Merge tag 'kvm-3.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[sfrench/cifs-2.6.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
47
48 static const struct x86_cpu_id svm_cpu_id[] = {
49         X86_FEATURE_MATCH(X86_FEATURE_SVM),
50         {}
51 };
52 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
53
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
56
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
59
60 #define SVM_FEATURE_NPT            (1 <<  0)
61 #define SVM_FEATURE_LBRV           (1 <<  1)
62 #define SVM_FEATURE_SVML           (1 <<  2)
63 #define SVM_FEATURE_NRIP           (1 <<  3)
64 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
65 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
66 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
67 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
68 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
69
70 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
71 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
72 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
73
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75
76 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
77 #define TSC_RATIO_MIN           0x0000000000000001ULL
78 #define TSC_RATIO_MAX           0x000000ffffffffffULL
79
80 static bool erratum_383_found __read_mostly;
81
82 static const u32 host_save_user_msrs[] = {
83 #ifdef CONFIG_X86_64
84         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85         MSR_FS_BASE,
86 #endif
87         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
88 };
89
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91
92 struct kvm_vcpu;
93
94 struct nested_state {
95         struct vmcb *hsave;
96         u64 hsave_msr;
97         u64 vm_cr_msr;
98         u64 vmcb;
99
100         /* These are the merged vectors */
101         u32 *msrpm;
102
103         /* gpa pointers to the real vectors */
104         u64 vmcb_msrpm;
105         u64 vmcb_iopm;
106
107         /* A VMEXIT is required but not yet emulated */
108         bool exit_required;
109
110         /* cache for intercepts of the guest */
111         u32 intercept_cr;
112         u32 intercept_dr;
113         u32 intercept_exceptions;
114         u64 intercept;
115
116         /* Nested Paging related state */
117         u64 nested_cr3;
118 };
119
120 #define MSRPM_OFFSETS   16
121 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
122
123 /*
124  * Set osvw_len to higher value when updated Revision Guides
125  * are published and we know what the new status bits are
126  */
127 static uint64_t osvw_len = 4, osvw_status;
128
129 struct vcpu_svm {
130         struct kvm_vcpu vcpu;
131         struct vmcb *vmcb;
132         unsigned long vmcb_pa;
133         struct svm_cpu_data *svm_data;
134         uint64_t asid_generation;
135         uint64_t sysenter_esp;
136         uint64_t sysenter_eip;
137
138         u64 next_rip;
139
140         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141         struct {
142                 u16 fs;
143                 u16 gs;
144                 u16 ldt;
145                 u64 gs_base;
146         } host;
147
148         u32 *msrpm;
149
150         ulong nmi_iret_rip;
151
152         struct nested_state nested;
153
154         bool nmi_singlestep;
155
156         unsigned int3_injected;
157         unsigned long int3_rip;
158         u32 apf_reason;
159
160         u64  tsc_ratio;
161 };
162
163 static DEFINE_PER_CPU(u64, current_tsc_ratio);
164 #define TSC_RATIO_DEFAULT       0x0100000000ULL
165
166 #define MSR_INVALID                     0xffffffffU
167
168 static const struct svm_direct_access_msrs {
169         u32 index;   /* Index of the MSR */
170         bool always; /* True if intercept is always on */
171 } direct_access_msrs[] = {
172         { .index = MSR_STAR,                            .always = true  },
173         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
174 #ifdef CONFIG_X86_64
175         { .index = MSR_GS_BASE,                         .always = true  },
176         { .index = MSR_FS_BASE,                         .always = true  },
177         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
178         { .index = MSR_LSTAR,                           .always = true  },
179         { .index = MSR_CSTAR,                           .always = true  },
180         { .index = MSR_SYSCALL_MASK,                    .always = true  },
181 #endif
182         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
183         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
184         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
185         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
186         { .index = MSR_INVALID,                         .always = false },
187 };
188
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled = true;
192 #else
193 static bool npt_enabled;
194 #endif
195
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt = true;
198 module_param(npt, int, S_IRUGO);
199
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203
204 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206
207 static int nested_svm_exit_handled(struct vcpu_svm *svm);
208 static int nested_svm_intercept(struct vcpu_svm *svm);
209 static int nested_svm_vmexit(struct vcpu_svm *svm);
210 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211                                       bool has_error_code, u32 error_code);
212 static u64 __scale_tsc(u64 ratio, u64 tsc);
213
214 enum {
215         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216                             pause filter count */
217         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
218         VMCB_ASID,       /* ASID */
219         VMCB_INTR,       /* int_ctl, int_vector */
220         VMCB_NPT,        /* npt_en, nCR3, gPAT */
221         VMCB_CR,         /* CR0, CR3, CR4, EFER */
222         VMCB_DR,         /* DR6, DR7 */
223         VMCB_DT,         /* GDT, IDT */
224         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
225         VMCB_CR2,        /* CR2 only */
226         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227         VMCB_DIRTY_MAX,
228 };
229
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
232
233 static inline void mark_all_dirty(struct vmcb *vmcb)
234 {
235         vmcb->control.clean = 0;
236 }
237
238 static inline void mark_all_clean(struct vmcb *vmcb)
239 {
240         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241                                & ~VMCB_ALWAYS_DIRTY_MASK;
242 }
243
244 static inline void mark_dirty(struct vmcb *vmcb, int bit)
245 {
246         vmcb->control.clean &= ~(1 << bit);
247 }
248
249 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
250 {
251         return container_of(vcpu, struct vcpu_svm, vcpu);
252 }
253
254 static void recalc_intercepts(struct vcpu_svm *svm)
255 {
256         struct vmcb_control_area *c, *h;
257         struct nested_state *g;
258
259         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
260
261         if (!is_guest_mode(&svm->vcpu))
262                 return;
263
264         c = &svm->vmcb->control;
265         h = &svm->nested.hsave->control;
266         g = &svm->nested;
267
268         c->intercept_cr = h->intercept_cr | g->intercept_cr;
269         c->intercept_dr = h->intercept_dr | g->intercept_dr;
270         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271         c->intercept = h->intercept | g->intercept;
272 }
273
274 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
275 {
276         if (is_guest_mode(&svm->vcpu))
277                 return svm->nested.hsave;
278         else
279                 return svm->vmcb;
280 }
281
282 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284         struct vmcb *vmcb = get_host_vmcb(svm);
285
286         vmcb->control.intercept_cr |= (1U << bit);
287
288         recalc_intercepts(svm);
289 }
290
291 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
292 {
293         struct vmcb *vmcb = get_host_vmcb(svm);
294
295         vmcb->control.intercept_cr &= ~(1U << bit);
296
297         recalc_intercepts(svm);
298 }
299
300 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
301 {
302         struct vmcb *vmcb = get_host_vmcb(svm);
303
304         return vmcb->control.intercept_cr & (1U << bit);
305 }
306
307 static inline void set_dr_intercepts(struct vcpu_svm *svm)
308 {
309         struct vmcb *vmcb = get_host_vmcb(svm);
310
311         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312                 | (1 << INTERCEPT_DR1_READ)
313                 | (1 << INTERCEPT_DR2_READ)
314                 | (1 << INTERCEPT_DR3_READ)
315                 | (1 << INTERCEPT_DR4_READ)
316                 | (1 << INTERCEPT_DR5_READ)
317                 | (1 << INTERCEPT_DR6_READ)
318                 | (1 << INTERCEPT_DR7_READ)
319                 | (1 << INTERCEPT_DR0_WRITE)
320                 | (1 << INTERCEPT_DR1_WRITE)
321                 | (1 << INTERCEPT_DR2_WRITE)
322                 | (1 << INTERCEPT_DR3_WRITE)
323                 | (1 << INTERCEPT_DR4_WRITE)
324                 | (1 << INTERCEPT_DR5_WRITE)
325                 | (1 << INTERCEPT_DR6_WRITE)
326                 | (1 << INTERCEPT_DR7_WRITE);
327
328         recalc_intercepts(svm);
329 }
330
331 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332 {
333         struct vmcb *vmcb = get_host_vmcb(svm);
334
335         vmcb->control.intercept_dr = 0;
336
337         recalc_intercepts(svm);
338 }
339
340 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
341 {
342         struct vmcb *vmcb = get_host_vmcb(svm);
343
344         vmcb->control.intercept_exceptions |= (1U << bit);
345
346         recalc_intercepts(svm);
347 }
348
349 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
350 {
351         struct vmcb *vmcb = get_host_vmcb(svm);
352
353         vmcb->control.intercept_exceptions &= ~(1U << bit);
354
355         recalc_intercepts(svm);
356 }
357
358 static inline void set_intercept(struct vcpu_svm *svm, int bit)
359 {
360         struct vmcb *vmcb = get_host_vmcb(svm);
361
362         vmcb->control.intercept |= (1ULL << bit);
363
364         recalc_intercepts(svm);
365 }
366
367 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
368 {
369         struct vmcb *vmcb = get_host_vmcb(svm);
370
371         vmcb->control.intercept &= ~(1ULL << bit);
372
373         recalc_intercepts(svm);
374 }
375
376 static inline void enable_gif(struct vcpu_svm *svm)
377 {
378         svm->vcpu.arch.hflags |= HF_GIF_MASK;
379 }
380
381 static inline void disable_gif(struct vcpu_svm *svm)
382 {
383         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
384 }
385
386 static inline bool gif_set(struct vcpu_svm *svm)
387 {
388         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
389 }
390
391 static unsigned long iopm_base;
392
393 struct kvm_ldttss_desc {
394         u16 limit0;
395         u16 base0;
396         unsigned base1:8, type:5, dpl:2, p:1;
397         unsigned limit1:4, zero0:3, g:1, base2:8;
398         u32 base3;
399         u32 zero1;
400 } __attribute__((packed));
401
402 struct svm_cpu_data {
403         int cpu;
404
405         u64 asid_generation;
406         u32 max_asid;
407         u32 next_asid;
408         struct kvm_ldttss_desc *tss_desc;
409
410         struct page *save_area;
411 };
412
413 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
414
415 struct svm_init_data {
416         int cpu;
417         int r;
418 };
419
420 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
425
426 static u32 svm_msrpm_offset(u32 msr)
427 {
428         u32 offset;
429         int i;
430
431         for (i = 0; i < NUM_MSR_MAPS; i++) {
432                 if (msr < msrpm_ranges[i] ||
433                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434                         continue;
435
436                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
438
439                 /* Now we have the u8 offset - but need the u32 offset */
440                 return offset / 4;
441         }
442
443         /* MSR not in any range */
444         return MSR_INVALID;
445 }
446
447 #define MAX_INST_SIZE 15
448
449 static inline void clgi(void)
450 {
451         asm volatile (__ex(SVM_CLGI));
452 }
453
454 static inline void stgi(void)
455 {
456         asm volatile (__ex(SVM_STGI));
457 }
458
459 static inline void invlpga(unsigned long addr, u32 asid)
460 {
461         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462 }
463
464 static int get_npt_level(void)
465 {
466 #ifdef CONFIG_X86_64
467         return PT64_ROOT_LEVEL;
468 #else
469         return PT32E_ROOT_LEVEL;
470 #endif
471 }
472
473 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
474 {
475         vcpu->arch.efer = efer;
476         if (!npt_enabled && !(efer & EFER_LMA))
477                 efer &= ~EFER_LME;
478
479         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481 }
482
483 static int is_external_interrupt(u32 info)
484 {
485         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
487 }
488
489 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
490 {
491         struct vcpu_svm *svm = to_svm(vcpu);
492         u32 ret = 0;
493
494         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496         return ret & mask;
497 }
498
499 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
500 {
501         struct vcpu_svm *svm = to_svm(vcpu);
502
503         if (mask == 0)
504                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505         else
506                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
507
508 }
509
510 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
511 {
512         struct vcpu_svm *svm = to_svm(vcpu);
513
514         if (svm->vmcb->control.next_rip != 0)
515                 svm->next_rip = svm->vmcb->control.next_rip;
516
517         if (!svm->next_rip) {
518                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
519                                 EMULATE_DONE)
520                         printk(KERN_DEBUG "%s: NOP\n", __func__);
521                 return;
522         }
523         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
524                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
525                        __func__, kvm_rip_read(vcpu), svm->next_rip);
526
527         kvm_rip_write(vcpu, svm->next_rip);
528         svm_set_interrupt_shadow(vcpu, 0);
529 }
530
531 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
532                                 bool has_error_code, u32 error_code,
533                                 bool reinject)
534 {
535         struct vcpu_svm *svm = to_svm(vcpu);
536
537         /*
538          * If we are within a nested VM we'd better #VMEXIT and let the guest
539          * handle the exception
540          */
541         if (!reinject &&
542             nested_svm_check_exception(svm, nr, has_error_code, error_code))
543                 return;
544
545         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
546                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
547
548                 /*
549                  * For guest debugging where we have to reinject #BP if some
550                  * INT3 is guest-owned:
551                  * Emulate nRIP by moving RIP forward. Will fail if injection
552                  * raises a fault that is not intercepted. Still better than
553                  * failing in all cases.
554                  */
555                 skip_emulated_instruction(&svm->vcpu);
556                 rip = kvm_rip_read(&svm->vcpu);
557                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
558                 svm->int3_injected = rip - old_rip;
559         }
560
561         svm->vmcb->control.event_inj = nr
562                 | SVM_EVTINJ_VALID
563                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
564                 | SVM_EVTINJ_TYPE_EXEPT;
565         svm->vmcb->control.event_inj_err = error_code;
566 }
567
568 static void svm_init_erratum_383(void)
569 {
570         u32 low, high;
571         int err;
572         u64 val;
573
574         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
575                 return;
576
577         /* Use _safe variants to not break nested virtualization */
578         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
579         if (err)
580                 return;
581
582         val |= (1ULL << 47);
583
584         low  = lower_32_bits(val);
585         high = upper_32_bits(val);
586
587         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
588
589         erratum_383_found = true;
590 }
591
592 static void svm_init_osvw(struct kvm_vcpu *vcpu)
593 {
594         /*
595          * Guests should see errata 400 and 415 as fixed (assuming that
596          * HLT and IO instructions are intercepted).
597          */
598         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
599         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
600
601         /*
602          * By increasing VCPU's osvw.length to 3 we are telling the guest that
603          * all osvw.status bits inside that length, including bit 0 (which is
604          * reserved for erratum 298), are valid. However, if host processor's
605          * osvw_len is 0 then osvw_status[0] carries no information. We need to
606          * be conservative here and therefore we tell the guest that erratum 298
607          * is present (because we really don't know).
