Merge branch 'x86-vmware-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / svm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14
15 #define pr_fmt(fmt) "SVM: " fmt
16
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/hashtable.h>
36 #include <linux/frame.h>
37 #include <linux/psp-sev.h>
38 #include <linux/file.h>
39 #include <linux/pagemap.h>
40 #include <linux/swap.h>
41
42 #include <asm/apic.h>
43 #include <asm/perf_event.h>
44 #include <asm/tlbflush.h>
45 #include <asm/desc.h>
46 #include <asm/debugreg.h>
47 #include <asm/kvm_para.h>
48 #include <asm/irq_remapping.h>
49 #include <asm/spec-ctrl.h>
50
51 #include <asm/virtext.h>
52 #include "trace.h"
53
54 #define __ex(x) __kvm_handle_fault_on_reboot(x)
55
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58
59 static const struct x86_cpu_id svm_cpu_id[] = {
60         X86_FEATURE_MATCH(X86_FEATURE_SVM),
61         {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64
65 #define IOPM_ALLOC_ORDER 2
66 #define MSRPM_ALLOC_ORDER 1
67
68 #define SEG_TYPE_LDT 2
69 #define SEG_TYPE_BUSY_TSS16 3
70
71 #define SVM_FEATURE_NPT            (1 <<  0)
72 #define SVM_FEATURE_LBRV           (1 <<  1)
73 #define SVM_FEATURE_SVML           (1 <<  2)
74 #define SVM_FEATURE_NRIP           (1 <<  3)
75 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
76 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
77 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
78 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
79 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
80
81 #define SVM_AVIC_DOORBELL       0xc001011b
82
83 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
84 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
85 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
86
87 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
88
89 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
90 #define TSC_RATIO_MIN           0x0000000000000001ULL
91 #define TSC_RATIO_MAX           0x000000ffffffffffULL
92
93 #define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
94
95 /*
96  * 0xff is broadcast, so the max index allowed for physical APIC ID
97  * table is 0xfe.  APIC IDs above 0xff are reserved.
98  */
99 #define AVIC_MAX_PHYSICAL_ID_COUNT      255
100
101 #define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
102 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
103 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
104
105 /* AVIC GATAG is encoded using VM and VCPU IDs */
106 #define AVIC_VCPU_ID_BITS               8
107 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
108
109 #define AVIC_VM_ID_BITS                 24
110 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
111 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
112
113 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
114                                                 (y & AVIC_VCPU_ID_MASK))
115 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
116 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
117
118 static bool erratum_383_found __read_mostly;
119
120 static const u32 host_save_user_msrs[] = {
121 #ifdef CONFIG_X86_64
122         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
123         MSR_FS_BASE,
124 #endif
125         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
126         MSR_TSC_AUX,
127 };
128
129 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
130
131 struct kvm_sev_info {
132         bool active;            /* SEV enabled guest */
133         unsigned int asid;      /* ASID used for this guest */
134         unsigned int handle;    /* SEV firmware handle */
135         int fd;                 /* SEV device fd */
136         unsigned long pages_locked; /* Number of pages locked */
137         struct list_head regions_list;  /* List of registered regions */
138 };
139
140 struct kvm_svm {
141         struct kvm kvm;
142
143         /* Struct members for AVIC */
144         u32 avic_vm_id;
145         struct page *avic_logical_id_table_page;
146         struct page *avic_physical_id_table_page;
147         struct hlist_node hnode;
148
149         struct kvm_sev_info sev_info;
150 };
151
152 struct kvm_vcpu;
153
154 struct nested_state {
155         struct vmcb *hsave;
156         u64 hsave_msr;
157         u64 vm_cr_msr;
158         u64 vmcb;
159
160         /* These are the merged vectors */
161         u32 *msrpm;
162
163         /* gpa pointers to the real vectors */
164         u64 vmcb_msrpm;
165         u64 vmcb_iopm;
166
167         /* A VMEXIT is required but not yet emulated */
168         bool exit_required;
169
170         /* cache for intercepts of the guest */
171         u32 intercept_cr;
172         u32 intercept_dr;
173         u32 intercept_exceptions;
174         u64 intercept;
175
176         /* Nested Paging related state */
177         u64 nested_cr3;
178 };
179
180 #define MSRPM_OFFSETS   16
181 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
182
183 /*
184  * Set osvw_len to higher value when updated Revision Guides
185  * are published and we know what the new status bits are
186  */
187 static uint64_t osvw_len = 4, osvw_status;
188
189 struct vcpu_svm {
190         struct kvm_vcpu vcpu;
191         struct vmcb *vmcb;
192         unsigned long vmcb_pa;
193         struct svm_cpu_data *svm_data;
194         uint64_t asid_generation;
195         uint64_t sysenter_esp;
196         uint64_t sysenter_eip;
197         uint64_t tsc_aux;
198
199         u64 msr_decfg;
200
201         u64 next_rip;
202
203         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
204         struct {
205                 u16 fs;
206                 u16 gs;
207                 u16 ldt;
208                 u64 gs_base;
209         } host;
210
211         u64 spec_ctrl;
212         /*
213          * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
214          * translated into the appropriate L2_CFG bits on the host to
215          * perform speculative control.
216          */
217         u64 virt_spec_ctrl;
218
219         u32 *msrpm;
220
221         ulong nmi_iret_rip;
222
223         struct nested_state nested;
224
225         bool nmi_singlestep;
226         u64 nmi_singlestep_guest_rflags;
227
228         unsigned int3_injected;
229         unsigned long int3_rip;
230
231         /* cached guest cpuid flags for faster access */
232         bool nrips_enabled      : 1;
233
234         u32 ldr_reg;
235         u32 dfr_reg;
236         struct page *avic_backing_page;
237         u64 *avic_physical_id_cache;
238         bool avic_is_running;
239
240         /*
241          * Per-vcpu list of struct amd_svm_iommu_ir:
242          * This is used mainly to store interrupt remapping information used
243          * when update the vcpu affinity. This avoids the need to scan for
244          * IRTE and try to match ga_tag in the IOMMU driver.
245          */
246         struct list_head ir_list;
247         spinlock_t ir_list_lock;
248
249         /* which host CPU was used for running this vcpu */
250         unsigned int last_cpu;
251 };
252
253 /*
254  * This is a wrapper of struct amd_iommu_ir_data.
255  */
256 struct amd_svm_iommu_ir {
257         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
258         void *data;             /* Storing pointer to struct amd_ir_data */
259 };
260
261 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
262 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT                 31
263 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
264
265 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
266 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
267 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
268 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
269
270 static DEFINE_PER_CPU(u64, current_tsc_ratio);
271 #define TSC_RATIO_DEFAULT       0x0100000000ULL
272
273 #define MSR_INVALID                     0xffffffffU
274
275 static const struct svm_direct_access_msrs {
276         u32 index;   /* Index of the MSR */
277         bool always; /* True if intercept is always on */
278 } direct_access_msrs[] = {
279         { .index = MSR_STAR,                            .always = true  },
280         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
281 #ifdef CONFIG_X86_64
282         { .index = MSR_GS_BASE,                         .always = true  },
283         { .index = MSR_FS_BASE,                         .always = true  },
284         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
285         { .index = MSR_LSTAR,                           .always = true  },
286         { .index = MSR_CSTAR,                           .always = true  },
287         { .index = MSR_SYSCALL_MASK,                    .always = true  },
288 #endif
289         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
290         { .index = MSR_IA32_PRED_CMD,                   .always = false },
291         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
292         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
293         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
294         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
295         { .index = MSR_INVALID,                         .always = false },
296 };
297
298 /* enable NPT for AMD64 and X86 with PAE */
299 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
300 static bool npt_enabled = true;
301 #else
302 static bool npt_enabled;
303 #endif
304
305 /*
306  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
307  * pause_filter_count: On processors that support Pause filtering(indicated
308  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
309  *      count value. On VMRUN this value is loaded into an internal counter.
310  *      Each time a pause instruction is executed, this counter is decremented
311  *      until it reaches zero at which time a #VMEXIT is generated if pause
312  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
313  *      Intercept Filtering for more details.
314  *      This also indicate if ple logic enabled.
315  *
316  * pause_filter_thresh: In addition, some processor families support advanced
317  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
318  *      the amount of time a guest is allowed to execute in a pause loop.
319  *      In this mode, a 16-bit pause filter threshold field is added in the
320  *      VMCB. The threshold value is a cycle count that is used to reset the
321  *      pause counter. As with simple pause filtering, VMRUN loads the pause
322  *      count value from VMCB into an internal counter. Then, on each pause
323  *      instruction the hardware checks the elapsed number of cycles since
324  *      the most recent pause instruction against the pause filter threshold.
325  *      If the elapsed cycle count is greater than the pause filter threshold,
326  *      then the internal pause count is reloaded from the VMCB and execution
327  *      continues. If the elapsed cycle count is less than the pause filter
328  *      threshold, then the internal pause count is decremented. If the count
329  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
330  *      triggered. If advanced pause filtering is supported and pause filter
331  *      threshold field is set to zero, the filter will operate in the simpler,
332  *      count only mode.
333  */
334
335 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
336 module_param(pause_filter_thresh, ushort, 0444);
337
338 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
339 module_param(pause_filter_count, ushort, 0444);
340
341 /* Default doubles per-vcpu window every exit. */
342 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
343 module_param(pause_filter_count_grow, ushort, 0444);
344
345 /* Default resets per-vcpu window every exit to pause_filter_count. */
346 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
347 module_param(pause_filter_count_shrink, ushort, 0444);
348
349 /* Default is to compute the maximum so we can never overflow. */
350 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
351 module_param(pause_filter_count_max, ushort, 0444);
352
353 /* allow nested paging (virtualized MMU) for all guests */
354 static int npt = true;
355 module_param(npt, int, S_IRUGO);
356
357 /* allow nested virtualization in KVM/SVM */
358 static int nested = true;
359 module_param(nested, int, S_IRUGO);
360
361 /* enable / disable AVIC */
362 static int avic;
363 #ifdef CONFIG_X86_LOCAL_APIC
364 module_param(avic, int, S_IRUGO);
365 #endif
366
367 /* enable/disable Next RIP Save */
368 static int nrips = true;
369 module_param(nrips, int, 0444);
370
371 /* enable/disable Virtual VMLOAD VMSAVE */
372 static int vls = true;
373 module_param(vls, int, 0444);
374
375 /* enable/disable Virtual GIF */
376 static int vgif = true;
377 module_param(vgif, int, 0444);
378
379 /* enable/disable SEV support */
380 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
381 module_param(sev, int, 0444);
382
383 static bool __read_mostly dump_invalid_vmcb = 0;
384 module_param(dump_invalid_vmcb, bool, 0644);
385
386 static u8 rsm_ins_bytes[] = "\x0f\xaa";
387
388 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
389 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
390 static void svm_complete_interrupts(struct vcpu_svm *svm);
391
392 static int nested_svm_exit_handled(struct vcpu_svm *svm);
393 static int nested_svm_intercept(struct vcpu_svm *svm);
394 static int nested_svm_vmexit(struct vcpu_svm *svm);
395 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
396                                       bool has_error_code, u32 error_code);
397
398 enum {
399         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
400                             pause filter count */
401         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
402         VMCB_ASID,       /* ASID */
403         VMCB_INTR,       /* int_ctl, int_vector */
404         VMCB_NPT,        /* npt_en, nCR3, gPAT */
405         VMCB_CR,         /* CR0, CR3, CR4, EFER */
406         VMCB_DR,         /* DR6, DR7 */
407         VMCB_DT,         /* GDT, IDT */
408         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
409         VMCB_CR2,        /* CR2 only */
410         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
411         VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
412                           * AVIC PHYSICAL_TABLE pointer,
413                           * AVIC LOGICAL_TABLE pointer
414                           */
415         VMCB_DIRTY_MAX,
416 };
417
418 /* TPR and CR2 are always written before VMRUN */
419 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
420
421 #define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
422
423 static unsigned int max_sev_asid;
424 static unsigned int min_sev_asid;
425 static unsigned long *sev_asid_bitmap;
426 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
427
428 struct enc_region {
429         struct list_head list;
430         unsigned long npages;
431         struct page **pages;
432         unsigned long uaddr;
433         unsigned long size;
434 };
435
436
437 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
438 {
439         return container_of(kvm, struct kvm_svm, kvm);
440 }
441
442 static inline bool svm_sev_enabled(void)
443 {
444         return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
445 }
446
447 static inline bool sev_guest(struct kvm *kvm)
448 {
449 #ifdef CONFIG_KVM_AMD_SEV
450         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
451
452         return sev->active;
453 #else
454         return false;
455 #endif
456 }
457
458 static inline int sev_get_asid(struct kvm *kvm)
459 {
460         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
461
462         return sev->asid;
463 }
464
465 static inline void mark_all_dirty(struct vmcb *vmcb)
466 {
467         vmcb->control.clean = 0;
468 }
469
470 static inline void mark_all_clean(struct vmcb *vmcb)
471 {
472         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
473                                & ~VMCB_ALWAYS_DIRTY_MASK;
474 }
475
476 static inline void mark_dirty(struct vmcb *vmcb, int bit)
477 {
478         vmcb->control.clean &= ~(1 << bit);
479 }
480
481 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
482 {
483         return container_of(vcpu, struct vcpu_svm, vcpu);
484 }
485
486 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
487 {
488         svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
489         mark_dirty(svm->vmcb, VMCB_AVIC);
490 }
491
492 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
493 {
494         struct vcpu_svm *svm = to_svm(vcpu);
495         u64 *entry = svm->avic_physical_id_cache;
496
497         if (!entry)
498                 return false;
499
500         return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
501 }
502
503 static void recalc_intercepts(struct vcpu_svm *svm)
504 {
505         struct vmcb_control_area *c, *h;
506         struct nested_state *g;
507
508         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
509
510         if (!is_guest_mode(&svm->vcpu))
511                 return;
512
513         c = &svm->vmcb->control;
514         h = &svm->nested.hsave->control;
515         g = &svm->nested;
516
517         c->intercept_cr = h->intercept_cr | g->intercept_cr;
518         c->intercept_dr = h->intercept_dr | g->intercept_dr;
519         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
520         c->intercept = h->intercept | g->intercept;
521 }
522
523 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
524 {
525         if (is_guest_mode(&svm->vcpu))
526                 return svm->nested.hsave;
527         else
528                 return svm->vmcb;
529 }
530
531 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
532 {
533         struct vmcb *vmcb = get_host_vmcb(svm);
534
535         vmcb->control.intercept_cr |= (1U << bit);
536
537         recalc_intercepts(svm);
538 }
539
540 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
541 {
542         struct vmcb *vmcb = get_host_vmcb(svm);
543
544         vmcb->control.intercept_cr &= ~(1U << bit);
545
546         recalc_intercepts(svm);
547 }
548
549 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
550 {
551         struct vmcb *vmcb = get_host_vmcb(svm);
552
553         return vmcb->control.intercept_cr & (1U << bit);
554 }
555
556 static inline void set_dr_intercepts(struct vcpu_svm *svm)
557 {
558         struct vmcb *vmcb = get_host_vmcb(svm);
559
560         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
561                 | (1 << INTERCEPT_DR1_READ)
562                 | (1 << INTERCEPT_DR2_READ)
563                 | (1 << INTERCEPT_DR3_READ)
564                 | (1 << INTERCEPT_DR4_READ)
565                 | (1 << INTERCEPT_DR5_READ)
566                 | (1 << INTERCEPT_DR6_READ)
567                 | (1 << INTERCEPT_DR7_READ)
568                 | (1 << INTERCEPT_DR0_WRITE)
569                 | (1 << INTERCEPT_DR1_WRITE)
570                 | (1 << INTERCEPT_DR2_WRITE)
571                 | (1 << INTERCEPT_DR3_WRITE)
572                 | (1 << INTERCEPT_DR4_WRITE)
573                 | (1 << INTERCEPT_DR5_WRITE)
574                 | (1 << INTERCEPT_DR6_WRITE)
575                 | (1 << INTERCEPT_DR7_WRITE);
576
577         recalc_intercepts(svm);
578 }
579
580 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
581 {
582         struct vmcb *vmcb = get_host_vmcb(svm);
583
584         vmcb->control.intercept_dr = 0;
585
586         recalc_intercepts(svm);
587 }
588
589 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
590 {
591         struct vmcb *vmcb = get_host_vmcb(svm);
592
593         vmcb->control.intercept_exceptions |= (1U << bit);
594
595         recalc_intercepts(svm);
596 }
597
598 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
599 {
600         struct vmcb *vmcb = get_host_vmcb(svm);
601
602         vmcb->control.intercept_exceptions &= ~(1U << bit);
603
604         recalc_intercepts(svm);
605 }
606
607 static inline void set_intercept(struct vcpu_svm *svm, int bit)
608 {
609         struct vmcb *vmcb = get_host_vmcb(svm);
610
611         vmcb->control.intercept |= (1ULL << bit);
612
613         recalc_intercepts(svm);
614 }
615
616 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
617 {
618         struct vmcb *vmcb = get_host_vmcb(svm);
619
620         vmcb->control.intercept &= ~(1ULL << bit);
621
622         recalc_intercepts(svm);
623 }
624
625 static inline bool vgif_enabled(struct vcpu_svm *svm)
626 {
627         return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
628 }
629
630 static inline void enable_gif(struct vcpu_svm *svm)
631 {
632         if (vgif_enabled(svm))
633                 svm->vmcb->control.int_ctl |= V_GIF_MASK;
634         else
635                 svm->vcpu.arch.hflags |= HF_GIF_MASK;
636 }
637
638 static inline void disable_gif(struct vcpu_svm *svm)
639 {
640         if (vgif_enabled(svm))
641                 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
642         else
643                 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
644 }
645
646 static inline bool gif_set(struct vcpu_svm *svm)
647 {
648         if (vgif_enabled(svm))
649                 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
650         else
651                 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
652 }
653
654 static unsigned long iopm_base;
655
656 struct kvm_ldttss_desc {
657         u16 limit0;
658         u16 base0;
659         unsigned base1:8, type:5, dpl:2, p:1;
660         unsigned limit1:4, zero0:3, g:1, base2:8;
661         u32 base3;
662         u32 zero1;
663 } __attribute__((packed));
664
665 struct svm_cpu_data {
666         int cpu;
667
668         u64 asid_generation;
669         u32 max_asid;
670         u32 next_asid;
671         u32 min_asid;
672         struct kvm_ldttss_desc *tss_desc;
673
674         struct page *save_area;
675         struct vmcb *current_vmcb;
676
677         /* index = sev_asid, value = vmcb pointer */
678         struct vmcb **sev_vmcbs;
679 };
680
681 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
682
683 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
684
685 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
686 #define MSRS_RANGE_SIZE 2048
687 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
688
689 static u32 svm_msrpm_offset(u32 msr)
690 {
691         u32 offset;
692         int i;
693
694         for (i = 0; i < NUM_MSR_MAPS; i++) {
695                 if (msr < msrpm_ranges[i] ||
696                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
697                         continue;
698
699                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
700                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
701
702                 /* Now we have the u8 offset - but need the u32 offset */
703                 return offset / 4;
704         }
705
706         /* MSR not in any range */
707         return MSR_INVALID;
708 }
709
710 #define MAX_INST_SIZE 15
711
712 static inline void clgi(void)
713 {
714         asm volatile (__ex("clgi"));
715 }
716
717 static inline void stgi(void)
718 {
719         asm volatile (__ex("stgi"));
720 }
721
722 static inline void invlpga(unsigned long addr, u32 asid)
723 {
724         asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
725 }
726
727 static int get_npt_level(struct kvm_vcpu *vcpu)
728 {
729 #ifdef CONFIG_X86_64
730         return PT64_ROOT_4LEVEL;
731 #else
732         return PT32E_ROOT_LEVEL;
733 #endif
734 }
735
736 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
737 {
738         vcpu->arch.efer = efer;
739         if (!npt_enabled && !(efer & EFER_LMA))
740                 efer &= ~EFER_LME;
741
742         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
743         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
744 }
745
746 static int is_external_interrupt(u32 info)
747 {
748         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
749         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
750 }
751
752 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
753 {
754         struct vcpu_svm *svm = to_svm(vcpu);
755         u32 ret = 0;
756
757         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
758                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
759         return ret;
760 }
761
762 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
763 {
764         struct vcpu_svm *svm = to_svm(vcpu);
765
766         if (mask == 0)
767                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
768         else
769                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
770
771 }
772
773 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
774 {
775         struct vcpu_svm *svm = to_svm(vcpu);
776
777         if (nrips && svm->vmcb->control.next_rip != 0) {
778                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
779                 svm->next_rip = svm->vmcb->control.next_rip;
780         }
781
782         if (!svm->next_rip) {
783                 if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
784                                 EMULATE_DONE)
785                         printk(KERN_DEBUG "%s: NOP\n", __func__);
786                 return;
787         }
788         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
789                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
790                        __func__, kvm_rip_read(vcpu), svm->next_rip);
791
792         kvm_rip_write(vcpu, svm->next_rip);
793         svm_set_interrupt_shadow(vcpu, 0);
794 }
795
796 static void svm_queue_exception(struct kvm_vcpu *vcpu)
797 {
798         struct vcpu_svm *svm = to_svm(vcpu);
799         unsigned nr = vcpu->arch.exception.nr;
800         bool has_error_code = vcpu->arch.exception.has_error_code;
801         bool reinject = vcpu->arch.exception.injected;
802         u32 error_code = vcpu->arch.exception.error_code;
803
804         /*
805          * If we are within a nested VM we'd better #VMEXIT and let the guest
806          * handle the exception
807          */
808         if (!reinject &&
809             nested_svm_check_exception(svm, nr, has_error_code, error_code))
810                 return;
811
812         kvm_deliver_exception_payload(&svm->vcpu);
813
814         if (nr == BP_VECTOR && !nrips) {
815                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
816
817                 /*
818                  * For guest debugging where we have to reinject #BP if some
819                  * INT3 is guest-owned:
820                  * Emulate nRIP by moving RIP forward. Will fail if injection
821                  * raises a fault that is not intercepted. Still better than
822                  * failing in all cases.
823                  */
824                 skip_emulated_instruction(&svm->vcpu);
825                 rip = kvm_rip_read(&svm->vcpu);
826                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
827                 svm->int3_injected = rip - old_rip;
828         }
829
830         svm->vmcb->control.event_inj = nr
831                 | SVM_EVTINJ_VALID
832                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
833                 | SVM_EVTINJ_TYPE_EXEPT;
834         svm->vmcb->control.event_inj_err = error_code;
835 }
836
837 static void svm_init_erratum_383(void)
838 {
839         u32 low, high;
840         int err;
841         u64 val;
842
843         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
844                 return;
845
846         /* Use _safe variants to not break nested virtualization */
847         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
848         if (err)
849                 return;
850
851         val |= (1ULL << 47);
852
853         low  = lower_32_bits(val);
854         high = upper_32_bits(val);
855
856         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
857
858         erratum_383_found = true;
859 }
860
861 static void svm_init_osvw(struct kvm_vcpu *vcpu)
862 {
863         /*
864          * Guests should see errata 400 and 415 as fixed (assuming that
865          * HLT and IO instructions are intercepted).
866          */
867         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
868         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
869
870         /*
871          * By increasing VCPU's osvw.length to 3 we are telling the guest that
872          * all osvw.status bits inside that length, including bit 0 (which is
873          * reserved for erratum 298), are valid. However, if host processor's
874          * osvw_len is 0 then osvw_status[0] carries no information. We need to
875          * be conservative here and therefore we tell the guest that erratum 298
876          * is present (because we really don't know).
877          */
878         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
879                 vcpu->arch.osvw.status |= 1;
880 }
881
882 static int has_svm(void)
883 {
884         const char *msg;
885
886         if (!cpu_has_svm(&msg)) {
887                 printk(KERN_INFO "has_svm: %s\n", msg);
888                 return 0;
889         }
890
891         return 1;
892 }
893
894 static void svm_hardware_disable(void)
895 {
896         /* Make sure we clean up behind us */
897         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
898                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
899
900         cpu_svm_disable();
901
902         amd_pmu_disable_virt();
903 }
904
905 static int svm_hardware_enable(void)
906 {
907
908         struct svm_cpu_data *sd;
909         uint64_t efer;
910         struct desc_struct *gdt;
911         int me = raw_smp_processor_id();
912
913         rdmsrl(MSR_EFER, efer);
914         if (efer & EFER_SVME)
915                 return -EBUSY;
916
917         if (!has_svm()) {
918                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
919                 return -EINVAL;
920         }
921         sd = per_cpu(svm_data, me);
922         if (!sd) {
923                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
924                 return -EINVAL;
925         }
926
927         sd->asid_generation = 1;
928         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
929         sd->next_asid = sd->max_asid + 1;
930         sd->min_asid = max_sev_asid + 1;
931
932         gdt = get_current_gdt_rw();
933         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
934
935         wrmsrl(MSR_EFER, efer | EFER_SVME);
936
937         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
938
939         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
940                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
941                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
942         }
943
944
945         /*
946          * Get OSVW bits.
947          *
948          * Note that it is possible to have a system with mixed processor
949          * revisions and therefore different OSVW bits. If bits are not the same
950          * on different processors then choose the worst case (i.e. if erratum
951          * is present on one processor and not on another then assume that the
952          * erratum is present everywhere).
