314
7315         nested_vmx_succeed(vcpu);
7316         return kvm_skip_emulated_instruction(vcpu);
7317 }
7318
7319 /*
7320  * Intel's VMX Instruction Reference specifies a common set of prerequisites
7321  * for running VMX instructions (except VMXON, whose prerequisites are
7322  * slightly different). It also specifies what exception to inject otherwise.
7323  * Note that many of these exceptions have priority over VM exits, so they
7324  * don't have to be checked again here.
7325  */
7326 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7327 {
7328         if (!to_vmx(vcpu)->nested.vmxon) {
7329                 kvm_queue_exception(vcpu, UD_VECTOR);
7330                 return 0;
7331         }
7332         return 1;
7333 }
7334
7335 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7336 {
7337         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7338         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7339 }
7340
7341 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7342 {
7343         if (vmx->nested.current_vmptr == -1ull)
7344                 return;
7345
7346         if (enable_shadow_vmcs) {
7347                 /* copy to memory all shadowed fields in case
7348                    they were modified */
7349                 copy_shadow_to_vmcs12(vmx);
7350                 vmx->nested.sync_shadow_vmcs = false;
7351                 vmx_disable_shadow_vmcs(vmx);
7352         }
7353         vmx->nested.posted_intr_nv = -1;
7354
7355         /* Flush VMCS12 to guest memory */
7356         kvm_vcpu_write_guest_page(&vmx->vcpu,
7357                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
7358                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
7359
7360         vmx->nested.current_vmptr = -1ull;
7361 }
7362
7363 /*
7364  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7365  * just stops using VMX.
7366  */
7367 static void free_nested(struct vcpu_vmx *vmx)
7368 {
7369         if (!vmx->nested.vmxon)
7370                 return;
7371
7372         vmx->nested.vmxon = false;
7373         free_vpid(vmx->nested.vpid02);
7374         vmx->nested.posted_intr_nv = -1;
7375         vmx->nested.current_vmptr = -1ull;
7376         if (vmx->nested.msr_bitmap) {
7377                 free_page((unsigned long)vmx->nested.msr_bitmap);
7378                 vmx->nested.msr_bitmap = NULL;
7379         }
7380         if (enable_shadow_vmcs) {
7381                 vmx_disable_shadow_vmcs(vmx);
7382                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7383                 free_vmcs(vmx->vmcs01.shadow_vmcs);
7384                 vmx->vmcs01.shadow_vmcs = NULL;
7385         }
7386         kfree(vmx->nested.cached_vmcs12);
7387         /* Unpin physical memory we referred to in current vmcs02 */
7388         if (vmx->nested.apic_access_page) {
7389                 kvm_release_page_dirty(vmx->nested.apic_access_page);
7390                 vmx->nested.apic_access_page = NULL;
7391         }
7392         if (vmx->nested.virtual_apic_page) {
7393                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
7394                 vmx->nested.virtual_apic_page = NULL;
7395         }
7396         if (vmx->nested.pi_desc_page) {
7397                 kunmap(vmx->nested.pi_desc_page);
7398                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
7399                 vmx->nested.pi_desc_page = NULL;
7400                 vmx->nested.pi_desc = NULL;
7401         }
7402
7403         nested_free_all_saved_vmcss(vmx);
7404 }
7405
7406 /* Emulate the VMXOFF instruction */
7407 static int handle_vmoff(struct kvm_vcpu *vcpu)
7408 {
7409         if (!nested_vmx_check_permission(vcpu))
7410                 return 1;
7411         free_nested(to_vmx(vcpu));
7412         nested_vmx_succeed(vcpu);
7413         return kvm_skip_emulated_instruction(vcpu);
7414 }
7415
7416 /* Emulate the VMCLEAR instruction */
7417 static int handle_vmclear(struct kvm_vcpu *vcpu)
7418 {
7419         struct vcpu_vmx *vmx = to_vmx(vcpu);
7420         u32 zero = 0;
7421         gpa_t vmptr;
7422
7423         if (!nested_vmx_check_permission(vcpu))
7424                 return 1;
7425
7426         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7427                 return 1;
7428
7429         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7430                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7431                 return kvm_skip_emulated_instruction(vcpu);
7432         }
7433
7434         if (vmptr == vmx->nested.vmxon_ptr) {
7435                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7436                 return kvm_skip_emulated_instruction(vcpu);
7437         }
7438
7439         if (vmptr == vmx->nested.current_vmptr)
7440                 nested_release_vmcs12(vmx);
7441
7442         kvm_vcpu_write_guest(vcpu,
7443                         vmptr + offsetof(struct vmcs12, launch_state),
7444                         &zero, sizeof(zero));
7445
7446         nested_free_vmcs02(vmx, vmptr);
7447
7448         nested_vmx_succeed(vcpu);
7449         return kvm_skip_emulated_instruction(vcpu);
7450 }
7451
7452 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7453
7454 /* Emulate the VMLAUNCH instruction */
7455 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7456 {
7457         return nested_vmx_run(vcpu, true);
7458 }
7459
7460 /* Emulate the VMRESUME instruction */
7461 static int handle_vmresume(struct kvm_vcpu *vcpu)
7462 {
7463
7464         return nested_vmx_run(vcpu, false);
7465 }
7466
7467 /*
7468  * Read a vmcs12 field. Since these can have varying lengths and we return
7469  * one type, we chose the biggest type (u64) and zero-extend the return value
7470  * to that size. Note that the caller, handle_vmread, might need to use only
7471  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7472  * 64-bit fields are to be returned).
7473  */
7474 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7475                                   unsigned long field, u64 *ret)
7476 {
7477         short offset = vmcs_field_to_offset(field);
7478         char *p;
7479
7480         if (offset < 0)
7481                 return offset;
7482
7483         p = ((char *)(get_vmcs12(vcpu))) + offset;
7484
7485         switch (vmcs_field_type(field)) {
7486         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7487                 *ret = *((natural_width *)p);
7488                 return 0;
7489         case VMCS_FIELD_TYPE_U16:
7490                 *ret = *((u16 *)p);
7491                 return 0;
7492         case VMCS_FIELD_TYPE_U32:
7493                 *ret = *((u32 *)p);
7494                 return 0;
7495         case VMCS_FIELD_TYPE_U64:
7496                 *ret = *((u64 *)p);
7497                 return 0;
7498         default:
7499                 WARN_ON(1);
7500                 return -ENOENT;
7501         }
7502 }
7503
7504
7505 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7506                                    unsigned long field, u64 field_value){
7507         short offset = vmcs_field_to_offset(field);
7508         char *p = ((char *) get_vmcs12(vcpu)) + offset;
7509         if (offset < 0)
7510                 return offset;
7511
7512         switch (vmcs_field_type(field)) {
7513         case VMCS_FIELD_TYPE_U16:
7514                 *(u16 *)p = field_value;
7515                 return 0;
7516         case VMCS_FIELD_TYPE_U32:
7517                 *(u32 *)p = field_value;
7518                 return 0;
7519         case VMCS_FIELD_TYPE_U64:
7520                 *(u64 *)p = field_value;
7521                 return 0;
7522         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7523                 *(natural_width *)p = field_value;
7524                 return 0;
7525         default:
7526                 WARN_ON(1);
7527                 return -ENOENT;
7528         }
7529
7530 }
7531
7532 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7533 {
7534         int i;
7535         unsigned long field;
7536         u64 field_value;
7537         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7538         const unsigned long *fields = shadow_read_write_fields;
7539         const int num_fields = max_shadow_read_write_fields;
7540
7541         preempt_disable();
7542
7543         vmcs_load(shadow_vmcs);
7544
7545         for (i = 0; i < num_fields; i++) {
7546                 field = fields[i];
7547                 switch (vmcs_field_type(field)) {
7548                 case VMCS_FIELD_TYPE_U16:
7549                         field_value = vmcs_read16(field);
7550                         break;
7551                 case VMCS_FIELD_TYPE_U32:
7552                         field_value = vmcs_read32(field);
7553                         break;
7554                 case VMCS_FIELD_TYPE_U64:
7555                         field_value = vmcs_read64(field);
7556                         break;
7557                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7558                         field_value = vmcs_readl(field);
7559                         break;
7560                 default:
7561                         WARN_ON(1);
7562                         continue;
7563                 }
7564                 vmcs12_write_any(&vmx->vcpu, field, field_value);
7565         }
7566
7567         vmcs_clear(shadow_vmcs);
7568         vmcs_load(vmx->loaded_vmcs->vmcs);
7569
7570         preempt_enable();
7571 }
7572
7573 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7574 {
7575         const unsigned long *fields[] = {
7576                 shadow_read_write_fields,
7577                 shadow_read_only_fields
7578         };
7579         const int max_fields[] = {
7580                 max_shadow_read_write_fields,
7581                 max_shadow_read_only_fields
7582         };
7583         int i, q;
7584         unsigned long field;
7585         u64 field_value = 0;
7586         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7587
7588         vmcs_load(shadow_vmcs);
7589
7590         for (q = 0; q < ARRAY_SIZE(fields); q++) {
7591                 for (i = 0; i < max_fields[q]; i++) {
7592                         field = fields[q][i];
7593                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
7594
7595                         switch (vmcs_field_type(field)) {
7596                         case VMCS_FIELD_TYPE_U16:
7597                                 vmcs_write16(field, (u16)field_value);
7598                                 break;
7599                         case VMCS_FIELD_TYPE_U32:
7600                                 vmcs_write32(field, (u32)field_value);
7601                                 break;
7602                         case VMCS_FIELD_TYPE_U64:
7603                                 vmcs_write64(field, (u64)field_value);
7604                                 break;
7605                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7606                                 vmcs_writel(field, (long)field_value);
7607                                 break;
7608                         default:
7609                                 WARN_ON(1);
7610                                 break;
7611                         }
7612                 }
7613         }
7614
7615         vmcs_clear(shadow_vmcs);
7616         vmcs_load(vmx->loaded_vmcs->vmcs);
7617 }
7618
7619 /*
7620  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7621  * used before) all generate the same failure when it is missing.
7622  */
7623 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7624 {
7625         struct vcpu_vmx *vmx = to_vmx(vcpu);
7626         if (vmx->nested.current_vmptr == -1ull) {
7627                 nested_vmx_failInvalid(vcpu);
7628                 return 0;
7629         }
7630         return 1;
7631 }
7632
7633 static int handle_vmread(struct kvm_vcpu *vcpu)
7634 {
7635         unsigned long field;
7636         u64 field_value;
7637         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7638         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7639         gva_t gva = 0;
7640
7641         if (!nested_vmx_check_permission(vcpu))
7642                 return 1;
7643
7644         if (!nested_vmx_check_vmcs12(vcpu))
7645                 return kvm_skip_emulated_instruction(vcpu);
7646
7647         /* Decode instruction info and find the field to read */
7648         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7649         /* Read the field, zero-extended to a u64 field_value */
7650         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7651                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7652                 return kvm_skip_emulated_instruction(vcpu);
7653         }
7654         /*
7655          * Now copy part of this value to register or memory, as requested.
7656          * Note that the number of bits actually copied is 32 or 64 depending
7657          * on the guest's mode (32 or 64 bit), not on the given field's length.
7658          */
7659         if (vmx_instruction_info & (1u << 10)) {
7660                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7661                         field_value);
7662         } else {
7663                 if (get_vmx_mem_address(vcpu, exit_qualification,
7664                                 vmx_instruction_info, true, &gva))
7665                         return 1;
7666                 /* _system ok, as hardware has verified cpl=0 */
7667                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7668                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7669         }
7670
7671         nested_vmx_succeed(vcpu);
7672         return kvm_skip_emulated_instruction(vcpu);
7673 }
7674
7675
7676 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7677 {
7678         unsigned long field;
7679         gva_t gva;
7680         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7681         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7682         /* The value to write might be 32 or 64 bits, depending on L1's long
7683          * mode, and eventually we need to write that into a field of several
7684          * possible lengths. The code below first zero-extends the value to 64
7685          * bit (field_value), and then copies only the appropriate number of
7686          * bits into the vmcs12 field.
7687          */
7688         u64 field_value = 0;
7689         struct x86_exception e;
7690
7691         if (!nested_vmx_check_permission(vcpu))
7692                 return 1;
7693
7694         if (!nested_vmx_check_vmcs12(vcpu))
7695                 return kvm_skip_emulated_instruction(vcpu);
7696
7697         if (vmx_instruction_info & (1u << 10))
7698                 field_value = kvm_register_readl(vcpu,
7699                         (((vmx_instruction_info) >> 3) & 0xf));
7700         else {
7701                 if (get_vmx_mem_address(vcpu, exit_qualification,
7702                                 vmx_instruction_info, false, &gva))
7703                         return 1;
7704                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7705                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7706                         kvm_inject_page_fault(vcpu, &e);
7707                         return 1;
7708                 }
7709         }
7710
7711
7712         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7713         if (vmcs_field_readonly(field)) {
7714                 nested_vmx_failValid(vcpu,
7715                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7716                 return kvm_skip_emulated_instruction(vcpu);
7717         }
7718
7719         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7720                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7721                 return kvm_skip_emulated_instruction(vcpu);
7722         }
7723
7724         nested_vmx_succeed(vcpu);
7725         return kvm_skip_emulated_instruction(vcpu);
7726 }
7727
7728 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7729 {
7730         vmx->nested.current_vmptr = vmptr;
7731         if (enable_shadow_vmcs) {
7732                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7733                               SECONDARY_EXEC_SHADOW_VMCS);
7734                 vmcs_write64(VMCS_LINK_POINTER,
7735                              __pa(vmx->vmcs01.shadow_vmcs));
7736                 vmx->nested.sync_shadow_vmcs = true;
7737         }
7738 }
7739
7740 /* Emulate the VMPTRLD instruction */
7741 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7742 {
7743         struct vcpu_vmx *vmx = to_vmx(vcpu);
7744         gpa_t vmptr;
7745
7746         if (!nested_vmx_check_permission(vcpu))
7747                 return 1;
7748
7749         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7750                 return 1;
7751
7752         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7753                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7754                 return kvm_skip_emulated_instruction(vcpu);
7755         }
7756
7757         if (vmptr == vmx->nested.vmxon_ptr) {
7758                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7759                 return kvm_skip_emulated_instruction(vcpu);
7760         }
7761
7762         if (vmx->nested.current_vmptr != vmptr) {
7763                 struct vmcs12 *new_vmcs12;
7764                 struct page *page;
7765                 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7766                 if (is_error_page(page)) {
7767                         nested_vmx_failInvalid(vcpu);
7768                         return kvm_skip_emulated_instruction(vcpu);
7769                 }
7770                 new_vmcs12 = kmap(page);
7771                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7772                         kunmap(page);
7773                         kvm_release_page_clean(page);
7774                         nested_vmx_failValid(vcpu,
7775                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7776                         return kvm_skip_emulated_instruction(vcpu);
7777                 }
7778
7779                 nested_release_vmcs12(vmx);
7780                 /*
7781                  * Load VMCS12 from guest memory since it is not already
7782                  * cached.
