Merge branch 'linux-4.12' of git://github.com/skeggsb/linux into drm-next
[sfrench/cifs-2.6.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39
40 #include <asm/apic.h>
41 #include <asm/perf_event.h>
42 #include <asm/tlbflush.h>
43 #include <asm/desc.h>
44 #include <asm/debugreg.h>
45 #include <asm/kvm_para.h>
46 #include <asm/irq_remapping.h>
47
48 #include <asm/virtext.h>
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id svm_cpu_id[] = {
57         X86_FEATURE_MATCH(X86_FEATURE_SVM),
58         {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
61
62 #define IOPM_ALLOC_ORDER 2
63 #define MSRPM_ALLOC_ORDER 1
64
65 #define SEG_TYPE_LDT 2
66 #define SEG_TYPE_BUSY_TSS16 3
67
68 #define SVM_FEATURE_NPT            (1 <<  0)
69 #define SVM_FEATURE_LBRV           (1 <<  1)
70 #define SVM_FEATURE_SVML           (1 <<  2)
71 #define SVM_FEATURE_NRIP           (1 <<  3)
72 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
73 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
74 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
75 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
76 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
77
78 #define SVM_AVIC_DOORBELL       0xc001011b
79
80 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
81 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
82 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
83
84 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
85
86 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
87 #define TSC_RATIO_MIN           0x0000000000000001ULL
88 #define TSC_RATIO_MAX           0x000000ffffffffffULL
89
90 #define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
91
92 /*
93  * 0xff is broadcast, so the max index allowed for physical APIC ID
94  * table is 0xfe.  APIC IDs above 0xff are reserved.
95  */
96 #define AVIC_MAX_PHYSICAL_ID_COUNT      255
97
98 #define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
99 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
100 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
101
102 /* AVIC GATAG is encoded using VM and VCPU IDs */
103 #define AVIC_VCPU_ID_BITS               8
104 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
105
106 #define AVIC_VM_ID_BITS                 24
107 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
108 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
109
110 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
111                                                 (y & AVIC_VCPU_ID_MASK))
112 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
113 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
114
115 static bool erratum_383_found __read_mostly;
116
117 static const u32 host_save_user_msrs[] = {
118 #ifdef CONFIG_X86_64
119         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
120         MSR_FS_BASE,
121 #endif
122         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
123         MSR_TSC_AUX,
124 };
125
126 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
127
128 struct kvm_vcpu;
129
130 struct nested_state {
131         struct vmcb *hsave;
132         u64 hsave_msr;
133         u64 vm_cr_msr;
134         u64 vmcb;
135
136         /* These are the merged vectors */
137         u32 *msrpm;
138
139         /* gpa pointers to the real vectors */
140         u64 vmcb_msrpm;
141         u64 vmcb_iopm;
142
143         /* A VMEXIT is required but not yet emulated */
144         bool exit_required;
145
146         /* cache for intercepts of the guest */
147         u32 intercept_cr;
148         u32 intercept_dr;
149         u32 intercept_exceptions;
150         u64 intercept;
151
152         /* Nested Paging related state */
153         u64 nested_cr3;
154 };
155
156 #define MSRPM_OFFSETS   16
157 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
158
159 /*
160  * Set osvw_len to higher value when updated Revision Guides
161  * are published and we know what the new status bits are
162  */
163 static uint64_t osvw_len = 4, osvw_status;
164
165 struct vcpu_svm {
166         struct kvm_vcpu vcpu;
167         struct vmcb *vmcb;
168         unsigned long vmcb_pa;
169         struct svm_cpu_data *svm_data;
170         uint64_t asid_generation;
171         uint64_t sysenter_esp;
172         uint64_t sysenter_eip;
173         uint64_t tsc_aux;
174
175         u64 next_rip;
176
177         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
178         struct {
179                 u16 fs;
180                 u16 gs;
181                 u16 ldt;
182                 u64 gs_base;
183         } host;
184
185         u32 *msrpm;
186
187         ulong nmi_iret_rip;
188
189         struct nested_state nested;
190
191         bool nmi_singlestep;
192
193         unsigned int3_injected;
194         unsigned long int3_rip;
195         u32 apf_reason;
196
197         /* cached guest cpuid flags for faster access */
198         bool nrips_enabled      : 1;
199
200         u32 ldr_reg;
201         struct page *avic_backing_page;
202         u64 *avic_physical_id_cache;
203         bool avic_is_running;
204
205         /*
206          * Per-vcpu list of struct amd_svm_iommu_ir:
207          * This is used mainly to store interrupt remapping information used
208          * when update the vcpu affinity. This avoids the need to scan for
209          * IRTE and try to match ga_tag in the IOMMU driver.
210          */
211         struct list_head ir_list;
212         spinlock_t ir_list_lock;
213 };
214
215 /*
216  * This is a wrapper of struct amd_iommu_ir_data.
217  */
218 struct amd_svm_iommu_ir {
219         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
220         void *data;             /* Storing pointer to struct amd_ir_data */
221 };
222
223 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
224 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
225
226 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
227 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
228 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
229 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
230
231 static DEFINE_PER_CPU(u64, current_tsc_ratio);
232 #define TSC_RATIO_DEFAULT       0x0100000000ULL
233
234 #define MSR_INVALID                     0xffffffffU
235
236 static const struct svm_direct_access_msrs {
237         u32 index;   /* Index of the MSR */
238         bool always; /* True if intercept is always on */
239 } direct_access_msrs[] = {
240         { .index = MSR_STAR,                            .always = true  },
241         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
242 #ifdef CONFIG_X86_64
243         { .index = MSR_GS_BASE,                         .always = true  },
244         { .index = MSR_FS_BASE,                         .always = true  },
245         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
246         { .index = MSR_LSTAR,                           .always = true  },
247         { .index = MSR_CSTAR,                           .always = true  },
248         { .index = MSR_SYSCALL_MASK,                    .always = true  },
249 #endif
250         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
251         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
252         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
253         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
254         { .index = MSR_INVALID,                         .always = false },
255 };
256
257 /* enable NPT for AMD64 and X86 with PAE */
258 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
259 static bool npt_enabled = true;
260 #else
261 static bool npt_enabled;
262 #endif
263
264 /* allow nested paging (virtualized MMU) for all guests */
265 static int npt = true;
266 module_param(npt, int, S_IRUGO);
267
268 /* allow nested virtualization in KVM/SVM */
269 static int nested = true;
270 module_param(nested, int, S_IRUGO);
271
272 /* enable / disable AVIC */
273 static int avic;
274 #ifdef CONFIG_X86_LOCAL_APIC
275 module_param(avic, int, S_IRUGO);
276 #endif
277
278 /* AVIC VM ID bit masks and lock */
279 static DECLARE_BITMAP(avic_vm_id_bitmap, AVIC_VM_ID_NR);
280 static DEFINE_SPINLOCK(avic_vm_id_lock);
281
282 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
283 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
284 static void svm_complete_interrupts(struct vcpu_svm *svm);
285
286 static int nested_svm_exit_handled(struct vcpu_svm *svm);
287 static int nested_svm_intercept(struct vcpu_svm *svm);
288 static int nested_svm_vmexit(struct vcpu_svm *svm);
289 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
290                                       bool has_error_code, u32 error_code);
291
292 enum {
293         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
294                             pause filter count */
295         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
296         VMCB_ASID,       /* ASID */
297         VMCB_INTR,       /* int_ctl, int_vector */
298         VMCB_NPT,        /* npt_en, nCR3, gPAT */
299         VMCB_CR,         /* CR0, CR3, CR4, EFER */
300         VMCB_DR,         /* DR6, DR7 */
301         VMCB_DT,         /* GDT, IDT */
302         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
303         VMCB_CR2,        /* CR2 only */
304         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
305         VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
306                           * AVIC PHYSICAL_TABLE pointer,
307                           * AVIC LOGICAL_TABLE pointer
308                           */
309         VMCB_DIRTY_MAX,
310 };
311
312 /* TPR and CR2 are always written before VMRUN */
313 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
314
315 #define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
316
317 static inline void mark_all_dirty(struct vmcb *vmcb)
318 {
319         vmcb->control.clean = 0;
320 }
321
322 static inline void mark_all_clean(struct vmcb *vmcb)
323 {
324         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
325                                & ~VMCB_ALWAYS_DIRTY_MASK;
326 }
327
328 static inline void mark_dirty(struct vmcb *vmcb, int bit)
329 {
330         vmcb->control.clean &= ~(1 << bit);
331 }
332
333 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
334 {
335         return container_of(vcpu, struct vcpu_svm, vcpu);
336 }
337
338 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
339 {
340         svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
341         mark_dirty(svm->vmcb, VMCB_AVIC);
342 }
343
344 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
345 {
346         struct vcpu_svm *svm = to_svm(vcpu);
347         u64 *entry = svm->avic_physical_id_cache;
348
349         if (!entry)
350                 return false;
351
352         return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
353 }
354
355 static void recalc_intercepts(struct vcpu_svm *svm)
356 {
357         struct vmcb_control_area *c, *h;
358         struct nested_state *g;
359
360         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
361
362         if (!is_guest_mode(&svm->vcpu))
363                 return;
364
365         c = &svm->vmcb->control;
366         h = &svm->nested.hsave->control;
367         g = &svm->nested;
368
369         c->intercept_cr = h->intercept_cr | g->intercept_cr;
370         c->intercept_dr = h->intercept_dr | g->intercept_dr;
371         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
372         c->intercept = h->intercept | g->intercept;
373 }
374
375 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
376 {
377         if (is_guest_mode(&svm->vcpu))
378                 return svm->nested.hsave;
379         else
380                 return svm->vmcb;
381 }
382
383 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
384 {
385         struct vmcb *vmcb = get_host_vmcb(svm);
386
387         vmcb->control.intercept_cr |= (1U << bit);
388
389         recalc_intercepts(svm);
390 }
391
392 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
393 {
394         struct vmcb *vmcb = get_host_vmcb(svm);
395
396         vmcb->control.intercept_cr &= ~(1U << bit);
397
398         recalc_intercepts(svm);
399 }
400
401 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
402 {
403         struct vmcb *vmcb = get_host_vmcb(svm);