608          */
609         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
610                 vcpu->arch.osvw.status |= 1;
611 }
612
613 static int has_svm(void)
614 {
615         const char *msg;
616
617         if (!cpu_has_svm(&msg)) {
618                 printk(KERN_INFO "has_svm: %s\n", msg);
619                 return 0;
620         }
621
622         return 1;
623 }
624
625 static void svm_hardware_disable(void *garbage)
626 {
627         /* Make sure we clean up behind us */
628         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
629                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
630
631         cpu_svm_disable();
632
633         amd_pmu_disable_virt();
634 }
635
636 static int svm_hardware_enable(void *garbage)
637 {
638
639         struct svm_cpu_data *sd;
640         uint64_t efer;
641         struct desc_ptr gdt_descr;
642         struct desc_struct *gdt;
643         int me = raw_smp_processor_id();
644
645         rdmsrl(MSR_EFER, efer);
646         if (efer & EFER_SVME)
647                 return -EBUSY;
648
649         if (!has_svm()) {
650                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
651                 return -EINVAL;
652         }
653         sd = per_cpu(svm_data, me);
654         if (!sd) {
655                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
656                 return -EINVAL;
657         }
658
659         sd->asid_generation = 1;
660         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
661         sd->next_asid = sd->max_asid + 1;
662
663         native_store_gdt(&gdt_descr);
664         gdt = (struct desc_struct *)gdt_descr.address;
665         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
666
667         wrmsrl(MSR_EFER, efer | EFER_SVME);
668
669         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
670
671         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
672                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
673                 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
674         }
675
676
677         /*
678          * Get OSVW bits.
679          *
680          * Note that it is possible to have a system with mixed processor
681          * revisions and therefore different OSVW bits. If bits are not the same
682          * on different processors then choose the worst case (i.e. if erratum
683          * is present on one processor and not on another then assume that the
684          * erratum is present everywhere).
685          */
686         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
687                 uint64_t len, status = 0;
688                 int err;
689
690                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
691                 if (!err)
692                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
693                                                       &err);
694
695                 if (err)
696                         osvw_status = osvw_len = 0;
697                 else {
698                         if (len < osvw_len)
699                                 osvw_len = len;
700                         osvw_status |= status;
701                         osvw_status &= (1ULL << osvw_len) - 1;
702                 }
703         } else
704                 osvw_status = osvw_len = 0;
705
706         svm_init_erratum_383();
707
708         amd_pmu_enable_virt();
709
710         return 0;
711 }
712
713 static void svm_cpu_uninit(int cpu)
714 {
715         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
716
717         if (!sd)
718                 return;
719
720         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
721         __free_page(sd->save_area);
722         kfree(sd);
723 }
724
725 static int svm_cpu_init(int cpu)
726 {
727         struct svm_cpu_data *sd;
728         int r;
729
730         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
731         if (!sd)
732                 return -ENOMEM;
733         sd->cpu = cpu;
734         sd->save_area = alloc_page(GFP_KERNEL);
735         r = -ENOMEM;
736         if (!sd->save_area)
737                 goto err_1;
738
739         per_cpu(svm_data, cpu) = sd;
740
741         return 0;
742
743 err_1:
744         kfree(sd);
745         return r;
746
747 }
748
749 static bool valid_msr_intercept(u32 index)
750 {
751         int i;
752
753         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
754                 if (direct_access_msrs[i].index == index)
755                         return true;
756
757         return false;
758 }
759
760 static void set_msr_interception(u32 *msrpm, unsigned msr,
761                                  int read, int write)
762 {
763         u8 bit_read, bit_write;
764         unsigned long tmp;
765         u32 offset;
766
767         /*
768          * If this warning triggers extend the direct_access_msrs list at the
769          * beginning of the file
770          */
771         WARN_ON(!valid_msr_intercept(msr));
772
773         offset    = svm_msrpm_offset(msr);
774         bit_read  = 2 * (msr & 0x0f);
775         bit_write = 2 * (msr & 0x0f) + 1;
776         tmp       = msrpm[offset];
777
778         BUG_ON(offset == MSR_INVALID);
779
780         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
781         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
782
783         msrpm[offset] = tmp;
784 }
785
786 static void svm_vcpu_init_msrpm(u32 *msrpm)
787 {
788         int i;
789
790         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
791
792         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
793                 if (!direct_access_msrs[i].always)
794                         continue;
795
796                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
797         }
798 }
799
800 static void add_msr_offset(u32 offset)
801 {
802         int i;
803
804         for (i = 0; i < MSRPM_OFFSETS; ++i) {
805
806                 /* Offset already in list? */
807                 if (msrpm_offsets[i] == offset)
808                         return;
809
810                 /* Slot used by another offset? */
811                 if (msrpm_offsets[i] != MSR_INVALID)
812                         continue;
813
814                 /* Add offset to list */
815                 msrpm_offsets[i] = offset;
816
817                 return;
818         }
819
820         /*
821          * If this BUG triggers the msrpm_offsets table has an overflow. Just
822          * increase MSRPM_OFFSETS in this case.
823          */
824         BUG();
825 }
826
827 static void init_msrpm_offsets(void)
828 {
829         int i;
830
831         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
832
833         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
834                 u32 offset;
835
836                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
837                 BUG_ON(offset == MSR_INVALID);
838
839                 add_msr_offset(offset);
840         }
841 }
842
843 static void svm_enable_lbrv(struct vcpu_svm *svm)
844 {
845         u32 *msrpm = svm->msrpm;
846
847         svm->vmcb->control.lbr_ctl = 1;
848         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
849         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
850         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
851         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
852 }
853
854 static void svm_disable_lbrv(struct vcpu_svm *svm)
855 {
856         u32 *msrpm = svm->msrpm;
857
858         svm->vmcb->control.lbr_ctl = 0;
859         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
860         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
861         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
862         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
863 }
864
865 static __init int svm_hardware_setup(void)
866 {
867         int cpu;
868         struct page *iopm_pages;
869         void *iopm_va;
870         int r;
871
872         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
873
874         if (!iopm_pages)
875                 return -ENOMEM;
876
877         iopm_va = page_address(iopm_pages);
878         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
879         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
880
881         init_msrpm_offsets();
882
883         if (boot_cpu_has(X86_FEATURE_NX))
884                 kvm_enable_efer_bits(EFER_NX);
885
886         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
887                 kvm_enable_efer_bits(EFER_FFXSR);
888
889         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
890                 u64 max;
891
892                 kvm_has_tsc_control = true;
893
894                 /*
895                  * Make sure the user can only configure tsc_khz values that
896                  * fit into a signed integer.
897                  * A min value is not calculated needed because it will always
898                  * be 1 on all machines and a value of 0 is used to disable
899                  * tsc-scaling for the vcpu.
900                  */
901                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
902
903                 kvm_max_guest_tsc_khz = max;
904         }
905
906         if (nested) {
907                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
908                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
909         }
910
911         for_each_possible_cpu(cpu) {
912                 r = svm_cpu_init(cpu);
913                 if (r)
914                         goto err;
915         }
916
917         if (!boot_cpu_has(X86_FEATURE_NPT))
918                 npt_enabled = false;
919
920         if (npt_enabled && !npt) {
921                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
922                 npt_enabled = false;
923         }
924
925         if (npt_enabled) {
926                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
927                 kvm_enable_tdp();
928         } else
929                 kvm_disable_tdp();
930
931         return 0;
932
933 err:
934         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
935         iopm_base = 0;
936         return r;
937 }
938
939 static __exit void svm_hardware_unsetup(void)
940 {
941         int cpu;
942
943         for_each_possible_cpu(cpu)
944                 svm_cpu_uninit(cpu);
945
946         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
947         iopm_base = 0;
948 }
949
950 static void init_seg(struct vmcb_seg *seg)
951 {
952         seg->selector = 0;
953         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
954                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
955         seg->limit = 0xffff;
956         seg->base = 0;
957 }
958
959 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
960 {
961         seg->selector = 0;
962         seg->attrib = SVM_SELECTOR_P_MASK | type;
963         seg->limit = 0xffff;
964         seg->base = 0;
965 }
966
967 static u64 __scale_tsc(u64 ratio, u64 tsc)
968 {
969         u64 mult, frac, _tsc;
970
971         mult  = ratio >> 32;
972         frac  = ratio & ((1ULL << 32) - 1);
973
974         _tsc  = tsc;
975         _tsc *= mult;
976         _tsc += (tsc >> 32) * frac;
977         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
978
979         return _tsc;
980 }
981
982 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
983 {
984         struct vcpu_svm *svm = to_svm(vcpu);
985         u64 _tsc = tsc;
986
987         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
988                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
989
990         return _tsc;
991 }
992
993 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
994 {
995         struct vcpu_svm *svm = to_svm(vcpu);
996         u64 ratio;
997         u64 khz;
998
999         /* Guest TSC same frequency as host TSC? */
1000         if (!scale) {
1001                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1002                 return;
1003         }
1004
1005         /* TSC scaling supported? */
1006         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1007                 if (user_tsc_khz > tsc_khz) {
1008                         vcpu->arch.tsc_catchup = 1;
1009                         vcpu->arch.tsc_always_catchup = 1;
1010                 } else
1011                         WARN(1, "user requested TSC rate below hardware speed\n");
1012                 return;
1013         }
1014
1015         khz = user_tsc_khz;
1016
1017         /* TSC scaling required  - calculate ratio */
1018         ratio = khz << 32;
1019         do_div(ratio, tsc_khz);
1020
1021         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1022                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1023                                 user_tsc_khz);
1024                 return;
1025         }
1026         svm->tsc_ratio             = ratio;
1027 }
1028
1029 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1030 {
1031         struct vcpu_svm *svm = to_svm(vcpu);
1032
1033         return svm->vmcb->control.tsc_offset;
1034 }
1035
1036 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1037 {
1038         struct vcpu_svm *svm = to_svm(vcpu);
1039         u64 g_tsc_offset = 0;
1040
1041         if (is_guest_mode(vcpu)) {
1042                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1043                                svm->nested.hsave->control.tsc_offset;
1044                 svm->nested.hsave->control.tsc_offset = offset;
1045         } else
1046                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1047                                            svm->vmcb->control.tsc_offset,
1048                                            offset);
1049
1050         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1051
1052         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1053 }
1054
1055 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1056 {
1057         struct vcpu_svm *svm = to_svm(vcpu);
1058
1059         WARN_ON(adjustment < 0);
1060         if (host)
1061                 adjustment = svm_scale_tsc(vcpu, adjustment);
1062
1063         svm->vmcb->control.tsc_offset += adjustment;
1064         if (is_guest_mode(vcpu))
1065                 svm->nested.hsave->control.tsc_offset += adjustment;
1066         else
1067                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1068                                      svm->vmcb->control.tsc_offset - adjustment,
1069                                      svm->vmcb->control.tsc_offset);
1070
1071         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1072 }
1073
1074 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1075 {
1076         u64 tsc;
1077
1078         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1079
1080         return target_tsc - tsc;
1081 }
1082
1083 static void init_vmcb(struct vcpu_svm *svm)
1084 {
1085         struct vmcb_control_area *control = &svm->vmcb->control;
1086         struct vmcb_save_area *save = &svm->vmcb->save;
1087
1088         svm->vcpu.fpu_active = 1;
1089         svm->vcpu.arch.hflags = 0;
1090
1091         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1092         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1093         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1094         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1095         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1096         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1097         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1098
1099         set_dr_intercepts(svm);
1100
1101         set_exception_intercept(svm, PF_VECTOR);
1102         set_exception_intercept(svm, UD_VECTOR);
1103         set_exception_intercept(svm, MC_VECTOR);
1104
1105         set_intercept(svm, INTERCEPT_INTR);
1106         set_intercept(svm, INTERCEPT_NMI);
1107         set_intercept(svm, INTERCEPT_SMI);
1108         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1109         set_intercept(svm, INTERCEPT_RDPMC);
1110         set_intercept(svm, INTERCEPT_CPUID);
1111         set_intercept(svm, INTERCEPT_INVD);
1112         set_intercept(svm, INTERCEPT_HLT);
1113         set_intercept(svm, INTERCEPT_INVLPG);
1114         set_intercept(svm, INTERCEPT_INVLPGA);
1115         set_intercept(svm, INTERCEPT_IOIO_PROT);
1116         set_intercept(svm, INTERCEPT_MSR_PROT);
1117         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1118         set_intercept(svm, INTERCEPT_SHUTDOWN);
1119         set_intercept(svm, INTERCEPT_VMRUN);
1120         set_intercept(svm, INTERCEPT_VMMCALL);
1121         set_intercept(svm, INTERCEPT_VMLOAD);
1122         set_intercept(svm, INTERCEPT_VMSAVE);
1123         set_intercept(svm, INTERCEPT_STGI);
1124         set_intercept(svm, INTERCEPT_CLGI);
1125         set_intercept(svm, INTERCEPT_SKINIT);
1126         set_intercept(svm, INTERCEPT_WBINVD);
1127         set_intercept(svm, INTERCEPT_MONITOR);
1128         set_intercept(svm, INTERCEPT_MWAIT);
1129         set_intercept(svm, INTERCEPT_XSETBV);
1130
1131         control->iopm_base_pa = iopm_base;
1132         control->msrpm_base_pa = __pa(svm->msrpm);
1133         control->int_ctl = V_INTR_MASKING_MASK;
1134
1135         init_seg(&save->es);
1136         init_seg(&save->ss);
1137         init_seg(&save->ds);
1138         init_seg(&save->fs);
1139         init_seg(&save->gs);
1140
1141         save->cs.selector = 0xf000;
1142         save->cs.base = 0xffff0000;
1143         /* Executable/Readable Code Segment */
1144         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1145                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1146         save->cs.limit = 0xffff;
1147
1148         save->gdtr.limit = 0xffff;
1149         save->idtr.limit = 0xffff;
1150
1151         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1152         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1153
1154         svm_set_efer(&svm->vcpu, 0);
1155         save->dr6 = 0xffff0ff0;
1156         kvm_set_rflags(&svm->vcpu, 2);
1157         save->rip = 0x0000fff0;
1158         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1159
1160         /*
1161          * This is the guest-visible cr0 value.