7783                  */
7784                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7785                 kunmap(page);
7786                 kvm_release_page_clean(page);
7787
7788                 set_current_vmptr(vmx, vmptr);
7789         }
7790
7791         nested_vmx_succeed(vcpu);
7792         return kvm_skip_emulated_instruction(vcpu);
7793 }
7794
7795 /* Emulate the VMPTRST instruction */
7796 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7797 {
7798         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7799         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7800         gva_t vmcs_gva;
7801         struct x86_exception e;
7802
7803         if (!nested_vmx_check_permission(vcpu))
7804                 return 1;
7805
7806         if (get_vmx_mem_address(vcpu, exit_qualification,
7807                         vmx_instruction_info, true, &vmcs_gva))
7808                 return 1;
7809         /* ok to use *_system, as hardware has verified cpl=0 */
7810         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7811                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7812                                  sizeof(u64), &e)) {
7813                 kvm_inject_page_fault(vcpu, &e);
7814                 return 1;
7815         }
7816         nested_vmx_succeed(vcpu);
7817         return kvm_skip_emulated_instruction(vcpu);
7818 }
7819
7820 /* Emulate the INVEPT instruction */
7821 static int handle_invept(struct kvm_vcpu *vcpu)
7822 {
7823         struct vcpu_vmx *vmx = to_vmx(vcpu);
7824         u32 vmx_instruction_info, types;
7825         unsigned long type;
7826         gva_t gva;
7827         struct x86_exception e;
7828         struct {
7829                 u64 eptp, gpa;
7830         } operand;
7831
7832         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7833               SECONDARY_EXEC_ENABLE_EPT) ||
7834             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7835                 kvm_queue_exception(vcpu, UD_VECTOR);
7836                 return 1;
7837         }
7838
7839         if (!nested_vmx_check_permission(vcpu))
7840                 return 1;
7841
7842         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7843         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7844
7845         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7846
7847         if (type >= 32 || !(types & (1 << type))) {
7848                 nested_vmx_failValid(vcpu,
7849                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7850                 return kvm_skip_emulated_instruction(vcpu);
7851         }
7852
7853         /* According to the Intel VMX instruction reference, the memory
7854          * operand is read even if it isn't needed (e.g., for type==global)
7855          */
7856         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7857                         vmx_instruction_info, false, &gva))
7858                 return 1;
7859         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7860                                 sizeof(operand), &e)) {
7861                 kvm_inject_page_fault(vcpu, &e);
7862                 return 1;
7863         }
7864
7865         switch (type) {
7866         case VMX_EPT_EXTENT_GLOBAL:
7867         /*
7868          * TODO: track mappings and invalidate
7869          * single context requests appropriately
7870          */
7871         case VMX_EPT_EXTENT_CONTEXT:
7872                 kvm_mmu_sync_roots(vcpu);
7873                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7874                 nested_vmx_succeed(vcpu);
7875                 break;
7876         default:
7877                 BUG_ON(1);
7878                 break;
7879         }
7880
7881         return kvm_skip_emulated_instruction(vcpu);
7882 }
7883
7884 static int handle_invvpid(struct kvm_vcpu *vcpu)
7885 {
7886         struct vcpu_vmx *vmx = to_vmx(vcpu);
7887         u32 vmx_instruction_info;
7888         unsigned long type, types;
7889         gva_t gva;
7890         struct x86_exception e;
7891         struct {
7892                 u64 vpid;
7893                 u64 gla;
7894         } operand;
7895
7896         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7897               SECONDARY_EXEC_ENABLE_VPID) ||
7898                         !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7899                 kvm_queue_exception(vcpu, UD_VECTOR);
7900                 return 1;
7901         }
7902
7903         if (!nested_vmx_check_permission(vcpu))
7904                 return 1;
7905
7906         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7907         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7908
7909         types = (vmx->nested.nested_vmx_vpid_caps &
7910                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7911
7912         if (type >= 32 || !(types & (1 << type))) {
7913                 nested_vmx_failValid(vcpu,
7914                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7915                 return kvm_skip_emulated_instruction(vcpu);
7916         }
7917
7918         /* according to the intel vmx instruction reference, the memory
7919          * operand is read even if it isn't needed (e.g., for type==global)
7920          */
7921         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7922                         vmx_instruction_info, false, &gva))
7923                 return 1;
7924         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7925                                 sizeof(operand), &e)) {
7926                 kvm_inject_page_fault(vcpu, &e);
7927                 return 1;
7928         }
7929         if (operand.vpid >> 16) {
7930                 nested_vmx_failValid(vcpu,
7931                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7932                 return kvm_skip_emulated_instruction(vcpu);
7933         }
7934
7935         switch (type) {
7936         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7937                 if (is_noncanonical_address(operand.gla, vcpu)) {
7938                         nested_vmx_failValid(vcpu,
7939                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7940                         return kvm_skip_emulated_instruction(vcpu);
7941                 }
7942                 /* fall through */
7943         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7944         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7945                 if (!operand.vpid) {
7946                         nested_vmx_failValid(vcpu,
7947                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7948                         return kvm_skip_emulated_instruction(vcpu);
7949                 }
7950                 break;
7951         case VMX_VPID_EXTENT_ALL_CONTEXT:
7952                 break;
7953         default:
7954                 WARN_ON_ONCE(1);
7955                 return kvm_skip_emulated_instruction(vcpu);
7956         }
7957
7958         __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7959         nested_vmx_succeed(vcpu);
7960
7961         return kvm_skip_emulated_instruction(vcpu);
7962 }
7963
7964 static int handle_pml_full(struct kvm_vcpu *vcpu)
7965 {
7966         unsigned long exit_qualification;
7967
7968         trace_kvm_pml_full(vcpu->vcpu_id);
7969
7970         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7971
7972         /*
7973          * PML buffer FULL happened while executing iret from NMI,
7974          * "blocked by NMI" bit has to be set before next VM entry.
7975          */
7976         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7977                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7978                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7979                                 GUEST_INTR_STATE_NMI);
7980
7981         /*
7982          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7983          * here.., and there's no userspace involvement needed for PML.
7984          */
7985         return 1;
7986 }
7987
7988 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7989 {
7990         kvm_lapic_expired_hv_timer(vcpu);
7991         return 1;
7992 }
7993
7994 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
7995 {
7996         struct vcpu_vmx *vmx = to_vmx(vcpu);
7997         int maxphyaddr = cpuid_maxphyaddr(vcpu);
7998
7999         /* Check for memory type validity */
8000         switch (address & VMX_EPTP_MT_MASK) {
8001         case VMX_EPTP_MT_UC:
8002                 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8003                         return false;
8004                 break;
8005         case VMX_EPTP_MT_WB:
8006                 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8007                         return false;
8008                 break;
8009         default:
8010                 return false;
8011         }
8012
8013         /* only 4 levels page-walk length are valid */
8014         if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
8015                 return false;
8016
8017         /* Reserved bits should not be set */
8018         if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8019                 return false;
8020
8021         /* AD, if set, should be supported */
8022         if (address & VMX_EPTP_AD_ENABLE_BIT) {
8023                 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8024                         return false;
8025         }
8026
8027         return true;
8028 }
8029
8030 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8031                                      struct vmcs12 *vmcs12)
8032 {
8033         u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8034         u64 address;
8035         bool accessed_dirty;
8036         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8037
8038         if (!nested_cpu_has_eptp_switching(vmcs12) ||
8039             !nested_cpu_has_ept(vmcs12))
8040                 return 1;
8041
8042         if (index >= VMFUNC_EPTP_ENTRIES)
8043                 return 1;
8044
8045
8046         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8047                                      &address, index * 8, 8))
8048                 return 1;
8049
8050         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
8051
8052         /*
8053          * If the (L2) guest does a vmfunc to the currently
8054          * active ept pointer, we don't have to do anything else
8055          */
8056         if (vmcs12->ept_pointer != address) {
8057                 if (!valid_ept_address(vcpu, address))
8058                         return 1;
8059
8060                 kvm_mmu_unload(vcpu);
8061                 mmu->ept_ad = accessed_dirty;
8062                 mmu->base_role.ad_disabled = !accessed_dirty;
8063                 vmcs12->ept_pointer = address;
8064                 /*
8065                  * TODO: Check what's the correct approach in case
8066                  * mmu reload fails. Currently, we just let the next
8067                  * reload potentially fail
8068                  */
8069                 kvm_mmu_reload(vcpu);
8070         }
8071
8072         return 0;
8073 }
8074
8075 static int handle_vmfunc(struct kvm_vcpu *vcpu)
8076 {
8077         struct vcpu_vmx *vmx = to_vmx(vcpu);
8078         struct vmcs12 *vmcs12;
8079         u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8080
8081         /*
8082          * VMFUNC is only supported for nested guests, but we always enable the
8083          * secondary control for simplicity; for non-nested mode, fake that we
8084          * didn't by injecting #UD.
8085          */
8086         if (!is_guest_mode(vcpu)) {
8087                 kvm_queue_exception(vcpu, UD_VECTOR);
8088                 return 1;
8089         }
8090
8091         vmcs12 = get_vmcs12(vcpu);
8092         if ((vmcs12->vm_function_control & (1 << function)) == 0)
8093                 goto fail;
8094
8095         switch (function) {
8096         case 0:
8097                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8098                         goto fail;
8099                 break;
8100         default:
8101                 goto fail;
8102         }
8103         return kvm_skip_emulated_instruction(vcpu);
8104
8105 fail:
8106         nested_vmx_vmexit(vcpu, vmx->exit_reason,
8107                           vmcs_read32(VM_EXIT_INTR_INFO),
8108                           vmcs_readl(EXIT_QUALIFICATION));
8109         return 1;
8110 }
8111
8112 /*
8113  * The exit handlers return 1 if the exit was handled fully and guest execution
8114  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
8115  * to be done to userspace and return 0.
8116  */
8117 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
8118         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
8119         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
8120         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
8121         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
8122         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
8123         [EXIT_REASON_CR_ACCESS]               = handle_cr,
8124         [EXIT_REASON_DR_ACCESS]               = handle_dr,
8125         [EXIT_REASON_CPUID]                   = handle_cpuid,
8126         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
8127         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
8128         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
8129         [EXIT_REASON_HLT]                     = handle_halt,
8130         [EXIT_REASON_INVD]                    = handle_invd,
8131         [EXIT_REASON_INVLPG]                  = handle_invlpg,
8132         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
8133         [EXIT_REASON_VMCALL]                  = handle_vmcall,
8134         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
8135         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
8136         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
8137         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
8138         [EXIT_REASON_VMREAD]                  = handle_vmread,
8139         [EXIT_REASON_VMRESUME]                = handle_vmresume,
8140         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
8141         [EXIT_REASON_VMOFF]                   = handle_vmoff,
8142         [EXIT_REASON_VMON]                    = handle_vmon,
8143         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
8144         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
8145         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
8146         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
8147         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
8148         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
8149         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
8150         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
8151         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
8152         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
8153         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
8154         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
8155         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
8156         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
8157         [EXIT_REASON_INVEPT]                  = handle_invept,
8158         [EXIT_REASON_INVVPID]                 = handle_invvpid,
8159         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
8160         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
8161         [EXIT_REASON_XSAVES]                  = handle_xsaves,
8162         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
8163         [EXIT_REASON_PML_FULL]                = handle_pml_full,
8164         [EXIT_REASON_VMFUNC]                  = handle_vmfunc,
8165         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
8166 };
8167
8168 static const int kvm_vmx_max_exit_handlers =
8169         ARRAY_SIZE(kvm_vmx_exit_handlers);
8170
8171 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8172                                        struct vmcs12 *vmcs12)
8173 {
8174         unsigned long exit_qualification;
8175         gpa_t bitmap, last_bitmap;
8176         unsigned int port;
8177         int size;
8178         u8 b;
8179
8180         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8181                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8182
8183         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8184
8185         port = exit_qualification >> 16;
8186         size = (exit_qualification & 7) + 1;
8187
8188         last_bitmap = (gpa_t)-1;
8189         b = -1;
8190
8191         while (size > 0) {
8192                 if (port < 0x8000)
8193                         bitmap = vmcs12->io_bitmap_a;
8194                 else if (port < 0x10000)
8195                         bitmap = vmcs12->io_bitmap_b;
8196                 else
8197                         return true;
8198                 bitmap += (port & 0x7fff) / 8;
8199
8200                 if (last_bitmap != bitmap)
8201                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
8202                                 return true;
8203                 if (b & (1 << (port & 7)))
8204                         return true;
8205
8206                 port++;
8207                 size--;
8208                 last_bitmap = bitmap;
8209         }
8210
8211         return false;
8212 }
8213
8214 /*
8215  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8216  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8217  * disinterest in the current event (read or write a specific MSR) by using an
8218  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8219  */
8220 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8221         struct vmcs12 *vmcs12, u32 exit_reason)
8222 {
8223         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8224         gpa_t bitmap;
8225
8226         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8227                 return true;
8228
8229         /*
8230          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8231          * for the four combinations of read/write and low/high MSR numbers.
8232          * First we need to figure out which of the four to use:
8233          */
8234         bitmap = vmcs12->msr_bitmap;
8235         if (exit_reason == EXIT_REASON_MSR_WRITE)
8236                 bitmap += 2048;
8237         if (msr_index >= 0xc0000000) {
8238                 msr_index -= 0xc0000000;
8239                 bitmap += 1024;
8240         }
8241
8242         /* Then read the msr_index'th bit from this bitmap: */
8243         if (msr_index < 1024*8) {
8244                 unsigned char b;
8245                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
8246                         return true;
8247                 return 1 & (b >> (msr_index & 7));
8248         } else
8249                 return true; /* let L1 handle the wrong parameter */
8250 }
8251
8252 /*
8253  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8254  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8255  * intercept (via guest_host_mask etc.) the current event.
8256  */
8257 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8258         struct vmcs12 *vmcs12)
8259 {
8260         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8261         int cr = exit_qualification & 15;
8262         int reg;
8263         unsigned long val;
8264
8265         switch ((exit_qualification >> 4) & 3) {
8266         case 0: /* mov to cr */
8267                 reg = (exit_qualification >> 8) & 15;
8268                 val = kvm_register_readl(vcpu, reg);
8269                 switch (cr) {
8270                 case 0:
8271                         if (vmcs12->cr0_guest_host_mask &
8272                             (val ^ vmcs12->cr0_read_shadow))
8273                                 return true;
8274                         break;
8275                 case 3:
8276                         if ((vmcs12->cr3_target_count >= 1 &&
8277                                         vmcs12->cr3_target_value0 == val) ||
8278                                 (vmcs12->cr3_target_count >= 2 &&
8279                                         vmcs12->cr3_target_value1 == val) ||
8280                                 (vmcs12->cr3_target_count >= 3 &&
8281                                         vmcs12->cr3_target_value2 == val) ||
8282                                 (vmcs12->cr3_target_count >= 4 &&
8283                                         vmcs12->cr3_target_value3 == val))
8284                                 return false;
8285                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
8286                                 return true;
8287                         break;
8288                 case 4:
8289                         if (vmcs12->cr4_guest_host_mask &
8290                             (vmcs12->cr4_read_shadow ^ val))
8291                                 return true;
8292                         break;
8293                 case 8:
8294                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
8295                                 return true;
8296                         break;
8297                 }
8298                 break;
8299         case 2: /* clts */
8300                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8301                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
8302                         return true;
8303                 break;
8304         case 1: /* mov from cr */
8305                 switch (cr) {
8306                 case 3:
8307                         if (vmcs12->cpu_based_vm_exec_control &
8308                             CPU_BASED_CR3_STORE_EXITING)
8309                                 return true;
8310                         break;
8311                 case 8:
8312                         if (vmcs12->cpu_based_vm_exec_control &
8313                             CPU_BASED_CR8_STORE_EXITING)
8314                                 return true;
8315                         break;
8316                 }
8317                 break;
8318         case 3: /* lmsw */
8319                 /*
8320                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8321                  * cr0. Other attempted changes are ignored, with no exit.
8322                  */
8323                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
8324                 if (vmcs12->cr0_guest_host_mask & 0xe &
8325                     (val ^ vmcs12->cr0_read_shadow))
8326                         return true;
8327                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8328                     !(vmcs12->cr0_read_shadow & 0x1) &&
8329                     (val & 0x1))
8330                         return true;
8331                 break;
8332         }
8333         return false;
8334 }
8335
8336 /*
8337  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8338  * should handle it ourselves in L0 (and then continue L2). Only call this
8339  * when in is_guest_mode (L2).
8340  */
8341 static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
8342 {
8343         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8344         struct vcpu_vmx *vmx = to_vmx(vcpu);
8345         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8346
8347         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8348                                 vmcs_readl(EXIT_QUALIFICATION),
8349                                 vmx->idt_vectoring_info,
8350                                 intr_info,
8351                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8352                                 KVM_ISA_VMX);
8353
8354         /*
8355          * The host physical addresses of some pages of guest memory
8356          * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8357          * may write to these pages via their host physical address while
8358          * L2 is running, bypassing any address-translation-based dirty
8359          * tracking (e.g. EPT write protection).
8360          *
8361          * Mark them dirty on every exit from L2 to prevent them from
8362          * getting out of sync with dirty tracking.
8363          */
8364         nested_mark_vmcs12_pages_dirty(vcpu);
8365
8366         if (vmx->nested.nested_run_pending)
8367                 return false;
8368
8369         if (unlikely(vmx->fail)) {
8370                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8371                                     vmcs_read32(VM_INSTRUCTION_ERROR));
8372                 return true;
8373         }
8374
8375         switch (exit_reason) {
8376         case EXIT_REASON_EXCEPTION_NMI:
8377                 if (is_nmi(intr_info))
8378                         return false;
8379                 else if (is_page_fault(intr_info))
8380                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
8381                 else if (is_no_device(intr_info) &&
8382                          !(vmcs12->guest_cr0 & X86_CR0_TS))
8383                         return false;
8384                 else if (is_debug(intr_info) &&
8385                          vcpu->guest_debug &
8386                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8387                         return false;
8388                 else if (is_breakpoint(intr_info) &&
8389                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8390                         return false;
8391                 return vmcs12->exception_bitmap &
8392                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8393         case EXIT_REASON_EXTERNAL_INTERRUPT:
8394                 return false;
8395         case EXIT_REASON_TRIPLE_FAULT:
8396                 return true;
8397         case EXIT_REASON_PENDING_INTERRUPT:
8398                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8399         case EXIT_REASON_NMI_WINDOW:
8400                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8401         case EXIT_REASON_TASK_SWITCH:
8402                 return true;
8403         case EXIT_REASON_CPUID:
8404                 return true;
8405         case EXIT_REASON_HLT:
8406                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8407         case EXIT_REASON_INVD:
8408                 return true;
8409         case EXIT_REASON_INVLPG:
8410                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8411         case EXIT_REASON_RDPMC:
8412                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8413         case EXIT_REASON_RDRAND:
8414                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8415         case EXIT_REASON_RDSEED:
8416                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
8417         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8418                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8419         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8420         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8421         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8422         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8423         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8424         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8425                 /*
8426                  * VMX instructions trap unconditionally. This allows L1 to
8427                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
8428                  */
8429                 return true;
8430         case EXIT_REASON_CR_ACCESS:
8431                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8432         case EXIT_REASON_DR_ACCESS:
8433                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8434         case EXIT_REASON_IO_INSTRUCTION:
8435                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8436         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8437                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8438         case EXIT_REASON_MSR_READ:
8439         case EXIT_REASON_MSR_WRITE:
8440                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8441         case EXIT_REASON_INVALID_STATE:
8442                 return true;
8443         case EXIT_REASON_MWAIT_INSTRUCTION:
8444                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8445         case EXIT_REASON_MONITOR_TRAP_FLAG:
8446                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8447         case EXIT_REASON_MONITOR_INSTRUCTION:
8448                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8449         case EXIT_REASON_PAUSE_INSTRUCTION:
8450                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8451                         nested_cpu_has2(vmcs12,
8452                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8453         case EXIT_REASON_MCE_DURING_VMENTRY:
8454                 return false;
8455         case EXIT_REASON_TPR_BELOW_THRESHOLD:
8456                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8457         case EXIT_REASON_APIC_ACCESS:
8458                 return nested_cpu_has2(vmcs12,
8459                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8460         case EXIT_REASON_APIC_WRITE:
8461         case EXIT_REASON_EOI_INDUCED:
8462                 /* apic_write and eoi_induced should exit unconditionally. */
8463                 return true;
8464         case EXIT_REASON_EPT_VIOLATION:
8465                 /*
8466                  * L0 always deals with the EPT violation. If nested EPT is
8467                  * used, and the nested mmu code discovers that the address is
8468                  * missing in the guest EPT table (EPT12), the EPT violation
8469                  * will be injected with nested_ept_inject_page_fault()
8470                  */
8471                 return false;
8472         case EXIT_REASON_EPT_MISCONFIG:
8473                 /*
8474                  * L2 never uses directly L1's EPT, but rather L0's own EPT
8475                  * table (shadow on EPT) or a merged EPT table that L0 built
8476                  * (EPT on EPT). So any problems with the structure of the
8477                  * table is L0's fault.
