2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
44 #include <asm/virtext.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53 #include <asm/nospec-branch.h>
58 #define __ex(x) __kvm_handle_fault_on_reboot(x)
59 #define __ex_clear(x, reg) \
60 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
65 static const struct x86_cpu_id vmx_cpu_id[] = {
66 X86_FEATURE_MATCH(X86_FEATURE_VMX),
69 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
71 static bool __read_mostly enable_vpid = 1;
72 module_param_named(vpid, enable_vpid, bool, 0444);
74 static bool __read_mostly enable_vnmi = 1;
75 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
77 static bool __read_mostly flexpriority_enabled = 1;
78 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
80 static bool __read_mostly enable_ept = 1;
81 module_param_named(ept, enable_ept, bool, S_IRUGO);
83 static bool __read_mostly enable_unrestricted_guest = 1;
84 module_param_named(unrestricted_guest,
85 enable_unrestricted_guest, bool, S_IRUGO);
87 static bool __read_mostly enable_ept_ad_bits = 1;
88 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
90 static bool __read_mostly emulate_invalid_guest_state = true;
91 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
93 static bool __read_mostly fasteoi = 1;
94 module_param(fasteoi, bool, S_IRUGO);
96 static bool __read_mostly enable_apicv = 1;
97 module_param(enable_apicv, bool, S_IRUGO);
99 static bool __read_mostly enable_shadow_vmcs = 1;
100 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
102 * If nested=1, nested virtualization is supported, i.e., guests may use
103 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104 * use VMX instructions.
106 static bool __read_mostly nested = 0;
107 module_param(nested, bool, S_IRUGO);
109 static u64 __read_mostly host_xss;
111 static bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
116 #define MSR_TYPE_RW 3
118 #define MSR_BITMAP_MODE_X2APIC 1
119 #define MSR_BITMAP_MODE_X2APIC_APICV 2
120 #define MSR_BITMAP_MODE_LM 4
122 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
132 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
133 #define KVM_VM_CR0_ALWAYS_ON \
134 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
135 #define KVM_CR4_GUEST_OWNED_BITS \
136 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
137 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
144 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
147 * Hyper-V requires all of these, so mark them as supported even though
148 * they are just treated the same as all-context.
150 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
151 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
152 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
153 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
154 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
157 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
158 * ple_gap: upper bound on the amount of time between two successive
159 * executions of PAUSE in a loop. Also indicate if ple enabled.
160 * According to test, this time is usually smaller than 128 cycles.
161 * ple_window: upper bound on the amount of time a guest is allowed to execute
162 * in a PAUSE loop. Tests indicate that most spinlocks are held for
163 * less than 2^12 cycles
164 * Time is measured based on a counter that runs at the same rate as the TSC,
165 * refer SDM volume 3b section 21.6.13 & 22.1.3.
167 #define KVM_VMX_DEFAULT_PLE_GAP 128
168 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
169 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
170 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
171 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
172 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
174 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
175 module_param(ple_gap, int, S_IRUGO);
177 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
178 module_param(ple_window, int, S_IRUGO);
180 /* Default doubles per-vcpu window every exit. */
181 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
182 module_param(ple_window_grow, int, S_IRUGO);
184 /* Default resets per-vcpu window every exit to ple_window. */
185 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
186 module_param(ple_window_shrink, int, S_IRUGO);
188 /* Default is to compute the maximum so we can never overflow. */
189 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
190 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
191 module_param(ple_window_max, int, S_IRUGO);
193 extern const ulong vmx_return;
195 #define NR_AUTOLOAD_MSRS 8
204 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
205 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
206 * loaded on this CPU (so we can clear them if the CPU goes down).
210 struct vmcs *shadow_vmcs;
213 bool nmi_known_unmasked;
214 unsigned long vmcs_host_cr3; /* May not match real cr3 */
215 unsigned long vmcs_host_cr4; /* May not match real cr4 */
216 /* Support for vnmi-less CPUs */
217 int soft_vnmi_blocked;
219 s64 vnmi_blocked_time;
220 unsigned long *msr_bitmap;
221 struct list_head loaded_vmcss_on_cpu_link;
224 struct shared_msr_entry {
231 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
232 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
233 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
234 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
235 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
236 * More than one of these structures may exist, if L1 runs multiple L2 guests.
237 * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
238 * underlying hardware which will be used to run L2.
239 * This structure is packed to ensure that its layout is identical across
240 * machines (necessary for live migration).
241 * If there are changes in this struct, VMCS12_REVISION must be changed.
243 typedef u64 natural_width;
244 struct __packed vmcs12 {
245 /* According to the Intel spec, a VMCS region must start with the
246 * following two fields. Then follow implementation-specific data.
251 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
252 u32 padding[7]; /* room for future expansion */
257 u64 vm_exit_msr_store_addr;
258 u64 vm_exit_msr_load_addr;
259 u64 vm_entry_msr_load_addr;
261 u64 virtual_apic_page_addr;
262 u64 apic_access_addr;
263 u64 posted_intr_desc_addr;
264 u64 vm_function_control;
266 u64 eoi_exit_bitmap0;
267 u64 eoi_exit_bitmap1;
268 u64 eoi_exit_bitmap2;
269 u64 eoi_exit_bitmap3;
270 u64 eptp_list_address;
272 u64 guest_physical_address;
273 u64 vmcs_link_pointer;
275 u64 guest_ia32_debugctl;
278 u64 guest_ia32_perf_global_ctrl;
286 u64 host_ia32_perf_global_ctrl;
287 u64 padding64[8]; /* room for future expansion */
289 * To allow migration of L1 (complete with its L2 guests) between
290 * machines of different natural widths (32 or 64 bit), we cannot have
291 * unsigned long fields with no explict size. We use u64 (aliased
292 * natural_width) instead. Luckily, x86 is little-endian.
294 natural_width cr0_guest_host_mask;
295 natural_width cr4_guest_host_mask;
296 natural_width cr0_read_shadow;
297 natural_width cr4_read_shadow;
298 natural_width cr3_target_value0;
299 natural_width cr3_target_value1;
300 natural_width cr3_target_value2;
301 natural_width cr3_target_value3;
302 natural_width exit_qualification;
303 natural_width guest_linear_address;
304 natural_width guest_cr0;
305 natural_width guest_cr3;
306 natural_width guest_cr4;
307 natural_width guest_es_base;
308 natural_width guest_cs_base;
309 natural_width guest_ss_base;
310 natural_width guest_ds_base;
311 natural_width guest_fs_base;
312 natural_width guest_gs_base;
313 natural_width guest_ldtr_base;
314 natural_width guest_tr_base;
315 natural_width guest_gdtr_base;
316 natural_width guest_idtr_base;
317 natural_width guest_dr7;
318 natural_width guest_rsp;
319 natural_width guest_rip;
320 natural_width guest_rflags;
321 natural_width guest_pending_dbg_exceptions;
322 natural_width guest_sysenter_esp;
323 natural_width guest_sysenter_eip;
324 natural_width host_cr0;
325 natural_width host_cr3;
326 natural_width host_cr4;
327 natural_width host_fs_base;
328 natural_width host_gs_base;
329 natural_width host_tr_base;
330 natural_width host_gdtr_base;
331 natural_width host_idtr_base;
332 natural_width host_ia32_sysenter_esp;
333 natural_width host_ia32_sysenter_eip;
334 natural_width host_rsp;
335 natural_width host_rip;
336 natural_width paddingl[8]; /* room for future expansion */
337 u32 pin_based_vm_exec_control;
338 u32 cpu_based_vm_exec_control;
339 u32 exception_bitmap;
340 u32 page_fault_error_code_mask;
341 u32 page_fault_error_code_match;
342 u32 cr3_target_count;
343 u32 vm_exit_controls;
344 u32 vm_exit_msr_store_count;
345 u32 vm_exit_msr_load_count;
346 u32 vm_entry_controls;
347 u32 vm_entry_msr_load_count;
348 u32 vm_entry_intr_info_field;
349 u32 vm_entry_exception_error_code;
350 u32 vm_entry_instruction_len;
352 u32 secondary_vm_exec_control;
353 u32 vm_instruction_error;
355 u32 vm_exit_intr_info;
356 u32 vm_exit_intr_error_code;
357 u32 idt_vectoring_info_field;
358 u32 idt_vectoring_error_code;
359 u32 vm_exit_instruction_len;
360 u32 vmx_instruction_info;
367 u32 guest_ldtr_limit;
369 u32 guest_gdtr_limit;
370 u32 guest_idtr_limit;
371 u32 guest_es_ar_bytes;
372 u32 guest_cs_ar_bytes;
373 u32 guest_ss_ar_bytes;
374 u32 guest_ds_ar_bytes;
375 u32 guest_fs_ar_bytes;
376 u32 guest_gs_ar_bytes;
377 u32 guest_ldtr_ar_bytes;
378 u32 guest_tr_ar_bytes;
379 u32 guest_interruptibility_info;
380 u32 guest_activity_state;
381 u32 guest_sysenter_cs;
382 u32 host_ia32_sysenter_cs;
383 u32 vmx_preemption_timer_value;
384 u32 padding32[7]; /* room for future expansion */
385 u16 virtual_processor_id;
387 u16 guest_es_selector;
388 u16 guest_cs_selector;
389 u16 guest_ss_selector;
390 u16 guest_ds_selector;
391 u16 guest_fs_selector;
392 u16 guest_gs_selector;
393 u16 guest_ldtr_selector;
394 u16 guest_tr_selector;
395 u16 guest_intr_status;
397 u16 host_es_selector;
398 u16 host_cs_selector;
399 u16 host_ss_selector;
400 u16 host_ds_selector;
401 u16 host_fs_selector;
402 u16 host_gs_selector;
403 u16 host_tr_selector;
407 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
408 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
409 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
411 #define VMCS12_REVISION 0x11e57ed0
414 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
415 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
416 * current implementation, 4K are reserved to avoid future complications.