1162          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1163          */
1164         svm->vcpu.arch.cr0 = 0;
1165         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1166
1167         save->cr4 = X86_CR4_PAE;
1168         /* rdx = ?? */
1169
1170         if (npt_enabled) {
1171                 /* Setup VMCB for Nested Paging */
1172                 control->nested_ctl = 1;
1173                 clr_intercept(svm, INTERCEPT_INVLPG);
1174                 clr_exception_intercept(svm, PF_VECTOR);
1175                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1176                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1177                 save->g_pat = 0x0007040600070406ULL;
1178                 save->cr3 = 0;
1179                 save->cr4 = 0;
1180         }
1181         svm->asid_generation = 0;
1182
1183         svm->nested.vmcb = 0;
1184         svm->vcpu.arch.hflags = 0;
1185
1186         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1187                 control->pause_filter_count = 3000;
1188                 set_intercept(svm, INTERCEPT_PAUSE);
1189         }
1190
1191         mark_all_dirty(svm->vmcb);
1192
1193         enable_gif(svm);
1194 }
1195
1196 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1197 {
1198         struct vcpu_svm *svm = to_svm(vcpu);
1199         u32 dummy;
1200         u32 eax = 1;
1201
1202         init_vmcb(svm);
1203
1204         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1205         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1206 }
1207
1208 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1209 {
1210         struct vcpu_svm *svm;
1211         struct page *page;
1212         struct page *msrpm_pages;
1213         struct page *hsave_page;
1214         struct page *nested_msrpm_pages;
1215         int err;
1216
1217         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1218         if (!svm) {
1219                 err = -ENOMEM;
1220                 goto out;
1221         }
1222
1223         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1224
1225         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1226         if (err)
1227                 goto free_svm;
1228
1229         err = -ENOMEM;
1230         page = alloc_page(GFP_KERNEL);
1231         if (!page)
1232                 goto uninit;
1233
1234         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1235         if (!msrpm_pages)
1236                 goto free_page1;
1237
1238         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1239         if (!nested_msrpm_pages)
1240                 goto free_page2;
1241
1242         hsave_page = alloc_page(GFP_KERNEL);
1243         if (!hsave_page)
1244                 goto free_page3;
1245
1246         svm->nested.hsave = page_address(hsave_page);
1247
1248         svm->msrpm = page_address(msrpm_pages);
1249         svm_vcpu_init_msrpm(svm->msrpm);
1250
1251         svm->nested.msrpm = page_address(nested_msrpm_pages);
1252         svm_vcpu_init_msrpm(svm->nested.msrpm);
1253
1254         svm->vmcb = page_address(page);
1255         clear_page(svm->vmcb);
1256         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1257         svm->asid_generation = 0;
1258         init_vmcb(svm);
1259
1260         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1261         if (kvm_vcpu_is_bsp(&svm->vcpu))
1262                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1263
1264         svm_init_osvw(&svm->vcpu);
1265
1266         return &svm->vcpu;
1267
1268 free_page3:
1269         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1270 free_page2:
1271         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1272 free_page1:
1273         __free_page(page);
1274 uninit:
1275         kvm_vcpu_uninit(&svm->vcpu);
1276 free_svm:
1277         kmem_cache_free(kvm_vcpu_cache, svm);
1278 out:
1279         return ERR_PTR(err);
1280 }
1281
1282 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1283 {
1284         struct vcpu_svm *svm = to_svm(vcpu);
1285
1286         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1287         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1288         __free_page(virt_to_page(svm->nested.hsave));
1289         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1290         kvm_vcpu_uninit(vcpu);
1291         kmem_cache_free(kvm_vcpu_cache, svm);
1292 }
1293
1294 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1295 {
1296         struct vcpu_svm *svm = to_svm(vcpu);
1297         int i;
1298
1299         if (unlikely(cpu != vcpu->cpu)) {
1300                 svm->asid_generation = 0;
1301                 mark_all_dirty(svm->vmcb);
1302         }
1303
1304 #ifdef CONFIG_X86_64
1305         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1306 #endif
1307         savesegment(fs, svm->host.fs);
1308         savesegment(gs, svm->host.gs);
1309         svm->host.ldt = kvm_read_ldt();
1310
1311         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1312                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1313
1314         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1315             svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1316                 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1317                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1318         }
1319 }
1320
1321 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1322 {
1323         struct vcpu_svm *svm = to_svm(vcpu);
1324         int i;
1325
1326         ++vcpu->stat.host_state_reload;
1327         kvm_load_ldt(svm->host.ldt);
1328 #ifdef CONFIG_X86_64
1329         loadsegment(fs, svm->host.fs);
1330         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1331         load_gs_index(svm->host.gs);
1332 #else
1333 #ifdef CONFIG_X86_32_LAZY_GS
1334         loadsegment(gs, svm->host.gs);
1335 #endif
1336 #endif
1337         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1338                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1339 }
1340
1341 static void svm_update_cpl(struct kvm_vcpu *vcpu)
1342 {
1343         struct vcpu_svm *svm = to_svm(vcpu);
1344         int cpl;
1345
1346         if (!is_protmode(vcpu))
1347                 cpl = 0;
1348         else if (svm->vmcb->save.rflags & X86_EFLAGS_VM)
1349                 cpl = 3;
1350         else
1351                 cpl = svm->vmcb->save.cs.selector & 0x3;
1352
1353         svm->vmcb->save.cpl = cpl;
1354 }
1355
1356 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1357 {
1358         return to_svm(vcpu)->vmcb->save.rflags;
1359 }
1360
1361 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1362 {
1363         unsigned long old_rflags = to_svm(vcpu)->vmcb->save.rflags;
1364
1365         to_svm(vcpu)->vmcb->save.rflags = rflags;
1366         if ((old_rflags ^ rflags) & X86_EFLAGS_VM)
1367                 svm_update_cpl(vcpu);
1368 }
1369
1370 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1371 {
1372         switch (reg) {
1373         case VCPU_EXREG_PDPTR:
1374                 BUG_ON(!npt_enabled);
1375                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1376                 break;
1377         default:
1378                 BUG();
1379         }
1380 }
1381
1382 static void svm_set_vintr(struct vcpu_svm *svm)
1383 {
1384         set_intercept(svm, INTERCEPT_VINTR);
1385 }
1386
1387 static void svm_clear_vintr(struct vcpu_svm *svm)
1388 {
1389         clr_intercept(svm, INTERCEPT_VINTR);
1390 }
1391
1392 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1393 {
1394         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1395
1396         switch (seg) {
1397         case VCPU_SREG_CS: return &save->cs;
1398         case VCPU_SREG_DS: return &save->ds;
1399         case VCPU_SREG_ES: return &save->es;
1400         case VCPU_SREG_FS: return &save->fs;
1401         case VCPU_SREG_GS: return &save->gs;
1402         case VCPU_SREG_SS: return &save->ss;
1403         case VCPU_SREG_TR: return &save->tr;
1404         case VCPU_SREG_LDTR: return &save->ldtr;
1405         }
1406         BUG();
1407         return NULL;
1408 }
1409
1410 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1411 {
1412         struct vmcb_seg *s = svm_seg(vcpu, seg);
1413
1414         return s->base;
1415 }
1416
1417 static void svm_get_segment(struct kvm_vcpu *vcpu,
1418                             struct kvm_segment *var, int seg)
1419 {
1420         struct vmcb_seg *s = svm_seg(vcpu, seg);
1421
1422         var->base = s->base;
1423         var->limit = s->limit;
1424         var->selector = s->selector;
1425         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1426         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1427         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1428         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1429         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1430         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1431         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1432         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1433
1434         /*
1435          * AMD's VMCB does not have an explicit unusable field, so emulate it
1436          * for cross vendor migration purposes by "not present"
1437          */
1438         var->unusable = !var->present || (var->type == 0);
1439
1440         switch (seg) {
1441         case VCPU_SREG_CS:
1442                 /*
1443                  * SVM always stores 0 for the 'G' bit in the CS selector in
1444                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1445                  * Intel's VMENTRY has a check on the 'G' bit.
1446                  */
1447                 var->g = s->limit > 0xfffff;
1448                 break;
1449         case VCPU_SREG_TR:
1450                 /*
1451                  * Work around a bug where the busy flag in the tr selector
1452                  * isn't exposed
1453                  */
1454                 var->type |= 0x2;
1455                 break;
1456         case VCPU_SREG_DS:
1457         case VCPU_SREG_ES:
1458         case VCPU_SREG_FS:
1459         case VCPU_SREG_GS:
1460                 /*
1461                  * The accessed bit must always be set in the segment
1462                  * descriptor cache, although it can be cleared in the
1463                  * descriptor, the cached bit always remains at 1. Since
1464                  * Intel has a check on this, set it here to support
1465                  * cross-vendor migration.
1466                  */
1467                 if (!var->unusable)
1468                         var->type |= 0x1;
1469                 break;
1470         case VCPU_SREG_SS:
1471                 /*
1472                  * On AMD CPUs sometimes the DB bit in the segment
1473                  * descriptor is left as 1, although the whole segment has
1474                  * been made unusable. Clear it here to pass an Intel VMX
1475                  * entry check when cross vendor migrating.
1476                  */
1477                 if (var->unusable)
1478                         var->db = 0;
1479                 break;
1480         }
1481 }
1482
1483 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1484 {
1485         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1486
1487         return save->cpl;
1488 }
1489
1490 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1491 {
1492         struct vcpu_svm *svm = to_svm(vcpu);
1493
1494         dt->size = svm->vmcb->save.idtr.limit;
1495         dt->address = svm->vmcb->save.idtr.base;
1496 }
1497
1498 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1499 {
1500         struct vcpu_svm *svm = to_svm(vcpu);
1501
1502         svm->vmcb->save.idtr.limit = dt->size;
1503         svm->vmcb->save.idtr.base = dt->address ;
1504         mark_dirty(svm->vmcb, VMCB_DT);
1505 }
1506
1507 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1508 {
1509         struct vcpu_svm *svm = to_svm(vcpu);
1510
1511         dt->size = svm->vmcb->save.gdtr.limit;
1512         dt->address = svm->vmcb->save.gdtr.base;
1513 }
1514
1515 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1516 {
1517         struct vcpu_svm *svm = to_svm(vcpu);
1518
1519         svm->vmcb->save.gdtr.limit = dt->size;
1520         svm->vmcb->save.gdtr.base = dt->address ;
1521         mark_dirty(svm->vmcb, VMCB_DT);
1522 }
1523
1524 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1525 {
1526 }
1527
1528 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1529 {
1530 }
1531
1532 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1533 {
1534 }
1535
1536 static void update_cr0_intercept(struct vcpu_svm *svm)
1537 {
1538         ulong gcr0 = svm->vcpu.arch.cr0;
1539         u64 *hcr0 = &svm->vmcb->save.cr0;
1540
1541         if (!svm->vcpu.fpu_active)
1542                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1543         else
1544                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1545                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1546
1547         mark_dirty(svm->vmcb, VMCB_CR);
1548
1549         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1550                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1551                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1552         } else {
1553                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1554                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1555         }
1556 }
1557
1558 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1559 {
1560         struct vcpu_svm *svm = to_svm(vcpu);
1561
1562 #ifdef CONFIG_X86_64
1563         if (vcpu->arch.efer & EFER_LME) {
1564                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1565                         vcpu->arch.efer |= EFER_LMA;
1566                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1567                 }
1568
1569                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1570                         vcpu->arch.efer &= ~EFER_LMA;
1571                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1572                 }
1573         }
1574 #endif
1575         vcpu->arch.cr0 = cr0;
1576
1577         if (!npt_enabled)
1578                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1579
1580         if (!vcpu->fpu_active)
1581                 cr0 |= X86_CR0_TS;
1582         /*
1583          * re-enable caching here because the QEMU bios
1584          * does not do it - this results in some delay at
1585          * reboot
1586          */
1587         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1588         svm->vmcb->save.cr0 = cr0;
1589         mark_dirty(svm->vmcb, VMCB_CR);
1590         update_cr0_intercept(svm);
1591 }
1592
1593 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1594 {
1595         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1596         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1597
1598         if (cr4 & X86_CR4_VMXE)
1599                 return 1;
1600
1601         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1602                 svm_flush_tlb(vcpu);
1603
1604         vcpu->arch.cr4 = cr4;
1605         if (!npt_enabled)
1606                 cr4 |= X86_CR4_PAE;
1607         cr4 |= host_cr4_mce;
1608         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1609         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1610         return 0;
1611 }
1612
1613 static void svm_set_segment(struct kvm_vcpu *vcpu,
1614                             struct kvm_segment *var, int seg)
1615 {
1616         struct vcpu_svm *svm = to_svm(vcpu);
1617         struct vmcb_seg *s = svm_seg(vcpu, seg);
1618
1619         s->base = var->base;
1620         s->limit = var->limit;
1621         s->selector = var->selector;
1622         if (var->unusable)
1623                 s->attrib = 0;
1624         else {
1625                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1626                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1627                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1628                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1629                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1630                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1631                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1632                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1633         }
1634         if (seg == VCPU_SREG_CS)
1635                 svm_update_cpl(vcpu);
1636
1637         mark_dirty(svm->vmcb, VMCB_SEG);
1638 }
1639
1640 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1641 {
1642         struct vcpu_svm *svm = to_svm(vcpu);
1643
1644         clr_exception_intercept(svm, DB_VECTOR);
1645         clr_exception_intercept(svm, BP_VECTOR);
1646
1647         if (svm->nmi_singlestep)
1648                 set_exception_intercept(svm, DB_VECTOR);
1649
1650         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1651                 if (vcpu->guest_debug &
1652                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1653                         set_exception_intercept(svm, DB_VECTOR);
1654                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1655                         set_exception_intercept(svm, BP_VECTOR);
1656         } else
1657                 vcpu->guest_debug = 0;
1658 }
1659
1660 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1661 {
1662         if (sd->next_asid > sd->max_asid) {
1663                 ++sd->asid_generation;
1664                 sd->next_asid = 1;
1665                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1666         }
1667
1668         svm->asid_generation = sd->asid_generation;
1669         svm->vmcb->control.asid = sd->next_asid++;
1670
1671         mark_dirty(svm->vmcb, VMCB_ASID);
1672 }
1673
1674 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1675 {
1676         return to_svm(vcpu)->vmcb->save.dr6;
1677 }
1678
1679 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1680 {
1681         struct vcpu_svm *svm = to_svm(vcpu);
1682
1683         svm->vmcb->save.dr6 = value;
1684         mark_dirty(svm->vmcb, VMCB_DR);
1685 }
1686
1687 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1688 {
1689         struct vcpu_svm *svm = to_svm(vcpu);
1690
1691         get_debugreg(vcpu->arch.db[0], 0);
1692         get_debugreg(vcpu->arch.db[1], 1);
1693         get_debugreg(vcpu->arch.db[2], 2);
1694         get_debugreg(vcpu->arch.db[3], 3);
1695         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1696         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1697
1698         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1699         set_dr_intercepts(svm);
1700 }
1701
1702 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1703 {
1704         struct vcpu_svm *svm = to_svm(vcpu);
1705
1706         svm->vmcb->save.dr7 = value;
1707         mark_dirty(svm->vmcb, VMCB_DR);
1708 }
1709
1710 static int pf_interception(struct vcpu_svm *svm)
1711 {
1712         u64 fault_address = svm->vmcb->control.exit_info_2;
1713         u32 error_code;
1714         int r = 1;
1715
1716         switch (svm->apf_reason) {
1717         default:
1718                 error_code = svm->vmcb->control.exit_info_1;
1719
1720                 trace_kvm_page_fault(fault_address, error_code);
1721                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1722                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1723                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1724                         svm->vmcb->control.insn_bytes,
1725                         svm->vmcb->control.insn_len);
1726                 break;
1727         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1728                 svm->apf_reason = 0;
1729                 local_irq_disable();
1730                 kvm_async_pf_task_wait(fault_address);
1731                 local_irq_enable();
1732                 break;
1733         case KVM_PV_REASON_PAGE_READY:
1734                 svm->apf_reason = 0;
1735                 local_irq_disable();
1736                 kvm_async_pf_task_wake(fault_address);
1737                 local_irq_enable();
1738                 break;
1739         }
1740         return r;
1741 }
1742
1743 static int db_interception(struct vcpu_svm *svm)
1744 {
1745         struct kvm_run *kvm_run = svm->vcpu.run;
1746
1747         if (!(svm->vcpu.guest_debug &
1748               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1749                 !svm->nmi_singlestep) {
1750                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1751                 return 1;
1752         }
1753
1754         if (svm->nmi_singlestep) {
1755                 svm->nmi_singlestep = false;
1756                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1757                         svm->vmcb->save.rflags &=
1758                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1759                 update_db_bp_intercept(&svm->vcpu);
1760         }
1761
1762         if (svm->vcpu.guest_debug &
1763             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1764                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1765                 kvm_run->debug.arch.pc =
1766                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1767                 kvm_run->debug.arch.exception = DB_VECTOR;
1768                 return 0;
1769         }
1770
1771         return 1;
1772 }
1773
1774 static int bp_interception(struct vcpu_svm *svm)
1775 {
1776         struct kvm_run *kvm_run = svm->vcpu.run;
1777
1778         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1779         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1780         kvm_run->debug.arch.exception = BP_VECTOR;
1781         return 0;
1782 }
1783
1784 static int ud_interception(struct vcpu_svm *svm)
1785 {
1786         int er;
1787
1788         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1789         if (er != EMULATE_DONE)
1790                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1791         return 1;
1792 }
1793
1794 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1795 {
1796         struct vcpu_svm *svm = to_svm(vcpu);
1797
1798         clr_exception_intercept(svm, NM_VECTOR);
1799
1800         svm->vcpu.fpu_active = 1;
1801         update_cr0_intercept(svm);
1802 }
1803
1804 static int nm_interception(struct vcpu_svm *svm)
1805 {
1806         svm_fpu_activate(&svm->vcpu);
1807         return 1;
1808 }
1809
1810 static bool is_erratum_383(void)
1811 {
1812         int err, i;
1813         u64 value;
1814
1815         if (!erratum_383_found)
1816                 return false;
1817
1818         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1819         if (err)
1820                 return false;
1821
1822         /* Bit 62 may or may not be set for this mce */
1823         value &= ~(1ULL << 62);
1824
1825         if (value != 0xb600000000010015ULL)
1826                 return false;
1827
1828         /* Clear MCi_STATUS registers */
1829         for (i = 0; i < 6; ++i)
1830                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1831
1832         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1833         if (!err) {
1834                 u32 low, high;
1835
1836                 value &= ~(1ULL << 2);
1837                 low    = lower_32_bits(value);
1838                 high   = upper_32_bits(value);
1839
1840                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1841         }
1842
1843         /* Flush tlb to evict multi-match entries */
1844         __flush_tlb_all();
1845
1846         return true;
1847 }
1848
1849 static void svm_handle_mce(struct vcpu_svm *svm)
1850 {
1851         if (is_erratum_383()) {
1852                 /*
1853                  * Erratum 383 triggered. Guest state is corrupt so kill the
1854                  * guest.