953          */
954         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
955                 uint64_t len, status = 0;
956                 int err;
957
958                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
959                 if (!err)
960                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
961                                                       &err);
962
963                 if (err)
964                         osvw_status = osvw_len = 0;
965                 else {
966                         if (len < osvw_len)
967                                 osvw_len = len;
968                         osvw_status |= status;
969                         osvw_status &= (1ULL << osvw_len) - 1;
970                 }
971         } else
972                 osvw_status = osvw_len = 0;
973
974         svm_init_erratum_383();
975
976         amd_pmu_enable_virt();
977
978         return 0;
979 }
980
981 static void svm_cpu_uninit(int cpu)
982 {
983         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
984
985         if (!sd)
986                 return;
987
988         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
989         kfree(sd->sev_vmcbs);
990         __free_page(sd->save_area);
991         kfree(sd);
992 }
993
994 static int svm_cpu_init(int cpu)
995 {
996         struct svm_cpu_data *sd;
997         int r;
998
999         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1000         if (!sd)
1001                 return -ENOMEM;
1002         sd->cpu = cpu;
1003         r = -ENOMEM;
1004         sd->save_area = alloc_page(GFP_KERNEL);
1005         if (!sd->save_area)
1006                 goto err_1;
1007
1008         if (svm_sev_enabled()) {
1009                 r = -ENOMEM;
1010                 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1011                                               sizeof(void *),
1012                                               GFP_KERNEL);
1013                 if (!sd->sev_vmcbs)
1014                         goto err_1;
1015         }
1016
1017         per_cpu(svm_data, cpu) = sd;
1018
1019         return 0;
1020
1021 err_1:
1022         kfree(sd);
1023         return r;
1024
1025 }
1026
1027 static bool valid_msr_intercept(u32 index)
1028 {
1029         int i;
1030
1031         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1032                 if (direct_access_msrs[i].index == index)
1033                         return true;
1034
1035         return false;
1036 }
1037
1038 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1039 {
1040         u8 bit_write;
1041         unsigned long tmp;
1042         u32 offset;
1043         u32 *msrpm;
1044
1045         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1046                                       to_svm(vcpu)->msrpm;
1047
1048         offset    = svm_msrpm_offset(msr);
1049         bit_write = 2 * (msr & 0x0f) + 1;
1050         tmp       = msrpm[offset];
1051
1052         BUG_ON(offset == MSR_INVALID);
1053
1054         return !!test_bit(bit_write,  &tmp);
1055 }
1056
1057 static void set_msr_interception(u32 *msrpm, unsigned msr,
1058                                  int read, int write)
1059 {
1060         u8 bit_read, bit_write;
1061         unsigned long tmp;
1062         u32 offset;
1063
1064         /*
1065          * If this warning triggers extend the direct_access_msrs list at the
1066          * beginning of the file
1067          */
1068         WARN_ON(!valid_msr_intercept(msr));
1069
1070         offset    = svm_msrpm_offset(msr);
1071         bit_read  = 2 * (msr & 0x0f);
1072         bit_write = 2 * (msr & 0x0f) + 1;
1073         tmp       = msrpm[offset];
1074
1075         BUG_ON(offset == MSR_INVALID);
1076
1077         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
1078         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1079
1080         msrpm[offset] = tmp;
1081 }
1082
1083 static void svm_vcpu_init_msrpm(u32 *msrpm)
1084 {
1085         int i;
1086
1087         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1088
1089         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1090                 if (!direct_access_msrs[i].always)
1091                         continue;
1092
1093                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1094         }
1095 }
1096
1097 static void add_msr_offset(u32 offset)
1098 {
1099         int i;
1100
1101         for (i = 0; i < MSRPM_OFFSETS; ++i) {
1102
1103                 /* Offset already in list? */
1104                 if (msrpm_offsets[i] == offset)
1105                         return;
1106
1107                 /* Slot used by another offset? */
1108                 if (msrpm_offsets[i] != MSR_INVALID)
1109                         continue;
1110
1111                 /* Add offset to list */
1112                 msrpm_offsets[i] = offset;
1113
1114                 return;
1115         }
1116
1117         /*
1118          * If this BUG triggers the msrpm_offsets table has an overflow. Just
1119          * increase MSRPM_OFFSETS in this case.
1120          */
1121         BUG();
1122 }
1123
1124 static void init_msrpm_offsets(void)
1125 {
1126         int i;
1127
1128         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1129
1130         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1131                 u32 offset;
1132
1133                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1134                 BUG_ON(offset == MSR_INVALID);
1135
1136                 add_msr_offset(offset);
1137         }
1138 }
1139
1140 static void svm_enable_lbrv(struct vcpu_svm *svm)
1141 {
1142         u32 *msrpm = svm->msrpm;
1143
1144         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1145         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1146         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1147         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1148         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1149 }
1150
1151 static void svm_disable_lbrv(struct vcpu_svm *svm)
1152 {
1153         u32 *msrpm = svm->msrpm;
1154
1155         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1156         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1157         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1158         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1159         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1160 }
1161
1162 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1163 {
1164         svm->nmi_singlestep = false;
1165
1166         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1167                 /* Clear our flags if they were not set by the guest */
1168                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1169                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1170                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1171                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1172         }
1173 }
1174
1175 /* Note:
1176  * This hash table is used to map VM_ID to a struct kvm_svm,
1177  * when handling AMD IOMMU GALOG notification to schedule in
1178  * a particular vCPU.
1179  */
1180 #define SVM_VM_DATA_HASH_BITS   8
1181 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1182 static u32 next_vm_id = 0;
1183 static bool next_vm_id_wrapped = 0;
1184 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1185
1186 /* Note:
1187  * This function is called from IOMMU driver to notify
1188  * SVM to schedule in a particular vCPU of a particular VM.
1189  */
1190 static int avic_ga_log_notifier(u32 ga_tag)
1191 {
1192         unsigned long flags;
1193         struct kvm_svm *kvm_svm;
1194         struct kvm_vcpu *vcpu = NULL;
1195         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1196         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1197
1198         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1199
1200         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1201         hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1202                 if (kvm_svm->avic_vm_id != vm_id)
1203                         continue;
1204                 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1205                 break;
1206         }
1207         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1208
1209         /* Note:
1210          * At this point, the IOMMU should have already set the pending
1211          * bit in the vAPIC backing page. So, we just need to schedule
1212          * in the vcpu.
1213          */
1214         if (vcpu)
1215                 kvm_vcpu_wake_up(vcpu);
1216
1217         return 0;
1218 }
1219
1220 static __init int sev_hardware_setup(void)
1221 {
1222         struct sev_user_data_status *status;
1223         int rc;
1224
1225         /* Maximum number of encrypted guests supported simultaneously */
1226         max_sev_asid = cpuid_ecx(0x8000001F);
1227
1228         if (!max_sev_asid)
1229                 return 1;
1230
1231         /* Minimum ASID value that should be used for SEV guest */
1232         min_sev_asid = cpuid_edx(0x8000001F);
1233
1234         /* Initialize SEV ASID bitmap */
1235         sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1236         if (!sev_asid_bitmap)
1237                 return 1;
1238
1239         status = kmalloc(sizeof(*status), GFP_KERNEL);
1240         if (!status)
1241                 return 1;
1242
1243         /*
1244          * Check SEV platform status.
1245          *
1246          * PLATFORM_STATUS can be called in any state, if we failed to query
1247          * the PLATFORM status then either PSP firmware does not support SEV
1248          * feature or SEV firmware is dead.
1249          */
1250         rc = sev_platform_status(status, NULL);
1251         if (rc)
1252                 goto err;
1253
1254         pr_info("SEV supported\n");
1255
1256 err:
1257         kfree(status);
1258         return rc;
1259 }
1260
1261 static void grow_ple_window(struct kvm_vcpu *vcpu)
1262 {
1263         struct vcpu_svm *svm = to_svm(vcpu);
1264         struct vmcb_control_area *control = &svm->vmcb->control;
1265         int old = control->pause_filter_count;
1266
1267         control->pause_filter_count = __grow_ple_window(old,
1268                                                         pause_filter_count,
1269                                                         pause_filter_count_grow,
1270                                                         pause_filter_count_max);
1271
1272         if (control->pause_filter_count != old)
1273                 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1274
1275         trace_kvm_ple_window_grow(vcpu->vcpu_id,
1276                                   control->pause_filter_count, old);
1277 }
1278
1279 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1280 {
1281         struct vcpu_svm *svm = to_svm(vcpu);
1282         struct vmcb_control_area *control = &svm->vmcb->control;
1283         int old = control->pause_filter_count;
1284
1285         control->pause_filter_count =
1286                                 __shrink_ple_window(old,
1287                                                     pause_filter_count,
1288                                                     pause_filter_count_shrink,
1289                                                     pause_filter_count);
1290         if (control->pause_filter_count != old)
1291                 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1292
1293         trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1294                                     control->pause_filter_count, old);
1295 }
1296
1297 static __init int svm_hardware_setup(void)
1298 {
1299         int cpu;
1300         struct page *iopm_pages;
1301         void *iopm_va;
1302         int r;
1303
1304         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1305
1306         if (!iopm_pages)
1307                 return -ENOMEM;
1308
1309         iopm_va = page_address(iopm_pages);
1310         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1311         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1312
1313         init_msrpm_offsets();
1314
1315         if (boot_cpu_has(X86_FEATURE_NX))
1316                 kvm_enable_efer_bits(EFER_NX);
1317
1318         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1319                 kvm_enable_efer_bits(EFER_FFXSR);
1320
1321         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1322                 kvm_has_tsc_control = true;
1323                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1324                 kvm_tsc_scaling_ratio_frac_bits = 32;
1325         }
1326
1327         /* Check for pause filtering support */
1328         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1329                 pause_filter_count = 0;
1330                 pause_filter_thresh = 0;
1331         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1332                 pause_filter_thresh = 0;
1333         }
1334
1335         if (nested) {
1336                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1337                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1338         }
1339
1340         if (sev) {
1341                 if (boot_cpu_has(X86_FEATURE_SEV) &&
1342                     IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1343                         r = sev_hardware_setup();
1344                         if (r)
1345                                 sev = false;
1346                 } else {
1347                         sev = false;
1348                 }
1349         }
1350
1351         for_each_possible_cpu(cpu) {
1352                 r = svm_cpu_init(cpu);
1353                 if (r)
1354                         goto err;
1355         }
1356
1357         if (!boot_cpu_has(X86_FEATURE_NPT))
1358                 npt_enabled = false;
1359
1360         if (npt_enabled && !npt) {
1361                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1362                 npt_enabled = false;
1363         }
1364
1365         if (npt_enabled) {
1366                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1367                 kvm_enable_tdp();
1368         } else
1369                 kvm_disable_tdp();
1370
1371         if (nrips) {
1372                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1373                         nrips = false;
1374         }
1375
1376         if (avic) {
1377                 if (!npt_enabled ||
1378                     !boot_cpu_has(X86_FEATURE_AVIC) ||
1379                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1380                         avic = false;
1381                 } else {
1382                         pr_info("AVIC enabled\n");
1383
1384                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1385                 }
1386         }
1387
1388         if (vls) {
1389                 if (!npt_enabled ||
1390                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1391                     !IS_ENABLED(CONFIG_X86_64)) {
1392                         vls = false;
1393                 } else {
1394                         pr_info("Virtual VMLOAD VMSAVE supported\n");
1395                 }
1396         }
1397
1398         if (vgif) {
1399                 if (!boot_cpu_has(X86_FEATURE_VGIF))
1400                         vgif = false;
1401                 else
1402                         pr_info("Virtual GIF supported\n");
1403         }
1404
1405         return 0;
1406
1407 err:
1408         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1409         iopm_base = 0;
1410         return r;
1411 }
1412
1413 static __exit void svm_hardware_unsetup(void)
1414 {
1415         int cpu;
1416
1417         if (svm_sev_enabled())
1418                 bitmap_free(sev_asid_bitmap);
1419
1420         for_each_possible_cpu(cpu)
1421                 svm_cpu_uninit(cpu);
1422
1423         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1424         iopm_base = 0;
1425 }
1426
1427 static void init_seg(struct vmcb_seg *seg)
1428 {
1429         seg->selector = 0;
1430         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1431                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1432         seg->limit = 0xffff;
1433         seg->base = 0;
1434 }
1435
1436 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1437 {
1438         seg->selector = 0;
1439         seg->attrib = SVM_SELECTOR_P_MASK | type;
1440         seg->limit = 0xffff;
1441         seg->base = 0;
1442 }
1443
1444 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1445 {
1446         struct vcpu_svm *svm = to_svm(vcpu);
1447
1448         if (is_guest_mode(vcpu))
1449                 return svm->nested.hsave->control.tsc_offset;
1450
1451         return vcpu->arch.tsc_offset;
1452 }
1453
1454 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1455 {
1456         struct vcpu_svm *svm = to_svm(vcpu);
1457         u64 g_tsc_offset = 0;
1458
1459         if (is_guest_mode(vcpu)) {
1460                 /* Write L1's TSC offset.  */
1461                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1462                                svm->nested.hsave->control.tsc_offset;
1463                 svm->nested.hsave->control.tsc_offset = offset;
1464         }
1465
1466         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1467                                    svm->vmcb->control.tsc_offset - g_tsc_offset,
1468                                    offset);
1469
1470         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1471
1472         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1473         return svm->vmcb->control.tsc_offset;
1474 }
1475
1476 static void avic_init_vmcb(struct vcpu_svm *svm)
1477 {
1478         struct vmcb *vmcb = svm->vmcb;
1479         struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1480         phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1481         phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1482         phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1483
1484         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1485         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1486         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1487         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1488         vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1489 }
1490
1491 static void init_vmcb(struct vcpu_svm *svm)
1492 {
1493         struct vmcb_control_area *control = &svm->vmcb->control;
1494         struct vmcb_save_area *save = &svm->vmcb->save;
1495
1496         svm->vcpu.arch.hflags = 0;
1497
1498         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1499         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1500         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1501         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1502         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1503         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1504         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1505                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1506
1507         set_dr_intercepts(svm);
1508
1509         set_exception_intercept(svm, PF_VECTOR);
1510         set_exception_intercept(svm, UD_VECTOR);
1511         set_exception_intercept(svm, MC_VECTOR);
1512         set_exception_intercept(svm, AC_VECTOR);
1513         set_exception_intercept(svm, DB_VECTOR);
1514         /*
1515          * Guest access to VMware backdoor ports could legitimately
1516          * trigger #GP because of TSS I/O permission bitmap.
1517          * We intercept those #GP and allow access to them anyway
1518          * as VMware does.
1519          */
1520         if (enable_vmware_backdoor)
1521                 set_exception_intercept(svm, GP_VECTOR);
1522
1523         set_intercept(svm, INTERCEPT_INTR);
1524         set_intercept(svm, INTERCEPT_NMI);
1525         set_intercept(svm, INTERCEPT_SMI);
1526         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1527         set_intercept(svm, INTERCEPT_RDPMC);
1528         set_intercept(svm, INTERCEPT_CPUID);
1529         set_intercept(svm, INTERCEPT_INVD);
1530         set_intercept(svm, INTERCEPT_INVLPG);
1531         set_intercept(svm, INTERCEPT_INVLPGA);
1532         set_intercept(svm, INTERCEPT_IOIO_PROT);
1533         set_intercept(svm, INTERCEPT_MSR_PROT);
1534         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1535         set_intercept(svm, INTERCEPT_SHUTDOWN);
1536         set_intercept(svm, INTERCEPT_VMRUN);
1537         set_intercept(svm, INTERCEPT_VMMCALL);
1538         set_intercept(svm, INTERCEPT_VMLOAD);
1539         set_intercept(svm, INTERCEPT_VMSAVE);
1540         set_intercept(svm, INTERCEPT_STGI);
1541         set_intercept(svm, INTERCEPT_CLGI);
1542         set_intercept(svm, INTERCEPT_SKINIT);
1543         set_intercept(svm, INTERCEPT_WBINVD);
1544         set_intercept(svm, INTERCEPT_XSETBV);
1545         set_intercept(svm, INTERCEPT_RSM);
1546
1547         if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1548                 set_intercept(svm, INTERCEPT_MONITOR);
1549                 set_intercept(svm, INTERCEPT_MWAIT);
1550         }
1551
1552         if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1553                 set_intercept(svm, INTERCEPT_HLT);
1554
1555         control->iopm_base_pa = __sme_set(iopm_base);
1556         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1557         control->int_ctl = V_INTR_MASKING_MASK;
1558
1559         init_seg(&save->es);
1560         init_seg(&save->ss);
1561         init_seg(&save->ds);
1562         init_seg(&save->fs);
1563         init_seg(&save->gs);
1564
1565         save->cs.selector = 0xf000;
1566         save->cs.base = 0xffff0000;
1567         /* Executable/Readable Code Segment */
1568         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1569                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1570         save->cs.limit = 0xffff;
1571
1572         save->gdtr.limit = 0xffff;
1573         save->idtr.limit = 0xffff;
1574
1575         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1576         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1577
1578         svm_set_efer(&svm->vcpu, 0);
1579         save->dr6 = 0xffff0ff0;
1580         kvm_set_rflags(&svm->vcpu, 2);
1581         save->rip = 0x0000fff0;
1582         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1583
1584         /*
1585          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1586          * It also updates the guest-visible cr0 value.
1587          */
1588         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1589         kvm_mmu_reset_context(&svm->vcpu);
1590
1591         save->cr4 = X86_CR4_PAE;
1592         /* rdx = ?? */
1593
1594         if (npt_enabled) {
1595                 /* Setup VMCB for Nested Paging */
1596                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1597                 clr_intercept(svm, INTERCEPT_INVLPG);
1598                 clr_exception_intercept(svm, PF_VECTOR);
1599                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1600                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1601                 save->g_pat = svm->vcpu.arch.pat;
1602                 save->cr3 = 0;
1603                 save->cr4 = 0;
1604         }
1605         svm->asid_generation = 0;
1606
1607         svm->nested.vmcb = 0;
1608         svm->vcpu.arch.hflags = 0;
1609
1610         if (pause_filter_count) {
1611                 control->pause_filter_count = pause_filter_count;
1612                 if (pause_filter_thresh)
1613                         control->pause_filter_thresh = pause_filter_thresh;
1614                 set_intercept(svm, INTERCEPT_PAUSE);
1615         } else {
1616                 clr_intercept(svm, INTERCEPT_PAUSE);
1617         }
1618
1619         if (kvm_vcpu_apicv_active(&svm->vcpu))
1620                 avic_init_vmcb(svm);
1621
1622         /*
1623          * If hardware supports Virtual VMLOAD VMSAVE then enable it
1624          * in VMCB and clear intercepts to avoid #VMEXIT.
1625          */
1626         if (vls) {
1627                 clr_intercept(svm, INTERCEPT_VMLOAD);
1628                 clr_intercept(svm, INTERCEPT_VMSAVE);
1629                 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1630         }
1631
1632         if (vgif) {
1633                 clr_intercept(svm, INTERCEPT_STGI);
1634                 clr_intercept(svm, INTERCEPT_CLGI);
1635                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1636         }
1637
1638         if (sev_guest(svm->vcpu.kvm)) {
1639                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1640                 clr_exception_intercept(svm, UD_VECTOR);
1641         }
1642
1643         mark_all_dirty(svm->vmcb);
1644
1645         enable_gif(svm);
1646
1647 }
1648
1649 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1650                                        unsigned int index)
1651 {
1652         u64 *avic_physical_id_table;
1653         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1654
1655         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1656                 return NULL;
1657
1658         avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1659
1660         return &avic_physical_id_table[index];
1661 }
1662
1663 /**
1664  * Note:
1665  * AVIC hardware walks the nested page table to check permissions,
1666  * but does not use the SPA address specified in the leaf page
1667  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1668  * field of the VMCB. Therefore, we set up the
1669  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1670  */
1671 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1672 {
1673         struct kvm *kvm = vcpu->kvm;
1674         int ret = 0;
1675
1676         mutex_lock(&kvm->slots_lock);
1677         if (kvm->arch.apic_access_page_done)
1678                 goto out;
1679
1680         ret = __x86_set_memory_region(kvm,
1681                                       APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1682                                       APIC_DEFAULT_PHYS_BASE,
1683                                       PAGE_SIZE);
1684         if (ret)
1685                 goto out;
1686
1687         kvm->arch.apic_access_page_done = true;
1688 out:
1689         mutex_unlock(&kvm->slots_lock);
1690         return ret;
1691 }
1692
1693 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1694 {
1695         int ret;
1696         u64 *entry, new_entry;
1697         int id = vcpu->vcpu_id;
1698         struct vcpu_svm *svm = to_svm(vcpu);
1699
1700         ret = avic_init_access_page(vcpu);
1701         if (ret)
1702                 return ret;
1703
1704         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1705                 return -EINVAL;
1706
1707         if (!svm->vcpu.arch.apic->regs)
1708                 return -EINVAL;
1709
1710         svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1711
1712         /* Setting AVIC backing page address in the phy APIC ID table */
1713         entry = avic_get_physical_id_entry(vcpu, id);
1714         if (!entry)
1715                 return -EINVAL;
1716
1717         new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1718                               AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1719                               AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1720         WRITE_ONCE(*entry, new_entry);
1721
1722         svm->avic_physical_id_cache = entry;
1723
1724         return 0;
1725 }
1726
1727 static void __sev_asid_free(int asid)
1728 {
1729         struct svm_cpu_data *sd;
1730         int cpu, pos;
1731
1732         pos = asid - 1;
1733         clear_bit(pos, sev_asid_bitmap);
1734
1735         for_each_possible_cpu(cpu) {
1736                 sd = per_cpu(svm_data, cpu);
1737                 sd->sev_vmcbs[pos] = NULL;
1738         }
1739 }
1740
1741 static void sev_asid_free(struct kvm *kvm)
1742 {
1743         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1744
1745         __sev_asid_free(sev->asid);
1746 }
1747
1748 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1749 {
1750         struct sev_data_decommission *decommission;
1751         struct sev_data_deactivate *data;
1752
1753         if (!handle)
1754                 return;
1755
1756         data = kzalloc(sizeof(*data), GFP_KERNEL);
1757         if (!data)
1758                 return;
1759
1760         /* deactivate handle */
1761         data->handle = handle;
1762         sev_guest_deactivate(data, NULL);
1763
1764         wbinvd_on_all_cpus();
1765         sev_guest_df_flush(NULL);
1766         kfree(data);
1767
1768         decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1769         if (!decommission)
1770                 return;
1771
1772         /* decommission handle */
1773         decommission->handle = handle;
1774         sev_guest_decommission(decommission, NULL);
1775
1776         kfree(decommission);
1777 }
1778
1779 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1780                                     unsigned long ulen, unsigned long *n,
1781                                     int write)
1782 {
1783         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1784         unsigned long npages, npinned, size;
1785         unsigned long locked, lock_limit;
1786         struct page **pages;
1787         unsigned long first, last;
1788
1789         if (ulen == 0 || uaddr + ulen < uaddr)
1790                 return NULL;
1791
1792         /* Calculate number of pages. */
1793         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1794         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1795         npages = (last - first + 1);
1796
1797         locked = sev->pages_locked + npages;
1798         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1799         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1800                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1801                 return NULL;
1802         }
1803
1804         /* Avoid using vmalloc for smaller buffers. */
1805         size = npages * sizeof(struct page *);
1806         if (size > PAGE_SIZE)
1807                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1808                                   PAGE_KERNEL);
1809         else
1810                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1811
1812         if (!pages)
1813                 return NULL;
1814
1815         /* Pin the user virtual address. */
1816         npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
1817         if (npinned != npages) {
1818                 pr_err("SEV: Failure locking %lu pages.\n", npages);
1819                 goto err;
1820         }
1821
1822         *n = npages;
1823         sev->pages_locked = locked;
1824
1825         return pages;
1826
1827 err:
1828         if (npinned > 0)
1829                 release_pages(pages, npinned);
1830
1831         kvfree(pages);
1832         return NULL;
1833 }
1834
1835 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1836                              unsigned long npages)
1837 {
1838         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1839
1840         release_pages(pages, npages);
1841         kvfree(pages);
1842         sev->pages_locked -= npages;
1843 }
1844
1845 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1846 {
1847         uint8_t *page_virtual;
1848         unsigned long i;
1849
1850         if (npages == 0 || pages == NULL)
1851                 return;
1852
1853         for (i = 0; i < npages; i++) {
1854                 page_virtual = kmap_atomic(pages[i]);
1855                 clflush_cache_range(page_virtual, PAGE_SIZE);
1856                 kunmap_atomic(page_virtual);
1857         }
1858 }
1859
1860 static void __unregister_enc_region_locked(struct kvm *kvm,
1861                                            struct enc_region *region)
1862 {
1863         /*
1864          * The guest may change the memory encryption attribute from C=0 -> C=1
1865          * or vice versa for this memory range. Lets make sure caches are
1866          * flushed to ensure that guest data gets written into memory with
1867          * correct C-bit.
1868          */
1869         sev_clflush_pages(region->pages, region->npages);
1870
1871         sev_unpin_memory(kvm, region->pages, region->npages);
1872         list_del(&region->list);
1873         kfree(region);
1874 }
1875
1876 static struct kvm *svm_vm_alloc(void)
1877 {
1878         struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1879                                             GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1880                                             PAGE_KERNEL);
1881         return &kvm_svm->kvm;
1882 }
1883
1884 static void svm_vm_free(struct kvm *kvm)
1885 {
1886         vfree(to_kvm_svm(kvm));
1887 }
1888
1889 static void sev_vm_destroy(struct kvm *kvm)
1890 {
1891         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1892         struct list_head *head = &sev->regions_list;
1893         struct list_head *pos, *q;
1894
1895         if (!sev_guest(kvm))
1896                 return;
1897
1898         mutex_lock(&kvm->lock);
1899
1900         /*
1901          * if userspace was terminated before unregistering the memory regions
1902          * then lets unpin all the registered memory.