404
405         return vmcb->control.intercept_cr & (1U << bit);
406 }
407
408 static inline void set_dr_intercepts(struct vcpu_svm *svm)
409 {
410         struct vmcb *vmcb = get_host_vmcb(svm);
411
412         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
413                 | (1 << INTERCEPT_DR1_READ)
414                 | (1 << INTERCEPT_DR2_READ)
415                 | (1 << INTERCEPT_DR3_READ)
416                 | (1 << INTERCEPT_DR4_READ)
417                 | (1 << INTERCEPT_DR5_READ)
418                 | (1 << INTERCEPT_DR6_READ)
419                 | (1 << INTERCEPT_DR7_READ)
420                 | (1 << INTERCEPT_DR0_WRITE)
421                 | (1 << INTERCEPT_DR1_WRITE)
422                 | (1 << INTERCEPT_DR2_WRITE)
423                 | (1 << INTERCEPT_DR3_WRITE)
424                 | (1 << INTERCEPT_DR4_WRITE)
425                 | (1 << INTERCEPT_DR5_WRITE)
426                 | (1 << INTERCEPT_DR6_WRITE)
427                 | (1 << INTERCEPT_DR7_WRITE);
428
429         recalc_intercepts(svm);
430 }
431
432 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
433 {
434         struct vmcb *vmcb = get_host_vmcb(svm);
435
436         vmcb->control.intercept_dr = 0;
437
438         recalc_intercepts(svm);
439 }
440
441 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
442 {
443         struct vmcb *vmcb = get_host_vmcb(svm);
444
445         vmcb->control.intercept_exceptions |= (1U << bit);
446
447         recalc_intercepts(svm);
448 }
449
450 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
451 {
452         struct vmcb *vmcb = get_host_vmcb(svm);
453
454         vmcb->control.intercept_exceptions &= ~(1U << bit);
455
456         recalc_intercepts(svm);
457 }
458
459 static inline void set_intercept(struct vcpu_svm *svm, int bit)
460 {
461         struct vmcb *vmcb = get_host_vmcb(svm);
462
463         vmcb->control.intercept |= (1ULL << bit);
464
465         recalc_intercepts(svm);
466 }
467
468 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
469 {
470         struct vmcb *vmcb = get_host_vmcb(svm);
471
472         vmcb->control.intercept &= ~(1ULL << bit);
473
474         recalc_intercepts(svm);
475 }
476
477 static inline void enable_gif(struct vcpu_svm *svm)
478 {
479         svm->vcpu.arch.hflags |= HF_GIF_MASK;
480 }
481
482 static inline void disable_gif(struct vcpu_svm *svm)
483 {
484         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
485 }
486
487 static inline bool gif_set(struct vcpu_svm *svm)
488 {
489         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
490 }
491
492 static unsigned long iopm_base;
493
494 struct kvm_ldttss_desc {
495         u16 limit0;
496         u16 base0;
497         unsigned base1:8, type:5, dpl:2, p:1;
498         unsigned limit1:4, zero0:3, g:1, base2:8;
499         u32 base3;
500         u32 zero1;
501 } __attribute__((packed));
502
503 struct svm_cpu_data {
504         int cpu;
505
506         u64 asid_generation;
507         u32 max_asid;
508         u32 next_asid;
509         struct kvm_ldttss_desc *tss_desc;
510
511         struct page *save_area;
512 };
513
514 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
515
516 struct svm_init_data {
517         int cpu;
518         int r;
519 };
520
521 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
522
523 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
524 #define MSRS_RANGE_SIZE 2048
525 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
526
527 static u32 svm_msrpm_offset(u32 msr)
528 {
529         u32 offset;
530         int i;
531
532         for (i = 0; i < NUM_MSR_MAPS; i++) {
533                 if (msr < msrpm_ranges[i] ||
534                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
535                         continue;
536
537                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
538                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
539
540                 /* Now we have the u8 offset - but need the u32 offset */
541                 return offset / 4;
542         }
543
544         /* MSR not in any range */
545         return MSR_INVALID;
546 }
547
548 #define MAX_INST_SIZE 15
549
550 static inline void clgi(void)
551 {
552         asm volatile (__ex(SVM_CLGI));
553 }
554
555 static inline void stgi(void)
556 {
557         asm volatile (__ex(SVM_STGI));
558 }
559
560 static inline void invlpga(unsigned long addr, u32 asid)
561 {
562         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
563 }
564
565 static int get_npt_level(void)
566 {
567 #ifdef CONFIG_X86_64
568         return PT64_ROOT_LEVEL;
569 #else
570         return PT32E_ROOT_LEVEL;
571 #endif
572 }
573
574 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
575 {
576         vcpu->arch.efer = efer;
577         if (!npt_enabled && !(efer & EFER_LMA))
578                 efer &= ~EFER_LME;
579
580         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
581         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
582 }
583
584 static int is_external_interrupt(u32 info)
585 {
586         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
587         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
588 }
589
590 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
591 {
592         struct vcpu_svm *svm = to_svm(vcpu);
593         u32 ret = 0;
594
595         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
596                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
597         return ret;
598 }
599
600 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
601 {
602         struct vcpu_svm *svm = to_svm(vcpu);
603
604         if (mask == 0)
605                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
606         else
607                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
608
609 }
610
611 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
612 {
613         struct vcpu_svm *svm = to_svm(vcpu);
614
615         if (svm->vmcb->control.next_rip != 0) {
616                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
617                 svm->next_rip = svm->vmcb->control.next_rip;
618         }
619
620         if (!svm->next_rip) {
621                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
622                                 EMULATE_DONE)
623                         printk(KERN_DEBUG "%s: NOP\n", __func__);
624                 return;
625         }
626         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
627                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
628                        __func__, kvm_rip_read(vcpu), svm->next_rip);
629
630         kvm_rip_write(vcpu, svm->next_rip);
631         svm_set_interrupt_shadow(vcpu, 0);
632 }
633
634 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
635                                 bool has_error_code, u32 error_code,
636                                 bool reinject)
637 {
638         struct vcpu_svm *svm = to_svm(vcpu);
639
640         /*
641          * If we are within a nested VM we'd better #VMEXIT and let the guest
642          * handle the exception
643          */
644         if (!reinject &&
645             nested_svm_check_exception(svm, nr, has_error_code, error_code))
646                 return;
647
648         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
649                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
650
651                 /*
652                  * For guest debugging where we have to reinject #BP if some
653                  * INT3 is guest-owned:
654                  * Emulate nRIP by moving RIP forward. Will fail if injection
655                  * raises a fault that is not intercepted. Still better than
656                  * failing in all cases.
657                  */
658                 skip_emulated_instruction(&svm->vcpu);
659                 rip = kvm_rip_read(&svm->vcpu);
660                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
661                 svm->int3_injected = rip - old_rip;
662         }
663
664         svm->vmcb->control.event_inj = nr
665                 | SVM_EVTINJ_VALID
666                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
667                 | SVM_EVTINJ_TYPE_EXEPT;
668         svm->vmcb->control.event_inj_err = error_code;
669 }
670
671 static void svm_init_erratum_383(void)
672 {
673         u32 low, high;
674         int err;
675         u64 val;
676
677         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
678                 return;
679
680         /* Use _safe variants to not break nested virtualization */
681         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
682         if (err)
683                 return;
684
685         val |= (1ULL << 47);
686
687         low  = lower_32_bits(val);
688         high = upper_32_bits(val);
689
690         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
691
692         erratum_383_found = true;
693 }
694
695 static void svm_init_osvw(struct kvm_vcpu *vcpu)
696 {
697         /*
698          * Guests should see errata 400 and 415 as fixed (assuming that
699          * HLT and IO instructions are intercepted).
700          */
701         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
702         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
703
704         /*
705          * By increasing VCPU's osvw.length to 3 we are telling the guest that
706          * all osvw.status bits inside that length, including bit 0 (which is
707          * reserved for erratum 298), are valid. However, if host processor's
708          * osvw_len is 0 then osvw_status[0] carries no information. We need to
709          * be conservative here and therefore we tell the guest that erratum 298
710          * is present (because we really don't know).
711          */
712         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
713                 vcpu->arch.osvw.status |= 1;
714 }
715
716 static int has_svm(void)
717 {
718         const char *msg;
719
720         if (!cpu_has_svm(&msg)) {
721                 printk(KERN_INFO "has_svm: %s\n", msg);
722                 return 0;
723         }
724
725         return 1;
726 }
727
728 static void svm_hardware_disable(void)
729 {
730         /* Make sure we clean up behind us */
731         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
732                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
733
734         cpu_svm_disable();
735
736         amd_pmu_disable_virt();
737 }
738
739 static int svm_hardware_enable(void)
740 {
741
742         struct svm_cpu_data *sd;
743         uint64_t efer;
744         struct desc_ptr gdt_descr;
745         struct desc_struct *gdt;
746         int me = raw_smp_processor_id();
747
748         rdmsrl(MSR_EFER, efer);
749         if (efer & EFER_SVME)
750                 return -EBUSY;
751
752         if (!has_svm()) {
753                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
754                 return -EINVAL;
755         }
756         sd = per_cpu(svm_data, me);
757         if (!sd) {
758                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
759                 return -EINVAL;
760         }
761
762         sd->asid_generation = 1;
763         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
764         sd->next_asid = sd->max_asid + 1;
765
766         native_store_gdt(&gdt_descr);
767         gdt = (struct desc_struct *)gdt_descr.address;
768         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
769
770         wrmsrl(MSR_EFER, efer | EFER_SVME);
771
772         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
773
774         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
775                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
776                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
777         }
778
779
780         /*
781          * Get OSVW bits.
782          *
783          * Note that it is possible to have a system with mixed processor
784          * revisions and therefore different OSVW bits. If bits are not the same
785          * on different processors then choose the worst case (i.e. if erratum
786          * is present on one processor and not on another then assume that the
787          * erratum is present everywhere).