8478                  */
8479                 return false;
8480         case EXIT_REASON_INVPCID:
8481                 return
8482                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8483                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8484         case EXIT_REASON_WBINVD:
8485                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8486         case EXIT_REASON_XSETBV:
8487                 return true;
8488         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8489                 /*
8490                  * This should never happen, since it is not possible to
8491                  * set XSS to a non-zero value---neither in L1 nor in L2.
8492                  * If if it were, XSS would have to be checked against
8493                  * the XSS exit bitmap in vmcs12.
8494                  */
8495                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8496         case EXIT_REASON_PREEMPTION_TIMER:
8497                 return false;
8498         case EXIT_REASON_PML_FULL:
8499                 /* We emulate PML support to L1. */
8500                 return false;
8501         case EXIT_REASON_VMFUNC:
8502                 /* VM functions are emulated through L2->L0 vmexits. */
8503                 return false;
8504         default:
8505                 return true;
8506         }
8507 }
8508
8509 static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8510 {
8511         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8512
8513         /*
8514          * At this point, the exit interruption info in exit_intr_info
8515          * is only valid for EXCEPTION_NMI exits.  For EXTERNAL_INTERRUPT
8516          * we need to query the in-kernel LAPIC.
8517          */
8518         WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8519         if ((exit_intr_info &
8520              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8521             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8522                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8523                 vmcs12->vm_exit_intr_error_code =
8524                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8525         }
8526
8527         nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8528                           vmcs_readl(EXIT_QUALIFICATION));
8529         return 1;
8530 }
8531
8532 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8533 {
8534         *info1 = vmcs_readl(EXIT_QUALIFICATION);
8535         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8536 }
8537
8538 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8539 {
8540         if (vmx->pml_pg) {
8541                 __free_page(vmx->pml_pg);
8542                 vmx->pml_pg = NULL;
8543         }
8544 }
8545
8546 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8547 {
8548         struct vcpu_vmx *vmx = to_vmx(vcpu);
8549         u64 *pml_buf;
8550         u16 pml_idx;
8551
8552         pml_idx = vmcs_read16(GUEST_PML_INDEX);
8553
8554         /* Do nothing if PML buffer is empty */
8555         if (pml_idx == (PML_ENTITY_NUM - 1))
8556                 return;
8557
8558         /* PML index always points to next available PML buffer entity */
8559         if (pml_idx >= PML_ENTITY_NUM)
8560                 pml_idx = 0;
8561         else
8562                 pml_idx++;
8563
8564         pml_buf = page_address(vmx->pml_pg);
8565         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8566                 u64 gpa;
8567
8568                 gpa = pml_buf[pml_idx];
8569                 WARN_ON(gpa & (PAGE_SIZE - 1));
8570                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8571         }
8572
8573         /* reset PML index */
8574         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8575 }
8576
8577 /*
8578  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8579  * Called before reporting dirty_bitmap to userspace.
8580  */
8581 static void kvm_flush_pml_buffers(struct kvm *kvm)
8582 {
8583         int i;
8584         struct kvm_vcpu *vcpu;
8585         /*
8586          * We only need to kick vcpu out of guest mode here, as PML buffer
8587          * is flushed at beginning of all VMEXITs, and it's obvious that only
8588          * vcpus running in guest are possible to have unflushed GPAs in PML
8589          * buffer.
8590          */
8591         kvm_for_each_vcpu(i, vcpu, kvm)
8592                 kvm_vcpu_kick(vcpu);
8593 }
8594
8595 static void vmx_dump_sel(char *name, uint32_t sel)
8596 {
8597         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8598                name, vmcs_read16(sel),
8599                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8600                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8601                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8602 }
8603
8604 static void vmx_dump_dtsel(char *name, uint32_t limit)
8605 {
8606         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8607                name, vmcs_read32(limit),
8608                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8609 }
8610
8611 static void dump_vmcs(void)
8612 {
8613         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8614         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8615         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8616         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8617         u32 secondary_exec_control = 0;
8618         unsigned long cr4 = vmcs_readl(GUEST_CR4);
8619         u64 efer = vmcs_read64(GUEST_IA32_EFER);
8620         int i, n;
8621
8622         if (cpu_has_secondary_exec_ctrls())
8623                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8624
8625         pr_err("*** Guest State ***\n");
8626         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8627                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8628                vmcs_readl(CR0_GUEST_HOST_MASK));
8629         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8630                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8631         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8632         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8633             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8634         {
8635                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8636                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8637                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8638                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8639         }
8640         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8641                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8642         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8643                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8644         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8645                vmcs_readl(GUEST_SYSENTER_ESP),
8646                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8647         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8648         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8649         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8650         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8651         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8652         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8653         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8654         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8655         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8656         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8657         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8658             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8659                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8660                        efer, vmcs_read64(GUEST_IA32_PAT));
8661         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8662                vmcs_read64(GUEST_IA32_DEBUGCTL),
8663                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8664         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8665                 pr_err("PerfGlobCtl = 0x%016llx\n",
8666                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8667         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8668                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8669         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8670                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8671                vmcs_read32(GUEST_ACTIVITY_STATE));
8672         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8673                 pr_err("InterruptStatus = %04x\n",
8674                        vmcs_read16(GUEST_INTR_STATUS));
8675
8676         pr_err("*** Host State ***\n");
8677         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8678                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8679         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8680                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8681                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8682                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8683                vmcs_read16(HOST_TR_SELECTOR));
8684         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8685                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8686                vmcs_readl(HOST_TR_BASE));
8687         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8688                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8689         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8690                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8691                vmcs_readl(HOST_CR4));
8692         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8693                vmcs_readl(HOST_IA32_SYSENTER_ESP),
8694                vmcs_read32(HOST_IA32_SYSENTER_CS),
8695                vmcs_readl(HOST_IA32_SYSENTER_EIP));
8696         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8697                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8698                        vmcs_read64(HOST_IA32_EFER),
8699                        vmcs_read64(HOST_IA32_PAT));
8700         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8701                 pr_err("PerfGlobCtl = 0x%016llx\n",
8702                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8703
8704         pr_err("*** Control State ***\n");
8705         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8706                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8707         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8708         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8709                vmcs_read32(EXCEPTION_BITMAP),
8710                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8711                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8712         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8713                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8714                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8715                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8716         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8717                vmcs_read32(VM_EXIT_INTR_INFO),
8718                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8719                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8720         pr_err("        reason=%08x qualification=%016lx\n",
8721                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8722         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8723                vmcs_read32(IDT_VECTORING_INFO_FIELD),
8724                vmcs_read32(IDT_VECTORING_ERROR_CODE));
8725         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8726         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8727                 pr_err("TSC Multiplier = 0x%016llx\n",
8728                        vmcs_read64(TSC_MULTIPLIER));
8729         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8730                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8731         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8732                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8733         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8734                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8735         n = vmcs_read32(CR3_TARGET_COUNT);
8736         for (i = 0; i + 1 < n; i += 4)
8737                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8738                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8739                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8740         if (i < n)
8741                 pr_err("CR3 target%u=%016lx\n",
8742                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8743         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8744                 pr_err("PLE Gap=%08x Window=%08x\n",
8745                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8746         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8747                 pr_err("Virtual processor ID = 0x%04x\n",
8748                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
8749 }
8750
8751 /*
8752  * The guest has exited.  See if we can fix it or if we need userspace
8753  * assistance.
8754  */
8755 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8756 {
8757         struct vcpu_vmx *vmx = to_vmx(vcpu);
8758         u32 exit_reason = vmx->exit_reason;
8759         u32 vectoring_info = vmx->idt_vectoring_info;
8760
8761         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8762
8763         /*
8764          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8765          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8766          * querying dirty_bitmap, we only need to kick all vcpus out of guest
8767          * mode as if vcpus is in root mode, the PML buffer must has been
8768          * flushed already.
8769          */
8770         if (enable_pml)
8771                 vmx_flush_pml_buffer(vcpu);
8772
8773         /* If guest state is invalid, start emulating */
8774         if (vmx->emulation_required)
8775                 return handle_invalid_guest_state(vcpu);
8776
8777         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8778                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
8779
8780         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8781                 dump_vmcs();
8782                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8783                 vcpu->run->fail_entry.hardware_entry_failure_reason
8784                         = exit_reason;
8785                 return 0;
8786         }
8787
8788         if (unlikely(vmx->fail)) {
8789                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8790                 vcpu->run->fail_entry.hardware_entry_failure_reason
8791                         = vmcs_read32(VM_INSTRUCTION_ERROR);
8792                 return 0;
8793         }
8794
8795         /*
8796          * Note:
8797          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8798          * delivery event since it indicates guest is accessing MMIO.
8799          * The vm-exit can be triggered again after return to guest that
8800          * will cause infinite loop.
8801          */
8802         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8803                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8804                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
8805                         exit_reason != EXIT_REASON_PML_FULL &&
8806                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
8807                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8808                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8809                 vcpu->run->internal.ndata = 3;
8810                 vcpu->run->internal.data[0] = vectoring_info;
8811                 vcpu->run->internal.data[1] = exit_reason;
8812                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8813                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8814                         vcpu->run->internal.ndata++;
8815                         vcpu->run->internal.data[3] =
8816                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8817                 }
8818                 return 0;
8819         }
8820
8821         if (exit_reason < kvm_vmx_max_exit_handlers
8822             && kvm_vmx_exit_handlers[exit_reason])
8823                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8824         else {
8825                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8826                                 exit_reason);
8827                 kvm_queue_exception(vcpu, UD_VECTOR);
8828                 return 1;
8829         }
8830 }
8831
8832 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8833 {
8834         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8835
8836         if (is_guest_mode(vcpu) &&
8837                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8838                 return;
8839
8840         if (irr == -1 || tpr < irr) {
8841                 vmcs_write32(TPR_THRESHOLD, 0);
8842                 return;
8843         }
8844
8845         vmcs_write32(TPR_THRESHOLD, irr);
8846 }
8847
8848 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8849 {
8850         u32 sec_exec_control;
8851
8852         /* Postpone execution until vmcs01 is the current VMCS. */
8853         if (is_guest_mode(vcpu)) {
8854                 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8855                 return;
8856         }
8857
8858         if (!cpu_has_vmx_virtualize_x2apic_mode())
8859                 return;
8860
8861         if (!cpu_need_tpr_shadow(vcpu))
8862                 return;
8863
8864         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8865
8866         if (set) {
8867                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8868                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8869         } else {
8870                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8871                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8872                 vmx_flush_tlb_ept_only(vcpu);
8873         }
8874         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8875
8876         vmx_set_msr_bitmap(vcpu);
8877 }
8878
8879 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8880 {
8881         struct vcpu_vmx *vmx = to_vmx(vcpu);
8882
8883         /*
8884          * Currently we do not handle the nested case where L2 has an
8885          * APIC access page of its own; that page is still pinned.
8886          * Hence, we skip the case where the VCPU is in guest mode _and_
8887          * L1 prepared an APIC access page for L2.
8888          *
8889          * For the case where L1 and L2 share the same APIC access page
8890          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8891          * in the vmcs12), this function will only update either the vmcs01
8892          * or the vmcs02.  If the former, the vmcs02 will be updated by
8893          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8894          * the next L2->L1 exit.
8895          */
8896         if (!is_guest_mode(vcpu) ||
8897             !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8898                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8899                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8900                 vmx_flush_tlb_ept_only(vcpu);
8901         }
8902 }
8903
8904 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8905 {
8906         u16 status;
8907         u8 old;
8908
8909         if (max_isr == -1)
8910                 max_isr = 0;
8911
8912         status = vmcs_read16(GUEST_INTR_STATUS);
8913         old = status >> 8;
8914         if (max_isr != old) {
8915                 status &= 0xff;
8916                 status |= max_isr << 8;
8917                 vmcs_write16(GUEST_INTR_STATUS, status);
8918         }
8919 }
8920
8921 static void vmx_set_rvi(int vector)
8922 {
8923         u16 status;
8924         u8 old;
8925
8926         if (vector == -1)
8927                 vector = 0;
8928
8929         status = vmcs_read16(GUEST_INTR_STATUS);
8930         old = (u8)status & 0xff;
8931         if ((u8)vector != old) {
8932                 status &= ~0xff;
8933                 status |= (u8)vector;
8934                 vmcs_write16(GUEST_INTR_STATUS, status);
8935         }
8936 }
8937
8938 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8939 {
8940         if (!is_guest_mode(vcpu)) {
8941                 vmx_set_rvi(max_irr);
8942                 return;
8943         }
8944
8945         if (max_irr == -1)
8946                 return;
8947
8948         /*
8949          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8950          * handles it.
8951          */
8952         if (nested_exit_on_intr(vcpu))
8953                 return;
8954
8955         /*
8956          * Else, fall back to pre-APICv interrupt injection since L2
8957          * is run without virtual interrupt delivery.
8958          */
8959         if (!kvm_event_needs_reinjection(vcpu) &&
8960             vmx_interrupt_allowed(vcpu)) {
8961                 kvm_queue_interrupt(vcpu, max_irr, false);
8962                 vmx_inject_irq(vcpu);
8963         }
8964 }
8965
8966 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
8967 {
8968         struct vcpu_vmx *vmx = to_vmx(vcpu);
8969         int max_irr;
8970
8971         WARN_ON(!vcpu->arch.apicv_active);
8972         if (pi_test_on(&vmx->pi_desc)) {
8973                 pi_clear_on(&vmx->pi_desc);
8974                 /*
8975                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8976                  * But on x86 this is just a compiler barrier anyway.
8977                  */
8978                 smp_mb__after_atomic();
8979                 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8980         } else {
8981                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8982         }
8983         vmx_hwapic_irr_update(vcpu, max_irr);
8984         return max_irr;
8985 }
8986
8987 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8988 {
8989         if (!kvm_vcpu_apicv_active(vcpu))
8990                 return;
8991
8992         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8993         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8994         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8995         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8996 }
8997
8998 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8999 {
9000         struct vcpu_vmx *vmx = to_vmx(vcpu);
9001
9002         pi_clear_on(&vmx->pi_desc);
9003         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9004 }
9005
9006 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
9007 {
9008         u32 exit_intr_info = 0;
9009         u16 basic_exit_reason = (u16)vmx->exit_reason;
9010
9011         if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9012               || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
9013                 return;
9014
9015         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9016                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9017         vmx->exit_intr_info = exit_intr_info;
9018
9019         /* if exit due to PF check for async PF */
9020         if (is_page_fault(exit_intr_info))
9021                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9022
9023         /* Handle machine checks before interrupts are enabled */
9024         if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9025             is_machine_check(exit_intr_info))
9026                 kvm_machine_check();
9027
9028         /* We need to handle NMIs before interrupts are enabled */
9029         if (is_nmi(exit_intr_info)) {
9030                 kvm_before_handle_nmi(&vmx->vcpu);
9031                 asm("int $2");
9032                 kvm_after_handle_nmi(&vmx->vcpu);
9033         }
9034 }
9035
9036 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9037 {
9038         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9039         register void *__sp asm(_ASM_SP);
9040
9041         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9042                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9043                 unsigned int vector;
9044                 unsigned long entry;
9045                 gate_desc *desc;
9046                 struct vcpu_vmx *vmx = to_vmx(vcpu);
9047 #ifdef CONFIG_X86_64
9048                 unsigned long tmp;
9049 #endif
9050
9051                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
9052                 desc = (gate_desc *)vmx->host_idt_base + vector;
9053                 entry = gate_offset(desc);
9054                 asm volatile(
9055 #ifdef CONFIG_X86_64
9056                         "mov %%" _ASM_SP ", %[sp]\n\t"
9057                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9058                         "push $%c[ss]\n\t"
9059                         "push %[sp]\n\t"
9060 #endif
9061                         "pushf\n\t"
9062                         __ASM_SIZE(push) " $%c[cs]\n\t"
9063                         "call *%[entry]\n\t"
9064                         :
9065 #ifdef CONFIG_X86_64
9066                         [sp]"=&r"(tmp),
9067 #endif
9068                         "+r"(__sp)
9069                         :
9070                         [entry]"r"(entry),
9071                         [ss]"i"(__KERNEL_DS),
9072                         [cs]"i"(__KERNEL_CS)
9073                         );
9074         }
9075 }
9076 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
9077
9078 static bool vmx_has_high_real_mode_segbase(void)
9079 {
9080         return enable_unrestricted_guest || emulate_invalid_guest_state;
9081 }
9082
9083 static bool vmx_mpx_supported(void)
9084 {
9085         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9086                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9087 }
9088
9089 static bool vmx_xsaves_supported(void)
9090 {
9091         return vmcs_config.cpu_based_2nd_exec_ctrl &
9092                 SECONDARY_EXEC_XSAVES;
9093 }
9094
9095 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9096 {
9097         u32 exit_intr_info;
9098         bool unblock_nmi;
9099         u8 vector;
9100         bool idtv_info_valid;
9101
9102         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9103
9104         if (vmx->loaded_vmcs->nmi_known_unmasked)
9105                 return;
9106         /*
9107          * Can't use vmx->exit_intr_info since we're not sure what
9108          * the exit reason is.
