Merge remote-tracking branch 'regulator/fix/core' into regulator-linus
[sfrench/cifs-2.6.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40
41 #include <asm/apic.h>
42 #include <asm/perf_event.h>
43 #include <asm/tlbflush.h>
44 #include <asm/desc.h>
45 #include <asm/debugreg.h>
46 #include <asm/kvm_para.h>
47 #include <asm/irq_remapping.h>
48
49 #include <asm/virtext.h>
50 #include "trace.h"
51
52 #define __ex(x) __kvm_handle_fault_on_reboot(x)
53
54 MODULE_AUTHOR("Qumranet");
55 MODULE_LICENSE("GPL");
56
57 static const struct x86_cpu_id svm_cpu_id[] = {
58         X86_FEATURE_MATCH(X86_FEATURE_SVM),
59         {}
60 };
61 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
62
63 #define IOPM_ALLOC_ORDER 2
64 #define MSRPM_ALLOC_ORDER 1
65
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
68
69 #define SVM_FEATURE_NPT            (1 <<  0)
70 #define SVM_FEATURE_LBRV           (1 <<  1)
71 #define SVM_FEATURE_SVML           (1 <<  2)
72 #define SVM_FEATURE_NRIP           (1 <<  3)
73 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
74 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
75 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
76 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
77 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
78
79 #define SVM_AVIC_DOORBELL       0xc001011b
80
81 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
82 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
83 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
84
85 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
86
87 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
88 #define TSC_RATIO_MIN           0x0000000000000001ULL
89 #define TSC_RATIO_MAX           0x000000ffffffffffULL
90
91 #define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
92
93 /*
94  * 0xff is broadcast, so the max index allowed for physical APIC ID
95  * table is 0xfe.  APIC IDs above 0xff are reserved.
96  */
97 #define AVIC_MAX_PHYSICAL_ID_COUNT      255
98
99 #define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
100 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
101 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
102
103 /* AVIC GATAG is encoded using VM and VCPU IDs */
104 #define AVIC_VCPU_ID_BITS               8
105 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
106
107 #define AVIC_VM_ID_BITS                 24
108 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
109 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
110
111 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
112                                                 (y & AVIC_VCPU_ID_MASK))
113 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
114 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
115
116 static bool erratum_383_found __read_mostly;
117
118 static const u32 host_save_user_msrs[] = {
119 #ifdef CONFIG_X86_64
120         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
121         MSR_FS_BASE,
122 #endif
123         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
124         MSR_TSC_AUX,
125 };
126
127 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
128
129 struct kvm_vcpu;
130
131 struct nested_state {
132         struct vmcb *hsave;
133         u64 hsave_msr;
134         u64 vm_cr_msr;
135         u64 vmcb;
136
137         /* These are the merged vectors */
138         u32 *msrpm;
139
140         /* gpa pointers to the real vectors */
141         u64 vmcb_msrpm;
142         u64 vmcb_iopm;
143
144         /* A VMEXIT is required but not yet emulated */
145         bool exit_required;
146
147         /* cache for intercepts of the guest */
148         u32 intercept_cr;
149         u32 intercept_dr;
150         u32 intercept_exceptions;
151         u64 intercept;
152
153         /* Nested Paging related state */
154         u64 nested_cr3;
155 };
156
157 #define MSRPM_OFFSETS   16
158 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
159
160 /*
161  * Set osvw_len to higher value when updated Revision Guides
162  * are published and we know what the new status bits are
163  */
164 static uint64_t osvw_len = 4, osvw_status;
165
166 struct vcpu_svm {
167         struct kvm_vcpu vcpu;
168         struct vmcb *vmcb;
169         unsigned long vmcb_pa;
170         struct svm_cpu_data *svm_data;
171         uint64_t asid_generation;
172         uint64_t sysenter_esp;
173         uint64_t sysenter_eip;
174         uint64_t tsc_aux;
175
176         u64 next_rip;
177
178         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
179         struct {
180                 u16 fs;
181                 u16 gs;
182                 u16 ldt;
183                 u64 gs_base;
184         } host;
185
186         u32 *msrpm;
187
188         ulong nmi_iret_rip;
189
190         struct nested_state nested;
191
192         bool nmi_singlestep;
193         u64 nmi_singlestep_guest_rflags;
194
195         unsigned int3_injected;
196         unsigned long int3_rip;
197
198         /* cached guest cpuid flags for faster access */
199         bool nrips_enabled      : 1;
200
201         u32 ldr_reg;
202         struct page *avic_backing_page;
203         u64 *avic_physical_id_cache;
204         bool avic_is_running;
205
206         /*
207          * Per-vcpu list of struct amd_svm_iommu_ir:
208          * This is used mainly to store interrupt remapping information used
209          * when update the vcpu affinity. This avoids the need to scan for
210          * IRTE and try to match ga_tag in the IOMMU driver.
211          */
212         struct list_head ir_list;
213         spinlock_t ir_list_lock;
214 };
215
216 /*
217  * This is a wrapper of struct amd_iommu_ir_data.
218  */
219 struct amd_svm_iommu_ir {
220         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
221         void *data;             /* Storing pointer to struct amd_ir_data */
222 };
223
224 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
225 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
226
227 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
228 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
229 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
230 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
231
232 static DEFINE_PER_CPU(u64, current_tsc_ratio);
233 #define TSC_RATIO_DEFAULT       0x0100000000ULL
234
235 #define MSR_INVALID                     0xffffffffU
236
237 static const struct svm_direct_access_msrs {
238         u32 index;   /* Index of the MSR */
239         bool always; /* True if intercept is always on */
240 } direct_access_msrs[] = {
241         { .index = MSR_STAR,                            .always = true  },
242         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
243 #ifdef CONFIG_X86_64
244         { .index = MSR_GS_BASE,                         .always = true  },
245         { .index = MSR_FS_BASE,                         .always = true  },
246         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
247         { .index = MSR_LSTAR,                           .always = true  },
248         { .index = MSR_CSTAR,                           .always = true  },
249         { .index = MSR_SYSCALL_MASK,                    .always = true  },
250 #endif
251         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
252         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
253         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
254         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
255         { .index = MSR_INVALID,                         .always = false },
256 };
257
258 /* enable NPT for AMD64 and X86 with PAE */
259 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
260 static bool npt_enabled = true;
261 #else
262 static bool npt_enabled;
263 #endif
264
265 /* allow nested paging (virtualized MMU) for all guests */
266 static int npt = true;
267 module_param(npt, int, S_IRUGO);
268
269 /* allow nested virtualization in KVM/SVM */
270 static int nested = true;
271 module_param(nested, int, S_IRUGO);
272
273 /* enable / disable AVIC */
274 static int avic;
275 #ifdef CONFIG_X86_LOCAL_APIC
276 module_param(avic, int, S_IRUGO);
277 #endif
278
279 /* enable/disable Virtual VMLOAD VMSAVE */
280 static int vls = true;
281 module_param(vls, int, 0444);
282
283 /* AVIC VM ID bit masks and lock */
284 static DECLARE_BITMAP(avic_vm_id_bitmap, AVIC_VM_ID_NR);
285 static DEFINE_SPINLOCK(avic_vm_id_lock);
286
287 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
288 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
289 static void svm_complete_interrupts(struct vcpu_svm *svm);
290
291 static int nested_svm_exit_handled(struct vcpu_svm *svm);
292 static int nested_svm_intercept(struct vcpu_svm *svm);
293 static int nested_svm_vmexit(struct vcpu_svm *svm);
294 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
295                                       bool has_error_code, u32 error_code);
296
297 enum {
298         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
299                             pause filter count */
300         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
301         VMCB_ASID,       /* ASID */
302         VMCB_INTR,       /* int_ctl, int_vector */
303         VMCB_NPT,        /* npt_en, nCR3, gPAT */
304         VMCB_CR,         /* CR0, CR3, CR4, EFER */
305         VMCB_DR,         /* DR6, DR7 */
306         VMCB_DT,         /* GDT, IDT */
307         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
308         VMCB_CR2,        /* CR2 only */
309         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
310         VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
311                           * AVIC PHYSICAL_TABLE pointer,
312                           * AVIC LOGICAL_TABLE pointer
313                           */
314         VMCB_DIRTY_MAX,
315 };
316
317 /* TPR and CR2 are always written before VMRUN */
318 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
319
320 #define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
321
322 static inline void mark_all_dirty(struct vmcb *vmcb)
323 {
324         vmcb->control.clean = 0;
325 }
326
327 static inline void mark_all_clean(struct vmcb *vmcb)
328 {
329         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
330                                & ~VMCB_ALWAYS_DIRTY_MASK;
331 }
332
333 static inline void mark_dirty(struct vmcb *vmcb, int bit)
334 {
335         vmcb->control.clean &= ~(1 << bit);
336 }
337
338 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
339 {
340         return container_of(vcpu, struct vcpu_svm, vcpu);
341 }
342
343 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
344 {
345         svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
346         mark_dirty(svm->vmcb, VMCB_AVIC);
347 }
348
349 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
350 {
351         struct vcpu_svm *svm = to_svm(vcpu);
352         u64 *entry = svm->avic_physical_id_cache;
353
354         if (!entry)
355                 return false;
356
357         return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
358 }
359
360 static void recalc_intercepts(struct vcpu_svm *svm)
361 {
362         struct vmcb_control_area *c, *h;
363         struct nested_state *g;
364
365         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
366
367         if (!is_guest_mode(&svm->vcpu))
368                 return;
369
370         c = &svm->vmcb->control;
371         h = &svm->nested.hsave->control;
372         g = &svm->nested;
373
374         c->intercept_cr = h->intercept_cr | g->intercept_cr;
375         c->intercept_dr = h->intercept_dr | g->intercept_dr;
376         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
377         c->intercept = h->intercept | g->intercept;
378 }
379
380 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
381 {
382         if (is_guest_mode(&svm->vcpu))
383                 return svm->nested.hsave;
384         else
385                 return svm->vmcb;
386 }
387
388 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
389 {
390         struct vmcb *vmcb = get_host_vmcb(svm);
391
392         vmcb->control.intercept_cr |= (1U << bit);
393
394         recalc_intercepts(svm);
395 }
396
397 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
398 {
399         struct vmcb *vmcb = get_host_vmcb(svm);
400
401         vmcb->control.intercept_cr &= ~(1U << bit);
402
403         recalc_intercepts(svm);
404 }
405
406 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
407 {
408         struct vmcb *vmcb = get_host_vmcb(svm);
409
410         return vmcb->control.intercept_cr & (1U << bit);
411 }
412
413 static inline void set_dr_intercepts(struct vcpu_svm *svm)
414 {
415         struct vmcb *vmcb = get_host_vmcb(svm);
416
417         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
418                 | (1 << INTERCEPT_DR1_READ)
419                 | (1 << INTERCEPT_DR2_READ)
420                 | (1 << INTERCEPT_DR3_READ)
421                 | (1 << INTERCEPT_DR4_READ)
422                 | (1 << INTERCEPT_DR5_READ)
423                 | (1 << INTERCEPT_DR6_READ)
424                 | (1 << INTERCEPT_DR7_READ)
425                 | (1 << INTERCEPT_DR0_WRITE)
426                 | (1 << INTERCEPT_DR1_WRITE)
427                 | (1 << INTERCEPT_DR2_WRITE)
428                 | (1 << INTERCEPT_DR3_WRITE)
429                 | (1 << INTERCEPT_DR4_WRITE)
430                 | (1 << INTERCEPT_DR5_WRITE)
431                 | (1 << INTERCEPT_DR6_WRITE)
432                 | (1 << INTERCEPT_DR7_WRITE);
433
434         recalc_intercepts(svm);
435 }
436
437 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
438 {
439         struct vmcb *vmcb = get_host_vmcb(svm);
440
441         vmcb->control.intercept_dr = 0;
442
443         recalc_intercepts(svm);
444 }
445
446 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
447 {
448         struct vmcb *vmcb = get_host_vmcb(svm);
449
450         vmcb->control.intercept_exceptions |= (1U << bit);
451
452         recalc_intercepts(svm);
453 }
454
455 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
456 {
457         struct vmcb *vmcb = get_host_vmcb(svm);
458
459         vmcb->control.intercept_exceptions &= ~(1U << bit);
460
461         recalc_intercepts(svm);
462 }
463
464 static inline void set_intercept(struct vcpu_svm *svm, int bit)
465 {
466         struct vmcb *vmcb = get_host_vmcb(svm);
467
468         vmcb->control.intercept |= (1ULL << bit);
469
470         recalc_intercepts(svm);
471 }
472
473 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
474 {
475         struct vmcb *vmcb = get_host_vmcb(svm);
476
477         vmcb->control.intercept &= ~(1ULL << bit);
478
479         recalc_intercepts(svm);
480 }
481
482 static inline void enable_gif(struct vcpu_svm *svm)
483 {
484         svm->vcpu.arch.hflags |= HF_GIF_MASK;
485 }
486
487 static inline void disable_gif(struct vcpu_svm *svm)
488 {
489         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
490 }
491
492 static inline bool gif_set(struct vcpu_svm *svm)
493 {
494         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
495 }
496
497 static unsigned long iopm_base;
498
499 struct kvm_ldttss_desc {
500         u16 limit0;
501         u16 base0;
502         unsigned base1:8, type:5, dpl:2, p:1;
503         unsigned limit1:4, zero0:3, g:1, base2:8;
504         u32 base3;
505         u32 zero1;
506 } __attribute__((packed));
507
508 struct svm_cpu_data {
509         int cpu;
510
511         u64 asid_generation;
512         u32 max_asid;
513         u32 next_asid;
514         struct kvm_ldttss_desc *tss_desc;
515
516         struct page *save_area;
517 };
518
519 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
520
521 struct svm_init_data {
522         int cpu;
523         int r;
524 };
525
526 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
527
528 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
529 #define MSRS_RANGE_SIZE 2048
530 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
531
532 static u32 svm_msrpm_offset(u32 msr)
533 {
534         u32 offset;
535         int i;
536
537         for (i = 0; i < NUM_MSR_MAPS; i++) {
538                 if (msr < msrpm_ranges[i] ||
539                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
540                         continue;
541
542                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
543                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
544
545                 /* Now we have the u8 offset - but need the u32 offset */
546                 return offset / 4;
547         }
548
549         /* MSR not in any range */
550         return MSR_INVALID;
551 }
552
553 #define MAX_INST_SIZE 15
554
555 static inline void clgi(void)
556 {
557         asm volatile (__ex(SVM_CLGI));
558 }
559
560 static inline void stgi(void)
561 {
562         asm volatile (__ex(SVM_STGI));
563 }
564
565 static inline void invlpga(unsigned long addr, u32 asid)
566 {
567         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
568 }
569
570 static int get_npt_level(void)
571 {
572 #ifdef CONFIG_X86_64
573         return PT64_ROOT_LEVEL;
574 #else
575         return PT32E_ROOT_LEVEL;
576 #endif
577 }
578
579 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
580 {
581         vcpu->arch.efer = efer;
582         if (!npt_enabled && !(efer & EFER_LMA))
583                 efer &= ~EFER_LME;
584
585         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
586         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
587 }
588
589 static int is_external_interrupt(u32 info)
590 {
591         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
592         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
593 }
594
595 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
596 {
597         struct vcpu_svm *svm = to_svm(vcpu);
598         u32 ret = 0;
599
600         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
601                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
602         return ret;
603 }
604
605 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
606 {
607         struct vcpu_svm *svm = to_svm(vcpu);
608
609         if (mask == 0)
610                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
611         else
612                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
613
614 }
615
616 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
617 {
618         struct vcpu_svm *svm = to_svm(vcpu);
619
620         if (svm->vmcb->control.next_rip != 0) {
621                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
622                 svm->next_rip = svm->vmcb->control.next_rip;
623         }
624
625         if (!svm->next_rip) {
626                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
627                                 EMULATE_DONE)
628                         printk(KERN_DEBUG "%s: NOP\n", __func__);
629                 return;
630         }
631         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
632                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
633                        __func__, kvm_rip_read(vcpu), svm->next_rip);
634
635         kvm_rip_write(vcpu, svm->next_rip);
636         svm_set_interrupt_shadow(vcpu, 0);
637 }
638
639 static void svm_queue_exception(struct kvm_vcpu *vcpu)
640 {
641         struct vcpu_svm *svm = to_svm(vcpu);
642         unsigned nr = vcpu->arch.exception.nr;
643         bool has_error_code = vcpu->arch.exception.has_error_code;
644         bool reinject = vcpu->arch.exception.reinject;
645         u32 error_code = vcpu->arch.exception.error_code;
646
647         /*
648          * If we are within a nested VM we'd better #VMEXIT and let the guest
649          * handle the exception
650          */
651         if (!reinject &&
652             nested_svm_check_exception(svm, nr, has_error_code, error_code))
653                 return;
654
655         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
656                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
657
658                 /*
659                  * For guest debugging where we have to reinject #BP if some
660                  * INT3 is guest-owned:
661                  * Emulate nRIP by moving RIP forward. Will fail if injection
662                  * raises a fault that is not intercepted. Still better than
663                  * failing in all cases.
664                  */
665                 skip_emulated_instruction(&svm->vcpu);
666                 rip = kvm_rip_read(&svm->vcpu);
667                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
668                 svm->int3_injected = rip - old_rip;
669         }
670
671         svm->vmcb->control.event_inj = nr
672                 | SVM_EVTINJ_VALID
673                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
674                 | SVM_EVTINJ_TYPE_EXEPT;
675         svm->vmcb->control.event_inj_err = error_code;
676 }
677
678 static void svm_init_erratum_383(void)
679 {
680         u32 low, high;
681         int err;
682         u64 val;
683
684         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
685                 return;
686
687         /* Use _safe variants to not break nested virtualization */
688         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
689         if (err)
690                 return;
691
692         val |= (1ULL << 47);
693
694         low  = lower_32_bits(val);
695         high = upper_32_bits(val);
696
697         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
698
699         erratum_383_found = true;
700 }
701
702 static void svm_init_osvw(struct kvm_vcpu *vcpu)
703 {
704         /*
705          * Guests should see errata 400 and 415 as fixed (assuming that
706          * HLT and IO instructions are intercepted).
707          */
708         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
709         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
710
711         /*
712          * By increasing VCPU's osvw.length to 3 we are telling the guest that
713          * all osvw.status bits inside that length, including bit 0 (which is
714          * reserved for erratum 298), are valid. However, if host processor's
715          * osvw_len is 0 then osvw_status[0] carries no information. We need to
716          * be conservative here and therefore we tell the guest that erratum 298
717          * is present (because we really don't know).
718          */
719         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
720                 vcpu->arch.osvw.status |= 1;
721 }
722
723 static int has_svm(void)
724 {
725         const char *msg;
726
727         if (!cpu_has_svm(&msg)) {
728                 printk(KERN_INFO "has_svm: %s\n", msg);
729                 return 0;
730         }
731
732         return 1;
733 }
734
735 static void svm_hardware_disable(void)
736 {
737         /* Make sure we clean up behind us */
738         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
739                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
740
741         cpu_svm_disable();
742
743         amd_pmu_disable_virt();
744 }
745
746 static int svm_hardware_enable(void)
747 {
748
749         struct svm_cpu_data *sd;
750         uint64_t efer;
751         struct desc_struct *gdt;
752         int me = raw_smp_processor_id();
753
754         rdmsrl(MSR_EFER, efer);
755         if (efer & EFER_SVME)
756                 return -EBUSY;
757
758         if (!has_svm()) {
759                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
760                 return -EINVAL;
761         }
762         sd = per_cpu(svm_data, me);
763         if (!sd) {
764                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
765                 return -EINVAL;
766         }
767
768         sd->asid_generation = 1;
769         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
770         sd->next_asid = sd->max_asid + 1;
771
772         gdt = get_current_gdt_rw();
773         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
774
775         wrmsrl(MSR_EFER, efer | EFER_SVME);
776
777         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
778
779         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
780                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
781                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
782         }
783
784
785         /*
786          * Get OSVW bits.