418 #define VMCS12_SIZE 0x1000
421 * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
422 * supported VMCS12 field encoding.
424 #define VMCS12_MAX_FIELD_INDEX 0x17
427 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
428 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
431 /* Has the level1 guest done vmxon? */
436 /* The guest-physical address of the current VMCS L1 keeps for L2 */
439 * Cache of the guest's VMCS, existing outside of guest memory.
440 * Loaded from guest memory during VMPTRLD. Flushed to guest
441 * memory during VMCLEAR and VMPTRLD.
443 struct vmcs12 *cached_vmcs12;
445 * Indicates if the shadow vmcs must be updated with the
446 * data hold by vmcs12
448 bool sync_shadow_vmcs;
451 bool change_vmcs01_virtual_x2apic_mode;
452 /* L2 must run next, and mustn't decide to exit to L1. */
453 bool nested_run_pending;
455 struct loaded_vmcs vmcs02;
458 * Guest pages referred to in the vmcs02 with host-physical
459 * pointers, so we must keep them pinned while L2 runs.
461 struct page *apic_access_page;
462 struct page *virtual_apic_page;
463 struct page *pi_desc_page;
464 struct pi_desc *pi_desc;
468 struct hrtimer preemption_timer;
469 bool preemption_timer_expired;
471 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
478 * We only store the "true" versions of the VMX capability MSRs. We
479 * generate the "non-true" versions by setting the must-be-1 bits
480 * according to the SDM.
482 u32 nested_vmx_procbased_ctls_low;
483 u32 nested_vmx_procbased_ctls_high;
484 u32 nested_vmx_secondary_ctls_low;
485 u32 nested_vmx_secondary_ctls_high;
486 u32 nested_vmx_pinbased_ctls_low;
487 u32 nested_vmx_pinbased_ctls_high;
488 u32 nested_vmx_exit_ctls_low;
489 u32 nested_vmx_exit_ctls_high;
490 u32 nested_vmx_entry_ctls_low;
491 u32 nested_vmx_entry_ctls_high;
492 u32 nested_vmx_misc_low;
493 u32 nested_vmx_misc_high;
494 u32 nested_vmx_ept_caps;
495 u32 nested_vmx_vpid_caps;
496 u64 nested_vmx_basic;
497 u64 nested_vmx_cr0_fixed0;
498 u64 nested_vmx_cr0_fixed1;
499 u64 nested_vmx_cr4_fixed0;
500 u64 nested_vmx_cr4_fixed1;
501 u64 nested_vmx_vmcs_enum;
502 u64 nested_vmx_vmfunc_controls;
504 /* SMM related state */
506 /* in VMX operation on SMM entry? */
508 /* in guest mode on SMM entry? */
513 #define POSTED_INTR_ON 0
514 #define POSTED_INTR_SN 1
516 /* Posted-Interrupt Descriptor */
518 u32 pir[8]; /* Posted interrupt requested */
521 /* bit 256 - Outstanding Notification */
523 /* bit 257 - Suppress Notification */
525 /* bit 271:258 - Reserved */
527 /* bit 279:272 - Notification Vector */
529 /* bit 287:280 - Reserved */
531 /* bit 319:288 - Notification Destination */
539 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
541 return test_and_set_bit(POSTED_INTR_ON,
542 (unsigned long *)&pi_desc->control);
545 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
547 return test_and_clear_bit(POSTED_INTR_ON,
548 (unsigned long *)&pi_desc->control);
551 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
553 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
556 static inline void pi_clear_sn(struct pi_desc *pi_desc)
558 return clear_bit(POSTED_INTR_SN,
559 (unsigned long *)&pi_desc->control);
562 static inline void pi_set_sn(struct pi_desc *pi_desc)
564 return set_bit(POSTED_INTR_SN,
565 (unsigned long *)&pi_desc->control);
568 static inline void pi_clear_on(struct pi_desc *pi_desc)
570 clear_bit(POSTED_INTR_ON,
571 (unsigned long *)&pi_desc->control);
574 static inline int pi_test_on(struct pi_desc *pi_desc)
576 return test_bit(POSTED_INTR_ON,
577 (unsigned long *)&pi_desc->control);
580 static inline int pi_test_sn(struct pi_desc *pi_desc)
582 return test_bit(POSTED_INTR_SN,
583 (unsigned long *)&pi_desc->control);
587 struct kvm_vcpu vcpu;
588 unsigned long host_rsp;
592 u32 idt_vectoring_info;
594 struct shared_msr_entry *guest_msrs;
597 unsigned long host_idt_base;
599 u64 msr_host_kernel_gs_base;
600 u64 msr_guest_kernel_gs_base;
602 u32 vm_entry_controls_shadow;
603 u32 vm_exit_controls_shadow;
604 u32 secondary_exec_control;
607 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
608 * non-nested (L1) guest, it always points to vmcs01. For a nested
609 * guest (L2), it points to a different VMCS.
611 struct loaded_vmcs vmcs01;
612 struct loaded_vmcs *loaded_vmcs;
613 bool __launched; /* temporary, used in vmx_vcpu_run */
614 struct msr_autoload {
616 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
617 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
621 u16 fs_sel, gs_sel, ldt_sel;
625 int gs_ldt_reload_needed;
626 int fs_reload_needed;
627 u64 msr_host_bndcfgs;
632 struct kvm_segment segs[8];
635 u32 bitmask; /* 4 bits per segment (1 bit per field) */
636 struct kvm_save_segment {
644 bool emulation_required;
648 /* Posted interrupt descriptor */
649 struct pi_desc pi_desc;
651 /* Support for a guest hypervisor (nested VMX) */
652 struct nested_vmx nested;
654 /* Dynamic PLE window. */
656 bool ple_window_dirty;
658 /* Support for PML */
659 #define PML_ENTITY_NUM 512
662 /* apic deadline value in host tsc */
665 u64 current_tsc_ratio;
669 unsigned long host_debugctlmsr;
672 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
673 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
674 * in msr_ia32_feature_control_valid_bits.
676 u64 msr_ia32_feature_control;
677 u64 msr_ia32_feature_control_valid_bits;
680 enum segment_cache_field {
689 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
691 return container_of(vcpu, struct vcpu_vmx, vcpu);
694 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
696 return &(to_vmx(vcpu)->pi_desc);
699 #define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
700 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
701 #define FIELD(number, name) [ROL16(number, 6)] = VMCS12_OFFSET(name)
702 #define FIELD64(number, name) \
703 FIELD(number, name), \
704 [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
707 static u16 shadow_read_only_fields[] = {
708 #define SHADOW_FIELD_RO(x) x,
709 #include "vmx_shadow_fields.h"
711 static int max_shadow_read_only_fields =
712 ARRAY_SIZE(shadow_read_only_fields);
714 static u16 shadow_read_write_fields[] = {
715 #define SHADOW_FIELD_RW(x) x,
716 #include "vmx_shadow_fields.h"
718 static int max_shadow_read_write_fields =
719 ARRAY_SIZE(shadow_read_write_fields);
721 static const unsigned short vmcs_field_to_offset_table[] = {
722 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
723 FIELD(POSTED_INTR_NV, posted_intr_nv),
724 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
725 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
726 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
727 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
728 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
729 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
730 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
731 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
732 FIELD(GUEST_INTR_STATUS, guest_intr_status),
733 FIELD(GUEST_PML_INDEX, guest_pml_index),
734 FIELD(HOST_ES_SELECTOR, host_es_selector),
735 FIELD(HOST_CS_SELECTOR, host_cs_selector),
736 FIELD(HOST_SS_SELECTOR, host_ss_selector),
737 FIELD(HOST_DS_SELECTOR, host_ds_selector),
738 FIELD(HOST_FS_SELECTOR, host_fs_selector),
739 FIELD(HOST_GS_SELECTOR, host_gs_selector),
740 FIELD(HOST_TR_SELECTOR, host_tr_selector),
741 FIELD64(IO_BITMAP_A, io_bitmap_a),
742 FIELD64(IO_BITMAP_B, io_bitmap_b),
743 FIELD64(MSR_BITMAP, msr_bitmap),
744 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
745 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
746 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
747 FIELD64(TSC_OFFSET, tsc_offset),
748 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
749 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
750 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
751 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
752 FIELD64(EPT_POINTER, ept_pointer),
753 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
754 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
755 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
756 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
757 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
758 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
759 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
760 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
761 FIELD64(PML_ADDRESS, pml_address),
762 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
763 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
764 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
765 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
766 FIELD64(GUEST_PDPTR0, guest_pdptr0),
767 FIELD64(GUEST_PDPTR1, guest_pdptr1),
768 FIELD64(GUEST_PDPTR2, guest_pdptr2),
769 FIELD64(GUEST_PDPTR3, guest_pdptr3),
770 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
771 FIELD64(HOST_IA32_PAT, host_ia32_pat),
772 FIELD64(HOST_IA32_EFER, host_ia32_efer),
773 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
774 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
775 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
776 FIELD(EXCEPTION_BITMAP, exception_bitmap),
777 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
778 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
779 FIELD(CR3_TARGET_COUNT, cr3_target_count),
780 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
781 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
782 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
783 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
784 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
785 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
786 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
787 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
788 FIELD(TPR_THRESHOLD, tpr_threshold),
789 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
790 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
791 FIELD(VM_EXIT_REASON, vm_exit_reason),
792 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
793 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
794 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
795 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
796 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
797 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
798 FIELD(GUEST_ES_LIMIT, guest_es_limit),
799 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
800 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
801 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
802 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
803 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
804 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
805 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
806 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
807 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
808 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
809 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
810 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
811 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
812 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
813 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
814 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
815 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
816 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
817 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
818 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
819 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
820 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
821 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
822 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
823 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
824 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
825 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
826 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
827 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
828 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
829 FIELD(EXIT_QUALIFICATION, exit_qualification),
830 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
831 FIELD(GUEST_CR0, guest_cr0),
832 FIELD(GUEST_CR3, guest_cr3),
833 FIELD(GUEST_CR4, guest_cr4),
834 FIELD(GUEST_ES_BASE, guest_es_base),
835 FIELD(GUEST_CS_BASE, guest_cs_base),
836 FIELD(GUEST_SS_BASE, guest_ss_base),
837 FIELD(GUEST_DS_BASE, guest_ds_base),
838 FIELD(GUEST_FS_BASE, guest_fs_base),
839 FIELD(GUEST_GS_BASE, guest_gs_base),
840 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
841 FIELD(GUEST_TR_BASE, guest_tr_base),