1903          */
1904         if (!list_empty(head)) {
1905                 list_for_each_safe(pos, q, head) {
1906                         __unregister_enc_region_locked(kvm,
1907                                 list_entry(pos, struct enc_region, list));
1908                 }
1909         }
1910
1911         mutex_unlock(&kvm->lock);
1912
1913         sev_unbind_asid(kvm, sev->handle);
1914         sev_asid_free(kvm);
1915 }
1916
1917 static void avic_vm_destroy(struct kvm *kvm)
1918 {
1919         unsigned long flags;
1920         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1921
1922         if (!avic)
1923                 return;
1924
1925         if (kvm_svm->avic_logical_id_table_page)
1926                 __free_page(kvm_svm->avic_logical_id_table_page);
1927         if (kvm_svm->avic_physical_id_table_page)
1928                 __free_page(kvm_svm->avic_physical_id_table_page);
1929
1930         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1931         hash_del(&kvm_svm->hnode);
1932         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1933 }
1934
1935 static void svm_vm_destroy(struct kvm *kvm)
1936 {
1937         avic_vm_destroy(kvm);
1938         sev_vm_destroy(kvm);
1939 }
1940
1941 static int avic_vm_init(struct kvm *kvm)
1942 {
1943         unsigned long flags;
1944         int err = -ENOMEM;
1945         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1946         struct kvm_svm *k2;
1947         struct page *p_page;
1948         struct page *l_page;
1949         u32 vm_id;
1950
1951         if (!avic)
1952                 return 0;
1953
1954         /* Allocating physical APIC ID table (4KB) */
1955         p_page = alloc_page(GFP_KERNEL_ACCOUNT);
1956         if (!p_page)
1957                 goto free_avic;
1958
1959         kvm_svm->avic_physical_id_table_page = p_page;
1960         clear_page(page_address(p_page));
1961
1962         /* Allocating logical APIC ID table (4KB) */
1963         l_page = alloc_page(GFP_KERNEL_ACCOUNT);
1964         if (!l_page)
1965                 goto free_avic;
1966
1967         kvm_svm->avic_logical_id_table_page = l_page;
1968         clear_page(page_address(l_page));
1969
1970         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1971  again:
1972         vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1973         if (vm_id == 0) { /* id is 1-based, zero is not okay */
1974                 next_vm_id_wrapped = 1;
1975                 goto again;
1976         }
1977         /* Is it still in use? Only possible if wrapped at least once */
1978         if (next_vm_id_wrapped) {
1979                 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1980                         if (k2->avic_vm_id == vm_id)
1981                                 goto again;
1982                 }
1983         }
1984         kvm_svm->avic_vm_id = vm_id;
1985         hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1986         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1987
1988         return 0;
1989
1990 free_avic:
1991         avic_vm_destroy(kvm);
1992         return err;
1993 }
1994
1995 static inline int
1996 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1997 {
1998         int ret = 0;
1999         unsigned long flags;
2000         struct amd_svm_iommu_ir *ir;
2001         struct vcpu_svm *svm = to_svm(vcpu);
2002
2003         if (!kvm_arch_has_assigned_device(vcpu->kvm))
2004                 return 0;
2005
2006         /*
2007          * Here, we go through the per-vcpu ir_list to update all existing
2008          * interrupt remapping table entry targeting this vcpu.
2009          */
2010         spin_lock_irqsave(&svm->ir_list_lock, flags);
2011
2012         if (list_empty(&svm->ir_list))
2013                 goto out;
2014
2015         list_for_each_entry(ir, &svm->ir_list, node) {
2016                 ret = amd_iommu_update_ga(cpu, r, ir->data);
2017                 if (ret)
2018                         break;
2019         }
2020 out:
2021         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2022         return ret;
2023 }
2024
2025 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2026 {
2027         u64 entry;
2028         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2029         int h_physical_id = kvm_cpu_get_apicid(cpu);
2030         struct vcpu_svm *svm = to_svm(vcpu);
2031
2032         if (!kvm_vcpu_apicv_active(vcpu))
2033                 return;
2034
2035         /*
2036          * Since the host physical APIC id is 8 bits,
2037          * we can support host APIC ID upto 255.
2038          */
2039         if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2040                 return;
2041
2042         entry = READ_ONCE(*(svm->avic_physical_id_cache));
2043         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2044
2045         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2046         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2047
2048         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2049         if (svm->avic_is_running)
2050                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2051
2052         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2053         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2054                                         svm->avic_is_running);
2055 }
2056
2057 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2058 {
2059         u64 entry;
2060         struct vcpu_svm *svm = to_svm(vcpu);
2061
2062         if (!kvm_vcpu_apicv_active(vcpu))
2063                 return;
2064
2065         entry = READ_ONCE(*(svm->avic_physical_id_cache));
2066         if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2067                 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2068
2069         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2070         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2071 }
2072
2073 /**
2074  * This function is called during VCPU halt/unhalt.
2075  */
2076 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2077 {
2078         struct vcpu_svm *svm = to_svm(vcpu);
2079
2080         svm->avic_is_running = is_run;
2081         if (is_run)
2082                 avic_vcpu_load(vcpu, vcpu->cpu);
2083         else
2084                 avic_vcpu_put(vcpu);
2085 }
2086
2087 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2088 {
2089         struct vcpu_svm *svm = to_svm(vcpu);
2090         u32 dummy;
2091         u32 eax = 1;
2092
2093         vcpu->arch.microcode_version = 0x01000065;
2094         svm->spec_ctrl = 0;
2095         svm->virt_spec_ctrl = 0;
2096
2097         if (!init_event) {
2098                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2099                                            MSR_IA32_APICBASE_ENABLE;
2100                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2101                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2102         }
2103         init_vmcb(svm);
2104
2105         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2106         kvm_rdx_write(vcpu, eax);
2107
2108         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2109                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2110 }
2111
2112 static int avic_init_vcpu(struct vcpu_svm *svm)
2113 {
2114         int ret;
2115
2116         if (!kvm_vcpu_apicv_active(&svm->vcpu))
2117                 return 0;
2118
2119         ret = avic_init_backing_page(&svm->vcpu);
2120         if (ret)
2121                 return ret;
2122
2123         INIT_LIST_HEAD(&svm->ir_list);
2124         spin_lock_init(&svm->ir_list_lock);
2125         svm->dfr_reg = APIC_DFR_FLAT;
2126
2127         return ret;
2128 }
2129
2130 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2131 {
2132         struct vcpu_svm *svm;
2133         struct page *page;
2134         struct page *msrpm_pages;
2135         struct page *hsave_page;
2136         struct page *nested_msrpm_pages;
2137         int err;
2138
2139         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
2140         if (!svm) {
2141                 err = -ENOMEM;
2142                 goto out;
2143         }
2144
2145         svm->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
2146                                                      GFP_KERNEL_ACCOUNT);
2147         if (!svm->vcpu.arch.user_fpu) {
2148                 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
2149                 err = -ENOMEM;
2150                 goto free_partial_svm;
2151         }
2152
2153         svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
2154                                                      GFP_KERNEL_ACCOUNT);
2155         if (!svm->vcpu.arch.guest_fpu) {
2156                 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2157                 err = -ENOMEM;
2158                 goto free_user_fpu;
2159         }
2160
2161         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2162         if (err)
2163                 goto free_svm;
2164
2165         err = -ENOMEM;
2166         page = alloc_page(GFP_KERNEL_ACCOUNT);
2167         if (!page)
2168                 goto uninit;
2169
2170         msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2171         if (!msrpm_pages)
2172                 goto free_page1;
2173
2174         nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2175         if (!nested_msrpm_pages)
2176                 goto free_page2;
2177
2178         hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2179         if (!hsave_page)
2180                 goto free_page3;
2181
2182         err = avic_init_vcpu(svm);
2183         if (err)
2184                 goto free_page4;
2185
2186         /* We initialize this flag to true to make sure that the is_running
2187          * bit would be set the first time the vcpu is loaded.
2188          */
2189         svm->avic_is_running = true;
2190
2191         svm->nested.hsave = page_address(hsave_page);
2192
2193         svm->msrpm = page_address(msrpm_pages);
2194         svm_vcpu_init_msrpm(svm->msrpm);
2195
2196         svm->nested.msrpm = page_address(nested_msrpm_pages);
2197         svm_vcpu_init_msrpm(svm->nested.msrpm);
2198
2199         svm->vmcb = page_address(page);
2200         clear_page(svm->vmcb);
2201         svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2202         svm->asid_generation = 0;
2203         init_vmcb(svm);
2204
2205         svm_init_osvw(&svm->vcpu);
2206
2207         return &svm->vcpu;
2208
2209 free_page4:
2210         __free_page(hsave_page);
2211 free_page3:
2212         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2213 free_page2:
2214         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2215 free_page1:
2216         __free_page(page);
2217 uninit:
2218         kvm_vcpu_uninit(&svm->vcpu);
2219 free_svm:
2220         kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2221 free_user_fpu:
2222         kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2223 free_partial_svm:
2224         kmem_cache_free(kvm_vcpu_cache, svm);
2225 out:
2226         return ERR_PTR(err);
2227 }
2228
2229 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2230 {
2231         int i;
2232
2233         for_each_online_cpu(i)
2234                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2235 }
2236
2237 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2238 {
2239         struct vcpu_svm *svm = to_svm(vcpu);
2240
2241         /*
2242          * The vmcb page can be recycled, causing a false negative in
2243          * svm_vcpu_load(). So, ensure that no logical CPU has this
2244          * vmcb page recorded as its current vmcb.
2245          */
2246         svm_clear_current_vmcb(svm->vmcb);
2247
2248         __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2249         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2250         __free_page(virt_to_page(svm->nested.hsave));
2251         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2252         kvm_vcpu_uninit(vcpu);
2253         kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2254         kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2255         kmem_cache_free(kvm_vcpu_cache, svm);
2256 }
2257
2258 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2259 {
2260         struct vcpu_svm *svm = to_svm(vcpu);
2261         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2262         int i;
2263
2264         if (unlikely(cpu != vcpu->cpu)) {
2265                 svm->asid_generation = 0;
2266                 mark_all_dirty(svm->vmcb);
2267         }
2268
2269 #ifdef CONFIG_X86_64
2270         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2271 #endif
2272         savesegment(fs, svm->host.fs);
2273         savesegment(gs, svm->host.gs);
2274         svm->host.ldt = kvm_read_ldt();
2275
2276         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2277                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2278
2279         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2280                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2281                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2282                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
2283                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2284                 }
2285         }
2286         /* This assumes that the kernel never uses MSR_TSC_AUX */
2287         if (static_cpu_has(X86_FEATURE_RDTSCP))
2288                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2289
2290         if (sd->current_vmcb != svm->vmcb) {
2291                 sd->current_vmcb = svm->vmcb;
2292                 indirect_branch_prediction_barrier();
2293         }
2294         avic_vcpu_load(vcpu, cpu);
2295 }
2296
2297 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2298 {
2299         struct vcpu_svm *svm = to_svm(vcpu);
2300         int i;
2301
2302         avic_vcpu_put(vcpu);
2303
2304         ++vcpu->stat.host_state_reload;
2305         kvm_load_ldt(svm->host.ldt);
2306 #ifdef CONFIG_X86_64
2307         loadsegment(fs, svm->host.fs);
2308         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2309         load_gs_index(svm->host.gs);
2310 #else
2311 #ifdef CONFIG_X86_32_LAZY_GS
2312         loadsegment(gs, svm->host.gs);
2313 #endif
2314 #endif
2315         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2316                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2317 }
2318
2319 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2320 {
2321         avic_set_running(vcpu, false);
2322 }
2323
2324 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2325 {
2326         avic_set_running(vcpu, true);
2327 }
2328
2329 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2330 {
2331         struct vcpu_svm *svm = to_svm(vcpu);
2332         unsigned long rflags = svm->vmcb->save.rflags;
2333
2334         if (svm->nmi_singlestep) {
2335                 /* Hide our flags if they were not set by the guest */
2336                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2337                         rflags &= ~X86_EFLAGS_TF;
2338                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2339                         rflags &= ~X86_EFLAGS_RF;
2340         }
2341         return rflags;
2342 }
2343
2344 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2345 {
2346         if (to_svm(vcpu)->nmi_singlestep)
2347                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2348
2349        /*
2350         * Any change of EFLAGS.VM is accompanied by a reload of SS
2351         * (caused by either a task switch or an inter-privilege IRET),
2352         * so we do not need to update the CPL here.
2353         */
2354         to_svm(vcpu)->vmcb->save.rflags = rflags;
2355 }
2356
2357 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2358 {
2359         switch (reg) {
2360         case VCPU_EXREG_PDPTR:
2361                 BUG_ON(!npt_enabled);
2362                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2363                 break;
2364         default:
2365                 BUG();
2366         }
2367 }
2368
2369 static void svm_set_vintr(struct vcpu_svm *svm)
2370 {
2371         set_intercept(svm, INTERCEPT_VINTR);
2372 }
2373
2374 static void svm_clear_vintr(struct vcpu_svm *svm)
2375 {
2376         clr_intercept(svm, INTERCEPT_VINTR);
2377 }
2378
2379 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2380 {
2381         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2382
2383         switch (seg) {
2384         case VCPU_SREG_CS: return &save->cs;
2385         case VCPU_SREG_DS: return &save->ds;
2386         case VCPU_SREG_ES: return &save->es;
2387         case VCPU_SREG_FS: return &save->fs;
2388         case VCPU_SREG_GS: return &save->gs;
2389         case VCPU_SREG_SS: return &save->ss;
2390         case VCPU_SREG_TR: return &save->tr;
2391         case VCPU_SREG_LDTR: return &save->ldtr;
2392         }
2393         BUG();
2394         return NULL;
2395 }
2396
2397 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2398 {
2399         struct vmcb_seg *s = svm_seg(vcpu, seg);
2400
2401         return s->base;
2402 }
2403
2404 static void svm_get_segment(struct kvm_vcpu *vcpu,
2405                             struct kvm_segment *var, int seg)
2406 {
2407         struct vmcb_seg *s = svm_seg(vcpu, seg);
2408
2409         var->base = s->base;
2410         var->limit = s->limit;
2411         var->selector = s->selector;
2412         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2413         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2414         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2415         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2416         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2417         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2418         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2419
2420         /*
2421          * AMD CPUs circa 2014 track the G bit for all segments except CS.
2422          * However, the SVM spec states that the G bit is not observed by the
2423          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2424          * So let's synthesize a legal G bit for all segments, this helps
2425          * running KVM nested. It also helps cross-vendor migration, because
2426          * Intel's vmentry has a check on the 'G' bit.
2427          */
2428         var->g = s->limit > 0xfffff;
2429
2430         /*
2431          * AMD's VMCB does not have an explicit unusable field, so emulate it
2432          * for cross vendor migration purposes by "not present"
2433          */
2434         var->unusable = !var->present;
2435
2436         switch (seg) {
2437         case VCPU_SREG_TR:
2438                 /*
2439                  * Work around a bug where the busy flag in the tr selector
2440                  * isn't exposed
2441                  */
2442                 var->type |= 0x2;
2443                 break;
2444         case VCPU_SREG_DS:
2445         case VCPU_SREG_ES:
2446         case VCPU_SREG_FS:
2447         case VCPU_SREG_GS:
2448                 /*
2449                  * The accessed bit must always be set in the segment
2450                  * descriptor cache, although it can be cleared in the
2451                  * descriptor, the cached bit always remains at 1. Since
2452                  * Intel has a check on this, set it here to support
2453                  * cross-vendor migration.
2454                  */
2455                 if (!var->unusable)
2456                         var->type |= 0x1;
2457                 break;
2458         case VCPU_SREG_SS:
2459                 /*
2460                  * On AMD CPUs sometimes the DB bit in the segment
2461                  * descriptor is left as 1, although the whole segment has
2462                  * been made unusable. Clear it here to pass an Intel VMX
2463                  * entry check when cross vendor migrating.
2464                  */
2465                 if (var->unusable)
2466                         var->db = 0;
2467                 /* This is symmetric with svm_set_segment() */
2468                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2469                 break;
2470         }
2471 }
2472
2473 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2474 {
2475         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2476
2477         return save->cpl;
2478 }
2479
2480 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2481 {
2482         struct vcpu_svm *svm = to_svm(vcpu);
2483
2484         dt->size = svm->vmcb->save.idtr.limit;
2485         dt->address = svm->vmcb->save.idtr.base;
2486 }
2487
2488 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2489 {
2490         struct vcpu_svm *svm = to_svm(vcpu);
2491
2492         svm->vmcb->save.idtr.limit = dt->size;
2493         svm->vmcb->save.idtr.base = dt->address ;
2494         mark_dirty(svm->vmcb, VMCB_DT);
2495 }
2496
2497 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2498 {
2499         struct vcpu_svm *svm = to_svm(vcpu);
2500
2501         dt->size = svm->vmcb->save.gdtr.limit;
2502         dt->address = svm->vmcb->save.gdtr.base;
2503 }
2504
2505 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2506 {
2507         struct vcpu_svm *svm = to_svm(vcpu);
2508
2509         svm->vmcb->save.gdtr.limit = dt->size;
2510         svm->vmcb->save.gdtr.base = dt->address ;
2511         mark_dirty(svm->vmcb, VMCB_DT);
2512 }
2513
2514 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2515 {
2516 }
2517
2518 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2519 {
2520 }
2521
2522 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2523 {
2524 }
2525
2526 static void update_cr0_intercept(struct vcpu_svm *svm)
2527 {
2528         ulong gcr0 = svm->vcpu.arch.cr0;
2529         u64 *hcr0 = &svm->vmcb->save.cr0;
2530
2531         *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2532                 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2533
2534         mark_dirty(svm->vmcb, VMCB_CR);
2535
2536         if (gcr0 == *hcr0) {
2537                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2538                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2539         } else {
2540                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2541                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2542         }
2543 }
2544
2545 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2546 {
2547         struct vcpu_svm *svm = to_svm(vcpu);
2548
2549 #ifdef CONFIG_X86_64
2550         if (vcpu->arch.efer & EFER_LME) {
2551                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2552                         vcpu->arch.efer |= EFER_LMA;
2553                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2554                 }
2555
2556                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2557                         vcpu->arch.efer &= ~EFER_LMA;
2558                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2559                 }
2560         }
2561 #endif
2562         vcpu->arch.cr0 = cr0;
2563
2564         if (!npt_enabled)
2565                 cr0 |= X86_CR0_PG | X86_CR0_WP;
2566
2567         /*
2568          * re-enable caching here because the QEMU bios
2569          * does not do it - this results in some delay at
2570          * reboot
2571          */
2572         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2573                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2574         svm->vmcb->save.cr0 = cr0;
2575         mark_dirty(svm->vmcb, VMCB_CR);
2576         update_cr0_intercept(svm);
2577 }
2578
2579 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2580 {
2581         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2582         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2583
2584         if (cr4 & X86_CR4_VMXE)
2585                 return 1;
2586
2587         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2588                 svm_flush_tlb(vcpu, true);
2589
2590         vcpu->arch.cr4 = cr4;
2591         if (!npt_enabled)
2592                 cr4 |= X86_CR4_PAE;
2593         cr4 |= host_cr4_mce;
2594         to_svm(vcpu)->vmcb->save.cr4 = cr4;
2595         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2596         return 0;
2597 }
2598
2599 static void svm_set_segment(struct kvm_vcpu *vcpu,
2600                             struct kvm_segment *var, int seg)
2601 {
2602         struct vcpu_svm *svm = to_svm(vcpu);
2603         struct vmcb_seg *s = svm_seg(vcpu, seg);
2604
2605         s->base = var->base;
2606         s->limit = var->limit;
2607         s->selector = var->selector;
2608         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2609         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2610         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2611         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2612         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2613         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2614         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2615         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2616
2617         /*
2618          * This is always accurate, except if SYSRET returned to a segment
2619          * with SS.DPL != 3.  Intel does not have this quirk, and always
2620          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2621          * would entail passing the CPL to userspace and back.
2622          */
2623         if (seg == VCPU_SREG_SS)
2624                 /* This is symmetric with svm_get_segment() */
2625                 svm->vmcb->save.cpl = (var->dpl & 3);
2626
2627         mark_dirty(svm->vmcb, VMCB_SEG);
2628 }
2629
2630 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2631 {
2632         struct vcpu_svm *svm = to_svm(vcpu);
2633
2634         clr_exception_intercept(svm, BP_VECTOR);
2635
2636         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2637                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2638                         set_exception_intercept(svm, BP_VECTOR);
2639         } else
2640                 vcpu->guest_debug = 0;
2641 }
2642
2643 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2644 {
2645         if (sd->next_asid > sd->max_asid) {
2646                 ++sd->asid_generation;
2647                 sd->next_asid = sd->min_asid;
2648                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2649         }
2650
2651         svm->asid_generation = sd->asid_generation;
2652         svm->vmcb->control.asid = sd->next_asid++;
2653
2654         mark_dirty(svm->vmcb, VMCB_ASID);
2655 }
2656
2657 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2658 {
2659         return to_svm(vcpu)->vmcb->save.dr6;
2660 }
2661
2662 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2663 {
2664         struct vcpu_svm *svm = to_svm(vcpu);
2665
2666         svm->vmcb->save.dr6 = value;
2667         mark_dirty(svm->vmcb, VMCB_DR);
2668 }
2669
2670 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2671 {
2672         struct vcpu_svm *svm = to_svm(vcpu);
2673
2674         get_debugreg(vcpu->arch.db[0], 0);
2675         get_debugreg(vcpu->arch.db[1], 1);
2676         get_debugreg(vcpu->arch.db[2], 2);
2677         get_debugreg(vcpu->arch.db[3], 3);
2678         vcpu->arch.dr6 = svm_get_dr6(vcpu);
2679         vcpu->arch.dr7 = svm->vmcb->save.dr7;
2680
2681         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2682         set_dr_intercepts(svm);
2683 }
2684
2685 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2686 {
2687         struct vcpu_svm *svm = to_svm(vcpu);
2688
2689         svm->vmcb->save.dr7 = value;
2690         mark_dirty(svm->vmcb, VMCB_DR);
2691 }
2692
2693 static int pf_interception(struct vcpu_svm *svm)
2694 {
2695         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2696         u64 error_code = svm->vmcb->control.exit_info_1;
2697
2698         return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2699                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2700                         svm->vmcb->control.insn_bytes : NULL,
2701                         svm->vmcb->control.insn_len);
2702 }
2703
2704 static int npf_interception(struct vcpu_svm *svm)
2705 {
2706         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2707         u64 error_code = svm->vmcb->control.exit_info_1;
2708
2709         trace_kvm_page_fault(fault_address, error_code);
2710         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2711                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2712                         svm->vmcb->control.insn_bytes : NULL,
2713                         svm->vmcb->control.insn_len);
2714 }
2715
2716 static int db_interception(struct vcpu_svm *svm)
2717 {
2718         struct kvm_run *kvm_run = svm->vcpu.run;
2719         struct kvm_vcpu *vcpu = &svm->vcpu;
2720
2721         if (!(svm->vcpu.guest_debug &
2722               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2723                 !svm->nmi_singlestep) {
2724                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2725                 return 1;
2726         }
2727
2728         if (svm->nmi_singlestep) {
2729                 disable_nmi_singlestep(svm);
2730                 /* Make sure we check for pending NMIs upon entry */
2731                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2732         }
2733
2734         if (svm->vcpu.guest_debug &
2735             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2736                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2737                 kvm_run->debug.arch.pc =
2738                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2739                 kvm_run->debug.arch.exception = DB_VECTOR;
2740                 return 0;
2741         }
2742
2743         return 1;
2744 }
2745
2746 static int bp_interception(struct vcpu_svm *svm)
2747 {
2748         struct kvm_run *kvm_run = svm->vcpu.run;
2749
2750         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2751         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2752         kvm_run->debug.arch.exception = BP_VECTOR;
2753         return 0;
2754 }
2755
2756 static int ud_interception(struct vcpu_svm *svm)
2757 {
2758         return handle_ud(&svm->vcpu);
2759 }
2760
2761 static int ac_interception(struct vcpu_svm *svm)
2762 {
2763         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2764         return 1;
2765 }
2766
2767 static int gp_interception(struct vcpu_svm *svm)
2768 {
2769         struct kvm_vcpu *vcpu = &svm->vcpu;
2770         u32 error_code = svm->vmcb->control.exit_info_1;
2771         int er;
2772
2773         WARN_ON_ONCE(!enable_vmware_backdoor);
2774
2775         er = kvm_emulate_instruction(vcpu,
2776                 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2777         if (er == EMULATE_USER_EXIT)
2778                 return 0;
2779         else if (er != EMULATE_DONE)
2780                 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2781         return 1;
2782 }
2783
2784 static bool is_erratum_383(void)
2785 {
2786         int err, i;
2787         u64 value;
2788
2789         if (!erratum_383_found)
2790                 return false;
2791
2792         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2793         if (err)
2794                 return false;
2795
2796         /* Bit 62 may or may not be set for this mce */
2797         value &= ~(1ULL << 62);
2798
2799         if (value != 0xb600000000010015ULL)
2800                 return false;
2801
2802         /* Clear MCi_STATUS registers */
2803         for (i = 0; i < 6; ++i)
2804                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2805
2806         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2807         if (!err) {
2808                 u32 low, high;
2809
2810                 value &= ~(1ULL << 2);
2811                 low    = lower_32_bits(value);
2812                 high   = upper_32_bits(value);
2813
2814                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2815         }
2816
2817         /* Flush tlb to evict multi-match entries */
2818         __flush_tlb_all();
2819
2820         return true;
2821 }
2822
2823 static void svm_handle_mce(struct vcpu_svm *svm)
2824 {
2825         if (is_erratum_383()) {
2826                 /*
2827                  * Erratum 383 triggered. Guest state is corrupt so kill the
2828                  * guest.
2829                  */
2830                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2831
2832                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2833
2834                 return;
2835         }
2836
2837         /*
2838          * On an #MC intercept the MCE handler is not called automatically in
2839          * the host. So do it by hand here.
2840          */
2841         asm volatile (
2842                 "int $0x12\n");
2843         /* not sure if we ever come back to this point */
2844
2845         return;
2846 }
2847
2848 static int mc_interception(struct vcpu_svm *svm)
2849 {
2850         return 1;
2851 }
2852
2853 static int shutdown_interception(struct vcpu_svm *svm)
2854 {
2855         struct kvm_run *kvm_run = svm->vcpu.run;
2856
2857         /*
2858          * VMCB is undefined after a SHUTDOWN intercept
2859          * so reinitialize it.