787          *
788          * Note that it is possible to have a system with mixed processor
789          * revisions and therefore different OSVW bits. If bits are not the same
790          * on different processors then choose the worst case (i.e. if erratum
791          * is present on one processor and not on another then assume that the
792          * erratum is present everywhere).
793          */
794         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
795                 uint64_t len, status = 0;
796                 int err;
797
798                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
799                 if (!err)
800                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
801                                                       &err);
802
803                 if (err)
804                         osvw_status = osvw_len = 0;
805                 else {
806                         if (len < osvw_len)
807                                 osvw_len = len;
808                         osvw_status |= status;
809                         osvw_status &= (1ULL << osvw_len) - 1;
810                 }
811         } else
812                 osvw_status = osvw_len = 0;
813
814         svm_init_erratum_383();
815
816         amd_pmu_enable_virt();
817
818         return 0;
819 }
820
821 static void svm_cpu_uninit(int cpu)
822 {
823         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
824
825         if (!sd)
826                 return;
827
828         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
829         __free_page(sd->save_area);
830         kfree(sd);
831 }
832
833 static int svm_cpu_init(int cpu)
834 {
835         struct svm_cpu_data *sd;
836         int r;
837
838         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
839         if (!sd)
840                 return -ENOMEM;
841         sd->cpu = cpu;
842         sd->save_area = alloc_page(GFP_KERNEL);
843         r = -ENOMEM;
844         if (!sd->save_area)
845                 goto err_1;
846
847         per_cpu(svm_data, cpu) = sd;
848
849         return 0;
850
851 err_1:
852         kfree(sd);
853         return r;
854
855 }
856
857 static bool valid_msr_intercept(u32 index)
858 {
859         int i;
860
861         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
862                 if (direct_access_msrs[i].index == index)
863                         return true;
864
865         return false;
866 }
867
868 static void set_msr_interception(u32 *msrpm, unsigned msr,
869                                  int read, int write)
870 {
871         u8 bit_read, bit_write;
872         unsigned long tmp;
873         u32 offset;
874
875         /*
876          * If this warning triggers extend the direct_access_msrs list at the
877          * beginning of the file
878          */
879         WARN_ON(!valid_msr_intercept(msr));
880
881         offset    = svm_msrpm_offset(msr);
882         bit_read  = 2 * (msr & 0x0f);
883         bit_write = 2 * (msr & 0x0f) + 1;
884         tmp       = msrpm[offset];
885
886         BUG_ON(offset == MSR_INVALID);
887
888         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
889         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
890
891         msrpm[offset] = tmp;
892 }
893
894 static void svm_vcpu_init_msrpm(u32 *msrpm)
895 {
896         int i;
897
898         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
899
900         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
901                 if (!direct_access_msrs[i].always)
902                         continue;
903
904                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
905         }
906 }
907
908 static void add_msr_offset(u32 offset)
909 {
910         int i;
911
912         for (i = 0; i < MSRPM_OFFSETS; ++i) {
913
914                 /* Offset already in list? */
915                 if (msrpm_offsets[i] == offset)
916                         return;
917
918                 /* Slot used by another offset? */
919                 if (msrpm_offsets[i] != MSR_INVALID)
920                         continue;
921
922                 /* Add offset to list */
923                 msrpm_offsets[i] = offset;
924
925                 return;
926         }
927
928         /*
929          * If this BUG triggers the msrpm_offsets table has an overflow. Just
930          * increase MSRPM_OFFSETS in this case.
931          */
932         BUG();
933 }
934
935 static void init_msrpm_offsets(void)
936 {
937         int i;
938
939         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
940
941         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
942                 u32 offset;
943
944                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
945                 BUG_ON(offset == MSR_INVALID);
946
947                 add_msr_offset(offset);
948         }
949 }
950
951 static void svm_enable_lbrv(struct vcpu_svm *svm)
952 {
953         u32 *msrpm = svm->msrpm;
954
955         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
956         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
957         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
958         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
959         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
960 }
961
962 static void svm_disable_lbrv(struct vcpu_svm *svm)
963 {
964         u32 *msrpm = svm->msrpm;
965
966         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
967         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
968         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
969         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
970         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
971 }
972
973 static void disable_nmi_singlestep(struct vcpu_svm *svm)
974 {
975         svm->nmi_singlestep = false;
976         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
977                 /* Clear our flags if they were not set by the guest */
978                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
979                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
980                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
981                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
982         }
983 }
984
985 /* Note:
986  * This hash table is used to map VM_ID to a struct kvm_arch,
987  * when handling AMD IOMMU GALOG notification to schedule in
988  * a particular vCPU.
989  */
990 #define SVM_VM_DATA_HASH_BITS   8
991 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
992 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
993
994 /* Note:
995  * This function is called from IOMMU driver to notify
996  * SVM to schedule in a particular vCPU of a particular VM.
997  */
998 static int avic_ga_log_notifier(u32 ga_tag)
999 {
1000         unsigned long flags;
1001         struct kvm_arch *ka = NULL;
1002         struct kvm_vcpu *vcpu = NULL;
1003         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1004         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1005
1006         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1007
1008         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1009         hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1010                 struct kvm *kvm = container_of(ka, struct kvm, arch);
1011                 struct kvm_arch *vm_data = &kvm->arch;
1012
1013                 if (vm_data->avic_vm_id != vm_id)
1014                         continue;
1015                 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1016                 break;
1017         }
1018         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1019
1020         if (!vcpu)
1021                 return 0;
1022
1023         /* Note:
1024          * At this point, the IOMMU should have already set the pending
1025          * bit in the vAPIC backing page. So, we just need to schedule
1026          * in the vcpu.
1027          */
1028         if (vcpu->mode == OUTSIDE_GUEST_MODE)
1029                 kvm_vcpu_wake_up(vcpu);
1030
1031         return 0;
1032 }
1033
1034 static __init int svm_hardware_setup(void)
1035 {
1036         int cpu;
1037         struct page *iopm_pages;
1038         void *iopm_va;
1039         int r;
1040
1041         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1042
1043         if (!iopm_pages)
1044                 return -ENOMEM;
1045
1046         iopm_va = page_address(iopm_pages);
1047         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1048         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1049
1050         init_msrpm_offsets();
1051
1052         if (boot_cpu_has(X86_FEATURE_NX))
1053                 kvm_enable_efer_bits(EFER_NX);
1054
1055         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1056                 kvm_enable_efer_bits(EFER_FFXSR);
1057
1058         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1059                 kvm_has_tsc_control = true;
1060                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1061                 kvm_tsc_scaling_ratio_frac_bits = 32;
1062         }
1063
1064         if (nested) {
1065                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1066                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1067         }
1068
1069         for_each_possible_cpu(cpu) {
1070                 r = svm_cpu_init(cpu);
1071                 if (r)
1072                         goto err;
1073         }
1074
1075         if (!boot_cpu_has(X86_FEATURE_NPT))
1076                 npt_enabled = false;
1077
1078         if (npt_enabled && !npt) {
1079                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1080                 npt_enabled = false;
1081         }
1082
1083         if (npt_enabled) {
1084                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1085                 kvm_enable_tdp();
1086         } else
1087                 kvm_disable_tdp();
1088
1089         if (avic) {
1090                 if (!npt_enabled ||
1091                     !boot_cpu_has(X86_FEATURE_AVIC) ||
1092                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1093                         avic = false;
1094                 } else {
1095                         pr_info("AVIC enabled\n");
1096
1097                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1098                 }
1099         }
1100
1101         if (vls) {
1102                 if (!npt_enabled ||
1103                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1104                     !IS_ENABLED(CONFIG_X86_64)) {
1105                         vls = false;
1106                 } else {
1107                         pr_info("Virtual VMLOAD VMSAVE supported\n");
1108                 }
1109         }
1110
1111         return 0;
1112
1113 err:
1114         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1115         iopm_base = 0;
1116         return r;
1117 }
1118
1119 static __exit void svm_hardware_unsetup(void)
1120 {
1121         int cpu;
1122
1123         for_each_possible_cpu(cpu)
1124                 svm_cpu_uninit(cpu);
1125
1126         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1127         iopm_base = 0;
1128 }
1129
1130 static void init_seg(struct vmcb_seg *seg)
1131 {
1132         seg->selector = 0;
1133         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1134                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1135         seg->limit = 0xffff;
1136         seg->base = 0;
1137 }
1138
1139 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1140 {
1141         seg->selector = 0;
1142         seg->attrib = SVM_SELECTOR_P_MASK | type;
1143         seg->limit = 0xffff;
1144         seg->base = 0;
1145 }
1146
1147 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1148 {
1149         struct vcpu_svm *svm = to_svm(vcpu);
1150         u64 g_tsc_offset = 0;
1151
1152         if (is_guest_mode(vcpu)) {
1153                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1154                                svm->nested.hsave->control.tsc_offset;
1155                 svm->nested.hsave->control.tsc_offset = offset;
1156         } else
1157                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1158                                            svm->vmcb->control.tsc_offset,
1159                                            offset);
1160
1161         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1162
1163         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1164 }
1165
1166 static void avic_init_vmcb(struct vcpu_svm *svm)
1167 {
1168         struct vmcb *vmcb = svm->vmcb;
1169         struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1170         phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
1171         phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
1172         phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);
1173
1174         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1175         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1176         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1177         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1178         vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1179         svm->vcpu.arch.apicv_active = true;
1180 }
1181
1182 static void init_vmcb(struct vcpu_svm *svm)
1183 {
1184         struct vmcb_control_area *control = &svm->vmcb->control;
1185         struct vmcb_save_area *save = &svm->vmcb->save;
1186
1187         svm->vcpu.arch.hflags = 0;
1188
1189         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1190         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1191         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1192         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1193         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1194         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1195         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1196                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1197
1198         set_dr_intercepts(svm);
1199
1200         set_exception_intercept(svm, PF_VECTOR);
1201         set_exception_intercept(svm, UD_VECTOR);
1202         set_exception_intercept(svm, MC_VECTOR);
1203         set_exception_intercept(svm, AC_VECTOR);
1204         set_exception_intercept(svm, DB_VECTOR);
1205
1206         set_intercept(svm, INTERCEPT_INTR);
1207         set_intercept(svm, INTERCEPT_NMI);
1208         set_intercept(svm, INTERCEPT_SMI);
1209         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1210         set_intercept(svm, INTERCEPT_RDPMC);
1211         set_intercept(svm, INTERCEPT_CPUID);
1212         set_intercept(svm, INTERCEPT_INVD);
1213         set_intercept(svm, INTERCEPT_HLT);
1214         set_intercept(svm, INTERCEPT_INVLPG);
1215         set_intercept(svm, INTERCEPT_INVLPGA);
1216         set_intercept(svm, INTERCEPT_IOIO_PROT);
1217         set_intercept(svm, INTERCEPT_MSR_PROT);
1218         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1219         set_intercept(svm, INTERCEPT_SHUTDOWN);
1220         set_intercept(svm, INTERCEPT_VMRUN);
1221         set_intercept(svm, INTERCEPT_VMMCALL);
1222         set_intercept(svm, INTERCEPT_VMLOAD);
1223         set_intercept(svm, INTERCEPT_VMSAVE);
1224         set_intercept(svm, INTERCEPT_STGI);
1225         set_intercept(svm, INTERCEPT_CLGI);
1226         set_intercept(svm, INTERCEPT_SKINIT);
1227         set_intercept(svm, INTERCEPT_WBINVD);
1228         set_intercept(svm, INTERCEPT_XSETBV);
1229
1230         if (!kvm_mwait_in_guest()) {
1231                 set_intercept(svm, INTERCEPT_MONITOR);
1232                 set_intercept(svm, INTERCEPT_MWAIT);
1233         }
1234
1235         control->iopm_base_pa = iopm_base;
1236         control->msrpm_base_pa = __pa(svm->msrpm);
1237         control->int_ctl = V_INTR_MASKING_MASK;
1238
1239         init_seg(&save->es);
1240         init_seg(&save->ss);
1241         init_seg(&save->ds);
1242         init_seg(&save->fs);
1243         init_seg(&save->gs);
1244
1245         save->cs.selector = 0xf000;
1246         save->cs.base = 0xffff0000;
1247         /* Executable/Readable Code Segment */
1248         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1249                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1250         save->cs.limit = 0xffff;
1251
1252         save->gdtr.limit = 0xffff;
1253         save->idtr.limit = 0xffff;
1254
1255         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1256         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1257
1258         svm_set_efer(&svm->vcpu, 0);
1259         save->dr6 = 0xffff0ff0;
1260         kvm_set_rflags(&svm->vcpu, 2);
1261         save->rip = 0x0000fff0;
1262         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1263
1264         /*
1265          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1266          * It also updates the guest-visible cr0 value.
1267          */
1268         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1269         kvm_mmu_reset_context(&svm->vcpu);
1270
1271         save->cr4 = X86_CR4_PAE;
1272         /* rdx = ?? */
1273
1274         if (npt_enabled) {
1275                 /* Setup VMCB for Nested Paging */
1276                 control->nested_ctl = 1;
1277                 clr_intercept(svm, INTERCEPT_INVLPG);
1278                 clr_exception_intercept(svm, PF_VECTOR);
1279                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1280                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1281                 save->g_pat = svm->vcpu.arch.pat;
1282                 save->cr3 = 0;
1283                 save->cr4 = 0;
1284         }
1285         svm->asid_generation = 0;
1286
1287         svm->nested.vmcb = 0;
1288         svm->vcpu.arch.hflags = 0;
1289
1290         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1291                 control->pause_filter_count = 3000;
1292                 set_intercept(svm, INTERCEPT_PAUSE);
1293         }
1294
1295         if (avic)
1296                 avic_init_vmcb(svm);
1297
1298         /*
1299          * If hardware supports Virtual VMLOAD VMSAVE then enable it
1300          * in VMCB and clear intercepts to avoid #VMEXIT.
1301          */
1302         if (vls) {
1303                 clr_intercept(svm, INTERCEPT_VMLOAD);
1304                 clr_intercept(svm, INTERCEPT_VMSAVE);
1305                 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1306         }
1307
1308         mark_all_dirty(svm->vmcb);
1309
1310         enable_gif(svm);
1311
1312 }
1313
1314 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1315                                        unsigned int index)
1316 {
1317         u64 *avic_physical_id_table;
1318         struct kvm_arch *vm_data = &vcpu->kvm->arch;
1319
1320         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1321                 return NULL;
1322
1323         avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1324
1325         return &avic_physical_id_table[index];
1326 }
1327
1328 /**
1329  * Note:
1330  * AVIC hardware walks the nested page table to check permissions,
1331  * but does not use the SPA address specified in the leaf page
1332  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1333  * field of the VMCB. Therefore, we set up the
1334  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1335  */
1336 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1337 {
1338         struct kvm *kvm = vcpu->kvm;
1339         int ret;
1340
1341         if (kvm->arch.apic_access_page_done)
1342                 return 0;
1343
1344         ret = x86_set_memory_region(kvm,
1345                                     APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1346                                     APIC_DEFAULT_PHYS_BASE,
1347                                     PAGE_SIZE);
1348         if (ret)
1349                 return ret;
1350
1351         kvm->arch.apic_access_page_done = true;
1352         return 0;
1353 }
1354
1355 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1356 {
1357         int ret;
1358         u64 *entry, new_entry;
1359         int id = vcpu->vcpu_id;
1360         struct vcpu_svm *svm = to_svm(vcpu);
1361
1362         ret = avic_init_access_page(vcpu);
1363         if (ret)
1364                 return ret;
1365
1366         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1367                 return -EINVAL;
1368
1369         if (!svm->vcpu.arch.apic->regs)
1370                 return -EINVAL;
1371
1372         svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1373
1374         /* Setting AVIC backing page address in the phy APIC ID table */
1375         entry = avic_get_physical_id_entry(vcpu, id);
1376         if (!entry)
1377                 return -EINVAL;
1378
1379         new_entry = READ_ONCE(*entry);
1380         new_entry = (page_to_phys(svm->avic_backing_page) &
1381                      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1382                      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
1383         WRITE_ONCE(*entry, new_entry);
1384
1385         svm->avic_physical_id_cache = entry;
1386
1387         return 0;
1388 }
1389
1390 static inline int avic_get_next_vm_id(void)
1391 {
1392         int id;
1393
1394         spin_lock(&avic_vm_id_lock);
1395
1396         /* AVIC VM ID is one-based. */
1397         id = find_next_zero_bit(avic_vm_id_bitmap, AVIC_VM_ID_NR, 1);
1398         if (id <= AVIC_VM_ID_MASK)
1399                 __set_bit(id, avic_vm_id_bitmap);
1400         else
1401                 id = -EAGAIN;
1402
1403         spin_unlock(&avic_vm_id_lock);
1404         return id;
1405 }
1406
1407 static inline int avic_free_vm_id(int id)
1408 {
1409         if (id <= 0 || id > AVIC_VM_ID_MASK)
1410                 return -EINVAL;
1411
1412         spin_lock(&avic_vm_id_lock);
1413         __clear_bit(id, avic_vm_id_bitmap);
1414         spin_unlock(&avic_vm_id_lock);
1415         return 0;
1416 }
1417
1418 static void avic_vm_destroy(struct kvm *kvm)
1419 {
1420         unsigned long flags;
1421         struct kvm_arch *vm_data = &kvm->arch;
1422
1423         if (!avic)
1424                 return;
1425
1426         avic_free_vm_id(vm_data->avic_vm_id);
1427
1428         if (vm_data->avic_logical_id_table_page)
1429                 __free_page(vm_data->avic_logical_id_table_page);
1430         if (vm_data->avic_physical_id_table_page)
1431                 __free_page(vm_data->avic_physical_id_table_page);
1432
1433         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1434         hash_del(&vm_data->hnode);
1435         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1436 }
1437
1438 static int avic_vm_init(struct kvm *kvm)
1439 {
1440         unsigned long flags;
1441         int vm_id, err = -ENOMEM;
1442         struct kvm_arch *vm_data = &kvm->arch;
1443         struct page *p_page;
1444         struct page *l_page;
1445
1446         if (!avic)
1447                 return 0;
1448
1449         vm_id = avic_get_next_vm_id();
1450         if (vm_id < 0)
1451                 return vm_id;
1452         vm_data->avic_vm_id = (u32)vm_id;
1453
1454         /* Allocating physical APIC ID table (4KB) */
1455         p_page = alloc_page(GFP_KERNEL);
1456         if (!p_page)
1457                 goto free_avic;
1458
1459         vm_data->avic_physical_id_table_page = p_page;
1460         clear_page(page_address(p_page));
1461
1462         /* Allocating logical APIC ID table (4KB) */
1463         l_page = alloc_page(GFP_KERNEL);
1464         if (!l_page)
1465                 goto free_avic;
1466
1467         vm_data->avic_logical_id_table_page = l_page;
1468         clear_page(page_address(l_page));
1469
1470         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1471         hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1472         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1473
1474         return 0;
1475
1476 free_avic:
1477         avic_vm_destroy(kvm);
1478         return err;
1479 }
1480
1481 static inline int
1482 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1483 {
1484         int ret = 0;
1485         unsigned long flags;
1486         struct amd_svm_iommu_ir *ir;
1487         struct vcpu_svm *svm = to_svm(vcpu);
1488
1489         if (!kvm_arch_has_assigned_device(vcpu->kvm))
1490                 return 0;
1491
1492         /*
1493          * Here, we go through the per-vcpu ir_list to update all existing
1494          * interrupt remapping table entry targeting this vcpu.