1855                  */
1856                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1857
1858                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1859
1860                 return;
1861         }
1862
1863         /*
1864          * On an #MC intercept the MCE handler is not called automatically in
1865          * the host. So do it by hand here.
1866          */
1867         asm volatile (
1868                 "int $0x12\n");
1869         /* not sure if we ever come back to this point */
1870
1871         return;
1872 }
1873
1874 static int mc_interception(struct vcpu_svm *svm)
1875 {
1876         return 1;
1877 }
1878
1879 static int shutdown_interception(struct vcpu_svm *svm)
1880 {
1881         struct kvm_run *kvm_run = svm->vcpu.run;
1882
1883         /*
1884          * VMCB is undefined after a SHUTDOWN intercept
1885          * so reinitialize it.
1886          */
1887         clear_page(svm->vmcb);
1888         init_vmcb(svm);
1889
1890         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1891         return 0;
1892 }
1893
1894 static int io_interception(struct vcpu_svm *svm)
1895 {
1896         struct kvm_vcpu *vcpu = &svm->vcpu;
1897         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1898         int size, in, string;
1899         unsigned port;
1900
1901         ++svm->vcpu.stat.io_exits;
1902         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1903         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1904         if (string || in)
1905                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1906
1907         port = io_info >> 16;
1908         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1909         svm->next_rip = svm->vmcb->control.exit_info_2;
1910         skip_emulated_instruction(&svm->vcpu);
1911
1912         return kvm_fast_pio_out(vcpu, size, port);
1913 }
1914
1915 static int nmi_interception(struct vcpu_svm *svm)
1916 {
1917         return 1;
1918 }
1919
1920 static int intr_interception(struct vcpu_svm *svm)
1921 {
1922         ++svm->vcpu.stat.irq_exits;
1923         return 1;
1924 }
1925
1926 static int nop_on_interception(struct vcpu_svm *svm)
1927 {
1928         return 1;
1929 }
1930
1931 static int halt_interception(struct vcpu_svm *svm)
1932 {
1933         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1934         skip_emulated_instruction(&svm->vcpu);
1935         return kvm_emulate_halt(&svm->vcpu);
1936 }
1937
1938 static int vmmcall_interception(struct vcpu_svm *svm)
1939 {
1940         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1941         skip_emulated_instruction(&svm->vcpu);
1942         kvm_emulate_hypercall(&svm->vcpu);
1943         return 1;
1944 }
1945
1946 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1947 {
1948         struct vcpu_svm *svm = to_svm(vcpu);
1949
1950         return svm->nested.nested_cr3;
1951 }
1952
1953 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1954 {
1955         struct vcpu_svm *svm = to_svm(vcpu);
1956         u64 cr3 = svm->nested.nested_cr3;
1957         u64 pdpte;
1958         int ret;
1959
1960         ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1961                                   offset_in_page(cr3) + index * 8, 8);
1962         if (ret)
1963                 return 0;
1964         return pdpte;
1965 }
1966
1967 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1968                                    unsigned long root)
1969 {
1970         struct vcpu_svm *svm = to_svm(vcpu);
1971
1972         svm->vmcb->control.nested_cr3 = root;
1973         mark_dirty(svm->vmcb, VMCB_NPT);
1974         svm_flush_tlb(vcpu);
1975 }
1976
1977 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1978                                        struct x86_exception *fault)
1979 {
1980         struct vcpu_svm *svm = to_svm(vcpu);
1981
1982         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1983         svm->vmcb->control.exit_code_hi = 0;
1984         svm->vmcb->control.exit_info_1 = fault->error_code;
1985         svm->vmcb->control.exit_info_2 = fault->address;
1986
1987         nested_svm_vmexit(svm);
1988 }
1989
1990 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1991 {
1992         kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1993
1994         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1995         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1996         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1997         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1998         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1999         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2000 }
2001
2002 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2003 {
2004         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2005 }
2006
2007 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2008 {
2009         if (!(svm->vcpu.arch.efer & EFER_SVME)
2010             || !is_paging(&svm->vcpu)) {
2011                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2012                 return 1;
2013         }
2014
2015         if (svm->vmcb->save.cpl) {
2016                 kvm_inject_gp(&svm->vcpu, 0);
2017                 return 1;
2018         }
2019
2020        return 0;
2021 }
2022
2023 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2024                                       bool has_error_code, u32 error_code)
2025 {
2026         int vmexit;
2027
2028         if (!is_guest_mode(&svm->vcpu))
2029                 return 0;
2030
2031         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2032         svm->vmcb->control.exit_code_hi = 0;
2033         svm->vmcb->control.exit_info_1 = error_code;
2034         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2035
2036         vmexit = nested_svm_intercept(svm);
2037         if (vmexit == NESTED_EXIT_DONE)
2038                 svm->nested.exit_required = true;
2039
2040         return vmexit;
2041 }
2042
2043 /* This function returns true if it is save to enable the irq window */
2044 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2045 {
2046         if (!is_guest_mode(&svm->vcpu))
2047                 return true;
2048
2049         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2050                 return true;
2051
2052         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2053                 return false;
2054
2055         /*
2056          * if vmexit was already requested (by intercepted exception
2057          * for instance) do not overwrite it with "external interrupt"
2058          * vmexit.
2059          */
2060         if (svm->nested.exit_required)
2061                 return false;
2062
2063         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2064         svm->vmcb->control.exit_info_1 = 0;
2065         svm->vmcb->control.exit_info_2 = 0;
2066
2067         if (svm->nested.intercept & 1ULL) {
2068                 /*
2069                  * The #vmexit can't be emulated here directly because this
2070                  * code path runs with irqs and preemption disabled. A
2071                  * #vmexit emulation might sleep. Only signal request for
2072                  * the #vmexit here.
2073                  */
2074                 svm->nested.exit_required = true;
2075                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2076                 return false;
2077         }
2078
2079         return true;
2080 }
2081
2082 /* This function returns true if it is save to enable the nmi window */
2083 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2084 {
2085         if (!is_guest_mode(&svm->vcpu))
2086                 return true;
2087
2088         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2089                 return true;
2090
2091         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2092         svm->nested.exit_required = true;
2093
2094         return false;
2095 }
2096
2097 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2098 {
2099         struct page *page;
2100
2101         might_sleep();
2102
2103         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2104         if (is_error_page(page))
2105                 goto error;
2106
2107         *_page = page;
2108
2109         return kmap(page);
2110
2111 error:
2112         kvm_inject_gp(&svm->vcpu, 0);
2113
2114         return NULL;
2115 }
2116
2117 static void nested_svm_unmap(struct page *page)
2118 {
2119         kunmap(page);
2120         kvm_release_page_dirty(page);
2121 }
2122
2123 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2124 {
2125         unsigned port;
2126         u8 val, bit;
2127         u64 gpa;
2128
2129         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2130                 return NESTED_EXIT_HOST;
2131
2132         port = svm->vmcb->control.exit_info_1 >> 16;
2133         gpa  = svm->nested.vmcb_iopm + (port / 8);
2134         bit  = port % 8;
2135         val  = 0;
2136
2137         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2138                 val &= (1 << bit);
2139
2140         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2141 }
2142
2143 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2144 {
2145         u32 offset, msr, value;
2146         int write, mask;
2147
2148         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2149                 return NESTED_EXIT_HOST;
2150
2151         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2152         offset = svm_msrpm_offset(msr);
2153         write  = svm->vmcb->control.exit_info_1 & 1;
2154         mask   = 1 << ((2 * (msr & 0xf)) + write);
2155
2156         if (offset == MSR_INVALID)
2157                 return NESTED_EXIT_DONE;
2158
2159         /* Offset is in 32 bit units but need in 8 bit units */
2160         offset *= 4;
2161
2162         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2163                 return NESTED_EXIT_DONE;
2164
2165         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2166 }
2167
2168 static int nested_svm_exit_special(struct vcpu_svm *svm)
2169 {
2170         u32 exit_code = svm->vmcb->control.exit_code;
2171
2172         switch (exit_code) {
2173         case SVM_EXIT_INTR:
2174         case SVM_EXIT_NMI:
2175         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2176                 return NESTED_EXIT_HOST;
2177         case SVM_EXIT_NPF:
2178                 /* For now we are always handling NPFs when using them */
2179                 if (npt_enabled)
2180                         return NESTED_EXIT_HOST;
2181                 break;
2182         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2183                 /* When we're shadowing, trap PFs, but not async PF */
2184                 if (!npt_enabled && svm->apf_reason == 0)
2185                         return NESTED_EXIT_HOST;
2186                 break;
2187         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2188                 nm_interception(svm);
2189                 break;
2190         default:
2191                 break;
2192         }
2193
2194         return NESTED_EXIT_CONTINUE;
2195 }
2196
2197 /*
2198  * If this function returns true, this #vmexit was already handled
2199  */
2200 static int nested_svm_intercept(struct vcpu_svm *svm)
2201 {
2202         u32 exit_code = svm->vmcb->control.exit_code;
2203         int vmexit = NESTED_EXIT_HOST;
2204
2205         switch (exit_code) {
2206         case SVM_EXIT_MSR:
2207                 vmexit = nested_svm_exit_handled_msr(svm);
2208                 break;
2209         case SVM_EXIT_IOIO:
2210                 vmexit = nested_svm_intercept_ioio(svm);
2211                 break;
2212         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2213                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2214                 if (svm->nested.intercept_cr & bit)
2215                         vmexit = NESTED_EXIT_DONE;
2216                 break;
2217         }
2218         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2219                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2220                 if (svm->nested.intercept_dr & bit)
2221                         vmexit = NESTED_EXIT_DONE;
2222                 break;
2223         }
2224         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2225                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2226                 if (svm->nested.intercept_exceptions & excp_bits)
2227                         vmexit = NESTED_EXIT_DONE;
2228                 /* async page fault always cause vmexit */
2229                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2230                          svm->apf_reason != 0)
2231                         vmexit = NESTED_EXIT_DONE;
2232                 break;
2233         }
2234         case SVM_EXIT_ERR: {
2235                 vmexit = NESTED_EXIT_DONE;
2236                 break;
2237         }
2238         default: {
2239                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2240                 if (svm->nested.intercept & exit_bits)
2241                         vmexit = NESTED_EXIT_DONE;
2242         }
2243         }
2244
2245         return vmexit;
2246 }
2247
2248 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2249 {
2250         int vmexit;
2251
2252         vmexit = nested_svm_intercept(svm);
2253
2254         if (vmexit == NESTED_EXIT_DONE)
2255                 nested_svm_vmexit(svm);
2256
2257         return vmexit;
2258 }
2259
2260 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2261 {
2262         struct vmcb_control_area *dst  = &dst_vmcb->control;
2263         struct vmcb_control_area *from = &from_vmcb->control;
2264
2265         dst->intercept_cr         = from->intercept_cr;
2266         dst->intercept_dr         = from->intercept_dr;
2267         dst->intercept_exceptions = from->intercept_exceptions;
2268         dst->intercept            = from->intercept;
2269         dst->iopm_base_pa         = from->iopm_base_pa;
2270         dst->msrpm_base_pa        = from->msrpm_base_pa;
2271         dst->tsc_offset           = from->tsc_offset;
2272         dst->asid                 = from->asid;
2273         dst->tlb_ctl              = from->tlb_ctl;
2274         dst->int_ctl              = from->int_ctl;
2275         dst->int_vector           = from->int_vector;
2276         dst->int_state            = from->int_state;
2277         dst->exit_code            = from->exit_code;
2278         dst->exit_code_hi         = from->exit_code_hi;
2279         dst->exit_info_1          = from->exit_info_1;
2280         dst->exit_info_2          = from->exit_info_2;
2281         dst->exit_int_info        = from->exit_int_info;
2282         dst->exit_int_info_err    = from->exit_int_info_err;
2283         dst->nested_ctl           = from->nested_ctl;
2284         dst->event_inj            = from->event_inj;
2285         dst->event_inj_err        = from->event_inj_err;
2286         dst->nested_cr3           = from->nested_cr3;
2287         dst->lbr_ctl              = from->lbr_ctl;
2288 }
2289
2290 static int nested_svm_vmexit(struct vcpu_svm *svm)
2291 {
2292         struct vmcb *nested_vmcb;
2293         struct vmcb *hsave = svm->nested.hsave;
2294         struct vmcb *vmcb = svm->vmcb;
2295         struct page *page;
2296
2297         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2298                                        vmcb->control.exit_info_1,
2299                                        vmcb->control.exit_info_2,
2300                                        vmcb->control.exit_int_info,
2301                                        vmcb->control.exit_int_info_err,
2302                                        KVM_ISA_SVM);
2303
2304         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2305         if (!nested_vmcb)
2306                 return 1;
2307
2308         /* Exit Guest-Mode */
2309         leave_guest_mode(&svm->vcpu);
2310         svm->nested.vmcb = 0;
2311
2312         /* Give the current vmcb to the guest */
2313         disable_gif(svm);
2314
2315         nested_vmcb->save.es     = vmcb->save.es;
2316         nested_vmcb->save.cs     = vmcb->save.cs;
2317         nested_vmcb->save.ss     = vmcb->save.ss;
2318         nested_vmcb->save.ds     = vmcb->save.ds;
2319         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2320         nested_vmcb->save.idtr   = vmcb->save.idtr;
2321         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2322         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2323         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2324         nested_vmcb->save.cr2    = vmcb->save.cr2;
2325         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2326         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2327         nested_vmcb->save.rip    = vmcb->save.rip;
2328         nested_vmcb->save.rsp    = vmcb->save.rsp;
2329         nested_vmcb->save.rax    = vmcb->save.rax;
2330         nested_vmcb->save.dr7    = vmcb->save.dr7;
2331         nested_vmcb->save.dr6    = vmcb->save.dr6;
2332         nested_vmcb->save.cpl    = vmcb->save.cpl;
2333
2334         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2335         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2336         nested_vmcb->control.int_state         = vmcb->control.int_state;
2337         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2338         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2339         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2340         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2341         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2342         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2343         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2344
2345         /*
2346          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2347          * to make sure that we do not lose injected events. So check event_inj
2348          * here and copy it to exit_int_info if it is valid.