788          */
789         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
790                 uint64_t len, status = 0;
791                 int err;
792
793                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
794                 if (!err)
795                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
796                                                       &err);
797
798                 if (err)
799                         osvw_status = osvw_len = 0;
800                 else {
801                         if (len < osvw_len)
802                                 osvw_len = len;
803                         osvw_status |= status;
804                         osvw_status &= (1ULL << osvw_len) - 1;
805                 }
806         } else
807                 osvw_status = osvw_len = 0;
808
809         svm_init_erratum_383();
810
811         amd_pmu_enable_virt();
812
813         return 0;
814 }
815
816 static void svm_cpu_uninit(int cpu)
817 {
818         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
819
820         if (!sd)
821                 return;
822
823         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
824         __free_page(sd->save_area);
825         kfree(sd);
826 }
827
828 static int svm_cpu_init(int cpu)
829 {
830         struct svm_cpu_data *sd;
831         int r;
832
833         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
834         if (!sd)
835                 return -ENOMEM;
836         sd->cpu = cpu;
837         sd->save_area = alloc_page(GFP_KERNEL);
838         r = -ENOMEM;
839         if (!sd->save_area)
840                 goto err_1;
841
842         per_cpu(svm_data, cpu) = sd;
843
844         return 0;
845
846 err_1:
847         kfree(sd);
848         return r;
849
850 }
851
852 static bool valid_msr_intercept(u32 index)
853 {
854         int i;
855
856         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
857                 if (direct_access_msrs[i].index == index)
858                         return true;
859
860         return false;
861 }
862
863 static void set_msr_interception(u32 *msrpm, unsigned msr,
864                                  int read, int write)
865 {
866         u8 bit_read, bit_write;
867         unsigned long tmp;
868         u32 offset;
869
870         /*
871          * If this warning triggers extend the direct_access_msrs list at the
872          * beginning of the file
873          */
874         WARN_ON(!valid_msr_intercept(msr));
875
876         offset    = svm_msrpm_offset(msr);
877         bit_read  = 2 * (msr & 0x0f);
878         bit_write = 2 * (msr & 0x0f) + 1;
879         tmp       = msrpm[offset];
880
881         BUG_ON(offset == MSR_INVALID);
882
883         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
884         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
885
886         msrpm[offset] = tmp;
887 }
888
889 static void svm_vcpu_init_msrpm(u32 *msrpm)
890 {
891         int i;
892
893         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
894
895         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
896                 if (!direct_access_msrs[i].always)
897                         continue;
898
899                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
900         }
901 }
902
903 static void add_msr_offset(u32 offset)
904 {
905         int i;
906
907         for (i = 0; i < MSRPM_OFFSETS; ++i) {
908
909                 /* Offset already in list? */
910                 if (msrpm_offsets[i] == offset)
911                         return;
912
913                 /* Slot used by another offset? */
914                 if (msrpm_offsets[i] != MSR_INVALID)
915                         continue;
916
917                 /* Add offset to list */
918                 msrpm_offsets[i] = offset;
919
920                 return;
921         }
922
923         /*
924          * If this BUG triggers the msrpm_offsets table has an overflow. Just
925          * increase MSRPM_OFFSETS in this case.
926          */
927         BUG();
928 }
929
930 static void init_msrpm_offsets(void)
931 {
932         int i;
933
934         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
935
936         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
937                 u32 offset;
938
939                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
940                 BUG_ON(offset == MSR_INVALID);
941
942                 add_msr_offset(offset);
943         }
944 }
945
946 static void svm_enable_lbrv(struct vcpu_svm *svm)
947 {
948         u32 *msrpm = svm->msrpm;
949
950         svm->vmcb->control.lbr_ctl = 1;
951         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
952         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
953         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
954         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
955 }
956
957 static void svm_disable_lbrv(struct vcpu_svm *svm)
958 {
959         u32 *msrpm = svm->msrpm;
960
961         svm->vmcb->control.lbr_ctl = 0;
962         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
963         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
964         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
965         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
966 }
967
968 /* Note:
969  * This hash table is used to map VM_ID to a struct kvm_arch,
970  * when handling AMD IOMMU GALOG notification to schedule in
971  * a particular vCPU.
972  */
973 #define SVM_VM_DATA_HASH_BITS   8
974 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
975 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
976
977 /* Note:
978  * This function is called from IOMMU driver to notify
979  * SVM to schedule in a particular vCPU of a particular VM.
980  */
981 static int avic_ga_log_notifier(u32 ga_tag)
982 {
983         unsigned long flags;
984         struct kvm_arch *ka = NULL;
985         struct kvm_vcpu *vcpu = NULL;
986         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
987         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
988
989         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
990
991         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
992         hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
993                 struct kvm *kvm = container_of(ka, struct kvm, arch);
994                 struct kvm_arch *vm_data = &kvm->arch;
995
996                 if (vm_data->avic_vm_id != vm_id)
997                         continue;
998                 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
999                 break;
1000         }
1001         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1002
1003         if (!vcpu)
1004                 return 0;
1005
1006         /* Note:
1007          * At this point, the IOMMU should have already set the pending
1008          * bit in the vAPIC backing page. So, we just need to schedule
1009          * in the vcpu.
1010          */
1011         if (vcpu->mode == OUTSIDE_GUEST_MODE)
1012                 kvm_vcpu_wake_up(vcpu);
1013
1014         return 0;
1015 }
1016
1017 static __init int svm_hardware_setup(void)
1018 {
1019         int cpu;
1020         struct page *iopm_pages;
1021         void *iopm_va;
1022         int r;
1023
1024         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1025
1026         if (!iopm_pages)
1027                 return -ENOMEM;
1028
1029         iopm_va = page_address(iopm_pages);
1030         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1031         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1032
1033         init_msrpm_offsets();
1034
1035         if (boot_cpu_has(X86_FEATURE_NX))
1036                 kvm_enable_efer_bits(EFER_NX);
1037
1038         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1039                 kvm_enable_efer_bits(EFER_FFXSR);
1040
1041         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1042                 kvm_has_tsc_control = true;
1043                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1044                 kvm_tsc_scaling_ratio_frac_bits = 32;
1045         }
1046
1047         if (nested) {
1048                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1049                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1050         }
1051
1052         for_each_possible_cpu(cpu) {
1053                 r = svm_cpu_init(cpu);
1054                 if (r)
1055                         goto err;
1056         }
1057
1058         if (!boot_cpu_has(X86_FEATURE_NPT))
1059                 npt_enabled = false;
1060
1061         if (npt_enabled && !npt) {
1062                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1063                 npt_enabled = false;
1064         }
1065
1066         if (npt_enabled) {
1067                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1068                 kvm_enable_tdp();
1069         } else
1070                 kvm_disable_tdp();
1071
1072         if (avic) {
1073                 if (!npt_enabled ||
1074                     !boot_cpu_has(X86_FEATURE_AVIC) ||
1075                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1076                         avic = false;
1077                 } else {
1078                         pr_info("AVIC enabled\n");
1079
1080                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1081                 }
1082         }
1083
1084         return 0;
1085
1086 err:
1087         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1088         iopm_base = 0;
1089         return r;
1090 }
1091
1092 static __exit void svm_hardware_unsetup(void)
1093 {
1094         int cpu;
1095
1096         for_each_possible_cpu(cpu)
1097                 svm_cpu_uninit(cpu);
1098
1099         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1100         iopm_base = 0;
1101 }
1102
1103 static void init_seg(struct vmcb_seg *seg)
1104 {
1105         seg->selector = 0;
1106         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1107                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1108         seg->limit = 0xffff;
1109         seg->base = 0;
1110 }
1111
1112 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1113 {
1114         seg->selector = 0;
1115         seg->attrib = SVM_SELECTOR_P_MASK | type;
1116         seg->limit = 0xffff;
1117         seg->base = 0;
1118 }
1119
1120 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1121 {
1122         struct vcpu_svm *svm = to_svm(vcpu);
1123         u64 g_tsc_offset = 0;
1124
1125         if (is_guest_mode(vcpu)) {
1126                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1127                                svm->nested.hsave->control.tsc_offset;
1128                 svm->nested.hsave->control.tsc_offset = offset;
1129         } else
1130                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1131                                            svm->vmcb->control.tsc_offset,
1132                                            offset);
1133
1134         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1135
1136         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1137 }
1138
1139 static void avic_init_vmcb(struct vcpu_svm *svm)
1140 {
1141         struct vmcb *vmcb = svm->vmcb;
1142         struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1143         phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
1144         phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
1145         phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);
1146
1147         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1148         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1149         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1150         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1151         vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1152         svm->vcpu.arch.apicv_active = true;
1153 }
1154
1155 static void init_vmcb(struct vcpu_svm *svm)
1156 {
1157         struct vmcb_control_area *control = &svm->vmcb->control;
1158         struct vmcb_save_area *save = &svm->vmcb->save;
1159
1160         svm->vcpu.arch.hflags = 0;
1161
1162         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1163         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1164         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1165         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1166         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1167         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1168         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1169                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1170
1171         set_dr_intercepts(svm);
1172
1173         set_exception_intercept(svm, PF_VECTOR);
1174         set_exception_intercept(svm, UD_VECTOR);
1175         set_exception_intercept(svm, MC_VECTOR);
1176         set_exception_intercept(svm, AC_VECTOR);
1177         set_exception_intercept(svm, DB_VECTOR);
1178
1179         set_intercept(svm, INTERCEPT_INTR);
1180         set_intercept(svm, INTERCEPT_NMI);
1181         set_intercept(svm, INTERCEPT_SMI);
1182         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1183         set_intercept(svm, INTERCEPT_RDPMC);
1184         set_intercept(svm, INTERCEPT_CPUID);
1185         set_intercept(svm, INTERCEPT_INVD);
1186         set_intercept(svm, INTERCEPT_HLT);
1187         set_intercept(svm, INTERCEPT_INVLPG);
1188         set_intercept(svm, INTERCEPT_INVLPGA);
1189         set_intercept(svm, INTERCEPT_IOIO_PROT);
1190         set_intercept(svm, INTERCEPT_MSR_PROT);
1191         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1192         set_intercept(svm, INTERCEPT_SHUTDOWN);
1193         set_intercept(svm, INTERCEPT_VMRUN);
1194         set_intercept(svm, INTERCEPT_VMMCALL);
1195         set_intercept(svm, INTERCEPT_VMLOAD);
1196         set_intercept(svm, INTERCEPT_VMSAVE);
1197         set_intercept(svm, INTERCEPT_STGI);
1198         set_intercept(svm, INTERCEPT_CLGI);
1199         set_intercept(svm, INTERCEPT_SKINIT);
1200         set_intercept(svm, INTERCEPT_WBINVD);
1201         set_intercept(svm, INTERCEPT_MONITOR);
1202         set_intercept(svm, INTERCEPT_MWAIT);
1203         set_intercept(svm, INTERCEPT_XSETBV);
1204
1205         control->iopm_base_pa = iopm_base;
1206         control->msrpm_base_pa = __pa(svm->msrpm);
1207         control->int_ctl = V_INTR_MASKING_MASK;
1208
1209         init_seg(&save->es);
1210         init_seg(&save->ss);
1211         init_seg(&save->ds);
1212         init_seg(&save->fs);
1213         init_seg(&save->gs);
1214
1215         save->cs.selector = 0xf000;
1216         save->cs.base = 0xffff0000;
1217         /* Executable/Readable Code Segment */
1218         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1219                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1220         save->cs.limit = 0xffff;
1221
1222         save->gdtr.limit = 0xffff;
1223         save->idtr.limit = 0xffff;
1224
1225         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1226         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1227
1228         svm_set_efer(&svm->vcpu, 0);
1229         save->dr6 = 0xffff0ff0;
1230         kvm_set_rflags(&svm->vcpu, 2);
1231         save->rip = 0x0000fff0;
1232         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1233
1234         /*
1235          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1236          * It also updates the guest-visible cr0 value.