1495          */
1496         spin_lock_irqsave(&svm->ir_list_lock, flags);
1497
1498         if (list_empty(&svm->ir_list))
1499                 goto out;
1500
1501         list_for_each_entry(ir, &svm->ir_list, node) {
1502                 ret = amd_iommu_update_ga(cpu, r, ir->data);
1503                 if (ret)
1504                         break;
1505         }
1506 out:
1507         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1508         return ret;
1509 }
1510
1511 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1512 {
1513         u64 entry;
1514         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1515         int h_physical_id = kvm_cpu_get_apicid(cpu);
1516         struct vcpu_svm *svm = to_svm(vcpu);
1517
1518         if (!kvm_vcpu_apicv_active(vcpu))
1519                 return;
1520
1521         if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1522                 return;
1523
1524         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1525         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1526
1527         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1528         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1529
1530         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1531         if (svm->avic_is_running)
1532                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1533
1534         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1535         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1536                                         svm->avic_is_running);
1537 }
1538
1539 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1540 {
1541         u64 entry;
1542         struct vcpu_svm *svm = to_svm(vcpu);
1543
1544         if (!kvm_vcpu_apicv_active(vcpu))
1545                 return;
1546
1547         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1548         if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1549                 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1550
1551         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1552         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1553 }
1554
1555 /**
1556  * This function is called during VCPU halt/unhalt.
1557  */
1558 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1559 {
1560         struct vcpu_svm *svm = to_svm(vcpu);
1561
1562         svm->avic_is_running = is_run;
1563         if (is_run)
1564                 avic_vcpu_load(vcpu, vcpu->cpu);
1565         else
1566                 avic_vcpu_put(vcpu);
1567 }
1568
1569 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1570 {
1571         struct vcpu_svm *svm = to_svm(vcpu);
1572         u32 dummy;
1573         u32 eax = 1;
1574
1575         if (!init_event) {
1576                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1577                                            MSR_IA32_APICBASE_ENABLE;
1578                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1579                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1580         }
1581         init_vmcb(svm);
1582
1583         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1584         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1585
1586         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1587                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1588 }
1589
1590 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1591 {
1592         struct vcpu_svm *svm;
1593         struct page *page;
1594         struct page *msrpm_pages;
1595         struct page *hsave_page;
1596         struct page *nested_msrpm_pages;
1597         int err;
1598
1599         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1600         if (!svm) {
1601                 err = -ENOMEM;
1602                 goto out;
1603         }
1604
1605         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1606         if (err)
1607                 goto free_svm;
1608
1609         err = -ENOMEM;
1610         page = alloc_page(GFP_KERNEL);
1611         if (!page)
1612                 goto uninit;
1613
1614         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1615         if (!msrpm_pages)
1616                 goto free_page1;
1617
1618         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1619         if (!nested_msrpm_pages)
1620                 goto free_page2;
1621
1622         hsave_page = alloc_page(GFP_KERNEL);
1623         if (!hsave_page)
1624                 goto free_page3;
1625
1626         if (avic) {
1627                 err = avic_init_backing_page(&svm->vcpu);
1628                 if (err)
1629                         goto free_page4;
1630
1631                 INIT_LIST_HEAD(&svm->ir_list);
1632                 spin_lock_init(&svm->ir_list_lock);
1633         }
1634
1635         /* We initialize this flag to true to make sure that the is_running
1636          * bit would be set the first time the vcpu is loaded.
1637          */
1638         svm->avic_is_running = true;
1639
1640         svm->nested.hsave = page_address(hsave_page);
1641
1642         svm->msrpm = page_address(msrpm_pages);
1643         svm_vcpu_init_msrpm(svm->msrpm);
1644
1645         svm->nested.msrpm = page_address(nested_msrpm_pages);
1646         svm_vcpu_init_msrpm(svm->nested.msrpm);
1647
1648         svm->vmcb = page_address(page);
1649         clear_page(svm->vmcb);
1650         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1651         svm->asid_generation = 0;
1652         init_vmcb(svm);
1653
1654         svm_init_osvw(&svm->vcpu);
1655
1656         return &svm->vcpu;
1657
1658 free_page4:
1659         __free_page(hsave_page);
1660 free_page3:
1661         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1662 free_page2:
1663         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1664 free_page1:
1665         __free_page(page);
1666 uninit:
1667         kvm_vcpu_uninit(&svm->vcpu);
1668 free_svm:
1669         kmem_cache_free(kvm_vcpu_cache, svm);
1670 out:
1671         return ERR_PTR(err);
1672 }
1673
1674 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1675 {
1676         struct vcpu_svm *svm = to_svm(vcpu);
1677
1678         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1679         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1680         __free_page(virt_to_page(svm->nested.hsave));
1681         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1682         kvm_vcpu_uninit(vcpu);
1683         kmem_cache_free(kvm_vcpu_cache, svm);
1684 }
1685
1686 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1687 {
1688         struct vcpu_svm *svm = to_svm(vcpu);
1689         int i;
1690
1691         if (unlikely(cpu != vcpu->cpu)) {
1692                 svm->asid_generation = 0;
1693                 mark_all_dirty(svm->vmcb);
1694         }
1695
1696 #ifdef CONFIG_X86_64
1697         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1698 #endif
1699         savesegment(fs, svm->host.fs);
1700         savesegment(gs, svm->host.gs);
1701         svm->host.ldt = kvm_read_ldt();
1702
1703         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1704                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1705
1706         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1707                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1708                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1709                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1710                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1711                 }
1712         }
1713         /* This assumes that the kernel never uses MSR_TSC_AUX */
1714         if (static_cpu_has(X86_FEATURE_RDTSCP))
1715                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1716
1717         avic_vcpu_load(vcpu, cpu);
1718 }
1719
1720 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1721 {
1722         struct vcpu_svm *svm = to_svm(vcpu);
1723         int i;
1724
1725         avic_vcpu_put(vcpu);
1726
1727         ++vcpu->stat.host_state_reload;
1728         kvm_load_ldt(svm->host.ldt);
1729 #ifdef CONFIG_X86_64
1730         loadsegment(fs, svm->host.fs);
1731         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1732         load_gs_index(svm->host.gs);
1733 #else
1734 #ifdef CONFIG_X86_32_LAZY_GS
1735         loadsegment(gs, svm->host.gs);
1736 #endif
1737 #endif
1738         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1739                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1740 }
1741
1742 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1743 {
1744         avic_set_running(vcpu, false);
1745 }
1746
1747 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1748 {
1749         avic_set_running(vcpu, true);
1750 }
1751
1752 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1753 {
1754         struct vcpu_svm *svm = to_svm(vcpu);
1755         unsigned long rflags = svm->vmcb->save.rflags;
1756
1757         if (svm->nmi_singlestep) {
1758                 /* Hide our flags if they were not set by the guest */
1759                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1760                         rflags &= ~X86_EFLAGS_TF;
1761                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1762                         rflags &= ~X86_EFLAGS_RF;
1763         }
1764         return rflags;
1765 }
1766
1767 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1768 {
1769         if (to_svm(vcpu)->nmi_singlestep)
1770                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1771
1772        /*
1773         * Any change of EFLAGS.VM is accompanied by a reload of SS
1774         * (caused by either a task switch or an inter-privilege IRET),
1775         * so we do not need to update the CPL here.
1776         */
1777         to_svm(vcpu)->vmcb->save.rflags = rflags;
1778 }
1779
1780 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1781 {
1782         switch (reg) {
1783         case VCPU_EXREG_PDPTR:
1784                 BUG_ON(!npt_enabled);
1785                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1786                 break;
1787         default:
1788                 BUG();
1789         }
1790 }
1791
1792 static void svm_set_vintr(struct vcpu_svm *svm)
1793 {
1794         set_intercept(svm, INTERCEPT_VINTR);
1795 }
1796
1797 static void svm_clear_vintr(struct vcpu_svm *svm)
1798 {
1799         clr_intercept(svm, INTERCEPT_VINTR);
1800 }
1801
1802 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1803 {
1804         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1805
1806         switch (seg) {
1807         case VCPU_SREG_CS: return &save->cs;
1808         case VCPU_SREG_DS: return &save->ds;
1809         case VCPU_SREG_ES: return &save->es;
1810         case VCPU_SREG_FS: return &save->fs;
1811         case VCPU_SREG_GS: return &save->gs;
1812         case VCPU_SREG_SS: return &save->ss;
1813         case VCPU_SREG_TR: return &save->tr;
1814         case VCPU_SREG_LDTR: return &save->ldtr;
1815         }
1816         BUG();
1817         return NULL;
1818 }
1819
1820 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1821 {
1822         struct vmcb_seg *s = svm_seg(vcpu, seg);
1823
1824         return s->base;
1825 }
1826
1827 static void svm_get_segment(struct kvm_vcpu *vcpu,
1828                             struct kvm_segment *var, int seg)
1829 {
1830         struct vmcb_seg *s = svm_seg(vcpu, seg);
1831
1832         var->base = s->base;
1833         var->limit = s->limit;
1834         var->selector = s->selector;
1835         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1836         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1837         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1838         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1839         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1840         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1841         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1842
1843         /*
1844          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1845          * However, the SVM spec states that the G bit is not observed by the
1846          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1847          * So let's synthesize a legal G bit for all segments, this helps
1848          * running KVM nested. It also helps cross-vendor migration, because
1849          * Intel's vmentry has a check on the 'G' bit.
1850          */
1851         var->g = s->limit > 0xfffff;
1852
1853         /*
1854          * AMD's VMCB does not have an explicit unusable field, so emulate it
1855          * for cross vendor migration purposes by "not present"
1856          */
1857         var->unusable = !var->present;
1858
1859         switch (seg) {
1860         case VCPU_SREG_TR:
1861                 /*
1862                  * Work around a bug where the busy flag in the tr selector
1863                  * isn't exposed
1864                  */
1865                 var->type |= 0x2;
1866                 break;
1867         case VCPU_SREG_DS:
1868         case VCPU_SREG_ES:
1869         case VCPU_SREG_FS:
1870         case VCPU_SREG_GS:
1871                 /*
1872                  * The accessed bit must always be set in the segment
1873                  * descriptor cache, although it can be cleared in the
1874                  * descriptor, the cached bit always remains at 1. Since
1875                  * Intel has a check on this, set it here to support
1876                  * cross-vendor migration.
1877                  */
1878                 if (!var->unusable)
1879                         var->type |= 0x1;
1880                 break;
1881         case VCPU_SREG_SS:
1882                 /*
1883                  * On AMD CPUs sometimes the DB bit in the segment
1884                  * descriptor is left as 1, although the whole segment has
1885                  * been made unusable. Clear it here to pass an Intel VMX
1886                  * entry check when cross vendor migrating.
1887                  */
1888                 if (var->unusable)
1889                         var->db = 0;
1890                 /* This is symmetric with svm_set_segment() */
1891                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1892                 break;
1893         }
1894 }
1895
1896 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1897 {
1898         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1899
1900         return save->cpl;
1901 }
1902
1903 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1904 {
1905         struct vcpu_svm *svm = to_svm(vcpu);
1906
1907         dt->size = svm->vmcb->save.idtr.limit;
1908         dt->address = svm->vmcb->save.idtr.base;
1909 }
1910
1911 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1912 {
1913         struct vcpu_svm *svm = to_svm(vcpu);
1914
1915         svm->vmcb->save.idtr.limit = dt->size;
1916         svm->vmcb->save.idtr.base = dt->address ;
1917         mark_dirty(svm->vmcb, VMCB_DT);
1918 }
1919
1920 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1921 {
1922         struct vcpu_svm *svm = to_svm(vcpu);
1923
1924         dt->size = svm->vmcb->save.gdtr.limit;
1925         dt->address = svm->vmcb->save.gdtr.base;
1926 }
1927
1928 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1929 {
1930         struct vcpu_svm *svm = to_svm(vcpu);
1931
1932         svm->vmcb->save.gdtr.limit = dt->size;
1933         svm->vmcb->save.gdtr.base = dt->address ;
1934         mark_dirty(svm->vmcb, VMCB_DT);
1935 }
1936
1937 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1938 {
1939 }
1940
1941 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1942 {
1943 }
1944
1945 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1946 {
1947 }
1948
1949 static void update_cr0_intercept(struct vcpu_svm *svm)
1950 {
1951         ulong gcr0 = svm->vcpu.arch.cr0;
1952         u64 *hcr0 = &svm->vmcb->save.cr0;
1953
1954         *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1955                 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1956
1957         mark_dirty(svm->vmcb, VMCB_CR);
1958
1959         if (gcr0 == *hcr0) {
1960                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1961                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1962         } else {
1963                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1964                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1965         }
1966 }
1967
1968 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1969 {
1970         struct vcpu_svm *svm = to_svm(vcpu);
1971
1972 #ifdef CONFIG_X86_64
1973         if (vcpu->arch.efer & EFER_LME) {
1974                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1975                         vcpu->arch.efer |= EFER_LMA;
1976                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1977                 }
1978
1979                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1980                         vcpu->arch.efer &= ~EFER_LMA;
1981                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1982                 }
1983         }
1984 #endif
1985         vcpu->arch.cr0 = cr0;
1986
1987         if (!npt_enabled)
1988                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1989
1990         /*
1991          * re-enable caching here because the QEMU bios
1992          * does not do it - this results in some delay at
1993          * reboot
1994          */
1995         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1996                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1997         svm->vmcb->save.cr0 = cr0;
1998         mark_dirty(svm->vmcb, VMCB_CR);
1999         update_cr0_intercept(svm);
2000 }
2001
2002 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2003 {
2004         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2005         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2006
2007         if (cr4 & X86_CR4_VMXE)
2008                 return 1;
2009
2010         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2011                 svm_flush_tlb(vcpu);
2012
2013         vcpu->arch.cr4 = cr4;
2014         if (!npt_enabled)
2015                 cr4 |= X86_CR4_PAE;
2016         cr4 |= host_cr4_mce;
2017         to_svm(vcpu)->vmcb->save.cr4 = cr4;
2018         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2019         return 0;
2020 }
2021
2022 static void svm_set_segment(struct kvm_vcpu *vcpu,
2023                             struct kvm_segment *var, int seg)
2024 {
2025         struct vcpu_svm *svm = to_svm(vcpu);
2026         struct vmcb_seg *s = svm_seg(vcpu, seg);
2027
2028         s->base = var->base;
2029         s->limit = var->limit;
2030         s->selector = var->selector;
2031         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2032         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2033         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2034         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2035         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2036         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2037         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2038         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2039
2040         /*
2041          * This is always accurate, except if SYSRET returned to a segment
2042          * with SS.DPL != 3.  Intel does not have this quirk, and always
2043          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2044          * would entail passing the CPL to userspace and back.
2045          */
2046         if (seg == VCPU_SREG_SS)
2047                 /* This is symmetric with svm_get_segment() */
2048                 svm->vmcb->save.cpl = (var->dpl & 3);
2049
2050         mark_dirty(svm->vmcb, VMCB_SEG);
2051 }
2052
2053 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2054 {
2055         struct vcpu_svm *svm = to_svm(vcpu);
2056
2057         clr_exception_intercept(svm, BP_VECTOR);
2058
2059         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2060                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2061                         set_exception_intercept(svm, BP_VECTOR);
2062         } else
2063                 vcpu->guest_debug = 0;
2064 }
2065
2066 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2067 {
2068         if (sd->next_asid > sd->max_asid) {
2069                 ++sd->asid_generation;
2070                 sd->next_asid = 1;
2071                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2072         }
2073
2074         svm->asid_generation = sd->asid_generation;
2075         svm->vmcb->control.asid = sd->next_asid++;
2076
2077         mark_dirty(svm->vmcb, VMCB_ASID);
2078 }
2079
2080 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2081 {
2082         return to_svm(vcpu)->vmcb->save.dr6;
2083 }
2084
2085 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2086 {
2087         struct vcpu_svm *svm = to_svm(vcpu);
2088
2089         svm->vmcb->save.dr6 = value;
2090         mark_dirty(svm->vmcb, VMCB_DR);
2091 }
2092
2093 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2094 {
2095         struct vcpu_svm *svm = to_svm(vcpu);
2096
2097         get_debugreg(vcpu->arch.db[0], 0);
2098         get_debugreg(vcpu->arch.db[1], 1);
2099         get_debugreg(vcpu->arch.db[2], 2);
2100         get_debugreg(vcpu->arch.db[3], 3);
2101         vcpu->arch.dr6 = svm_get_dr6(vcpu);
2102         vcpu->arch.dr7 = svm->vmcb->save.dr7;
2103
2104         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2105         set_dr_intercepts(svm);
2106 }
2107
2108 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2109 {
2110         struct vcpu_svm *svm = to_svm(vcpu);
2111
2112         svm->vmcb->save.dr7 = value;
2113         mark_dirty(svm->vmcb, VMCB_DR);
2114 }
2115
2116 static int pf_interception(struct vcpu_svm *svm)
2117 {
2118         u64 fault_address = svm->vmcb->control.exit_info_2;
2119         u64 error_code = svm->vmcb->control.exit_info_1;
2120
2121         return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2122                         svm->vmcb->control.insn_bytes,
2123                         svm->vmcb->control.insn_len, !npt_enabled);
2124 }
2125
2126 static int db_interception(struct vcpu_svm *svm)
2127 {
2128         struct kvm_run *kvm_run = svm->vcpu.run;
2129
2130         if (!(svm->vcpu.guest_debug &
2131               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2132                 !svm->nmi_singlestep) {
2133                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2134                 return 1;
2135         }
2136
2137         if (svm->nmi_singlestep) {
2138                 disable_nmi_singlestep(svm);
2139         }
2140
2141         if (svm->vcpu.guest_debug &
2142             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2143                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2144                 kvm_run->debug.arch.pc =
2145                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2146                 kvm_run->debug.arch.exception = DB_VECTOR;
2147                 return 0;
2148         }
2149
2150         return 1;
2151 }
2152
2153 static int bp_interception(struct vcpu_svm *svm)
2154 {
2155         struct kvm_run *kvm_run = svm->vcpu.run;
2156
2157         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2158         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2159         kvm_run->debug.arch.exception = BP_VECTOR;
2160         return 0;
2161 }
2162
2163 static int ud_interception(struct vcpu_svm *svm)
2164 {
2165         int er;
2166
2167         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2168         if (er != EMULATE_DONE)
2169                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2170         return 1;
2171 }
2172
2173 static int ac_interception(struct vcpu_svm *svm)
2174 {
2175         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2176         return 1;
2177 }
2178
2179 static bool is_erratum_383(void)
2180 {
2181         int err, i;
2182         u64 value;
2183
2184         if (!erratum_383_found)
2185                 return false;
2186
2187         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2188         if (err)
2189                 return false;
2190
2191         /* Bit 62 may or may not be set for this mce */
2192         value &= ~(1ULL << 62);
2193
2194         if (value != 0xb600000000010015ULL)
2195                 return false;
2196
2197         /* Clear MCi_STATUS registers */
2198         for (i = 0; i < 6; ++i)
2199                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2200
2201         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2202         if (!err) {
2203                 u32 low, high;
2204
2205                 value &= ~(1ULL << 2);
2206                 low    = lower_32_bits(value);
2207                 high   = upper_32_bits(value);
2208
2209                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2210         }
2211
2212         /* Flush tlb to evict multi-match entries */
2213         __flush_tlb_all();
2214
2215         return true;
2216 }
2217
2218 static void svm_handle_mce(struct vcpu_svm *svm)
2219 {
2220         if (is_erratum_383()) {
2221                 /*
2222                  * Erratum 383 triggered. Guest state is corrupt so kill the
2223                  * guest.