842 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
843 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
844 FIELD(GUEST_DR7, guest_dr7),
845 FIELD(GUEST_RSP, guest_rsp),
846 FIELD(GUEST_RIP, guest_rip),
847 FIELD(GUEST_RFLAGS, guest_rflags),
848 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
849 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
850 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
851 FIELD(HOST_CR0, host_cr0),
852 FIELD(HOST_CR3, host_cr3),
853 FIELD(HOST_CR4, host_cr4),
854 FIELD(HOST_FS_BASE, host_fs_base),
855 FIELD(HOST_GS_BASE, host_gs_base),
856 FIELD(HOST_TR_BASE, host_tr_base),
857 FIELD(HOST_GDTR_BASE, host_gdtr_base),
858 FIELD(HOST_IDTR_BASE, host_idtr_base),
859 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
860 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
861 FIELD(HOST_RSP, host_rsp),
862 FIELD(HOST_RIP, host_rip),
865 static inline short vmcs_field_to_offset(unsigned long field)
872 index = ROL16(field, 6);
873 if (index >= ARRAY_SIZE(vmcs_field_to_offset_table))
877 * FIXME: Mitigation for CVE-2017-5753. To be replaced with a
882 if (vmcs_field_to_offset_table[index] == 0)
885 return vmcs_field_to_offset_table[index];
888 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
890 return to_vmx(vcpu)->nested.cached_vmcs12;
893 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
894 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
895 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
896 static bool vmx_xsaves_supported(void);
897 static void vmx_set_segment(struct kvm_vcpu *vcpu,
898 struct kvm_segment *var, int seg);
899 static void vmx_get_segment(struct kvm_vcpu *vcpu,
900 struct kvm_segment *var, int seg);
901 static bool guest_state_valid(struct kvm_vcpu *vcpu);
902 static u32 vmx_segment_access_rights(struct kvm_segment *var);
903 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
904 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
905 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
906 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
908 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
910 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
911 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
913 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
914 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
916 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
919 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
920 * can find which vCPU should be waken up.
922 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
923 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
931 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
933 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
934 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
936 static bool cpu_has_load_ia32_efer;
937 static bool cpu_has_load_perf_global_ctrl;
939 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
940 static DEFINE_SPINLOCK(vmx_vpid_lock);
942 static struct vmcs_config {
947 u32 pin_based_exec_ctrl;
948 u32 cpu_based_exec_ctrl;
949 u32 cpu_based_2nd_exec_ctrl;
954 static struct vmx_capability {
959 #define VMX_SEGMENT_FIELD(seg) \
960 [VCPU_SREG_##seg] = { \
961 .selector = GUEST_##seg##_SELECTOR, \
962 .base = GUEST_##seg##_BASE, \
963 .limit = GUEST_##seg##_LIMIT, \
964 .ar_bytes = GUEST_##seg##_AR_BYTES, \
967 static const struct kvm_vmx_segment_field {
972 } kvm_vmx_segment_fields[] = {
973 VMX_SEGMENT_FIELD(CS),
974 VMX_SEGMENT_FIELD(DS),
975 VMX_SEGMENT_FIELD(ES),
976 VMX_SEGMENT_FIELD(FS),
977 VMX_SEGMENT_FIELD(GS),
978 VMX_SEGMENT_FIELD(SS),
979 VMX_SEGMENT_FIELD(TR),
980 VMX_SEGMENT_FIELD(LDTR),
983 static u64 host_efer;
985 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
988 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
989 * away by decrementing the array size.
991 static const u32 vmx_msr_index[] = {
993 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
995 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
998 static inline bool is_exception_n(u32 intr_info, u8 vector)
1000 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1001 INTR_INFO_VALID_MASK)) ==
1002 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1005 static inline bool is_debug(u32 intr_info)
1007 return is_exception_n(intr_info, DB_VECTOR);
1010 static inline bool is_breakpoint(u32 intr_info)
1012 return is_exception_n(intr_info, BP_VECTOR);
1015 static inline bool is_page_fault(u32 intr_info)
1017 return is_exception_n(intr_info, PF_VECTOR);
1020 static inline bool is_no_device(u32 intr_info)
1022 return is_exception_n(intr_info, NM_VECTOR);
1025 static inline bool is_invalid_opcode(u32 intr_info)
1027 return is_exception_n(intr_info, UD_VECTOR);
1030 static inline bool is_external_interrupt(u32 intr_info)
1032 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1033 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1036 static inline bool is_machine_check(u32 intr_info)
1038 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1039 INTR_INFO_VALID_MASK)) ==
1040 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1043 static inline bool cpu_has_vmx_msr_bitmap(void)
1045 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1048 static inline bool cpu_has_vmx_tpr_shadow(void)
1050 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1053 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1055 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1058 static inline bool cpu_has_secondary_exec_ctrls(void)
1060 return vmcs_config.cpu_based_exec_ctrl &
1061 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1064 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1066 return vmcs_config.cpu_based_2nd_exec_ctrl &
1067 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1070 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1072 return vmcs_config.cpu_based_2nd_exec_ctrl &
1073 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1076 static inline bool cpu_has_vmx_apic_register_virt(void)
1078 return vmcs_config.cpu_based_2nd_exec_ctrl &
1079 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1082 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1084 return vmcs_config.cpu_based_2nd_exec_ctrl &
1085 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1089 * Comment's format: document - errata name - stepping - processor name.
1091 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1093 static u32 vmx_preemption_cpu_tfms[] = {
1094 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1096 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1097 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1098 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1100 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1102 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1103 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1105 * 320767.pdf - AAP86 - B1 -
1106 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1109 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1111 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1113 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1115 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1116 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1117 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1121 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1123 u32 eax = cpuid_eax(0x00000001), i;
1125 /* Clear the reserved bits */
1126 eax &= ~(0x3U << 14 | 0xfU << 28);
1127 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1128 if (eax == vmx_preemption_cpu_tfms[i])
1134 static inline bool cpu_has_vmx_preemption_timer(void)
1136 return vmcs_config.pin_based_exec_ctrl &
1137 PIN_BASED_VMX_PREEMPTION_TIMER;
1140 static inline bool cpu_has_vmx_posted_intr(void)
1142 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1143 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1146 static inline bool cpu_has_vmx_apicv(void)
1148 return cpu_has_vmx_apic_register_virt() &&
1149 cpu_has_vmx_virtual_intr_delivery() &&
1150 cpu_has_vmx_posted_intr();
1153 static inline bool cpu_has_vmx_flexpriority(void)
1155 return cpu_has_vmx_tpr_shadow() &&
1156 cpu_has_vmx_virtualize_apic_accesses();
1159 static inline bool cpu_has_vmx_ept_execute_only(void)
1161 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1164 static inline bool cpu_has_vmx_ept_2m_page(void)
1166 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1169 static inline bool cpu_has_vmx_ept_1g_page(void)
1171 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1174 static inline bool cpu_has_vmx_ept_4levels(void)
1176 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1179 static inline bool cpu_has_vmx_ept_mt_wb(void)
1181 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1184 static inline bool cpu_has_vmx_ept_5levels(void)
1186 return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1189 static inline bool cpu_has_vmx_ept_ad_bits(void)
1191 return vmx_capability.ept & VMX_EPT_AD_BIT;
1194 static inline bool cpu_has_vmx_invept_context(void)
1196 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1199 static inline bool cpu_has_vmx_invept_global(void)
1201 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1204 static inline bool cpu_has_vmx_invvpid_single(void)
1206 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1209 static inline bool cpu_has_vmx_invvpid_global(void)
1211 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1214 static inline bool cpu_has_vmx_invvpid(void)
1216 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1219 static inline bool cpu_has_vmx_ept(void)
1221 return vmcs_config.cpu_based_2nd_exec_ctrl &
1222 SECONDARY_EXEC_ENABLE_EPT;
1225 static inline bool cpu_has_vmx_unrestricted_guest(void)
1227 return vmcs_config.cpu_based_2nd_exec_ctrl &
1228 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1231 static inline bool cpu_has_vmx_ple(void)
1233 return vmcs_config.cpu_based_2nd_exec_ctrl &
1234 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1237 static inline bool cpu_has_vmx_basic_inout(void)
1239 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1242 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1244 return flexpriority_enabled && lapic_in_kernel(vcpu);
1247 static inline bool cpu_has_vmx_vpid(void)
1249 return vmcs_config.cpu_based_2nd_exec_ctrl &
1250 SECONDARY_EXEC_ENABLE_VPID;
1253 static inline bool cpu_has_vmx_rdtscp(void)
1255 return vmcs_config.cpu_based_2nd_exec_ctrl &
1256 SECONDARY_EXEC_RDTSCP;
1259 static inline bool cpu_has_vmx_invpcid(void)
1261 return vmcs_config.cpu_based_2nd_exec_ctrl &
1262 SECONDARY_EXEC_ENABLE_INVPCID;
1265 static inline bool cpu_has_virtual_nmis(void)
1267 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1270 static inline bool cpu_has_vmx_wbinvd_exit(void)
1272 return vmcs_config.cpu_based_2nd_exec_ctrl &
1273 SECONDARY_EXEC_WBINVD_EXITING;
1276 static inline bool cpu_has_vmx_shadow_vmcs(void)
1279 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1280 /* check if the cpu supports writing r/o exit information fields */
1281 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1284 return vmcs_config.cpu_based_2nd_exec_ctrl &
1285 SECONDARY_EXEC_SHADOW_VMCS;
1288 static inline bool cpu_has_vmx_pml(void)
1290 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1293 static inline bool cpu_has_vmx_tsc_scaling(void)
1295 return vmcs_config.cpu_based_2nd_exec_ctrl &
1296 SECONDARY_EXEC_TSC_SCALING;
1299 static inline bool cpu_has_vmx_vmfunc(void)
1301 return vmcs_config.cpu_based_2nd_exec_ctrl &
1302 SECONDARY_EXEC_ENABLE_VMFUNC;
1305 static inline bool report_flexpriority(void)
1307 return flexpriority_enabled;
1310 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1312 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1315 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1317 return vmcs12->cpu_based_vm_exec_control & bit;
1320 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1322 return (vmcs12->cpu_based_vm_exec_control &
1323 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1324 (vmcs12->secondary_vm_exec_control & bit);
1327 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1329 return vmcs12->pin_based_vm_exec_control &
1330 PIN_BASED_VMX_PREEMPTION_TIMER;
1333 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1335 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1338 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1340 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