2860          */
2861         clear_page(svm->vmcb);
2862         init_vmcb(svm);
2863
2864         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2865         return 0;
2866 }
2867
2868 static int io_interception(struct vcpu_svm *svm)
2869 {
2870         struct kvm_vcpu *vcpu = &svm->vcpu;
2871         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2872         int size, in, string;
2873         unsigned port;
2874
2875         ++svm->vcpu.stat.io_exits;
2876         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2877         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2878         if (string)
2879                 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2880
2881         port = io_info >> 16;
2882         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2883         svm->next_rip = svm->vmcb->control.exit_info_2;
2884
2885         return kvm_fast_pio(&svm->vcpu, size, port, in);
2886 }
2887
2888 static int nmi_interception(struct vcpu_svm *svm)
2889 {
2890         return 1;
2891 }
2892
2893 static int intr_interception(struct vcpu_svm *svm)
2894 {
2895         ++svm->vcpu.stat.irq_exits;
2896         return 1;
2897 }
2898
2899 static int nop_on_interception(struct vcpu_svm *svm)
2900 {
2901         return 1;
2902 }
2903
2904 static int halt_interception(struct vcpu_svm *svm)
2905 {
2906         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2907         return kvm_emulate_halt(&svm->vcpu);
2908 }
2909
2910 static int vmmcall_interception(struct vcpu_svm *svm)
2911 {
2912         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2913         return kvm_emulate_hypercall(&svm->vcpu);
2914 }
2915
2916 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2917 {
2918         struct vcpu_svm *svm = to_svm(vcpu);
2919
2920         return svm->nested.nested_cr3;
2921 }
2922
2923 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2924 {
2925         struct vcpu_svm *svm = to_svm(vcpu);
2926         u64 cr3 = svm->nested.nested_cr3;
2927         u64 pdpte;
2928         int ret;
2929
2930         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2931                                        offset_in_page(cr3) + index * 8, 8);
2932         if (ret)
2933                 return 0;
2934         return pdpte;
2935 }
2936
2937 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2938                                    unsigned long root)
2939 {
2940         struct vcpu_svm *svm = to_svm(vcpu);
2941
2942         svm->vmcb->control.nested_cr3 = __sme_set(root);
2943         mark_dirty(svm->vmcb, VMCB_NPT);
2944 }
2945
2946 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2947                                        struct x86_exception *fault)
2948 {
2949         struct vcpu_svm *svm = to_svm(vcpu);
2950
2951         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2952                 /*
2953                  * TODO: track the cause of the nested page fault, and
2954                  * correctly fill in the high bits of exit_info_1.
2955                  */
2956                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2957                 svm->vmcb->control.exit_code_hi = 0;
2958                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2959                 svm->vmcb->control.exit_info_2 = fault->address;
2960         }
2961
2962         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2963         svm->vmcb->control.exit_info_1 |= fault->error_code;
2964
2965         /*
2966          * The present bit is always zero for page structure faults on real
2967          * hardware.
2968          */
2969         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2970                 svm->vmcb->control.exit_info_1 &= ~1;
2971
2972         nested_svm_vmexit(svm);
2973 }
2974
2975 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2976 {
2977         WARN_ON(mmu_is_nested(vcpu));
2978
2979         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
2980         kvm_init_shadow_mmu(vcpu);
2981         vcpu->arch.mmu->set_cr3           = nested_svm_set_tdp_cr3;
2982         vcpu->arch.mmu->get_cr3           = nested_svm_get_tdp_cr3;
2983         vcpu->arch.mmu->get_pdptr         = nested_svm_get_tdp_pdptr;
2984         vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
2985         vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
2986         reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
2987         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2988 }
2989
2990 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2991 {
2992         vcpu->arch.mmu = &vcpu->arch.root_mmu;
2993         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
2994 }
2995
2996 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2997 {
2998         if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2999             !is_paging(&svm->vcpu)) {
3000                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3001                 return 1;
3002         }
3003
3004         if (svm->vmcb->save.cpl) {
3005                 kvm_inject_gp(&svm->vcpu, 0);
3006                 return 1;
3007         }
3008
3009         return 0;
3010 }
3011
3012 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3013                                       bool has_error_code, u32 error_code)
3014 {
3015         int vmexit;
3016
3017         if (!is_guest_mode(&svm->vcpu))
3018                 return 0;
3019
3020         vmexit = nested_svm_intercept(svm);
3021         if (vmexit != NESTED_EXIT_DONE)
3022                 return 0;
3023
3024         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3025         svm->vmcb->control.exit_code_hi = 0;
3026         svm->vmcb->control.exit_info_1 = error_code;
3027
3028         /*
3029          * EXITINFO2 is undefined for all exception intercepts other
3030          * than #PF.
3031          */
3032         if (svm->vcpu.arch.exception.nested_apf)
3033                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3034         else if (svm->vcpu.arch.exception.has_payload)
3035                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3036         else
3037                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3038
3039         svm->nested.exit_required = true;
3040         return vmexit;
3041 }
3042
3043 /* This function returns true if it is save to enable the irq window */
3044 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3045 {
3046         if (!is_guest_mode(&svm->vcpu))
3047                 return true;
3048
3049         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3050                 return true;
3051
3052         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3053                 return false;
3054
3055         /*
3056          * if vmexit was already requested (by intercepted exception
3057          * for instance) do not overwrite it with "external interrupt"
3058          * vmexit.
3059          */
3060         if (svm->nested.exit_required)
3061                 return false;
3062
3063         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
3064         svm->vmcb->control.exit_info_1 = 0;
3065         svm->vmcb->control.exit_info_2 = 0;
3066
3067         if (svm->nested.intercept & 1ULL) {
3068                 /*
3069                  * The #vmexit can't be emulated here directly because this
3070                  * code path runs with irqs and preemption disabled. A
3071                  * #vmexit emulation might sleep. Only signal request for
3072                  * the #vmexit here.
3073                  */
3074                 svm->nested.exit_required = true;
3075                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3076                 return false;
3077         }
3078
3079         return true;
3080 }
3081
3082 /* This function returns true if it is save to enable the nmi window */
3083 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3084 {
3085         if (!is_guest_mode(&svm->vcpu))
3086                 return true;
3087
3088         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3089                 return true;
3090
3091         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3092         svm->nested.exit_required = true;
3093
3094         return false;
3095 }
3096
3097 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3098 {
3099         unsigned port, size, iopm_len;
3100         u16 val, mask;
3101         u8 start_bit;
3102         u64 gpa;
3103
3104         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3105                 return NESTED_EXIT_HOST;
3106
3107         port = svm->vmcb->control.exit_info_1 >> 16;
3108         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3109                 SVM_IOIO_SIZE_SHIFT;
3110         gpa  = svm->nested.vmcb_iopm + (port / 8);
3111         start_bit = port % 8;
3112         iopm_len = (start_bit + size > 8) ? 2 : 1;
3113         mask = (0xf >> (4 - size)) << start_bit;
3114         val = 0;
3115
3116         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3117                 return NESTED_EXIT_DONE;
3118
3119         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3120 }
3121
3122 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3123 {
3124         u32 offset, msr, value;
3125         int write, mask;
3126
3127         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3128                 return NESTED_EXIT_HOST;
3129
3130         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3131         offset = svm_msrpm_offset(msr);
3132         write  = svm->vmcb->control.exit_info_1 & 1;
3133         mask   = 1 << ((2 * (msr & 0xf)) + write);
3134
3135         if (offset == MSR_INVALID)
3136                 return NESTED_EXIT_DONE;
3137
3138         /* Offset is in 32 bit units but need in 8 bit units */
3139         offset *= 4;
3140
3141         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3142                 return NESTED_EXIT_DONE;
3143
3144         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3145 }
3146
3147 /* DB exceptions for our internal use must not cause vmexit */
3148 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3149 {
3150         unsigned long dr6;
3151
3152         /* if we're not singlestepping, it's not ours */
3153         if (!svm->nmi_singlestep)
3154                 return NESTED_EXIT_DONE;
3155
3156         /* if it's not a singlestep exception, it's not ours */
3157         if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3158                 return NESTED_EXIT_DONE;
3159         if (!(dr6 & DR6_BS))
3160                 return NESTED_EXIT_DONE;
3161
3162         /* if the guest is singlestepping, it should get the vmexit */
3163         if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3164                 disable_nmi_singlestep(svm);
3165                 return NESTED_EXIT_DONE;
3166         }
3167
3168         /* it's ours, the nested hypervisor must not see this one */
3169         return NESTED_EXIT_HOST;
3170 }
3171
3172 static int nested_svm_exit_special(struct vcpu_svm *svm)
3173 {
3174         u32 exit_code = svm->vmcb->control.exit_code;
3175
3176         switch (exit_code) {
3177         case SVM_EXIT_INTR:
3178         case SVM_EXIT_NMI:
3179         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3180                 return NESTED_EXIT_HOST;
3181         case SVM_EXIT_NPF:
3182                 /* For now we are always handling NPFs when using them */
3183                 if (npt_enabled)
3184                         return NESTED_EXIT_HOST;
3185                 break;
3186         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3187                 /* When we're shadowing, trap PFs, but not async PF */
3188                 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3189                         return NESTED_EXIT_HOST;
3190                 break;
3191         default:
3192                 break;
3193         }
3194
3195         return NESTED_EXIT_CONTINUE;
3196 }
3197
3198 /*
3199  * If this function returns true, this #vmexit was already handled
3200  */
3201 static int nested_svm_intercept(struct vcpu_svm *svm)
3202 {
3203         u32 exit_code = svm->vmcb->control.exit_code;
3204         int vmexit = NESTED_EXIT_HOST;
3205
3206         switch (exit_code) {
3207         case SVM_EXIT_MSR:
3208                 vmexit = nested_svm_exit_handled_msr(svm);
3209                 break;
3210         case SVM_EXIT_IOIO:
3211                 vmexit = nested_svm_intercept_ioio(svm);
3212                 break;
3213         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3214                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3215                 if (svm->nested.intercept_cr & bit)
3216                         vmexit = NESTED_EXIT_DONE;
3217                 break;
3218         }
3219         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3220                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3221                 if (svm->nested.intercept_dr & bit)
3222                         vmexit = NESTED_EXIT_DONE;
3223                 break;
3224         }
3225         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3226                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3227                 if (svm->nested.intercept_exceptions & excp_bits) {
3228                         if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3229                                 vmexit = nested_svm_intercept_db(svm);
3230                         else
3231                                 vmexit = NESTED_EXIT_DONE;
3232                 }
3233                 /* async page fault always cause vmexit */
3234                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3235                          svm->vcpu.arch.exception.nested_apf != 0)
3236                         vmexit = NESTED_EXIT_DONE;
3237                 break;
3238         }
3239         case SVM_EXIT_ERR: {
3240                 vmexit = NESTED_EXIT_DONE;
3241                 break;
3242         }
3243         default: {
3244                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3245                 if (svm->nested.intercept & exit_bits)
3246                         vmexit = NESTED_EXIT_DONE;
3247         }
3248         }
3249
3250         return vmexit;
3251 }
3252
3253 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3254 {
3255         int vmexit;
3256
3257         vmexit = nested_svm_intercept(svm);
3258
3259         if (vmexit == NESTED_EXIT_DONE)
3260                 nested_svm_vmexit(svm);
3261
3262         return vmexit;
3263 }
3264
3265 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3266 {
3267         struct vmcb_control_area *dst  = &dst_vmcb->control;
3268         struct vmcb_control_area *from = &from_vmcb->control;
3269
3270         dst->intercept_cr         = from->intercept_cr;
3271         dst->intercept_dr         = from->intercept_dr;
3272         dst->intercept_exceptions = from->intercept_exceptions;
3273         dst->intercept            = from->intercept;
3274         dst->iopm_base_pa         = from->iopm_base_pa;
3275         dst->msrpm_base_pa        = from->msrpm_base_pa;
3276         dst->tsc_offset           = from->tsc_offset;
3277         dst->asid                 = from->asid;
3278         dst->tlb_ctl              = from->tlb_ctl;
3279         dst->int_ctl              = from->int_ctl;
3280         dst->int_vector           = from->int_vector;
3281         dst->int_state            = from->int_state;
3282         dst->exit_code            = from->exit_code;
3283         dst->exit_code_hi         = from->exit_code_hi;
3284         dst->exit_info_1          = from->exit_info_1;
3285         dst->exit_info_2          = from->exit_info_2;
3286         dst->exit_int_info        = from->exit_int_info;
3287         dst->exit_int_info_err    = from->exit_int_info_err;
3288         dst->nested_ctl           = from->nested_ctl;
3289         dst->event_inj            = from->event_inj;
3290         dst->event_inj_err        = from->event_inj_err;
3291         dst->nested_cr3           = from->nested_cr3;
3292         dst->virt_ext              = from->virt_ext;
3293         dst->pause_filter_count   = from->pause_filter_count;
3294         dst->pause_filter_thresh  = from->pause_filter_thresh;
3295 }
3296
3297 static int nested_svm_vmexit(struct vcpu_svm *svm)
3298 {
3299         int rc;
3300         struct vmcb *nested_vmcb;
3301         struct vmcb *hsave = svm->nested.hsave;
3302         struct vmcb *vmcb = svm->vmcb;
3303         struct kvm_host_map map;
3304
3305         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3306                                        vmcb->control.exit_info_1,
3307                                        vmcb->control.exit_info_2,
3308                                        vmcb->control.exit_int_info,
3309                                        vmcb->control.exit_int_info_err,
3310                                        KVM_ISA_SVM);
3311
3312         rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
3313         if (rc) {
3314                 if (rc == -EINVAL)
3315                         kvm_inject_gp(&svm->vcpu, 0);
3316                 return 1;
3317         }
3318
3319         nested_vmcb = map.hva;
3320
3321         /* Exit Guest-Mode */
3322         leave_guest_mode(&svm->vcpu);
3323         svm->nested.vmcb = 0;
3324
3325         /* Give the current vmcb to the guest */
3326         disable_gif(svm);
3327
3328         nested_vmcb->save.es     = vmcb->save.es;
3329         nested_vmcb->save.cs     = vmcb->save.cs;
3330         nested_vmcb->save.ss     = vmcb->save.ss;
3331         nested_vmcb->save.ds     = vmcb->save.ds;
3332         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
3333         nested_vmcb->save.idtr   = vmcb->save.idtr;
3334         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
3335         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
3336         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
3337         nested_vmcb->save.cr2    = vmcb->save.cr2;
3338         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
3339         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3340         nested_vmcb->save.rip    = vmcb->save.rip;
3341         nested_vmcb->save.rsp    = vmcb->save.rsp;
3342         nested_vmcb->save.rax    = vmcb->save.rax;
3343         nested_vmcb->save.dr7    = vmcb->save.dr7;
3344         nested_vmcb->save.dr6    = vmcb->save.dr6;
3345         nested_vmcb->save.cpl    = vmcb->save.cpl;
3346
3347         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
3348         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
3349         nested_vmcb->control.int_state         = vmcb->control.int_state;
3350         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
3351         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
3352         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
3353         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
3354         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
3355         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3356
3357         if (svm->nrips_enabled)
3358                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
3359
3360         /*
3361          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3362          * to make sure that we do not lose injected events. So check event_inj
3363          * here and copy it to exit_int_info if it is valid.
3364          * Exit_int_info and event_inj can't be both valid because the case
3365          * below only happens on a VMRUN instruction intercept which has
3366          * no valid exit_int_info set.
3367          */
3368         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3369                 struct vmcb_control_area *nc = &nested_vmcb->control;
3370
3371                 nc->exit_int_info     = vmcb->control.event_inj;
3372                 nc->exit_int_info_err = vmcb->control.event_inj_err;
3373         }
3374
3375         nested_vmcb->control.tlb_ctl           = 0;
3376         nested_vmcb->control.event_inj         = 0;
3377         nested_vmcb->control.event_inj_err     = 0;
3378
3379         nested_vmcb->control.pause_filter_count =
3380                 svm->vmcb->control.pause_filter_count;
3381         nested_vmcb->control.pause_filter_thresh =
3382                 svm->vmcb->control.pause_filter_thresh;
3383
3384         /* We always set V_INTR_MASKING and remember the old value in hflags */
3385         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3386                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3387
3388         /* Restore the original control entries */
3389         copy_vmcb_control_area(vmcb, hsave);
3390
3391         svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3392         kvm_clear_exception_queue(&svm->vcpu);
3393         kvm_clear_interrupt_queue(&svm->vcpu);
3394
3395         svm->nested.nested_cr3 = 0;
3396
3397         /* Restore selected save entries */
3398         svm->vmcb->save.es = hsave->save.es;
3399         svm->vmcb->save.cs = hsave->save.cs;
3400         svm->vmcb->save.ss = hsave->save.ss;
3401         svm->vmcb->save.ds = hsave->save.ds;
3402         svm->vmcb->save.gdtr = hsave->save.gdtr;
3403         svm->vmcb->save.idtr = hsave->save.idtr;
3404         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3405         svm_set_efer(&svm->vcpu, hsave->save.efer);
3406         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3407         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3408         if (npt_enabled) {
3409                 svm->vmcb->save.cr3 = hsave->save.cr3;
3410                 svm->vcpu.arch.cr3 = hsave->save.cr3;
3411         } else {
3412                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3413         }
3414         kvm_rax_write(&svm->vcpu, hsave->save.rax);
3415         kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3416         kvm_rip_write(&svm->vcpu, hsave->save.rip);
3417         svm->vmcb->save.dr7 = 0;
3418         svm->vmcb->save.cpl = 0;
3419         svm->vmcb->control.exit_int_info = 0;
3420
3421         mark_all_dirty(svm->vmcb);
3422
3423         kvm_vcpu_unmap(&svm->vcpu, &map, true);
3424
3425         nested_svm_uninit_mmu_context(&svm->vcpu);
3426         kvm_mmu_reset_context(&svm->vcpu);
3427         kvm_mmu_load(&svm->vcpu);
3428
3429         /*
3430          * Drop what we picked up for L2 via svm_complete_interrupts() so it
3431          * doesn't end up in L1.
3432          */
3433         svm->vcpu.arch.nmi_injected = false;
3434         kvm_clear_exception_queue(&svm->vcpu);
3435         kvm_clear_interrupt_queue(&svm->vcpu);
3436
3437         return 0;
3438 }
3439
3440 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3441 {
3442         /*
3443          * This function merges the msr permission bitmaps of kvm and the
3444          * nested vmcb. It is optimized in that it only merges the parts where
3445          * the kvm msr permission bitmap may contain zero bits
3446          */
3447         int i;
3448
3449         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3450                 return true;
3451
3452         for (i = 0; i < MSRPM_OFFSETS; i++) {
3453                 u32 value, p;
3454                 u64 offset;
3455
3456                 if (msrpm_offsets[i] == 0xffffffff)
3457                         break;
3458
3459                 p      = msrpm_offsets[i];
3460                 offset = svm->nested.vmcb_msrpm + (p * 4);
3461
3462                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3463                         return false;
3464
3465                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3466         }
3467
3468         svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3469
3470         return true;
3471 }
3472
3473 static bool nested_vmcb_checks(struct vmcb *vmcb)
3474 {
3475         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3476                 return false;
3477
3478         if (vmcb->control.asid == 0)
3479                 return false;
3480
3481         if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3482             !npt_enabled)
3483                 return false;
3484
3485         return true;
3486 }
3487
3488 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3489                                  struct vmcb *nested_vmcb, struct kvm_host_map *map)
3490 {
3491         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3492                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3493         else
3494                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3495
3496         if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3497                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3498                 nested_svm_init_mmu_context(&svm->vcpu);
3499         }
3500
3501         /* Load the nested guest state */
3502         svm->vmcb->save.es = nested_vmcb->save.es;
3503         svm->vmcb->save.cs = nested_vmcb->save.cs;
3504         svm->vmcb->save.ss = nested_vmcb->save.ss;
3505         svm->vmcb->save.ds = nested_vmcb->save.ds;
3506         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3507         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3508         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3509         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3510         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3511         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3512         if (npt_enabled) {
3513                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3514                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3515         } else
3516                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3517
3518         /* Guest paging mode is active - reset mmu */
3519         kvm_mmu_reset_context(&svm->vcpu);
3520
3521         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3522         kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3523         kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3524         kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3525
3526         /* In case we don't even reach vcpu_run, the fields are not updated */
3527         svm->vmcb->save.rax = nested_vmcb->save.rax;
3528         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3529         svm->vmcb->save.rip = nested_vmcb->save.rip;
3530         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3531         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3532         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3533
3534         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3535         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3536
3537         /* cache intercepts */
3538         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3539         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3540         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3541         svm->nested.intercept            = nested_vmcb->control.intercept;
3542
3543         svm_flush_tlb(&svm->vcpu, true);
3544         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3545         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3546                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3547         else
3548                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3549
3550         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3551                 /* We only want the cr8 intercept bits of the guest */
3552                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3553                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3554         }
3555
3556         /* We don't want to see VMMCALLs from a nested guest */
3557         clr_intercept(svm, INTERCEPT_VMMCALL);
3558
3559         svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3560         svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3561
3562         svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3563         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3564         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3565         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3566         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3567
3568         svm->vmcb->control.pause_filter_count =
3569                 nested_vmcb->control.pause_filter_count;
3570         svm->vmcb->control.pause_filter_thresh =
3571                 nested_vmcb->control.pause_filter_thresh;
3572
3573         kvm_vcpu_unmap(&svm->vcpu, map, true);
3574
3575         /* Enter Guest-Mode */
3576         enter_guest_mode(&svm->vcpu);
3577
3578         /*
3579          * Merge guest and host intercepts - must be called  with vcpu in
3580          * guest-mode to take affect here
3581          */
3582         recalc_intercepts(svm);
3583
3584         svm->nested.vmcb = vmcb_gpa;
3585
3586         enable_gif(svm);
3587
3588         mark_all_dirty(svm->vmcb);
3589 }
3590
3591 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3592 {
3593         int rc;
3594         struct vmcb *nested_vmcb;
3595         struct vmcb *hsave = svm->nested.hsave;
3596         struct vmcb *vmcb = svm->vmcb;
3597         struct kvm_host_map map;
3598         u64 vmcb_gpa;
3599
3600         vmcb_gpa = svm->vmcb->save.rax;
3601
3602         rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
3603         if (rc) {
3604                 if (rc == -EINVAL)
3605                         kvm_inject_gp(&svm->vcpu, 0);
3606                 return false;
3607         }
3608
3609         nested_vmcb = map.hva;
3610
3611         if (!nested_vmcb_checks(nested_vmcb)) {
3612                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
3613                 nested_vmcb->control.exit_code_hi = 0;
3614                 nested_vmcb->control.exit_info_1  = 0;
3615                 nested_vmcb->control.exit_info_2  = 0;
3616
3617                 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3618
3619                 return false;
3620         }
3621
3622         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3623                                nested_vmcb->save.rip,
3624                                nested_vmcb->control.int_ctl,
3625                                nested_vmcb->control.event_inj,
3626                                nested_vmcb->control.nested_ctl);
3627
3628         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3629                                     nested_vmcb->control.intercept_cr >> 16,
3630                                     nested_vmcb->control.intercept_exceptions,
3631                                     nested_vmcb->control.intercept);
3632
3633         /* Clear internal status */
3634         kvm_clear_exception_queue(&svm->vcpu);
3635         kvm_clear_interrupt_queue(&svm->vcpu);
3636
3637         /*
3638          * Save the old vmcb, so we don't need to pick what we save, but can
3639          * restore everything when a VMEXIT occurs
3640          */
3641         hsave->save.es     = vmcb->save.es;
3642         hsave->save.cs     = vmcb->save.cs;
3643         hsave->save.ss     = vmcb->save.ss;
3644         hsave->save.ds     = vmcb->save.ds;
3645         hsave->save.gdtr   = vmcb->save.gdtr;
3646         hsave->save.idtr   = vmcb->save.idtr;
3647         hsave->save.efer   = svm->vcpu.arch.efer;
3648         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
3649         hsave->save.cr4    = svm->vcpu.arch.cr4;
3650         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3651         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
3652         hsave->save.rsp    = vmcb->save.rsp;
3653         hsave->save.rax    = vmcb->save.rax;
3654         if (npt_enabled)
3655                 hsave->save.cr3    = vmcb->save.cr3;
3656         else
3657                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
3658
3659         copy_vmcb_control_area(hsave, vmcb);
3660
3661         enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3662
3663         return true;
3664 }
3665
3666 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3667 {
3668         to_vmcb->save.fs = from_vmcb->save.fs;
3669         to_vmcb->save.gs = from_vmcb->save.gs;
3670         to_vmcb->save.tr = from_vmcb->save.tr;
3671         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3672         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3673         to_vmcb->save.star = from_vmcb->save.star;
3674         to_vmcb->save.lstar = from_vmcb->save.lstar;
3675         to_vmcb->save.cstar = from_vmcb->save.cstar;
3676         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3677         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3678         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3679         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3680 }
3681
3682 static int vmload_interception(struct vcpu_svm *svm)
3683 {
3684         struct vmcb *nested_vmcb;
3685         struct kvm_host_map map;
3686         int ret;
3687
3688         if (nested_svm_check_permissions(svm))
3689                 return 1;
3690
3691         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3692         if (ret) {
3693                 if (ret == -EINVAL)
3694                         kvm_inject_gp(&svm->vcpu, 0);
3695                 return 1;
3696         }
3697
3698         nested_vmcb = map.hva;
3699
3700         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3701         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3702
3703         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3704         kvm_vcpu_unmap(&svm->vcpu, &map, true);
3705
3706         return ret;
3707 }
3708
3709 static int vmsave_interception(struct vcpu_svm *svm)
3710 {
3711         struct vmcb *nested_vmcb;
3712         struct kvm_host_map map;
3713         int ret;
3714
3715         if (nested_svm_check_permissions(svm))
3716                 return 1;
3717
3718         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3719         if (ret) {
3720                 if (ret == -EINVAL)
3721                         kvm_inject_gp(&svm->vcpu, 0);
3722                 return 1;
3723         }
3724
3725         nested_vmcb = map.hva;
3726
3727         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3728         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3729
3730         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3731         kvm_vcpu_unmap(&svm->vcpu, &map, true);
3732
3733         return ret;
3734 }
3735
3736 static int vmrun_interception(struct vcpu_svm *svm)
3737 {
3738         if (nested_svm_check_permissions(svm))
3739                 return 1;
3740
3741         /* Save rip after vmrun instruction */
3742         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3743
3744         if (!nested_svm_vmrun(svm))
3745                 return 1;
3746
3747         if (!nested_svm_vmrun_msrpm(svm))
3748                 goto failed;
3749
3750         return 1;
3751
3752 failed:
3753
3754         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3755         svm->vmcb->control.exit_code_hi = 0;
3756         svm->vmcb->control.exit_info_1  = 0;
3757         svm->vmcb->control.exit_info_2  = 0;
3758
3759         nested_svm_vmexit(svm);
3760
3761         return 1;
3762 }
3763
3764 static int stgi_interception(struct vcpu_svm *svm)
3765 {
3766         int ret;
3767
3768         if (nested_svm_check_permissions(svm))
3769                 return 1;
3770
3771         /*
3772          * If VGIF is enabled, the STGI intercept is only added to
3773          * detect the opening of the SMI/NMI window; remove it now.