1237          */
1238         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1239         kvm_mmu_reset_context(&svm->vcpu);
1240
1241         save->cr4 = X86_CR4_PAE;
1242         /* rdx = ?? */
1243
1244         if (npt_enabled) {
1245                 /* Setup VMCB for Nested Paging */
1246                 control->nested_ctl = 1;
1247                 clr_intercept(svm, INTERCEPT_INVLPG);
1248                 clr_exception_intercept(svm, PF_VECTOR);
1249                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1250                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1251                 save->g_pat = svm->vcpu.arch.pat;
1252                 save->cr3 = 0;
1253                 save->cr4 = 0;
1254         }
1255         svm->asid_generation = 0;
1256
1257         svm->nested.vmcb = 0;
1258         svm->vcpu.arch.hflags = 0;
1259
1260         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1261                 control->pause_filter_count = 3000;
1262                 set_intercept(svm, INTERCEPT_PAUSE);
1263         }
1264
1265         if (avic)
1266                 avic_init_vmcb(svm);
1267
1268         mark_all_dirty(svm->vmcb);
1269
1270         enable_gif(svm);
1271
1272 }
1273
1274 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, int index)
1275 {
1276         u64 *avic_physical_id_table;
1277         struct kvm_arch *vm_data = &vcpu->kvm->arch;
1278
1279         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1280                 return NULL;
1281
1282         avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1283
1284         return &avic_physical_id_table[index];
1285 }
1286
1287 /**
1288  * Note:
1289  * AVIC hardware walks the nested page table to check permissions,
1290  * but does not use the SPA address specified in the leaf page
1291  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1292  * field of the VMCB. Therefore, we set up the
1293  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1294  */
1295 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1296 {
1297         struct kvm *kvm = vcpu->kvm;
1298         int ret;
1299
1300         if (kvm->arch.apic_access_page_done)
1301                 return 0;
1302
1303         ret = x86_set_memory_region(kvm,
1304                                     APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1305                                     APIC_DEFAULT_PHYS_BASE,
1306                                     PAGE_SIZE);
1307         if (ret)
1308                 return ret;
1309
1310         kvm->arch.apic_access_page_done = true;
1311         return 0;
1312 }
1313
1314 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1315 {
1316         int ret;
1317         u64 *entry, new_entry;
1318         int id = vcpu->vcpu_id;
1319         struct vcpu_svm *svm = to_svm(vcpu);
1320
1321         ret = avic_init_access_page(vcpu);
1322         if (ret)
1323                 return ret;
1324
1325         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1326                 return -EINVAL;
1327
1328         if (!svm->vcpu.arch.apic->regs)
1329                 return -EINVAL;
1330
1331         svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1332
1333         /* Setting AVIC backing page address in the phy APIC ID table */
1334         entry = avic_get_physical_id_entry(vcpu, id);
1335         if (!entry)
1336                 return -EINVAL;
1337
1338         new_entry = READ_ONCE(*entry);
1339         new_entry = (page_to_phys(svm->avic_backing_page) &
1340                      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1341                      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
1342         WRITE_ONCE(*entry, new_entry);
1343
1344         svm->avic_physical_id_cache = entry;
1345
1346         return 0;
1347 }
1348
1349 static inline int avic_get_next_vm_id(void)
1350 {
1351         int id;
1352
1353         spin_lock(&avic_vm_id_lock);
1354
1355         /* AVIC VM ID is one-based. */
1356         id = find_next_zero_bit(avic_vm_id_bitmap, AVIC_VM_ID_NR, 1);
1357         if (id <= AVIC_VM_ID_MASK)
1358                 __set_bit(id, avic_vm_id_bitmap);
1359         else
1360                 id = -EAGAIN;
1361
1362         spin_unlock(&avic_vm_id_lock);
1363         return id;
1364 }
1365
1366 static inline int avic_free_vm_id(int id)
1367 {
1368         if (id <= 0 || id > AVIC_VM_ID_MASK)
1369                 return -EINVAL;
1370
1371         spin_lock(&avic_vm_id_lock);
1372         __clear_bit(id, avic_vm_id_bitmap);
1373         spin_unlock(&avic_vm_id_lock);
1374         return 0;
1375 }
1376
1377 static void avic_vm_destroy(struct kvm *kvm)
1378 {
1379         unsigned long flags;
1380         struct kvm_arch *vm_data = &kvm->arch;
1381
1382         if (!avic)
1383                 return;
1384
1385         avic_free_vm_id(vm_data->avic_vm_id);
1386
1387         if (vm_data->avic_logical_id_table_page)
1388                 __free_page(vm_data->avic_logical_id_table_page);
1389         if (vm_data->avic_physical_id_table_page)
1390                 __free_page(vm_data->avic_physical_id_table_page);
1391
1392         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1393         hash_del(&vm_data->hnode);
1394         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1395 }
1396
1397 static int avic_vm_init(struct kvm *kvm)
1398 {
1399         unsigned long flags;
1400         int vm_id, err = -ENOMEM;
1401         struct kvm_arch *vm_data = &kvm->arch;
1402         struct page *p_page;
1403         struct page *l_page;
1404
1405         if (!avic)
1406                 return 0;
1407
1408         vm_id = avic_get_next_vm_id();
1409         if (vm_id < 0)
1410                 return vm_id;
1411         vm_data->avic_vm_id = (u32)vm_id;
1412
1413         /* Allocating physical APIC ID table (4KB) */
1414         p_page = alloc_page(GFP_KERNEL);
1415         if (!p_page)
1416                 goto free_avic;
1417
1418         vm_data->avic_physical_id_table_page = p_page;
1419         clear_page(page_address(p_page));
1420
1421         /* Allocating logical APIC ID table (4KB) */
1422         l_page = alloc_page(GFP_KERNEL);
1423         if (!l_page)
1424                 goto free_avic;
1425
1426         vm_data->avic_logical_id_table_page = l_page;
1427         clear_page(page_address(l_page));
1428
1429         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1430         hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1431         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1432
1433         return 0;
1434
1435 free_avic:
1436         avic_vm_destroy(kvm);
1437         return err;
1438 }
1439
1440 static inline int
1441 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1442 {
1443         int ret = 0;
1444         unsigned long flags;
1445         struct amd_svm_iommu_ir *ir;
1446         struct vcpu_svm *svm = to_svm(vcpu);
1447
1448         if (!kvm_arch_has_assigned_device(vcpu->kvm))
1449                 return 0;
1450
1451         /*
1452          * Here, we go through the per-vcpu ir_list to update all existing
1453          * interrupt remapping table entry targeting this vcpu.
1454          */
1455         spin_lock_irqsave(&svm->ir_list_lock, flags);
1456
1457         if (list_empty(&svm->ir_list))
1458                 goto out;
1459
1460         list_for_each_entry(ir, &svm->ir_list, node) {
1461                 ret = amd_iommu_update_ga(cpu, r, ir->data);
1462                 if (ret)
1463                         break;
1464         }
1465 out:
1466         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1467         return ret;
1468 }
1469
1470 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1471 {
1472         u64 entry;
1473         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1474         int h_physical_id = kvm_cpu_get_apicid(cpu);
1475         struct vcpu_svm *svm = to_svm(vcpu);
1476
1477         if (!kvm_vcpu_apicv_active(vcpu))
1478                 return;
1479
1480         if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1481                 return;
1482
1483         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1484         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1485
1486         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1487         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1488
1489         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1490         if (svm->avic_is_running)
1491                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1492
1493         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1494         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1495                                         svm->avic_is_running);
1496 }
1497
1498 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1499 {
1500         u64 entry;
1501         struct vcpu_svm *svm = to_svm(vcpu);
1502
1503         if (!kvm_vcpu_apicv_active(vcpu))
1504                 return;
1505
1506         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1507         if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1508                 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1509
1510         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1511         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1512 }
1513
1514 /**
1515  * This function is called during VCPU halt/unhalt.
1516  */
1517 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1518 {
1519         struct vcpu_svm *svm = to_svm(vcpu);
1520
1521         svm->avic_is_running = is_run;
1522         if (is_run)
1523                 avic_vcpu_load(vcpu, vcpu->cpu);
1524         else
1525                 avic_vcpu_put(vcpu);
1526 }
1527
1528 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1529 {
1530         struct vcpu_svm *svm = to_svm(vcpu);
1531         u32 dummy;
1532         u32 eax = 1;
1533
1534         if (!init_event) {
1535                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1536                                            MSR_IA32_APICBASE_ENABLE;
1537                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1538                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1539         }
1540         init_vmcb(svm);
1541
1542         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1543         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1544
1545         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1546                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1547 }
1548
1549 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1550 {
1551         struct vcpu_svm *svm;
1552         struct page *page;
1553         struct page *msrpm_pages;
1554         struct page *hsave_page;
1555         struct page *nested_msrpm_pages;
1556         int err;
1557
1558         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1559         if (!svm) {
1560                 err = -ENOMEM;
1561                 goto out;
1562         }
1563
1564         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1565         if (err)
1566                 goto free_svm;
1567
1568         err = -ENOMEM;
1569         page = alloc_page(GFP_KERNEL);
1570         if (!page)
1571                 goto uninit;
1572
1573         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1574         if (!msrpm_pages)
1575                 goto free_page1;
1576
1577         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1578         if (!nested_msrpm_pages)
1579                 goto free_page2;
1580
1581         hsave_page = alloc_page(GFP_KERNEL);
1582         if (!hsave_page)
1583                 goto free_page3;
1584
1585         if (avic) {
1586                 err = avic_init_backing_page(&svm->vcpu);
1587                 if (err)
1588                         goto free_page4;
1589
1590                 INIT_LIST_HEAD(&svm->ir_list);
1591                 spin_lock_init(&svm->ir_list_lock);
1592         }
1593
1594         /* We initialize this flag to true to make sure that the is_running
1595          * bit would be set the first time the vcpu is loaded.