1343 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1345 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1348 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1350 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1353 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1355 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1358 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1360 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1363 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1365 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1368 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1370 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1373 static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1375 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1378 static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1380 return nested_cpu_has_vmfunc(vmcs12) &&
1381 (vmcs12->vm_function_control &
1382 VMX_VMFUNC_EPTP_SWITCHING);
1385 static inline bool is_nmi(u32 intr_info)
1387 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1388 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1391 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1393 unsigned long exit_qualification);
1394 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1395 struct vmcs12 *vmcs12,
1396 u32 reason, unsigned long qualification);
1398 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1402 for (i = 0; i < vmx->nmsrs; ++i)
1403 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1408 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1414 } operand = { vpid, 0, gva };
1416 asm volatile (__ex(ASM_VMX_INVVPID)
1417 /* CF==1 or ZF==1 --> rc = -1 */
1418 "; ja 1f ; ud2 ; 1:"
1419 : : "a"(&operand), "c"(ext) : "cc", "memory");
1422 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1426 } operand = {eptp, gpa};
1428 asm volatile (__ex(ASM_VMX_INVEPT)
1429 /* CF==1 or ZF==1 --> rc = -1 */
1430 "; ja 1f ; ud2 ; 1:\n"
1431 : : "a" (&operand), "c" (ext) : "cc", "memory");
1434 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1438 i = __find_msr_index(vmx, msr);
1440 return &vmx->guest_msrs[i];
1444 static void vmcs_clear(struct vmcs *vmcs)
1446 u64 phys_addr = __pa(vmcs);
1449 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1450 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1453 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1457 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1459 vmcs_clear(loaded_vmcs->vmcs);
1460 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1461 vmcs_clear(loaded_vmcs->shadow_vmcs);
1462 loaded_vmcs->cpu = -1;
1463 loaded_vmcs->launched = 0;
1466 static void vmcs_load(struct vmcs *vmcs)
1468 u64 phys_addr = __pa(vmcs);
1471 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1472 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1475 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1479 #ifdef CONFIG_KEXEC_CORE
1481 * This bitmap is used to indicate whether the vmclear
1482 * operation is enabled on all cpus. All disabled by
1485 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1487 static inline void crash_enable_local_vmclear(int cpu)
1489 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1492 static inline void crash_disable_local_vmclear(int cpu)
1494 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1497 static inline int crash_local_vmclear_enabled(int cpu)
1499 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1502 static void crash_vmclear_local_loaded_vmcss(void)
1504 int cpu = raw_smp_processor_id();
1505 struct loaded_vmcs *v;
1507 if (!crash_local_vmclear_enabled(cpu))
1510 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1511 loaded_vmcss_on_cpu_link)
1512 vmcs_clear(v->vmcs);
1515 static inline void crash_enable_local_vmclear(int cpu) { }
1516 static inline void crash_disable_local_vmclear(int cpu) { }
1517 #endif /* CONFIG_KEXEC_CORE */
1519 static void __loaded_vmcs_clear(void *arg)
1521 struct loaded_vmcs *loaded_vmcs = arg;
1522 int cpu = raw_smp_processor_id();
1524 if (loaded_vmcs->cpu != cpu)
1525 return; /* vcpu migration can race with cpu offline */
1526 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1527 per_cpu(current_vmcs, cpu) = NULL;
1528 crash_disable_local_vmclear(cpu);
1529 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1532 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1533 * is before setting loaded_vmcs->vcpu to -1 which is done in
1534 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1535 * then adds the vmcs into percpu list before it is deleted.
1539 loaded_vmcs_init(loaded_vmcs);
1540 crash_enable_local_vmclear(cpu);
1543 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1545 int cpu = loaded_vmcs->cpu;
1548 smp_call_function_single(cpu,
1549 __loaded_vmcs_clear, loaded_vmcs, 1);
1552 static inline void vpid_sync_vcpu_single(int vpid)
1557 if (cpu_has_vmx_invvpid_single())
1558 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1561 static inline void vpid_sync_vcpu_global(void)
1563 if (cpu_has_vmx_invvpid_global())
1564 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1567 static inline void vpid_sync_context(int vpid)
1569 if (cpu_has_vmx_invvpid_single())
1570 vpid_sync_vcpu_single(vpid);
1572 vpid_sync_vcpu_global();
1575 static inline void ept_sync_global(void)
1577 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1580 static inline void ept_sync_context(u64 eptp)
1582 if (cpu_has_vmx_invept_context())
1583 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1588 static __always_inline void vmcs_check16(unsigned long field)
1590 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1591 "16-bit accessor invalid for 64-bit field");
1592 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1593 "16-bit accessor invalid for 64-bit high field");
1594 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1595 "16-bit accessor invalid for 32-bit high field");
1596 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1597 "16-bit accessor invalid for natural width field");
1600 static __always_inline void vmcs_check32(unsigned long field)
1602 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1603 "32-bit accessor invalid for 16-bit field");
1604 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1605 "32-bit accessor invalid for natural width field");
1608 static __always_inline void vmcs_check64(unsigned long field)
1610 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1611 "64-bit accessor invalid for 16-bit field");
1612 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1613 "64-bit accessor invalid for 64-bit high field");
1614 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1615 "64-bit accessor invalid for 32-bit field");
1616 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1617 "64-bit accessor invalid for natural width field");
1620 static __always_inline void vmcs_checkl(unsigned long field)
1622 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1623 "Natural width accessor invalid for 16-bit field");
1624 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1625 "Natural width accessor invalid for 64-bit field");
1626 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1627 "Natural width accessor invalid for 64-bit high field");
1628 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1629 "Natural width accessor invalid for 32-bit field");
1632 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1634 unsigned long value;
1636 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1637 : "=a"(value) : "d"(field) : "cc");
1641 static __always_inline u16 vmcs_read16(unsigned long field)
1643 vmcs_check16(field);
1644 return __vmcs_readl(field);
1647 static __always_inline u32 vmcs_read32(unsigned long field)
1649 vmcs_check32(field);
1650 return __vmcs_readl(field);
1653 static __always_inline u64 vmcs_read64(unsigned long field)
1655 vmcs_check64(field);
1656 #ifdef CONFIG_X86_64
1657 return __vmcs_readl(field);
1659 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1663 static __always_inline unsigned long vmcs_readl(unsigned long field)
1666 return __vmcs_readl(field);
1669 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1671 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1672 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1676 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1680 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1681 : "=q"(error) : "a"(value), "d"(field) : "cc");
1682 if (unlikely(error))
1683 vmwrite_error(field, value);
1686 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1688 vmcs_check16(field);
1689 __vmcs_writel(field, value);
1692 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1694 vmcs_check32(field);
1695 __vmcs_writel(field, value);
1698 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1700 vmcs_check64(field);
1701 __vmcs_writel(field, value);
1702 #ifndef CONFIG_X86_64
1704 __vmcs_writel(field+1, value >> 32);
1708 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1711 __vmcs_writel(field, value);
1714 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1716 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1717 "vmcs_clear_bits does not support 64-bit fields");
1718 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1721 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1723 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1724 "vmcs_set_bits does not support 64-bit fields");
1725 __vmcs_writel(field, __vmcs_readl(field) | mask);
1728 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1730 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1733 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1735 vmcs_write32(VM_ENTRY_CONTROLS, val);
1736 vmx->vm_entry_controls_shadow = val;
1739 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1741 if (vmx->vm_entry_controls_shadow != val)
1742 vm_entry_controls_init(vmx, val);
1745 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1747 return vmx->vm_entry_controls_shadow;
1751 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1753 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1756 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1758 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1761 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1763 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1766 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1768 vmcs_write32(VM_EXIT_CONTROLS, val);
1769 vmx->vm_exit_controls_shadow = val;
1772 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1774 if (vmx->vm_exit_controls_shadow != val)
1775 vm_exit_controls_init(vmx, val);
1778 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1780 return vmx->vm_exit_controls_shadow;
1784 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1786 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1789 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1791 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1794 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1796 vmx->segment_cache.bitmask = 0;
1799 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1803 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1805 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1806 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1807 vmx->segment_cache.bitmask = 0;
1809 ret = vmx->segment_cache.bitmask & mask;
1810 vmx->segment_cache.bitmask |= mask;
1814 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1816 u16 *p = &vmx->segment_cache.seg[seg].selector;
1818 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1819 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1823 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1825 ulong *p = &vmx->segment_cache.seg[seg].base;
1827 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1828 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1832 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1834 u32 *p = &vmx->segment_cache.seg[seg].limit;
1836 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1837 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1841 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1843 u32 *p = &vmx->segment_cache.seg[seg].ar;
1845 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1846 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1850 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1854 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1855 (1u << DB_VECTOR) | (1u << AC_VECTOR);
1856 if ((vcpu->guest_debug &
1857 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1858 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1859 eb |= 1u << BP_VECTOR;
1860 if (to_vmx(vcpu)->rmode.vm86_active)
1863 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1865 /* When we are running a nested L2 guest and L1 specified for it a
1866 * certain exception bitmap, we must trap the same exceptions and pass
1867 * them to L1. When running L2, we will only handle the exceptions
1868 * specified above if L1 did not want them.