3774          */
3775         if (vgif_enabled(svm))
3776                 clr_intercept(svm, INTERCEPT_STGI);
3777
3778         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3779         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3780         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3781
3782         enable_gif(svm);
3783
3784         return ret;
3785 }
3786
3787 static int clgi_interception(struct vcpu_svm *svm)
3788 {
3789         int ret;
3790
3791         if (nested_svm_check_permissions(svm))
3792                 return 1;
3793
3794         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3795         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3796
3797         disable_gif(svm);
3798
3799         /* After a CLGI no interrupts should come */
3800         if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3801                 svm_clear_vintr(svm);
3802                 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3803                 mark_dirty(svm->vmcb, VMCB_INTR);
3804         }
3805
3806         return ret;
3807 }
3808
3809 static int invlpga_interception(struct vcpu_svm *svm)
3810 {
3811         struct kvm_vcpu *vcpu = &svm->vcpu;
3812
3813         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3814                           kvm_rax_read(&svm->vcpu));
3815
3816         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3817         kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3818
3819         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3820         return kvm_skip_emulated_instruction(&svm->vcpu);
3821 }
3822
3823 static int skinit_interception(struct vcpu_svm *svm)
3824 {
3825         trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3826
3827         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3828         return 1;
3829 }
3830
3831 static int wbinvd_interception(struct vcpu_svm *svm)
3832 {
3833         return kvm_emulate_wbinvd(&svm->vcpu);
3834 }
3835
3836 static int xsetbv_interception(struct vcpu_svm *svm)
3837 {
3838         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3839         u32 index = kvm_rcx_read(&svm->vcpu);
3840
3841         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3842                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3843                 return kvm_skip_emulated_instruction(&svm->vcpu);
3844         }
3845
3846         return 1;
3847 }
3848
3849 static int task_switch_interception(struct vcpu_svm *svm)
3850 {
3851         u16 tss_selector;
3852         int reason;
3853         int int_type = svm->vmcb->control.exit_int_info &
3854                 SVM_EXITINTINFO_TYPE_MASK;
3855         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3856         uint32_t type =
3857                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3858         uint32_t idt_v =
3859                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3860         bool has_error_code = false;
3861         u32 error_code = 0;
3862
3863         tss_selector = (u16)svm->vmcb->control.exit_info_1;
3864
3865         if (svm->vmcb->control.exit_info_2 &
3866             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3867                 reason = TASK_SWITCH_IRET;
3868         else if (svm->vmcb->control.exit_info_2 &
3869                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3870                 reason = TASK_SWITCH_JMP;
3871         else if (idt_v)
3872                 reason = TASK_SWITCH_GATE;
3873         else
3874                 reason = TASK_SWITCH_CALL;
3875
3876         if (reason == TASK_SWITCH_GATE) {
3877                 switch (type) {
3878                 case SVM_EXITINTINFO_TYPE_NMI:
3879                         svm->vcpu.arch.nmi_injected = false;
3880                         break;
3881                 case SVM_EXITINTINFO_TYPE_EXEPT:
3882                         if (svm->vmcb->control.exit_info_2 &
3883                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3884                                 has_error_code = true;
3885                                 error_code =
3886                                         (u32)svm->vmcb->control.exit_info_2;
3887                         }
3888                         kvm_clear_exception_queue(&svm->vcpu);
3889                         break;
3890                 case SVM_EXITINTINFO_TYPE_INTR:
3891                         kvm_clear_interrupt_queue(&svm->vcpu);
3892                         break;
3893                 default:
3894                         break;
3895                 }
3896         }
3897
3898         if (reason != TASK_SWITCH_GATE ||
3899             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3900             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3901              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3902                 skip_emulated_instruction(&svm->vcpu);
3903
3904         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3905                 int_vec = -1;
3906
3907         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3908                                 has_error_code, error_code) == EMULATE_FAIL) {
3909                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3910                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3911                 svm->vcpu.run->internal.ndata = 0;
3912                 return 0;
3913         }
3914         return 1;
3915 }
3916
3917 static int cpuid_interception(struct vcpu_svm *svm)
3918 {
3919         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3920         return kvm_emulate_cpuid(&svm->vcpu);
3921 }
3922
3923 static int iret_interception(struct vcpu_svm *svm)
3924 {
3925         ++svm->vcpu.stat.nmi_window_exits;
3926         clr_intercept(svm, INTERCEPT_IRET);
3927         svm->vcpu.arch.hflags |= HF_IRET_MASK;
3928         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3929         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3930         return 1;
3931 }
3932
3933 static int invlpg_interception(struct vcpu_svm *svm)
3934 {
3935         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3936                 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3937
3938         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3939         return kvm_skip_emulated_instruction(&svm->vcpu);
3940 }
3941
3942 static int emulate_on_interception(struct vcpu_svm *svm)
3943 {
3944         return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3945 }
3946
3947 static int rsm_interception(struct vcpu_svm *svm)
3948 {
3949         return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3950                                         rsm_ins_bytes, 2) == EMULATE_DONE;
3951 }
3952
3953 static int rdpmc_interception(struct vcpu_svm *svm)
3954 {
3955         int err;
3956
3957         if (!nrips)
3958                 return emulate_on_interception(svm);
3959
3960         err = kvm_rdpmc(&svm->vcpu);
3961         return kvm_complete_insn_gp(&svm->vcpu, err);
3962 }
3963
3964 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3965                                             unsigned long val)
3966 {
3967         unsigned long cr0 = svm->vcpu.arch.cr0;
3968         bool ret = false;
3969         u64 intercept;
3970
3971         intercept = svm->nested.intercept;
3972
3973         if (!is_guest_mode(&svm->vcpu) ||
3974             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3975                 return false;
3976
3977         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3978         val &= ~SVM_CR0_SELECTIVE_MASK;
3979
3980         if (cr0 ^ val) {
3981                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3982                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3983         }
3984
3985         return ret;
3986 }
3987
3988 #define CR_VALID (1ULL << 63)
3989
3990 static int cr_interception(struct vcpu_svm *svm)
3991 {
3992         int reg, cr;
3993         unsigned long val;
3994         int err;
3995
3996         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3997                 return emulate_on_interception(svm);
3998
3999         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
4000                 return emulate_on_interception(svm);
4001
4002         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4003         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
4004                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
4005         else
4006                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
4007
4008         err = 0;
4009         if (cr >= 16) { /* mov to cr */
4010                 cr -= 16;
4011                 val = kvm_register_read(&svm->vcpu, reg);
4012                 switch (cr) {
4013                 case 0:
4014                         if (!check_selective_cr0_intercepted(svm, val))
4015                                 err = kvm_set_cr0(&svm->vcpu, val);
4016                         else
4017                                 return 1;
4018
4019                         break;
4020                 case 3:
4021                         err = kvm_set_cr3(&svm->vcpu, val);
4022                         break;
4023                 case 4:
4024                         err = kvm_set_cr4(&svm->vcpu, val);
4025                         break;
4026                 case 8:
4027                         err = kvm_set_cr8(&svm->vcpu, val);
4028                         break;
4029                 default:
4030                         WARN(1, "unhandled write to CR%d", cr);
4031                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4032                         return 1;
4033                 }
4034         } else { /* mov from cr */
4035                 switch (cr) {
4036                 case 0:
4037                         val = kvm_read_cr0(&svm->vcpu);
4038                         break;
4039                 case 2:
4040                         val = svm->vcpu.arch.cr2;
4041                         break;
4042                 case 3:
4043                         val = kvm_read_cr3(&svm->vcpu);
4044                         break;
4045                 case 4:
4046                         val = kvm_read_cr4(&svm->vcpu);
4047                         break;
4048                 case 8:
4049                         val = kvm_get_cr8(&svm->vcpu);
4050                         break;
4051                 default:
4052                         WARN(1, "unhandled read from CR%d", cr);
4053                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4054                         return 1;
4055                 }
4056                 kvm_register_write(&svm->vcpu, reg, val);
4057         }
4058         return kvm_complete_insn_gp(&svm->vcpu, err);
4059 }
4060
4061 static int dr_interception(struct vcpu_svm *svm)
4062 {
4063         int reg, dr;
4064         unsigned long val;
4065
4066         if (svm->vcpu.guest_debug == 0) {
4067                 /*
4068                  * No more DR vmexits; force a reload of the debug registers
4069                  * and reenter on this instruction.  The next vmexit will
4070                  * retrieve the full state of the debug registers.
4071                  */
4072                 clr_dr_intercepts(svm);
4073                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4074                 return 1;
4075         }
4076
4077         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4078                 return emulate_on_interception(svm);
4079
4080         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4081         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4082
4083         if (dr >= 16) { /* mov to DRn */
4084                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4085                         return 1;
4086                 val = kvm_register_read(&svm->vcpu, reg);
4087                 kvm_set_dr(&svm->vcpu, dr - 16, val);
4088         } else {
4089                 if (!kvm_require_dr(&svm->vcpu, dr))
4090                         return 1;
4091                 kvm_get_dr(&svm->vcpu, dr, &val);
4092                 kvm_register_write(&svm->vcpu, reg, val);
4093         }
4094
4095         return kvm_skip_emulated_instruction(&svm->vcpu);
4096 }
4097
4098 static int cr8_write_interception(struct vcpu_svm *svm)
4099 {
4100         struct kvm_run *kvm_run = svm->vcpu.run;
4101         int r;
4102
4103         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4104         /* instruction emulation calls kvm_set_cr8() */
4105         r = cr_interception(svm);
4106         if (lapic_in_kernel(&svm->vcpu))
4107                 return r;
4108         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4109                 return r;
4110         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4111         return 0;
4112 }
4113
4114 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4115 {
4116         msr->data = 0;
4117
4118         switch (msr->index) {
4119         case MSR_F10H_DECFG:
4120                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4121                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4122                 break;
4123         default:
4124                 return 1;
4125         }
4126
4127         return 0;
4128 }
4129
4130 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4131 {
4132         struct vcpu_svm *svm = to_svm(vcpu);
4133
4134         switch (msr_info->index) {
4135         case MSR_STAR:
4136                 msr_info->data = svm->vmcb->save.star;
4137                 break;
4138 #ifdef CONFIG_X86_64
4139         case MSR_LSTAR:
4140                 msr_info->data = svm->vmcb->save.lstar;
4141                 break;
4142         case MSR_CSTAR:
4143                 msr_info->data = svm->vmcb->save.cstar;
4144                 break;
4145         case MSR_KERNEL_GS_BASE:
4146                 msr_info->data = svm->vmcb->save.kernel_gs_base;
4147                 break;
4148         case MSR_SYSCALL_MASK:
4149                 msr_info->data = svm->vmcb->save.sfmask;
4150                 break;
4151 #endif
4152         case MSR_IA32_SYSENTER_CS:
4153                 msr_info->data = svm->vmcb->save.sysenter_cs;
4154                 break;
4155         case MSR_IA32_SYSENTER_EIP:
4156                 msr_info->data = svm->sysenter_eip;
4157                 break;
4158         case MSR_IA32_SYSENTER_ESP:
4159                 msr_info->data = svm->sysenter_esp;
4160                 break;
4161         case MSR_TSC_AUX:
4162                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4163                         return 1;
4164                 msr_info->data = svm->tsc_aux;
4165                 break;
4166         /*
4167          * Nobody will change the following 5 values in the VMCB so we can
4168          * safely return them on rdmsr. They will always be 0 until LBRV is
4169          * implemented.
4170          */
4171         case MSR_IA32_DEBUGCTLMSR:
4172                 msr_info->data = svm->vmcb->save.dbgctl;
4173                 break;
4174         case MSR_IA32_LASTBRANCHFROMIP:
4175                 msr_info->data = svm->vmcb->save.br_from;
4176                 break;
4177         case MSR_IA32_LASTBRANCHTOIP:
4178                 msr_info->data = svm->vmcb->save.br_to;
4179                 break;
4180         case MSR_IA32_LASTINTFROMIP:
4181                 msr_info->data = svm->vmcb->save.last_excp_from;
4182                 break;
4183         case MSR_IA32_LASTINTTOIP:
4184                 msr_info->data = svm->vmcb->save.last_excp_to;
4185                 break;
4186         case MSR_VM_HSAVE_PA:
4187                 msr_info->data = svm->nested.hsave_msr;
4188                 break;
4189         case MSR_VM_CR:
4190                 msr_info->data = svm->nested.vm_cr_msr;
4191                 break;
4192         case MSR_IA32_SPEC_CTRL:
4193                 if (!msr_info->host_initiated &&
4194                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4195                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4196                         return 1;
4197
4198                 msr_info->data = svm->spec_ctrl;
4199                 break;
4200         case MSR_AMD64_VIRT_SPEC_CTRL:
4201                 if (!msr_info->host_initiated &&
4202                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4203                         return 1;
4204
4205                 msr_info->data = svm->virt_spec_ctrl;
4206                 break;
4207         case MSR_F15H_IC_CFG: {
4208
4209                 int family, model;
4210
4211                 family = guest_cpuid_family(vcpu);
4212                 model  = guest_cpuid_model(vcpu);
4213
4214                 if (family < 0 || model < 0)
4215                         return kvm_get_msr_common(vcpu, msr_info);
4216
4217                 msr_info->data = 0;
4218
4219                 if (family == 0x15 &&
4220                     (model >= 0x2 && model < 0x20))
4221                         msr_info->data = 0x1E;
4222                 }
4223                 break;
4224         case MSR_F10H_DECFG:
4225                 msr_info->data = svm->msr_decfg;
4226                 break;
4227         default:
4228                 return kvm_get_msr_common(vcpu, msr_info);
4229         }
4230         return 0;
4231 }
4232
4233 static int rdmsr_interception(struct vcpu_svm *svm)
4234 {
4235         u32 ecx = kvm_rcx_read(&svm->vcpu);
4236         struct msr_data msr_info;
4237
4238         msr_info.index = ecx;
4239         msr_info.host_initiated = false;
4240         if (svm_get_msr(&svm->vcpu, &msr_info)) {
4241                 trace_kvm_msr_read_ex(ecx);
4242                 kvm_inject_gp(&svm->vcpu, 0);
4243                 return 1;
4244         } else {
4245                 trace_kvm_msr_read(ecx, msr_info.data);
4246
4247                 kvm_rax_write(&svm->vcpu, msr_info.data & 0xffffffff);
4248                 kvm_rdx_write(&svm->vcpu, msr_info.data >> 32);
4249                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4250                 return kvm_skip_emulated_instruction(&svm->vcpu);
4251         }
4252 }
4253
4254 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4255 {
4256         struct vcpu_svm *svm = to_svm(vcpu);
4257         int svm_dis, chg_mask;
4258
4259         if (data & ~SVM_VM_CR_VALID_MASK)
4260                 return 1;
4261
4262         chg_mask = SVM_VM_CR_VALID_MASK;
4263
4264         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4265                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4266
4267         svm->nested.vm_cr_msr &= ~chg_mask;
4268         svm->nested.vm_cr_msr |= (data & chg_mask);
4269
4270         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4271
4272         /* check for svm_disable while efer.svme is set */
4273         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4274                 return 1;
4275
4276         return 0;
4277 }
4278
4279 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4280 {
4281         struct vcpu_svm *svm = to_svm(vcpu);
4282
4283         u32 ecx = msr->index;
4284         u64 data = msr->data;
4285         switch (ecx) {
4286         case MSR_IA32_CR_PAT:
4287                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4288                         return 1;
4289                 vcpu->arch.pat = data;
4290                 svm->vmcb->save.g_pat = data;
4291                 mark_dirty(svm->vmcb, VMCB_NPT);
4292                 break;
4293         case MSR_IA32_SPEC_CTRL:
4294                 if (!msr->host_initiated &&
4295                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4296                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4297                         return 1;
4298
4299                 /* The STIBP bit doesn't fault even if it's not advertised */
4300                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4301                         return 1;
4302
4303                 svm->spec_ctrl = data;
4304
4305                 if (!data)
4306                         break;
4307
4308                 /*
4309                  * For non-nested:
4310                  * When it's written (to non-zero) for the first time, pass
4311                  * it through.
4312                  *
4313                  * For nested:
4314                  * The handling of the MSR bitmap for L2 guests is done in
4315                  * nested_svm_vmrun_msrpm.
4316                  * We update the L1 MSR bit as well since it will end up
4317                  * touching the MSR anyway now.
4318                  */
4319                 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4320                 break;
4321         case MSR_IA32_PRED_CMD:
4322                 if (!msr->host_initiated &&
4323                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4324                         return 1;
4325
4326                 if (data & ~PRED_CMD_IBPB)
4327                         return 1;
4328
4329                 if (!data)
4330                         break;
4331
4332                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4333                 if (is_guest_mode(vcpu))
4334                         break;
4335                 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4336                 break;
4337         case MSR_AMD64_VIRT_SPEC_CTRL:
4338                 if (!msr->host_initiated &&
4339                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4340                         return 1;
4341
4342                 if (data & ~SPEC_CTRL_SSBD)
4343                         return 1;
4344
4345                 svm->virt_spec_ctrl = data;
4346                 break;
4347         case MSR_STAR:
4348                 svm->vmcb->save.star = data;
4349                 break;
4350 #ifdef CONFIG_X86_64
4351         case MSR_LSTAR:
4352                 svm->vmcb->save.lstar = data;
4353                 break;
4354         case MSR_CSTAR:
4355                 svm->vmcb->save.cstar = data;
4356                 break;
4357         case MSR_KERNEL_GS_BASE:
4358                 svm->vmcb->save.kernel_gs_base = data;
4359                 break;
4360         case MSR_SYSCALL_MASK:
4361                 svm->vmcb->save.sfmask = data;
4362                 break;
4363 #endif
4364         case MSR_IA32_SYSENTER_CS:
4365                 svm->vmcb->save.sysenter_cs = data;
4366                 break;
4367         case MSR_IA32_SYSENTER_EIP:
4368                 svm->sysenter_eip = data;
4369                 svm->vmcb->save.sysenter_eip = data;
4370                 break;
4371         case MSR_IA32_SYSENTER_ESP:
4372                 svm->sysenter_esp = data;
4373                 svm->vmcb->save.sysenter_esp = data;
4374                 break;
4375         case MSR_TSC_AUX:
4376                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4377                         return 1;
4378
4379                 /*
4380                  * This is rare, so we update the MSR here instead of using
4381                  * direct_access_msrs.  Doing that would require a rdmsr in
4382                  * svm_vcpu_put.
4383                  */
4384                 svm->tsc_aux = data;
4385                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4386                 break;
4387         case MSR_IA32_DEBUGCTLMSR:
4388                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4389                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4390                                     __func__, data);
4391                         break;
4392                 }
4393                 if (data & DEBUGCTL_RESERVED_BITS)
4394                         return 1;
4395
4396                 svm->vmcb->save.dbgctl = data;
4397                 mark_dirty(svm->vmcb, VMCB_LBR);
4398                 if (data & (1ULL<<0))
4399                         svm_enable_lbrv(svm);
4400                 else
4401                         svm_disable_lbrv(svm);
4402                 break;
4403         case MSR_VM_HSAVE_PA:
4404                 svm->nested.hsave_msr = data;
4405                 break;
4406         case MSR_VM_CR:
4407                 return svm_set_vm_cr(vcpu, data);
4408         case MSR_VM_IGNNE:
4409                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4410                 break;
4411         case MSR_F10H_DECFG: {
4412                 struct kvm_msr_entry msr_entry;
4413
4414                 msr_entry.index = msr->index;
4415                 if (svm_get_msr_feature(&msr_entry))
4416                         return 1;
4417
4418                 /* Check the supported bits */
4419                 if (data & ~msr_entry.data)
4420                         return 1;
4421
4422                 /* Don't allow the guest to change a bit, #GP */
4423                 if (!msr->host_initiated && (data ^ msr_entry.data))
4424                         return 1;
4425
4426                 svm->msr_decfg = data;
4427                 break;
4428         }
4429         case MSR_IA32_APICBASE:
4430                 if (kvm_vcpu_apicv_active(vcpu))
4431                         avic_update_vapic_bar(to_svm(vcpu), data);
4432                 /* Fall through */
4433         default:
4434                 return kvm_set_msr_common(vcpu, msr);
4435         }
4436         return 0;
4437 }
4438
4439 static int wrmsr_interception(struct vcpu_svm *svm)
4440 {
4441         struct msr_data msr;
4442         u32 ecx = kvm_rcx_read(&svm->vcpu);
4443         u64 data = kvm_read_edx_eax(&svm->vcpu);
4444
4445         msr.data = data;
4446         msr.index = ecx;
4447         msr.host_initiated = false;
4448
4449         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4450         if (kvm_set_msr(&svm->vcpu, &msr)) {
4451                 trace_kvm_msr_write_ex(ecx, data);
4452                 kvm_inject_gp(&svm->vcpu, 0);
4453                 return 1;
4454         } else {
4455                 trace_kvm_msr_write(ecx, data);
4456                 return kvm_skip_emulated_instruction(&svm->vcpu);
4457         }
4458 }
4459
4460 static int msr_interception(struct vcpu_svm *svm)
4461 {
4462         if (svm->vmcb->control.exit_info_1)
4463                 return wrmsr_interception(svm);
4464         else
4465                 return rdmsr_interception(svm);
4466 }
4467
4468 static int interrupt_window_interception(struct vcpu_svm *svm)
4469 {
4470         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4471         svm_clear_vintr(svm);
4472         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4473         mark_dirty(svm->vmcb, VMCB_INTR);
4474         ++svm->vcpu.stat.irq_window_exits;
4475         return 1;
4476 }
4477
4478 static int pause_interception(struct vcpu_svm *svm)
4479 {
4480         struct kvm_vcpu *vcpu = &svm->vcpu;
4481         bool in_kernel = (svm_get_cpl(vcpu) == 0);
4482
4483         if (pause_filter_thresh)
4484                 grow_ple_window(vcpu);
4485
4486         kvm_vcpu_on_spin(vcpu, in_kernel);
4487         return 1;
4488 }
4489
4490 static int nop_interception(struct vcpu_svm *svm)
4491 {
4492         return kvm_skip_emulated_instruction(&(svm->vcpu));
4493 }
4494
4495 static int monitor_interception(struct vcpu_svm *svm)
4496 {
4497         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4498         return nop_interception(svm);
4499 }
4500
4501 static int mwait_interception(struct vcpu_svm *svm)
4502 {
4503         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4504         return nop_interception(svm);
4505 }
4506
4507 enum avic_ipi_failure_cause {
4508         AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4509         AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4510         AVIC_IPI_FAILURE_INVALID_TARGET,
4511         AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4512 };
4513
4514 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4515 {
4516         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4517         u32 icrl = svm->vmcb->control.exit_info_1;
4518         u32 id = svm->vmcb->control.exit_info_2 >> 32;
4519         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4520         struct kvm_lapic *apic = svm->vcpu.arch.apic;
4521
4522         trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4523
4524         switch (id) {
4525         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4526                 /*
4527                  * AVIC hardware handles the generation of
4528                  * IPIs when the specified Message Type is Fixed
4529                  * (also known as fixed delivery mode) and
4530                  * the Trigger Mode is edge-triggered. The hardware
4531                  * also supports self and broadcast delivery modes
4532                  * specified via the Destination Shorthand(DSH)
4533                  * field of the ICRL. Logical and physical APIC ID
4534                  * formats are supported. All other IPI types cause
4535                  * a #VMEXIT, which needs to emulated.
4536                  */
4537                 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4538                 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4539                 break;
4540         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4541                 int i;
4542                 struct kvm_vcpu *vcpu;
4543                 struct kvm *kvm = svm->vcpu.kvm;
4544                 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4545
4546                 /*
4547                  * At this point, we expect that the AVIC HW has already
4548                  * set the appropriate IRR bits on the valid target
4549                  * vcpus. So, we just need to kick the appropriate vcpu.
4550                  */
4551                 kvm_for_each_vcpu(i, vcpu, kvm) {
4552                         bool m = kvm_apic_match_dest(vcpu, apic,
4553                                                      icrl & KVM_APIC_SHORT_MASK,
4554                                                      GET_APIC_DEST_FIELD(icrh),
4555                                                      icrl & KVM_APIC_DEST_MASK);
4556
4557                         if (m && !avic_vcpu_is_running(vcpu))
4558                                 kvm_vcpu_wake_up(vcpu);
4559                 }
4560                 break;
4561         }
4562         case AVIC_IPI_FAILURE_INVALID_TARGET:
4563                 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4564                           index, svm->vcpu.vcpu_id, icrh, icrl);
4565                 break;
4566         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4567                 WARN_ONCE(1, "Invalid backing page\n");
4568                 break;
4569         default:
4570                 pr_err("Unknown IPI interception\n");
4571         }
4572
4573         return 1;
4574 }
4575
4576 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4577 {
4578         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4579         int index;
4580         u32 *logical_apic_id_table;
4581         int dlid = GET_APIC_LOGICAL_ID(ldr);
4582
4583         if (!dlid)
4584                 return NULL;
4585
4586         if (flat) { /* flat */
4587                 index = ffs(dlid) - 1;
4588                 if (index > 7)
4589                         return NULL;
4590         } else { /* cluster */
4591                 int cluster = (dlid & 0xf0) >> 4;
4592                 int apic = ffs(dlid & 0x0f) - 1;
4593
4594                 if ((apic < 0) || (apic > 7) ||
4595                     (cluster >= 0xf))
4596                         return NULL;
4597                 index = (cluster << 2) + apic;
4598         }
4599
4600         logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4601
4602         return &logical_apic_id_table[index];
4603 }
4604
4605 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4606 {
4607         bool flat;
4608         u32 *entry, new_entry;
4609
4610         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4611         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4612         if (!entry)
4613                 return -EINVAL;
4614
4615         new_entry = READ_ONCE(*entry);
4616         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4617         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4618         new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4619         WRITE_ONCE(*entry, new_entry);
4620
4621         return 0;
4622 }
4623
4624 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4625 {
4626         struct vcpu_svm *svm = to_svm(vcpu);
4627         bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4628         u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4629
4630         if (entry)
4631                 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4632 }
4633
4634 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4635 {
4636         int ret = 0;
4637         struct vcpu_svm *svm = to_svm(vcpu);
4638         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4639
4640         if (ldr == svm->ldr_reg)
4641                 return 0;
4642
4643         avic_invalidate_logical_id_entry(vcpu);
4644
4645         if (ldr)
4646                 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr);
4647
4648         if (!ret)
4649                 svm->ldr_reg = ldr;
4650
4651         return ret;
4652 }
4653
4654 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4655 {
4656         u64 *old, *new;
4657         struct vcpu_svm *svm = to_svm(vcpu);
4658         u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4659         u32 id = (apic_id_reg >> 24) & 0xff;
4660
4661         if (vcpu->vcpu_id == id)
4662                 return 0;
4663
4664         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4665         new = avic_get_physical_id_entry(vcpu, id);
4666         if (!new || !old)
4667                 return 1;
4668
4669         /* We need to move physical_id_entry to new offset */
4670         *new = *old;
4671         *old = 0ULL;
4672         to_svm(vcpu)->avic_physical_id_cache = new;
4673
4674         /*
4675          * Also update the guest physical APIC ID in the logical
4676          * APIC ID table entry if already setup the LDR.