9109          */
9110         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9111         unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9112         vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9113         /*
9114          * SDM 3: 27.7.1.2 (September 2008)
9115          * Re-set bit "block by NMI" before VM entry if vmexit caused by
9116          * a guest IRET fault.
9117          * SDM 3: 23.2.2 (September 2008)
9118          * Bit 12 is undefined in any of the following cases:
9119          *  If the VM exit sets the valid bit in the IDT-vectoring
9120          *   information field.
9121          *  If the VM exit is due to a double fault.
9122          */
9123         if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9124             vector != DF_VECTOR && !idtv_info_valid)
9125                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9126                               GUEST_INTR_STATE_NMI);
9127         else
9128                 vmx->loaded_vmcs->nmi_known_unmasked =
9129                         !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9130                           & GUEST_INTR_STATE_NMI);
9131 }
9132
9133 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
9134                                       u32 idt_vectoring_info,
9135                                       int instr_len_field,
9136                                       int error_code_field)
9137 {
9138         u8 vector;
9139         int type;
9140         bool idtv_info_valid;
9141
9142         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9143
9144         vcpu->arch.nmi_injected = false;
9145         kvm_clear_exception_queue(vcpu);
9146         kvm_clear_interrupt_queue(vcpu);
9147
9148         if (!idtv_info_valid)
9149                 return;
9150
9151         kvm_make_request(KVM_REQ_EVENT, vcpu);
9152
9153         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9154         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
9155
9156         switch (type) {
9157         case INTR_TYPE_NMI_INTR:
9158                 vcpu->arch.nmi_injected = true;
9159                 /*
9160                  * SDM 3: 27.7.1.2 (September 2008)
9161                  * Clear bit "block by NMI" before VM entry if a NMI
9162                  * delivery faulted.
9163                  */
9164                 vmx_set_nmi_mask(vcpu, false);
9165                 break;
9166         case INTR_TYPE_SOFT_EXCEPTION:
9167                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9168                 /* fall through */
9169         case INTR_TYPE_HARD_EXCEPTION:
9170                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
9171                         u32 err = vmcs_read32(error_code_field);
9172                         kvm_requeue_exception_e(vcpu, vector, err);
9173                 } else
9174                         kvm_requeue_exception(vcpu, vector);
9175                 break;
9176         case INTR_TYPE_SOFT_INTR:
9177                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9178                 /* fall through */
9179         case INTR_TYPE_EXT_INTR:
9180                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
9181                 break;
9182         default:
9183                 break;
9184         }
9185 }
9186
9187 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9188 {
9189         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
9190                                   VM_EXIT_INSTRUCTION_LEN,
9191                                   IDT_VECTORING_ERROR_CODE);
9192 }
9193
9194 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9195 {
9196         __vmx_complete_interrupts(vcpu,
9197                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9198                                   VM_ENTRY_INSTRUCTION_LEN,
9199                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
9200
9201         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9202 }
9203
9204 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9205 {
9206         int i, nr_msrs;
9207         struct perf_guest_switch_msr *msrs;
9208
9209         msrs = perf_guest_get_msrs(&nr_msrs);
9210
9211         if (!msrs)
9212                 return;
9213
9214         for (i = 0; i < nr_msrs; i++)
9215                 if (msrs[i].host == msrs[i].guest)
9216                         clear_atomic_switch_msr(vmx, msrs[i].msr);
9217                 else
9218                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9219                                         msrs[i].host);
9220 }
9221
9222 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
9223 {
9224         struct vcpu_vmx *vmx = to_vmx(vcpu);
9225         u64 tscl;
9226         u32 delta_tsc;
9227
9228         if (vmx->hv_deadline_tsc == -1)
9229                 return;
9230
9231         tscl = rdtsc();
9232         if (vmx->hv_deadline_tsc > tscl)
9233                 /* sure to be 32 bit only because checked on set_hv_timer */
9234                 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9235                         cpu_preemption_timer_multi);
9236         else
9237                 delta_tsc = 0;
9238
9239         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9240 }
9241
9242 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
9243 {
9244         struct vcpu_vmx *vmx = to_vmx(vcpu);
9245         unsigned long debugctlmsr, cr3, cr4;
9246
9247         /* Don't enter VMX if guest state is invalid, let the exit handler
9248            start emulation until we arrive back to a valid state */
9249         if (vmx->emulation_required)
9250                 return;
9251
9252         if (vmx->ple_window_dirty) {
9253                 vmx->ple_window_dirty = false;
9254                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9255         }
9256
9257         if (vmx->nested.sync_shadow_vmcs) {
9258                 copy_vmcs12_to_shadow(vmx);
9259                 vmx->nested.sync_shadow_vmcs = false;
9260         }
9261
9262         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9263                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9264         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9265                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9266
9267         cr3 = __get_current_cr3_fast();
9268         if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
9269                 vmcs_writel(HOST_CR3, cr3);
9270                 vmx->host_state.vmcs_host_cr3 = cr3;
9271         }
9272
9273         cr4 = cr4_read_shadow();
9274         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
9275                 vmcs_writel(HOST_CR4, cr4);
9276                 vmx->host_state.vmcs_host_cr4 = cr4;
9277         }
9278
9279         /* When single-stepping over STI and MOV SS, we must clear the
9280          * corresponding interruptibility bits in the guest state. Otherwise
9281          * vmentry fails as it then expects bit 14 (BS) in pending debug
9282          * exceptions being set, but that's not correct for the guest debugging
9283          * case. */
9284         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9285                 vmx_set_interrupt_shadow(vcpu, 0);
9286
9287         if (static_cpu_has(X86_FEATURE_PKU) &&
9288             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9289             vcpu->arch.pkru != vmx->host_pkru)
9290                 __write_pkru(vcpu->arch.pkru);
9291
9292         atomic_switch_perf_msrs(vmx);
9293         debugctlmsr = get_debugctlmsr();
9294
9295         vmx_arm_hv_timer(vcpu);
9296
9297         vmx->__launched = vmx->loaded_vmcs->launched;
9298         asm(
9299                 /* Store host registers */
9300                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9301                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9302                 "push %%" _ASM_CX " \n\t"
9303                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9304                 "je 1f \n\t"
9305                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9306                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
9307                 "1: \n\t"
9308                 /* Reload cr2 if changed */
9309                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9310                 "mov %%cr2, %%" _ASM_DX " \n\t"
9311                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
9312                 "je 2f \n\t"
9313                 "mov %%" _ASM_AX", %%cr2 \n\t"
9314                 "2: \n\t"
9315                 /* Check if vmlaunch of vmresume is needed */
9316                 "cmpl $0, %c[launched](%0) \n\t"
9317                 /* Load guest registers.  Don't clobber flags. */
9318                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9319                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9320                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9321                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9322                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9323                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
9324 #ifdef CONFIG_X86_64
9325                 "mov %c[r8](%0),  %%r8  \n\t"
9326                 "mov %c[r9](%0),  %%r9  \n\t"
9327                 "mov %c[r10](%0), %%r10 \n\t"
9328                 "mov %c[r11](%0), %%r11 \n\t"
9329                 "mov %c[r12](%0), %%r12 \n\t"
9330                 "mov %c[r13](%0), %%r13 \n\t"
9331                 "mov %c[r14](%0), %%r14 \n\t"
9332                 "mov %c[r15](%0), %%r15 \n\t"
9333 #endif
9334                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
9335
9336                 /* Enter guest mode */
9337                 "jne 1f \n\t"
9338                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
9339                 "jmp 2f \n\t"
9340                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9341                 "2: "
9342                 /* Save guest registers, load host registers, keep flags */
9343                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
9344                 "pop %0 \n\t"
9345                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9346                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9347                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9348                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9349                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9350                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9351                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
9352 #ifdef CONFIG_X86_64
9353                 "mov %%r8,  %c[r8](%0) \n\t"
9354                 "mov %%r9,  %c[r9](%0) \n\t"
9355                 "mov %%r10, %c[r10](%0) \n\t"
9356                 "mov %%r11, %c[r11](%0) \n\t"
9357                 "mov %%r12, %c[r12](%0) \n\t"
9358                 "mov %%r13, %c[r13](%0) \n\t"
9359                 "mov %%r14, %c[r14](%0) \n\t"
9360                 "mov %%r15, %c[r15](%0) \n\t"
9361 #endif
9362                 "mov %%cr2, %%" _ASM_AX "   \n\t"
9363                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9364
9365                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
9366                 "setbe %c[fail](%0) \n\t"
9367                 ".pushsection .rodata \n\t"
9368                 ".global vmx_return \n\t"
9369                 "vmx_return: " _ASM_PTR " 2b \n\t"
9370                 ".popsection"
9371               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9372                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9373                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9374                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9375                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9376                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9377                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9378                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9379                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9380                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9381                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9382 #ifdef CONFIG_X86_64
9383                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9384                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9385                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9386                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9387                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9388                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9389                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9390                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9391 #endif
9392                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9393                 [wordsize]"i"(sizeof(ulong))
9394               : "cc", "memory"
9395 #ifdef CONFIG_X86_64
9396                 , "rax", "rbx", "rdi", "rsi"
9397                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9398 #else
9399                 , "eax", "ebx", "edi", "esi"
9400 #endif
9401               );
9402
9403         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9404         if (debugctlmsr)
9405                 update_debugctlmsr(debugctlmsr);
9406
9407 #ifndef CONFIG_X86_64
9408         /*
9409          * The sysexit path does not restore ds/es, so we must set them to
9410          * a reasonable value ourselves.
9411          *
9412          * We can't defer this to vmx_load_host_state() since that function
9413          * may be executed in interrupt context, which saves and restore segments
9414          * around it, nullifying its effect.
9415          */
9416         loadsegment(ds, __USER_DS);
9417         loadsegment(es, __USER_DS);
9418 #endif
9419
9420         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9421                                   | (1 << VCPU_EXREG_RFLAGS)
9422                                   | (1 << VCPU_EXREG_PDPTR)
9423                                   | (1 << VCPU_EXREG_SEGMENTS)
9424                                   | (1 << VCPU_EXREG_CR3));
9425         vcpu->arch.regs_dirty = 0;
9426
9427         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9428
9429         vmx->loaded_vmcs->launched = 1;
9430
9431         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9432
9433         /*
9434          * eager fpu is enabled if PKEY is supported and CR4 is switched
9435          * back on host, so it is safe to read guest PKRU from current
9436          * XSAVE.
9437          */
9438         if (static_cpu_has(X86_FEATURE_PKU) &&
9439             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9440                 vcpu->arch.pkru = __read_pkru();
9441                 if (vcpu->arch.pkru != vmx->host_pkru)
9442                         __write_pkru(vmx->host_pkru);
9443         }
9444
9445         /*
9446          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9447          * we did not inject a still-pending event to L1 now because of
9448          * nested_run_pending, we need to re-enable this bit.
9449          */
9450         if (vmx->nested.nested_run_pending)
9451                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9452
9453         vmx->nested.nested_run_pending = 0;
9454
9455         vmx_complete_atomic_exit(vmx);
9456         vmx_recover_nmi_blocking(vmx);
9457         vmx_complete_interrupts(vmx);
9458 }
9459 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9460
9461 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9462 {
9463         struct vcpu_vmx *vmx = to_vmx(vcpu);
9464         int cpu;
9465
9466         if (vmx->loaded_vmcs == vmcs)
9467                 return;
9468
9469         cpu = get_cpu();
9470         vmx->loaded_vmcs = vmcs;
9471         vmx_vcpu_put(vcpu);
9472         vmx_vcpu_load(vcpu, cpu);
9473         vcpu->cpu = cpu;
9474         put_cpu();
9475 }
9476
9477 /*
9478  * Ensure that the current vmcs of the logical processor is the
9479  * vmcs01 of the vcpu before calling free_nested().
9480  */
9481 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9482 {
9483        struct vcpu_vmx *vmx = to_vmx(vcpu);
9484        int r;
9485
9486        r = vcpu_load(vcpu);
9487        BUG_ON(r);
9488        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9489        free_nested(vmx);
9490        vcpu_put(vcpu);
9491 }
9492
9493 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9494 {
9495         struct vcpu_vmx *vmx = to_vmx(vcpu);
9496
9497         if (enable_pml)
9498                 vmx_destroy_pml_buffer(vmx);
9499         free_vpid(vmx->vpid);
9500         leave_guest_mode(vcpu);
9501         vmx_free_vcpu_nested(vcpu);
9502         free_loaded_vmcs(vmx->loaded_vmcs);
9503         kfree(vmx->guest_msrs);
9504         kvm_vcpu_uninit(vcpu);
9505         kmem_cache_free(kvm_vcpu_cache, vmx);
9506 }
9507
9508 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9509 {
9510         int err;
9511         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9512         int cpu;
9513
9514         if (!vmx)
9515                 return ERR_PTR(-ENOMEM);
9516
9517         vmx->vpid = allocate_vpid();
9518
9519         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9520         if (err)
9521                 goto free_vcpu;
9522
9523         err = -ENOMEM;
9524
9525         /*
9526          * If PML is turned on, failure on enabling PML just results in failure
9527          * of creating the vcpu, therefore we can simplify PML logic (by
9528          * avoiding dealing with cases, such as enabling PML partially on vcpus
9529          * for the guest, etc.
9530          */
9531         if (enable_pml) {
9532                 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9533                 if (!vmx->pml_pg)
9534                         goto uninit_vcpu;
9535         }
9536
9537         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9538         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9539                      > PAGE_SIZE);
9540
9541         if (!vmx->guest_msrs)
9542                 goto free_pml;
9543
9544         vmx->loaded_vmcs = &vmx->vmcs01;
9545         vmx->loaded_vmcs->vmcs = alloc_vmcs();
9546         vmx->loaded_vmcs->shadow_vmcs = NULL;
9547         if (!vmx->loaded_vmcs->vmcs)
9548                 goto free_msrs;
9549         loaded_vmcs_init(vmx->loaded_vmcs);
9550
9551         cpu = get_cpu();
9552         vmx_vcpu_load(&vmx->vcpu, cpu);
9553         vmx->vcpu.cpu = cpu;
9554         err = vmx_vcpu_setup(vmx);
9555         vmx_vcpu_put(&vmx->vcpu);
9556         put_cpu();
9557         if (err)
9558                 goto free_vmcs;
9559         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9560                 err = alloc_apic_access_page(kvm);
9561                 if (err)
9562                         goto free_vmcs;
9563         }
9564
9565         if (enable_ept) {
9566                 if (!kvm->arch.ept_identity_map_addr)
9567                         kvm->arch.ept_identity_map_addr =
9568                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9569                 err = init_rmode_identity_map(kvm);
9570                 if (err)
9571                         goto free_vmcs;
9572         }
9573
9574         if (nested) {
9575                 nested_vmx_setup_ctls_msrs(vmx);
9576                 vmx->nested.vpid02 = allocate_vpid();
9577         }
9578
9579         vmx->nested.posted_intr_nv = -1;
9580         vmx->nested.current_vmptr = -1ull;
9581
9582         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9583
9584         return &vmx->vcpu;
9585
9586 free_vmcs:
9587         free_vpid(vmx->nested.vpid02);
9588         free_loaded_vmcs(vmx->loaded_vmcs);
9589 free_msrs:
9590         kfree(vmx->guest_msrs);
9591 free_pml:
9592         vmx_destroy_pml_buffer(vmx);
9593 uninit_vcpu:
9594         kvm_vcpu_uninit(&vmx->vcpu);
9595 free_vcpu:
9596         free_vpid(vmx->vpid);
9597         kmem_cache_free(kvm_vcpu_cache, vmx);
9598         return ERR_PTR(err);
9599 }
9600
9601 static void __init vmx_check_processor_compat(void *rtn)
9602 {
9603         struct vmcs_config vmcs_conf;
9604
9605         *(int *)rtn = 0;
9606         if (setup_vmcs_config(&vmcs_conf) < 0)
9607                 *(int *)rtn = -EIO;
9608         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9609                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9610                                 smp_processor_id());
9611                 *(int *)rtn = -EIO;
9612         }
9613 }
9614
9615 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9616 {
9617         u8 cache;
9618         u64 ipat = 0;
9619
9620         /* For VT-d and EPT combination
9621          * 1. MMIO: always map as UC
9622          * 2. EPT with VT-d:
9623          *   a. VT-d without snooping control feature: can't guarantee the
9624          *      result, try to trust guest.
9625          *   b. VT-d with snooping control feature: snooping control feature of
9626          *      VT-d engine can guarantee the cache correctness. Just set it
9627          *      to WB to keep consistent with host. So the same as item 3.