2224                  */
2225                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2226
2227                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2228
2229                 return;
2230         }
2231
2232         /*
2233          * On an #MC intercept the MCE handler is not called automatically in
2234          * the host. So do it by hand here.
2235          */
2236         asm volatile (
2237                 "int $0x12\n");
2238         /* not sure if we ever come back to this point */
2239
2240         return;
2241 }
2242
2243 static int mc_interception(struct vcpu_svm *svm)
2244 {
2245         return 1;
2246 }
2247
2248 static int shutdown_interception(struct vcpu_svm *svm)
2249 {
2250         struct kvm_run *kvm_run = svm->vcpu.run;
2251
2252         /*
2253          * VMCB is undefined after a SHUTDOWN intercept
2254          * so reinitialize it.
2255          */
2256         clear_page(svm->vmcb);
2257         init_vmcb(svm);
2258
2259         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2260         return 0;
2261 }
2262
2263 static int io_interception(struct vcpu_svm *svm)
2264 {
2265         struct kvm_vcpu *vcpu = &svm->vcpu;
2266         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2267         int size, in, string, ret;
2268         unsigned port;
2269
2270         ++svm->vcpu.stat.io_exits;
2271         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2272         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2273         if (string)
2274                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2275
2276         port = io_info >> 16;
2277         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2278         svm->next_rip = svm->vmcb->control.exit_info_2;
2279         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2280
2281         /*
2282          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2283          * KVM_EXIT_DEBUG here.
2284          */
2285         if (in)
2286                 return kvm_fast_pio_in(vcpu, size, port) && ret;
2287         else
2288                 return kvm_fast_pio_out(vcpu, size, port) && ret;
2289 }
2290
2291 static int nmi_interception(struct vcpu_svm *svm)
2292 {
2293         return 1;
2294 }
2295
2296 static int intr_interception(struct vcpu_svm *svm)
2297 {
2298         ++svm->vcpu.stat.irq_exits;
2299         return 1;
2300 }
2301
2302 static int nop_on_interception(struct vcpu_svm *svm)
2303 {
2304         return 1;
2305 }
2306
2307 static int halt_interception(struct vcpu_svm *svm)
2308 {
2309         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2310         return kvm_emulate_halt(&svm->vcpu);
2311 }
2312
2313 static int vmmcall_interception(struct vcpu_svm *svm)
2314 {
2315         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2316         return kvm_emulate_hypercall(&svm->vcpu);
2317 }
2318
2319 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2320 {
2321         struct vcpu_svm *svm = to_svm(vcpu);
2322
2323         return svm->nested.nested_cr3;
2324 }
2325
2326 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2327 {
2328         struct vcpu_svm *svm = to_svm(vcpu);
2329         u64 cr3 = svm->nested.nested_cr3;
2330         u64 pdpte;
2331         int ret;
2332
2333         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2334                                        offset_in_page(cr3) + index * 8, 8);
2335         if (ret)
2336                 return 0;
2337         return pdpte;
2338 }
2339
2340 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2341                                    unsigned long root)
2342 {
2343         struct vcpu_svm *svm = to_svm(vcpu);
2344
2345         svm->vmcb->control.nested_cr3 = root;
2346         mark_dirty(svm->vmcb, VMCB_NPT);
2347         svm_flush_tlb(vcpu);
2348 }
2349
2350 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2351                                        struct x86_exception *fault)
2352 {
2353         struct vcpu_svm *svm = to_svm(vcpu);
2354
2355         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2356                 /*
2357                  * TODO: track the cause of the nested page fault, and
2358                  * correctly fill in the high bits of exit_info_1.
2359                  */
2360                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2361                 svm->vmcb->control.exit_code_hi = 0;
2362                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2363                 svm->vmcb->control.exit_info_2 = fault->address;
2364         }
2365
2366         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2367         svm->vmcb->control.exit_info_1 |= fault->error_code;
2368
2369         /*
2370          * The present bit is always zero for page structure faults on real
2371          * hardware.
2372          */
2373         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2374                 svm->vmcb->control.exit_info_1 &= ~1;
2375
2376         nested_svm_vmexit(svm);
2377 }
2378
2379 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2380 {
2381         WARN_ON(mmu_is_nested(vcpu));
2382         kvm_init_shadow_mmu(vcpu);
2383         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2384         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2385         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2386         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2387         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2388         reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2389         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2390 }
2391
2392 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2393 {
2394         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2395 }
2396
2397 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2398 {
2399         if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2400             !is_paging(&svm->vcpu)) {
2401                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2402                 return 1;
2403         }
2404
2405         if (svm->vmcb->save.cpl) {
2406                 kvm_inject_gp(&svm->vcpu, 0);
2407                 return 1;
2408         }
2409
2410         return 0;
2411 }
2412
2413 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2414                                       bool has_error_code, u32 error_code)
2415 {
2416         int vmexit;
2417
2418         if (!is_guest_mode(&svm->vcpu))
2419                 return 0;
2420
2421         vmexit = nested_svm_intercept(svm);
2422         if (vmexit != NESTED_EXIT_DONE)
2423                 return 0;
2424
2425         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2426         svm->vmcb->control.exit_code_hi = 0;
2427         svm->vmcb->control.exit_info_1 = error_code;
2428
2429         /*
2430          * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2431          * The fix is to add the ancillary datum (CR2 or DR6) to structs
2432          * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2433          * written only when inject_pending_event runs (DR6 would written here
2434          * too).  This should be conditional on a new capability---if the
2435          * capability is disabled, kvm_multiple_exception would write the
2436          * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2437          */
2438         if (svm->vcpu.arch.exception.nested_apf)
2439                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2440         else
2441                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2442
2443         svm->nested.exit_required = true;
2444         return vmexit;
2445 }
2446
2447 /* This function returns true if it is save to enable the irq window */
2448 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2449 {
2450         if (!is_guest_mode(&svm->vcpu))
2451                 return true;
2452
2453         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2454                 return true;
2455
2456         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2457                 return false;
2458
2459         /*
2460          * if vmexit was already requested (by intercepted exception
2461          * for instance) do not overwrite it with "external interrupt"
2462          * vmexit.
2463          */
2464         if (svm->nested.exit_required)
2465                 return false;
2466
2467         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2468         svm->vmcb->control.exit_info_1 = 0;
2469         svm->vmcb->control.exit_info_2 = 0;
2470
2471         if (svm->nested.intercept & 1ULL) {
2472                 /*
2473                  * The #vmexit can't be emulated here directly because this
2474                  * code path runs with irqs and preemption disabled. A
2475                  * #vmexit emulation might sleep. Only signal request for
2476                  * the #vmexit here.
2477                  */
2478                 svm->nested.exit_required = true;
2479                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2480                 return false;
2481         }
2482
2483         return true;
2484 }
2485
2486 /* This function returns true if it is save to enable the nmi window */
2487 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2488 {
2489         if (!is_guest_mode(&svm->vcpu))
2490                 return true;
2491
2492         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2493                 return true;
2494
2495         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2496         svm->nested.exit_required = true;
2497
2498         return false;
2499 }
2500
2501 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2502 {
2503         struct page *page;
2504
2505         might_sleep();
2506
2507         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2508         if (is_error_page(page))
2509                 goto error;
2510
2511         *_page = page;
2512
2513         return kmap(page);
2514
2515 error:
2516         kvm_inject_gp(&svm->vcpu, 0);
2517
2518         return NULL;
2519 }
2520
2521 static void nested_svm_unmap(struct page *page)
2522 {
2523         kunmap(page);
2524         kvm_release_page_dirty(page);
2525 }
2526
2527 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2528 {
2529         unsigned port, size, iopm_len;
2530         u16 val, mask;
2531         u8 start_bit;
2532         u64 gpa;
2533
2534         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2535                 return NESTED_EXIT_HOST;
2536
2537         port = svm->vmcb->control.exit_info_1 >> 16;
2538         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2539                 SVM_IOIO_SIZE_SHIFT;
2540         gpa  = svm->nested.vmcb_iopm + (port / 8);
2541         start_bit = port % 8;
2542         iopm_len = (start_bit + size > 8) ? 2 : 1;
2543         mask = (0xf >> (4 - size)) << start_bit;
2544         val = 0;
2545
2546         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2547                 return NESTED_EXIT_DONE;
2548
2549         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2550 }
2551
2552 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2553 {
2554         u32 offset, msr, value;
2555         int write, mask;
2556
2557         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2558                 return NESTED_EXIT_HOST;
2559
2560         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2561         offset = svm_msrpm_offset(msr);
2562         write  = svm->vmcb->control.exit_info_1 & 1;
2563         mask   = 1 << ((2 * (msr & 0xf)) + write);
2564
2565         if (offset == MSR_INVALID)
2566                 return NESTED_EXIT_DONE;
2567
2568         /* Offset is in 32 bit units but need in 8 bit units */
2569         offset *= 4;
2570
2571         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2572                 return NESTED_EXIT_DONE;
2573
2574         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2575 }
2576
2577 /* DB exceptions for our internal use must not cause vmexit */
2578 static int nested_svm_intercept_db(struct vcpu_svm *svm)
2579 {
2580         unsigned long dr6;
2581
2582         /* if we're not singlestepping, it's not ours */
2583         if (!svm->nmi_singlestep)
2584                 return NESTED_EXIT_DONE;
2585
2586         /* if it's not a singlestep exception, it's not ours */
2587         if (kvm_get_dr(&svm->vcpu, 6, &dr6))
2588                 return NESTED_EXIT_DONE;
2589         if (!(dr6 & DR6_BS))
2590                 return NESTED_EXIT_DONE;
2591
2592         /* if the guest is singlestepping, it should get the vmexit */
2593         if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
2594                 disable_nmi_singlestep(svm);
2595                 return NESTED_EXIT_DONE;
2596         }
2597
2598         /* it's ours, the nested hypervisor must not see this one */
2599         return NESTED_EXIT_HOST;
2600 }
2601
2602 static int nested_svm_exit_special(struct vcpu_svm *svm)
2603 {
2604         u32 exit_code = svm->vmcb->control.exit_code;
2605
2606         switch (exit_code) {
2607         case SVM_EXIT_INTR:
2608         case SVM_EXIT_NMI:
2609         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2610                 return NESTED_EXIT_HOST;
2611         case SVM_EXIT_NPF:
2612                 /* For now we are always handling NPFs when using them */
2613                 if (npt_enabled)
2614                         return NESTED_EXIT_HOST;
2615                 break;
2616         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2617                 /* When we're shadowing, trap PFs, but not async PF */
2618                 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
2619                         return NESTED_EXIT_HOST;
2620                 break;
2621         default:
2622                 break;
2623         }
2624
2625         return NESTED_EXIT_CONTINUE;
2626 }
2627
2628 /*
2629  * If this function returns true, this #vmexit was already handled
2630  */
2631 static int nested_svm_intercept(struct vcpu_svm *svm)
2632 {
2633         u32 exit_code = svm->vmcb->control.exit_code;
2634         int vmexit = NESTED_EXIT_HOST;
2635
2636         switch (exit_code) {
2637         case SVM_EXIT_MSR:
2638                 vmexit = nested_svm_exit_handled_msr(svm);
2639                 break;
2640         case SVM_EXIT_IOIO:
2641                 vmexit = nested_svm_intercept_ioio(svm);
2642                 break;
2643         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2644                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2645                 if (svm->nested.intercept_cr & bit)
2646                         vmexit = NESTED_EXIT_DONE;
2647                 break;
2648         }
2649         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2650                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2651                 if (svm->nested.intercept_dr & bit)
2652                         vmexit = NESTED_EXIT_DONE;
2653                 break;
2654         }
2655         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2656                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2657                 if (svm->nested.intercept_exceptions & excp_bits) {
2658                         if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
2659                                 vmexit = nested_svm_intercept_db(svm);
2660                         else
2661                                 vmexit = NESTED_EXIT_DONE;
2662                 }
2663                 /* async page fault always cause vmexit */
2664                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2665                          svm->vcpu.arch.exception.nested_apf != 0)
2666                         vmexit = NESTED_EXIT_DONE;
2667                 break;
2668         }
2669         case SVM_EXIT_ERR: {
2670                 vmexit = NESTED_EXIT_DONE;
2671                 break;
2672         }
2673         default: {
2674                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2675                 if (svm->nested.intercept & exit_bits)
2676                         vmexit = NESTED_EXIT_DONE;
2677         }
2678         }
2679
2680         return vmexit;
2681 }
2682
2683 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2684 {
2685         int vmexit;
2686
2687         vmexit = nested_svm_intercept(svm);
2688
2689         if (vmexit == NESTED_EXIT_DONE)
2690                 nested_svm_vmexit(svm);
2691
2692         return vmexit;
2693 }
2694
2695 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2696 {
2697         struct vmcb_control_area *dst  = &dst_vmcb->control;
2698         struct vmcb_control_area *from = &from_vmcb->control;
2699
2700         dst->intercept_cr         = from->intercept_cr;
2701         dst->intercept_dr         = from->intercept_dr;
2702         dst->intercept_exceptions = from->intercept_exceptions;
2703         dst->intercept            = from->intercept;
2704         dst->iopm_base_pa         = from->iopm_base_pa;
2705         dst->msrpm_base_pa        = from->msrpm_base_pa;
2706         dst->tsc_offset           = from->tsc_offset;
2707         dst->asid                 = from->asid;
2708         dst->tlb_ctl              = from->tlb_ctl;
2709         dst->int_ctl              = from->int_ctl;
2710         dst->int_vector           = from->int_vector;
2711         dst->int_state            = from->int_state;
2712         dst->exit_code            = from->exit_code;
2713         dst->exit_code_hi         = from->exit_code_hi;
2714         dst->exit_info_1          = from->exit_info_1;
2715         dst->exit_info_2          = from->exit_info_2;
2716         dst->exit_int_info        = from->exit_int_info;
2717         dst->exit_int_info_err    = from->exit_int_info_err;
2718         dst->nested_ctl           = from->nested_ctl;
2719         dst->event_inj            = from->event_inj;
2720         dst->event_inj_err        = from->event_inj_err;
2721         dst->nested_cr3           = from->nested_cr3;
2722         dst->virt_ext              = from->virt_ext;
2723 }
2724
2725 static int nested_svm_vmexit(struct vcpu_svm *svm)
2726 {
2727         struct vmcb *nested_vmcb;
2728         struct vmcb *hsave = svm->nested.hsave;
2729         struct vmcb *vmcb = svm->vmcb;
2730         struct page *page;
2731
2732         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2733                                        vmcb->control.exit_info_1,
2734                                        vmcb->control.exit_info_2,
2735                                        vmcb->control.exit_int_info,
2736                                        vmcb->control.exit_int_info_err,
2737                                        KVM_ISA_SVM);
2738
2739         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2740         if (!nested_vmcb)
2741                 return 1;
2742
2743         /* Exit Guest-Mode */
2744         leave_guest_mode(&svm->vcpu);
2745         svm->nested.vmcb = 0;
2746
2747         /* Give the current vmcb to the guest */
2748         disable_gif(svm);
2749
2750         nested_vmcb->save.es     = vmcb->save.es;
2751         nested_vmcb->save.cs     = vmcb->save.cs;
2752         nested_vmcb->save.ss     = vmcb->save.ss;
2753         nested_vmcb->save.ds     = vmcb->save.ds;
2754         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2755         nested_vmcb->save.idtr   = vmcb->save.idtr;
2756         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2757         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2758         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2759         nested_vmcb->save.cr2    = vmcb->save.cr2;
2760         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2761         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2762         nested_vmcb->save.rip    = vmcb->save.rip;
2763         nested_vmcb->save.rsp    = vmcb->save.rsp;
2764         nested_vmcb->save.rax    = vmcb->save.rax;
2765         nested_vmcb->save.dr7    = vmcb->save.dr7;
2766         nested_vmcb->save.dr6    = vmcb->save.dr6;
2767         nested_vmcb->save.cpl    = vmcb->save.cpl;
2768
2769         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2770         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2771         nested_vmcb->control.int_state         = vmcb->control.int_state;
2772         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2773         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2774         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2775         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2776         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2777         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2778
2779         if (svm->nrips_enabled)
2780                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2781
2782         /*
2783          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2784          * to make sure that we do not lose injected events. So check event_inj
2785          * here and copy it to exit_int_info if it is valid.
2786          * Exit_int_info and event_inj can't be both valid because the case
2787          * below only happens on a VMRUN instruction intercept which has
2788          * no valid exit_int_info set.