1596          */
1597         svm->avic_is_running = true;
1598
1599         svm->nested.hsave = page_address(hsave_page);
1600
1601         svm->msrpm = page_address(msrpm_pages);
1602         svm_vcpu_init_msrpm(svm->msrpm);
1603
1604         svm->nested.msrpm = page_address(nested_msrpm_pages);
1605         svm_vcpu_init_msrpm(svm->nested.msrpm);
1606
1607         svm->vmcb = page_address(page);
1608         clear_page(svm->vmcb);
1609         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1610         svm->asid_generation = 0;
1611         init_vmcb(svm);
1612
1613         svm_init_osvw(&svm->vcpu);
1614
1615         return &svm->vcpu;
1616
1617 free_page4:
1618         __free_page(hsave_page);
1619 free_page3:
1620         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1621 free_page2:
1622         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1623 free_page1:
1624         __free_page(page);
1625 uninit:
1626         kvm_vcpu_uninit(&svm->vcpu);
1627 free_svm:
1628         kmem_cache_free(kvm_vcpu_cache, svm);
1629 out:
1630         return ERR_PTR(err);
1631 }
1632
1633 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1634 {
1635         struct vcpu_svm *svm = to_svm(vcpu);
1636
1637         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1638         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1639         __free_page(virt_to_page(svm->nested.hsave));
1640         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1641         kvm_vcpu_uninit(vcpu);
1642         kmem_cache_free(kvm_vcpu_cache, svm);
1643 }
1644
1645 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1646 {
1647         struct vcpu_svm *svm = to_svm(vcpu);
1648         int i;
1649
1650         if (unlikely(cpu != vcpu->cpu)) {
1651                 svm->asid_generation = 0;
1652                 mark_all_dirty(svm->vmcb);
1653         }
1654
1655 #ifdef CONFIG_X86_64
1656         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1657 #endif
1658         savesegment(fs, svm->host.fs);
1659         savesegment(gs, svm->host.gs);
1660         svm->host.ldt = kvm_read_ldt();
1661
1662         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1663                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1664
1665         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1666                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1667                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1668                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1669                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1670                 }
1671         }
1672         /* This assumes that the kernel never uses MSR_TSC_AUX */
1673         if (static_cpu_has(X86_FEATURE_RDTSCP))
1674                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1675
1676         avic_vcpu_load(vcpu, cpu);
1677 }
1678
1679 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1680 {
1681         struct vcpu_svm *svm = to_svm(vcpu);
1682         int i;
1683
1684         avic_vcpu_put(vcpu);
1685
1686         ++vcpu->stat.host_state_reload;
1687         kvm_load_ldt(svm->host.ldt);
1688 #ifdef CONFIG_X86_64
1689         loadsegment(fs, svm->host.fs);
1690         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1691         load_gs_index(svm->host.gs);
1692 #else
1693 #ifdef CONFIG_X86_32_LAZY_GS
1694         loadsegment(gs, svm->host.gs);
1695 #endif
1696 #endif
1697         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1698                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1699 }
1700
1701 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1702 {
1703         avic_set_running(vcpu, false);
1704 }
1705
1706 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1707 {
1708         avic_set_running(vcpu, true);
1709 }
1710
1711 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1712 {
1713         return to_svm(vcpu)->vmcb->save.rflags;
1714 }
1715
1716 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1717 {
1718        /*
1719         * Any change of EFLAGS.VM is accompanied by a reload of SS
1720         * (caused by either a task switch or an inter-privilege IRET),
1721         * so we do not need to update the CPL here.
1722         */
1723         to_svm(vcpu)->vmcb->save.rflags = rflags;
1724 }
1725
1726 static u32 svm_get_pkru(struct kvm_vcpu *vcpu)
1727 {
1728         return 0;
1729 }
1730
1731 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1732 {
1733         switch (reg) {
1734         case VCPU_EXREG_PDPTR:
1735                 BUG_ON(!npt_enabled);
1736                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1737                 break;
1738         default:
1739                 BUG();
1740         }
1741 }
1742
1743 static void svm_set_vintr(struct vcpu_svm *svm)
1744 {
1745         set_intercept(svm, INTERCEPT_VINTR);
1746 }
1747
1748 static void svm_clear_vintr(struct vcpu_svm *svm)
1749 {
1750         clr_intercept(svm, INTERCEPT_VINTR);
1751 }
1752
1753 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1754 {
1755         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1756
1757         switch (seg) {
1758         case VCPU_SREG_CS: return &save->cs;
1759         case VCPU_SREG_DS: return &save->ds;
1760         case VCPU_SREG_ES: return &save->es;
1761         case VCPU_SREG_FS: return &save->fs;
1762         case VCPU_SREG_GS: return &save->gs;
1763         case VCPU_SREG_SS: return &save->ss;
1764         case VCPU_SREG_TR: return &save->tr;
1765         case VCPU_SREG_LDTR: return &save->ldtr;
1766         }
1767         BUG();
1768         return NULL;
1769 }
1770
1771 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1772 {
1773         struct vmcb_seg *s = svm_seg(vcpu, seg);
1774
1775         return s->base;
1776 }
1777
1778 static void svm_get_segment(struct kvm_vcpu *vcpu,
1779                             struct kvm_segment *var, int seg)
1780 {
1781         struct vmcb_seg *s = svm_seg(vcpu, seg);
1782
1783         var->base = s->base;
1784         var->limit = s->limit;
1785         var->selector = s->selector;
1786         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1787         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1788         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1789         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1790         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1791         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1792         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1793
1794         /*
1795          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1796          * However, the SVM spec states that the G bit is not observed by the
1797          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1798          * So let's synthesize a legal G bit for all segments, this helps
1799          * running KVM nested. It also helps cross-vendor migration, because
1800          * Intel's vmentry has a check on the 'G' bit.
1801          */
1802         var->g = s->limit > 0xfffff;
1803
1804         /*
1805          * AMD's VMCB does not have an explicit unusable field, so emulate it
1806          * for cross vendor migration purposes by "not present"
1807          */
1808         var->unusable = !var->present || (var->type == 0);
1809
1810         switch (seg) {
1811         case VCPU_SREG_TR:
1812                 /*
1813                  * Work around a bug where the busy flag in the tr selector
1814                  * isn't exposed
1815                  */
1816                 var->type |= 0x2;
1817                 break;
1818         case VCPU_SREG_DS:
1819         case VCPU_SREG_ES:
1820         case VCPU_SREG_FS:
1821         case VCPU_SREG_GS:
1822                 /*
1823                  * The accessed bit must always be set in the segment
1824                  * descriptor cache, although it can be cleared in the
1825                  * descriptor, the cached bit always remains at 1. Since
1826                  * Intel has a check on this, set it here to support
1827                  * cross-vendor migration.
1828                  */
1829                 if (!var->unusable)
1830                         var->type |= 0x1;
1831                 break;
1832         case VCPU_SREG_SS:
1833                 /*
1834                  * On AMD CPUs sometimes the DB bit in the segment
1835                  * descriptor is left as 1, although the whole segment has
1836                  * been made unusable. Clear it here to pass an Intel VMX
1837                  * entry check when cross vendor migrating.
1838                  */
1839                 if (var->unusable)
1840                         var->db = 0;
1841                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1842                 break;
1843         }
1844 }
1845
1846 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1847 {
1848         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1849
1850         return save->cpl;
1851 }
1852
1853 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1854 {
1855         struct vcpu_svm *svm = to_svm(vcpu);
1856
1857         dt->size = svm->vmcb->save.idtr.limit;
1858         dt->address = svm->vmcb->save.idtr.base;
1859 }
1860
1861 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1862 {
1863         struct vcpu_svm *svm = to_svm(vcpu);
1864
1865         svm->vmcb->save.idtr.limit = dt->size;
1866         svm->vmcb->save.idtr.base = dt->address ;
1867         mark_dirty(svm->vmcb, VMCB_DT);
1868 }
1869
1870 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1871 {
1872         struct vcpu_svm *svm = to_svm(vcpu);
1873
1874         dt->size = svm->vmcb->save.gdtr.limit;
1875         dt->address = svm->vmcb->save.gdtr.base;
1876 }
1877
1878 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1879 {
1880         struct vcpu_svm *svm = to_svm(vcpu);
1881
1882         svm->vmcb->save.gdtr.limit = dt->size;
1883         svm->vmcb->save.gdtr.base = dt->address ;
1884         mark_dirty(svm->vmcb, VMCB_DT);
1885 }
1886
1887 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1888 {
1889 }
1890
1891 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1892 {
1893 }
1894
1895 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1896 {
1897 }
1898
1899 static void update_cr0_intercept(struct vcpu_svm *svm)
1900 {
1901         ulong gcr0 = svm->vcpu.arch.cr0;
1902         u64 *hcr0 = &svm->vmcb->save.cr0;
1903
1904         *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1905                 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1906
1907         mark_dirty(svm->vmcb, VMCB_CR);
1908
1909         if (gcr0 == *hcr0) {
1910                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1911                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1912         } else {
1913                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1914                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1915         }
1916 }
1917
1918 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1919 {
1920         struct vcpu_svm *svm = to_svm(vcpu);
1921
1922 #ifdef CONFIG_X86_64
1923         if (vcpu->arch.efer & EFER_LME) {
1924                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1925                         vcpu->arch.efer |= EFER_LMA;
1926                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1927                 }
1928
1929                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1930                         vcpu->arch.efer &= ~EFER_LMA;
1931                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1932                 }
1933         }
1934 #endif
1935         vcpu->arch.cr0 = cr0;
1936
1937         if (!npt_enabled)
1938                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1939
1940         /*
1941          * re-enable caching here because the QEMU bios
1942          * does not do it - this results in some delay at
1943          * reboot
1944          */
1945         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1946                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1947         svm->vmcb->save.cr0 = cr0;
1948         mark_dirty(svm->vmcb, VMCB_CR);
1949         update_cr0_intercept(svm);
1950 }
1951
1952 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1953 {
1954         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1955         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1956
1957         if (cr4 & X86_CR4_VMXE)
1958                 return 1;
1959
1960         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1961                 svm_flush_tlb(vcpu);
1962
1963         vcpu->arch.cr4 = cr4;
1964         if (!npt_enabled)
1965                 cr4 |= X86_CR4_PAE;
1966         cr4 |= host_cr4_mce;
1967         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1968         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1969         return 0;
1970 }
1971
1972 static void svm_set_segment(struct kvm_vcpu *vcpu,
1973                             struct kvm_segment *var, int seg)
1974 {
1975         struct vcpu_svm *svm = to_svm(vcpu);
1976         struct vmcb_seg *s = svm_seg(vcpu, seg);
1977
1978         s->base = var->base;
1979         s->limit = var->limit;
1980         s->selector = var->selector;
1981         if (var->unusable)
1982                 s->attrib = 0;
1983         else {
1984                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1985                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1986                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1987                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1988                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1989                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1990                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1991                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1992         }
1993
1994         /*
1995          * This is always accurate, except if SYSRET returned to a segment
1996          * with SS.DPL != 3.  Intel does not have this quirk, and always
1997          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1998          * would entail passing the CPL to userspace and back.