1870 if (is_guest_mode(vcpu))
1871 eb |= get_vmcs12(vcpu)->exception_bitmap;
1873 vmcs_write32(EXCEPTION_BITMAP, eb);
1876 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1877 unsigned long entry, unsigned long exit)
1879 vm_entry_controls_clearbit(vmx, entry);
1880 vm_exit_controls_clearbit(vmx, exit);
1883 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1886 struct msr_autoload *m = &vmx->msr_autoload;
1890 if (cpu_has_load_ia32_efer) {
1891 clear_atomic_switch_msr_special(vmx,
1892 VM_ENTRY_LOAD_IA32_EFER,
1893 VM_EXIT_LOAD_IA32_EFER);
1897 case MSR_CORE_PERF_GLOBAL_CTRL:
1898 if (cpu_has_load_perf_global_ctrl) {
1899 clear_atomic_switch_msr_special(vmx,
1900 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1901 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1907 for (i = 0; i < m->nr; ++i)
1908 if (m->guest[i].index == msr)
1914 m->guest[i] = m->guest[m->nr];
1915 m->host[i] = m->host[m->nr];
1916 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1917 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1920 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1921 unsigned long entry, unsigned long exit,
1922 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1923 u64 guest_val, u64 host_val)
1925 vmcs_write64(guest_val_vmcs, guest_val);
1926 vmcs_write64(host_val_vmcs, host_val);
1927 vm_entry_controls_setbit(vmx, entry);
1928 vm_exit_controls_setbit(vmx, exit);
1931 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1932 u64 guest_val, u64 host_val)
1935 struct msr_autoload *m = &vmx->msr_autoload;
1939 if (cpu_has_load_ia32_efer) {
1940 add_atomic_switch_msr_special(vmx,
1941 VM_ENTRY_LOAD_IA32_EFER,
1942 VM_EXIT_LOAD_IA32_EFER,
1945 guest_val, host_val);
1949 case MSR_CORE_PERF_GLOBAL_CTRL:
1950 if (cpu_has_load_perf_global_ctrl) {
1951 add_atomic_switch_msr_special(vmx,
1952 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1953 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1954 GUEST_IA32_PERF_GLOBAL_CTRL,
1955 HOST_IA32_PERF_GLOBAL_CTRL,
1956 guest_val, host_val);
1960 case MSR_IA32_PEBS_ENABLE:
1961 /* PEBS needs a quiescent period after being disabled (to write
1962 * a record). Disabling PEBS through VMX MSR swapping doesn't
1963 * provide that period, so a CPU could write host's record into
1966 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1969 for (i = 0; i < m->nr; ++i)
1970 if (m->guest[i].index == msr)
1973 if (i == NR_AUTOLOAD_MSRS) {
1974 printk_once(KERN_WARNING "Not enough msr switch entries. "
1975 "Can't add msr %x\n", msr);
1977 } else if (i == m->nr) {
1979 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1980 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1983 m->guest[i].index = msr;
1984 m->guest[i].value = guest_val;
1985 m->host[i].index = msr;
1986 m->host[i].value = host_val;
1989 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1991 u64 guest_efer = vmx->vcpu.arch.efer;
1992 u64 ignore_bits = 0;
1996 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1997 * host CPUID is more efficient than testing guest CPUID
1998 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2000 if (boot_cpu_has(X86_FEATURE_SMEP))
2001 guest_efer |= EFER_NX;
2002 else if (!(guest_efer & EFER_NX))
2003 ignore_bits |= EFER_NX;
2007 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2009 ignore_bits |= EFER_SCE;
2010 #ifdef CONFIG_X86_64
2011 ignore_bits |= EFER_LMA | EFER_LME;
2012 /* SCE is meaningful only in long mode on Intel */
2013 if (guest_efer & EFER_LMA)
2014 ignore_bits &= ~(u64)EFER_SCE;
2017 clear_atomic_switch_msr(vmx, MSR_EFER);
2020 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2021 * On CPUs that support "load IA32_EFER", always switch EFER
2022 * atomically, since it's faster than switching it manually.
2024 if (cpu_has_load_ia32_efer ||
2025 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2026 if (!(guest_efer & EFER_LMA))
2027 guest_efer &= ~EFER_LME;
2028 if (guest_efer != host_efer)
2029 add_atomic_switch_msr(vmx, MSR_EFER,
2030 guest_efer, host_efer);
2033 guest_efer &= ~ignore_bits;
2034 guest_efer |= host_efer & ignore_bits;
2036 vmx->guest_msrs[efer_offset].data = guest_efer;
2037 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2043 #ifdef CONFIG_X86_32
2045 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2046 * VMCS rather than the segment table. KVM uses this helper to figure
2047 * out the current bases to poke them into the VMCS before entry.
2049 static unsigned long segment_base(u16 selector)
2051 struct desc_struct *table;
2054 if (!(selector & ~SEGMENT_RPL_MASK))
2057 table = get_current_gdt_ro();
2059 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2060 u16 ldt_selector = kvm_read_ldt();
2062 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2065 table = (struct desc_struct *)segment_base(ldt_selector);
2067 v = get_desc_base(&table[selector >> 3]);
2072 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2074 struct vcpu_vmx *vmx = to_vmx(vcpu);
2077 if (vmx->host_state.loaded)
2080 vmx->host_state.loaded = 1;
2082 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2083 * allow segment selectors with cpl > 0 or ti == 1.
2085 vmx->host_state.ldt_sel = kvm_read_ldt();
2086 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2087 savesegment(fs, vmx->host_state.fs_sel);
2088 if (!(vmx->host_state.fs_sel & 7)) {
2089 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2090 vmx->host_state.fs_reload_needed = 0;
2092 vmcs_write16(HOST_FS_SELECTOR, 0);
2093 vmx->host_state.fs_reload_needed = 1;
2095 savesegment(gs, vmx->host_state.gs_sel);
2096 if (!(vmx->host_state.gs_sel & 7))
2097 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2099 vmcs_write16(HOST_GS_SELECTOR, 0);
2100 vmx->host_state.gs_ldt_reload_needed = 1;
2103 #ifdef CONFIG_X86_64
2104 savesegment(ds, vmx->host_state.ds_sel);
2105 savesegment(es, vmx->host_state.es_sel);
2108 #ifdef CONFIG_X86_64
2109 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2110 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2112 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2113 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2116 #ifdef CONFIG_X86_64
2117 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2118 if (is_long_mode(&vmx->vcpu))
2119 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2121 if (boot_cpu_has(X86_FEATURE_MPX))
2122 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2123 for (i = 0; i < vmx->save_nmsrs; ++i)
2124 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2125 vmx->guest_msrs[i].data,
2126 vmx->guest_msrs[i].mask);
2129 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2131 if (!vmx->host_state.loaded)
2134 ++vmx->vcpu.stat.host_state_reload;
2135 vmx->host_state.loaded = 0;
2136 #ifdef CONFIG_X86_64
2137 if (is_long_mode(&vmx->vcpu))
2138 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2140 if (vmx->host_state.gs_ldt_reload_needed) {
2141 kvm_load_ldt(vmx->host_state.ldt_sel);
2142 #ifdef CONFIG_X86_64
2143 load_gs_index(vmx->host_state.gs_sel);
2145 loadsegment(gs, vmx->host_state.gs_sel);
2148 if (vmx->host_state.fs_reload_needed)
2149 loadsegment(fs, vmx->host_state.fs_sel);
2150 #ifdef CONFIG_X86_64
2151 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2152 loadsegment(ds, vmx->host_state.ds_sel);
2153 loadsegment(es, vmx->host_state.es_sel);
2156 invalidate_tss_limit();
2157 #ifdef CONFIG_X86_64
2158 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2160 if (vmx->host_state.msr_host_bndcfgs)
2161 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2162 load_fixmap_gdt(raw_smp_processor_id());
2165 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2168 __vmx_load_host_state(vmx);
2172 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2174 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2175 struct pi_desc old, new;
2179 * In case of hot-plug or hot-unplug, we may have to undo
2180 * vmx_vcpu_pi_put even if there is no assigned device. And we
2181 * always keep PI.NDST up to date for simplicity: it makes the
2182 * code easier, and CPU migration is not a fast path.
2184 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
2188 * First handle the simple case where no cmpxchg is necessary; just
2189 * allow posting non-urgent interrupts.
2191 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2192 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2193 * expects the VCPU to be on the blocked_vcpu_list that matches
2196 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2198 pi_clear_sn(pi_desc);
2202 /* The full case. */
2204 old.control = new.control = pi_desc->control;
2206 dest = cpu_physical_id(cpu);
2208 if (x2apic_enabled())
2211 new.ndst = (dest << 8) & 0xFF00;
2214 } while (cmpxchg64(&pi_desc->control, old.control,
2215 new.control) != old.control);
2218 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2220 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2221 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2225 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2226 * vcpu mutex is already taken.