9628          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9629          *    consistent with host MTRR
9630          */
9631         if (is_mmio) {
9632                 cache = MTRR_TYPE_UNCACHABLE;
9633                 goto exit;
9634         }
9635
9636         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9637                 ipat = VMX_EPT_IPAT_BIT;
9638                 cache = MTRR_TYPE_WRBACK;
9639                 goto exit;
9640         }
9641
9642         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9643                 ipat = VMX_EPT_IPAT_BIT;
9644                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9645                         cache = MTRR_TYPE_WRBACK;
9646                 else
9647                         cache = MTRR_TYPE_UNCACHABLE;
9648                 goto exit;
9649         }
9650
9651         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9652
9653 exit:
9654         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9655 }
9656
9657 static int vmx_get_lpage_level(void)
9658 {
9659         if (enable_ept && !cpu_has_vmx_ept_1g_page())
9660                 return PT_DIRECTORY_LEVEL;
9661         else
9662                 /* For shadow and EPT supported 1GB page */
9663                 return PT_PDPE_LEVEL;
9664 }
9665
9666 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9667 {
9668         /*
9669          * These bits in the secondary execution controls field
9670          * are dynamic, the others are mostly based on the hypervisor
9671          * architecture and the guest's CPUID.  Do not touch the
9672          * dynamic bits.
9673          */
9674         u32 mask =
9675                 SECONDARY_EXEC_SHADOW_VMCS |
9676                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9677                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9678
9679         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9680
9681         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9682                      (new_ctl & ~mask) | (cur_ctl & mask));
9683 }
9684
9685 /*
9686  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9687  * (indicating "allowed-1") if they are supported in the guest's CPUID.
9688  */
9689 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9690 {
9691         struct vcpu_vmx *vmx = to_vmx(vcpu);
9692         struct kvm_cpuid_entry2 *entry;
9693
9694         vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9695         vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9696
9697 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
9698         if (entry && (entry->_reg & (_cpuid_mask)))                     \
9699                 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask);       \
9700 } while (0)
9701
9702         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9703         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
9704         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
9705         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
9706         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
9707         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
9708         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
9709         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
9710         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
9711         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
9712         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9713         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
9714         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
9715         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
9716         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
9717
9718         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9719         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
9720         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
9721         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
9722         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
9723         /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9724         cr4_fixed1_update(bit(11),            ecx, bit(2));
9725
9726 #undef cr4_fixed1_update
9727 }
9728
9729 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9730 {
9731         struct vcpu_vmx *vmx = to_vmx(vcpu);
9732
9733         if (cpu_has_secondary_exec_ctrls()) {
9734                 vmx_compute_secondary_exec_control(vmx);
9735                 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
9736         }
9737
9738         if (nested_vmx_allowed(vcpu))
9739                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9740                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9741         else
9742                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9743                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9744
9745         if (nested_vmx_allowed(vcpu))
9746                 nested_vmx_cr_fixed1_bits_update(vcpu);
9747 }
9748
9749 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9750 {
9751         if (func == 1 && nested)
9752                 entry->ecx |= bit(X86_FEATURE_VMX);
9753 }
9754
9755 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9756                 struct x86_exception *fault)
9757 {
9758         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9759         struct vcpu_vmx *vmx = to_vmx(vcpu);
9760         u32 exit_reason;
9761         unsigned long exit_qualification = vcpu->arch.exit_qualification;
9762
9763         if (vmx->nested.pml_full) {
9764                 exit_reason = EXIT_REASON_PML_FULL;
9765                 vmx->nested.pml_full = false;
9766                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9767         } else if (fault->error_code & PFERR_RSVD_MASK)
9768                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9769         else
9770                 exit_reason = EXIT_REASON_EPT_VIOLATION;
9771
9772         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9773         vmcs12->guest_physical_address = fault->address;
9774 }
9775
9776 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9777 {
9778         return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
9779 }
9780
9781 /* Callbacks for nested_ept_init_mmu_context: */
9782
9783 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9784 {
9785         /* return the page table to be shadowed - in our case, EPT12 */
9786         return get_vmcs12(vcpu)->ept_pointer;
9787 }
9788
9789 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9790 {
9791         WARN_ON(mmu_is_nested(vcpu));
9792         if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
9793                 return 1;
9794
9795         kvm_mmu_unload(vcpu);
9796         kvm_init_shadow_ept_mmu(vcpu,
9797                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9798                         VMX_EPT_EXECUTE_ONLY_BIT,
9799                         nested_ept_ad_enabled(vcpu));
9800         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9801         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9802         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9803
9804         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9805         return 0;
9806 }
9807
9808 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9809 {
9810         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9811 }
9812
9813 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9814                                             u16 error_code)
9815 {
9816         bool inequality, bit;
9817
9818         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9819         inequality =
9820                 (error_code & vmcs12->page_fault_error_code_mask) !=
9821                  vmcs12->page_fault_error_code_match;
9822         return inequality ^ bit;
9823 }
9824
9825 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9826                 struct x86_exception *fault)
9827 {
9828         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9829
9830         WARN_ON(!is_guest_mode(vcpu));
9831
9832         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code)) {
9833                 vmcs12->vm_exit_intr_error_code = fault->error_code;
9834                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9835                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9836                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9837                                   fault->address);
9838         } else {
9839                 kvm_inject_page_fault(vcpu, fault);
9840         }
9841 }
9842
9843 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9844                                                struct vmcs12 *vmcs12);
9845
9846 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9847                                         struct vmcs12 *vmcs12)
9848 {
9849         struct vcpu_vmx *vmx = to_vmx(vcpu);
9850         struct page *page;
9851         u64 hpa;
9852
9853         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9854                 /*
9855                  * Translate L1 physical address to host physical
9856                  * address for vmcs02. Keep the page pinned, so this
9857                  * physical address remains valid. We keep a reference
9858                  * to it so we can release it later.
9859                  */
9860                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
9861                         kvm_release_page_dirty(vmx->nested.apic_access_page);
9862                         vmx->nested.apic_access_page = NULL;
9863                 }
9864                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
9865                 /*
9866                  * If translation failed, no matter: This feature asks
9867                  * to exit when accessing the given address, and if it
9868                  * can never be accessed, this feature won't do
9869                  * anything anyway.
9870                  */
9871                 if (!is_error_page(page)) {
9872                         vmx->nested.apic_access_page = page;
9873                         hpa = page_to_phys(vmx->nested.apic_access_page);
9874                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
9875                 } else {
9876                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9877                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9878                 }
9879         } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9880                    cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9881                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9882                               SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9883                 kvm_vcpu_reload_apic_access_page(vcpu);
9884         }
9885
9886         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9887                 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
9888                         kvm_release_page_dirty(vmx->nested.virtual_apic_page);
9889                         vmx->nested.virtual_apic_page = NULL;
9890                 }
9891                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
9892
9893                 /*
9894                  * If translation failed, VM entry will fail because
9895                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9896                  * Failing the vm entry is _not_ what the processor
9897                  * does but it's basically the only possibility we
9898                  * have.  We could still enter the guest if CR8 load
9899                  * exits are enabled, CR8 store exits are enabled, and
9900                  * virtualize APIC access is disabled; in this case
9901                  * the processor would never use the TPR shadow and we
9902                  * could simply clear the bit from the execution
9903                  * control.  But such a configuration is useless, so
9904                  * let's keep the code simple.
9905                  */
9906                 if (!is_error_page(page)) {
9907                         vmx->nested.virtual_apic_page = page;
9908                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
9909                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9910                 }
9911         }
9912
9913         if (nested_cpu_has_posted_intr(vmcs12)) {
9914                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9915                         kunmap(vmx->nested.pi_desc_page);
9916                         kvm_release_page_dirty(vmx->nested.pi_desc_page);
9917                         vmx->nested.pi_desc_page = NULL;
9918                 }
9919                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
9920                 if (is_error_page(page))
9921                         return;
9922                 vmx->nested.pi_desc_page = page;
9923                 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
9924                 vmx->nested.pi_desc =
9925                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
9926                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9927                         (PAGE_SIZE - 1)));
9928                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9929                         page_to_phys(vmx->nested.pi_desc_page) +
9930                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9931                         (PAGE_SIZE - 1)));
9932         }
9933         if (cpu_has_vmx_msr_bitmap() &&
9934             nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9935             nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9936                 ;
9937         else
9938                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9939                                 CPU_BASED_USE_MSR_BITMAPS);
9940 }
9941
9942 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9943 {
9944         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9945         struct vcpu_vmx *vmx = to_vmx(vcpu);
9946
9947         if (vcpu->arch.virtual_tsc_khz == 0)
9948                 return;
9949
9950         /* Make sure short timeouts reliably trigger an immediate vmexit.
9951          * hrtimer_start does not guarantee this. */
9952         if (preemption_timeout <= 1) {
9953                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9954                 return;
9955         }
9956
9957         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9958         preemption_timeout *= 1000000;
9959         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9960         hrtimer_start(&vmx->nested.preemption_timer,
9961                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9962 }
9963
9964 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9965                                                struct vmcs12 *vmcs12)
9966 {
9967         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9968                 return 0;
9969
9970         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9971             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9972                 return -EINVAL;
9973
9974         return 0;
9975 }
9976
9977 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9978                                                 struct vmcs12 *vmcs12)
9979 {
9980         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9981                 return 0;
9982
9983         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
9984                 return -EINVAL;
9985
9986         return 0;
9987 }
9988
9989 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
9990                                                 struct vmcs12 *vmcs12)
9991 {
9992         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9993                 return 0;
9994
9995         if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
9996                 return -EINVAL;
9997
9998         return 0;
9999 }
10000
10001 /*
10002  * Merge L0's and L1's MSR bitmap, return false to indicate that
10003  * we do not use the hardware.
10004  */
10005 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10006                                                struct vmcs12 *vmcs12)
10007 {
10008         int msr;
10009         struct page *page;
10010         unsigned long *msr_bitmap_l1;
10011         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
10012
10013         /* This shortcut is ok because we support only x2APIC MSRs so far. */
10014         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
10015                 return false;
10016
10017         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10018         if (is_error_page(page))
10019                 return false;
10020         msr_bitmap_l1 = (unsigned long *)kmap(page);
10021
10022         memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10023
10024         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
10025                 if (nested_cpu_has_apic_reg_virt(vmcs12))
10026                         for (msr = 0x800; msr <= 0x8ff; msr++)
10027                                 nested_vmx_disable_intercept_for_msr(
10028                                         msr_bitmap_l1, msr_bitmap_l0,
10029                                         msr, MSR_TYPE_R);
10030
10031                 nested_vmx_disable_intercept_for_msr(
10032                                 msr_bitmap_l1, msr_bitmap_l0,
10033                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10034                                 MSR_TYPE_R | MSR_TYPE_W);
10035
10036                 if (nested_cpu_has_vid(vmcs12)) {
10037                         nested_vmx_disable_intercept_for_msr(
10038                                 msr_bitmap_l1, msr_bitmap_l0,
10039                                 APIC_BASE_MSR + (APIC_EOI >> 4),
10040                                 MSR_TYPE_W);
10041                         nested_vmx_disable_intercept_for_msr(
10042                                 msr_bitmap_l1, msr_bitmap_l0,
10043                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10044                                 MSR_TYPE_W);
10045                 }
10046         }
10047         kunmap(page);
10048         kvm_release_page_clean(page);
10049
10050         return true;
10051 }
10052
10053 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10054                                            struct vmcs12 *vmcs12)
10055 {
10056         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10057             !nested_cpu_has_apic_reg_virt(vmcs12) &&
10058             !nested_cpu_has_vid(vmcs12) &&
10059             !nested_cpu_has_posted_intr(vmcs12))
10060                 return 0;
10061
10062         /*
10063          * If virtualize x2apic mode is enabled,
10064          * virtualize apic access must be disabled.
10065          */
10066         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10067             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
10068                 return -EINVAL;
10069
10070         /*
10071          * If virtual interrupt delivery is enabled,
10072          * we must exit on external interrupts.
10073          */
10074         if (nested_cpu_has_vid(vmcs12) &&
10075            !nested_exit_on_intr(vcpu))
10076                 return -EINVAL;
10077
10078         /*
10079          * bits 15:8 should be zero in posted_intr_nv,
10080          * the descriptor address has been already checked
10081          * in nested_get_vmcs12_pages.
10082          */
10083         if (nested_cpu_has_posted_intr(vmcs12) &&
10084            (!nested_cpu_has_vid(vmcs12) ||
10085             !nested_exit_intr_ack_set(vcpu) ||
10086             vmcs12->posted_intr_nv & 0xff00))
10087                 return -EINVAL;
10088
10089         /* tpr shadow is needed by all apicv features. */
10090         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10091                 return -EINVAL;
10092
10093         return 0;
10094 }
10095
10096 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10097                                        unsigned long count_field,
10098                                        unsigned long addr_field)
10099 {
10100         int maxphyaddr;
10101         u64 count, addr;
10102
10103         if (vmcs12_read_any(vcpu, count_field, &count) ||
10104             vmcs12_read_any(vcpu, addr_field, &addr)) {
10105                 WARN_ON(1);
10106                 return -EINVAL;
10107         }
10108         if (count == 0)
10109                 return 0;
10110         maxphyaddr = cpuid_maxphyaddr(vcpu);
10111         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10112             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
10113                 pr_debug_ratelimited(
10114                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10115                         addr_field, maxphyaddr, count, addr);
10116                 return -EINVAL;
10117         }
10118         return 0;
10119 }
10120
10121 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10122                                                 struct vmcs12 *vmcs12)
10123 {
10124         if (vmcs12->vm_exit_msr_load_count == 0 &&
10125             vmcs12->vm_exit_msr_store_count == 0 &&
10126             vmcs12->vm_entry_msr_load_count == 0)
10127                 return 0; /* Fast path */
10128         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
10129                                         VM_EXIT_MSR_LOAD_ADDR) ||
10130             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
10131                                         VM_EXIT_MSR_STORE_ADDR) ||
10132             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
10133                                         VM_ENTRY_MSR_LOAD_ADDR))
10134                 return -EINVAL;
10135         return 0;
10136 }
10137
10138 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10139                                          struct vmcs12 *vmcs12)
10140 {
10141         u64 address = vmcs12->pml_address;
10142         int maxphyaddr = cpuid_maxphyaddr(vcpu);
10143
10144         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10145                 if (!nested_cpu_has_ept(vmcs12) ||
10146                     !IS_ALIGNED(address, 4096)  ||
10147                     address >> maxphyaddr)
10148                         return -EINVAL;
10149         }
10150
10151         return 0;
10152 }
10153
10154 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10155                                        struct vmx_msr_entry *e)
10156 {
10157         /* x2APIC MSR accesses are not allowed */
10158         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
10159                 return -EINVAL;
10160         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10161             e->index == MSR_IA32_UCODE_REV)
10162                 return -EINVAL;
10163         if (e->reserved != 0)
10164                 return -EINVAL;
10165         return 0;
10166 }
10167
10168 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10169                                      struct vmx_msr_entry *e)
10170 {
10171         if (e->index == MSR_FS_BASE ||
10172             e->index == MSR_GS_BASE ||
10173             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10174             nested_vmx_msr_check_common(vcpu, e))
10175                 return -EINVAL;
10176         return 0;
10177 }
10178
10179 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10180                                       struct vmx_msr_entry *e)
10181 {
10182         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10183             nested_vmx_msr_check_common(vcpu, e))
10184                 return -EINVAL;
10185         return 0;
10186 }
10187
10188 /*
10189  * Load guest's/host's msr at nested entry/exit.
10190  * return 0 for success, entry index for failure.
10191  */
10192 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10193 {
10194         u32 i;
10195         struct vmx_msr_entry e;
10196         struct msr_data msr;
10197
10198         msr.host_initiated = false;
10199         for (i = 0; i < count; i++) {
10200                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10201                                         &e, sizeof(e))) {
10202                         pr_debug_ratelimited(
10203                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10204                                 __func__, i, gpa + i * sizeof(e));
10205                         goto fail;
10206                 }
10207                 if (nested_vmx_load_msr_check(vcpu, &e)) {
10208                         pr_debug_ratelimited(
10209                                 "%s check failed (%u, 0x%x, 0x%x)\n",
10210                                 __func__, i, e.index, e.reserved);
10211                         goto fail;
10212                 }
10213                 msr.index = e.index;
10214                 msr.data = e.value;
10215                 if (kvm_set_msr(vcpu, &msr)) {
10216                         pr_debug_ratelimited(
10217                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10218                                 __func__, i, e.index, e.value);
10219                         goto fail;
10220                 }
10221         }
10222         return 0;
10223 fail:
10224         return i + 1;
10225 }
10226
10227 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10228 {
10229         u32 i;
10230         struct vmx_msr_entry e;
10231
10232         for (i = 0; i < count; i++) {
10233                 struct msr_data msr_info;
10234                 if (kvm_vcpu_read_guest(vcpu,
10235                                         gpa + i * sizeof(e),
10236                                         &e, 2 * sizeof(u32))) {
10237                         pr_debug_ratelimited(
10238                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10239                                 __func__, i, gpa + i * sizeof(e));
10240                         return -EINVAL;
10241                 }
10242                 if (nested_vmx_store_msr_check(vcpu, &e)) {
10243                         pr_debug_ratelimited(
10244                                 "%s check failed (%u, 0x%x, 0x%x)\n",
10245                                 __func__, i, e.index, e.reserved);
10246                         return -EINVAL;
10247                 }
10248                 msr_info.host_initiated = false;
10249                 msr_info.index = e.index;
10250                 if (kvm_get_msr(vcpu, &msr_info)) {
10251                         pr_debug_ratelimited(
10252                                 "%s cannot read MSR (%u, 0x%x)\n",
10253                                 __func__, i, e.index);
10254                         return -EINVAL;
10255                 }
10256                 if (kvm_vcpu_write_guest(vcpu,
10257                                          gpa + i * sizeof(e) +
10258                                              offsetof(struct vmx_msr_entry, value),
10259                                          &msr_info.data, sizeof(msr_info.data))) {
10260                         pr_debug_ratelimited(
10261                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10262                                 __func__, i, e.index, msr_info.data);
10263                         return -EINVAL;
10264                 }
10265         }
10266         return 0;
10267 }
10268
10269 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10270 {
10271         unsigned long invalid_mask;
10272
10273         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10274         return (val & invalid_mask) == 0;
10275 }
10276
10277 /*
10278  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10279  * emulating VM entry into a guest with EPT enabled.