4677          */
4678         if (svm->ldr_reg)
4679                 avic_handle_ldr_update(vcpu);
4680
4681         return 0;
4682 }
4683
4684 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4685 {
4686         struct vcpu_svm *svm = to_svm(vcpu);
4687         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4688
4689         if (svm->dfr_reg == dfr)
4690                 return;
4691
4692         avic_invalidate_logical_id_entry(vcpu);
4693         svm->dfr_reg = dfr;
4694 }
4695
4696 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4697 {
4698         struct kvm_lapic *apic = svm->vcpu.arch.apic;
4699         u32 offset = svm->vmcb->control.exit_info_1 &
4700                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4701
4702         switch (offset) {
4703         case APIC_ID:
4704                 if (avic_handle_apic_id_update(&svm->vcpu))
4705                         return 0;
4706                 break;
4707         case APIC_LDR:
4708                 if (avic_handle_ldr_update(&svm->vcpu))
4709                         return 0;
4710                 break;
4711         case APIC_DFR:
4712                 avic_handle_dfr_update(&svm->vcpu);
4713                 break;
4714         default:
4715                 break;
4716         }
4717
4718         kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4719
4720         return 1;
4721 }
4722
4723 static bool is_avic_unaccelerated_access_trap(u32 offset)
4724 {
4725         bool ret = false;
4726
4727         switch (offset) {
4728         case APIC_ID:
4729         case APIC_EOI:
4730         case APIC_RRR:
4731         case APIC_LDR:
4732         case APIC_DFR:
4733         case APIC_SPIV:
4734         case APIC_ESR:
4735         case APIC_ICR:
4736         case APIC_LVTT:
4737         case APIC_LVTTHMR:
4738         case APIC_LVTPC:
4739         case APIC_LVT0:
4740         case APIC_LVT1:
4741         case APIC_LVTERR:
4742         case APIC_TMICT:
4743         case APIC_TDCR:
4744                 ret = true;
4745                 break;
4746         default:
4747                 break;
4748         }
4749         return ret;
4750 }
4751
4752 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4753 {
4754         int ret = 0;
4755         u32 offset = svm->vmcb->control.exit_info_1 &
4756                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4757         u32 vector = svm->vmcb->control.exit_info_2 &
4758                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4759         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4760                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
4761         bool trap = is_avic_unaccelerated_access_trap(offset);
4762
4763         trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4764                                             trap, write, vector);
4765         if (trap) {
4766                 /* Handling Trap */
4767                 WARN_ONCE(!write, "svm: Handling trap read.\n");
4768                 ret = avic_unaccel_trap_write(svm);
4769         } else {
4770                 /* Handling Fault */
4771                 ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4772         }
4773
4774         return ret;
4775 }
4776
4777 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4778         [SVM_EXIT_READ_CR0]                     = cr_interception,
4779         [SVM_EXIT_READ_CR3]                     = cr_interception,
4780         [SVM_EXIT_READ_CR4]                     = cr_interception,
4781         [SVM_EXIT_READ_CR8]                     = cr_interception,
4782         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
4783         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4784         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4785         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4786         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4787         [SVM_EXIT_READ_DR0]                     = dr_interception,
4788         [SVM_EXIT_READ_DR1]                     = dr_interception,
4789         [SVM_EXIT_READ_DR2]                     = dr_interception,
4790         [SVM_EXIT_READ_DR3]                     = dr_interception,
4791         [SVM_EXIT_READ_DR4]                     = dr_interception,
4792         [SVM_EXIT_READ_DR5]                     = dr_interception,
4793         [SVM_EXIT_READ_DR6]                     = dr_interception,
4794         [SVM_EXIT_READ_DR7]                     = dr_interception,
4795         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4796         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4797         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4798         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4799         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4800         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4801         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4802         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4803         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4804         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4805         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4806         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4807         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4808         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4809         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
4810         [SVM_EXIT_INTR]                         = intr_interception,
4811         [SVM_EXIT_NMI]                          = nmi_interception,
4812         [SVM_EXIT_SMI]                          = nop_on_interception,
4813         [SVM_EXIT_INIT]                         = nop_on_interception,
4814         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4815         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4816         [SVM_EXIT_CPUID]                        = cpuid_interception,
4817         [SVM_EXIT_IRET]                         = iret_interception,
4818         [SVM_EXIT_INVD]                         = emulate_on_interception,
4819         [SVM_EXIT_PAUSE]                        = pause_interception,
4820         [SVM_EXIT_HLT]                          = halt_interception,
4821         [SVM_EXIT_INVLPG]                       = invlpg_interception,
4822         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4823         [SVM_EXIT_IOIO]                         = io_interception,
4824         [SVM_EXIT_MSR]                          = msr_interception,
4825         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4826         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4827         [SVM_EXIT_VMRUN]                        = vmrun_interception,
4828         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4829         [SVM_EXIT_VMLOAD]                       = vmload_interception,
4830         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4831         [SVM_EXIT_STGI]                         = stgi_interception,
4832         [SVM_EXIT_CLGI]                         = clgi_interception,
4833         [SVM_EXIT_SKINIT]                       = skinit_interception,
4834         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4835         [SVM_EXIT_MONITOR]                      = monitor_interception,
4836         [SVM_EXIT_MWAIT]                        = mwait_interception,
4837         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4838         [SVM_EXIT_NPF]                          = npf_interception,
4839         [SVM_EXIT_RSM]                          = rsm_interception,
4840         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4841         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4842 };
4843
4844 static void dump_vmcb(struct kvm_vcpu *vcpu)
4845 {
4846         struct vcpu_svm *svm = to_svm(vcpu);
4847         struct vmcb_control_area *control = &svm->vmcb->control;
4848         struct vmcb_save_area *save = &svm->vmcb->save;
4849
4850         if (!dump_invalid_vmcb) {
4851                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4852                 return;
4853         }
4854
4855         pr_err("VMCB Control Area:\n");
4856         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4857         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4858         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4859         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4860         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4861         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4862         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4863         pr_err("%-20s%d\n", "pause filter threshold:",
4864                control->pause_filter_thresh);
4865         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4866         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4867         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4868         pr_err("%-20s%d\n", "asid:", control->asid);
4869         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4870         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4871         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4872         pr_err("%-20s%08x\n", "int_state:", control->int_state);
4873         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4874         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4875         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4876         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4877         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4878         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4879         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4880         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4881         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4882         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4883         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4884         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4885         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4886         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4887         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4888         pr_err("VMCB State Save Area:\n");
4889         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4890                "es:",
4891                save->es.selector, save->es.attrib,
4892                save->es.limit, save->es.base);
4893         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4894                "cs:",
4895                save->cs.selector, save->cs.attrib,
4896                save->cs.limit, save->cs.base);
4897         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4898                "ss:",
4899                save->ss.selector, save->ss.attrib,
4900                save->ss.limit, save->ss.base);
4901         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4902                "ds:",
4903                save->ds.selector, save->ds.attrib,
4904                save->ds.limit, save->ds.base);
4905         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4906                "fs:",
4907                save->fs.selector, save->fs.attrib,
4908                save->fs.limit, save->fs.base);
4909         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4910                "gs:",
4911                save->gs.selector, save->gs.attrib,
4912                save->gs.limit, save->gs.base);
4913         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4914                "gdtr:",
4915                save->gdtr.selector, save->gdtr.attrib,
4916                save->gdtr.limit, save->gdtr.base);
4917         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4918                "ldtr:",
4919                save->ldtr.selector, save->ldtr.attrib,
4920                save->ldtr.limit, save->ldtr.base);
4921         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4922                "idtr:",
4923                save->idtr.selector, save->idtr.attrib,
4924                save->idtr.limit, save->idtr.base);
4925         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4926                "tr:",
4927                save->tr.selector, save->tr.attrib,
4928                save->tr.limit, save->tr.base);
4929         pr_err("cpl:            %d                efer:         %016llx\n",
4930                 save->cpl, save->efer);
4931         pr_err("%-15s %016llx %-13s %016llx\n",
4932                "cr0:", save->cr0, "cr2:", save->cr2);
4933         pr_err("%-15s %016llx %-13s %016llx\n",
4934                "cr3:", save->cr3, "cr4:", save->cr4);
4935         pr_err("%-15s %016llx %-13s %016llx\n",
4936                "dr6:", save->dr6, "dr7:", save->dr7);
4937         pr_err("%-15s %016llx %-13s %016llx\n",
4938                "rip:", save->rip, "rflags:", save->rflags);
4939         pr_err("%-15s %016llx %-13s %016llx\n",
4940                "rsp:", save->rsp, "rax:", save->rax);
4941         pr_err("%-15s %016llx %-13s %016llx\n",
4942                "star:", save->star, "lstar:", save->lstar);
4943         pr_err("%-15s %016llx %-13s %016llx\n",
4944                "cstar:", save->cstar, "sfmask:", save->sfmask);
4945         pr_err("%-15s %016llx %-13s %016llx\n",
4946                "kernel_gs_base:", save->kernel_gs_base,
4947                "sysenter_cs:", save->sysenter_cs);
4948         pr_err("%-15s %016llx %-13s %016llx\n",
4949                "sysenter_esp:", save->sysenter_esp,
4950                "sysenter_eip:", save->sysenter_eip);
4951         pr_err("%-15s %016llx %-13s %016llx\n",
4952                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4953         pr_err("%-15s %016llx %-13s %016llx\n",
4954                "br_from:", save->br_from, "br_to:", save->br_to);
4955         pr_err("%-15s %016llx %-13s %016llx\n",
4956                "excp_from:", save->last_excp_from,
4957                "excp_to:", save->last_excp_to);
4958 }
4959
4960 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4961 {
4962         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4963
4964         *info1 = control->exit_info_1;
4965         *info2 = control->exit_info_2;
4966 }
4967
4968 static int handle_exit(struct kvm_vcpu *vcpu)
4969 {
4970         struct vcpu_svm *svm = to_svm(vcpu);
4971         struct kvm_run *kvm_run = vcpu->run;
4972         u32 exit_code = svm->vmcb->control.exit_code;
4973
4974         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4975
4976         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4977                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4978         if (npt_enabled)
4979                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4980
4981         if (unlikely(svm->nested.exit_required)) {
4982                 nested_svm_vmexit(svm);
4983                 svm->nested.exit_required = false;
4984
4985                 return 1;
4986         }
4987
4988         if (is_guest_mode(vcpu)) {
4989                 int vmexit;
4990
4991                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4992                                         svm->vmcb->control.exit_info_1,
4993                                         svm->vmcb->control.exit_info_2,
4994                                         svm->vmcb->control.exit_int_info,
4995                                         svm->vmcb->control.exit_int_info_err,
4996                                         KVM_ISA_SVM);
4997
4998                 vmexit = nested_svm_exit_special(svm);
4999
5000                 if (vmexit == NESTED_EXIT_CONTINUE)
5001                         vmexit = nested_svm_exit_handled(svm);
5002
5003                 if (vmexit == NESTED_EXIT_DONE)
5004                         return 1;
5005         }
5006
5007         svm_complete_interrupts(svm);
5008
5009         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
5010                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5011                 kvm_run->fail_entry.hardware_entry_failure_reason
5012                         = svm->vmcb->control.exit_code;
5013                 dump_vmcb(vcpu);
5014                 return 0;
5015         }
5016
5017         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
5018             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
5019             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
5020             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
5021                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
5022                        "exit_code 0x%x\n",
5023                        __func__, svm->vmcb->control.exit_int_info,
5024                        exit_code);
5025
5026         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
5027             || !svm_exit_handlers[exit_code]) {
5028                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
5029                 kvm_queue_exception(vcpu, UD_VECTOR);
5030                 return 1;
5031         }
5032
5033         return svm_exit_handlers[exit_code](svm);
5034 }
5035
5036 static void reload_tss(struct kvm_vcpu *vcpu)
5037 {
5038         int cpu = raw_smp_processor_id();
5039
5040         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5041         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5042         load_TR_desc();
5043 }
5044
5045 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5046 {
5047         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5048         int asid = sev_get_asid(svm->vcpu.kvm);
5049
5050         /* Assign the asid allocated with this SEV guest */
5051         svm->vmcb->control.asid = asid;
5052
5053         /*
5054          * Flush guest TLB:
5055          *
5056          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5057          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5058          */
5059         if (sd->sev_vmcbs[asid] == svm->vmcb &&
5060             svm->last_cpu == cpu)
5061                 return;
5062
5063         svm->last_cpu = cpu;
5064         sd->sev_vmcbs[asid] = svm->vmcb;
5065         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5066         mark_dirty(svm->vmcb, VMCB_ASID);
5067 }
5068
5069 static void pre_svm_run(struct vcpu_svm *svm)
5070 {
5071         int cpu = raw_smp_processor_id();
5072
5073         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5074
5075         if (sev_guest(svm->vcpu.kvm))
5076                 return pre_sev_run(svm, cpu);
5077
5078         /* FIXME: handle wraparound of asid_generation */
5079         if (svm->asid_generation != sd->asid_generation)
5080                 new_asid(svm, sd);
5081 }
5082
5083 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5084 {
5085         struct vcpu_svm *svm = to_svm(vcpu);
5086
5087         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5088         vcpu->arch.hflags |= HF_NMI_MASK;
5089         set_intercept(svm, INTERCEPT_IRET);
5090         ++vcpu->stat.nmi_injections;
5091 }
5092
5093 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5094 {
5095         struct vmcb_control_area *control;
5096
5097         /* The following fields are ignored when AVIC is enabled */
5098         control = &svm->vmcb->control;
5099         control->int_vector = irq;
5100         control->int_ctl &= ~V_INTR_PRIO_MASK;
5101         control->int_ctl |= V_IRQ_MASK |
5102                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5103         mark_dirty(svm->vmcb, VMCB_INTR);
5104 }
5105
5106 static void svm_set_irq(struct kvm_vcpu *vcpu)
5107 {
5108         struct vcpu_svm *svm = to_svm(vcpu);
5109
5110         BUG_ON(!(gif_set(svm)));
5111
5112         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5113         ++vcpu->stat.irq_injections;
5114
5115         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5116                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5117 }
5118
5119 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5120 {
5121         return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5122 }
5123
5124 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5125 {
5126         struct vcpu_svm *svm = to_svm(vcpu);
5127
5128         if (svm_nested_virtualize_tpr(vcpu) ||
5129             kvm_vcpu_apicv_active(vcpu))
5130                 return;
5131
5132         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5133
5134         if (irr == -1)
5135                 return;
5136
5137         if (tpr >= irr)
5138                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5139 }
5140
5141 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5142 {
5143         return;
5144 }
5145
5146 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5147 {
5148         return avic && irqchip_split(vcpu->kvm);
5149 }
5150
5151 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5152 {
5153 }
5154
5155 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5156 {
5157 }
5158
5159 /* Note: Currently only used by Hyper-V. */
5160 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5161 {
5162         struct vcpu_svm *svm = to_svm(vcpu);
5163         struct vmcb *vmcb = svm->vmcb;
5164
5165         if (kvm_vcpu_apicv_active(vcpu))
5166                 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5167         else
5168                 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5169         mark_dirty(vmcb, VMCB_AVIC);
5170 }
5171
5172 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5173 {
5174         return;
5175 }
5176
5177 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5178 {
5179         kvm_lapic_set_irr(vec, vcpu->arch.apic);
5180         smp_mb__after_atomic();
5181
5182         if (avic_vcpu_is_running(vcpu)) {
5183                 int cpuid = vcpu->cpu;
5184
5185                 if (cpuid != get_cpu())
5186                         wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
5187                 put_cpu();
5188         } else
5189                 kvm_vcpu_wake_up(vcpu);
5190 }
5191
5192 static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5193 {
5194         return false;
5195 }
5196
5197 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5198 {
5199         unsigned long flags;
5200         struct amd_svm_iommu_ir *cur;
5201
5202         spin_lock_irqsave(&svm->ir_list_lock, flags);
5203         list_for_each_entry(cur, &svm->ir_list, node) {
5204                 if (cur->data != pi->ir_data)
5205                         continue;
5206                 list_del(&cur->node);
5207                 kfree(cur);
5208                 break;
5209         }
5210         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5211 }
5212
5213 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5214 {
5215         int ret = 0;
5216         unsigned long flags;
5217         struct amd_svm_iommu_ir *ir;
5218
5219         /**
5220          * In some cases, the existing irte is updaed and re-set,
5221          * so we need to check here if it's already been * added
5222          * to the ir_list.
5223          */
5224         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5225                 struct kvm *kvm = svm->vcpu.kvm;
5226                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5227                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5228                 struct vcpu_svm *prev_svm;
5229
5230                 if (!prev_vcpu) {
5231                         ret = -EINVAL;
5232                         goto out;
5233                 }
5234
5235                 prev_svm = to_svm(prev_vcpu);
5236                 svm_ir_list_del(prev_svm, pi);
5237         }
5238
5239         /**
5240          * Allocating new amd_iommu_pi_data, which will get
5241          * add to the per-vcpu ir_list.
5242          */
5243         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5244         if (!ir) {
5245                 ret = -ENOMEM;
5246                 goto out;
5247         }
5248         ir->data = pi->ir_data;
5249
5250         spin_lock_irqsave(&svm->ir_list_lock, flags);
5251         list_add(&ir->node, &svm->ir_list);
5252         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5253 out:
5254         return ret;
5255 }
5256
5257 /**
5258  * Note:
5259  * The HW cannot support posting multicast/broadcast
5260  * interrupts to a vCPU. So, we still use legacy interrupt
5261  * remapping for these kind of interrupts.
5262  *
5263  * For lowest-priority interrupts, we only support
5264  * those with single CPU as the destination, e.g. user
5265  * configures the interrupts via /proc/irq or uses
5266  * irqbalance to make the interrupts single-CPU.
5267  */
5268 static int
5269 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5270                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5271 {
5272         struct kvm_lapic_irq irq;
5273         struct kvm_vcpu *vcpu = NULL;
5274
5275         kvm_set_msi_irq(kvm, e, &irq);
5276
5277         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5278                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5279                          __func__, irq.vector);
5280                 return -1;
5281         }
5282
5283         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5284                  irq.vector);
5285         *svm = to_svm(vcpu);
5286         vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5287         vcpu_info->vector = irq.vector;
5288
5289         return 0;
5290 }
5291
5292 /*
5293  * svm_update_pi_irte - set IRTE for Posted-Interrupts
5294  *
5295  * @kvm: kvm
5296  * @host_irq: host irq of the interrupt
5297  * @guest_irq: gsi of the interrupt
5298  * @set: set or unset PI
5299  * returns 0 on success, < 0 on failure
5300  */
5301 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5302                               uint32_t guest_irq, bool set)
5303 {
5304         struct kvm_kernel_irq_routing_entry *e;
5305         struct kvm_irq_routing_table *irq_rt;
5306         int idx, ret = -EINVAL;
5307
5308         if (!kvm_arch_has_assigned_device(kvm) ||
5309             !irq_remapping_cap(IRQ_POSTING_CAP))
5310                 return 0;
5311
5312         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5313                  __func__, host_irq, guest_irq, set);
5314
5315         idx = srcu_read_lock(&kvm->irq_srcu);
5316         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5317         WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5318
5319         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5320                 struct vcpu_data vcpu_info;
5321                 struct vcpu_svm *svm = NULL;
5322
5323                 if (e->type != KVM_IRQ_ROUTING_MSI)
5324                         continue;
5325
5326                 /**
5327                  * Here, we setup with legacy mode in the following cases:
5328                  * 1. When cannot target interrupt to a specific vcpu.
5329                  * 2. Unsetting posted interrupt.
5330                  * 3. APIC virtialization is disabled for the vcpu.
5331                  */
5332                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5333                     kvm_vcpu_apicv_active(&svm->vcpu)) {
5334                         struct amd_iommu_pi_data pi;
5335
5336                         /* Try to enable guest_mode in IRTE */
5337                         pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5338                                             AVIC_HPA_MASK);
5339                         pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5340                                                      svm->vcpu.vcpu_id);
5341                         pi.is_guest_mode = true;
5342                         pi.vcpu_data = &vcpu_info;
5343                         ret = irq_set_vcpu_affinity(host_irq, &pi);
5344
5345                         /**
5346                          * Here, we successfully setting up vcpu affinity in
5347                          * IOMMU guest mode. Now, we need to store the posted
5348                          * interrupt information in a per-vcpu ir_list so that
5349                          * we can reference to them directly when we update vcpu
5350                          * scheduling information in IOMMU irte.
5351                          */
5352                         if (!ret && pi.is_guest_mode)
5353                                 svm_ir_list_add(svm, &pi);
5354                 } else {
5355                         /* Use legacy mode in IRTE */
5356                         struct amd_iommu_pi_data pi;
5357
5358                         /**
5359                          * Here, pi is used to:
5360                          * - Tell IOMMU to use legacy mode for this interrupt.
5361                          * - Retrieve ga_tag of prior interrupt remapping data.
5362                          */
5363                         pi.is_guest_mode = false;
5364                         ret = irq_set_vcpu_affinity(host_irq, &pi);
5365
5366                         /**
5367                          * Check if the posted interrupt was previously
5368                          * setup with the guest_mode by checking if the ga_tag
5369                          * was cached. If so, we need to clean up the per-vcpu
5370                          * ir_list.
5371                          */
5372                         if (!ret && pi.prev_ga_tag) {
5373                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5374                                 struct kvm_vcpu *vcpu;
5375
5376                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
5377                                 if (vcpu)
5378                                         svm_ir_list_del(to_svm(vcpu), &pi);
5379                         }
5380                 }
5381
5382                 if (!ret && svm) {
5383                         trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5384                                                  e->gsi, vcpu_info.vector,
5385                                                  vcpu_info.pi_desc_addr, set);
5386                 }
5387
5388                 if (ret < 0) {
5389                         pr_err("%s: failed to update PI IRTE\n", __func__);
5390                         goto out;
5391                 }
5392         }
5393
5394         ret = 0;
5395 out:
5396         srcu_read_unlock(&kvm->irq_srcu, idx);
5397         return ret;
5398 }
5399
5400 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5401 {
5402         struct vcpu_svm *svm = to_svm(vcpu);
5403         struct vmcb *vmcb = svm->vmcb;
5404         int ret;
5405         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5406               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5407         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5408
5409         return ret;
5410 }
5411
5412 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5413 {
5414         struct vcpu_svm *svm = to_svm(vcpu);
5415
5416         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5417 }
5418
5419 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5420 {
5421         struct vcpu_svm *svm = to_svm(vcpu);
5422
5423         if (masked) {
5424                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5425                 set_intercept(svm, INTERCEPT_IRET);
5426         } else {
5427                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5428                 clr_intercept(svm, INTERCEPT_IRET);
5429         }
5430 }
5431
5432 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5433 {
5434         struct vcpu_svm *svm = to_svm(vcpu);
5435         struct vmcb *vmcb = svm->vmcb;
5436         int ret;
5437
5438         if (!gif_set(svm) ||
5439              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5440                 return 0;
5441
5442         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5443
5444         if (is_guest_mode(vcpu))
5445                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5446
5447         return ret;
5448 }
5449
5450 static void enable_irq_window(struct kvm_vcpu *vcpu)
5451 {
5452         struct vcpu_svm *svm = to_svm(vcpu);
5453
5454         if (kvm_vcpu_apicv_active(vcpu))
5455                 return;
5456
5457         /*
5458          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5459          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
5460          * get that intercept, this function will be called again though and
5461          * we'll get the vintr intercept. However, if the vGIF feature is
5462          * enabled, the STGI interception will not occur. Enable the irq
5463          * window under the assumption that the hardware will set the GIF.
5464          */
5465         if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5466                 svm_set_vintr(svm);
5467                 svm_inject_irq(svm, 0x0);
5468         }
5469 }
5470
5471 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5472 {
5473         struct vcpu_svm *svm = to_svm(vcpu);
5474
5475         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5476             == HF_NMI_MASK)
5477                 return; /* IRET will cause a vm exit */
5478
5479         if (!gif_set(svm)) {
5480                 if (vgif_enabled(svm))
5481                         set_intercept(svm, INTERCEPT_STGI);
5482                 return; /* STGI will cause a vm exit */
5483         }
5484
5485         if (svm->nested.exit_required)
5486                 return; /* we're not going to run the guest yet */
5487
5488         /*
5489          * Something prevents NMI from been injected. Single step over possible
5490          * problem (IRET or exception injection or interrupt shadow)
5491          */
5492         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5493         svm->nmi_singlestep = true;
5494         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5495 }
5496
5497 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5498 {
5499         return 0;
5500 }
5501
5502 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5503 {
5504         return 0;
5505 }
5506
5507 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5508 {
5509         struct vcpu_svm *svm = to_svm(vcpu);
5510
5511         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5512                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5513         else
5514                 svm->asid_generation--;
5515 }
5516
5517 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5518 {
5519         struct vcpu_svm *svm = to_svm(vcpu);
5520
5521         invlpga(gva, svm->vmcb->control.asid);
5522 }
5523
5524 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5525 {
5526 }
5527
5528 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5529 {
5530         struct vcpu_svm *svm = to_svm(vcpu);
5531
5532         if (svm_nested_virtualize_tpr(vcpu))
5533                 return;
5534
5535         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5536                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5537                 kvm_set_cr8(vcpu, cr8);
5538         }
5539 }
5540
5541 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5542 {
5543         struct vcpu_svm *svm = to_svm(vcpu);
5544         u64 cr8;
5545
5546         if (svm_nested_virtualize_tpr(vcpu) ||
5547             kvm_vcpu_apicv_active(vcpu))
5548                 return;
5549
5550         cr8 = kvm_get_cr8(vcpu);
5551         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5552         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5553 }
5554
5555 static void svm_complete_interrupts(struct vcpu_svm *svm)
5556 {
5557         u8 vector;
5558         int type;
5559         u32 exitintinfo = svm->vmcb->control.exit_int_info;
5560         unsigned int3_injected = svm->int3_injected;
5561
5562         svm->int3_injected = 0;
5563
5564         /*
5565          * If we've made progress since setting HF_IRET_MASK, we've
5566          * executed an IRET and can allow NMI injection.