2228 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2230 struct vcpu_vmx *vmx = to_vmx(vcpu);
2231 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2233 if (!already_loaded) {
2234 loaded_vmcs_clear(vmx->loaded_vmcs);
2235 local_irq_disable();
2236 crash_disable_local_vmclear(cpu);
2239 * Read loaded_vmcs->cpu should be before fetching
2240 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2241 * See the comments in __loaded_vmcs_clear().
2245 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2246 &per_cpu(loaded_vmcss_on_cpu, cpu));
2247 crash_enable_local_vmclear(cpu);
2251 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2252 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2253 vmcs_load(vmx->loaded_vmcs->vmcs);
2256 if (!already_loaded) {
2257 void *gdt = get_current_gdt_ro();
2258 unsigned long sysenter_esp;
2260 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2263 * Linux uses per-cpu TSS and GDT, so set these when switching
2264 * processors. See 22.2.4.
2266 vmcs_writel(HOST_TR_BASE,
2267 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
2268 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
2271 * VM exits change the host TR limit to 0x67 after a VM
2272 * exit. This is okay, since 0x67 covers everything except
2273 * the IO bitmap and have have code to handle the IO bitmap
2274 * being lost after a VM exit.
2276 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2278 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2279 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2281 vmx->loaded_vmcs->cpu = cpu;
2284 /* Setup TSC multiplier */
2285 if (kvm_has_tsc_control &&
2286 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2287 decache_tsc_multiplier(vmx);
2289 vmx_vcpu_pi_load(vcpu, cpu);
2290 vmx->host_pkru = read_pkru();
2291 vmx->host_debugctlmsr = get_debugctlmsr();
2294 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2296 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2298 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2299 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2300 !kvm_vcpu_apicv_active(vcpu))
2303 /* Set SN when the vCPU is preempted */
2304 if (vcpu->preempted)
2308 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2310 vmx_vcpu_pi_put(vcpu);
2312 __vmx_load_host_state(to_vmx(vcpu));
2315 static bool emulation_required(struct kvm_vcpu *vcpu)
2317 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2320 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2323 * Return the cr0 value that a nested guest would read. This is a combination
2324 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2325 * its hypervisor (cr0_read_shadow).
2327 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2329 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2330 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2332 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2334 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2335 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2338 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2340 unsigned long rflags, save_rflags;
2342 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2343 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2344 rflags = vmcs_readl(GUEST_RFLAGS);
2345 if (to_vmx(vcpu)->rmode.vm86_active) {
2346 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2347 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2348 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2350 to_vmx(vcpu)->rflags = rflags;
2352 return to_vmx(vcpu)->rflags;
2355 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2357 unsigned long old_rflags = vmx_get_rflags(vcpu);
2359 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2360 to_vmx(vcpu)->rflags = rflags;
2361 if (to_vmx(vcpu)->rmode.vm86_active) {
2362 to_vmx(vcpu)->rmode.save_rflags = rflags;
2363 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2365 vmcs_writel(GUEST_RFLAGS, rflags);
2367 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2368 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2371 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2373 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2376 if (interruptibility & GUEST_INTR_STATE_STI)
2377 ret |= KVM_X86_SHADOW_INT_STI;
2378 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2379 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2384 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2386 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2387 u32 interruptibility = interruptibility_old;
2389 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2391 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2392 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2393 else if (mask & KVM_X86_SHADOW_INT_STI)
2394 interruptibility |= GUEST_INTR_STATE_STI;
2396 if ((interruptibility != interruptibility_old))
2397 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2400 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2404 rip = kvm_rip_read(vcpu);
2405 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2406 kvm_rip_write(vcpu, rip);
2408 /* skipping an emulated instruction also counts */
2409 vmx_set_interrupt_shadow(vcpu, 0);
2412 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2413 unsigned long exit_qual)
2415 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2416 unsigned int nr = vcpu->arch.exception.nr;
2417 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2419 if (vcpu->arch.exception.has_error_code) {
2420 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2421 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2424 if (kvm_exception_is_soft(nr))
2425 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2427 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2429 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2430 vmx_get_nmi_mask(vcpu))
2431 intr_info |= INTR_INFO_UNBLOCK_NMI;
2433 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2437 * KVM wants to inject page-faults which it got to the guest. This function
2438 * checks whether in a nested guest, we need to inject them to L1 or L2.
2440 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
2442 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2443 unsigned int nr = vcpu->arch.exception.nr;
2445 if (nr == PF_VECTOR) {
2446 if (vcpu->arch.exception.nested_apf) {
2447 *exit_qual = vcpu->arch.apf.nested_apf_token;
2451 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2452 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2453 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2454 * can be written only when inject_pending_event runs. This should be
2455 * conditional on a new capability---if the capability is disabled,
2456 * kvm_multiple_exception would write the ancillary information to
2457 * CR2 or DR6, for backwards ABI-compatibility.
2459 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2460 vcpu->arch.exception.error_code)) {
2461 *exit_qual = vcpu->arch.cr2;
2465 if (vmcs12->exception_bitmap & (1u << nr)) {
2466 if (nr == DB_VECTOR)
2467 *exit_qual = vcpu->arch.dr6;
2477 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2479 struct vcpu_vmx *vmx = to_vmx(vcpu);
2480 unsigned nr = vcpu->arch.exception.nr;
2481 bool has_error_code = vcpu->arch.exception.has_error_code;
2482 u32 error_code = vcpu->arch.exception.error_code;
2483 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2485 if (has_error_code) {
2486 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2487 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2490 if (vmx->rmode.vm86_active) {
2492 if (kvm_exception_is_soft(nr))
2493 inc_eip = vcpu->arch.event_exit_inst_len;
2494 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2495 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2499 if (kvm_exception_is_soft(nr)) {
2500 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2501 vmx->vcpu.arch.event_exit_inst_len);
2502 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2504 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2506 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2509 static bool vmx_rdtscp_supported(void)
2511 return cpu_has_vmx_rdtscp();
2514 static bool vmx_invpcid_supported(void)
2516 return cpu_has_vmx_invpcid() && enable_ept;
2520 * Swap MSR entry in host/guest MSR entry array.
2522 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2524 struct shared_msr_entry tmp;
2526 tmp = vmx->guest_msrs[to];
2527 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2528 vmx->guest_msrs[from] = tmp;
2532 * Set up the vmcs to automatically save and restore system
2533 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2534 * mode, as fiddling with msrs is very expensive.
2536 static void setup_msrs(struct vcpu_vmx *vmx)
2538 int save_nmsrs, index;
2541 #ifdef CONFIG_X86_64
2542 if (is_long_mode(&vmx->vcpu)) {
2543 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2545 move_msr_up(vmx, index, save_nmsrs++);
2546 index = __find_msr_index(vmx, MSR_LSTAR);
2548 move_msr_up(vmx, index, save_nmsrs++);
2549 index = __find_msr_index(vmx, MSR_CSTAR);
2551 move_msr_up(vmx, index, save_nmsrs++);
2552 index = __find_msr_index(vmx, MSR_TSC_AUX);
2553 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
2554 move_msr_up(vmx, index, save_nmsrs++);
2556 * MSR_STAR is only needed on long mode guests, and only
2557 * if efer.sce is enabled.
2559 index = __find_msr_index(vmx, MSR_STAR);
2560 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2561 move_msr_up(vmx, index, save_nmsrs++);
2564 index = __find_msr_index(vmx, MSR_EFER);
2565 if (index >= 0 && update_transition_efer(vmx, index))
2566 move_msr_up(vmx, index, save_nmsrs++);
2568 vmx->save_nmsrs = save_nmsrs;
2570 if (cpu_has_vmx_msr_bitmap())
2571 vmx_update_msr_bitmap(&vmx->vcpu);
2575 * reads and returns guest's timestamp counter "register"
2576 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2577 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2579 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2581 u64 host_tsc, tsc_offset;
2584 tsc_offset = vmcs_read64(TSC_OFFSET);
2585 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2589 * writes 'offset' into guest's timestamp counter offset register
2591 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2593 if (is_guest_mode(vcpu)) {
2595 * We're here if L1 chose not to trap WRMSR to TSC. According
2596 * to the spec, this should set L1's TSC; The offset that L1
2597 * set for L2 remains unchanged, and still needs to be added
2598 * to the newly set TSC to get L2's TSC.
2600 struct vmcs12 *vmcs12;
2601 /* recalculate vmcs02.TSC_OFFSET: */
2602 vmcs12 = get_vmcs12(vcpu);
2603 vmcs_write64(TSC_OFFSET, offset +
2604 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2605 vmcs12->tsc_offset : 0));
2607 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2608 vmcs_read64(TSC_OFFSET), offset);
2609 vmcs_write64(TSC_OFFSET, offset);
2614 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2615 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2616 * all guests if the "nested" module option is off, and can also be disabled
2617 * for a single guest by disabling its VMX cpuid bit.
2619 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2621 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
2625 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2626 * returned for the various VMX controls MSRs when nested VMX is enabled.
2627 * The same values should also be used to verify that vmcs12 control fields are
2628 * valid during nested entry from L1 to L2.
2629 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2630 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2631 * bit in the high half is on if the corresponding bit in the control field
2632 * may be on. See also vmx_control_verify().
2634 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2637 * Note that as a general rule, the high half of the MSRs (bits in
2638 * the control fields which may be 1) should be initialized by the
2639 * intersection of the underlying hardware's MSR (i.e., features which
2640 * can be supported) and the list of features we want to expose -
2641 * because they are known to be properly supported in our code.