10280  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10281  * is assigned to entry_failure_code on failure.
10282  */
10283 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
10284                                u32 *entry_failure_code)
10285 {
10286         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
10287                 if (!nested_cr3_valid(vcpu, cr3)) {
10288                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10289                         return 1;
10290                 }
10291
10292                 /*
10293                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10294                  * must not be dereferenced.
10295                  */
10296                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10297                     !nested_ept) {
10298                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10299                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
10300                                 return 1;
10301                         }
10302                 }
10303
10304                 vcpu->arch.cr3 = cr3;
10305                 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10306         }
10307
10308         kvm_mmu_reset_context(vcpu);
10309         return 0;
10310 }
10311
10312 /*
10313  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10314  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
10315  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
10316  * guest in a way that will both be appropriate to L1's requests, and our
10317  * needs. In addition to modifying the active vmcs (which is vmcs02), this
10318  * function also has additional necessary side-effects, like setting various
10319  * vcpu->arch fields.
10320  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10321  * is assigned to entry_failure_code on failure.
10322  */
10323 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10324                           bool from_vmentry, u32 *entry_failure_code)
10325 {
10326         struct vcpu_vmx *vmx = to_vmx(vcpu);
10327         u32 exec_control, vmcs12_exec_ctrl;
10328
10329         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10330         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10331         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10332         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10333         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10334         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10335         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10336         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10337         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10338         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10339         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10340         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10341         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10342         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10343         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10344         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10345         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10346         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10347         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10348         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10349         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10350         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10351         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10352         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10353         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10354         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10355         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10356         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10357         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10358         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10359         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10360         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10361         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10362         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10363         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10364         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10365
10366         if (from_vmentry &&
10367             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10368                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10369                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10370         } else {
10371                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10372                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10373         }
10374         if (from_vmentry) {
10375                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10376                              vmcs12->vm_entry_intr_info_field);
10377                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10378                              vmcs12->vm_entry_exception_error_code);
10379                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10380                              vmcs12->vm_entry_instruction_len);
10381                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10382                              vmcs12->guest_interruptibility_info);
10383                 vmx->loaded_vmcs->nmi_known_unmasked =
10384                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
10385         } else {
10386                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10387         }
10388         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10389         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10390         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10391                 vmcs12->guest_pending_dbg_exceptions);
10392         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10393         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10394
10395         if (nested_cpu_has_xsaves(vmcs12))
10396                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10397         vmcs_write64(VMCS_LINK_POINTER, -1ull);
10398
10399         exec_control = vmcs12->pin_based_vm_exec_control;
10400
10401         /* Preemption timer setting is only taken from vmcs01.  */
10402         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10403         exec_control |= vmcs_config.pin_based_exec_ctrl;
10404         if (vmx->hv_deadline_tsc == -1)
10405                 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10406
10407         /* Posted interrupts setting is only taken from vmcs12.  */
10408         if (nested_cpu_has_posted_intr(vmcs12)) {
10409                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10410                 vmx->nested.pi_pending = false;
10411                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
10412         } else {
10413                 exec_control &= ~PIN_BASED_POSTED_INTR;
10414         }
10415
10416         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10417
10418         vmx->nested.preemption_timer_expired = false;
10419         if (nested_cpu_has_preemption_timer(vmcs12))
10420                 vmx_start_preemption_timer(vcpu);
10421
10422         /*
10423          * Whether page-faults are trapped is determined by a combination of
10424          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10425          * If enable_ept, L0 doesn't care about page faults and we should
10426          * set all of these to L1's desires. However, if !enable_ept, L0 does
10427          * care about (at least some) page faults, and because it is not easy
10428          * (if at all possible?) to merge L0 and L1's desires, we simply ask
10429          * to exit on each and every L2 page fault. This is done by setting
10430          * MASK=MATCH=0 and (see below) EB.PF=1.
10431          * Note that below we don't need special code to set EB.PF beyond the
10432          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10433          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10434          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10435          */
10436         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10437                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10438         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10439                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10440
10441         if (cpu_has_secondary_exec_ctrls()) {
10442                 exec_control = vmx->secondary_exec_control;
10443
10444                 /* Take the following fields only from vmcs12 */
10445                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10446                                   SECONDARY_EXEC_ENABLE_INVPCID |
10447                                   SECONDARY_EXEC_RDTSCP |
10448                                   SECONDARY_EXEC_XSAVES |
10449                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10450                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
10451                                   SECONDARY_EXEC_ENABLE_VMFUNC);
10452                 if (nested_cpu_has(vmcs12,
10453                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10454                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10455                                 ~SECONDARY_EXEC_ENABLE_PML;
10456                         exec_control |= vmcs12_exec_ctrl;
10457                 }
10458
10459                 /* All VMFUNCs are currently emulated through L0 vmexits.  */
10460                 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10461                         vmcs_write64(VM_FUNCTION_CONTROL, 0);
10462
10463                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10464                         vmcs_write64(EOI_EXIT_BITMAP0,
10465                                 vmcs12->eoi_exit_bitmap0);
10466                         vmcs_write64(EOI_EXIT_BITMAP1,
10467                                 vmcs12->eoi_exit_bitmap1);
10468                         vmcs_write64(EOI_EXIT_BITMAP2,
10469                                 vmcs12->eoi_exit_bitmap2);
10470                         vmcs_write64(EOI_EXIT_BITMAP3,
10471                                 vmcs12->eoi_exit_bitmap3);
10472                         vmcs_write16(GUEST_INTR_STATUS,
10473                                 vmcs12->guest_intr_status);
10474                 }
10475
10476                 /*
10477                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
10478                  * nested_get_vmcs12_pages will either fix it up or
10479                  * remove the VM execution control.
10480                  */
10481                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10482                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10483
10484                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10485         }
10486
10487
10488         /*
10489          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10490          * Some constant fields are set here by vmx_set_constant_host_state().
10491          * Other fields are different per CPU, and will be set later when
10492          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10493          */
10494         vmx_set_constant_host_state(vmx);
10495
10496         /*
10497          * Set the MSR load/store lists to match L0's settings.
10498          */
10499         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10500         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10501         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10502         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10503         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10504
10505         /*
10506          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10507          * entry, but only if the current (host) sp changed from the value
10508          * we wrote last (vmx->host_rsp). This cache is no longer relevant
10509          * if we switch vmcs, and rather than hold a separate cache per vmcs,
10510          * here we just force the write to happen on entry.
10511          */
10512         vmx->host_rsp = 0;
10513
10514         exec_control = vmx_exec_control(vmx); /* L0's desires */
10515         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10516         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10517         exec_control &= ~CPU_BASED_TPR_SHADOW;
10518         exec_control |= vmcs12->cpu_based_vm_exec_control;
10519
10520         /*
10521          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10522          * nested_get_vmcs12_pages can't fix it up, the illegal value
10523          * will result in a VM entry failure.
10524          */
10525         if (exec_control & CPU_BASED_TPR_SHADOW) {
10526                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10527                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10528         }
10529
10530         /*
10531          * Merging of IO bitmap not currently supported.
10532          * Rather, exit every time.
10533          */
10534         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10535         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10536
10537         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10538
10539         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10540          * bitwise-or of what L1 wants to trap for L2, and what we want to
10541          * trap. Note that CR0.TS also needs updating - we do this later.
10542          */
10543         update_exception_bitmap(vcpu);
10544         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10545         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10546
10547         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10548          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10549          * bits are further modified by vmx_set_efer() below.
10550          */
10551         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10552
10553         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10554          * emulated by vmx_set_efer(), below.
10555          */
10556         vm_entry_controls_init(vmx, 
10557                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10558                         ~VM_ENTRY_IA32E_MODE) |
10559                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10560
10561         if (from_vmentry &&
10562             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10563                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10564                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10565         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10566                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10567         }
10568
10569         set_cr4_guest_host_mask(vmx);
10570
10571         if (from_vmentry &&
10572             vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10573                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10574
10575         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10576                 vmcs_write64(TSC_OFFSET,
10577                         vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10578         else
10579                 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10580         if (kvm_has_tsc_control)
10581                 decache_tsc_multiplier(vmx);
10582
10583         if (enable_vpid) {
10584                 /*
10585                  * There is no direct mapping between vpid02 and vpid12, the
10586                  * vpid02 is per-vCPU for L0 and reused while the value of
10587                  * vpid12 is changed w/ one invvpid during nested vmentry.
10588                  * The vpid12 is allocated by L1 for L2, so it will not
10589                  * influence global bitmap(for vpid01 and vpid02 allocation)
10590                  * even if spawn a lot of nested vCPUs.
10591                  */
10592                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10593                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10594                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10595                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10596                                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10597                         }
10598                 } else {
10599                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10600                         vmx_flush_tlb(vcpu);
10601                 }
10602
10603         }
10604
10605         if (enable_pml) {
10606                 /*
10607                  * Conceptually we want to copy the PML address and index from
10608                  * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10609                  * since we always flush the log on each vmexit, this happens
10610                  * to be equivalent to simply resetting the fields in vmcs02.
10611                  */
10612                 ASSERT(vmx->pml_pg);
10613                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10614                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10615         }
10616
10617         if (nested_cpu_has_ept(vmcs12)) {
10618                 if (nested_ept_init_mmu_context(vcpu)) {
10619                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10620                         return 1;
10621                 }
10622         } else if (nested_cpu_has2(vmcs12,
10623                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10624                 vmx_flush_tlb_ept_only(vcpu);
10625         }
10626
10627         /*
10628          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10629          * bits which we consider mandatory enabled.
10630          * The CR0_READ_SHADOW is what L2 should have expected to read given
10631          * the specifications by L1; It's not enough to take
10632          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10633          * have more bits than L1 expected.
10634          */
10635         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10636         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10637
10638         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10639         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10640
10641         if (from_vmentry &&
10642             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10643                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10644         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10645                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10646         else
10647                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10648         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10649         vmx_set_efer(vcpu, vcpu->arch.efer);
10650
10651         /* Shadow page tables on either EPT or shadow page tables. */
10652         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10653                                 entry_failure_code))
10654                 return 1;
10655
10656         if (!enable_ept)
10657                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10658
10659         /*
10660          * L1 may access the L2's PDPTR, so save them to construct vmcs12
10661          */
10662         if (enable_ept) {
10663                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10664                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10665                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10666                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10667         }
10668
10669         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10670         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10671         return 0;
10672 }
10673
10674 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10675 {
10676         struct vcpu_vmx *vmx = to_vmx(vcpu);
10677
10678         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10679             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10680                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10681
10682         if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10683                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10684
10685         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10686                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10687
10688         if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
10689                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10690
10691         if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10692                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10693
10694         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10695                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10696
10697         if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10698                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10699
10700         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10701                                 vmx->nested.nested_vmx_procbased_ctls_low,
10702                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
10703             (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10704              !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10705                                  vmx->nested.nested_vmx_secondary_ctls_low,
10706                                  vmx->nested.nested_vmx_secondary_ctls_high)) ||
10707             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10708                                 vmx->nested.nested_vmx_pinbased_ctls_low,
10709                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10710             !vmx_control_verify(vmcs12->vm_exit_controls,
10711                                 vmx->nested.nested_vmx_exit_ctls_low,
10712                                 vmx->nested.nested_vmx_exit_ctls_high) ||
10713             !vmx_control_verify(vmcs12->vm_entry_controls,
10714                                 vmx->nested.nested_vmx_entry_ctls_low,
10715                                 vmx->nested.nested_vmx_entry_ctls_high))
10716                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10717
10718         if (nested_cpu_has_vmfunc(vmcs12)) {
10719                 if (vmcs12->vm_function_control &
10720                     ~vmx->nested.nested_vmx_vmfunc_controls)
10721                         return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10722
10723                 if (nested_cpu_has_eptp_switching(vmcs12)) {
10724                         if (!nested_cpu_has_ept(vmcs12) ||
10725                             !page_address_valid(vcpu, vmcs12->eptp_list_address))
10726                                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10727                 }
10728         }
10729
10730         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10731                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10732
10733         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10734             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10735             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10736                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10737
10738         return 0;
10739 }
10740
10741 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10742                                   u32 *exit_qual)
10743 {
10744         bool ia32e;
10745
10746         *exit_qual = ENTRY_FAIL_DEFAULT;
10747
10748         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10749             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10750                 return 1;
10751
10752         if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10753             vmcs12->vmcs_link_pointer != -1ull) {
10754                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10755                 return 1;
10756         }
10757
10758         /*
10759          * If the load IA32_EFER VM-entry control is 1, the following checks
10760          * are performed on the field for the IA32_EFER MSR:
10761          * - Bits reserved in the IA32_EFER MSR must be 0.
10762          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10763          *   the IA-32e mode guest VM-exit control. It must also be identical
10764          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10765          *   CR0.PG) is 1.
10766          */
10767         if (to_vmx(vcpu)->nested.nested_run_pending &&
10768             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10769                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10770                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10771                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10772                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10773                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10774                         return 1;
10775         }
10776
10777         /*
10778          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10779          * IA32_EFER MSR must be 0 in the field for that register. In addition,
10780          * the values of the LMA and LME bits in the field must each be that of
10781          * the host address-space size VM-exit control.
10782          */
10783         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10784                 ia32e = (vmcs12->vm_exit_controls &
10785                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10786                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10787                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10788                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10789                         return 1;
10790         }
10791
10792         return 0;
10793 }
10794
10795 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10796 {
10797         struct vcpu_vmx *vmx = to_vmx(vcpu);
10798         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10799         struct loaded_vmcs *vmcs02;
10800         u32 msr_entry_idx;
10801         u32 exit_qual;
10802
10803         vmcs02 = nested_get_current_vmcs02(vmx);
10804         if (!vmcs02)
10805                 return -ENOMEM;
10806
10807         enter_guest_mode(vcpu);
10808
10809         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10810                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10811
10812         vmx_switch_vmcs(vcpu, vmcs02);
10813         vmx_segment_cache_clear(vmx);
10814
10815         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10816                 leave_guest_mode(vcpu);
10817                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10818                 nested_vmx_entry_failure(vcpu, vmcs12,
10819                                          EXIT_REASON_INVALID_STATE, exit_qual);
10820                 return 1;
10821         }
10822
10823         nested_get_vmcs12_pages(vcpu, vmcs12);
10824
10825         msr_entry_idx = nested_vmx_load_msr(vcpu,
10826                                             vmcs12->vm_entry_msr_load_addr,
10827                                             vmcs12->vm_entry_msr_load_count);
10828         if (msr_entry_idx) {
10829                 leave_guest_mode(vcpu);
10830                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10831                 nested_vmx_entry_failure(vcpu, vmcs12,
10832                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10833                 return 1;
10834         }
10835
10836         /*
10837          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10838          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10839          * returned as far as L1 is concerned. It will only return (and set
10840          * the success flag) when L2 exits (see nested_vmx_vmexit()).
10841          */
10842         return 0;
10843 }
10844
10845 /*
10846  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10847  * for running an L2 nested guest.
10848  */
10849 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10850 {
10851         struct vmcs12 *vmcs12;
10852         struct vcpu_vmx *vmx = to_vmx(vcpu);
10853         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
10854         u32 exit_qual;
10855         int ret;
10856
10857         if (!nested_vmx_check_permission(vcpu))
10858                 return 1;
10859
10860         if (!nested_vmx_check_vmcs12(vcpu))
10861                 goto out;
10862
10863         vmcs12 = get_vmcs12(vcpu);
10864
10865         if (enable_shadow_vmcs)
10866                 copy_shadow_to_vmcs12(vmx);
10867
10868         /*
10869          * The nested entry process starts with enforcing various prerequisites
10870          * on vmcs12 as required by the Intel SDM, and act appropriately when
10871          * they fail: As the SDM explains, some conditions should cause the
10872          * instruction to fail, while others will cause the instruction to seem
10873          * to succeed, but return an EXIT_REASON_INVALID_STATE.
10874          * To speed up the normal (success) code path, we should avoid checking
10875          * for misconfigurations which will anyway be caught by the processor
10876          * when using the merged vmcs02.
10877          */
10878         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10879                 nested_vmx_failValid(vcpu,
10880                                      VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10881                 goto out;
10882         }
10883
10884         if (vmcs12->launch_state == launch) {
10885                 nested_vmx_failValid(vcpu,
10886                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10887                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10888                 goto out;
10889         }
10890
10891         ret = check_vmentry_prereqs(vcpu, vmcs12);
10892         if (ret) {
10893                 nested_vmx_failValid(vcpu, ret);
10894                 goto out;
10895         }
10896
10897         /*
10898          * After this point, the trap flag no longer triggers a singlestep trap
10899          * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10900          * This is not 100% correct; for performance reasons, we delegate most
10901          * of the checks on host state to the processor.  If those fail,
10902          * the singlestep trap is missed.
10903          */
10904         skip_emulated_instruction(vcpu);
10905
10906         ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10907         if (ret) {
10908                 nested_vmx_entry_failure(vcpu, vmcs12,
10909                                          EXIT_REASON_INVALID_STATE, exit_qual);
10910                 return 1;
10911         }
10912
10913         /*
10914          * We're finally done with prerequisite checking, and can start with
10915          * the nested entry.