2789          */
2790         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2791                 struct vmcb_control_area *nc = &nested_vmcb->control;
2792
2793                 nc->exit_int_info     = vmcb->control.event_inj;
2794                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2795         }
2796
2797         nested_vmcb->control.tlb_ctl           = 0;
2798         nested_vmcb->control.event_inj         = 0;
2799         nested_vmcb->control.event_inj_err     = 0;
2800
2801         /* We always set V_INTR_MASKING and remember the old value in hflags */
2802         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2803                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2804
2805         /* Restore the original control entries */
2806         copy_vmcb_control_area(vmcb, hsave);
2807
2808         kvm_clear_exception_queue(&svm->vcpu);
2809         kvm_clear_interrupt_queue(&svm->vcpu);
2810
2811         svm->nested.nested_cr3 = 0;
2812
2813         /* Restore selected save entries */
2814         svm->vmcb->save.es = hsave->save.es;
2815         svm->vmcb->save.cs = hsave->save.cs;
2816         svm->vmcb->save.ss = hsave->save.ss;
2817         svm->vmcb->save.ds = hsave->save.ds;
2818         svm->vmcb->save.gdtr = hsave->save.gdtr;
2819         svm->vmcb->save.idtr = hsave->save.idtr;
2820         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2821         svm_set_efer(&svm->vcpu, hsave->save.efer);
2822         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2823         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2824         if (npt_enabled) {
2825                 svm->vmcb->save.cr3 = hsave->save.cr3;
2826                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2827         } else {
2828                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2829         }
2830         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2831         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2832         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2833         svm->vmcb->save.dr7 = 0;
2834         svm->vmcb->save.cpl = 0;
2835         svm->vmcb->control.exit_int_info = 0;
2836
2837         mark_all_dirty(svm->vmcb);
2838
2839         nested_svm_unmap(page);
2840
2841         nested_svm_uninit_mmu_context(&svm->vcpu);
2842         kvm_mmu_reset_context(&svm->vcpu);
2843         kvm_mmu_load(&svm->vcpu);
2844
2845         return 0;
2846 }
2847
2848 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2849 {
2850         /*
2851          * This function merges the msr permission bitmaps of kvm and the
2852          * nested vmcb. It is optimized in that it only merges the parts where
2853          * the kvm msr permission bitmap may contain zero bits
2854          */
2855         int i;
2856
2857         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2858                 return true;
2859
2860         for (i = 0; i < MSRPM_OFFSETS; i++) {
2861                 u32 value, p;
2862                 u64 offset;
2863
2864                 if (msrpm_offsets[i] == 0xffffffff)
2865                         break;
2866
2867                 p      = msrpm_offsets[i];
2868                 offset = svm->nested.vmcb_msrpm + (p * 4);
2869
2870                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2871                         return false;
2872
2873                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2874         }
2875
2876         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2877
2878         return true;
2879 }
2880
2881 static bool nested_vmcb_checks(struct vmcb *vmcb)
2882 {
2883         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2884                 return false;
2885
2886         if (vmcb->control.asid == 0)
2887                 return false;
2888
2889         if (vmcb->control.nested_ctl && !npt_enabled)
2890                 return false;
2891
2892         return true;
2893 }
2894
2895 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2896 {
2897         struct vmcb *nested_vmcb;
2898         struct vmcb *hsave = svm->nested.hsave;
2899         struct vmcb *vmcb = svm->vmcb;
2900         struct page *page;
2901         u64 vmcb_gpa;
2902
2903         vmcb_gpa = svm->vmcb->save.rax;
2904
2905         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2906         if (!nested_vmcb)
2907                 return false;
2908
2909         if (!nested_vmcb_checks(nested_vmcb)) {
2910                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2911                 nested_vmcb->control.exit_code_hi = 0;
2912                 nested_vmcb->control.exit_info_1  = 0;
2913                 nested_vmcb->control.exit_info_2  = 0;
2914
2915                 nested_svm_unmap(page);
2916
2917                 return false;
2918         }
2919
2920         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2921                                nested_vmcb->save.rip,
2922                                nested_vmcb->control.int_ctl,
2923                                nested_vmcb->control.event_inj,
2924                                nested_vmcb->control.nested_ctl);
2925
2926         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2927                                     nested_vmcb->control.intercept_cr >> 16,
2928                                     nested_vmcb->control.intercept_exceptions,
2929                                     nested_vmcb->control.intercept);
2930
2931         /* Clear internal status */
2932         kvm_clear_exception_queue(&svm->vcpu);
2933         kvm_clear_interrupt_queue(&svm->vcpu);
2934
2935         /*
2936          * Save the old vmcb, so we don't need to pick what we save, but can
2937          * restore everything when a VMEXIT occurs
2938          */
2939         hsave->save.es     = vmcb->save.es;
2940         hsave->save.cs     = vmcb->save.cs;
2941         hsave->save.ss     = vmcb->save.ss;
2942         hsave->save.ds     = vmcb->save.ds;
2943         hsave->save.gdtr   = vmcb->save.gdtr;
2944         hsave->save.idtr   = vmcb->save.idtr;
2945         hsave->save.efer   = svm->vcpu.arch.efer;
2946         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2947         hsave->save.cr4    = svm->vcpu.arch.cr4;
2948         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2949         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2950         hsave->save.rsp    = vmcb->save.rsp;
2951         hsave->save.rax    = vmcb->save.rax;
2952         if (npt_enabled)
2953                 hsave->save.cr3    = vmcb->save.cr3;
2954         else
2955                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2956
2957         copy_vmcb_control_area(hsave, vmcb);
2958
2959         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2960                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2961         else
2962                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2963
2964         if (nested_vmcb->control.nested_ctl) {
2965                 kvm_mmu_unload(&svm->vcpu);
2966                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2967                 nested_svm_init_mmu_context(&svm->vcpu);
2968         }
2969
2970         /* Load the nested guest state */
2971         svm->vmcb->save.es = nested_vmcb->save.es;
2972         svm->vmcb->save.cs = nested_vmcb->save.cs;
2973         svm->vmcb->save.ss = nested_vmcb->save.ss;
2974         svm->vmcb->save.ds = nested_vmcb->save.ds;
2975         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2976         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2977         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2978         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2979         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2980         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2981         if (npt_enabled) {
2982                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2983                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2984         } else
2985                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2986
2987         /* Guest paging mode is active - reset mmu */
2988         kvm_mmu_reset_context(&svm->vcpu);
2989
2990         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2991         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2992         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2993         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2994
2995         /* In case we don't even reach vcpu_run, the fields are not updated */
2996         svm->vmcb->save.rax = nested_vmcb->save.rax;
2997         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2998         svm->vmcb->save.rip = nested_vmcb->save.rip;
2999         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3000         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3001         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3002
3003         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3004         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3005
3006         /* cache intercepts */
3007         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3008         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3009         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3010         svm->nested.intercept            = nested_vmcb->control.intercept;
3011
3012         svm_flush_tlb(&svm->vcpu);
3013         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3014         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3015                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3016         else
3017                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3018
3019         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3020                 /* We only want the cr8 intercept bits of the guest */
3021                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3022                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3023         }
3024
3025         /* We don't want to see VMMCALLs from a nested guest */
3026         clr_intercept(svm, INTERCEPT_VMMCALL);
3027
3028         svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3029         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3030         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3031         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
3032         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3033         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3034
3035         nested_svm_unmap(page);
3036
3037         /* Enter Guest-Mode */
3038         enter_guest_mode(&svm->vcpu);
3039
3040         /*
3041          * Merge guest and host intercepts - must be called  with vcpu in
3042          * guest-mode to take affect here
3043          */
3044         recalc_intercepts(svm);
3045
3046         svm->nested.vmcb = vmcb_gpa;
3047
3048         enable_gif(svm);
3049
3050         mark_all_dirty(svm->vmcb);
3051
3052         return true;
3053 }
3054
3055 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3056 {
3057         to_vmcb->save.fs = from_vmcb->save.fs;
3058         to_vmcb->save.gs = from_vmcb->save.gs;
3059         to_vmcb->save.tr = from_vmcb->save.tr;
3060         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3061         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3062         to_vmcb->save.star = from_vmcb->save.star;
3063         to_vmcb->save.lstar = from_vmcb->save.lstar;
3064         to_vmcb->save.cstar = from_vmcb->save.cstar;
3065         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3066         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3067         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3068         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3069 }
3070
3071 static int vmload_interception(struct vcpu_svm *svm)
3072 {
3073         struct vmcb *nested_vmcb;
3074         struct page *page;
3075         int ret;
3076
3077         if (nested_svm_check_permissions(svm))
3078                 return 1;
3079
3080         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3081         if (!nested_vmcb)
3082                 return 1;
3083
3084         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3085         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3086
3087         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3088         nested_svm_unmap(page);
3089
3090         return ret;
3091 }
3092
3093 static int vmsave_interception(struct vcpu_svm *svm)
3094 {
3095         struct vmcb *nested_vmcb;
3096         struct page *page;
3097         int ret;
3098
3099         if (nested_svm_check_permissions(svm))
3100                 return 1;
3101
3102         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3103         if (!nested_vmcb)
3104                 return 1;
3105
3106         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3107         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3108
3109         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3110         nested_svm_unmap(page);
3111
3112         return ret;
3113 }
3114
3115 static int vmrun_interception(struct vcpu_svm *svm)
3116 {
3117         if (nested_svm_check_permissions(svm))
3118                 return 1;
3119
3120         /* Save rip after vmrun instruction */
3121         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3122
3123         if (!nested_svm_vmrun(svm))
3124                 return 1;
3125
3126         if (!nested_svm_vmrun_msrpm(svm))
3127                 goto failed;
3128
3129         return 1;
3130
3131 failed:
3132
3133         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3134         svm->vmcb->control.exit_code_hi = 0;
3135         svm->vmcb->control.exit_info_1  = 0;
3136         svm->vmcb->control.exit_info_2  = 0;
3137
3138         nested_svm_vmexit(svm);
3139
3140         return 1;
3141 }
3142
3143 static int stgi_interception(struct vcpu_svm *svm)
3144 {
3145         int ret;
3146
3147         if (nested_svm_check_permissions(svm))
3148                 return 1;
3149
3150         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3151         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3152         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3153
3154         enable_gif(svm);
3155
3156         return ret;
3157 }
3158
3159 static int clgi_interception(struct vcpu_svm *svm)
3160 {
3161         int ret;
3162
3163         if (nested_svm_check_permissions(svm))
3164                 return 1;
3165
3166         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3167         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3168
3169         disable_gif(svm);
3170
3171         /* After a CLGI no interrupts should come */
3172         if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3173                 svm_clear_vintr(svm);
3174                 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3175                 mark_dirty(svm->vmcb, VMCB_INTR);
3176         }
3177
3178         return ret;
3179 }
3180
3181 static int invlpga_interception(struct vcpu_svm *svm)
3182 {
3183         struct kvm_vcpu *vcpu = &svm->vcpu;
3184
3185         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3186                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3187
3188         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3189         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3190
3191         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3192         return kvm_skip_emulated_instruction(&svm->vcpu);
3193 }
3194
3195 static int skinit_interception(struct vcpu_svm *svm)
3196 {
3197         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3198
3199         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3200         return 1;
3201 }
3202
3203 static int wbinvd_interception(struct vcpu_svm *svm)
3204 {
3205         return kvm_emulate_wbinvd(&svm->vcpu);
3206 }
3207
3208 static int xsetbv_interception(struct vcpu_svm *svm)
3209 {
3210         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3211         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3212
3213         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3214                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3215                 return kvm_skip_emulated_instruction(&svm->vcpu);
3216         }
3217
3218         return 1;
3219 }
3220
3221 static int task_switch_interception(struct vcpu_svm *svm)
3222 {
3223         u16 tss_selector;
3224         int reason;
3225         int int_type = svm->vmcb->control.exit_int_info &
3226                 SVM_EXITINTINFO_TYPE_MASK;
3227         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3228         uint32_t type =
3229                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3230         uint32_t idt_v =
3231                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3232         bool has_error_code = false;
3233         u32 error_code = 0;
3234
3235         tss_selector = (u16)svm->vmcb->control.exit_info_1;
3236
3237         if (svm->vmcb->control.exit_info_2 &
3238             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3239                 reason = TASK_SWITCH_IRET;
3240         else if (svm->vmcb->control.exit_info_2 &
3241                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3242                 reason = TASK_SWITCH_JMP;
3243         else if (idt_v)
3244                 reason = TASK_SWITCH_GATE;
3245         else
3246                 reason = TASK_SWITCH_CALL;
3247
3248         if (reason == TASK_SWITCH_GATE) {
3249                 switch (type) {
3250                 case SVM_EXITINTINFO_TYPE_NMI:
3251                         svm->vcpu.arch.nmi_injected = false;
3252                         break;
3253                 case SVM_EXITINTINFO_TYPE_EXEPT:
3254                         if (svm->vmcb->control.exit_info_2 &
3255                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3256                                 has_error_code = true;
3257                                 error_code =
3258                                         (u32)svm->vmcb->control.exit_info_2;
3259                         }
3260                         kvm_clear_exception_queue(&svm->vcpu);
3261                         break;
3262                 case SVM_EXITINTINFO_TYPE_INTR:
3263                         kvm_clear_interrupt_queue(&svm->vcpu);
3264                         break;
3265                 default:
3266                         break;
3267                 }
3268         }
3269
3270         if (reason != TASK_SWITCH_GATE ||
3271             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3272             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3273              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3274                 skip_emulated_instruction(&svm->vcpu);
3275
3276         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3277                 int_vec = -1;
3278
3279         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3280                                 has_error_code, error_code) == EMULATE_FAIL) {
3281                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3282                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3283                 svm->vcpu.run->internal.ndata = 0;
3284                 return 0;
3285         }
3286         return 1;
3287 }
3288
3289 static int cpuid_interception(struct vcpu_svm *svm)
3290 {
3291         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3292         return kvm_emulate_cpuid(&svm->vcpu);
3293 }
3294
3295 static int iret_interception(struct vcpu_svm *svm)
3296 {
3297         ++svm->vcpu.stat.nmi_window_exits;
3298         clr_intercept(svm, INTERCEPT_IRET);
3299         svm->vcpu.arch.hflags |= HF_IRET_MASK;
3300         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3301         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3302         return 1;
3303 }
3304
3305 static int invlpg_interception(struct vcpu_svm *svm)
3306 {
3307         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3308                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3309
3310         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3311         return kvm_skip_emulated_instruction(&svm->vcpu);
3312 }
3313
3314 static int emulate_on_interception(struct vcpu_svm *svm)
3315 {
3316         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3317 }
3318
3319 static int rdpmc_interception(struct vcpu_svm *svm)
3320 {
3321         int err;
3322
3323         if (!static_cpu_has(X86_FEATURE_NRIPS))
3324                 return emulate_on_interception(svm);
3325
3326         err = kvm_rdpmc(&svm->vcpu);
3327         return kvm_complete_insn_gp(&svm->vcpu, err);
3328 }
3329
3330 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3331                                             unsigned long val)
3332 {
3333         unsigned long cr0 = svm->vcpu.arch.cr0;
3334         bool ret = false;
3335         u64 intercept;
3336
3337         intercept = svm->nested.intercept;
3338
3339         if (!is_guest_mode(&svm->vcpu) ||
3340             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3341                 return false;
3342
3343         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3344         val &= ~SVM_CR0_SELECTIVE_MASK;
3345
3346         if (cr0 ^ val) {
3347                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3348                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3349         }
3350
3351         return ret;
3352 }
3353
3354 #define CR_VALID (1ULL << 63)
3355
3356 static int cr_interception(struct vcpu_svm *svm)
3357 {
3358         int reg, cr;
3359         unsigned long val;
3360         int err;
3361
3362         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3363                 return emulate_on_interception(svm);
3364
3365         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3366                 return emulate_on_interception(svm);
3367
3368         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3369         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3370                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3371         else
3372                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3373
3374         err = 0;
3375         if (cr >= 16) { /* mov to cr */
3376                 cr -= 16;
3377                 val = kvm_register_read(&svm->vcpu, reg);
3378                 switch (cr) {
3379                 case 0:
3380                         if (!check_selective_cr0_intercepted(svm, val))
3381                                 err = kvm_set_cr0(&svm->vcpu, val);
3382                         else
3383                                 return 1;
3384
3385                         break;
3386                 case 3:
3387                         err = kvm_set_cr3(&svm->vcpu, val);
3388                         break;
3389                 case 4:
3390                         err = kvm_set_cr4(&svm->vcpu, val);
3391                         break;
3392                 case 8:
3393                         err = kvm_set_cr8(&svm->vcpu, val);
3394                         break;
3395                 default:
3396                         WARN(1, "unhandled write to CR%d", cr);
3397                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3398                         return 1;
3399                 }
3400         } else { /* mov from cr */
3401                 switch (cr) {
3402                 case 0:
3403                         val = kvm_read_cr0(&svm->vcpu);
3404                         break;
3405                 case 2:
3406                         val = svm->vcpu.arch.cr2;
3407                         break;
3408                 case 3:
3409                         val = kvm_read_cr3(&svm->vcpu);
3410                         break;
3411                 case 4:
3412                         val = kvm_read_cr4(&svm->vcpu);
3413                         break;
3414                 case 8:
3415                         val = kvm_get_cr8(&svm->vcpu);
3416                         break;
3417                 default:
3418                         WARN(1, "unhandled read from CR%d", cr);
3419                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3420                         return 1;
3421                 }
3422                 kvm_register_write(&svm->vcpu, reg, val);
3423         }
3424         return kvm_complete_insn_gp(&svm->vcpu, err);
3425 }
3426
3427 static int dr_interception(struct vcpu_svm *svm)
3428 {
3429         int reg, dr;
3430         unsigned long val;
3431
3432         if (svm->vcpu.guest_debug == 0) {
3433                 /*
3434                  * No more DR vmexits; force a reload of the debug registers
3435                  * and reenter on this instruction.  The next vmexit will
3436                  * retrieve the full state of the debug registers.
3437                  */
3438                 clr_dr_intercepts(svm);
3439                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3440                 return 1;
3441         }
3442
3443         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3444                 return emulate_on_interception(svm);
3445
3446         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3447         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3448
3449         if (dr >= 16) { /* mov to DRn */
3450                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3451                         return 1;
3452                 val = kvm_register_read(&svm->vcpu, reg);
3453                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3454         } else {
3455                 if (!kvm_require_dr(&svm->vcpu, dr))
3456                         return 1;
3457                 kvm_get_dr(&svm->vcpu, dr, &val);
3458                 kvm_register_write(&svm->vcpu, reg, val);
3459         }
3460
3461         return kvm_skip_emulated_instruction(&svm->vcpu);
3462 }
3463
3464 static int cr8_write_interception(struct vcpu_svm *svm)
3465 {
3466         struct kvm_run *kvm_run = svm->vcpu.run;
3467         int r;
3468
3469         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3470         /* instruction emulation calls kvm_set_cr8() */
3471         r = cr_interception(svm);
3472         if (lapic_in_kernel(&svm->vcpu))
3473                 return r;
3474         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3475                 return r;
3476         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3477         return 0;
3478 }
3479
3480 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3481 {
3482         struct vcpu_svm *svm = to_svm(vcpu);
3483
3484         switch (msr_info->index) {
3485         case MSR_IA32_TSC: {
3486                 msr_info->data = svm->vmcb->control.tsc_offset +
3487                         kvm_scale_tsc(vcpu, rdtsc());
3488
3489                 break;
3490         }
3491         case MSR_STAR:
3492                 msr_info->data = svm->vmcb->save.star;
3493                 break;
3494 #ifdef CONFIG_X86_64
3495         case MSR_LSTAR:
3496                 msr_info->data = svm->vmcb->save.lstar;
3497                 break;
3498         case MSR_CSTAR:
3499                 msr_info->data = svm->vmcb->save.cstar;
3500                 break;
3501         case MSR_KERNEL_GS_BASE:
3502                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3503                 break;
3504         case MSR_SYSCALL_MASK:
3505                 msr_info->data = svm->vmcb->save.sfmask;
3506                 break;
3507 #endif
3508         case MSR_IA32_SYSENTER_CS:
3509                 msr_info->data = svm->vmcb->save.sysenter_cs;
3510                 break;
3511         case MSR_IA32_SYSENTER_EIP:
3512                 msr_info->data = svm->sysenter_eip;
3513                 break;
3514         case MSR_IA32_SYSENTER_ESP:
3515                 msr_info->data = svm->sysenter_esp;
3516                 break;
3517         case MSR_TSC_AUX:
3518                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3519                         return 1;
3520                 msr_info->data = svm->tsc_aux;
3521                 break;
3522         /*
3523          * Nobody will change the following 5 values in the VMCB so we can
3524          * safely return them on rdmsr. They will always be 0 until LBRV is
3525          * implemented.