1999          */
2000         if (seg == VCPU_SREG_SS)
2001                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2002
2003         mark_dirty(svm->vmcb, VMCB_SEG);
2004 }
2005
2006 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2007 {
2008         struct vcpu_svm *svm = to_svm(vcpu);
2009
2010         clr_exception_intercept(svm, BP_VECTOR);
2011
2012         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2013                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2014                         set_exception_intercept(svm, BP_VECTOR);
2015         } else
2016                 vcpu->guest_debug = 0;
2017 }
2018
2019 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2020 {
2021         if (sd->next_asid > sd->max_asid) {
2022                 ++sd->asid_generation;
2023                 sd->next_asid = 1;
2024                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2025         }
2026
2027         svm->asid_generation = sd->asid_generation;
2028         svm->vmcb->control.asid = sd->next_asid++;
2029
2030         mark_dirty(svm->vmcb, VMCB_ASID);
2031 }
2032
2033 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2034 {
2035         return to_svm(vcpu)->vmcb->save.dr6;
2036 }
2037
2038 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2039 {
2040         struct vcpu_svm *svm = to_svm(vcpu);
2041
2042         svm->vmcb->save.dr6 = value;
2043         mark_dirty(svm->vmcb, VMCB_DR);
2044 }
2045
2046 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2047 {
2048         struct vcpu_svm *svm = to_svm(vcpu);
2049
2050         get_debugreg(vcpu->arch.db[0], 0);
2051         get_debugreg(vcpu->arch.db[1], 1);
2052         get_debugreg(vcpu->arch.db[2], 2);
2053         get_debugreg(vcpu->arch.db[3], 3);
2054         vcpu->arch.dr6 = svm_get_dr6(vcpu);
2055         vcpu->arch.dr7 = svm->vmcb->save.dr7;
2056
2057         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2058         set_dr_intercepts(svm);
2059 }
2060
2061 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2062 {
2063         struct vcpu_svm *svm = to_svm(vcpu);
2064
2065         svm->vmcb->save.dr7 = value;
2066         mark_dirty(svm->vmcb, VMCB_DR);
2067 }
2068
2069 static int pf_interception(struct vcpu_svm *svm)
2070 {
2071         u64 fault_address = svm->vmcb->control.exit_info_2;
2072         u64 error_code;
2073         int r = 1;
2074
2075         switch (svm->apf_reason) {
2076         default:
2077                 error_code = svm->vmcb->control.exit_info_1;
2078
2079                 trace_kvm_page_fault(fault_address, error_code);
2080                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
2081                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
2082                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2083                         svm->vmcb->control.insn_bytes,
2084                         svm->vmcb->control.insn_len);
2085                 break;
2086         case KVM_PV_REASON_PAGE_NOT_PRESENT:
2087                 svm->apf_reason = 0;
2088                 local_irq_disable();
2089                 kvm_async_pf_task_wait(fault_address);
2090                 local_irq_enable();
2091                 break;
2092         case KVM_PV_REASON_PAGE_READY:
2093                 svm->apf_reason = 0;
2094                 local_irq_disable();
2095                 kvm_async_pf_task_wake(fault_address);
2096                 local_irq_enable();
2097                 break;
2098         }
2099         return r;
2100 }
2101
2102 static int db_interception(struct vcpu_svm *svm)
2103 {
2104         struct kvm_run *kvm_run = svm->vcpu.run;
2105
2106         if (!(svm->vcpu.guest_debug &
2107               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2108                 !svm->nmi_singlestep) {
2109                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2110                 return 1;
2111         }
2112
2113         if (svm->nmi_singlestep) {
2114                 svm->nmi_singlestep = false;
2115                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
2116                         svm->vmcb->save.rflags &=
2117                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2118         }
2119
2120         if (svm->vcpu.guest_debug &
2121             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2122                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2123                 kvm_run->debug.arch.pc =
2124                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2125                 kvm_run->debug.arch.exception = DB_VECTOR;
2126                 return 0;
2127         }
2128
2129         return 1;
2130 }
2131
2132 static int bp_interception(struct vcpu_svm *svm)
2133 {
2134         struct kvm_run *kvm_run = svm->vcpu.run;
2135
2136         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2137         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2138         kvm_run->debug.arch.exception = BP_VECTOR;
2139         return 0;
2140 }
2141
2142 static int ud_interception(struct vcpu_svm *svm)
2143 {
2144         int er;
2145
2146         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2147         if (er != EMULATE_DONE)
2148                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2149         return 1;
2150 }
2151
2152 static int ac_interception(struct vcpu_svm *svm)
2153 {
2154         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2155         return 1;
2156 }
2157
2158 static bool is_erratum_383(void)
2159 {
2160         int err, i;
2161         u64 value;
2162
2163         if (!erratum_383_found)
2164                 return false;
2165
2166         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2167         if (err)
2168                 return false;
2169
2170         /* Bit 62 may or may not be set for this mce */
2171         value &= ~(1ULL << 62);
2172
2173         if (value != 0xb600000000010015ULL)
2174                 return false;
2175
2176         /* Clear MCi_STATUS registers */
2177         for (i = 0; i < 6; ++i)
2178                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2179
2180         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2181         if (!err) {
2182                 u32 low, high;
2183
2184                 value &= ~(1ULL << 2);
2185                 low    = lower_32_bits(value);
2186                 high   = upper_32_bits(value);
2187
2188                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2189         }
2190
2191         /* Flush tlb to evict multi-match entries */
2192         __flush_tlb_all();
2193
2194         return true;
2195 }
2196
2197 static void svm_handle_mce(struct vcpu_svm *svm)
2198 {
2199         if (is_erratum_383()) {
2200                 /*
2201                  * Erratum 383 triggered. Guest state is corrupt so kill the
2202                  * guest.
2203                  */
2204                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2205
2206                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2207
2208                 return;
2209         }
2210
2211         /*
2212          * On an #MC intercept the MCE handler is not called automatically in
2213          * the host. So do it by hand here.
2214          */
2215         asm volatile (
2216                 "int $0x12\n");
2217         /* not sure if we ever come back to this point */
2218
2219         return;
2220 }
2221
2222 static int mc_interception(struct vcpu_svm *svm)
2223 {
2224         return 1;
2225 }
2226
2227 static int shutdown_interception(struct vcpu_svm *svm)
2228 {
2229         struct kvm_run *kvm_run = svm->vcpu.run;
2230
2231         /*
2232          * VMCB is undefined after a SHUTDOWN intercept
2233          * so reinitialize it.
2234          */
2235         clear_page(svm->vmcb);
2236         init_vmcb(svm);
2237
2238         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2239         return 0;
2240 }
2241
2242 static int io_interception(struct vcpu_svm *svm)
2243 {
2244         struct kvm_vcpu *vcpu = &svm->vcpu;
2245         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2246         int size, in, string;
2247         unsigned port;
2248
2249         ++svm->vcpu.stat.io_exits;
2250         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2251         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2252         if (string)
2253                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2254
2255         port = io_info >> 16;
2256         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2257         svm->next_rip = svm->vmcb->control.exit_info_2;
2258         skip_emulated_instruction(&svm->vcpu);
2259
2260         return in ? kvm_fast_pio_in(vcpu, size, port)
2261                   : kvm_fast_pio_out(vcpu, size, port);
2262 }
2263
2264 static int nmi_interception(struct vcpu_svm *svm)
2265 {
2266         return 1;
2267 }
2268
2269 static int intr_interception(struct vcpu_svm *svm)
2270 {
2271         ++svm->vcpu.stat.irq_exits;
2272         return 1;
2273 }
2274
2275 static int nop_on_interception(struct vcpu_svm *svm)
2276 {
2277         return 1;
2278 }
2279
2280 static int halt_interception(struct vcpu_svm *svm)
2281 {
2282         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2283         return kvm_emulate_halt(&svm->vcpu);
2284 }
2285
2286 static int vmmcall_interception(struct vcpu_svm *svm)
2287 {
2288         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2289         return kvm_emulate_hypercall(&svm->vcpu);
2290 }
2291
2292 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2293 {
2294         struct vcpu_svm *svm = to_svm(vcpu);
2295
2296         return svm->nested.nested_cr3;
2297 }
2298
2299 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2300 {
2301         struct vcpu_svm *svm = to_svm(vcpu);
2302         u64 cr3 = svm->nested.nested_cr3;
2303         u64 pdpte;
2304         int ret;
2305
2306         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2307                                        offset_in_page(cr3) + index * 8, 8);
2308         if (ret)
2309                 return 0;
2310         return pdpte;
2311 }
2312
2313 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2314                                    unsigned long root)
2315 {
2316         struct vcpu_svm *svm = to_svm(vcpu);
2317
2318         svm->vmcb->control.nested_cr3 = root;
2319         mark_dirty(svm->vmcb, VMCB_NPT);
2320         svm_flush_tlb(vcpu);
2321 }
2322
2323 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2324                                        struct x86_exception *fault)
2325 {
2326         struct vcpu_svm *svm = to_svm(vcpu);
2327
2328         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2329                 /*
2330                  * TODO: track the cause of the nested page fault, and
2331                  * correctly fill in the high bits of exit_info_1.
2332                  */
2333                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2334                 svm->vmcb->control.exit_code_hi = 0;
2335                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2336                 svm->vmcb->control.exit_info_2 = fault->address;
2337         }
2338
2339         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2340         svm->vmcb->control.exit_info_1 |= fault->error_code;
2341
2342         /*
2343          * The present bit is always zero for page structure faults on real
2344          * hardware.
2345          */
2346         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2347                 svm->vmcb->control.exit_info_1 &= ~1;
2348
2349         nested_svm_vmexit(svm);
2350 }
2351
2352 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2353 {
2354         WARN_ON(mmu_is_nested(vcpu));
2355         kvm_init_shadow_mmu(vcpu);
2356         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2357         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2358         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2359         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2360         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2361         reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2362         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2363 }
2364
2365 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2366 {
2367         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2368 }
2369
2370 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2371 {
2372         if (!(svm->vcpu.arch.efer & EFER_SVME)
2373             || !is_paging(&svm->vcpu)) {
2374                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2375                 return 1;
2376         }
2377
2378         if (svm->vmcb->save.cpl) {
2379                 kvm_inject_gp(&svm->vcpu, 0);
2380                 return 1;
2381         }
2382
2383        return 0;
2384 }
2385
2386 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2387                                       bool has_error_code, u32 error_code)
2388 {
2389         int vmexit;
2390
2391         if (!is_guest_mode(&svm->vcpu))
2392                 return 0;
2393
2394         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2395         svm->vmcb->control.exit_code_hi = 0;
2396         svm->vmcb->control.exit_info_1 = error_code;
2397         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2398
2399         vmexit = nested_svm_intercept(svm);
2400         if (vmexit == NESTED_EXIT_DONE)
2401                 svm->nested.exit_required = true;
2402
2403         return vmexit;
2404 }
2405
2406 /* This function returns true if it is save to enable the irq window */
2407 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2408 {
2409         if (!is_guest_mode(&svm->vcpu))
2410                 return true;
2411
2412         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2413                 return true;
2414
2415         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2416                 return false;
2417
2418         /*
2419          * if vmexit was already requested (by intercepted exception
2420          * for instance) do not overwrite it with "external interrupt"
2421          * vmexit.