10916          */
10917
10918         ret = enter_vmx_non_root_mode(vcpu, true);
10919         if (ret)
10920                 return ret;
10921
10922         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10923                 return kvm_vcpu_halt(vcpu);
10924
10925         vmx->nested.nested_run_pending = 1;
10926
10927         return 1;
10928
10929 out:
10930         return kvm_skip_emulated_instruction(vcpu);
10931 }
10932
10933 /*
10934  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10935  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10936  * This function returns the new value we should put in vmcs12.guest_cr0.
10937  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10938  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10939  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10940  *     didn't trap the bit, because if L1 did, so would L0).
10941  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10942  *     been modified by L2, and L1 knows it. So just leave the old value of
10943  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10944  *     isn't relevant, because if L0 traps this bit it can set it to anything.
10945  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10946  *     changed these bits, and therefore they need to be updated, but L0
10947  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10948  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10949  */
10950 static inline unsigned long
10951 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10952 {
10953         return
10954         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10955         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10956         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10957                         vcpu->arch.cr0_guest_owned_bits));
10958 }
10959
10960 static inline unsigned long
10961 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10962 {
10963         return
10964         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10965         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10966         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10967                         vcpu->arch.cr4_guest_owned_bits));
10968 }
10969
10970 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10971                                        struct vmcs12 *vmcs12)
10972 {
10973         u32 idt_vectoring;
10974         unsigned int nr;
10975
10976         if (vcpu->arch.exception.injected) {
10977                 nr = vcpu->arch.exception.nr;
10978                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10979
10980                 if (kvm_exception_is_soft(nr)) {
10981                         vmcs12->vm_exit_instruction_len =
10982                                 vcpu->arch.event_exit_inst_len;
10983                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10984                 } else
10985                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10986
10987                 if (vcpu->arch.exception.has_error_code) {
10988                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10989                         vmcs12->idt_vectoring_error_code =
10990                                 vcpu->arch.exception.error_code;
10991                 }
10992
10993                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10994         } else if (vcpu->arch.nmi_injected) {
10995                 vmcs12->idt_vectoring_info_field =
10996                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10997         } else if (vcpu->arch.interrupt.pending) {
10998                 nr = vcpu->arch.interrupt.nr;
10999                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11000
11001                 if (vcpu->arch.interrupt.soft) {
11002                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
11003                         vmcs12->vm_entry_instruction_len =
11004                                 vcpu->arch.event_exit_inst_len;
11005                 } else
11006                         idt_vectoring |= INTR_TYPE_EXT_INTR;
11007
11008                 vmcs12->idt_vectoring_info_field = idt_vectoring;
11009         }
11010 }
11011
11012 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11013 {
11014         struct vcpu_vmx *vmx = to_vmx(vcpu);
11015         unsigned long exit_qual;
11016
11017         if (kvm_event_needs_reinjection(vcpu))
11018                 return -EBUSY;
11019
11020         if (vcpu->arch.exception.pending &&
11021                 nested_vmx_check_exception(vcpu, &exit_qual)) {
11022                 if (vmx->nested.nested_run_pending)
11023                         return -EBUSY;
11024                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11025                 vcpu->arch.exception.pending = false;
11026                 return 0;
11027         }
11028
11029         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11030             vmx->nested.preemption_timer_expired) {
11031                 if (vmx->nested.nested_run_pending)
11032                         return -EBUSY;
11033                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11034                 return 0;
11035         }
11036
11037         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
11038                 if (vmx->nested.nested_run_pending)
11039                         return -EBUSY;
11040                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11041                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
11042                                   INTR_INFO_VALID_MASK, 0);
11043                 /*
11044                  * The NMI-triggered VM exit counts as injection:
11045                  * clear this one and block further NMIs.
11046                  */
11047                 vcpu->arch.nmi_pending = 0;
11048                 vmx_set_nmi_mask(vcpu, true);
11049                 return 0;
11050         }
11051
11052         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11053             nested_exit_on_intr(vcpu)) {
11054                 if (vmx->nested.nested_run_pending)
11055                         return -EBUSY;
11056                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
11057                 return 0;
11058         }
11059
11060         vmx_complete_nested_posted_interrupt(vcpu);
11061         return 0;
11062 }
11063
11064 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11065 {
11066         ktime_t remaining =
11067                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11068         u64 value;
11069
11070         if (ktime_to_ns(remaining) <= 0)
11071                 return 0;
11072
11073         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11074         do_div(value, 1000000);
11075         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11076 }
11077
11078 /*
11079  * Update the guest state fields of vmcs12 to reflect changes that
11080  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11081  * VM-entry controls is also updated, since this is really a guest
11082  * state bit.)
11083  */
11084 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11085 {
11086         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11087         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11088
11089         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11090         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11091         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11092
11093         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11094         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11095         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11096         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11097         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11098         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11099         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11100         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11101         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11102         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11103         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11104         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11105         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11106         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11107         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11108         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11109         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11110         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11111         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11112         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11113         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11114         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11115         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11116         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11117         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11118         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11119         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11120         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11121         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11122         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11123         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11124         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11125         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11126         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11127         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11128         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11129
11130         vmcs12->guest_interruptibility_info =
11131                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11132         vmcs12->guest_pending_dbg_exceptions =
11133                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
11134         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11135                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11136         else
11137                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
11138
11139         if (nested_cpu_has_preemption_timer(vmcs12)) {
11140                 if (vmcs12->vm_exit_controls &
11141                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11142                         vmcs12->vmx_preemption_timer_value =
11143                                 vmx_get_preemption_timer_value(vcpu);
11144                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11145         }
11146
11147         /*
11148          * In some cases (usually, nested EPT), L2 is allowed to change its
11149          * own CR3 without exiting. If it has changed it, we must keep it.
11150          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11151          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11152          *
11153          * Additionally, restore L2's PDPTR to vmcs12.
11154          */
11155         if (enable_ept) {
11156                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
11157                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11158                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11159                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11160                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11161         }
11162
11163         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
11164
11165         if (nested_cpu_has_vid(vmcs12))
11166                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11167
11168         vmcs12->vm_entry_controls =
11169                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
11170                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
11171
11172         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11173                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11174                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11175         }
11176
11177         /* TODO: These cannot have changed unless we have MSR bitmaps and
11178          * the relevant bit asks not to trap the change */
11179         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
11180                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
11181         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11182                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
11183         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11184         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11185         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
11186         if (kvm_mpx_supported())
11187                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
11188 }
11189
11190 /*
11191  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11192  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11193  * and this function updates it to reflect the changes to the guest state while
11194  * L2 was running (and perhaps made some exits which were handled directly by L0
11195  * without going back to L1), and to reflect the exit reason.
11196  * Note that we do not have to copy here all VMCS fields, just those that
11197  * could have changed by the L2 guest or the exit - i.e., the guest-state and
11198  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11199  * which already writes to vmcs12 directly.
11200  */
11201 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11202                            u32 exit_reason, u32 exit_intr_info,
11203                            unsigned long exit_qualification)
11204 {
11205         /* update guest state fields: */
11206         sync_vmcs12(vcpu, vmcs12);
11207
11208         /* update exit information fields: */
11209
11210         vmcs12->vm_exit_reason = exit_reason;
11211         vmcs12->exit_qualification = exit_qualification;
11212         vmcs12->vm_exit_intr_info = exit_intr_info;
11213
11214         vmcs12->idt_vectoring_info_field = 0;
11215         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11216         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11217
11218         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
11219                 vmcs12->launch_state = 1;
11220
11221                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11222                  * instead of reading the real value. */
11223                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
11224
11225                 /*
11226                  * Transfer the event that L0 or L1 may wanted to inject into
11227                  * L2 to IDT_VECTORING_INFO_FIELD.
11228                  */
11229                 vmcs12_save_pending_event(vcpu, vmcs12);
11230         }
11231
11232         /*
11233          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11234          * preserved above and would only end up incorrectly in L1.
11235          */
11236         vcpu->arch.nmi_injected = false;
11237         kvm_clear_exception_queue(vcpu);
11238         kvm_clear_interrupt_queue(vcpu);
11239 }
11240
11241 /*
11242  * A part of what we need to when the nested L2 guest exits and we want to
11243  * run its L1 parent, is to reset L1's guest state to the host state specified
11244  * in vmcs12.
11245  * This function is to be called not only on normal nested exit, but also on
11246  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11247  * Failures During or After Loading Guest State").
11248  * This function should be called when the active VMCS is L1's (vmcs01).
11249  */
11250 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11251                                    struct vmcs12 *vmcs12)
11252 {
11253         struct kvm_segment seg;
11254         u32 entry_failure_code;
11255
11256         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11257                 vcpu->arch.efer = vmcs12->host_ia32_efer;
11258         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11259                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11260         else
11261                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11262         vmx_set_efer(vcpu, vcpu->arch.efer);
11263
11264         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11265         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
11266         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
11267         /*
11268          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
11269          * actually changed, because vmx_set_cr0 refers to efer set above.
11270          *
11271          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11272          * (KVM doesn't change it);
11273          */
11274         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
11275         vmx_set_cr0(vcpu, vmcs12->host_cr0);
11276
11277         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
11278         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
11279         kvm_set_cr4(vcpu, vmcs12->host_cr4);
11280
11281         nested_ept_uninit_mmu_context(vcpu);
11282
11283         /*
11284          * Only PDPTE load can fail as the value of cr3 was checked on entry and
11285          * couldn't have changed.
11286          */
11287         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11288                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
11289
11290         if (!enable_ept)
11291                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11292
11293         if (enable_vpid) {
11294                 /*
11295                  * Trivially support vpid by letting L2s share their parent
11296                  * L1's vpid. TODO: move to a more elaborate solution, giving
11297                  * each L2 its own vpid and exposing the vpid feature to L1.
11298                  */
11299                 vmx_flush_tlb(vcpu);
11300         }
11301         /* Restore posted intr vector. */
11302         if (nested_cpu_has_posted_intr(vmcs12))
11303                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
11304
11305         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11306         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11307         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11308         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11309         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
11310
11311         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
11312         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11313                 vmcs_write64(GUEST_BNDCFGS, 0);
11314
11315         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
11316                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
11317                 vcpu->arch.pat = vmcs12->host_ia32_pat;
11318         }
11319         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11320                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11321                         vmcs12->host_ia32_perf_global_ctrl);
11322
11323         /* Set L1 segment info according to Intel SDM
11324             27.5.2 Loading Host Segment and Descriptor-Table Registers */
11325         seg = (struct kvm_segment) {
11326                 .base = 0,
11327                 .limit = 0xFFFFFFFF,
11328                 .selector = vmcs12->host_cs_selector,
11329                 .type = 11,
11330                 .present = 1,
11331                 .s = 1,
11332                 .g = 1
11333         };
11334         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11335                 seg.l = 1;
11336         else
11337                 seg.db = 1;
11338         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11339         seg = (struct kvm_segment) {
11340                 .base = 0,
11341                 .limit = 0xFFFFFFFF,
11342                 .type = 3,
11343                 .present = 1,
11344                 .s = 1,
11345                 .db = 1,
11346                 .g = 1
11347         };
11348         seg.selector = vmcs12->host_ds_selector;
11349         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11350         seg.selector = vmcs12->host_es_selector;
11351         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11352         seg.selector = vmcs12->host_ss_selector;
11353         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11354         seg.selector = vmcs12->host_fs_selector;
11355         seg.base = vmcs12->host_fs_base;
11356         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11357         seg.selector = vmcs12->host_gs_selector;
11358         seg.base = vmcs12->host_gs_base;
11359         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11360         seg = (struct kvm_segment) {
11361                 .base = vmcs12->host_tr_base,
11362                 .limit = 0x67,
11363                 .selector = vmcs12->host_tr_selector,
11364                 .type = 11,
11365                 .present = 1
11366         };
11367         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11368
11369         kvm_set_dr(vcpu, 7, 0x400);
11370         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
11371
11372         if (cpu_has_vmx_msr_bitmap())
11373                 vmx_set_msr_bitmap(vcpu);
11374
11375         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11376                                 vmcs12->vm_exit_msr_load_count))
11377                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
11378 }
11379
11380 /*
11381  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11382  * and modify vmcs12 to make it see what it would expect to see there if
11383  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11384  */
11385 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11386                               u32 exit_intr_info,
11387                               unsigned long exit_qualification)
11388 {
11389         struct vcpu_vmx *vmx = to_vmx(vcpu);
11390         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11391         u32 vm_inst_error = 0;
11392
11393         /* trying to cancel vmlaunch/vmresume is a bug */
11394         WARN_ON_ONCE(vmx->nested.nested_run_pending);
11395
11396         leave_guest_mode(vcpu);
11397         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11398                        exit_qualification);
11399
11400         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11401                                  vmcs12->vm_exit_msr_store_count))
11402                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11403
11404         if (unlikely(vmx->fail))
11405                 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
11406
11407         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11408
11409         /*
11410          * TODO: SDM says that with acknowledge interrupt on exit, bit 31 of
11411          * the VM-exit interrupt information (valid interrupt) is always set to
11412          * 1 on EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't need
11413          * kvm_cpu_has_interrupt().  See the commit message for details.
11414          */
11415         if (nested_exit_intr_ack_set(vcpu) &&
11416             exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11417             kvm_cpu_has_interrupt(vcpu)) {
11418                 int irq = kvm_cpu_get_interrupt(vcpu);
11419                 WARN_ON(irq < 0);
11420                 vmcs12->vm_exit_intr_info = irq |
11421                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11422         }
11423
11424         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11425                                        vmcs12->exit_qualification,
11426                                        vmcs12->idt_vectoring_info_field,
11427                                        vmcs12->vm_exit_intr_info,
11428                                        vmcs12->vm_exit_intr_error_code,
11429                                        KVM_ISA_VMX);
11430
11431         vm_entry_controls_reset_shadow(vmx);
11432         vm_exit_controls_reset_shadow(vmx);
11433         vmx_segment_cache_clear(vmx);
11434
11435         /* if no vmcs02 cache requested, remove the one we used */
11436         if (VMCS02_POOL_SIZE == 0)
11437                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11438
11439         load_vmcs12_host_state(vcpu, vmcs12);
11440
11441         /* Update any VMCS fields that might have changed while L2 ran */
11442         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11443         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11444         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11445         if (vmx->hv_deadline_tsc == -1)
11446                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11447                                 PIN_BASED_VMX_PREEMPTION_TIMER);
11448         else
11449                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11450                               PIN_BASED_VMX_PREEMPTION_TIMER);
11451         if (kvm_has_tsc_control)
11452                 decache_tsc_multiplier(vmx);
11453
11454         if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11455                 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11456                 vmx_set_virtual_x2apic_mode(vcpu,
11457                                 vcpu->arch.apic_base & X2APIC_ENABLE);
11458         } else if (!nested_cpu_has_ept(vmcs12) &&
11459                    nested_cpu_has2(vmcs12,
11460                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11461                 vmx_flush_tlb_ept_only(vcpu);
11462         }
11463
11464         /* This is needed for same reason as it was needed in prepare_vmcs02 */
11465         vmx->host_rsp = 0;
11466
11467         /* Unpin physical memory we referred to in vmcs02 */
11468         if (vmx->nested.apic_access_page) {
11469                 kvm_release_page_dirty(vmx->nested.apic_access_page);
11470                 vmx->nested.apic_access_page = NULL;
11471         }
11472         if (vmx->nested.virtual_apic_page) {
11473                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
11474                 vmx->nested.virtual_apic_page = NULL;
11475         }
11476         if (vmx->nested.pi_desc_page) {
11477                 kunmap(vmx->nested.pi_desc_page);
11478                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
11479                 vmx->nested.pi_desc_page = NULL;
11480                 vmx->nested.pi_desc = NULL;
11481         }
11482
11483         /*
11484          * We are now running in L2, mmu_notifier will force to reload the
11485          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11486          */
11487         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11488
11489         /*
11490          * Exiting from L2 to L1, we're now back to L1 which thinks it just
11491          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11492          * success or failure flag accordingly.
11493          */
11494         if (unlikely(vmx->fail)) {
11495                 vmx->fail = 0;
11496                 nested_vmx_failValid(vcpu, vm_inst_error);
11497         } else
11498                 nested_vmx_succeed(vcpu);
11499         if (enable_shadow_vmcs)
11500                 vmx->nested.sync_shadow_vmcs = true;
11501
11502         /* in case we halted in L2 */
11503         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11504 }
11505
11506 /*
11507  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11508  */
11509 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11510 {
11511         if (is_guest_mode(vcpu)) {
11512                 to_vmx(vcpu)->nested.nested_run_pending = 0;
11513                 nested_vmx_vmexit(vcpu, -1, 0, 0);
11514         }
11515         free_nested(to_vmx(vcpu));
11516 }
11517
11518 /*
11519  * L1's failure to enter L2 is a subset of a normal exit, as explained in
11520  * 23.7 "VM-entry failures during or after loading guest state" (this also
11521  * lists the acceptable exit-reason and exit-qualification parameters).