2349          * Exit_int_info and event_inj can't be both valid because the case
2350          * below only happens on a VMRUN instruction intercept which has
2351          * no valid exit_int_info set.
2352          */
2353         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2354                 struct vmcb_control_area *nc = &nested_vmcb->control;
2355
2356                 nc->exit_int_info     = vmcb->control.event_inj;
2357                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2358         }
2359
2360         nested_vmcb->control.tlb_ctl           = 0;
2361         nested_vmcb->control.event_inj         = 0;
2362         nested_vmcb->control.event_inj_err     = 0;
2363
2364         /* We always set V_INTR_MASKING and remember the old value in hflags */
2365         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2366                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2367
2368         /* Restore the original control entries */
2369         copy_vmcb_control_area(vmcb, hsave);
2370
2371         kvm_clear_exception_queue(&svm->vcpu);
2372         kvm_clear_interrupt_queue(&svm->vcpu);
2373
2374         svm->nested.nested_cr3 = 0;
2375
2376         /* Restore selected save entries */
2377         svm->vmcb->save.es = hsave->save.es;
2378         svm->vmcb->save.cs = hsave->save.cs;
2379         svm->vmcb->save.ss = hsave->save.ss;
2380         svm->vmcb->save.ds = hsave->save.ds;
2381         svm->vmcb->save.gdtr = hsave->save.gdtr;
2382         svm->vmcb->save.idtr = hsave->save.idtr;
2383         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2384         svm_set_efer(&svm->vcpu, hsave->save.efer);
2385         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2386         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2387         if (npt_enabled) {
2388                 svm->vmcb->save.cr3 = hsave->save.cr3;
2389                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2390         } else {
2391                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2392         }
2393         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2394         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2395         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2396         svm->vmcb->save.dr7 = 0;
2397         svm->vmcb->save.cpl = 0;
2398         svm->vmcb->control.exit_int_info = 0;
2399
2400         mark_all_dirty(svm->vmcb);
2401
2402         nested_svm_unmap(page);
2403
2404         nested_svm_uninit_mmu_context(&svm->vcpu);
2405         kvm_mmu_reset_context(&svm->vcpu);
2406         kvm_mmu_load(&svm->vcpu);
2407
2408         return 0;
2409 }
2410
2411 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2412 {
2413         /*
2414          * This function merges the msr permission bitmaps of kvm and the
2415          * nested vmcb. It is optimized in that it only merges the parts where
2416          * the kvm msr permission bitmap may contain zero bits
2417          */
2418         int i;
2419
2420         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2421                 return true;
2422
2423         for (i = 0; i < MSRPM_OFFSETS; i++) {
2424                 u32 value, p;
2425                 u64 offset;
2426
2427                 if (msrpm_offsets[i] == 0xffffffff)
2428                         break;
2429
2430                 p      = msrpm_offsets[i];
2431                 offset = svm->nested.vmcb_msrpm + (p * 4);
2432
2433                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2434                         return false;
2435
2436                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2437         }
2438
2439         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2440
2441         return true;
2442 }
2443
2444 static bool nested_vmcb_checks(struct vmcb *vmcb)
2445 {
2446         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2447                 return false;
2448
2449         if (vmcb->control.asid == 0)
2450                 return false;
2451
2452         if (vmcb->control.nested_ctl && !npt_enabled)
2453                 return false;
2454
2455         return true;
2456 }
2457
2458 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2459 {
2460         struct vmcb *nested_vmcb;
2461         struct vmcb *hsave = svm->nested.hsave;
2462         struct vmcb *vmcb = svm->vmcb;
2463         struct page *page;
2464         u64 vmcb_gpa;
2465
2466         vmcb_gpa = svm->vmcb->save.rax;
2467
2468         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2469         if (!nested_vmcb)
2470                 return false;
2471
2472         if (!nested_vmcb_checks(nested_vmcb)) {
2473                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2474                 nested_vmcb->control.exit_code_hi = 0;
2475                 nested_vmcb->control.exit_info_1  = 0;
2476                 nested_vmcb->control.exit_info_2  = 0;
2477
2478                 nested_svm_unmap(page);
2479
2480                 return false;
2481         }
2482
2483         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2484                                nested_vmcb->save.rip,
2485                                nested_vmcb->control.int_ctl,
2486                                nested_vmcb->control.event_inj,
2487                                nested_vmcb->control.nested_ctl);
2488
2489         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2490                                     nested_vmcb->control.intercept_cr >> 16,
2491                                     nested_vmcb->control.intercept_exceptions,
2492                                     nested_vmcb->control.intercept);
2493
2494         /* Clear internal status */
2495         kvm_clear_exception_queue(&svm->vcpu);
2496         kvm_clear_interrupt_queue(&svm->vcpu);
2497
2498         /*
2499          * Save the old vmcb, so we don't need to pick what we save, but can
2500          * restore everything when a VMEXIT occurs
2501          */
2502         hsave->save.es     = vmcb->save.es;
2503         hsave->save.cs     = vmcb->save.cs;
2504         hsave->save.ss     = vmcb->save.ss;
2505         hsave->save.ds     = vmcb->save.ds;
2506         hsave->save.gdtr   = vmcb->save.gdtr;
2507         hsave->save.idtr   = vmcb->save.idtr;
2508         hsave->save.efer   = svm->vcpu.arch.efer;
2509         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2510         hsave->save.cr4    = svm->vcpu.arch.cr4;
2511         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2512         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2513         hsave->save.rsp    = vmcb->save.rsp;
2514         hsave->save.rax    = vmcb->save.rax;
2515         if (npt_enabled)
2516                 hsave->save.cr3    = vmcb->save.cr3;
2517         else
2518                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2519
2520         copy_vmcb_control_area(hsave, vmcb);
2521
2522         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2523                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2524         else
2525                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2526
2527         if (nested_vmcb->control.nested_ctl) {
2528                 kvm_mmu_unload(&svm->vcpu);
2529                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2530                 nested_svm_init_mmu_context(&svm->vcpu);
2531         }
2532
2533         /* Load the nested guest state */
2534         svm->vmcb->save.es = nested_vmcb->save.es;
2535         svm->vmcb->save.cs = nested_vmcb->save.cs;
2536         svm->vmcb->save.ss = nested_vmcb->save.ss;
2537         svm->vmcb->save.ds = nested_vmcb->save.ds;
2538         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2539         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2540         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2541         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2542         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2543         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2544         if (npt_enabled) {
2545                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2546                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2547         } else
2548                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2549
2550         /* Guest paging mode is active - reset mmu */
2551         kvm_mmu_reset_context(&svm->vcpu);
2552
2553         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2554         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2555         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2556         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2557
2558         /* In case we don't even reach vcpu_run, the fields are not updated */
2559         svm->vmcb->save.rax = nested_vmcb->save.rax;
2560         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2561         svm->vmcb->save.rip = nested_vmcb->save.rip;
2562         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2563         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2564         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2565
2566         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2567         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2568
2569         /* cache intercepts */
2570         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2571         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2572         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2573         svm->nested.intercept            = nested_vmcb->control.intercept;
2574
2575         svm_flush_tlb(&svm->vcpu);
2576         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2577         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2578                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2579         else
2580                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2581
2582         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2583                 /* We only want the cr8 intercept bits of the guest */
2584                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2585                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2586         }
2587
2588         /* We don't want to see VMMCALLs from a nested guest */
2589         clr_intercept(svm, INTERCEPT_VMMCALL);
2590
2591         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2592         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2593         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2594         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2595         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2596         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2597
2598         nested_svm_unmap(page);
2599
2600         /* Enter Guest-Mode */
2601         enter_guest_mode(&svm->vcpu);
2602
2603         /*
2604          * Merge guest and host intercepts - must be called  with vcpu in
2605          * guest-mode to take affect here
2606          */
2607         recalc_intercepts(svm);
2608
2609         svm->nested.vmcb = vmcb_gpa;
2610
2611         enable_gif(svm);
2612
2613         mark_all_dirty(svm->vmcb);
2614
2615         return true;
2616 }
2617
2618 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2619 {
2620         to_vmcb->save.fs = from_vmcb->save.fs;
2621         to_vmcb->save.gs = from_vmcb->save.gs;
2622         to_vmcb->save.tr = from_vmcb->save.tr;
2623         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2624         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2625         to_vmcb->save.star = from_vmcb->save.star;
2626         to_vmcb->save.lstar = from_vmcb->save.lstar;
2627         to_vmcb->save.cstar = from_vmcb->save.cstar;
2628         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2629         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2630         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2631         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2632 }
2633
2634 static int vmload_interception(struct vcpu_svm *svm)
2635 {
2636         struct vmcb *nested_vmcb;
2637         struct page *page;
2638
2639         if (nested_svm_check_permissions(svm))
2640                 return 1;
2641
2642         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2643         if (!nested_vmcb)
2644                 return 1;
2645
2646         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2647         skip_emulated_instruction(&svm->vcpu);
2648
2649         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2650         nested_svm_unmap(page);
2651
2652         return 1;
2653 }
2654
2655 static int vmsave_interception(struct vcpu_svm *svm)
2656 {
2657         struct vmcb *nested_vmcb;
2658         struct page *page;
2659
2660         if (nested_svm_check_permissions(svm))
2661                 return 1;
2662
2663         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2664         if (!nested_vmcb)
2665                 return 1;
2666
2667         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2668         skip_emulated_instruction(&svm->vcpu);
2669
2670         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2671         nested_svm_unmap(page);
2672
2673         return 1;
2674 }
2675
2676 static int vmrun_interception(struct vcpu_svm *svm)
2677 {
2678         if (nested_svm_check_permissions(svm))
2679                 return 1;
2680
2681         /* Save rip after vmrun instruction */
2682         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2683
2684         if (!nested_svm_vmrun(svm))
2685                 return 1;
2686
2687         if (!nested_svm_vmrun_msrpm(svm))
2688                 goto failed;
2689
2690         return 1;
2691
2692 failed:
2693
2694         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2695         svm->vmcb->control.exit_code_hi = 0;
2696         svm->vmcb->control.exit_info_1  = 0;
2697         svm->vmcb->control.exit_info_2  = 0;
2698
2699         nested_svm_vmexit(svm);
2700
2701         return 1;
2702 }
2703
2704 static int stgi_interception(struct vcpu_svm *svm)
2705 {
2706         if (nested_svm_check_permissions(svm))
2707                 return 1;
2708
2709         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2710         skip_emulated_instruction(&svm->vcpu);
2711         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2712
2713         enable_gif(svm);
2714
2715         return 1;
2716 }
2717
2718 static int clgi_interception(struct vcpu_svm *svm)
2719 {
2720         if (nested_svm_check_permissions(svm))
2721                 return 1;
2722
2723         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2724         skip_emulated_instruction(&svm->vcpu);
2725
2726         disable_gif(svm);
2727
2728         /* After a CLGI no interrupts should come */
2729         svm_clear_vintr(svm);
2730         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2731
2732         mark_dirty(svm->vmcb, VMCB_INTR);
2733
2734         return 1;
2735 }
2736
2737 static int invlpga_interception(struct vcpu_svm *svm)
2738 {
2739         struct kvm_vcpu *vcpu = &svm->vcpu;
2740
2741         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2742                           vcpu->arch.regs[VCPU_REGS_RAX]);
2743
2744         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2745         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2746
2747         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2748         skip_emulated_instruction(&svm->vcpu);
2749         return 1;
2750 }
2751
2752 static int skinit_interception(struct vcpu_svm *svm)
2753 {
2754         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2755
2756         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2757         return 1;
2758 }
2759
2760 static int xsetbv_interception(struct vcpu_svm *svm)
2761 {
2762         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2763         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2764
2765         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2766                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2767                 skip_emulated_instruction(&svm->vcpu);
2768         }
2769
2770         return 1;
2771 }
2772
2773 static int invalid_op_interception(struct vcpu_svm *svm)
2774 {
2775         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2776         return 1;
2777 }
2778
2779 static int task_switch_interception(struct vcpu_svm *svm)
2780 {
2781         u16 tss_selector;
2782         int reason;
2783         int int_type = svm->vmcb->control.exit_int_info &
2784                 SVM_EXITINTINFO_TYPE_MASK;
2785         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2786         uint32_t type =
2787                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2788         uint32_t idt_v =
2789                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2790         bool has_error_code = false;
2791         u32 error_code = 0;
2792
2793         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2794
2795         if (svm->vmcb->control.exit_info_2 &
2796             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2797                 reason = TASK_SWITCH_IRET;
2798         else if (svm->vmcb->control.exit_info_2 &
2799                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2800                 reason = TASK_SWITCH_JMP;
2801         else if (idt_v)
2802                 reason = TASK_SWITCH_GATE;
2803         else
2804                 reason = TASK_SWITCH_CALL;
2805
2806         if (reason == TASK_SWITCH_GATE) {
2807                 switch (type) {
2808                 case SVM_EXITINTINFO_TYPE_NMI:
2809                         svm->vcpu.arch.nmi_injected = false;
2810                         break;
2811                 case SVM_EXITINTINFO_TYPE_EXEPT:
2812                         if (svm->vmcb->control.exit_info_2 &
2813                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2814                                 has_error_code = true;
2815                                 error_code =
2816                                         (u32)svm->vmcb->control.exit_info_2;
2817                         }
2818                         kvm_clear_exception_queue(&svm->vcpu);
2819                         break;
2820                 case SVM_EXITINTINFO_TYPE_INTR:
2821                         kvm_clear_interrupt_queue(&svm->vcpu);
2822                         break;
2823                 default:
2824                         break;
2825                 }
2826         }
2827
2828         if (reason != TASK_SWITCH_GATE ||
2829             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2830             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2831              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2832                 skip_emulated_instruction(&svm->vcpu);
2833
2834         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2835                 int_vec = -1;
2836
2837         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2838                                 has_error_code, error_code) == EMULATE_FAIL) {
2839                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2840                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2841                 svm->vcpu.run->internal.ndata = 0;
2842                 return 0;
2843         }
2844         return 1;
2845 }
2846
2847 static int cpuid_interception(struct vcpu_svm *svm)
2848 {
2849         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2850         kvm_emulate_cpuid(&svm->vcpu);
2851         return 1;
2852 }
2853
2854 static int iret_interception(struct vcpu_svm *svm)
2855 {
2856         ++svm->vcpu.stat.nmi_window_exits;
2857         clr_intercept(svm, INTERCEPT_IRET);
2858         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2859         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2860         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2861         return 1;
2862 }
2863
2864 static int invlpg_interception(struct vcpu_svm *svm)
2865 {
2866         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2867                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2868
2869         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2870         skip_emulated_instruction(&svm->vcpu);
2871         return 1;
2872 }
2873
2874 static int emulate_on_interception(struct vcpu_svm *svm)
2875 {
2876         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2877 }
2878
2879 static int rdpmc_interception(struct vcpu_svm *svm)
2880 {
2881         int err;
2882
2883         if (!static_cpu_has(X86_FEATURE_NRIPS))
2884                 return emulate_on_interception(svm);
2885
2886         err = kvm_rdpmc(&svm->vcpu);
2887         kvm_complete_insn_gp(&svm->vcpu, err);
2888
2889         return 1;
2890 }
2891
2892 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2893 {
2894         unsigned long cr0 = svm->vcpu.arch.cr0;
2895         bool ret = false;
2896         u64 intercept;
2897
2898         intercept = svm->nested.intercept;
2899
2900         if (!is_guest_mode(&svm->vcpu) ||
2901             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2902                 return false;
2903
2904         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2905         val &= ~SVM_CR0_SELECTIVE_MASK;
2906
2907         if (cr0 ^ val) {
2908                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2909                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2910         }
2911
2912         return ret;
2913 }
2914
2915 #define CR_VALID (1ULL << 63)
2916
2917 static int cr_interception(struct vcpu_svm *svm)
2918 {
2919         int reg, cr;
2920         unsigned long val;
2921         int err;
2922
2923         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2924                 return emulate_on_interception(svm);
2925
2926         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2927                 return emulate_on_interception(svm);
2928
2929         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2930         cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2931
2932         err = 0;
2933         if (cr >= 16) { /* mov to cr */
2934                 cr -= 16;
2935                 val = kvm_register_read(&svm->vcpu, reg);
2936                 switch (cr) {
2937                 case 0:
2938                         if (!check_selective_cr0_intercepted(svm, val))
2939                                 err = kvm_set_cr0(&svm->vcpu, val);
2940                         else
2941                                 return 1;
2942
2943                         break;
2944                 case 3:
2945                         err = kvm_set_cr3(&svm->vcpu, val);
2946                         break;
2947                 case 4:
2948                         err = kvm_set_cr4(&svm->vcpu, val);
2949                         break;
2950                 case 8:
2951                         err = kvm_set_cr8(&svm->vcpu, val);
2952                         break;
2953                 default:
2954                         WARN(1, "unhandled write to CR%d", cr);
2955                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2956                         return 1;
2957                 }
2958         } else { /* mov from cr */
2959                 switch (cr) {
2960                 case 0:
2961                         val = kvm_read_cr0(&svm->vcpu);
2962                         break;
2963                 case 2:
2964                         val = svm->vcpu.arch.cr2;
2965                         break;
2966                 case 3:
2967                         val = kvm_read_cr3(&svm->vcpu);
2968                         break;
2969                 case 4:
2970                         val = kvm_read_cr4(&svm->vcpu);
2971                         break;
2972                 case 8:
2973                         val = kvm_get_cr8(&svm->vcpu);
2974                         break;
2975                 default:
2976                         WARN(1, "unhandled read from CR%d", cr);
2977                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2978                         return 1;
2979                 }
2980                 kvm_register_write(&svm->vcpu, reg, val);
2981         }
2982         kvm_complete_insn_gp(&svm->vcpu, err);
2983
2984         return 1;
2985 }
2986
2987 static int dr_interception(struct vcpu_svm *svm)
2988 {
2989         int reg, dr;
2990         unsigned long val;
2991         int err;
2992
2993         if (svm->vcpu.guest_debug == 0) {
2994                 /*
2995                  * No more DR vmexits; force a reload of the debug registers
2996                  * and reenter on this instruction.  The next vmexit will
2997                  * retrieve the full state of the debug registers.