3526          */
3527         case MSR_IA32_DEBUGCTLMSR:
3528                 msr_info->data = svm->vmcb->save.dbgctl;
3529                 break;
3530         case MSR_IA32_LASTBRANCHFROMIP:
3531                 msr_info->data = svm->vmcb->save.br_from;
3532                 break;
3533         case MSR_IA32_LASTBRANCHTOIP:
3534                 msr_info->data = svm->vmcb->save.br_to;
3535                 break;
3536         case MSR_IA32_LASTINTFROMIP:
3537                 msr_info->data = svm->vmcb->save.last_excp_from;
3538                 break;
3539         case MSR_IA32_LASTINTTOIP:
3540                 msr_info->data = svm->vmcb->save.last_excp_to;
3541                 break;
3542         case MSR_VM_HSAVE_PA:
3543                 msr_info->data = svm->nested.hsave_msr;
3544                 break;
3545         case MSR_VM_CR:
3546                 msr_info->data = svm->nested.vm_cr_msr;
3547                 break;
3548         case MSR_IA32_UCODE_REV:
3549                 msr_info->data = 0x01000065;
3550                 break;
3551         case MSR_F15H_IC_CFG: {
3552
3553                 int family, model;
3554
3555                 family = guest_cpuid_family(vcpu);
3556                 model  = guest_cpuid_model(vcpu);
3557
3558                 if (family < 0 || model < 0)
3559                         return kvm_get_msr_common(vcpu, msr_info);
3560
3561                 msr_info->data = 0;
3562
3563                 if (family == 0x15 &&
3564                     (model >= 0x2 && model < 0x20))
3565                         msr_info->data = 0x1E;
3566                 }
3567                 break;
3568         default:
3569                 return kvm_get_msr_common(vcpu, msr_info);
3570         }
3571         return 0;
3572 }
3573
3574 static int rdmsr_interception(struct vcpu_svm *svm)
3575 {
3576         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3577         struct msr_data msr_info;
3578
3579         msr_info.index = ecx;
3580         msr_info.host_initiated = false;
3581         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3582                 trace_kvm_msr_read_ex(ecx);
3583                 kvm_inject_gp(&svm->vcpu, 0);
3584                 return 1;
3585         } else {
3586                 trace_kvm_msr_read(ecx, msr_info.data);
3587
3588                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3589                                    msr_info.data & 0xffffffff);
3590                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3591                                    msr_info.data >> 32);
3592                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3593                 return kvm_skip_emulated_instruction(&svm->vcpu);
3594         }
3595 }
3596
3597 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3598 {
3599         struct vcpu_svm *svm = to_svm(vcpu);
3600         int svm_dis, chg_mask;
3601
3602         if (data & ~SVM_VM_CR_VALID_MASK)
3603                 return 1;
3604
3605         chg_mask = SVM_VM_CR_VALID_MASK;
3606
3607         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3608                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3609
3610         svm->nested.vm_cr_msr &= ~chg_mask;
3611         svm->nested.vm_cr_msr |= (data & chg_mask);
3612
3613         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3614
3615         /* check for svm_disable while efer.svme is set */
3616         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3617                 return 1;
3618
3619         return 0;
3620 }
3621
3622 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3623 {
3624         struct vcpu_svm *svm = to_svm(vcpu);
3625
3626         u32 ecx = msr->index;
3627         u64 data = msr->data;
3628         switch (ecx) {
3629         case MSR_IA32_TSC:
3630                 kvm_write_tsc(vcpu, msr);
3631                 break;
3632         case MSR_STAR:
3633                 svm->vmcb->save.star = data;
3634                 break;
3635 #ifdef CONFIG_X86_64
3636         case MSR_LSTAR:
3637                 svm->vmcb->save.lstar = data;
3638                 break;
3639         case MSR_CSTAR:
3640                 svm->vmcb->save.cstar = data;
3641                 break;
3642         case MSR_KERNEL_GS_BASE:
3643                 svm->vmcb->save.kernel_gs_base = data;
3644                 break;
3645         case MSR_SYSCALL_MASK:
3646                 svm->vmcb->save.sfmask = data;
3647                 break;
3648 #endif
3649         case MSR_IA32_SYSENTER_CS:
3650                 svm->vmcb->save.sysenter_cs = data;
3651                 break;
3652         case MSR_IA32_SYSENTER_EIP:
3653                 svm->sysenter_eip = data;
3654                 svm->vmcb->save.sysenter_eip = data;
3655                 break;
3656         case MSR_IA32_SYSENTER_ESP:
3657                 svm->sysenter_esp = data;
3658                 svm->vmcb->save.sysenter_esp = data;
3659                 break;
3660         case MSR_TSC_AUX:
3661                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3662                         return 1;
3663
3664                 /*
3665                  * This is rare, so we update the MSR here instead of using
3666                  * direct_access_msrs.  Doing that would require a rdmsr in
3667                  * svm_vcpu_put.
3668                  */
3669                 svm->tsc_aux = data;
3670                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3671                 break;
3672         case MSR_IA32_DEBUGCTLMSR:
3673                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3674                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3675                                     __func__, data);
3676                         break;
3677                 }
3678                 if (data & DEBUGCTL_RESERVED_BITS)
3679                         return 1;
3680
3681                 svm->vmcb->save.dbgctl = data;
3682                 mark_dirty(svm->vmcb, VMCB_LBR);
3683                 if (data & (1ULL<<0))
3684                         svm_enable_lbrv(svm);
3685                 else
3686                         svm_disable_lbrv(svm);
3687                 break;
3688         case MSR_VM_HSAVE_PA:
3689                 svm->nested.hsave_msr = data;
3690                 break;
3691         case MSR_VM_CR:
3692                 return svm_set_vm_cr(vcpu, data);
3693         case MSR_VM_IGNNE:
3694                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3695                 break;
3696         case MSR_IA32_APICBASE:
3697                 if (kvm_vcpu_apicv_active(vcpu))
3698                         avic_update_vapic_bar(to_svm(vcpu), data);
3699                 /* Follow through */
3700         default:
3701                 return kvm_set_msr_common(vcpu, msr);
3702         }
3703         return 0;
3704 }
3705
3706 static int wrmsr_interception(struct vcpu_svm *svm)
3707 {
3708         struct msr_data msr;
3709         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3710         u64 data = kvm_read_edx_eax(&svm->vcpu);
3711
3712         msr.data = data;
3713         msr.index = ecx;
3714         msr.host_initiated = false;
3715
3716         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3717         if (kvm_set_msr(&svm->vcpu, &msr)) {
3718                 trace_kvm_msr_write_ex(ecx, data);
3719                 kvm_inject_gp(&svm->vcpu, 0);
3720                 return 1;
3721         } else {
3722                 trace_kvm_msr_write(ecx, data);
3723                 return kvm_skip_emulated_instruction(&svm->vcpu);
3724         }
3725 }
3726
3727 static int msr_interception(struct vcpu_svm *svm)
3728 {
3729         if (svm->vmcb->control.exit_info_1)
3730                 return wrmsr_interception(svm);
3731         else
3732                 return rdmsr_interception(svm);
3733 }
3734
3735 static int interrupt_window_interception(struct vcpu_svm *svm)
3736 {
3737         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3738         svm_clear_vintr(svm);
3739         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3740         mark_dirty(svm->vmcb, VMCB_INTR);
3741         ++svm->vcpu.stat.irq_window_exits;
3742         return 1;
3743 }
3744
3745 static int pause_interception(struct vcpu_svm *svm)
3746 {
3747         kvm_vcpu_on_spin(&(svm->vcpu));
3748         return 1;
3749 }
3750
3751 static int nop_interception(struct vcpu_svm *svm)
3752 {
3753         return kvm_skip_emulated_instruction(&(svm->vcpu));
3754 }
3755
3756 static int monitor_interception(struct vcpu_svm *svm)
3757 {
3758         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3759         return nop_interception(svm);
3760 }
3761
3762 static int mwait_interception(struct vcpu_svm *svm)
3763 {
3764         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3765         return nop_interception(svm);
3766 }
3767
3768 enum avic_ipi_failure_cause {
3769         AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3770         AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3771         AVIC_IPI_FAILURE_INVALID_TARGET,
3772         AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3773 };
3774
3775 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3776 {
3777         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3778         u32 icrl = svm->vmcb->control.exit_info_1;
3779         u32 id = svm->vmcb->control.exit_info_2 >> 32;
3780         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3781         struct kvm_lapic *apic = svm->vcpu.arch.apic;
3782
3783         trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3784
3785         switch (id) {
3786         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3787                 /*
3788                  * AVIC hardware handles the generation of
3789                  * IPIs when the specified Message Type is Fixed
3790                  * (also known as fixed delivery mode) and
3791                  * the Trigger Mode is edge-triggered. The hardware
3792                  * also supports self and broadcast delivery modes
3793                  * specified via the Destination Shorthand(DSH)
3794                  * field of the ICRL. Logical and physical APIC ID
3795                  * formats are supported. All other IPI types cause
3796                  * a #VMEXIT, which needs to emulated.
3797                  */
3798                 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3799                 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3800                 break;
3801         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3802                 int i;
3803                 struct kvm_vcpu *vcpu;
3804                 struct kvm *kvm = svm->vcpu.kvm;
3805                 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3806
3807                 /*
3808                  * At this point, we expect that the AVIC HW has already
3809                  * set the appropriate IRR bits on the valid target
3810                  * vcpus. So, we just need to kick the appropriate vcpu.
3811                  */
3812                 kvm_for_each_vcpu(i, vcpu, kvm) {
3813                         bool m = kvm_apic_match_dest(vcpu, apic,
3814                                                      icrl & KVM_APIC_SHORT_MASK,
3815                                                      GET_APIC_DEST_FIELD(icrh),
3816                                                      icrl & KVM_APIC_DEST_MASK);
3817
3818                         if (m && !avic_vcpu_is_running(vcpu))
3819                                 kvm_vcpu_wake_up(vcpu);
3820                 }
3821                 break;
3822         }
3823         case AVIC_IPI_FAILURE_INVALID_TARGET:
3824                 break;
3825         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3826                 WARN_ONCE(1, "Invalid backing page\n");
3827                 break;
3828         default:
3829                 pr_err("Unknown IPI interception\n");
3830         }
3831
3832         return 1;
3833 }
3834
3835 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3836 {
3837         struct kvm_arch *vm_data = &vcpu->kvm->arch;
3838         int index;
3839         u32 *logical_apic_id_table;
3840         int dlid = GET_APIC_LOGICAL_ID(ldr);
3841
3842         if (!dlid)
3843                 return NULL;
3844
3845         if (flat) { /* flat */
3846                 index = ffs(dlid) - 1;
3847                 if (index > 7)
3848                         return NULL;
3849         } else { /* cluster */
3850                 int cluster = (dlid & 0xf0) >> 4;
3851                 int apic = ffs(dlid & 0x0f) - 1;
3852
3853                 if ((apic < 0) || (apic > 7) ||
3854                     (cluster >= 0xf))
3855                         return NULL;
3856                 index = (cluster << 2) + apic;
3857         }
3858
3859         logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3860
3861         return &logical_apic_id_table[index];
3862 }
3863
3864 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3865                           bool valid)
3866 {
3867         bool flat;
3868         u32 *entry, new_entry;
3869
3870         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3871         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3872         if (!entry)
3873                 return -EINVAL;
3874
3875         new_entry = READ_ONCE(*entry);
3876         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3877         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3878         if (valid)
3879                 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3880         else
3881                 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3882         WRITE_ONCE(*entry, new_entry);
3883
3884         return 0;
3885 }
3886
3887 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3888 {
3889         int ret;
3890         struct vcpu_svm *svm = to_svm(vcpu);
3891         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3892
3893         if (!ldr)
3894                 return 1;
3895
3896         ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3897         if (ret && svm->ldr_reg) {
3898                 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3899                 svm->ldr_reg = 0;
3900         } else {
3901                 svm->ldr_reg = ldr;
3902         }
3903         return ret;
3904 }
3905
3906 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3907 {
3908         u64 *old, *new;
3909         struct vcpu_svm *svm = to_svm(vcpu);
3910         u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3911         u32 id = (apic_id_reg >> 24) & 0xff;
3912
3913         if (vcpu->vcpu_id == id)
3914                 return 0;
3915
3916         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3917         new = avic_get_physical_id_entry(vcpu, id);
3918         if (!new || !old)
3919                 return 1;
3920
3921         /* We need to move physical_id_entry to new offset */
3922         *new = *old;
3923         *old = 0ULL;
3924         to_svm(vcpu)->avic_physical_id_cache = new;
3925
3926         /*
3927          * Also update the guest physical APIC ID in the logical
3928          * APIC ID table entry if already setup the LDR.
3929          */
3930         if (svm->ldr_reg)
3931                 avic_handle_ldr_update(vcpu);
3932
3933         return 0;
3934 }
3935
3936 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3937 {
3938         struct vcpu_svm *svm = to_svm(vcpu);
3939         struct kvm_arch *vm_data = &vcpu->kvm->arch;
3940         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3941         u32 mod = (dfr >> 28) & 0xf;
3942
3943         /*
3944          * We assume that all local APICs are using the same type.
3945          * If this changes, we need to flush the AVIC logical
3946          * APID id table.
3947          */
3948         if (vm_data->ldr_mode == mod)
3949                 return 0;
3950
3951         clear_page(page_address(vm_data->avic_logical_id_table_page));
3952         vm_data->ldr_mode = mod;
3953
3954         if (svm->ldr_reg)
3955                 avic_handle_ldr_update(vcpu);
3956         return 0;
3957 }
3958
3959 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3960 {
3961         struct kvm_lapic *apic = svm->vcpu.arch.apic;
3962         u32 offset = svm->vmcb->control.exit_info_1 &
3963                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3964
3965         switch (offset) {
3966         case APIC_ID:
3967                 if (avic_handle_apic_id_update(&svm->vcpu))
3968                         return 0;
3969                 break;
3970         case APIC_LDR:
3971                 if (avic_handle_ldr_update(&svm->vcpu))
3972                         return 0;
3973                 break;
3974         case APIC_DFR:
3975                 avic_handle_dfr_update(&svm->vcpu);
3976                 break;
3977         default:
3978                 break;
3979         }
3980
3981         kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
3982
3983         return 1;
3984 }
3985
3986 static bool is_avic_unaccelerated_access_trap(u32 offset)
3987 {
3988         bool ret = false;
3989
3990         switch (offset) {
3991         case APIC_ID:
3992         case APIC_EOI:
3993         case APIC_RRR:
3994         case APIC_LDR:
3995         case APIC_DFR:
3996         case APIC_SPIV:
3997         case APIC_ESR:
3998         case APIC_ICR:
3999         case APIC_LVTT:
4000         case APIC_LVTTHMR:
4001         case APIC_LVTPC:
4002         case APIC_LVT0:
4003         case APIC_LVT1:
4004         case APIC_LVTERR:
4005         case APIC_TMICT:
4006         case APIC_TDCR:
4007                 ret = true;
4008                 break;
4009         default:
4010                 break;
4011         }
4012         return ret;
4013 }
4014
4015 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4016 {
4017         int ret = 0;
4018         u32 offset = svm->vmcb->control.exit_info_1 &
4019                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4020         u32 vector = svm->vmcb->control.exit_info_2 &
4021                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4022         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4023                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
4024         bool trap = is_avic_unaccelerated_access_trap(offset);
4025
4026         trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4027                                             trap, write, vector);
4028         if (trap) {
4029                 /* Handling Trap */
4030                 WARN_ONCE(!write, "svm: Handling trap read.\n");
4031                 ret = avic_unaccel_trap_write(svm);
4032         } else {
4033                 /* Handling Fault */
4034                 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4035         }
4036
4037         return ret;
4038 }
4039
4040 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4041         [SVM_EXIT_READ_CR0]                     = cr_interception,
4042         [SVM_EXIT_READ_CR3]                     = cr_interception,
4043         [SVM_EXIT_READ_CR4]                     = cr_interception,
4044         [SVM_EXIT_READ_CR8]                     = cr_interception,
4045         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
4046         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4047         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4048         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4049         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4050         [SVM_EXIT_READ_DR0]                     = dr_interception,
4051         [SVM_EXIT_READ_DR1]                     = dr_interception,
4052         [SVM_EXIT_READ_DR2]                     = dr_interception,
4053         [SVM_EXIT_READ_DR3]                     = dr_interception,
4054         [SVM_EXIT_READ_DR4]                     = dr_interception,
4055         [SVM_EXIT_READ_DR5]                     = dr_interception,
4056         [SVM_EXIT_READ_DR6]                     = dr_interception,
4057         [SVM_EXIT_READ_DR7]                     = dr_interception,
4058         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4059         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4060         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4061         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4062         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4063         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4064         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4065         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4066         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4067         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4068         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4069         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4070         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4071         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4072         [SVM_EXIT_INTR]                         = intr_interception,
4073         [SVM_EXIT_NMI]                          = nmi_interception,
4074         [SVM_EXIT_SMI]                          = nop_on_interception,
4075         [SVM_EXIT_INIT]                         = nop_on_interception,
4076         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4077         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4078         [SVM_EXIT_CPUID]                        = cpuid_interception,
4079         [SVM_EXIT_IRET]                         = iret_interception,
4080         [SVM_EXIT_INVD]                         = emulate_on_interception,
4081         [SVM_EXIT_PAUSE]                        = pause_interception,
4082         [SVM_EXIT_HLT]                          = halt_interception,
4083         [SVM_EXIT_INVLPG]                       = invlpg_interception,
4084         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4085         [SVM_EXIT_IOIO]                         = io_interception,
4086         [SVM_EXIT_MSR]                          = msr_interception,
4087         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4088         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4089         [SVM_EXIT_VMRUN]                        = vmrun_interception,
4090         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4091         [SVM_EXIT_VMLOAD]                       = vmload_interception,
4092         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4093         [SVM_EXIT_STGI]                         = stgi_interception,
4094         [SVM_EXIT_CLGI]                         = clgi_interception,
4095         [SVM_EXIT_SKINIT]                       = skinit_interception,
4096         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4097         [SVM_EXIT_MONITOR]                      = monitor_interception,
4098         [SVM_EXIT_MWAIT]                        = mwait_interception,
4099         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4100         [SVM_EXIT_NPF]                          = pf_interception,
4101         [SVM_EXIT_RSM]                          = emulate_on_interception,
4102         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4103         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4104 };
4105
4106 static void dump_vmcb(struct kvm_vcpu *vcpu)
4107 {
4108         struct vcpu_svm *svm = to_svm(vcpu);
4109         struct vmcb_control_area *control = &svm->vmcb->control;
4110         struct vmcb_save_area *save = &svm->vmcb->save;
4111
4112         pr_err("VMCB Control Area:\n");
4113         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4114         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4115         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4116         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4117         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4118         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4119         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4120         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4121         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4122         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4123         pr_err("%-20s%d\n", "asid:", control->asid);
4124         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4125         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4126         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4127         pr_err("%-20s%08x\n", "int_state:", control->int_state);
4128         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4129         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4130         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4131         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4132         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4133         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4134         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4135         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4136         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4137         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4138         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4139         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4140         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4141         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4142         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4143         pr_err("VMCB State Save Area:\n");
4144         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4145                "es:",
4146                save->es.selector, save->es.attrib,
4147                save->es.limit, save->es.base);
4148         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4149                "cs:",
4150                save->cs.selector, save->cs.attrib,
4151                save->cs.limit, save->cs.base);
4152         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4153                "ss:",
4154                save->ss.selector, save->ss.attrib,
4155                save->ss.limit, save->ss.base);
4156         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4157                "ds:",
4158                save->ds.selector, save->ds.attrib,