11522  * It should only be called before L2 actually succeeded to run, and when
11523  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11524  */
11525 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11526                         struct vmcs12 *vmcs12,
11527                         u32 reason, unsigned long qualification)
11528 {
11529         load_vmcs12_host_state(vcpu, vmcs12);
11530         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11531         vmcs12->exit_qualification = qualification;
11532         nested_vmx_succeed(vcpu);
11533         if (enable_shadow_vmcs)
11534                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11535 }
11536
11537 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11538                                struct x86_instruction_info *info,
11539                                enum x86_intercept_stage stage)
11540 {
11541         return X86EMUL_CONTINUE;
11542 }
11543
11544 #ifdef CONFIG_X86_64
11545 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11546 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11547                                   u64 divisor, u64 *result)
11548 {
11549         u64 low = a << shift, high = a >> (64 - shift);
11550
11551         /* To avoid the overflow on divq */
11552         if (high >= divisor)
11553                 return 1;
11554
11555         /* Low hold the result, high hold rem which is discarded */
11556         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11557             "rm" (divisor), "0" (low), "1" (high));
11558         *result = low;
11559
11560         return 0;
11561 }
11562
11563 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11564 {
11565         struct vcpu_vmx *vmx = to_vmx(vcpu);
11566         u64 tscl = rdtsc();
11567         u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11568         u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11569
11570         /* Convert to host delta tsc if tsc scaling is enabled */
11571         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11572                         u64_shl_div_u64(delta_tsc,
11573                                 kvm_tsc_scaling_ratio_frac_bits,
11574                                 vcpu->arch.tsc_scaling_ratio,
11575                                 &delta_tsc))
11576                 return -ERANGE;
11577
11578         /*
11579          * If the delta tsc can't fit in the 32 bit after the multi shift,
11580          * we can't use the preemption timer.
11581          * It's possible that it fits on later vmentries, but checking
11582          * on every vmentry is costly so we just use an hrtimer.
11583          */
11584         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11585                 return -ERANGE;
11586
11587         vmx->hv_deadline_tsc = tscl + delta_tsc;
11588         vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11589                         PIN_BASED_VMX_PREEMPTION_TIMER);
11590
11591         return delta_tsc == 0;
11592 }
11593
11594 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11595 {
11596         struct vcpu_vmx *vmx = to_vmx(vcpu);
11597         vmx->hv_deadline_tsc = -1;
11598         vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11599                         PIN_BASED_VMX_PREEMPTION_TIMER);
11600 }
11601 #endif
11602
11603 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11604 {
11605         if (ple_gap)
11606                 shrink_ple_window(vcpu);
11607 }
11608
11609 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11610                                      struct kvm_memory_slot *slot)
11611 {
11612         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11613         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11614 }
11615
11616 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11617                                        struct kvm_memory_slot *slot)
11618 {
11619         kvm_mmu_slot_set_dirty(kvm, slot);
11620 }
11621
11622 static void vmx_flush_log_dirty(struct kvm *kvm)
11623 {
11624         kvm_flush_pml_buffers(kvm);
11625 }
11626
11627 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11628 {
11629         struct vmcs12 *vmcs12;
11630         struct vcpu_vmx *vmx = to_vmx(vcpu);
11631         gpa_t gpa;
11632         struct page *page = NULL;
11633         u64 *pml_address;
11634
11635         if (is_guest_mode(vcpu)) {
11636                 WARN_ON_ONCE(vmx->nested.pml_full);
11637
11638                 /*
11639                  * Check if PML is enabled for the nested guest.
11640                  * Whether eptp bit 6 is set is already checked
11641                  * as part of A/D emulation.
11642                  */
11643                 vmcs12 = get_vmcs12(vcpu);
11644                 if (!nested_cpu_has_pml(vmcs12))
11645                         return 0;
11646
11647                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11648                         vmx->nested.pml_full = true;
11649                         return 1;
11650                 }
11651
11652                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11653
11654                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11655                 if (is_error_page(page))
11656                         return 0;
11657
11658                 pml_address = kmap(page);
11659                 pml_address[vmcs12->guest_pml_index--] = gpa;
11660                 kunmap(page);
11661                 kvm_release_page_clean(page);
11662         }
11663
11664         return 0;
11665 }
11666
11667 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11668                                            struct kvm_memory_slot *memslot,
11669                                            gfn_t offset, unsigned long mask)
11670 {
11671         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11672 }
11673
11674 /*
11675  * This routine does the following things for vCPU which is going
11676  * to be blocked if VT-d PI is enabled.
11677  * - Store the vCPU to the wakeup list, so when interrupts happen
11678  *   we can find the right vCPU to wake up.
11679  * - Change the Posted-interrupt descriptor as below:
11680  *      'NDST' <-- vcpu->pre_pcpu
11681  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11682  * - If 'ON' is set during this process, which means at least one
11683  *   interrupt is posted for this vCPU, we cannot block it, in
11684  *   this case, return 1, otherwise, return 0.
11685  *
11686  */
11687 static int pi_pre_block(struct kvm_vcpu *vcpu)
11688 {
11689         unsigned long flags;
11690         unsigned int dest;
11691         struct pi_desc old, new;
11692         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11693
11694         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11695                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11696                 !kvm_vcpu_apicv_active(vcpu))
11697                 return 0;
11698
11699         vcpu->pre_pcpu = vcpu->cpu;
11700         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11701                           vcpu->pre_pcpu), flags);
11702         list_add_tail(&vcpu->blocked_vcpu_list,
11703                       &per_cpu(blocked_vcpu_on_cpu,
11704                       vcpu->pre_pcpu));
11705         spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11706                                vcpu->pre_pcpu), flags);
11707
11708         do {
11709                 old.control = new.control = pi_desc->control;
11710
11711                 /*
11712                  * We should not block the vCPU if
11713                  * an interrupt is posted for it.
11714                  */
11715                 if (pi_test_on(pi_desc) == 1) {
11716                         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11717                                           vcpu->pre_pcpu), flags);
11718                         list_del(&vcpu->blocked_vcpu_list);
11719                         spin_unlock_irqrestore(
11720                                         &per_cpu(blocked_vcpu_on_cpu_lock,
11721                                         vcpu->pre_pcpu), flags);
11722                         vcpu->pre_pcpu = -1;
11723
11724                         return 1;
11725                 }
11726
11727                 WARN((pi_desc->sn == 1),
11728                      "Warning: SN field of posted-interrupts "
11729                      "is set before blocking\n");
11730
11731                 /*
11732                  * Since vCPU can be preempted during this process,
11733                  * vcpu->cpu could be different with pre_pcpu, we
11734                  * need to set pre_pcpu as the destination of wakeup
11735                  * notification event, then we can find the right vCPU
11736                  * to wakeup in wakeup handler if interrupts happen
11737                  * when the vCPU is in blocked state.
11738                  */
11739                 dest = cpu_physical_id(vcpu->pre_pcpu);
11740
11741                 if (x2apic_enabled())
11742                         new.ndst = dest;
11743                 else
11744                         new.ndst = (dest << 8) & 0xFF00;
11745
11746                 /* set 'NV' to 'wakeup vector' */
11747                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11748         } while (cmpxchg(&pi_desc->control, old.control,
11749                         new.control) != old.control);
11750
11751         return 0;
11752 }
11753
11754 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11755 {
11756         if (pi_pre_block(vcpu))
11757                 return 1;
11758
11759         if (kvm_lapic_hv_timer_in_use(vcpu))
11760                 kvm_lapic_switch_to_sw_timer(vcpu);
11761
11762         return 0;
11763 }
11764
11765 static void pi_post_block(struct kvm_vcpu *vcpu)
11766 {
11767         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11768         struct pi_desc old, new;
11769         unsigned int dest;
11770         unsigned long flags;
11771
11772         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11773                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11774                 !kvm_vcpu_apicv_active(vcpu))
11775                 return;
11776
11777         do {
11778                 old.control = new.control = pi_desc->control;
11779
11780                 dest = cpu_physical_id(vcpu->cpu);
11781
11782                 if (x2apic_enabled())
11783                         new.ndst = dest;
11784                 else
11785                         new.ndst = (dest << 8) & 0xFF00;
11786
11787                 /* Allow posting non-urgent interrupts */
11788                 new.sn = 0;
11789
11790                 /* set 'NV' to 'notification vector' */
11791                 new.nv = POSTED_INTR_VECTOR;
11792         } while (cmpxchg(&pi_desc->control, old.control,
11793                         new.control) != old.control);
11794
11795         if(vcpu->pre_pcpu != -1) {
11796                 spin_lock_irqsave(
11797                         &per_cpu(blocked_vcpu_on_cpu_lock,
11798                         vcpu->pre_pcpu), flags);
11799                 list_del(&vcpu->blocked_vcpu_list);
11800                 spin_unlock_irqrestore(
11801                         &per_cpu(blocked_vcpu_on_cpu_lock,
11802                         vcpu->pre_pcpu), flags);
11803                 vcpu->pre_pcpu = -1;
11804         }
11805 }
11806
11807 static void vmx_post_block(struct kvm_vcpu *vcpu)
11808 {
11809         if (kvm_x86_ops->set_hv_timer)
11810                 kvm_lapic_switch_to_hv_timer(vcpu);
11811
11812         pi_post_block(vcpu);
11813 }
11814
11815 /*
11816  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11817  *
11818  * @kvm: kvm
11819  * @host_irq: host irq of the interrupt
11820  * @guest_irq: gsi of the interrupt
11821  * @set: set or unset PI
11822  * returns 0 on success, < 0 on failure
11823  */
11824 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11825                               uint32_t guest_irq, bool set)
11826 {
11827         struct kvm_kernel_irq_routing_entry *e;
11828         struct kvm_irq_routing_table *irq_rt;
11829         struct kvm_lapic_irq irq;
11830         struct kvm_vcpu *vcpu;
11831         struct vcpu_data vcpu_info;
11832         int idx, ret = -EINVAL;
11833
11834         if (!kvm_arch_has_assigned_device(kvm) ||
11835                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11836                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11837                 return 0;
11838
11839         idx = srcu_read_lock(&kvm->irq_srcu);
11840         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11841         BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11842
11843         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11844                 if (e->type != KVM_IRQ_ROUTING_MSI)
11845                         continue;
11846                 /*
11847                  * VT-d PI cannot support posting multicast/broadcast
11848                  * interrupts to a vCPU, we still use interrupt remapping
11849                  * for these kind of interrupts.
11850                  *
11851                  * For lowest-priority interrupts, we only support
11852                  * those with single CPU as the destination, e.g. user
11853                  * configures the interrupts via /proc/irq or uses
11854                  * irqbalance to make the interrupts single-CPU.
11855                  *
11856                  * We will support full lowest-priority interrupt later.
11857                  */
11858
11859                 kvm_set_msi_irq(kvm, e, &irq);
11860                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11861                         /*
11862                          * Make sure the IRTE is in remapped mode if
11863                          * we don't handle it in posted mode.
11864                          */
11865                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11866                         if (ret < 0) {
11867                                 printk(KERN_INFO
11868                                    "failed to back to remapped mode, irq: %u\n",
11869                                    host_irq);
11870                                 goto out;
11871                         }
11872
11873                         continue;
11874                 }
11875
11876                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11877                 vcpu_info.vector = irq.vector;
11878
11879                 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11880                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11881
11882                 if (set)
11883                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11884                 else {
11885                         /* suppress notification event before unposting */
11886                         pi_set_sn(vcpu_to_pi_desc(vcpu));
11887                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11888                         pi_clear_sn(vcpu_to_pi_desc(vcpu));
11889                 }
11890
11891                 if (ret < 0) {
11892                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
11893                                         __func__);
11894                         goto out;
11895                 }
11896         }
11897
11898         ret = 0;
11899 out:
11900         srcu_read_unlock(&kvm->irq_srcu, idx);
11901         return ret;
11902 }
11903
11904 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11905 {
11906         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11907                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11908                         FEATURE_CONTROL_LMCE;
11909         else
11910                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11911                         ~FEATURE_CONTROL_LMCE;
11912 }
11913
11914 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11915         .cpu_has_kvm_support = cpu_has_kvm_support,
11916         .disabled_by_bios = vmx_disabled_by_bios,
11917         .hardware_setup = hardware_setup,
11918         .hardware_unsetup = hardware_unsetup,
11919         .check_processor_compatibility = vmx_check_processor_compat,
11920         .hardware_enable = hardware_enable,
11921         .hardware_disable = hardware_disable,
11922         .cpu_has_accelerated_tpr = report_flexpriority,
11923         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11924
11925         .vcpu_create = vmx_create_vcpu,
11926         .vcpu_free = vmx_free_vcpu,
11927         .vcpu_reset = vmx_vcpu_reset,
11928
11929         .prepare_guest_switch = vmx_save_host_state,
11930         .vcpu_load = vmx_vcpu_load,
11931         .vcpu_put = vmx_vcpu_put,
11932
11933         .update_bp_intercept = update_exception_bitmap,
11934         .get_msr = vmx_get_msr,
11935         .set_msr = vmx_set_msr,
11936         .get_segment_base = vmx_get_segment_base,
11937         .get_segment = vmx_get_segment,
11938         .set_segment = vmx_set_segment,
11939         .get_cpl = vmx_get_cpl,
11940         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11941         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11942         .decache_cr3 = vmx_decache_cr3,
11943         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11944         .set_cr0 = vmx_set_cr0,
11945         .set_cr3 = vmx_set_cr3,
11946         .set_cr4 = vmx_set_cr4,
11947         .set_efer = vmx_set_efer,
11948         .get_idt = vmx_get_idt,
11949         .set_idt = vmx_set_idt,
11950         .get_gdt = vmx_get_gdt,
11951         .set_gdt = vmx_set_gdt,
11952         .get_dr6 = vmx_get_dr6,
11953         .set_dr6 = vmx_set_dr6,
11954         .set_dr7 = vmx_set_dr7,
11955         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11956         .cache_reg = vmx_cache_reg,
11957         .get_rflags = vmx_get_rflags,
11958         .set_rflags = vmx_set_rflags,
11959
11960         .tlb_flush = vmx_flush_tlb,
11961
11962         .run = vmx_vcpu_run,
11963         .handle_exit = vmx_handle_exit,
11964         .skip_emulated_instruction = skip_emulated_instruction,
11965         .set_interrupt_shadow = vmx_set_interrupt_shadow,
11966         .get_interrupt_shadow = vmx_get_interrupt_shadow,
11967         .patch_hypercall = vmx_patch_hypercall,
11968         .set_irq = vmx_inject_irq,
11969         .set_nmi = vmx_inject_nmi,
11970         .queue_exception = vmx_queue_exception,
11971         .cancel_injection = vmx_cancel_injection,
11972         .interrupt_allowed = vmx_interrupt_allowed,
11973         .nmi_allowed = vmx_nmi_allowed,
11974         .get_nmi_mask = vmx_get_nmi_mask,
11975         .set_nmi_mask = vmx_set_nmi_mask,
11976         .enable_nmi_window = enable_nmi_window,
11977         .enable_irq_window = enable_irq_window,
11978         .update_cr8_intercept = update_cr8_intercept,
11979         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11980         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11981         .get_enable_apicv = vmx_get_enable_apicv,
11982         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11983         .load_eoi_exitmap = vmx_load_eoi_exitmap,
11984         .apicv_post_state_restore = vmx_apicv_post_state_restore,
11985         .hwapic_irr_update = vmx_hwapic_irr_update,
11986         .hwapic_isr_update = vmx_hwapic_isr_update,
11987         .sync_pir_to_irr = vmx_sync_pir_to_irr,
11988         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11989
11990         .set_tss_addr = vmx_set_tss_addr,
11991         .get_tdp_level = get_ept_level,
11992         .get_mt_mask = vmx_get_mt_mask,
11993
11994         .get_exit_info = vmx_get_exit_info,
11995
11996         .get_lpage_level = vmx_get_lpage_level,
11997
11998         .cpuid_update = vmx_cpuid_update,
11999
12000         .rdtscp_supported = vmx_rdtscp_supported,
12001         .invpcid_supported = vmx_invpcid_supported,
12002
12003         .set_supported_cpuid = vmx_set_supported_cpuid,
12004
12005         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
12006
12007         .write_tsc_offset = vmx_write_tsc_offset,
12008
12009         .set_tdp_cr3 = vmx_set_cr3,
12010
12011         .check_intercept = vmx_check_intercept,
12012         .handle_external_intr = vmx_handle_external_intr,
12013         .mpx_supported = vmx_mpx_supported,
12014         .xsaves_supported = vmx_xsaves_supported,
12015
12016         .check_nested_events = vmx_check_nested_events,
12017
12018         .sched_in = vmx_sched_in,
12019
12020         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12021         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12022         .flush_log_dirty = vmx_flush_log_dirty,
12023         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
12024         .write_log_dirty = vmx_write_pml_buffer,
12025
12026         .pre_block = vmx_pre_block,
12027         .post_block = vmx_post_block,
12028
12029         .pmu_ops = &intel_pmu_ops,
12030
12031         .update_pi_irte = vmx_update_pi_irte,
12032
12033 #ifdef CONFIG_X86_64
12034         .set_hv_timer = vmx_set_hv_timer,
12035         .cancel_hv_timer = vmx_cancel_hv_timer,
12036 #endif
12037
12038         .setup_mce = vmx_setup_mce,
12039 };
12040
12041 static int __init vmx_init(void)
12042 {
12043         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12044                      __alignof__(struct vcpu_vmx), THIS_MODULE);
12045         if (r)
12046                 return r;
12047
12048 #ifdef CONFIG_KEXEC_CORE
12049         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12050                            crash_vmclear_local_loaded_vmcss);
12051 #endif
12052
12053         return 0;
12054 }
12055
12056 static void __exit vmx_exit(void)
12057 {
12058 #ifdef CONFIG_KEXEC_CORE
12059         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
12060         synchronize_rcu();
12061 #endif
12062
12063         kvm_exit();
12064 }
12065
12066 module_init(vmx_init)
12067 module_exit(vmx_exit)