2998                  */
2999                 clr_dr_intercepts(svm);
3000                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3001                 return 1;
3002         }
3003
3004         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3005                 return emulate_on_interception(svm);
3006
3007         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3008         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3009
3010         if (dr >= 16) { /* mov to DRn */
3011                 val = kvm_register_read(&svm->vcpu, reg);
3012                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3013         } else {
3014                 err = kvm_get_dr(&svm->vcpu, dr, &val);
3015                 if (!err)
3016                         kvm_register_write(&svm->vcpu, reg, val);
3017         }
3018
3019         skip_emulated_instruction(&svm->vcpu);
3020
3021         return 1;
3022 }
3023
3024 static int cr8_write_interception(struct vcpu_svm *svm)
3025 {
3026         struct kvm_run *kvm_run = svm->vcpu.run;
3027         int r;
3028
3029         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3030         /* instruction emulation calls kvm_set_cr8() */
3031         r = cr_interception(svm);
3032         if (irqchip_in_kernel(svm->vcpu.kvm))
3033                 return r;
3034         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3035                 return r;
3036         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3037         return 0;
3038 }
3039
3040 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3041 {
3042         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3043         return vmcb->control.tsc_offset +
3044                 svm_scale_tsc(vcpu, host_tsc);
3045 }
3046
3047 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3048 {
3049         struct vcpu_svm *svm = to_svm(vcpu);
3050
3051         switch (ecx) {
3052         case MSR_IA32_TSC: {
3053                 *data = svm->vmcb->control.tsc_offset +
3054                         svm_scale_tsc(vcpu, native_read_tsc());
3055
3056                 break;
3057         }
3058         case MSR_STAR:
3059                 *data = svm->vmcb->save.star;
3060                 break;
3061 #ifdef CONFIG_X86_64
3062         case MSR_LSTAR:
3063                 *data = svm->vmcb->save.lstar;
3064                 break;
3065         case MSR_CSTAR:
3066                 *data = svm->vmcb->save.cstar;
3067                 break;
3068         case MSR_KERNEL_GS_BASE:
3069                 *data = svm->vmcb->save.kernel_gs_base;
3070                 break;
3071         case MSR_SYSCALL_MASK:
3072                 *data = svm->vmcb->save.sfmask;
3073                 break;
3074 #endif
3075         case MSR_IA32_SYSENTER_CS:
3076                 *data = svm->vmcb->save.sysenter_cs;
3077                 break;
3078         case MSR_IA32_SYSENTER_EIP:
3079                 *data = svm->sysenter_eip;
3080                 break;
3081         case MSR_IA32_SYSENTER_ESP:
3082                 *data = svm->sysenter_esp;
3083                 break;
3084         /*
3085          * Nobody will change the following 5 values in the VMCB so we can
3086          * safely return them on rdmsr. They will always be 0 until LBRV is
3087          * implemented.
3088          */
3089         case MSR_IA32_DEBUGCTLMSR:
3090                 *data = svm->vmcb->save.dbgctl;
3091                 break;
3092         case MSR_IA32_LASTBRANCHFROMIP:
3093                 *data = svm->vmcb->save.br_from;
3094                 break;
3095         case MSR_IA32_LASTBRANCHTOIP:
3096                 *data = svm->vmcb->save.br_to;
3097                 break;
3098         case MSR_IA32_LASTINTFROMIP:
3099                 *data = svm->vmcb->save.last_excp_from;
3100                 break;
3101         case MSR_IA32_LASTINTTOIP:
3102                 *data = svm->vmcb->save.last_excp_to;
3103                 break;
3104         case MSR_VM_HSAVE_PA:
3105                 *data = svm->nested.hsave_msr;
3106                 break;
3107         case MSR_VM_CR:
3108                 *data = svm->nested.vm_cr_msr;
3109                 break;
3110         case MSR_IA32_UCODE_REV:
3111                 *data = 0x01000065;
3112                 break;
3113         default:
3114                 return kvm_get_msr_common(vcpu, ecx, data);
3115         }
3116         return 0;
3117 }
3118
3119 static int rdmsr_interception(struct vcpu_svm *svm)
3120 {
3121         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3122         u64 data;
3123
3124         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3125                 trace_kvm_msr_read_ex(ecx);
3126                 kvm_inject_gp(&svm->vcpu, 0);
3127         } else {
3128                 trace_kvm_msr_read(ecx, data);
3129
3130                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3131                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3132                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3133                 skip_emulated_instruction(&svm->vcpu);
3134         }
3135         return 1;
3136 }
3137
3138 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3139 {
3140         struct vcpu_svm *svm = to_svm(vcpu);
3141         int svm_dis, chg_mask;
3142
3143         if (data & ~SVM_VM_CR_VALID_MASK)
3144                 return 1;
3145
3146         chg_mask = SVM_VM_CR_VALID_MASK;
3147
3148         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3149                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3150
3151         svm->nested.vm_cr_msr &= ~chg_mask;
3152         svm->nested.vm_cr_msr |= (data & chg_mask);
3153
3154         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3155
3156         /* check for svm_disable while efer.svme is set */
3157         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3158                 return 1;
3159
3160         return 0;
3161 }
3162
3163 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3164 {
3165         struct vcpu_svm *svm = to_svm(vcpu);
3166
3167         u32 ecx = msr->index;
3168         u64 data = msr->data;
3169         switch (ecx) {
3170         case MSR_IA32_TSC:
3171                 kvm_write_tsc(vcpu, msr);
3172                 break;
3173         case MSR_STAR:
3174                 svm->vmcb->save.star = data;
3175                 break;
3176 #ifdef CONFIG_X86_64
3177         case MSR_LSTAR:
3178                 svm->vmcb->save.lstar = data;
3179                 break;
3180         case MSR_CSTAR:
3181                 svm->vmcb->save.cstar = data;
3182                 break;
3183         case MSR_KERNEL_GS_BASE:
3184                 svm->vmcb->save.kernel_gs_base = data;
3185                 break;
3186         case MSR_SYSCALL_MASK:
3187                 svm->vmcb->save.sfmask = data;
3188                 break;
3189 #endif
3190         case MSR_IA32_SYSENTER_CS:
3191                 svm->vmcb->save.sysenter_cs = data;
3192                 break;
3193         case MSR_IA32_SYSENTER_EIP:
3194                 svm->sysenter_eip = data;
3195                 svm->vmcb->save.sysenter_eip = data;
3196                 break;
3197         case MSR_IA32_SYSENTER_ESP:
3198                 svm->sysenter_esp = data;
3199                 svm->vmcb->save.sysenter_esp = data;
3200                 break;
3201         case MSR_IA32_DEBUGCTLMSR:
3202                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3203                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3204                                     __func__, data);
3205                         break;
3206                 }
3207                 if (data & DEBUGCTL_RESERVED_BITS)
3208                         return 1;
3209
3210                 svm->vmcb->save.dbgctl = data;
3211                 mark_dirty(svm->vmcb, VMCB_LBR);
3212                 if (data & (1ULL<<0))
3213                         svm_enable_lbrv(svm);
3214                 else
3215                         svm_disable_lbrv(svm);
3216                 break;
3217         case MSR_VM_HSAVE_PA:
3218                 svm->nested.hsave_msr = data;
3219                 break;
3220         case MSR_VM_CR:
3221                 return svm_set_vm_cr(vcpu, data);
3222         case MSR_VM_IGNNE:
3223                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3224                 break;
3225         default:
3226                 return kvm_set_msr_common(vcpu, msr);
3227         }
3228         return 0;
3229 }
3230
3231 static int wrmsr_interception(struct vcpu_svm *svm)
3232 {
3233         struct msr_data msr;
3234         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3235         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3236                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3237
3238         msr.data = data;
3239         msr.index = ecx;
3240         msr.host_initiated = false;
3241
3242         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3243         if (svm_set_msr(&svm->vcpu, &msr)) {
3244                 trace_kvm_msr_write_ex(ecx, data);
3245                 kvm_inject_gp(&svm->vcpu, 0);
3246         } else {
3247                 trace_kvm_msr_write(ecx, data);
3248                 skip_emulated_instruction(&svm->vcpu);
3249         }
3250         return 1;
3251 }
3252
3253 static int msr_interception(struct vcpu_svm *svm)
3254 {
3255         if (svm->vmcb->control.exit_info_1)
3256                 return wrmsr_interception(svm);
3257         else
3258                 return rdmsr_interception(svm);
3259 }
3260
3261 static int interrupt_window_interception(struct vcpu_svm *svm)
3262 {
3263         struct kvm_run *kvm_run = svm->vcpu.run;
3264
3265         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3266         svm_clear_vintr(svm);
3267         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3268         mark_dirty(svm->vmcb, VMCB_INTR);
3269         ++svm->vcpu.stat.irq_window_exits;
3270         /*
3271          * If the user space waits to inject interrupts, exit as soon as
3272          * possible
3273          */
3274         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3275             kvm_run->request_interrupt_window &&
3276             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3277                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3278                 return 0;
3279         }
3280
3281         return 1;
3282 }
3283
3284 static int pause_interception(struct vcpu_svm *svm)
3285 {
3286         kvm_vcpu_on_spin(&(svm->vcpu));
3287         return 1;
3288 }
3289
3290 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3291         [SVM_EXIT_READ_CR0]                     = cr_interception,
3292         [SVM_EXIT_READ_CR3]                     = cr_interception,
3293         [SVM_EXIT_READ_CR4]                     = cr_interception,
3294         [SVM_EXIT_READ_CR8]                     = cr_interception,
3295         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3296         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3297         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3298         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3299         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3300         [SVM_EXIT_READ_DR0]                     = dr_interception,
3301         [SVM_EXIT_READ_DR1]                     = dr_interception,
3302         [SVM_EXIT_READ_DR2]                     = dr_interception,
3303         [SVM_EXIT_READ_DR3]                     = dr_interception,
3304         [SVM_EXIT_READ_DR4]                     = dr_interception,
3305         [SVM_EXIT_READ_DR5]                     = dr_interception,
3306         [SVM_EXIT_READ_DR6]                     = dr_interception,
3307         [SVM_EXIT_READ_DR7]                     = dr_interception,
3308         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3309         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3310         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3311         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3312         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3313         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3314         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3315         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3316         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3317         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3318         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3319         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3320         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3321         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3322         [SVM_EXIT_INTR]                         = intr_interception,
3323         [SVM_EXIT_NMI]                          = nmi_interception,
3324         [SVM_EXIT_SMI]                          = nop_on_interception,
3325         [SVM_EXIT_INIT]                         = nop_on_interception,
3326         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3327         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3328         [SVM_EXIT_CPUID]                        = cpuid_interception,
3329         [SVM_EXIT_IRET]                         = iret_interception,
3330         [SVM_EXIT_INVD]                         = emulate_on_interception,
3331         [SVM_EXIT_PAUSE]                        = pause_interception,
3332         [SVM_EXIT_HLT]                          = halt_interception,
3333         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3334         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3335         [SVM_EXIT_IOIO]                         = io_interception,
3336         [SVM_EXIT_MSR]                          = msr_interception,
3337         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3338         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3339         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3340         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3341         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3342         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3343         [SVM_EXIT_STGI]                         = stgi_interception,
3344         [SVM_EXIT_CLGI]                         = clgi_interception,
3345         [SVM_EXIT_SKINIT]                       = skinit_interception,
3346         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3347         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
3348         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
3349         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3350         [SVM_EXIT_NPF]                          = pf_interception,
3351 };
3352
3353 static void dump_vmcb(struct kvm_vcpu *vcpu)
3354 {
3355         struct vcpu_svm *svm = to_svm(vcpu);
3356         struct vmcb_control_area *control = &svm->vmcb->control;
3357         struct vmcb_save_area *save = &svm->vmcb->save;
3358
3359         pr_err("VMCB Control Area:\n");
3360         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3361         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3362         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3363         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3364         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3365         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3366         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3367         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3368         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3369         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3370         pr_err("%-20s%d\n", "asid:", control->asid);
3371         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3372         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3373         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3374         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3375         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3376         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3377         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3378         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3379         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3380         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3381         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3382         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3383         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3384         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3385         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3386         pr_err("VMCB State Save Area:\n");
3387         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3388                "es:",
3389                save->es.selector, save->es.attrib,
3390                save->es.limit, save->es.base);
3391         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3392                "cs:",