4159                save->ds.limit, save->ds.base);
4160         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4161                "fs:",
4162                save->fs.selector, save->fs.attrib,
4163                save->fs.limit, save->fs.base);
4164         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4165                "gs:",
4166                save->gs.selector, save->gs.attrib,
4167                save->gs.limit, save->gs.base);
4168         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4169                "gdtr:",
4170                save->gdtr.selector, save->gdtr.attrib,
4171                save->gdtr.limit, save->gdtr.base);
4172         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4173                "ldtr:",
4174                save->ldtr.selector, save->ldtr.attrib,
4175                save->ldtr.limit, save->ldtr.base);
4176         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4177                "idtr:",
4178                save->idtr.selector, save->idtr.attrib,
4179                save->idtr.limit, save->idtr.base);
4180         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4181                "tr:",
4182                save->tr.selector, save->tr.attrib,
4183                save->tr.limit, save->tr.base);
4184         pr_err("cpl:            %d                efer:         %016llx\n",
4185                 save->cpl, save->efer);
4186         pr_err("%-15s %016llx %-13s %016llx\n",
4187                "cr0:", save->cr0, "cr2:", save->cr2);
4188         pr_err("%-15s %016llx %-13s %016llx\n",
4189                "cr3:", save->cr3, "cr4:", save->cr4);
4190         pr_err("%-15s %016llx %-13s %016llx\n",
4191                "dr6:", save->dr6, "dr7:", save->dr7);
4192         pr_err("%-15s %016llx %-13s %016llx\n",
4193                "rip:", save->rip, "rflags:", save->rflags);
4194         pr_err("%-15s %016llx %-13s %016llx\n",
4195                "rsp:", save->rsp, "rax:", save->rax);
4196         pr_err("%-15s %016llx %-13s %016llx\n",
4197                "star:", save->star, "lstar:", save->lstar);
4198         pr_err("%-15s %016llx %-13s %016llx\n",
4199                "cstar:", save->cstar, "sfmask:", save->sfmask);
4200         pr_err("%-15s %016llx %-13s %016llx\n",
4201                "kernel_gs_base:", save->kernel_gs_base,
4202                "sysenter_cs:", save->sysenter_cs);
4203         pr_err("%-15s %016llx %-13s %016llx\n",
4204                "sysenter_esp:", save->sysenter_esp,
4205                "sysenter_eip:", save->sysenter_eip);
4206         pr_err("%-15s %016llx %-13s %016llx\n",
4207                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4208         pr_err("%-15s %016llx %-13s %016llx\n",
4209                "br_from:", save->br_from, "br_to:", save->br_to);
4210         pr_err("%-15s %016llx %-13s %016llx\n",
4211                "excp_from:", save->last_excp_from,
4212                "excp_to:", save->last_excp_to);
4213 }
4214
4215 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4216 {
4217         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4218
4219         *info1 = control->exit_info_1;
4220         *info2 = control->exit_info_2;
4221 }
4222
4223 static int handle_exit(struct kvm_vcpu *vcpu)
4224 {
4225         struct vcpu_svm *svm = to_svm(vcpu);
4226         struct kvm_run *kvm_run = vcpu->run;
4227         u32 exit_code = svm->vmcb->control.exit_code;
4228
4229         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4230
4231         vcpu->arch.gpa_available = (exit_code == SVM_EXIT_NPF);
4232
4233         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4234                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4235         if (npt_enabled)
4236                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4237
4238         if (unlikely(svm->nested.exit_required)) {
4239                 nested_svm_vmexit(svm);
4240                 svm->nested.exit_required = false;
4241
4242                 return 1;
4243         }
4244
4245         if (is_guest_mode(vcpu)) {
4246                 int vmexit;
4247
4248                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4249                                         svm->vmcb->control.exit_info_1,
4250                                         svm->vmcb->control.exit_info_2,
4251                                         svm->vmcb->control.exit_int_info,
4252                                         svm->vmcb->control.exit_int_info_err,
4253                                         KVM_ISA_SVM);
4254
4255                 vmexit = nested_svm_exit_special(svm);
4256
4257                 if (vmexit == NESTED_EXIT_CONTINUE)
4258                         vmexit = nested_svm_exit_handled(svm);
4259
4260                 if (vmexit == NESTED_EXIT_DONE)
4261                         return 1;
4262         }
4263
4264         svm_complete_interrupts(svm);
4265
4266         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4267                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4268                 kvm_run->fail_entry.hardware_entry_failure_reason
4269                         = svm->vmcb->control.exit_code;
4270                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4271                 dump_vmcb(vcpu);
4272                 return 0;
4273         }
4274
4275         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4276             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4277             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4278             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4279                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4280                        "exit_code 0x%x\n",
4281                        __func__, svm->vmcb->control.exit_int_info,
4282                        exit_code);
4283
4284         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4285             || !svm_exit_handlers[exit_code]) {
4286                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4287                 kvm_queue_exception(vcpu, UD_VECTOR);
4288                 return 1;
4289         }
4290
4291         return svm_exit_handlers[exit_code](svm);
4292 }
4293
4294 static void reload_tss(struct kvm_vcpu *vcpu)
4295 {
4296         int cpu = raw_smp_processor_id();
4297
4298         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4299         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4300         load_TR_desc();
4301 }
4302
4303 static void pre_svm_run(struct vcpu_svm *svm)
4304 {
4305         int cpu = raw_smp_processor_id();
4306
4307         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4308
4309         /* FIXME: handle wraparound of asid_generation */
4310         if (svm->asid_generation != sd->asid_generation)
4311                 new_asid(svm, sd);
4312 }
4313
4314 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4315 {
4316         struct vcpu_svm *svm = to_svm(vcpu);
4317
4318         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4319         vcpu->arch.hflags |= HF_NMI_MASK;
4320         set_intercept(svm, INTERCEPT_IRET);
4321         ++vcpu->stat.nmi_injections;
4322 }
4323
4324 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4325 {
4326         struct vmcb_control_area *control;
4327
4328         /* The following fields are ignored when AVIC is enabled */
4329         control = &svm->vmcb->control;
4330         control->int_vector = irq;
4331         control->int_ctl &= ~V_INTR_PRIO_MASK;
4332         control->int_ctl |= V_IRQ_MASK |
4333                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4334         mark_dirty(svm->vmcb, VMCB_INTR);
4335 }
4336
4337 static void svm_set_irq(struct kvm_vcpu *vcpu)
4338 {
4339         struct vcpu_svm *svm = to_svm(vcpu);
4340
4341         BUG_ON(!(gif_set(svm)));
4342
4343         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4344         ++vcpu->stat.irq_injections;
4345
4346         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4347                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4348 }
4349
4350 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4351 {
4352         return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4353 }
4354
4355 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4356 {
4357         struct vcpu_svm *svm = to_svm(vcpu);
4358
4359         if (svm_nested_virtualize_tpr(vcpu) ||
4360             kvm_vcpu_apicv_active(vcpu))
4361                 return;
4362
4363         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4364
4365         if (irr == -1)
4366                 return;
4367
4368         if (tpr >= irr)
4369                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4370 }
4371
4372 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4373 {
4374         return;
4375 }
4376
4377 static bool svm_get_enable_apicv(void)
4378 {
4379         return avic;
4380 }
4381
4382 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4383 {
4384 }
4385
4386 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4387 {
4388 }
4389
4390 /* Note: Currently only used by Hyper-V. */
4391 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4392 {
4393         struct vcpu_svm *svm = to_svm(vcpu);
4394         struct vmcb *vmcb = svm->vmcb;
4395
4396         if (!avic)
4397                 return;
4398
4399         vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4400         mark_dirty(vmcb, VMCB_INTR);
4401 }
4402
4403 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4404 {
4405         return;
4406 }
4407
4408 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4409 {
4410         kvm_lapic_set_irr(vec, vcpu->arch.apic);
4411         smp_mb__after_atomic();
4412
4413         if (avic_vcpu_is_running(vcpu))
4414                 wrmsrl(SVM_AVIC_DOORBELL,
4415                        kvm_cpu_get_apicid(vcpu->cpu));
4416         else
4417                 kvm_vcpu_wake_up(vcpu);
4418 }
4419
4420 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4421 {
4422         unsigned long flags;
4423         struct amd_svm_iommu_ir *cur;
4424
4425         spin_lock_irqsave(&svm->ir_list_lock, flags);
4426         list_for_each_entry(cur, &svm->ir_list, node) {
4427                 if (cur->data != pi->ir_data)
4428                         continue;
4429                 list_del(&cur->node);
4430                 kfree(cur);
4431                 break;
4432         }
4433         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4434 }
4435
4436 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4437 {
4438         int ret = 0;
4439         unsigned long flags;
4440         struct amd_svm_iommu_ir *ir;
4441
4442         /**
4443          * In some cases, the existing irte is updaed and re-set,
4444          * so we need to check here if it's already been * added
4445          * to the ir_list.
4446          */
4447         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4448                 struct kvm *kvm = svm->vcpu.kvm;
4449                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4450                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4451                 struct vcpu_svm *prev_svm;
4452
4453                 if (!prev_vcpu) {
4454                         ret = -EINVAL;
4455                         goto out;
4456                 }
4457
4458                 prev_svm = to_svm(prev_vcpu);
4459                 svm_ir_list_del(prev_svm, pi);
4460         }
4461
4462         /**
4463          * Allocating new amd_iommu_pi_data, which will get
4464          * add to the per-vcpu ir_list.
4465          */
4466         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4467         if (!ir) {
4468                 ret = -ENOMEM;
4469                 goto out;
4470         }
4471         ir->data = pi->ir_data;
4472
4473         spin_lock_irqsave(&svm->ir_list_lock, flags);
4474         list_add(&ir->node, &svm->ir_list);
4475         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4476 out:
4477         return ret;
4478 }
4479
4480 /**
4481  * Note:
4482  * The HW cannot support posting multicast/broadcast
4483  * interrupts to a vCPU. So, we still use legacy interrupt
4484  * remapping for these kind of interrupts.
4485  *
4486  * For lowest-priority interrupts, we only support
4487  * those with single CPU as the destination, e.g. user
4488  * configures the interrupts via /proc/irq or uses
4489  * irqbalance to make the interrupts single-CPU.
4490  */
4491 static int
4492 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4493                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4494 {
4495         struct kvm_lapic_irq irq;
4496         struct kvm_vcpu *vcpu = NULL;
4497
4498         kvm_set_msi_irq(kvm, e, &irq);
4499
4500         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4501                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4502                          __func__, irq.vector);
4503                 return -1;
4504         }
4505
4506         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4507                  irq.vector);
4508         *svm = to_svm(vcpu);
4509         vcpu_info->pi_desc_addr = page_to_phys((*svm)->avic_backing_page);
4510         vcpu_info->vector = irq.vector;
4511
4512         return 0;
4513 }
4514
4515 /*
4516  * svm_update_pi_irte - set IRTE for Posted-Interrupts
4517  *
4518  * @kvm: kvm
4519  * @host_irq: host irq of the interrupt
4520  * @guest_irq: gsi of the interrupt
4521  * @set: set or unset PI
4522  * returns 0 on success, < 0 on failure
4523  */
4524 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4525                               uint32_t guest_irq, bool set)
4526 {
4527         struct kvm_kernel_irq_routing_entry *e;
4528         struct kvm_irq_routing_table *irq_rt;
4529         int idx, ret = -EINVAL;
4530
4531         if (!kvm_arch_has_assigned_device(kvm) ||
4532             !irq_remapping_cap(IRQ_POSTING_CAP))
4533                 return 0;
4534
4535         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4536                  __func__, host_irq, guest_irq, set);
4537
4538         idx = srcu_read_lock(&kvm->irq_srcu);
4539         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4540         WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4541
4542         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4543                 struct vcpu_data vcpu_info;
4544                 struct vcpu_svm *svm = NULL;
4545
4546                 if (e->type != KVM_IRQ_ROUTING_MSI)
4547                         continue;
4548
4549                 /**
4550                  * Here, we setup with legacy mode in the following cases:
4551                  * 1. When cannot target interrupt to a specific vcpu.
4552                  * 2. Unsetting posted interrupt.
4553                  * 3. APIC virtialization is disabled for the vcpu.
4554                  */
4555                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4556                     kvm_vcpu_apicv_active(&svm->vcpu)) {
4557                         struct amd_iommu_pi_data pi;
4558
4559                         /* Try to enable guest_mode in IRTE */
4560                         pi.base = page_to_phys(svm->avic_backing_page) & AVIC_HPA_MASK;
4561                         pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4562                                                      svm->vcpu.vcpu_id);
4563                         pi.is_guest_mode = true;
4564                         pi.vcpu_data = &vcpu_info;
4565                         ret = irq_set_vcpu_affinity(host_irq, &pi);
4566
4567                         /**
4568                          * Here, we successfully setting up vcpu affinity in
4569                          * IOMMU guest mode. Now, we need to store the posted
4570                          * interrupt information in a per-vcpu ir_list so that
4571                          * we can reference to them directly when we update vcpu
4572                          * scheduling information in IOMMU irte.
4573                          */
4574                         if (!ret && pi.is_guest_mode)
4575                                 svm_ir_list_add(svm, &pi);
4576                 } else {
4577                         /* Use legacy mode in IRTE */
4578                         struct amd_iommu_pi_data pi;
4579
4580                         /**
4581                          * Here, pi is used to:
4582                          * - Tell IOMMU to use legacy mode for this interrupt.
4583                          * - Retrieve ga_tag of prior interrupt remapping data.
4584                          */
4585                         pi.is_guest_mode = false;
4586                         ret = irq_set_vcpu_affinity(host_irq, &pi);
4587
4588                         /**
4589                          * Check if the posted interrupt was previously
4590                          * setup with the guest_mode by checking if the ga_tag
4591                          * was cached. If so, we need to clean up the per-vcpu
4592                          * ir_list.
4593                          */
4594                         if (!ret && pi.prev_ga_tag) {
4595                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4596                                 struct kvm_vcpu *vcpu;
4597
4598                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
4599                                 if (vcpu)
4600                                         svm_ir_list_del(to_svm(vcpu), &pi);
4601                         }
4602                 }
4603
4604                 if (!ret && svm) {
4605                         trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4606                                                  host_irq, e->gsi,
4607                                                  vcpu_info.vector,
4608                                                  vcpu_info.pi_desc_addr, set);
4609                 }
4610
4611                 if (ret < 0) {
4612                         pr_err("%s: failed to update PI IRTE\n", __func__);
4613                         goto out;
4614                 }
4615         }
4616
4617         ret = 0;
4618 out:
4619         srcu_read_unlock(&kvm->irq_srcu, idx);
4620         return ret;
4621 }
4622
4623 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4624 {
4625         struct vcpu_svm *svm = to_svm(vcpu);
4626         struct vmcb *vmcb = svm->vmcb;
4627         int ret;
4628         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4629               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4630         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4631
4632         return ret;
4633 }
4634
4635 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4636 {
4637         struct vcpu_svm *svm = to_svm(vcpu);
4638
4639         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4640 }
4641
4642 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4643 {
4644         struct vcpu_svm *svm = to_svm(vcpu);
4645
4646         if (masked) {
4647                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4648                 set_intercept(svm, INTERCEPT_IRET);
4649         } else {
4650                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4651                 clr_intercept(svm, INTERCEPT_IRET);
4652         }
4653 }
4654
4655 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4656 {
4657         struct vcpu_svm *svm = to_svm(vcpu);
4658         struct vmcb *vmcb = svm->vmcb;
4659         int ret;
4660
4661         if (!gif_set(svm) ||
4662              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4663                 return 0;
4664
4665         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4666
4667         if (is_guest_mode(vcpu))
4668                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4669
4670         return ret;
4671 }
4672
4673 static void enable_irq_window(struct kvm_vcpu *vcpu)
4674 {
4675         struct vcpu_svm *svm = to_svm(vcpu);
4676
4677         if (kvm_vcpu_apicv_active(vcpu))
4678                 return;
4679
4680         /*
4681          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4682          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
4683          * get that intercept, this function will be called again though and
4684          * we'll get the vintr intercept.
4685          */
4686         if (gif_set(svm) && nested_svm_intr(svm)) {
4687                 svm_set_vintr(svm);
4688                 svm_inject_irq(svm, 0x0);
4689         }
4690 }
4691
4692 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4693 {
4694         struct vcpu_svm *svm = to_svm(vcpu);
4695
4696         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4697             == HF_NMI_MASK)
4698                 return; /* IRET will cause a vm exit */
4699
4700         if ((svm->vcpu.arch.hflags & HF_GIF_MASK) == 0)
4701                 return; /* STGI will cause a vm exit */
4702
4703         if (svm->nested.exit_required)
4704                 return; /* we're not going to run the guest yet */
4705
4706         /*
4707          * Something prevents NMI from been injected. Single step over possible
4708          * problem (IRET or exception injection or interrupt shadow)
4709          */
4710         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4711         svm->nmi_singlestep = true;
4712         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4713 }
4714
4715 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4716 {
4717         return 0;
4718 }
4719
4720 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4721 {
4722         struct vcpu_svm *svm = to_svm(vcpu);
4723
4724         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4725                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4726         else
4727                 svm->asid_generation--;
4728 }
4729
4730 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4731 {
4732 }
4733
4734 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4735 {
4736         struct vcpu_svm *svm = to_svm(vcpu);
4737
4738         if (svm_nested_virtualize_tpr(vcpu))
4739                 return;
4740
4741         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4742                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4743                 kvm_set_cr8(vcpu, cr8);
4744         }
4745 }
4746
4747 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4748 {
4749         struct vcpu_svm *svm = to_svm(vcpu);
4750         u64 cr8;
4751
4752         if (svm_nested_virtualize_tpr(vcpu) ||
4753             kvm_vcpu_apicv_active(vcpu))
4754                 return;
4755
4756         cr8 = kvm_get_cr8(vcpu);
4757         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4758         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4759 }
4760
4761 static void svm_complete_interrupts(struct vcpu_svm *svm)
4762 {
4763         u8 vector;
4764         int type;
4765         u32 exitintinfo = svm->vmcb->control.exit_int_info;
4766         unsigned int3_injected = svm->int3_injected;
4767
4768         svm->int3_injected = 0;
4769
4770         /*
4771          * If we've made progress since setting HF_IRET_MASK, we've
4772          * executed an IRET and can allow NMI injection.
4773          */
4774         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4775             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4776                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4777                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4778         }
4779
4780         svm->vcpu.arch.nmi_injected = false;
4781         kvm_clear_exception_queue(&svm->vcpu);
4782         kvm_clear_interrupt_queue(&svm->vcpu);
4783
4784         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4785                 return;
4786
4787         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4788
4789         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4790         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4791
4792         switch (type) {
4793         case SVM_EXITINTINFO_TYPE_NMI:
4794                 svm->vcpu.arch.nmi_injected = true;
4795                 break;
4796         case SVM_EXITINTINFO_TYPE_EXEPT:
4797                 /*
4798                  * In case of software exceptions, do not reinject the vector,
4799                  * but re-execute the instruction instead. Rewind RIP first
4800                  * if we emulated INT3 before.
4801                  */
4802                 if (kvm_exception_is_soft(vector)) {
4803                         if (vector == BP_VECTOR && int3_injected &&
4804                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4805                                 kvm_rip_write(&svm->vcpu,
4806                                               kvm_rip_read(&svm->vcpu) -
4807                                               int3_injected);
4808                         break;
4809                 }
4810                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4811                         u32 err = svm->vmcb->control.exit_int_info_err;
4812                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
4813
4814                 } else
4815                         kvm_requeue_exception(&svm->vcpu, vector);
4816                 break;
4817         case SVM_EXITINTINFO_TYPE_INTR:
4818                 kvm_queue_interrupt(&svm->vcpu, vector, false);
4819                 break;
4820         default:
4821                 break;
4822         }
4823 }
4824
4825 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4826 {
4827         struct vcpu_svm *svm = to_svm(vcpu);
4828         struct vmcb_control_area *control = &svm->vmcb->control;
4829
4830         control->exit_int_info = control->event_inj;
4831         control->exit_int_info_err = control->event_inj_err;
4832         control->event_inj = 0;
4833         svm_complete_interrupts(svm);
4834 }
4835
4836 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4837 {
4838         struct vcpu_svm *svm = to_svm(vcpu);
4839
4840         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4841         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4842         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4843
4844         /*
4845          * A vmexit emulation is required before the vcpu can be executed
4846          * again.