2642 * Also, usually, the low half of the MSRs (bits which must be 1) can
2643 * be set to 0, meaning that L1 may turn off any of these bits. The
2644 * reason is that if one of these bits is necessary, it will appear
2645 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2646 * fields of vmcs01 and vmcs02, will turn these bits off - and
2647 * nested_vmx_exit_reflected() will not pass related exits to L1.
2648 * These rules have exceptions below.
2651 /* pin-based controls */
2652 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2653 vmx->nested.nested_vmx_pinbased_ctls_low,
2654 vmx->nested.nested_vmx_pinbased_ctls_high);
2655 vmx->nested.nested_vmx_pinbased_ctls_low |=
2656 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2657 vmx->nested.nested_vmx_pinbased_ctls_high &=
2658 PIN_BASED_EXT_INTR_MASK |
2659 PIN_BASED_NMI_EXITING |
2660 PIN_BASED_VIRTUAL_NMIS;
2661 vmx->nested.nested_vmx_pinbased_ctls_high |=
2662 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2663 PIN_BASED_VMX_PREEMPTION_TIMER;
2664 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2665 vmx->nested.nested_vmx_pinbased_ctls_high |=
2666 PIN_BASED_POSTED_INTR;
2669 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2670 vmx->nested.nested_vmx_exit_ctls_low,
2671 vmx->nested.nested_vmx_exit_ctls_high);
2672 vmx->nested.nested_vmx_exit_ctls_low =
2673 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2675 vmx->nested.nested_vmx_exit_ctls_high &=
2676 #ifdef CONFIG_X86_64
2677 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2679 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2680 vmx->nested.nested_vmx_exit_ctls_high |=
2681 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2682 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2683 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2685 if (kvm_mpx_supported())
2686 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2688 /* We support free control of debug control saving. */
2689 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2691 /* entry controls */
2692 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2693 vmx->nested.nested_vmx_entry_ctls_low,
2694 vmx->nested.nested_vmx_entry_ctls_high);
2695 vmx->nested.nested_vmx_entry_ctls_low =
2696 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2697 vmx->nested.nested_vmx_entry_ctls_high &=
2698 #ifdef CONFIG_X86_64
2699 VM_ENTRY_IA32E_MODE |
2701 VM_ENTRY_LOAD_IA32_PAT;
2702 vmx->nested.nested_vmx_entry_ctls_high |=
2703 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2704 if (kvm_mpx_supported())
2705 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2707 /* We support free control of debug control loading. */
2708 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2710 /* cpu-based controls */
2711 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2712 vmx->nested.nested_vmx_procbased_ctls_low,
2713 vmx->nested.nested_vmx_procbased_ctls_high);
2714 vmx->nested.nested_vmx_procbased_ctls_low =
2715 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2716 vmx->nested.nested_vmx_procbased_ctls_high &=
2717 CPU_BASED_VIRTUAL_INTR_PENDING |
2718 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2719 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2720 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2721 CPU_BASED_CR3_STORE_EXITING |
2722 #ifdef CONFIG_X86_64
2723 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2725 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2726 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2727 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2728 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2729 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2731 * We can allow some features even when not supported by the
2732 * hardware. For example, L1 can specify an MSR bitmap - and we
2733 * can use it to avoid exits to L1 - even when L0 runs L2
2734 * without MSR bitmaps.
2736 vmx->nested.nested_vmx_procbased_ctls_high |=
2737 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2738 CPU_BASED_USE_MSR_BITMAPS;
2740 /* We support free control of CR3 access interception. */
2741 vmx->nested.nested_vmx_procbased_ctls_low &=
2742 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2745 * secondary cpu-based controls. Do not include those that
2746 * depend on CPUID bits, they are added later by vmx_cpuid_update.
2748 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2749 vmx->nested.nested_vmx_secondary_ctls_low,
2750 vmx->nested.nested_vmx_secondary_ctls_high);
2751 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2752 vmx->nested.nested_vmx_secondary_ctls_high &=
2753 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2754 SECONDARY_EXEC_DESC |
2755 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2756 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2757 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2758 SECONDARY_EXEC_WBINVD_EXITING;
2761 /* nested EPT: emulate EPT also to L1 */
2762 vmx->nested.nested_vmx_secondary_ctls_high |=
2763 SECONDARY_EXEC_ENABLE_EPT;
2764 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2765 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2766 if (cpu_has_vmx_ept_execute_only())
2767 vmx->nested.nested_vmx_ept_caps |=
2768 VMX_EPT_EXECUTE_ONLY_BIT;
2769 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2770 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2771 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2772 VMX_EPT_1GB_PAGE_BIT;
2773 if (enable_ept_ad_bits) {
2774 vmx->nested.nested_vmx_secondary_ctls_high |=
2775 SECONDARY_EXEC_ENABLE_PML;
2776 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2780 if (cpu_has_vmx_vmfunc()) {
2781 vmx->nested.nested_vmx_secondary_ctls_high |=
2782 SECONDARY_EXEC_ENABLE_VMFUNC;
2784 * Advertise EPTP switching unconditionally
2785 * since we emulate it
2788 vmx->nested.nested_vmx_vmfunc_controls =
2789 VMX_VMFUNC_EPTP_SWITCHING;
2793 * Old versions of KVM use the single-context version without
2794 * checking for support, so declare that it is supported even
2795 * though it is treated as global context. The alternative is
2796 * not failing the single-context invvpid, and it is worse.
2799 vmx->nested.nested_vmx_secondary_ctls_high |=
2800 SECONDARY_EXEC_ENABLE_VPID;
2801 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2802 VMX_VPID_EXTENT_SUPPORTED_MASK;
2805 if (enable_unrestricted_guest)
2806 vmx->nested.nested_vmx_secondary_ctls_high |=
2807 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2809 /* miscellaneous data */
2810 rdmsr(MSR_IA32_VMX_MISC,
2811 vmx->nested.nested_vmx_misc_low,
2812 vmx->nested.nested_vmx_misc_high);
2813 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2814 vmx->nested.nested_vmx_misc_low |=
2815 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2816 VMX_MISC_ACTIVITY_HLT;
2817 vmx->nested.nested_vmx_misc_high = 0;
2820 * This MSR reports some information about VMX support. We
2821 * should return information about the VMX we emulate for the
2822 * guest, and the VMCS structure we give it - not about the
2823 * VMX support of the underlying hardware.
2825 vmx->nested.nested_vmx_basic =
2827 VMX_BASIC_TRUE_CTLS |
2828 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2829 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2831 if (cpu_has_vmx_basic_inout())
2832 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2835 * These MSRs specify bits which the guest must keep fixed on
2836 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2837 * We picked the standard core2 setting.
2839 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2840 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2841 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2842 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2844 /* These MSRs specify bits which the guest must keep fixed off. */
2845 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2846 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2848 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2849 vmx->nested.nested_vmx_vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
2853 * if fixed0[i] == 1: val[i] must be 1
2854 * if fixed1[i] == 0: val[i] must be 0
2856 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2858 return ((val & fixed1) | fixed0) == val;
2861 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2863 return fixed_bits_valid(control, low, high);
2866 static inline u64 vmx_control_msr(u32 low, u32 high)
2868 return low | ((u64)high << 32);
2871 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2876 return (superset | subset) == superset;
2879 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2881 const u64 feature_and_reserved =
2882 /* feature (except bit 48; see below) */
2883 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2885 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2886 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2888 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2892 * KVM does not emulate a version of VMX that constrains physical
2893 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2895 if (data & BIT_ULL(48))
2898 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2899 vmx_basic_vmcs_revision_id(data))
2902 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2905 vmx->nested.nested_vmx_basic = data;
2910 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2915 switch (msr_index) {
2916 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2917 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2918 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2920 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2921 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2922 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2924 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2925 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2926 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2928 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2929 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2930 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2932 case MSR_IA32_VMX_PROCBASED_CTLS2:
2933 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2934 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2940 supported = vmx_control_msr(*lowp, *highp);
2942 /* Check must-be-1 bits are still 1. */
2943 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2946 /* Check must-be-0 bits are still 0. */
2947 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2951 *highp = data >> 32;
2955 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2957 const u64 feature_and_reserved_bits =
2959 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
2960 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
2962 GENMASK_ULL(13, 9) | BIT_ULL(31);
2965 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
2966 vmx->nested.nested_vmx_misc_high);
2968 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
2971 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
2972 PIN_BASED_VMX_PREEMPTION_TIMER) &&
2973 vmx_misc_preemption_timer_rate(data) !=
2974 vmx_misc_preemption_timer_rate(vmx_misc))
2977 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
2980 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
2983 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
2986 vmx->nested.nested_vmx_misc_low = data;
2987 vmx->nested.nested_vmx_misc_high = data >> 32;
2991 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
2993 u64 vmx_ept_vpid_cap;
2995 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
2996 vmx->nested.nested_vmx_vpid_caps);
2998 /* Every bit is either reserved or a feature bit. */
2999 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3002 vmx->nested.nested_vmx_ept_caps = data;
3003 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3007 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3011 switch (msr_index) {
3012 case MSR_IA32_VMX_CR0_FIXED0:
3013 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3015 case MSR_IA32_VMX_CR4_FIXED0:
3016 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3023 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3024 * must be 1 in the restored value.
3026 if (!is_bitwise_subset(data, *msr, -1ULL))
3034 * Called when userspace is restoring VMX MSRs.
3036 * Returns 0 on success, non-0 otherwise.