2422          */
2423         if (svm->nested.exit_required)
2424                 return false;
2425
2426         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2427         svm->vmcb->control.exit_info_1 = 0;
2428         svm->vmcb->control.exit_info_2 = 0;
2429
2430         if (svm->nested.intercept & 1ULL) {
2431                 /*
2432                  * The #vmexit can't be emulated here directly because this
2433                  * code path runs with irqs and preemption disabled. A
2434                  * #vmexit emulation might sleep. Only signal request for
2435                  * the #vmexit here.
2436                  */
2437                 svm->nested.exit_required = true;
2438                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2439                 return false;
2440         }
2441
2442         return true;
2443 }
2444
2445 /* This function returns true if it is save to enable the nmi window */
2446 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2447 {
2448         if (!is_guest_mode(&svm->vcpu))
2449                 return true;
2450
2451         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2452                 return true;
2453
2454         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2455         svm->nested.exit_required = true;
2456
2457         return false;
2458 }
2459
2460 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2461 {
2462         struct page *page;
2463
2464         might_sleep();
2465
2466         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2467         if (is_error_page(page))
2468                 goto error;
2469
2470         *_page = page;
2471
2472         return kmap(page);
2473
2474 error:
2475         kvm_inject_gp(&svm->vcpu, 0);
2476
2477         return NULL;
2478 }
2479
2480 static void nested_svm_unmap(struct page *page)
2481 {
2482         kunmap(page);
2483         kvm_release_page_dirty(page);
2484 }
2485
2486 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2487 {
2488         unsigned port, size, iopm_len;
2489         u16 val, mask;
2490         u8 start_bit;
2491         u64 gpa;
2492
2493         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2494                 return NESTED_EXIT_HOST;
2495
2496         port = svm->vmcb->control.exit_info_1 >> 16;
2497         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2498                 SVM_IOIO_SIZE_SHIFT;
2499         gpa  = svm->nested.vmcb_iopm + (port / 8);
2500         start_bit = port % 8;
2501         iopm_len = (start_bit + size > 8) ? 2 : 1;
2502         mask = (0xf >> (4 - size)) << start_bit;
2503         val = 0;
2504
2505         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2506                 return NESTED_EXIT_DONE;
2507
2508         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2509 }
2510
2511 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2512 {
2513         u32 offset, msr, value;
2514         int write, mask;
2515
2516         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2517                 return NESTED_EXIT_HOST;
2518
2519         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2520         offset = svm_msrpm_offset(msr);
2521         write  = svm->vmcb->control.exit_info_1 & 1;
2522         mask   = 1 << ((2 * (msr & 0xf)) + write);
2523
2524         if (offset == MSR_INVALID)
2525                 return NESTED_EXIT_DONE;
2526
2527         /* Offset is in 32 bit units but need in 8 bit units */
2528         offset *= 4;
2529
2530         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2531                 return NESTED_EXIT_DONE;
2532
2533         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2534 }
2535
2536 static int nested_svm_exit_special(struct vcpu_svm *svm)
2537 {
2538         u32 exit_code = svm->vmcb->control.exit_code;
2539
2540         switch (exit_code) {
2541         case SVM_EXIT_INTR:
2542         case SVM_EXIT_NMI:
2543         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2544                 return NESTED_EXIT_HOST;
2545         case SVM_EXIT_NPF:
2546                 /* For now we are always handling NPFs when using them */
2547                 if (npt_enabled)
2548                         return NESTED_EXIT_HOST;
2549                 break;
2550         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2551                 /* When we're shadowing, trap PFs, but not async PF */
2552                 if (!npt_enabled && svm->apf_reason == 0)
2553                         return NESTED_EXIT_HOST;
2554                 break;
2555         default:
2556                 break;
2557         }
2558
2559         return NESTED_EXIT_CONTINUE;
2560 }
2561
2562 /*
2563  * If this function returns true, this #vmexit was already handled
2564  */
2565 static int nested_svm_intercept(struct vcpu_svm *svm)
2566 {
2567         u32 exit_code = svm->vmcb->control.exit_code;
2568         int vmexit = NESTED_EXIT_HOST;
2569
2570         switch (exit_code) {
2571         case SVM_EXIT_MSR:
2572                 vmexit = nested_svm_exit_handled_msr(svm);
2573                 break;
2574         case SVM_EXIT_IOIO:
2575                 vmexit = nested_svm_intercept_ioio(svm);
2576                 break;
2577         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2578                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2579                 if (svm->nested.intercept_cr & bit)
2580                         vmexit = NESTED_EXIT_DONE;
2581                 break;
2582         }
2583         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2584                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2585                 if (svm->nested.intercept_dr & bit)
2586                         vmexit = NESTED_EXIT_DONE;
2587                 break;
2588         }
2589         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2590                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2591                 if (svm->nested.intercept_exceptions & excp_bits)
2592                         vmexit = NESTED_EXIT_DONE;
2593                 /* async page fault always cause vmexit */
2594                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2595                          svm->apf_reason != 0)
2596                         vmexit = NESTED_EXIT_DONE;
2597                 break;
2598         }
2599         case SVM_EXIT_ERR: {
2600                 vmexit = NESTED_EXIT_DONE;
2601                 break;
2602         }
2603         default: {
2604                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2605                 if (svm->nested.intercept & exit_bits)
2606                         vmexit = NESTED_EXIT_DONE;
2607         }
2608         }
2609
2610         return vmexit;
2611 }
2612
2613 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2614 {
2615         int vmexit;
2616
2617         vmexit = nested_svm_intercept(svm);
2618
2619         if (vmexit == NESTED_EXIT_DONE)
2620                 nested_svm_vmexit(svm);
2621
2622         return vmexit;
2623 }
2624
2625 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2626 {
2627         struct vmcb_control_area *dst  = &dst_vmcb->control;
2628         struct vmcb_control_area *from = &from_vmcb->control;
2629
2630         dst->intercept_cr         = from->intercept_cr;
2631         dst->intercept_dr         = from->intercept_dr;
2632         dst->intercept_exceptions = from->intercept_exceptions;
2633         dst->intercept            = from->intercept;
2634         dst->iopm_base_pa         = from->iopm_base_pa;
2635         dst->msrpm_base_pa        = from->msrpm_base_pa;
2636         dst->tsc_offset           = from->tsc_offset;
2637         dst->asid                 = from->asid;
2638         dst->tlb_ctl              = from->tlb_ctl;
2639         dst->int_ctl              = from->int_ctl;
2640         dst->int_vector           = from->int_vector;
2641         dst->int_state            = from->int_state;
2642         dst->exit_code            = from->exit_code;
2643         dst->exit_code_hi         = from->exit_code_hi;
2644         dst->exit_info_1          = from->exit_info_1;
2645         dst->exit_info_2          = from->exit_info_2;
2646         dst->exit_int_info        = from->exit_int_info;
2647         dst->exit_int_info_err    = from->exit_int_info_err;
2648         dst->nested_ctl           = from->nested_ctl;
2649         dst->event_inj            = from->event_inj;
2650         dst->event_inj_err        = from->event_inj_err;
2651         dst->nested_cr3           = from->nested_cr3;
2652         dst->lbr_ctl              = from->lbr_ctl;
2653 }
2654
2655 static int nested_svm_vmexit(struct vcpu_svm *svm)
2656 {
2657         struct vmcb *nested_vmcb;
2658         struct vmcb *hsave = svm->nested.hsave;
2659         struct vmcb *vmcb = svm->vmcb;
2660         struct page *page;
2661
2662         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2663                                        vmcb->control.exit_info_1,
2664                                        vmcb->control.exit_info_2,
2665                                        vmcb->control.exit_int_info,
2666                                        vmcb->control.exit_int_info_err,
2667                                        KVM_ISA_SVM);
2668
2669         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2670         if (!nested_vmcb)
2671                 return 1;
2672
2673         /* Exit Guest-Mode */
2674         leave_guest_mode(&svm->vcpu);
2675         svm->nested.vmcb = 0;
2676
2677         /* Give the current vmcb to the guest */
2678         disable_gif(svm);
2679
2680         nested_vmcb->save.es     = vmcb->save.es;
2681         nested_vmcb->save.cs     = vmcb->save.cs;
2682         nested_vmcb->save.ss     = vmcb->save.ss;
2683         nested_vmcb->save.ds     = vmcb->save.ds;
2684         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2685         nested_vmcb->save.idtr   = vmcb->save.idtr;
2686         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2687         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2688         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2689         nested_vmcb->save.cr2    = vmcb->save.cr2;
2690         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2691         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2692         nested_vmcb->save.rip    = vmcb->save.rip;
2693         nested_vmcb->save.rsp    = vmcb->save.rsp;
2694         nested_vmcb->save.rax    = vmcb->save.rax;
2695         nested_vmcb->save.dr7    = vmcb->save.dr7;
2696         nested_vmcb->save.dr6    = vmcb->save.dr6;
2697         nested_vmcb->save.cpl    = vmcb->save.cpl;
2698
2699         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2700         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2701         nested_vmcb->control.int_state         = vmcb->control.int_state;
2702         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2703         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2704         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2705         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2706         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2707         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2708
2709         if (svm->nrips_enabled)
2710                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2711
2712         /*
2713          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2714          * to make sure that we do not lose injected events. So check event_inj
2715          * here and copy it to exit_int_info if it is valid.
2716          * Exit_int_info and event_inj can't be both valid because the case
2717          * below only happens on a VMRUN instruction intercept which has
2718          * no valid exit_int_info set.