4847          */
4848         if (unlikely(svm->nested.exit_required))
4849                 return;
4850
4851         /*
4852          * Disable singlestep if we're injecting an interrupt/exception.
4853          * We don't want our modified rflags to be pushed on the stack where
4854          * we might not be able to easily reset them if we disabled NMI
4855          * singlestep later.
4856          */
4857         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4858                 /*
4859                  * Event injection happens before external interrupts cause a
4860                  * vmexit and interrupts are disabled here, so smp_send_reschedule
4861                  * is enough to force an immediate vmexit.
4862                  */
4863                 disable_nmi_singlestep(svm);
4864                 smp_send_reschedule(vcpu->cpu);
4865         }
4866
4867         pre_svm_run(svm);
4868
4869         sync_lapic_to_cr8(vcpu);
4870
4871         svm->vmcb->save.cr2 = vcpu->arch.cr2;
4872
4873         clgi();
4874
4875         local_irq_enable();
4876
4877         asm volatile (
4878                 "push %%" _ASM_BP "; \n\t"
4879                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4880                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4881                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4882                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4883                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4884                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4885 #ifdef CONFIG_X86_64
4886                 "mov %c[r8](%[svm]),  %%r8  \n\t"
4887                 "mov %c[r9](%[svm]),  %%r9  \n\t"
4888                 "mov %c[r10](%[svm]), %%r10 \n\t"
4889                 "mov %c[r11](%[svm]), %%r11 \n\t"
4890                 "mov %c[r12](%[svm]), %%r12 \n\t"
4891                 "mov %c[r13](%[svm]), %%r13 \n\t"
4892                 "mov %c[r14](%[svm]), %%r14 \n\t"
4893                 "mov %c[r15](%[svm]), %%r15 \n\t"
4894 #endif
4895
4896                 /* Enter guest mode */
4897                 "push %%" _ASM_AX " \n\t"
4898                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4899                 __ex(SVM_VMLOAD) "\n\t"
4900                 __ex(SVM_VMRUN) "\n\t"
4901                 __ex(SVM_VMSAVE) "\n\t"
4902                 "pop %%" _ASM_AX " \n\t"
4903
4904                 /* Save guest registers, load host registers */
4905                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4906                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4907                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4908                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4909                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4910                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4911 #ifdef CONFIG_X86_64
4912                 "mov %%r8,  %c[r8](%[svm]) \n\t"
4913                 "mov %%r9,  %c[r9](%[svm]) \n\t"
4914                 "mov %%r10, %c[r10](%[svm]) \n\t"
4915                 "mov %%r11, %c[r11](%[svm]) \n\t"
4916                 "mov %%r12, %c[r12](%[svm]) \n\t"
4917                 "mov %%r13, %c[r13](%[svm]) \n\t"
4918                 "mov %%r14, %c[r14](%[svm]) \n\t"
4919                 "mov %%r15, %c[r15](%[svm]) \n\t"
4920 #endif
4921                 "pop %%" _ASM_BP
4922                 :
4923                 : [svm]"a"(svm),
4924                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4925                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4926                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4927                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4928                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4929                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4930                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4931 #ifdef CONFIG_X86_64
4932                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4933                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4934                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4935                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4936                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4937                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4938                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4939                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4940 #endif
4941                 : "cc", "memory"
4942 #ifdef CONFIG_X86_64
4943                 , "rbx", "rcx", "rdx", "rsi", "rdi"
4944                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4945 #else
4946                 , "ebx", "ecx", "edx", "esi", "edi"
4947 #endif
4948                 );
4949
4950 #ifdef CONFIG_X86_64
4951         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4952 #else
4953         loadsegment(fs, svm->host.fs);
4954 #ifndef CONFIG_X86_32_LAZY_GS
4955         loadsegment(gs, svm->host.gs);
4956 #endif
4957 #endif
4958
4959         reload_tss(vcpu);
4960
4961         local_irq_disable();
4962
4963         vcpu->arch.cr2 = svm->vmcb->save.cr2;
4964         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4965         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4966         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4967
4968         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4969                 kvm_before_handle_nmi(&svm->vcpu);
4970
4971         stgi();
4972
4973         /* Any pending NMI will happen here */
4974
4975         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4976                 kvm_after_handle_nmi(&svm->vcpu);
4977
4978         sync_cr8_to_lapic(vcpu);
4979
4980         svm->next_rip = 0;
4981
4982         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4983
4984         /* if exit due to PF check for async PF */
4985         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4986                 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
4987
4988         if (npt_enabled) {
4989                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4990                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4991         }
4992
4993         /*
4994          * We need to handle MC intercepts here before the vcpu has a chance to
4995          * change the physical cpu
4996          */
4997         if (unlikely(svm->vmcb->control.exit_code ==
4998                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4999                 svm_handle_mce(svm);
5000
5001         mark_all_clean(svm->vmcb);
5002 }
5003 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5004
5005 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5006 {
5007         struct vcpu_svm *svm = to_svm(vcpu);
5008
5009         svm->vmcb->save.cr3 = root;
5010         mark_dirty(svm->vmcb, VMCB_CR);
5011         svm_flush_tlb(vcpu);
5012 }
5013
5014 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5015 {
5016         struct vcpu_svm *svm = to_svm(vcpu);
5017
5018         svm->vmcb->control.nested_cr3 = root;
5019         mark_dirty(svm->vmcb, VMCB_NPT);
5020
5021         /* Also sync guest cr3 here in case we live migrate */
5022         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5023         mark_dirty(svm->vmcb, VMCB_CR);
5024
5025         svm_flush_tlb(vcpu);
5026 }
5027
5028 static int is_disabled(void)
5029 {
5030         u64 vm_cr;
5031
5032         rdmsrl(MSR_VM_CR, vm_cr);
5033         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5034                 return 1;
5035
5036         return 0;
5037 }
5038
5039 static void
5040 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5041 {
5042         /*
5043          * Patch in the VMMCALL instruction:
5044          */
5045         hypercall[0] = 0x0f;
5046         hypercall[1] = 0x01;
5047         hypercall[2] = 0xd9;
5048 }
5049
5050 static void svm_check_processor_compat(void *rtn)
5051 {
5052         *(int *)rtn = 0;
5053 }
5054
5055 static bool svm_cpu_has_accelerated_tpr(void)
5056 {
5057         return false;
5058 }
5059
5060 static bool svm_has_high_real_mode_segbase(void)
5061 {
5062         return true;
5063 }
5064
5065 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5066 {
5067         return 0;
5068 }
5069
5070 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5071 {
5072         struct vcpu_svm *svm = to_svm(vcpu);
5073         struct kvm_cpuid_entry2 *entry;
5074
5075         /* Update nrips enabled cache */
5076         svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
5077
5078         if (!kvm_vcpu_apicv_active(vcpu))
5079                 return;
5080
5081         entry = kvm_find_cpuid_entry(vcpu, 1, 0);
5082         if (entry)
5083                 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5084 }
5085
5086 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5087 {
5088         switch (func) {
5089         case 0x1:
5090                 if (avic)
5091                         entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5092                 break;
5093         case 0x80000001:
5094                 if (nested)
5095                         entry->ecx |= (1 << 2); /* Set SVM bit */
5096                 break;
5097         case 0x8000000A:
5098                 entry->eax = 1; /* SVM revision 1 */
5099                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5100                                    ASID emulation to nested SVM */
5101                 entry->ecx = 0; /* Reserved */
5102                 entry->edx = 0; /* Per default do not support any
5103                                    additional features */
5104
5105                 /* Support next_rip if host supports it */
5106                 if (boot_cpu_has(X86_FEATURE_NRIPS))
5107                         entry->edx |= SVM_FEATURE_NRIP;
5108
5109                 /* Support NPT for the guest if enabled */
5110                 if (npt_enabled)
5111                         entry->edx |= SVM_FEATURE_NPT;
5112
5113                 break;
5114         }
5115 }
5116
5117 static int svm_get_lpage_level(void)
5118 {
5119         return PT_PDPE_LEVEL;
5120 }
5121
5122 static bool svm_rdtscp_supported(void)
5123 {
5124         return boot_cpu_has(X86_FEATURE_RDTSCP);
5125 }
5126
5127 static bool svm_invpcid_supported(void)
5128 {
5129         return false;
5130 }
5131
5132 static bool svm_mpx_supported(void)
5133 {
5134         return false;
5135 }
5136
5137 static bool svm_xsaves_supported(void)
5138 {
5139         return false;
5140 }
5141
5142 static bool svm_has_wbinvd_exit(void)
5143 {
5144         return true;
5145 }
5146
5147 #define PRE_EX(exit)  { .exit_code = (exit), \
5148                         .stage = X86_ICPT_PRE_EXCEPT, }
5149 #define POST_EX(exit) { .exit_code = (exit), \
5150                         .stage = X86_ICPT_POST_EXCEPT, }
5151 #define POST_MEM(exit) { .exit_code = (exit), \
5152                         .stage = X86_ICPT_POST_MEMACCESS, }
5153
5154 static const struct __x86_intercept {
5155         u32 exit_code;
5156         enum x86_intercept_stage stage;
5157 } x86_intercept_map[] = {
5158         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
5159         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
5160         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
5161         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
5162         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
5163         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
5164         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
5165         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
5166         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
5167         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
5168         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
5169         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
5170         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
5171         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
5172         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
5173         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
5174         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
5175         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
5176         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
5177         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
5178         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
5179         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
5180         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
5181         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
5182         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
5183         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
5184         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
5185         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
5186         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
5187         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
5188         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
5189         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
5190         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
5191         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
5192         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
5193         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
5194         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
5195         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
5196         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
5197         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
5198         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
5199         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
5200         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
5201         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
5202         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
5203         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
5204 };
5205
5206 #undef PRE_EX
5207 #undef POST_EX
5208 #undef POST_MEM
5209
5210 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5211                                struct x86_instruction_info *info,
5212                                enum x86_intercept_stage stage)
5213 {
5214         struct vcpu_svm *svm = to_svm(vcpu);
5215         int vmexit, ret = X86EMUL_CONTINUE;
5216         struct __x86_intercept icpt_info;
5217         struct vmcb *vmcb = svm->vmcb;
5218
5219         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5220                 goto out;
5221
5222         icpt_info = x86_intercept_map[info->intercept];
5223
5224         if (stage != icpt_info.stage)
5225                 goto out;
5226
5227         switch (icpt_info.exit_code) {
5228         case SVM_EXIT_READ_CR0:
5229                 if (info->intercept == x86_intercept_cr_read)
5230                         icpt_info.exit_code += info->modrm_reg;
5231                 break;
5232         case SVM_EXIT_WRITE_CR0: {
5233                 unsigned long cr0, val;
5234                 u64 intercept;
5235
5236                 if (info->intercept == x86_intercept_cr_write)
5237                         icpt_info.exit_code += info->modrm_reg;
5238
5239                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5240                     info->intercept == x86_intercept_clts)
5241                         break;
5242
5243                 intercept = svm->nested.intercept;
5244
5245                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5246                         break;
5247
5248                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5249                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
5250
5251                 if (info->intercept == x86_intercept_lmsw) {
5252                         cr0 &= 0xfUL;
5253                         val &= 0xfUL;
5254                         /* lmsw can't clear PE - catch this here */
5255                         if (cr0 & X86_CR0_PE)
5256                                 val |= X86_CR0_PE;
5257                 }
5258
5259                 if (cr0 ^ val)
5260                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5261
5262                 break;
5263         }
5264         case SVM_EXIT_READ_DR0:
5265         case SVM_EXIT_WRITE_DR0:
5266                 icpt_info.exit_code += info->modrm_reg;
5267                 break;
5268         case SVM_EXIT_MSR:
5269                 if (info->intercept == x86_intercept_wrmsr)
5270                         vmcb->control.exit_info_1 = 1;
5271                 else
5272                         vmcb->control.exit_info_1 = 0;
5273                 break;
5274         case SVM_EXIT_PAUSE:
5275                 /*
5276                  * We get this for NOP only, but pause
5277                  * is rep not, check this here
5278                  */
5279                 if (info->rep_prefix != REPE_PREFIX)
5280                         goto out;
5281         case SVM_EXIT_IOIO: {
5282                 u64 exit_info;
5283                 u32 bytes;
5284
5285                 if (info->intercept == x86_intercept_in ||
5286                     info->intercept == x86_intercept_ins) {
5287                         exit_info = ((info->src_val & 0xffff) << 16) |
5288                                 SVM_IOIO_TYPE_MASK;
5289                         bytes = info->dst_bytes;
5290                 } else {
5291                         exit_info = (info->dst_val & 0xffff) << 16;
5292                         bytes = info->src_bytes;
5293                 }
5294
5295                 if (info->intercept == x86_intercept_outs ||
5296                     info->intercept == x86_intercept_ins)
5297                         exit_info |= SVM_IOIO_STR_MASK;
5298
5299                 if (info->rep_prefix)
5300                         exit_info |= SVM_IOIO_REP_MASK;
5301
5302                 bytes = min(bytes, 4u);
5303
5304                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5305
5306                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5307
5308                 vmcb->control.exit_info_1 = exit_info;
5309                 vmcb->control.exit_info_2 = info->next_rip;
5310
5311                 break;
5312         }
5313         default:
5314                 break;
5315         }
5316
5317         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5318         if (static_cpu_has(X86_FEATURE_NRIPS))
5319                 vmcb->control.next_rip  = info->next_rip;
5320         vmcb->control.exit_code = icpt_info.exit_code;
5321         vmexit = nested_svm_exit_handled(svm);
5322
5323         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5324                                            : X86EMUL_CONTINUE;
5325
5326 out:
5327         return ret;
5328 }
5329
5330 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5331 {
5332         local_irq_enable();
5333         /*
5334          * We must have an instruction with interrupts enabled, so
5335          * the timer interrupt isn't delayed by the interrupt shadow.
5336          */
5337         asm("nop");
5338         local_irq_disable();
5339 }
5340
5341 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5342 {
5343 }
5344
5345 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5346 {
5347         if (avic_handle_apic_id_update(vcpu) != 0)
5348                 return;
5349         if (avic_handle_dfr_update(vcpu) != 0)
5350                 return;
5351         avic_handle_ldr_update(vcpu);
5352 }
5353
5354 static void svm_setup_mce(struct kvm_vcpu *vcpu)
5355 {
5356         /* [63:9] are reserved. */
5357         vcpu->arch.mcg_cap &= 0x1ff;
5358 }
5359
5360 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5361         .cpu_has_kvm_support = has_svm,
5362         .disabled_by_bios = is_disabled,
5363         .hardware_setup = svm_hardware_setup,
5364         .hardware_unsetup = svm_hardware_unsetup,
5365         .check_processor_compatibility = svm_check_processor_compat,
5366         .hardware_enable = svm_hardware_enable,
5367         .hardware_disable = svm_hardware_disable,
5368         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5369         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5370
5371         .vcpu_create = svm_create_vcpu,
5372         .vcpu_free = svm_free_vcpu,
5373         .vcpu_reset = svm_vcpu_reset,
5374
5375         .vm_init = avic_vm_init,
5376         .vm_destroy = avic_vm_destroy,
5377
5378         .prepare_guest_switch = svm_prepare_guest_switch,
5379         .vcpu_load = svm_vcpu_load,
5380         .vcpu_put = svm_vcpu_put,
5381         .vcpu_blocking = svm_vcpu_blocking,
5382         .vcpu_unblocking = svm_vcpu_unblocking,
5383
5384         .update_bp_intercept = update_bp_intercept,
5385         .get_msr = svm_get_msr,
5386         .set_msr = svm_set_msr,
5387         .get_segment_base = svm_get_segment_base,
5388         .get_segment = svm_get_segment,
5389         .set_segment = svm_set_segment,
5390         .get_cpl = svm_get_cpl,
5391         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5392         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5393         .decache_cr3 = svm_decache_cr3,
5394         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5395         .set_cr0 = svm_set_cr0,
5396         .set_cr3 = svm_set_cr3,
5397         .set_cr4 = svm_set_cr4,
5398         .set_efer = svm_set_efer,
5399         .get_idt = svm_get_idt,
5400         .set_idt = svm_set_idt,
5401         .get_gdt = svm_get_gdt,
5402         .set_gdt = svm_set_gdt,
5403         .get_dr6 = svm_get_dr6,
5404         .set_dr6 = svm_set_dr6,
5405         .set_dr7 = svm_set_dr7,
5406         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5407         .cache_reg = svm_cache_reg,
5408         .get_rflags = svm_get_rflags,
5409         .set_rflags = svm_set_rflags,
5410
5411         .tlb_flush = svm_flush_tlb,
5412
5413         .run = svm_vcpu_run,
5414         .handle_exit = handle_exit,
5415         .skip_emulated_instruction = skip_emulated_instruction,
5416         .set_interrupt_shadow = svm_set_interrupt_shadow,
5417         .get_interrupt_shadow = svm_get_interrupt_shadow,
5418         .patch_hypercall = svm_patch_hypercall,
5419         .set_irq = svm_set_irq,
5420         .set_nmi = svm_inject_nmi,
5421         .queue_exception = svm_queue_exception,
5422         .cancel_injection = svm_cancel_injection,
5423         .interrupt_allowed = svm_interrupt_allowed,
5424         .nmi_allowed = svm_nmi_allowed,
5425         .get_nmi_mask = svm_get_nmi_mask,
5426         .set_nmi_mask = svm_set_nmi_mask,
5427         .enable_nmi_window = enable_nmi_window,
5428         .enable_irq_window = enable_irq_window,
5429         .update_cr8_intercept = update_cr8_intercept,
5430         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5431         .get_enable_apicv = svm_get_enable_apicv,
5432         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5433         .load_eoi_exitmap = svm_load_eoi_exitmap,
5434         .hwapic_irr_update = svm_hwapic_irr_update,
5435         .hwapic_isr_update = svm_hwapic_isr_update,
5436         .apicv_post_state_restore = avic_post_state_restore,
5437
5438         .set_tss_addr = svm_set_tss_addr,
5439         .get_tdp_level = get_npt_level,
5440         .get_mt_mask = svm_get_mt_mask,
5441
5442         .get_exit_info = svm_get_exit_info,
5443
5444         .get_lpage_level = svm_get_lpage_level,
5445
5446         .cpuid_update = svm_cpuid_update,
5447
5448         .rdtscp_supported = svm_rdtscp_supported,
5449         .invpcid_supported = svm_invpcid_supported,
5450         .mpx_supported = svm_mpx_supported,
5451         .xsaves_supported = svm_xsaves_supported,
5452
5453         .set_supported_cpuid = svm_set_supported_cpuid,
5454
5455         .has_wbinvd_exit = svm_has_wbinvd_exit,
5456
5457         .write_tsc_offset = svm_write_tsc_offset,
5458
5459         .set_tdp_cr3 = set_tdp_cr3,
5460
5461         .check_intercept = svm_check_intercept,
5462         .handle_external_intr = svm_handle_external_intr,
5463
5464         .sched_in = svm_sched_in,
5465
5466         .pmu_ops = &amd_pmu_ops,
5467         .deliver_posted_interrupt = svm_deliver_avic_intr,
5468         .update_pi_irte = svm_update_pi_irte,
5469         .setup_mce = svm_setup_mce,
5470 };
5471
5472 static int __init svm_init(void)
5473 {
5474         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5475                         __alignof__(struct vcpu_svm), THIS_MODULE);
5476 }
5477
5478 static void __exit svm_exit(void)
5479 {
5480         kvm_exit();
5481 }
5482
5483 module_init(svm_init)
5484 module_exit(svm_exit)