3038 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3040 struct vcpu_vmx *vmx = to_vmx(vcpu);
3042 switch (msr_index) {
3043 case MSR_IA32_VMX_BASIC:
3044 return vmx_restore_vmx_basic(vmx, data);
3045 case MSR_IA32_VMX_PINBASED_CTLS:
3046 case MSR_IA32_VMX_PROCBASED_CTLS:
3047 case MSR_IA32_VMX_EXIT_CTLS:
3048 case MSR_IA32_VMX_ENTRY_CTLS:
3050 * The "non-true" VMX capability MSRs are generated from the
3051 * "true" MSRs, so we do not support restoring them directly.
3053 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3054 * should restore the "true" MSRs with the must-be-1 bits
3055 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3056 * DEFAULT SETTINGS".
3059 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3060 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3061 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3062 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3063 case MSR_IA32_VMX_PROCBASED_CTLS2:
3064 return vmx_restore_control_msr(vmx, msr_index, data);
3065 case MSR_IA32_VMX_MISC:
3066 return vmx_restore_vmx_misc(vmx, data);
3067 case MSR_IA32_VMX_CR0_FIXED0:
3068 case MSR_IA32_VMX_CR4_FIXED0:
3069 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3070 case MSR_IA32_VMX_CR0_FIXED1:
3071 case MSR_IA32_VMX_CR4_FIXED1:
3073 * These MSRs are generated based on the vCPU's CPUID, so we
3074 * do not support restoring them directly.
3077 case MSR_IA32_VMX_EPT_VPID_CAP:
3078 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3079 case MSR_IA32_VMX_VMCS_ENUM:
3080 vmx->nested.nested_vmx_vmcs_enum = data;
3084 * The rest of the VMX capability MSRs do not support restore.
3090 /* Returns 0 on success, non-0 otherwise. */
3091 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3093 struct vcpu_vmx *vmx = to_vmx(vcpu);
3095 switch (msr_index) {
3096 case MSR_IA32_VMX_BASIC:
3097 *pdata = vmx->nested.nested_vmx_basic;
3099 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3100 case MSR_IA32_VMX_PINBASED_CTLS:
3101 *pdata = vmx_control_msr(
3102 vmx->nested.nested_vmx_pinbased_ctls_low,
3103 vmx->nested.nested_vmx_pinbased_ctls_high);
3104 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3105 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3107 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3108 case MSR_IA32_VMX_PROCBASED_CTLS:
3109 *pdata = vmx_control_msr(
3110 vmx->nested.nested_vmx_procbased_ctls_low,
3111 vmx->nested.nested_vmx_procbased_ctls_high);
3112 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3113 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3115 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3116 case MSR_IA32_VMX_EXIT_CTLS:
3117 *pdata = vmx_control_msr(
3118 vmx->nested.nested_vmx_exit_ctls_low,
3119 vmx->nested.nested_vmx_exit_ctls_high);
3120 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3121 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3123 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3124 case MSR_IA32_VMX_ENTRY_CTLS:
3125 *pdata = vmx_control_msr(
3126 vmx->nested.nested_vmx_entry_ctls_low,
3127 vmx->nested.nested_vmx_entry_ctls_high);
3128 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3129 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3131 case MSR_IA32_VMX_MISC:
3132 *pdata = vmx_control_msr(
3133 vmx->nested.nested_vmx_misc_low,
3134 vmx->nested.nested_vmx_misc_high);
3136 case MSR_IA32_VMX_CR0_FIXED0:
3137 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3139 case MSR_IA32_VMX_CR0_FIXED1:
3140 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3142 case MSR_IA32_VMX_CR4_FIXED0:
3143 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3145 case MSR_IA32_VMX_CR4_FIXED1:
3146 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3148 case MSR_IA32_VMX_VMCS_ENUM:
3149 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3151 case MSR_IA32_VMX_PROCBASED_CTLS2:
3152 *pdata = vmx_control_msr(
3153 vmx->nested.nested_vmx_secondary_ctls_low,
3154 vmx->nested.nested_vmx_secondary_ctls_high);
3156 case MSR_IA32_VMX_EPT_VPID_CAP:
3157 *pdata = vmx->nested.nested_vmx_ept_caps |
3158 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3160 case MSR_IA32_VMX_VMFUNC:
3161 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3170 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3173 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3175 return !(val & ~valid_bits);
3179 * Reads an msr value (of 'msr_index') into 'pdata'.
3180 * Returns 0 on success, non-0 otherwise.
3181 * Assumes vcpu_load() was already called.
3183 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3185 struct vcpu_vmx *vmx = to_vmx(vcpu);
3186 struct shared_msr_entry *msr;
3188 switch (msr_info->index) {
3189 #ifdef CONFIG_X86_64
3191 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3194 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3196 case MSR_KERNEL_GS_BASE:
3197 vmx_load_host_state(vmx);
3198 msr_info->data = vmx->msr_guest_kernel_gs_base;
3202 return kvm_get_msr_common(vcpu, msr_info);
3204 msr_info->data = guest_read_tsc(vcpu);
3206 case MSR_IA32_SYSENTER_CS:
3207 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3209 case MSR_IA32_SYSENTER_EIP:
3210 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3212 case MSR_IA32_SYSENTER_ESP:
3213 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3215 case MSR_IA32_BNDCFGS:
3216 if (!kvm_mpx_supported() ||
3217 (!msr_info->host_initiated &&
3218 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3220 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3222 case MSR_IA32_MCG_EXT_CTL:
3223 if (!msr_info->host_initiated &&
3224 !(vmx->msr_ia32_feature_control &
3225 FEATURE_CONTROL_LMCE))
3227 msr_info->data = vcpu->arch.mcg_ext_ctl;
3229 case MSR_IA32_FEATURE_CONTROL:
3230 msr_info->data = vmx->msr_ia32_feature_control;
3232 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3233 if (!nested_vmx_allowed(vcpu))
3235 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3237 if (!vmx_xsaves_supported())
3239 msr_info->data = vcpu->arch.ia32_xss;
3242 if (!msr_info->host_initiated &&
3243 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3245 /* Otherwise falls through */
3247 msr = find_msr_entry(vmx, msr_info->index);
3249 msr_info->data = msr->data;
3252 return kvm_get_msr_common(vcpu, msr_info);
3258 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3261 * Writes msr value into into the appropriate "register".
3262 * Returns 0 on success, non-0 otherwise.
3263 * Assumes vcpu_load() was already called.
3265 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3267 struct vcpu_vmx *vmx = to_vmx(vcpu);
3268 struct shared_msr_entry *msr;
3270 u32 msr_index = msr_info->index;
3271 u64 data = msr_info->data;
3273 switch (msr_index) {
3275 ret = kvm_set_msr_common(vcpu, msr_info);
3277 #ifdef CONFIG_X86_64
3279 vmx_segment_cache_clear(vmx);
3280 vmcs_writel(GUEST_FS_BASE, data);
3283 vmx_segment_cache_clear(vmx);
3284 vmcs_writel(GUEST_GS_BASE, data);
3286 case MSR_KERNEL_GS_BASE:
3287 vmx_load_host_state(vmx);
3288 vmx->msr_guest_kernel_gs_base = data;
3291 case MSR_IA32_SYSENTER_CS:
3292 vmcs_write32(GUEST_SYSENTER_CS, data);
3294 case MSR_IA32_SYSENTER_EIP:
3295 vmcs_writel(GUEST_SYSENTER_EIP, data);
3297 case MSR_IA32_SYSENTER_ESP:
3298 vmcs_writel(GUEST_SYSENTER_ESP, data);
3300 case MSR_IA32_BNDCFGS:
3301 if (!kvm_mpx_supported() ||
3302 (!msr_info->host_initiated &&
3303 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3305 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
3306 (data & MSR_IA32_BNDCFGS_RSVD))
3308 vmcs_write64(GUEST_BNDCFGS, data);
3311 kvm_write_tsc(vcpu, msr_info);
3313 case MSR_IA32_CR_PAT:
3314 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3315 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3317 vmcs_write64(GUEST_IA32_PAT, data);
3318 vcpu->arch.pat = data;
3321 ret = kvm_set_msr_common(vcpu, msr_info);
3323 case MSR_IA32_TSC_ADJUST:
3324 ret = kvm_set_msr_common(vcpu, msr_info);
3326 case MSR_IA32_MCG_EXT_CTL:
3327 if ((!msr_info->host_initiated &&
3328 !(to_vmx(vcpu)->msr_ia32_feature_control &
3329 FEATURE_CONTROL_LMCE)) ||
3330 (data & ~MCG_EXT_CTL_LMCE_EN))
3332 vcpu->arch.mcg_ext_ctl = data;
3334 case MSR_IA32_FEATURE_CONTROL:
3335 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3336 (to_vmx(vcpu)->msr_ia32_feature_control &
3337 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3339 vmx->msr_ia32_feature_control = data;
3340 if (msr_info->host_initiated && data == 0)
3341 vmx_leave_nested(vcpu);
3343 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3344 if (!msr_info->host_initiated)
3345 return 1; /* they are read-only */
3346 if (!nested_vmx_allowed(vcpu))
3348 return vmx_set_vmx_msr(vcpu, msr_index, data);
3350 if (!vmx_xsaves_supported())
3353 * The only supported bit as of Skylake is bit 8, but
3354 * it is not supported on KVM.
3358 vcpu->arch.ia32_xss = data;
3359 if (vcpu->arch.ia32_xss != host_xss)
3360 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3361 vcpu->arch.ia32_xss, host_xss);
3363 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3366 if (!msr_info->host_initiated &&
3367 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3369 /* Check reserved bit, higher 32 bits should be zero */
3370 if ((data >> 32) != 0)
3372 /* Otherwise falls through */
3374 msr = find_msr_entry(vmx, msr_index);
3376 u64 old_msr_data = msr->data;
3378 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3380 ret = kvm_set_shared_msr(msr->index, msr->data,
3384 msr->data = old_msr_data;
3388 ret = kvm_set_msr_common(vcpu, msr_info);
3394 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3396 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);