3393                save->cs.selector, save->cs.attrib,
3394                save->cs.limit, save->cs.base);
3395         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3396                "ss:",
3397                save->ss.selector, save->ss.attrib,
3398                save->ss.limit, save->ss.base);
3399         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3400                "ds:",
3401                save->ds.selector, save->ds.attrib,
3402                save->ds.limit, save->ds.base);
3403         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3404                "fs:",
3405                save->fs.selector, save->fs.attrib,
3406                save->fs.limit, save->fs.base);
3407         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3408                "gs:",
3409                save->gs.selector, save->gs.attrib,
3410                save->gs.limit, save->gs.base);
3411         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3412                "gdtr:",
3413                save->gdtr.selector, save->gdtr.attrib,
3414                save->gdtr.limit, save->gdtr.base);
3415         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3416                "ldtr:",
3417                save->ldtr.selector, save->ldtr.attrib,
3418                save->ldtr.limit, save->ldtr.base);
3419         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3420                "idtr:",
3421                save->idtr.selector, save->idtr.attrib,
3422                save->idtr.limit, save->idtr.base);
3423         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3424                "tr:",
3425                save->tr.selector, save->tr.attrib,
3426                save->tr.limit, save->tr.base);
3427         pr_err("cpl:            %d                efer:         %016llx\n",
3428                 save->cpl, save->efer);
3429         pr_err("%-15s %016llx %-13s %016llx\n",
3430                "cr0:", save->cr0, "cr2:", save->cr2);
3431         pr_err("%-15s %016llx %-13s %016llx\n",
3432                "cr3:", save->cr3, "cr4:", save->cr4);
3433         pr_err("%-15s %016llx %-13s %016llx\n",
3434                "dr6:", save->dr6, "dr7:", save->dr7);
3435         pr_err("%-15s %016llx %-13s %016llx\n",
3436                "rip:", save->rip, "rflags:", save->rflags);
3437         pr_err("%-15s %016llx %-13s %016llx\n",
3438                "rsp:", save->rsp, "rax:", save->rax);
3439         pr_err("%-15s %016llx %-13s %016llx\n",
3440                "star:", save->star, "lstar:", save->lstar);
3441         pr_err("%-15s %016llx %-13s %016llx\n",
3442                "cstar:", save->cstar, "sfmask:", save->sfmask);
3443         pr_err("%-15s %016llx %-13s %016llx\n",
3444                "kernel_gs_base:", save->kernel_gs_base,
3445                "sysenter_cs:", save->sysenter_cs);
3446         pr_err("%-15s %016llx %-13s %016llx\n",
3447                "sysenter_esp:", save->sysenter_esp,
3448                "sysenter_eip:", save->sysenter_eip);
3449         pr_err("%-15s %016llx %-13s %016llx\n",
3450                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3451         pr_err("%-15s %016llx %-13s %016llx\n",
3452                "br_from:", save->br_from, "br_to:", save->br_to);
3453         pr_err("%-15s %016llx %-13s %016llx\n",
3454                "excp_from:", save->last_excp_from,
3455                "excp_to:", save->last_excp_to);
3456 }
3457
3458 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3459 {
3460         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3461
3462         *info1 = control->exit_info_1;
3463         *info2 = control->exit_info_2;
3464 }
3465
3466 static int handle_exit(struct kvm_vcpu *vcpu)
3467 {
3468         struct vcpu_svm *svm = to_svm(vcpu);
3469         struct kvm_run *kvm_run = vcpu->run;
3470         u32 exit_code = svm->vmcb->control.exit_code;
3471
3472         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3473                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3474         if (npt_enabled)
3475                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3476
3477         if (unlikely(svm->nested.exit_required)) {
3478                 nested_svm_vmexit(svm);
3479                 svm->nested.exit_required = false;
3480
3481                 return 1;
3482         }
3483
3484         if (is_guest_mode(vcpu)) {
3485                 int vmexit;
3486
3487                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3488                                         svm->vmcb->control.exit_info_1,
3489                                         svm->vmcb->control.exit_info_2,
3490                                         svm->vmcb->control.exit_int_info,
3491                                         svm->vmcb->control.exit_int_info_err,
3492                                         KVM_ISA_SVM);
3493
3494                 vmexit = nested_svm_exit_special(svm);
3495
3496                 if (vmexit == NESTED_EXIT_CONTINUE)
3497                         vmexit = nested_svm_exit_handled(svm);
3498
3499                 if (vmexit == NESTED_EXIT_DONE)
3500                         return 1;
3501         }
3502
3503         svm_complete_interrupts(svm);
3504
3505         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3506                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3507                 kvm_run->fail_entry.hardware_entry_failure_reason
3508                         = svm->vmcb->control.exit_code;
3509                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3510                 dump_vmcb(vcpu);
3511                 return 0;
3512         }
3513
3514         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3515             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3516             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3517             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3518                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3519                        "exit_code 0x%x\n",
3520                        __func__, svm->vmcb->control.exit_int_info,
3521                        exit_code);
3522
3523         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3524             || !svm_exit_handlers[exit_code]) {
3525                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3526                 kvm_run->hw.hardware_exit_reason = exit_code;
3527                 return 0;
3528         }
3529
3530         return svm_exit_handlers[exit_code](svm);
3531 }
3532
3533 static void reload_tss(struct kvm_vcpu *vcpu)
3534 {
3535         int cpu = raw_smp_processor_id();
3536
3537         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3538         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3539         load_TR_desc();
3540 }
3541
3542 static void pre_svm_run(struct vcpu_svm *svm)
3543 {
3544         int cpu = raw_smp_processor_id();
3545
3546         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3547
3548         /* FIXME: handle wraparound of asid_generation */
3549         if (svm->asid_generation != sd->asid_generation)
3550                 new_asid(svm, sd);
3551 }
3552
3553 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3554 {
3555         struct vcpu_svm *svm = to_svm(vcpu);
3556
3557         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3558         vcpu->arch.hflags |= HF_NMI_MASK;
3559         set_intercept(svm, INTERCEPT_IRET);
3560         ++vcpu->stat.nmi_injections;
3561 }
3562
3563 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3564 {
3565         struct vmcb_control_area *control;
3566
3567         control = &svm->vmcb->control;
3568         control->int_vector = irq;
3569         control->int_ctl &= ~V_INTR_PRIO_MASK;
3570         control->int_ctl |= V_IRQ_MASK |
3571                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3572         mark_dirty(svm->vmcb, VMCB_INTR);
3573 }
3574
3575 static void svm_set_irq(struct kvm_vcpu *vcpu)
3576 {
3577         struct vcpu_svm *svm = to_svm(vcpu);
3578
3579         BUG_ON(!(gif_set(svm)));
3580
3581         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3582         ++vcpu->stat.irq_injections;
3583
3584         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3585                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3586 }
3587
3588 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3589 {
3590         struct vcpu_svm *svm = to_svm(vcpu);
3591
3592         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3593                 return;
3594
3595         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3596
3597         if (irr == -1)
3598                 return;
3599
3600         if (tpr >= irr)
3601                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3602 }
3603
3604 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3605 {
3606         return;
3607 }
3608
3609 static int svm_vm_has_apicv(struct kvm *kvm)
3610 {
3611         return 0;
3612 }
3613
3614 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3615 {
3616         return;
3617 }
3618
3619 static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
3620 {
3621         return;
3622 }
3623
3624 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3625 {
3626         return;
3627 }
3628
3629 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3630 {
3631         struct vcpu_svm *svm = to_svm(vcpu);
3632         struct vmcb *vmcb = svm->vmcb;
3633         int ret;
3634         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3635               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3636         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3637
3638         return ret;
3639 }
3640
3641 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3642 {
3643         struct vcpu_svm *svm = to_svm(vcpu);
3644
3645         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3646 }
3647
3648 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3649 {
3650         struct vcpu_svm *svm = to_svm(vcpu);
3651
3652         if (masked) {
3653                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3654                 set_intercept(svm, INTERCEPT_IRET);
3655         } else {
3656                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3657                 clr_intercept(svm, INTERCEPT_IRET);
3658         }
3659 }
3660
3661 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3662 {
3663         struct vcpu_svm *svm = to_svm(vcpu);
3664         struct vmcb *vmcb = svm->vmcb;
3665         int ret;
3666
3667         if (!gif_set(svm) ||
3668              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3669                 return 0;
3670
3671         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3672
3673         if (is_guest_mode(vcpu))
3674                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3675
3676         return ret;
3677 }
3678
3679 static void enable_irq_window(struct kvm_vcpu *vcpu)
3680 {
3681         struct vcpu_svm *svm = to_svm(vcpu);
3682
3683         /*
3684          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3685          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3686          * get that intercept, this function will be called again though and
3687          * we'll get the vintr intercept.
3688          */
3689         if (gif_set(svm) && nested_svm_intr(svm)) {
3690                 svm_set_vintr(svm);
3691                 svm_inject_irq(svm, 0x0);
3692         }
3693 }
3694
3695 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3696 {
3697         struct vcpu_svm *svm = to_svm(vcpu);
3698
3699         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3700             == HF_NMI_MASK)
3701                 return; /* IRET will cause a vm exit */
3702
3703         /*
3704          * Something prevents NMI from been injected. Single step over possible
3705          * problem (IRET or exception injection or interrupt shadow)
3706          */
3707         svm->nmi_singlestep = true;
3708         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3709         update_db_bp_intercept(vcpu);
3710 }
3711
3712 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3713 {
3714         return 0;
3715 }
3716
3717 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3718 {
3719         struct vcpu_svm *svm = to_svm(vcpu);
3720
3721         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3722                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3723         else
3724                 svm->asid_generation--;
3725 }
3726
3727 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3728 {
3729 }
3730
3731 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3732 {
3733         struct vcpu_svm *svm = to_svm(vcpu);
3734
3735         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3736                 return;
3737
3738         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3739                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3740                 kvm_set_cr8(vcpu, cr8);
3741         }
3742 }
3743
3744 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3745 {
3746         struct vcpu_svm *svm = to_svm(vcpu);
3747         u64 cr8;
3748
3749         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3750                 return;
3751
3752         cr8 = kvm_get_cr8(vcpu);
3753         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3754         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3755 }
3756
3757 static void svm_complete_interrupts(struct vcpu_svm *svm)
3758 {
3759         u8 vector;
3760         int type;
3761         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3762         unsigned int3_injected = svm->int3_injected;
3763
3764         svm->int3_injected = 0;
3765
3766         /*
3767          * If we've made progress since setting HF_IRET_MASK, we've
3768          * executed an IRET and can allow NMI injection.
3769          */
3770         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3771             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3772                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3773                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3774         }
3775
3776         svm->vcpu.arch.nmi_injected = false;
3777         kvm_clear_exception_queue(&svm->vcpu);
3778         kvm_clear_interrupt_queue(&svm->vcpu);
3779
3780         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3781                 return;
3782
3783         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3784
3785         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3786         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3787
3788         switch (type) {
3789         case SVM_EXITINTINFO_TYPE_NMI:
3790                 svm->vcpu.arch.nmi_injected = true;
3791                 break;
3792         case SVM_EXITINTINFO_TYPE_EXEPT:
3793                 /*
3794                  * In case of software exceptions, do not reinject the vector,
3795                  * but re-execute the instruction instead. Rewind RIP first
3796                  * if we emulated INT3 before.
3797                  */
3798                 if (kvm_exception_is_soft(vector)) {
3799                         if (vector == BP_VECTOR && int3_injected &&
3800                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3801                                 kvm_rip_write(&svm->vcpu,
3802                                               kvm_rip_read(&svm->vcpu) -
3803                                               int3_injected);
3804                         break;
3805                 }
3806                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3807                         u32 err = svm->vmcb->control.exit_int_info_err;
3808                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3809
3810                 } else
3811                         kvm_requeue_exception(&svm->vcpu, vector);
3812                 break;
3813         case SVM_EXITINTINFO_TYPE_INTR:
3814                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3815                 break;
3816         default:
3817                 break;
3818         }
3819 }
3820
3821 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3822 {
3823         struct vcpu_svm *svm = to_svm(vcpu);
3824         struct vmcb_control_area *control = &svm->vmcb->control;
3825
3826         control->exit_int_info = control->event_inj;
3827         control->exit_int_info_err = control->event_inj_err;
3828         control->event_inj = 0;
3829         svm_complete_interrupts(svm);
3830 }
3831
3832 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3833 {
3834         struct vcpu_svm *svm = to_svm(vcpu);
3835
3836         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3837         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3838         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3839
3840         /*
3841          * A vmexit emulation is required before the vcpu can be executed
3842          * again.