5567          */
5568         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5569             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5570                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5571                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5572         }
5573
5574         svm->vcpu.arch.nmi_injected = false;
5575         kvm_clear_exception_queue(&svm->vcpu);
5576         kvm_clear_interrupt_queue(&svm->vcpu);
5577
5578         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5579                 return;
5580
5581         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5582
5583         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5584         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5585
5586         switch (type) {
5587         case SVM_EXITINTINFO_TYPE_NMI:
5588                 svm->vcpu.arch.nmi_injected = true;
5589                 break;
5590         case SVM_EXITINTINFO_TYPE_EXEPT:
5591                 /*
5592                  * In case of software exceptions, do not reinject the vector,
5593                  * but re-execute the instruction instead. Rewind RIP first
5594                  * if we emulated INT3 before.
5595                  */
5596                 if (kvm_exception_is_soft(vector)) {
5597                         if (vector == BP_VECTOR && int3_injected &&
5598                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5599                                 kvm_rip_write(&svm->vcpu,
5600                                               kvm_rip_read(&svm->vcpu) -
5601                                               int3_injected);
5602                         break;
5603                 }
5604                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5605                         u32 err = svm->vmcb->control.exit_int_info_err;
5606                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
5607
5608                 } else
5609                         kvm_requeue_exception(&svm->vcpu, vector);
5610                 break;
5611         case SVM_EXITINTINFO_TYPE_INTR:
5612                 kvm_queue_interrupt(&svm->vcpu, vector, false);
5613                 break;
5614         default:
5615                 break;
5616         }
5617 }
5618
5619 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5620 {
5621         struct vcpu_svm *svm = to_svm(vcpu);
5622         struct vmcb_control_area *control = &svm->vmcb->control;
5623
5624         control->exit_int_info = control->event_inj;
5625         control->exit_int_info_err = control->event_inj_err;
5626         control->event_inj = 0;
5627         svm_complete_interrupts(svm);
5628 }
5629
5630 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5631 {
5632         struct vcpu_svm *svm = to_svm(vcpu);
5633
5634         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5635         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5636         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5637
5638         /*
5639          * A vmexit emulation is required before the vcpu can be executed
5640          * again.
5641          */
5642         if (unlikely(svm->nested.exit_required))
5643                 return;
5644
5645         /*
5646          * Disable singlestep if we're injecting an interrupt/exception.
5647          * We don't want our modified rflags to be pushed on the stack where
5648          * we might not be able to easily reset them if we disabled NMI
5649          * singlestep later.
5650          */
5651         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5652                 /*
5653                  * Event injection happens before external interrupts cause a
5654                  * vmexit and interrupts are disabled here, so smp_send_reschedule
5655                  * is enough to force an immediate vmexit.
5656                  */
5657                 disable_nmi_singlestep(svm);
5658                 smp_send_reschedule(vcpu->cpu);
5659         }
5660
5661         pre_svm_run(svm);
5662
5663         sync_lapic_to_cr8(vcpu);
5664
5665         svm->vmcb->save.cr2 = vcpu->arch.cr2;
5666
5667         clgi();
5668         kvm_load_guest_xcr0(vcpu);
5669
5670         if (lapic_in_kernel(vcpu) &&
5671                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
5672                 kvm_wait_lapic_expire(vcpu);
5673
5674         /*
5675          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5676          * it's non-zero. Since vmentry is serialising on affected CPUs, there
5677          * is no need to worry about the conditional branch over the wrmsr
5678          * being speculatively taken.
5679          */
5680         x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5681
5682         local_irq_enable();
5683
5684         asm volatile (
5685                 "push %%" _ASM_BP "; \n\t"
5686                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5687                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5688                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5689                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5690                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5691                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5692 #ifdef CONFIG_X86_64
5693                 "mov %c[r8](%[svm]),  %%r8  \n\t"
5694                 "mov %c[r9](%[svm]),  %%r9  \n\t"
5695                 "mov %c[r10](%[svm]), %%r10 \n\t"
5696                 "mov %c[r11](%[svm]), %%r11 \n\t"
5697                 "mov %c[r12](%[svm]), %%r12 \n\t"
5698                 "mov %c[r13](%[svm]), %%r13 \n\t"
5699                 "mov %c[r14](%[svm]), %%r14 \n\t"
5700                 "mov %c[r15](%[svm]), %%r15 \n\t"
5701 #endif
5702
5703                 /* Enter guest mode */
5704                 "push %%" _ASM_AX " \n\t"
5705                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5706                 __ex("vmload %%" _ASM_AX) "\n\t"
5707                 __ex("vmrun %%" _ASM_AX) "\n\t"
5708                 __ex("vmsave %%" _ASM_AX) "\n\t"
5709                 "pop %%" _ASM_AX " \n\t"
5710
5711                 /* Save guest registers, load host registers */
5712                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5713                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5714                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5715                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5716                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5717                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5718 #ifdef CONFIG_X86_64
5719                 "mov %%r8,  %c[r8](%[svm]) \n\t"
5720                 "mov %%r9,  %c[r9](%[svm]) \n\t"
5721                 "mov %%r10, %c[r10](%[svm]) \n\t"
5722                 "mov %%r11, %c[r11](%[svm]) \n\t"
5723                 "mov %%r12, %c[r12](%[svm]) \n\t"
5724                 "mov %%r13, %c[r13](%[svm]) \n\t"
5725                 "mov %%r14, %c[r14](%[svm]) \n\t"
5726                 "mov %%r15, %c[r15](%[svm]) \n\t"
5727                 /*
5728                 * Clear host registers marked as clobbered to prevent
5729                 * speculative use.
5730                 */
5731                 "xor %%r8d, %%r8d \n\t"
5732                 "xor %%r9d, %%r9d \n\t"
5733                 "xor %%r10d, %%r10d \n\t"
5734                 "xor %%r11d, %%r11d \n\t"
5735                 "xor %%r12d, %%r12d \n\t"
5736                 "xor %%r13d, %%r13d \n\t"
5737                 "xor %%r14d, %%r14d \n\t"
5738                 "xor %%r15d, %%r15d \n\t"
5739 #endif
5740                 "xor %%ebx, %%ebx \n\t"
5741                 "xor %%ecx, %%ecx \n\t"
5742                 "xor %%edx, %%edx \n\t"
5743                 "xor %%esi, %%esi \n\t"
5744                 "xor %%edi, %%edi \n\t"
5745                 "pop %%" _ASM_BP
5746                 :
5747                 : [svm]"a"(svm),
5748                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5749                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5750                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5751                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5752                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5753                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5754                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5755 #ifdef CONFIG_X86_64
5756                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5757                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5758                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5759                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5760                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5761                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5762                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5763                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5764 #endif
5765                 : "cc", "memory"
5766 #ifdef CONFIG_X86_64
5767                 , "rbx", "rcx", "rdx", "rsi", "rdi"
5768                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5769 #else
5770                 , "ebx", "ecx", "edx", "esi", "edi"
5771 #endif
5772                 );
5773
5774         /* Eliminate branch target predictions from guest mode */
5775         vmexit_fill_RSB();
5776
5777 #ifdef CONFIG_X86_64
5778         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5779 #else
5780         loadsegment(fs, svm->host.fs);
5781 #ifndef CONFIG_X86_32_LAZY_GS
5782         loadsegment(gs, svm->host.gs);
5783 #endif
5784 #endif
5785
5786         /*
5787          * We do not use IBRS in the kernel. If this vCPU has used the
5788          * SPEC_CTRL MSR it may have left it on; save the value and
5789          * turn it off. This is much more efficient than blindly adding
5790          * it to the atomic save/restore list. Especially as the former
5791          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5792          *
5793          * For non-nested case:
5794          * If the L01 MSR bitmap does not intercept the MSR, then we need to
5795          * save it.
5796          *
5797          * For nested case:
5798          * If the L02 MSR bitmap does not intercept the MSR, then we need to
5799          * save it.
5800          */
5801         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5802                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5803
5804         reload_tss(vcpu);
5805
5806         local_irq_disable();
5807
5808         x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5809
5810         vcpu->arch.cr2 = svm->vmcb->save.cr2;
5811         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5812         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5813         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5814
5815         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5816                 kvm_before_interrupt(&svm->vcpu);
5817
5818         kvm_put_guest_xcr0(vcpu);
5819         stgi();
5820
5821         /* Any pending NMI will happen here */
5822
5823         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5824                 kvm_after_interrupt(&svm->vcpu);
5825
5826         sync_cr8_to_lapic(vcpu);
5827
5828         svm->next_rip = 0;
5829
5830         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5831
5832         /* if exit due to PF check for async PF */
5833         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5834                 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5835
5836         if (npt_enabled) {
5837                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5838                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5839         }
5840
5841         /*
5842          * We need to handle MC intercepts here before the vcpu has a chance to
5843          * change the physical cpu
5844          */
5845         if (unlikely(svm->vmcb->control.exit_code ==
5846                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
5847                 svm_handle_mce(svm);
5848
5849         mark_all_clean(svm->vmcb);
5850 }
5851 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5852
5853 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5854 {
5855         struct vcpu_svm *svm = to_svm(vcpu);
5856
5857         svm->vmcb->save.cr3 = __sme_set(root);
5858         mark_dirty(svm->vmcb, VMCB_CR);
5859 }
5860
5861 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5862 {
5863         struct vcpu_svm *svm = to_svm(vcpu);
5864
5865         svm->vmcb->control.nested_cr3 = __sme_set(root);
5866         mark_dirty(svm->vmcb, VMCB_NPT);
5867
5868         /* Also sync guest cr3 here in case we live migrate */
5869         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5870         mark_dirty(svm->vmcb, VMCB_CR);
5871 }
5872
5873 static int is_disabled(void)
5874 {
5875         u64 vm_cr;
5876
5877         rdmsrl(MSR_VM_CR, vm_cr);
5878         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5879                 return 1;
5880
5881         return 0;
5882 }
5883
5884 static void
5885 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5886 {
5887         /*
5888          * Patch in the VMMCALL instruction:
5889          */
5890         hypercall[0] = 0x0f;
5891         hypercall[1] = 0x01;
5892         hypercall[2] = 0xd9;
5893 }
5894
5895 static int __init svm_check_processor_compat(void)
5896 {
5897         return 0;
5898 }
5899
5900 static bool svm_cpu_has_accelerated_tpr(void)
5901 {
5902         return false;
5903 }
5904
5905 static bool svm_has_emulated_msr(int index)
5906 {
5907         switch (index) {
5908         case MSR_IA32_MCG_EXT_CTL:
5909         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
5910                 return false;
5911         default:
5912                 break;
5913         }
5914
5915         return true;
5916 }
5917
5918 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5919 {
5920         return 0;
5921 }
5922
5923 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5924 {
5925         struct vcpu_svm *svm = to_svm(vcpu);
5926
5927         /* Update nrips enabled cache */
5928         svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5929
5930         if (!kvm_vcpu_apicv_active(vcpu))
5931                 return;
5932
5933         guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5934 }
5935
5936 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5937 {
5938         switch (func) {
5939         case 0x1:
5940                 if (avic)
5941                         entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5942                 break;
5943         case 0x80000001:
5944                 if (nested)
5945                         entry->ecx |= (1 << 2); /* Set SVM bit */
5946                 break;
5947         case 0x8000000A:
5948                 entry->eax = 1; /* SVM revision 1 */
5949                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5950                                    ASID emulation to nested SVM */
5951                 entry->ecx = 0; /* Reserved */
5952                 entry->edx = 0; /* Per default do not support any
5953                                    additional features */
5954
5955                 /* Support next_rip if host supports it */
5956                 if (boot_cpu_has(X86_FEATURE_NRIPS))
5957                         entry->edx |= SVM_FEATURE_NRIP;
5958
5959                 /* Support NPT for the guest if enabled */
5960                 if (npt_enabled)
5961                         entry->edx |= SVM_FEATURE_NPT;
5962
5963                 break;
5964         case 0x8000001F:
5965                 /* Support memory encryption cpuid if host supports it */
5966                 if (boot_cpu_has(X86_FEATURE_SEV))
5967                         cpuid(0x8000001f, &entry->eax, &entry->ebx,
5968                                 &entry->ecx, &entry->edx);
5969
5970         }
5971 }
5972
5973 static int svm_get_lpage_level(void)
5974 {
5975         return PT_PDPE_LEVEL;
5976 }
5977
5978 static bool svm_rdtscp_supported(void)
5979 {
5980         return boot_cpu_has(X86_FEATURE_RDTSCP);
5981 }
5982
5983 static bool svm_invpcid_supported(void)
5984 {
5985         return false;
5986 }
5987
5988 static bool svm_mpx_supported(void)
5989 {
5990         return false;
5991 }
5992
5993 static bool svm_xsaves_supported(void)
5994 {
5995         return false;
5996 }
5997
5998 static bool svm_umip_emulated(void)
5999 {
6000         return false;
6001 }
6002
6003 static bool svm_pt_supported(void)
6004 {
6005         return false;
6006 }
6007
6008 static bool svm_has_wbinvd_exit(void)
6009 {
6010         return true;
6011 }
6012
6013 #define PRE_EX(exit)  { .exit_code = (exit), \
6014                         .stage = X86_ICPT_PRE_EXCEPT, }
6015 #define POST_EX(exit) { .exit_code = (exit), \
6016                         .stage = X86_ICPT_POST_EXCEPT, }
6017 #define POST_MEM(exit) { .exit_code = (exit), \
6018                         .stage = X86_ICPT_POST_MEMACCESS, }
6019
6020 static const struct __x86_intercept {
6021         u32 exit_code;
6022         enum x86_intercept_stage stage;
6023 } x86_intercept_map[] = {
6024         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
6025         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
6026         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
6027         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
6028         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
6029         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
6030         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
6031         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
6032         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
6033         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
6034         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
6035         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
6036         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
6037         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
6038         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
6039         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
6040         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
6041         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
6042         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
6043         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
6044         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
6045         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
6046         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
6047         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
6048         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
6049         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
6050         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
6051         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
6052         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
6053         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
6054         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
6055         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
6056         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
6057         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
6058         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
6059         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
6060         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
6061         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
6062         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
6063         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
6064         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
6065         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
6066         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
6067         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
6068         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
6069         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
6070 };
6071
6072 #undef PRE_EX
6073 #undef POST_EX
6074 #undef POST_MEM
6075
6076 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6077                                struct x86_instruction_info *info,
6078                                enum x86_intercept_stage stage)
6079 {
6080         struct vcpu_svm *svm = to_svm(vcpu);
6081         int vmexit, ret = X86EMUL_CONTINUE;
6082         struct __x86_intercept icpt_info;
6083         struct vmcb *vmcb = svm->vmcb;
6084
6085         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6086                 goto out;
6087
6088         icpt_info = x86_intercept_map[info->intercept];
6089
6090         if (stage != icpt_info.stage)
6091                 goto out;
6092
6093         switch (icpt_info.exit_code) {
6094         case SVM_EXIT_READ_CR0:
6095                 if (info->intercept == x86_intercept_cr_read)
6096                         icpt_info.exit_code += info->modrm_reg;
6097                 break;
6098         case SVM_EXIT_WRITE_CR0: {
6099                 unsigned long cr0, val;
6100                 u64 intercept;
6101
6102                 if (info->intercept == x86_intercept_cr_write)
6103                         icpt_info.exit_code += info->modrm_reg;
6104
6105                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6106                     info->intercept == x86_intercept_clts)
6107                         break;
6108
6109                 intercept = svm->nested.intercept;
6110
6111                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6112                         break;
6113
6114                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6115                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
6116
6117                 if (info->intercept == x86_intercept_lmsw) {
6118                         cr0 &= 0xfUL;
6119                         val &= 0xfUL;
6120                         /* lmsw can't clear PE - catch this here */
6121                         if (cr0 & X86_CR0_PE)
6122                                 val |= X86_CR0_PE;
6123                 }
6124
6125                 if (cr0 ^ val)
6126                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6127
6128                 break;
6129         }
6130         case SVM_EXIT_READ_DR0:
6131         case SVM_EXIT_WRITE_DR0:
6132                 icpt_info.exit_code += info->modrm_reg;
6133                 break;
6134         case SVM_EXIT_MSR:
6135                 if (info->intercept == x86_intercept_wrmsr)
6136                         vmcb->control.exit_info_1 = 1;
6137                 else
6138                         vmcb->control.exit_info_1 = 0;
6139                 break;
6140         case SVM_EXIT_PAUSE:
6141                 /*
6142                  * We get this for NOP only, but pause
6143                  * is rep not, check this here
6144                  */
6145                 if (info->rep_prefix != REPE_PREFIX)
6146                         goto out;
6147                 break;
6148         case SVM_EXIT_IOIO: {
6149                 u64 exit_info;
6150                 u32 bytes;
6151
6152                 if (info->intercept == x86_intercept_in ||
6153                     info->intercept == x86_intercept_ins) {
6154                         exit_info = ((info->src_val & 0xffff) << 16) |
6155                                 SVM_IOIO_TYPE_MASK;
6156                         bytes = info->dst_bytes;
6157                 } else {
6158                         exit_info = (info->dst_val & 0xffff) << 16;
6159                         bytes = info->src_bytes;
6160                 }
6161
6162                 if (info->intercept == x86_intercept_outs ||
6163                     info->intercept == x86_intercept_ins)
6164                         exit_info |= SVM_IOIO_STR_MASK;
6165
6166                 if (info->rep_prefix)
6167                         exit_info |= SVM_IOIO_REP_MASK;
6168
6169                 bytes = min(bytes, 4u);
6170
6171                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6172
6173                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6174
6175                 vmcb->control.exit_info_1 = exit_info;
6176                 vmcb->control.exit_info_2 = info->next_rip;
6177
6178                 break;
6179         }
6180         default:
6181                 break;
6182         }
6183
6184         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6185         if (static_cpu_has(X86_FEATURE_NRIPS))
6186                 vmcb->control.next_rip  = info->next_rip;
6187         vmcb->control.exit_code = icpt_info.exit_code;
6188         vmexit = nested_svm_exit_handled(svm);
6189
6190         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6191                                            : X86EMUL_CONTINUE;
6192
6193 out:
6194         return ret;
6195 }
6196
6197 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6198 {
6199
6200 }
6201
6202 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6203 {
6204         if (pause_filter_thresh)
6205                 shrink_ple_window(vcpu);
6206 }
6207
6208 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6209 {
6210         if (avic_handle_apic_id_update(vcpu) != 0)
6211                 return;
6212         avic_handle_dfr_update(vcpu);
6213         avic_handle_ldr_update(vcpu);
6214 }
6215
6216 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6217 {
6218         /* [63:9] are reserved. */
6219         vcpu->arch.mcg_cap &= 0x1ff;
6220 }
6221
6222 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6223 {
6224         struct vcpu_svm *svm = to_svm(vcpu);
6225
6226         /* Per APM Vol.2 15.22.2 "Response to SMI" */
6227         if (!gif_set(svm))
6228                 return 0;
6229
6230         if (is_guest_mode(&svm->vcpu) &&
6231             svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6232                 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6233                 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6234                 svm->nested.exit_required = true;
6235                 return 0;
6236         }
6237
6238         return 1;
6239 }
6240
6241 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6242 {
6243         struct vcpu_svm *svm = to_svm(vcpu);
6244         int ret;
6245
6246         if (is_guest_mode(vcpu)) {
6247                 /* FED8h - SVM Guest */
6248                 put_smstate(u64, smstate, 0x7ed8, 1);
6249                 /* FEE0h - SVM Guest VMCB Physical Address */
6250                 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6251
6252                 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6253                 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6254                 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6255
6256                 ret = nested_svm_vmexit(svm);
6257                 if (ret)
6258                         return ret;
6259         }
6260         return 0;
6261 }
6262
6263 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6264 {
6265         struct vcpu_svm *svm = to_svm(vcpu);
6266         struct vmcb *nested_vmcb;
6267         struct kvm_host_map map;
6268         u64 guest;
6269         u64 vmcb;
6270
6271         guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6272         vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6273
6274         if (guest) {
6275                 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6276                         return 1;
6277                 nested_vmcb = map.hva;
6278                 enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6279         }
6280         return 0;
6281 }
6282
6283 static int enable_smi_window(struct kvm_vcpu *vcpu)
6284 {
6285         struct vcpu_svm *svm = to_svm(vcpu);
6286
6287         if (!gif_set(svm)) {
6288                 if (vgif_enabled(svm))
6289                         set_intercept(svm, INTERCEPT_STGI);
6290                 /* STGI will cause a vm exit */
6291                 return 1;
6292         }
6293         return 0;
6294 }
6295
6296 static int sev_asid_new(void)
6297 {
6298         int pos;
6299
6300         /*
6301          * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6302          */
6303         pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6304         if (pos >= max_sev_asid)
6305                 return -EBUSY;
6306
6307         set_bit(pos, sev_asid_bitmap);
6308         return pos + 1;
6309 }
6310
6311 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6312 {
6313         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6314         int asid, ret;
6315
6316         ret = -EBUSY;
6317         if (unlikely(sev->active))
6318                 return ret;
6319
6320         asid = sev_asid_new();
6321         if (asid < 0)
6322                 return ret;
6323
6324         ret = sev_platform_init(&argp->error);
6325         if (ret)
6326                 goto e_free;
6327
6328         sev->active = true;
6329         sev->asid = asid;
6330         INIT_LIST_HEAD(&sev->regions_list);
6331
6332         return 0;
6333
6334 e_free:
6335         __sev_asid_free(asid);
6336         return ret;
6337 }
6338
6339 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6340 {
6341         struct sev_data_activate *data;
6342         int asid = sev_get_asid(kvm);
6343         int ret;
6344
6345         wbinvd_on_all_cpus();
6346
6347         ret = sev_guest_df_flush(error);
6348         if (ret)
6349                 return ret;
6350
6351         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6352         if (!data)
6353                 return -ENOMEM;
6354
6355         /* activate ASID on the given handle */
6356         data->handle = handle;
6357         data->asid   = asid;
6358         ret = sev_guest_activate(data, error);
6359         kfree(data);
6360
6361         return ret;
6362 }
6363
6364 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6365 {
6366         struct fd f;
6367         int ret;
6368
6369         f = fdget(fd);
6370         if (!f.file)
6371                 return -EBADF;
6372
6373         ret = sev_issue_cmd_external_user(f.file, id, data, error);
6374
6375         fdput(f);
6376         return ret;
6377 }
6378
6379 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6380 {
6381         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6382
6383         return __sev_issue_cmd(sev->fd, id, data, error);
6384 }
6385
6386 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6387 {
6388         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6389         struct sev_data_launch_start *start;
6390         struct kvm_sev_launch_start params;
6391         void *dh_blob, *session_blob;
6392         int *error = &argp->error;
6393         int ret;
6394
6395         if (!sev_guest(kvm))
6396                 return -ENOTTY;
6397
6398         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6399                 return -EFAULT;
6400
6401         start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6402         if (!start)
6403                 return -ENOMEM;
6404
6405         dh_blob = NULL;
6406         if (params.dh_uaddr) {
6407                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6408                 if (IS_ERR(dh_blob)) {
6409                         ret = PTR_ERR(dh_blob);
6410                         goto e_free;
6411                 }
6412
6413                 start->dh_cert_address = __sme_set(__pa(dh_blob));
6414                 start->dh_cert_len = params.dh_len;
6415         }
6416
6417         session_blob = NULL;
6418         if (params.session_uaddr) {
6419                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6420                 if (IS_ERR(session_blob)) {
6421                         ret = PTR_ERR(session_blob);
6422                         goto e_free_dh;
6423                 }
6424
6425                 start->session_address = __sme_set(__pa(session_blob));
6426                 start->session_len = params.session_len;
6427         }
6428
6429         start->handle = params.handle;
6430         start->policy = params.policy;
6431
6432         /* create memory encryption context */
6433         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6434         if (ret)
6435                 goto e_free_session;
6436
6437         /* Bind ASID to this guest */
6438         ret = sev_bind_asid(kvm, start->handle, error);
6439         if (ret)
6440                 goto e_free_session;
6441
6442         /* return handle to userspace */
6443         params.handle = start->handle;
6444         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6445                 sev_unbind_asid(kvm, start->handle);
6446                 ret = -EFAULT;
6447                 goto e_free_session;
6448         }
6449
6450         sev->handle = start->handle;
6451         sev->fd = argp->sev_fd;
6452
6453 e_free_session:
6454         kfree(session_blob);
6455 e_free_dh:
6456         kfree(dh_blob);
6457 e_free:
6458         kfree(start);
6459         return ret;
6460 }
6461
6462 static unsigned long get_num_contig_pages(unsigned long idx,
6463                                 struct page **inpages, unsigned long npages)
6464 {
6465         unsigned long paddr, next_paddr;
6466         unsigned long i = idx + 1, pages = 1;
6467
6468         /* find the number of contiguous pages starting from idx */
6469         paddr = __sme_page_pa(inpages[idx]);
6470         while (i < npages) {
6471                 next_paddr = __sme_page_pa(inpages[i++]);
6472                 if ((paddr + PAGE_SIZE) == next_paddr) {
6473                         pages++;
6474                         paddr = next_paddr;
6475                         continue;
6476                 }
6477                 break;
6478         }
6479
6480         return pages;
6481 }
6482
6483 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6484 {
6485         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6486         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6487         struct kvm_sev_launch_update_data params;
6488         struct sev_data_launch_update_data *data;
6489         struct page **inpages;
6490         int ret;
6491
6492         if (!sev_guest(kvm))
6493                 return -ENOTTY;
6494
6495         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6496                 return -EFAULT;
6497
6498         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6499         if (!data)
6500                 return -ENOMEM;
6501
6502         vaddr = params.uaddr;
6503         size = params.len;
6504         vaddr_end = vaddr + size;
6505
6506         /* Lock the user memory. */
6507         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6508         if (!inpages) {
6509                 ret = -ENOMEM;
6510                 goto e_free;
6511         }
6512
6513         /*
6514          * The LAUNCH_UPDATE command will perform in-place encryption of the
6515          * memory content (i.e it will write the same memory region with C=1).
6516          * It's possible that the cache may contain the data with C=0, i.e.,
6517          * unencrypted so invalidate it first.
6518          */
6519         sev_clflush_pages(inpages, npages);
6520
6521         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6522                 int offset, len;
6523
6524                 /*
6525                  * If the user buffer is not page-aligned, calculate the offset
6526                  * within the page.
6527                  */
6528                 offset = vaddr & (PAGE_SIZE - 1);
6529
6530                 /* Calculate the number of pages that can be encrypted in one go. */
6531                 pages = get_num_contig_pages(i, inpages, npages);
6532
6533                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6534
6535                 data->handle = sev->handle;
6536                 data->len = len;
6537                 data->address = __sme_page_pa(inpages[i]) + offset;
6538                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6539                 if (ret)
6540                         goto e_unpin;
6541
6542                 size -= len;
6543                 next_vaddr = vaddr + len;
6544         }
6545
6546 e_unpin:
6547         /* content of memory is updated, mark pages dirty */
6548         for (i = 0; i < npages; i++) {
6549                 set_page_dirty_lock(inpages[i]);
6550                 mark_page_accessed(inpages[i]);
6551         }
6552         /* unlock the user pages */
6553         sev_unpin_memory(kvm, inpages, npages);
6554 e_free:
6555         kfree(data);
6556         return ret;
6557 }
6558
6559 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6560 {
6561         void __user *measure = (void __user *)(uintptr_t)argp->data;
6562         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6563         struct sev_data_launch_measure *data;
6564         struct kvm_sev_launch_measure params;
6565         void __user *p = NULL;
6566         void *blob = NULL;
6567         int ret;
6568
6569         if (!sev_guest(kvm))
6570                 return -ENOTTY;
6571
6572         if (copy_from_user(&params, measure, sizeof(params)))
6573                 return -EFAULT;
6574
6575         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6576         if (!data)
6577                 return -ENOMEM;
6578
6579         /* User wants to query the blob length */
6580         if (!params.len)
6581                 goto cmd;
6582
6583         p = (void __user *)(uintptr_t)params.uaddr;
6584         if (p) {
6585                 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6586                         ret = -EINVAL;
6587                         goto e_free;
6588                 }
6589
6590                 ret = -ENOMEM;
6591                 blob = kmalloc(params.len, GFP_KERNEL);
6592                 if (!blob)
6593                         goto e_free;
6594
6595                 data->address = __psp_pa(blob);
6596                 data->len = params.len;
6597         }
6598
6599 cmd:
6600         data->handle = sev->handle;
6601         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6602
6603         /*
6604          * If we query the session length, FW responded with expected data.
6605          */
6606         if (!params.len)
6607                 goto done;
6608
6609         if (ret)
6610                 goto e_free_blob;
6611
6612         if (blob) {
6613                 if (copy_to_user(p, blob, params.len))
6614                         ret = -EFAULT;
6615         }
6616
6617 done:
6618         params.len = data->len;
6619         if (copy_to_user(measure, &params, sizeof(params)))
6620                 ret = -EFAULT;
6621 e_free_blob:
6622         kfree(blob);
6623 e_free:
6624         kfree(data);
6625         return ret;
6626 }
6627
6628 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6629 {
6630         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6631         struct sev_data_launch_finish *data;
6632         int ret;
6633
6634         if (!sev_guest(kvm))
6635                 return -ENOTTY;
6636
6637         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6638         if (!data)
6639                 return -ENOMEM;
6640
6641         data->handle = sev->handle;
6642         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6643
6644         kfree(data);
6645         return ret;
6646 }
6647
6648 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6649 {
6650         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6651         struct kvm_sev_guest_status params;
6652         struct sev_data_guest_status *data;
6653         int ret;
6654
6655         if (!sev_guest(kvm))
6656                 return -ENOTTY;
6657
6658         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6659         if (!data)
6660                 return -ENOMEM;
6661
6662         data->handle = sev->handle;
6663         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6664         if (ret)
6665                 goto e_free;
6666
6667         params.policy = data->policy;
6668         params.state = data->state;
6669         params.handle = data->handle;
6670
6671         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6672                 ret = -EFAULT;
6673 e_free:
6674         kfree(data);
6675         return ret;
6676 }
6677
6678 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6679                                unsigned long dst, int size,
6680                                int *error, bool enc)
6681 {
6682         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6683         struct sev_data_dbg *data;
6684         int ret;
6685
6686         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6687         if (!data)
6688                 return -ENOMEM;
6689
6690         data->handle = sev->handle;
6691         data->dst_addr = dst;
6692         data->src_addr = src;
6693         data->len = size;
6694
6695         ret = sev_issue_cmd(kvm,
6696                             enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6697                             data, error);
6698         kfree(data);
6699         return ret;
6700 }
6701
6702 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6703                              unsigned long dst_paddr, int sz, int *err)
6704 {
6705         int offset;
6706
6707         /*
6708          * Its safe to read more than we are asked, caller should ensure that
6709          * destination has enough space.
6710          */
6711         src_paddr = round_down(src_paddr, 16);
6712         offset = src_paddr & 15;
6713         sz = round_up(sz + offset, 16);
6714
6715         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6716 }
6717
6718 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6719                                   unsigned long __user dst_uaddr,
6720                                   unsigned long dst_paddr,
6721                                   int size, int *err)
6722 {
6723         struct page *tpage = NULL;
6724         int ret, offset;
6725
6726         /* if inputs are not 16-byte then use intermediate buffer */
6727         if (!IS_ALIGNED(dst_paddr, 16) ||
6728             !IS_ALIGNED(paddr,     16) ||
6729             !IS_ALIGNED(size,      16)) {
6730                 tpage = (void *)alloc_page(GFP_KERNEL);
6731                 if (!tpage)
6732                         return -ENOMEM;
6733
6734                 dst_paddr = __sme_page_pa(tpage);
6735         }
6736
6737         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6738         if (ret)
6739                 goto e_free;
6740
6741         if (tpage) {
6742                 offset = paddr & 15;
6743                 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6744                                  page_address(tpage) + offset, size))
6745                         ret = -EFAULT;
6746         }
6747
6748 e_free:
6749         if (tpage)
6750                 __free_page(tpage);
6751
6752         return ret;
6753 }
6754
6755 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6756                                   unsigned long __user vaddr,
6757                                   unsigned long dst_paddr,
6758                                   unsigned long __user dst_vaddr,
6759                                   int size, int *error)
6760 {
6761         struct page *src_tpage = NULL;
6762         struct page *dst_tpage = NULL;
6763         int ret, len = size;
6764
6765         /* If source buffer is not aligned then use an intermediate buffer */
6766         if (!IS_ALIGNED(vaddr, 16)) {
6767                 src_tpage = alloc_page(GFP_KERNEL);
6768                 if (!src_tpage)
6769                         return -ENOMEM;
6770
6771                 if (copy_from_user(page_address(src_tpage),
6772                                 (void __user *)(uintptr_t)vaddr, size)) {
6773                         __free_page(src_tpage);
6774                         return -EFAULT;
6775                 }
6776
6777                 paddr = __sme_page_pa(src_tpage);
6778         }
6779
6780         /*
6781          *  If destination buffer or length is not aligned then do read-modify-write:
6782          *   - decrypt destination in an intermediate buffer
6783          *   - copy the source buffer in an intermediate buffer
6784          *   - use the intermediate buffer as source buffer
6785          */
6786         if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6787                 int dst_offset;
6788
6789                 dst_tpage = alloc_page(GFP_KERNEL);
6790                 if (!dst_tpage) {
6791                         ret = -ENOMEM;
6792                         goto e_free;
6793                 }
6794
6795                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6796                                         __sme_page_pa(dst_tpage), size, error);
6797                 if (ret)
6798                         goto e_free;
6799
6800                 /*
6801                  *  If source is kernel buffer then use memcpy() otherwise
6802                  *  copy_from_user().
6803                  */
6804                 dst_offset = dst_paddr & 15;
6805
6806                 if (src_tpage)
6807                         memcpy(page_address(dst_tpage) + dst_offset,
6808                                page_address(src_tpage), size);
6809                 else {
6810                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
6811                                            (void __user *)(uintptr_t)vaddr, size)) {
6812                                 ret = -EFAULT;
6813                                 goto e_free;
6814                         }
6815                 }
6816
6817                 paddr = __sme_page_pa(dst_tpage);
6818                 dst_paddr = round_down(dst_paddr, 16);
6819                 len = round_up(size, 16);
6820         }
6821
6822         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6823
6824 e_free:
6825         if (src_tpage)
6826                 __free_page(src_tpage);
6827         if (dst_tpage)
6828                 __free_page(dst_tpage);
6829         return ret;
6830 }
6831
6832 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6833 {
6834         unsigned long vaddr, vaddr_end, next_vaddr;
6835         unsigned long dst_vaddr;
6836         struct page **src_p, **dst_p;
6837         struct kvm_sev_dbg debug;
6838         unsigned long n;
6839         unsigned int size;
6840         int ret;
6841
6842         if (!sev_guest(kvm))
6843                 return -ENOTTY;
6844
6845         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6846                 return -EFAULT;
6847
6848         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6849                 return -EINVAL;
6850         if (!debug.dst_uaddr)
6851                 return -EINVAL;
6852
6853         vaddr = debug.src_uaddr;
6854         size = debug.len;
6855         vaddr_end = vaddr + size;
6856         dst_vaddr = debug.dst_uaddr;
6857
6858         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6859                 int len, s_off, d_off;
6860
6861                 /* lock userspace source and destination page */
6862                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6863                 if (!src_p)
6864                         return -EFAULT;
6865
6866                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6867                 if (!dst_p) {
6868                         sev_unpin_memory(kvm, src_p, n);
6869                         return -EFAULT;
6870                 }
6871
6872                 /*
6873                  * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6874                  * memory content (i.e it will write the same memory region with C=1).
6875                  * It's possible that the cache may contain the data with C=0, i.e.,
6876                  * unencrypted so invalidate it first.
6877                  */
6878                 sev_clflush_pages(src_p, 1);
6879                 sev_clflush_pages(dst_p, 1);
6880
6881                 /*
6882                  * Since user buffer may not be page aligned, calculate the
6883                  * offset within the page.
6884                  */
6885                 s_off = vaddr & ~PAGE_MASK;
6886                 d_off = dst_vaddr & ~PAGE_MASK;
6887                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6888
6889                 if (dec)
6890                         ret = __sev_dbg_decrypt_user(kvm,
6891                                                      __sme_page_pa(src_p[0]) + s_off,
6892                                                      dst_vaddr,
6893                                                      __sme_page_pa(dst_p[0]) + d_off,
6894                                                      len, &argp->error);
6895                 else
6896                         ret = __sev_dbg_encrypt_user(kvm,
6897                                                      __sme_page_pa(src_p[0]) + s_off,
6898                                                      vaddr,
6899                                                      __sme_page_pa(dst_p[0]) + d_off,
6900                                                      dst_vaddr,
6901                                                      len, &argp->error);
6902
6903                 sev_unpin_memory(kvm, src_p, n);
6904                 sev_unpin_memory(kvm, dst_p, n);
6905
6906                 if (ret)
6907                         goto err;
6908
6909                 next_vaddr = vaddr + len;
6910                 dst_vaddr = dst_vaddr + len;
6911                 size -= len;
6912         }
6913 err:
6914         return ret;
6915 }
6916
6917 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6918 {
6919         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6920         struct sev_data_launch_secret *data;
6921         struct kvm_sev_launch_secret params;
6922         struct page **pages;
6923         void *blob, *hdr;
6924         unsigned long n;
6925         int ret, offset;
6926
6927         if (!sev_guest(kvm))
6928                 return -ENOTTY;
6929
6930         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6931                 return -EFAULT;
6932
6933         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6934         if (!pages)
6935                 return -ENOMEM;
6936
6937         /*
6938          * The secret must be copied into contiguous memory region, lets verify
6939          * that userspace memory pages are contiguous before we issue command.
6940          */
6941         if (get_num_contig_pages(0, pages, n) != n) {
6942                 ret = -EINVAL;
6943                 goto e_unpin_memory;
6944         }
6945
6946         ret = -ENOMEM;
6947         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6948         if (!data)
6949                 goto e_unpin_memory;
6950
6951         offset = params.guest_uaddr & (PAGE_SIZE - 1);
6952         data->guest_address = __sme_page_pa(pages[0]) + offset;
6953         data->guest_len = params.guest_len;
6954
6955         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6956         if (IS_ERR(blob)) {
6957                 ret = PTR_ERR(blob);
6958                 goto e_free;
6959         }
6960
6961         data->trans_address = __psp_pa(blob);
6962         data->trans_len = params.trans_len;
6963
6964         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6965         if (IS_ERR(hdr)) {
6966                 ret = PTR_ERR(hdr);
6967                 goto e_free_blob;
6968         }
6969         data->hdr_address = __psp_pa(hdr);
6970         data->hdr_len = params.hdr_len;
6971
6972         data->handle = sev->handle;
6973         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6974
6975         kfree(hdr);
6976
6977 e_free_blob:
6978         kfree(blob);
6979 e_free:
6980         kfree(data);
6981 e_unpin_memory:
6982         sev_unpin_memory(kvm, pages, n);
6983         return ret;
6984 }
6985
6986 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6987 {
6988         struct kvm_sev_cmd sev_cmd;
6989         int r;
6990
6991         if (!svm_sev_enabled())
6992                 return -ENOTTY;
6993
6994         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6995                 return -EFAULT;
6996
6997         mutex_lock(&kvm->lock);
6998
6999         switch (sev_cmd.id) {
7000         case KVM_SEV_INIT:
7001                 r = sev_guest_init(kvm, &sev_cmd);
7002                 break;
7003         case KVM_SEV_LAUNCH_START:
7004                 r = sev_launch_start(kvm, &sev_cmd);
7005                 break;
7006         case KVM_SEV_LAUNCH_UPDATE_DATA:
7007                 r = sev_launch_update_data(kvm, &sev_cmd);
7008                 break;
7009         case KVM_SEV_LAUNCH_MEASURE:
7010                 r = sev_launch_measure(kvm, &sev_cmd);
7011                 break;
7012         case KVM_SEV_LAUNCH_FINISH:
7013                 r = sev_launch_finish(kvm, &sev_cmd);
7014                 break;
7015         case KVM_SEV_GUEST_STATUS:
7016                 r = sev_guest_status(kvm, &sev_cmd);
7017                 break;
7018         case KVM_SEV_DBG_DECRYPT:
7019                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
7020                 break;
7021         case KVM_SEV_DBG_ENCRYPT:
7022                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
7023                 break;
7024         case KVM_SEV_LAUNCH_SECRET:
7025                 r = sev_launch_secret(kvm, &sev_cmd);
7026                 break;
7027         default:
7028                 r = -EINVAL;
7029                 goto out;
7030         }
7031
7032         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7033                 r = -EFAULT;
7034
7035 out:
7036         mutex_unlock(&kvm->lock);
7037         return r;
7038 }
7039
7040 static int svm_register_enc_region(struct kvm *kvm,
7041                                    struct kvm_enc_region *range)
7042 {
7043         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7044         struct enc_region *region;
7045         int ret = 0;
7046
7047         if (!sev_guest(kvm))
7048                 return -ENOTTY;
7049
7050         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7051                 return -EINVAL;
7052
7053         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7054         if (!region)
7055                 return -ENOMEM;
7056
7057         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
7058         if (!region->pages) {
7059                 ret = -ENOMEM;
7060                 goto e_free;
7061         }
7062
7063         /*
7064          * The guest may change the memory encryption attribute from C=0 -> C=1
7065          * or vice versa for this memory range. Lets make sure caches are
7066          * flushed to ensure that guest data gets written into memory with
7067          * correct C-bit.
7068          */
7069         sev_clflush_pages(region->pages, region->npages);
7070
7071         region->uaddr = range->addr;
7072         region->size = range->size;
7073
7074         mutex_lock(&kvm->lock);
7075         list_add_tail(&region->list, &sev->regions_list);
7076         mutex_unlock(&kvm->lock);
7077
7078         return ret;
7079
7080 e_free:
7081         kfree(region);
7082         return ret;
7083 }
7084
7085 static struct enc_region *
7086 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7087 {
7088         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7089         struct list_head *head = &sev->regions_list;
7090         struct enc_region *i;
7091
7092         list_for_each_entry(i, head, list) {
7093                 if (i->uaddr == range->addr &&
7094                     i->size == range->size)
7095                         return i;
7096         }
7097
7098         return NULL;
7099 }
7100
7101
7102 static int svm_unregister_enc_region(struct kvm *kvm,
7103                                      struct kvm_enc_region *range)
7104 {
7105         struct enc_region *region;
7106         int ret;
7107
7108         mutex_lock(&kvm->lock);
7109
7110         if (!sev_guest(kvm)) {
7111                 ret = -ENOTTY;
7112                 goto failed;
7113         }
7114
7115         region = find_enc_region(kvm, range);
7116         if (!region) {
7117                 ret = -EINVAL;
7118                 goto failed;
7119         }
7120
7121         __unregister_enc_region_locked(kvm, region);
7122
7123         mutex_unlock(&kvm->lock);
7124         return 0;
7125
7126 failed:
7127         mutex_unlock(&kvm->lock);
7128         return ret;
7129 }
7130
7131 static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
7132                                    uint16_t *vmcs_version)
7133 {
7134         /* Intel-only feature */
7135         return -ENODEV;
7136 }
7137
7138 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7139 {
7140         unsigned long cr4 = kvm_read_cr4(vcpu);
7141         bool smep = cr4 & X86_CR4_SMEP;
7142         bool smap = cr4 & X86_CR4_SMAP;
7143         bool is_user = svm_get_cpl(vcpu) == 3;
7144
7145         /*
7146          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7147          *
7148          * Errata:
7149          * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7150          * possible that CPU microcode implementing DecodeAssist will fail
7151          * to read bytes of instruction which caused #NPF. In this case,
7152          * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7153          * return 0 instead of the correct guest instruction bytes.
7154          *
7155          * This happens because CPU microcode reading instruction bytes
7156          * uses a special opcode which attempts to read data using CPL=0
7157          * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7158          * fault, it gives up and returns no instruction bytes.
7159          *
7160          * Detection:
7161          * We reach here in case CPU supports DecodeAssist, raised #NPF and
7162          * returned 0 in GuestIntrBytes field of the VMCB.
7163          * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7164          * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7165          * in case vCPU CPL==3 (Because otherwise guest would have triggered
7166          * a SMEP fault instead of #NPF).
7167          * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7168          * As most guests enable SMAP if they have also enabled SMEP, use above
7169          * logic in order to attempt minimize false-positive of detecting errata
7170          * while still preserving all cases semantic correctness.
7171          *
7172          * Workaround:
7173          * To determine what instruction the guest was executing, the hypervisor
7174          * will have to decode the instruction at the instruction pointer.
7175          *
7176          * In non SEV guest, hypervisor will be able to read the guest
7177          * memory to decode the instruction pointer when insn_len is zero
7178          * so we return true to indicate that decoding is possible.
7179          *
7180          * But in the SEV guest, the guest memory is encrypted with the
7181          * guest specific key and hypervisor will not be able to decode the
7182          * instruction pointer so we will not able to workaround it. Lets
7183          * print the error and request to kill the guest.
7184          */
7185         if (smap && (!smep || is_user)) {
7186                 if (!sev_guest(vcpu->kvm))
7187                         return true;
7188
7189                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7190                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7191         }
7192
7193         return false;
7194 }
7195
7196 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7197         .cpu_has_kvm_support = has_svm,
7198         .disabled_by_bios = is_disabled,
7199         .hardware_setup = svm_hardware_setup,
7200         .hardware_unsetup = svm_hardware_unsetup,
7201         .check_processor_compatibility = svm_check_processor_compat,
7202         .hardware_enable = svm_hardware_enable,
7203         .hardware_disable = svm_hardware_disable,
7204         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7205         .has_emulated_msr = svm_has_emulated_msr,
7206
7207         .vcpu_create = svm_create_vcpu,
7208         .vcpu_free = svm_free_vcpu,
7209         .vcpu_reset = svm_vcpu_reset,
7210
7211         .vm_alloc = svm_vm_alloc,
7212         .vm_free = svm_vm_free,
7213         .vm_init = avic_vm_init,
7214         .vm_destroy = svm_vm_destroy,
7215
7216         .prepare_guest_switch = svm_prepare_guest_switch,
7217         .vcpu_load = svm_vcpu_load,
7218         .vcpu_put = svm_vcpu_put,
7219         .vcpu_blocking = svm_vcpu_blocking,
7220         .vcpu_unblocking = svm_vcpu_unblocking,
7221
7222         .update_bp_intercept = update_bp_intercept,
7223         .get_msr_feature = svm_get_msr_feature,
7224         .get_msr = svm_get_msr,
7225         .set_msr = svm_set_msr,
7226         .get_segment_base = svm_get_segment_base,
7227         .get_segment = svm_get_segment,
7228         .set_segment = svm_set_segment,
7229         .get_cpl = svm_get_cpl,
7230         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7231         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7232         .decache_cr3 = svm_decache_cr3,
7233         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7234         .set_cr0 = svm_set_cr0,
7235         .set_cr3 = svm_set_cr3,
7236         .set_cr4 = svm_set_cr4,
7237         .set_efer = svm_set_efer,
7238         .get_idt = svm_get_idt,
7239         .set_idt = svm_set_idt,
7240         .get_gdt = svm_get_gdt,
7241         .set_gdt = svm_set_gdt,
7242         .get_dr6 = svm_get_dr6,
7243         .set_dr6 = svm_set_dr6,
7244         .set_dr7 = svm_set_dr7,
7245         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7246         .cache_reg = svm_cache_reg,
7247         .get_rflags = svm_get_rflags,
7248         .set_rflags = svm_set_rflags,
7249
7250         .tlb_flush = svm_flush_tlb,
7251         .tlb_flush_gva = svm_flush_tlb_gva,
7252
7253         .run = svm_vcpu_run,
7254         .handle_exit = handle_exit,
7255         .skip_emulated_instruction = skip_emulated_instruction,
7256         .set_interrupt_shadow = svm_set_interrupt_shadow,
7257         .get_interrupt_shadow = svm_get_interrupt_shadow,
7258         .patch_hypercall = svm_patch_hypercall,
7259         .set_irq = svm_set_irq,
7260         .set_nmi = svm_inject_nmi,
7261         .queue_exception = svm_queue_exception,
7262         .cancel_injection = svm_cancel_injection,
7263         .interrupt_allowed = svm_interrupt_allowed,
7264         .nmi_allowed = svm_nmi_allowed,
7265         .get_nmi_mask = svm_get_nmi_mask,
7266         .set_nmi_mask = svm_set_nmi_mask,
7267         .enable_nmi_window = enable_nmi_window,
7268         .enable_irq_window = enable_irq_window,
7269         .update_cr8_intercept = update_cr8_intercept,
7270         .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7271         .get_enable_apicv = svm_get_enable_apicv,
7272         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7273         .load_eoi_exitmap = svm_load_eoi_exitmap,
7274         .hwapic_irr_update = svm_hwapic_irr_update,
7275         .hwapic_isr_update = svm_hwapic_isr_update,
7276         .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7277         .apicv_post_state_restore = avic_post_state_restore,
7278
7279         .set_tss_addr = svm_set_tss_addr,
7280         .set_identity_map_addr = svm_set_identity_map_addr,
7281         .get_tdp_level = get_npt_level,
7282         .get_mt_mask = svm_get_mt_mask,
7283
7284         .get_exit_info = svm_get_exit_info,
7285
7286         .get_lpage_level = svm_get_lpage_level,
7287
7288         .cpuid_update = svm_cpuid_update,
7289
7290         .rdtscp_supported = svm_rdtscp_supported,
7291         .invpcid_supported = svm_invpcid_supported,
7292         .mpx_supported = svm_mpx_supported,
7293         .xsaves_supported = svm_xsaves_supported,
7294         .umip_emulated = svm_umip_emulated,
7295         .pt_supported = svm_pt_supported,
7296
7297         .set_supported_cpuid = svm_set_supported_cpuid,
7298
7299         .has_wbinvd_exit = svm_has_wbinvd_exit,
7300
7301         .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7302         .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7303
7304         .set_tdp_cr3 = set_tdp_cr3,
7305
7306         .check_intercept = svm_check_intercept,
7307         .handle_exit_irqoff = svm_handle_exit_irqoff,
7308
7309         .request_immediate_exit = __kvm_request_immediate_exit,
7310
7311         .sched_in = svm_sched_in,
7312
7313         .pmu_ops = &amd_pmu_ops,
7314         .deliver_posted_interrupt = svm_deliver_avic_intr,
7315         .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7316         .update_pi_irte = svm_update_pi_irte,
7317         .setup_mce = svm_setup_mce,
7318
7319         .smi_allowed = svm_smi_allowed,
7320         .pre_enter_smm = svm_pre_enter_smm,
7321         .pre_leave_smm = svm_pre_leave_smm,
7322         .enable_smi_window = enable_smi_window,
7323
7324         .mem_enc_op = svm_mem_enc_op,
7325         .mem_enc_reg_region = svm_register_enc_region,
7326         .mem_enc_unreg_region = svm_unregister_enc_region,
7327
7328         .nested_enable_evmcs = nested_enable_evmcs,
7329         .nested_get_evmcs_version = NULL,
7330
7331         .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7332 };
7333
7334 static int __init svm_init(void)
7335 {
7336         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7337                         __alignof__(struct vcpu_svm), THIS_MODULE);
7338 }
7339
7340 static void __exit svm_exit(void)
7341 {
7342         kvm_exit();
7343 }
7344
7345 module_init(svm_init)
7346 module_exit(svm_exit)