3843          */
3844         if (unlikely(svm->nested.exit_required))
3845                 return;
3846
3847         pre_svm_run(svm);
3848
3849         sync_lapic_to_cr8(vcpu);
3850
3851         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3852
3853         clgi();
3854
3855         local_irq_enable();
3856
3857         asm volatile (
3858                 "push %%" _ASM_BP "; \n\t"
3859                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3860                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3861                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3862                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3863                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3864                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3865 #ifdef CONFIG_X86_64
3866                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3867                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3868                 "mov %c[r10](%[svm]), %%r10 \n\t"
3869                 "mov %c[r11](%[svm]), %%r11 \n\t"
3870                 "mov %c[r12](%[svm]), %%r12 \n\t"
3871                 "mov %c[r13](%[svm]), %%r13 \n\t"
3872                 "mov %c[r14](%[svm]), %%r14 \n\t"
3873                 "mov %c[r15](%[svm]), %%r15 \n\t"
3874 #endif
3875
3876                 /* Enter guest mode */
3877                 "push %%" _ASM_AX " \n\t"
3878                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3879                 __ex(SVM_VMLOAD) "\n\t"
3880                 __ex(SVM_VMRUN) "\n\t"
3881                 __ex(SVM_VMSAVE) "\n\t"
3882                 "pop %%" _ASM_AX " \n\t"
3883
3884                 /* Save guest registers, load host registers */
3885                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3886                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3887                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3888                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3889                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3890                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3891 #ifdef CONFIG_X86_64
3892                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3893                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3894                 "mov %%r10, %c[r10](%[svm]) \n\t"
3895                 "mov %%r11, %c[r11](%[svm]) \n\t"
3896                 "mov %%r12, %c[r12](%[svm]) \n\t"
3897                 "mov %%r13, %c[r13](%[svm]) \n\t"
3898                 "mov %%r14, %c[r14](%[svm]) \n\t"
3899                 "mov %%r15, %c[r15](%[svm]) \n\t"
3900 #endif
3901                 "pop %%" _ASM_BP
3902                 :
3903                 : [svm]"a"(svm),
3904                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3905                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3906                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3907                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3908                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3909                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3910                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3911 #ifdef CONFIG_X86_64
3912                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3913                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3914                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3915                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3916                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3917                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3918                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3919                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3920 #endif
3921                 : "cc", "memory"
3922 #ifdef CONFIG_X86_64
3923                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3924                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3925 #else
3926                 , "ebx", "ecx", "edx", "esi", "edi"
3927 #endif
3928                 );
3929
3930 #ifdef CONFIG_X86_64
3931         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3932 #else
3933         loadsegment(fs, svm->host.fs);
3934 #ifndef CONFIG_X86_32_LAZY_GS
3935         loadsegment(gs, svm->host.gs);
3936 #endif
3937 #endif
3938
3939         reload_tss(vcpu);
3940
3941         local_irq_disable();
3942
3943         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3944         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3945         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3946         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3947
3948         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3949
3950         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3951                 kvm_before_handle_nmi(&svm->vcpu);
3952
3953         stgi();
3954
3955         /* Any pending NMI will happen here */
3956
3957         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3958                 kvm_after_handle_nmi(&svm->vcpu);
3959
3960         sync_cr8_to_lapic(vcpu);
3961
3962         svm->next_rip = 0;
3963
3964         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3965
3966         /* if exit due to PF check for async PF */
3967         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3968                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3969
3970         if (npt_enabled) {
3971                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3972                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3973         }
3974
3975         /*
3976          * We need to handle MC intercepts here before the vcpu has a chance to
3977          * change the physical cpu
3978          */
3979         if (unlikely(svm->vmcb->control.exit_code ==
3980                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3981                 svm_handle_mce(svm);
3982
3983         mark_all_clean(svm->vmcb);
3984 }
3985
3986 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3987 {
3988         struct vcpu_svm *svm = to_svm(vcpu);
3989
3990         svm->vmcb->save.cr3 = root;
3991         mark_dirty(svm->vmcb, VMCB_CR);
3992         svm_flush_tlb(vcpu);
3993 }
3994
3995 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3996 {
3997         struct vcpu_svm *svm = to_svm(vcpu);
3998
3999         svm->vmcb->control.nested_cr3 = root;
4000         mark_dirty(svm->vmcb, VMCB_NPT);
4001
4002         /* Also sync guest cr3 here in case we live migrate */
4003         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4004         mark_dirty(svm->vmcb, VMCB_CR);
4005
4006         svm_flush_tlb(vcpu);
4007 }
4008
4009 static int is_disabled(void)
4010 {
4011         u64 vm_cr;
4012
4013         rdmsrl(MSR_VM_CR, vm_cr);
4014         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4015                 return 1;
4016
4017         return 0;
4018 }
4019
4020 static void
4021 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4022 {
4023         /*
4024          * Patch in the VMMCALL instruction:
4025          */
4026         hypercall[0] = 0x0f;
4027         hypercall[1] = 0x01;
4028         hypercall[2] = 0xd9;
4029 }
4030
4031 static void svm_check_processor_compat(void *rtn)
4032 {
4033         *(int *)rtn = 0;
4034 }
4035
4036 static bool svm_cpu_has_accelerated_tpr(void)
4037 {
4038         return false;
4039 }
4040
4041 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4042 {
4043         return 0;
4044 }
4045
4046 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4047 {
4048 }
4049
4050 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4051 {
4052         switch (func) {
4053         case 0x80000001:
4054                 if (nested)
4055                         entry->ecx |= (1 << 2); /* Set SVM bit */
4056                 break;
4057         case 0x8000000A:
4058                 entry->eax = 1; /* SVM revision 1 */
4059                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4060                                    ASID emulation to nested SVM */
4061                 entry->ecx = 0; /* Reserved */
4062                 entry->edx = 0; /* Per default do not support any
4063                                    additional features */
4064
4065                 /* Support next_rip if host supports it */
4066                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4067                         entry->edx |= SVM_FEATURE_NRIP;
4068
4069                 /* Support NPT for the guest if enabled */
4070                 if (npt_enabled)
4071                         entry->edx |= SVM_FEATURE_NPT;
4072
4073                 break;
4074         }
4075 }
4076
4077 static int svm_get_lpage_level(void)
4078 {
4079         return PT_PDPE_LEVEL;
4080 }
4081
4082 static bool svm_rdtscp_supported(void)
4083 {
4084         return false;
4085 }
4086
4087 static bool svm_invpcid_supported(void)
4088 {
4089         return false;
4090 }
4091
4092 static bool svm_mpx_supported(void)
4093 {
4094         return false;
4095 }
4096
4097 static bool svm_has_wbinvd_exit(void)
4098 {
4099         return true;
4100 }
4101
4102 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4103 {
4104         struct vcpu_svm *svm = to_svm(vcpu);
4105
4106         set_exception_intercept(svm, NM_VECTOR);
4107         update_cr0_intercept(svm);
4108 }
4109
4110 #define PRE_EX(exit)  { .exit_code = (exit), \
4111                         .stage = X86_ICPT_PRE_EXCEPT, }
4112 #define POST_EX(exit) { .exit_code = (exit), \
4113                         .stage = X86_ICPT_POST_EXCEPT, }
4114 #define POST_MEM(exit) { .exit_code = (exit), \
4115                         .stage = X86_ICPT_POST_MEMACCESS, }
4116
4117 static const struct __x86_intercept {
4118         u32 exit_code;
4119         enum x86_intercept_stage stage;
4120 } x86_intercept_map[] = {
4121         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4122         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4123         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4124         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4125         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4126         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4127         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4128         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4129         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4130         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4131         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4132         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4133         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4134         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4135         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4136         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4137         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4138         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4139         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4140         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4141         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4142         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4143         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4144         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4145         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4146         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4147         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4148         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4149         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4150         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4151         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4152         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4153         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4154         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4155         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4156         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4157         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4158         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4159         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4160         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4161         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4162         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4163         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4164         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4165         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4166         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4167 };
4168
4169 #undef PRE_EX
4170 #undef POST_EX
4171 #undef POST_MEM
4172
4173 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4174                                struct x86_instruction_info *info,
4175                                enum x86_intercept_stage stage)
4176 {
4177         struct vcpu_svm *svm = to_svm(vcpu);
4178         int vmexit, ret = X86EMUL_CONTINUE;
4179         struct __x86_intercept icpt_info;
4180         struct vmcb *vmcb = svm->vmcb;
4181
4182         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4183                 goto out;
4184
4185         icpt_info = x86_intercept_map[info->intercept];
4186
4187         if (stage != icpt_info.stage)
4188                 goto out;
4189
4190         switch (icpt_info.exit_code) {
4191         case SVM_EXIT_READ_CR0:
4192                 if (info->intercept == x86_intercept_cr_read)
4193                         icpt_info.exit_code += info->modrm_reg;
4194                 break;
4195         case SVM_EXIT_WRITE_CR0: {
4196                 unsigned long cr0, val;
4197                 u64 intercept;
4198
4199                 if (info->intercept == x86_intercept_cr_write)
4200                         icpt_info.exit_code += info->modrm_reg;
4201
4202                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4203                         break;
4204
4205                 intercept = svm->nested.intercept;
4206
4207                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4208                         break;
4209
4210                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4211                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4212
4213                 if (info->intercept == x86_intercept_lmsw) {
4214                         cr0 &= 0xfUL;
4215                         val &= 0xfUL;
4216                         /* lmsw can't clear PE - catch this here */
4217                         if (cr0 & X86_CR0_PE)
4218                                 val |= X86_CR0_PE;
4219                 }
4220
4221                 if (cr0 ^ val)
4222                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4223
4224                 break;
4225         }
4226         case SVM_EXIT_READ_DR0:
4227         case SVM_EXIT_WRITE_DR0:
4228                 icpt_info.exit_code += info->modrm_reg;
4229                 break;
4230         case SVM_EXIT_MSR:
4231                 if (info->intercept == x86_intercept_wrmsr)
4232                         vmcb->control.exit_info_1 = 1;
4233                 else
4234                         vmcb->control.exit_info_1 = 0;
4235                 break;
4236         case SVM_EXIT_PAUSE:
4237                 /*
4238                  * We get this for NOP only, but pause
4239                  * is rep not, check this here
4240                  */
4241                 if (info->rep_prefix != REPE_PREFIX)
4242                         goto out;
4243         case SVM_EXIT_IOIO: {
4244                 u64 exit_info;
4245                 u32 bytes;
4246
4247                 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4248
4249                 if (info->intercept == x86_intercept_in ||
4250                     info->intercept == x86_intercept_ins) {
4251                         exit_info |= SVM_IOIO_TYPE_MASK;
4252                         bytes = info->src_bytes;
4253                 } else {
4254                         bytes = info->dst_bytes;
4255                 }
4256
4257                 if (info->intercept == x86_intercept_outs ||
4258                     info->intercept == x86_intercept_ins)
4259                         exit_info |= SVM_IOIO_STR_MASK;
4260
4261                 if (info->rep_prefix)
4262                         exit_info |= SVM_IOIO_REP_MASK;
4263
4264                 bytes = min(bytes, 4u);
4265
4266                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4267
4268                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4269
4270                 vmcb->control.exit_info_1 = exit_info;
4271                 vmcb->control.exit_info_2 = info->next_rip;
4272
4273                 break;
4274         }
4275         default:
4276                 break;
4277         }
4278
4279         vmcb->control.next_rip  = info->next_rip;
4280         vmcb->control.exit_code = icpt_info.exit_code;
4281         vmexit = nested_svm_exit_handled(svm);
4282
4283         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4284                                            : X86EMUL_CONTINUE;
4285
4286 out:
4287         return ret;
4288 }
4289
4290 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4291 {
4292         local_irq_enable();
4293 }
4294
4295 static struct kvm_x86_ops svm_x86_ops = {
4296         .cpu_has_kvm_support = has_svm,
4297         .disabled_by_bios = is_disabled,
4298         .hardware_setup = svm_hardware_setup,
4299         .hardware_unsetup = svm_hardware_unsetup,
4300         .check_processor_compatibility = svm_check_processor_compat,
4301         .hardware_enable = svm_hardware_enable,
4302         .hardware_disable = svm_hardware_disable,
4303         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4304
4305         .vcpu_create = svm_create_vcpu,
4306         .vcpu_free = svm_free_vcpu,
4307         .vcpu_reset = svm_vcpu_reset,
4308
4309         .prepare_guest_switch = svm_prepare_guest_switch,
4310         .vcpu_load = svm_vcpu_load,
4311         .vcpu_put = svm_vcpu_put,
4312
4313         .update_db_bp_intercept = update_db_bp_intercept,
4314         .get_msr = svm_get_msr,
4315         .set_msr = svm_set_msr,
4316         .get_segment_base = svm_get_segment_base,
4317         .get_segment = svm_get_segment,
4318         .set_segment = svm_set_segment,
4319         .get_cpl = svm_get_cpl,
4320         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4321         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4322         .decache_cr3 = svm_decache_cr3,
4323         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4324         .set_cr0 = svm_set_cr0,
4325         .set_cr3 = svm_set_cr3,
4326         .set_cr4 = svm_set_cr4,
4327         .set_efer = svm_set_efer,
4328         .get_idt = svm_get_idt,
4329         .set_idt = svm_set_idt,
4330         .get_gdt = svm_get_gdt,
4331         .set_gdt = svm_set_gdt,
4332         .get_dr6 = svm_get_dr6,
4333         .set_dr6 = svm_set_dr6,
4334         .set_dr7 = svm_set_dr7,
4335         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4336         .cache_reg = svm_cache_reg,
4337         .get_rflags = svm_get_rflags,
4338         .set_rflags = svm_set_rflags,
4339         .fpu_activate = svm_fpu_activate,
4340         .fpu_deactivate = svm_fpu_deactivate,
4341
4342         .tlb_flush = svm_flush_tlb,
4343
4344         .run = svm_vcpu_run,
4345         .handle_exit = handle_exit,
4346         .skip_emulated_instruction = skip_emulated_instruction,
4347         .set_interrupt_shadow = svm_set_interrupt_shadow,
4348         .get_interrupt_shadow = svm_get_interrupt_shadow,
4349         .patch_hypercall = svm_patch_hypercall,
4350         .set_irq = svm_set_irq,
4351         .set_nmi = svm_inject_nmi,
4352         .queue_exception = svm_queue_exception,
4353         .cancel_injection = svm_cancel_injection,
4354         .interrupt_allowed = svm_interrupt_allowed,
4355         .nmi_allowed = svm_nmi_allowed,
4356         .get_nmi_mask = svm_get_nmi_mask,
4357         .set_nmi_mask = svm_set_nmi_mask,
4358         .enable_nmi_window = enable_nmi_window,
4359         .enable_irq_window = enable_irq_window,
4360         .update_cr8_intercept = update_cr8_intercept,
4361         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4362         .vm_has_apicv = svm_vm_has_apicv,
4363         .load_eoi_exitmap = svm_load_eoi_exitmap,
4364         .hwapic_isr_update = svm_hwapic_isr_update,
4365         .sync_pir_to_irr = svm_sync_pir_to_irr,
4366
4367         .set_tss_addr = svm_set_tss_addr,
4368         .get_tdp_level = get_npt_level,
4369         .get_mt_mask = svm_get_mt_mask,
4370
4371         .get_exit_info = svm_get_exit_info,
4372
4373         .get_lpage_level = svm_get_lpage_level,
4374
4375         .cpuid_update = svm_cpuid_update,
4376
4377         .rdtscp_supported = svm_rdtscp_supported,
4378         .invpcid_supported = svm_invpcid_supported,
4379         .mpx_supported = svm_mpx_supported,
4380
4381         .set_supported_cpuid = svm_set_supported_cpuid,
4382
4383         .has_wbinvd_exit = svm_has_wbinvd_exit,
4384
4385         .set_tsc_khz = svm_set_tsc_khz,
4386         .read_tsc_offset = svm_read_tsc_offset,
4387         .write_tsc_offset = svm_write_tsc_offset,
4388         .adjust_tsc_offset = svm_adjust_tsc_offset,
4389         .compute_tsc_offset = svm_compute_tsc_offset,
4390         .read_l1_tsc = svm_read_l1_tsc,
4391
4392         .set_tdp_cr3 = set_tdp_cr3,
4393
4394         .check_intercept = svm_check_intercept,
4395         .handle_external_intr = svm_handle_external_intr,
4396 };
4397
4398 static int __init svm_init(void)
4399 {
4400         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4401                         __alignof__(struct vcpu_svm), THIS_MODULE);
4402 }
4403
4404 static void __exit svm_exit(void)
4405 {
4406         kvm_exit();
4407 }
4408
4409 module_init(svm_init)
4410 module_exit(svm_exit)