2719          */
2720         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2721                 struct vmcb_control_area *nc = &nested_vmcb->control;
2722
2723                 nc->exit_int_info     = vmcb->control.event_inj;
2724                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2725         }
2726
2727         nested_vmcb->control.tlb_ctl           = 0;
2728         nested_vmcb->control.event_inj         = 0;
2729         nested_vmcb->control.event_inj_err     = 0;
2730
2731         /* We always set V_INTR_MASKING and remember the old value in hflags */
2732         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2733                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2734
2735         /* Restore the original control entries */
2736         copy_vmcb_control_area(vmcb, hsave);
2737
2738         kvm_clear_exception_queue(&svm->vcpu);
2739         kvm_clear_interrupt_queue(&svm->vcpu);
2740
2741         svm->nested.nested_cr3 = 0;
2742
2743         /* Restore selected save entries */
2744         svm->vmcb->save.es = hsave->save.es;
2745         svm->vmcb->save.cs = hsave->save.cs;
2746         svm->vmcb->save.ss = hsave->save.ss;
2747         svm->vmcb->save.ds = hsave->save.ds;
2748         svm->vmcb->save.gdtr = hsave->save.gdtr;
2749         svm->vmcb->save.idtr = hsave->save.idtr;
2750         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2751         svm_set_efer(&svm->vcpu, hsave->save.efer);
2752         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2753         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2754         if (npt_enabled) {
2755                 svm->vmcb->save.cr3 = hsave->save.cr3;
2756                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2757         } else {
2758                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2759         }
2760         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2761         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2762         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2763         svm->vmcb->save.dr7 = 0;
2764         svm->vmcb->save.cpl = 0;
2765         svm->vmcb->control.exit_int_info = 0;
2766
2767         mark_all_dirty(svm->vmcb);
2768
2769         nested_svm_unmap(page);
2770
2771         nested_svm_uninit_mmu_context(&svm->vcpu);
2772         kvm_mmu_reset_context(&svm->vcpu);
2773         kvm_mmu_load(&svm->vcpu);
2774
2775         return 0;
2776 }
2777
2778 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2779 {
2780         /*
2781          * This function merges the msr permission bitmaps of kvm and the
2782          * nested vmcb. It is optimized in that it only merges the parts where
2783          * the kvm msr permission bitmap may contain zero bits
2784          */
2785         int i;
2786
2787         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2788                 return true;
2789
2790         for (i = 0; i < MSRPM_OFFSETS; i++) {
2791                 u32 value, p;
2792                 u64 offset;
2793
2794                 if (msrpm_offsets[i] == 0xffffffff)
2795                         break;
2796
2797                 p      = msrpm_offsets[i];
2798                 offset = svm->nested.vmcb_msrpm + (p * 4);
2799
2800                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2801                         return false;
2802
2803                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2804         }
2805
2806         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2807
2808         return true;
2809 }
2810
2811 static bool nested_vmcb_checks(struct vmcb *vmcb)
2812 {
2813         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2814                 return false;
2815
2816         if (vmcb->control.asid == 0)
2817                 return false;
2818
2819         if (vmcb->control.nested_ctl && !npt_enabled)
2820                 return false;
2821
2822         return true;
2823 }
2824
2825 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2826 {
2827         struct vmcb *nested_vmcb;
2828         struct vmcb *hsave = svm->nested.hsave;
2829         struct vmcb *vmcb = svm->vmcb;
2830         struct page *page;
2831         u64 vmcb_gpa;
2832
2833         vmcb_gpa = svm->vmcb->save.rax;
2834
2835         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2836         if (!nested_vmcb)
2837                 return false;
2838
2839         if (!nested_vmcb_checks(nested_vmcb)) {
2840                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2841                 nested_vmcb->control.exit_code_hi = 0;
2842                 nested_vmcb->control.exit_info_1  = 0;
2843                 nested_vmcb->control.exit_info_2  = 0;
2844
2845                 nested_svm_unmap(page);
2846
2847                 return false;
2848         }
2849
2850         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2851                                nested_vmcb->save.rip,
2852                                nested_vmcb->control.int_ctl,
2853                                nested_vmcb->control.event_inj,
2854                                nested_vmcb->control.nested_ctl);
2855
2856         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2857                                     nested_vmcb->control.intercept_cr >> 16,
2858                                     nested_vmcb->control.intercept_exceptions,
2859                                     nested_vmcb->control.intercept);
2860
2861         /* Clear internal status */
2862         kvm_clear_exception_queue(&svm->vcpu);
2863         kvm_clear_interrupt_queue(&svm->vcpu);
2864
2865         /*
2866          * Save the old vmcb, so we don't need to pick what we save, but can
2867          * restore everything when a VMEXIT occurs
2868          */
2869         hsave->save.es     = vmcb->save.es;
2870         hsave->save.cs     = vmcb->save.cs;
2871         hsave->save.ss     = vmcb->save.ss;
2872         hsave->save.ds     = vmcb->save.ds;
2873         hsave->save.gdtr   = vmcb->save.gdtr;
2874         hsave->save.idtr   = vmcb->save.idtr;
2875         hsave->save.efer   = svm->vcpu.arch.efer;
2876         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2877         hsave->save.cr4    = svm->vcpu.arch.cr4;
2878         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2879         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2880         hsave->save.rsp    = vmcb->save.rsp;
2881         hsave->save.rax    = vmcb->save.rax;
2882         if (npt_enabled)
2883                 hsave->save.cr3    = vmcb->save.cr3;
2884         else
2885                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2886
2887         copy_vmcb_control_area(hsave, vmcb);
2888
2889         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2890                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2891         else
2892                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2893
2894         if (nested_vmcb->control.nested_ctl) {
2895                 kvm_mmu_unload(&svm->vcpu);
2896                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2897                 nested_svm_init_mmu_context(&svm->vcpu);
2898         }
2899
2900         /* Load the nested guest state */
2901         svm->vmcb->save.es = nested_vmcb->save.es;
2902         svm->vmcb->save.cs = nested_vmcb->save.cs;
2903         svm->vmcb->save.ss = nested_vmcb->save.ss;
2904         svm->vmcb->save.ds = nested_vmcb->save.ds;
2905         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2906         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2907         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2908         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2909         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2910         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2911         if (npt_enabled) {
2912                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2913                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2914         } else
2915                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2916
2917         /* Guest paging mode is active - reset mmu */
2918         kvm_mmu_reset_context(&svm->vcpu);
2919
2920         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2921         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2922         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2923         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2924
2925         /* In case we don't even reach vcpu_run, the fields are not updated */
2926         svm->vmcb->save.rax = nested_vmcb->save.rax;
2927         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2928         svm->vmcb->save.rip = nested_vmcb->save.rip;
2929         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2930         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2931         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2932
2933         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2934         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2935
2936         /* cache intercepts */
2937         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2938         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2939         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2940         svm->nested.intercept            = nested_vmcb->control.intercept;
2941
2942         svm_flush_tlb(&svm->vcpu);
2943         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2944         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2945                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2946         else
2947                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2948
2949         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2950                 /* We only want the cr8 intercept bits of the guest */
2951                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2952                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2953         }
2954
2955         /* We don't want to see VMMCALLs from a nested guest */
2956         clr_intercept(svm, INTERCEPT_VMMCALL);
2957
2958         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2959         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2960         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2961         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2962         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2963         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2964
2965         nested_svm_unmap(page);
2966
2967         /* Enter Guest-Mode */
2968         enter_guest_mode(&svm->vcpu);
2969
2970         /*
2971          * Merge guest and host intercepts - must be called  with vcpu in
2972          * guest-mode to take affect here
2973          */
2974         recalc_intercepts(svm);
2975
2976         svm->nested.vmcb = vmcb_gpa;
2977
2978         enable_gif(svm);
2979
2980         mark_all_dirty(svm->vmcb);
2981
2982         return true;
2983 }
2984
2985 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2986 {
2987         to_vmcb->save.fs = from_vmcb->save.fs;
2988         to_vmcb->save.gs = from_vmcb->save.gs;
2989         to_vmcb->save.tr = from_vmcb->save.tr;
2990         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2991         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2992         to_vmcb->save.star = from_vmcb->save.star;
2993         to_vmcb->save.lstar = from_vmcb->save.lstar;
2994         to_vmcb->save.cstar = from_vmcb->save.cstar;
2995         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2996         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2997         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2998         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2999 }
3000
3001 static int vmload_interception(struct vcpu_svm *svm)
3002 {
3003         struct vmcb *nested_vmcb;
3004         struct page *page;
3005
3006         if (nested_svm_check_permissions(svm))
3007                 return 1;
3008
3009         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3010         if (!nested_vmcb)
3011                 return 1;
3012
3013         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3014         skip_emulated_instruction(&svm->vcpu);
3015
3016         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3017         nested_svm_unmap(page);
3018
3019         return 1;
3020 }
3021
3022 static int vmsave_interception(struct vcpu_svm *svm)
3023 {
3024         struct vmcb *nested_vmcb;
3025         struct page *page;
3026
3027         if (nested_svm_check_permissions(svm))
3028                 return 1;
3029
3030         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3031         if (!nested_vmcb)
3032                 return 1;
3033
3034         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3035         skip_emulated_instruction(&svm->vcpu);
3036
3037         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3038         nested_svm_unmap(page);
3039
3040         return 1;
3041 }
3042
3043 static int vmrun_interception(struct vcpu_svm *svm)
3044 {
3045         if (nested_svm_check_permissions(svm))
3046                 return 1;
3047
3048         /* Save rip after vmrun instruction */
3049         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3050
3051         if (!nested_svm_vmrun(svm))
3052                 return 1;
3053
3054         if (!nested_svm_vmrun_msrpm(svm))
3055                 goto failed;
3056
3057         return 1;
3058
3059 failed:
3060
3061         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3062         svm->vmcb->control.exit_code_hi = 0;
3063         svm->vmcb->control.exit_info_1  = 0;
3064         svm->vmcb->control.exit_info_2  = 0;
3065
3066         nested_svm_vmexit(svm);
3067
3068         return 1;
3069 }
3070
3071 static int stgi_interception(struct vcpu_svm *svm)
3072 {
3073         if (nested_svm_check_permissions(svm))
3074                 return 1;
3075
3076         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3077         skip_emulated_instruction(&svm->vcpu);
3078         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3079
3080         enable_gif(svm);
3081
3082         return 1;
3083 }
3084
3085 static int clgi_interception(struct vcpu_svm *svm)
3086 {
3087         if (nested_svm_check_permissions(svm))
3088                 return 1;
3089
3090         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3091         skip_emulated_instruction(&svm->vcpu);
3092
3093         disable_gif(svm);
3094
3095         /* After a CLGI no interrupts should come */
3096         if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3097                 svm_clear_vintr(svm);
3098                 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3099                 mark_dirty(svm->vmcb, VMCB_INTR);
3100         }
3101
3102         return 1;
3103 }
3104
3105 static int invlpga_interception(struct vcpu_svm *svm)
3106 {
3107         struct kvm_vcpu *vcpu = &svm->vcpu;
3108
3109         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3110                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3111
3112         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3113         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3114
3115         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3116         skip_emulated_instruction(&svm->vcpu);
3117         return 1;
3118 }
3119
3120 static int skinit_interception(struct vcpu_svm *svm)
3121 {
3122         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3123
3124         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3125         return 1;
3126 }
3127
3128 static int wbinvd_interception(struct vcpu_svm *svm)
3129 {
3130         return kvm_emulate_wbinvd(&svm->vcpu);
3131 }
3132
3133 static int xsetbv_interception(struct vcpu_svm *svm)
3134 {
3135         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3136         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3137
3138         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3139                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3140                 skip_emulated_instruction(&svm->vcpu);
3141         }
3142
3143         return 1;
3144 }
3145
3146 static int task_switch_interception(struct vcpu_svm *svm)
3147 {
3148         u16 tss_selector;
3149         int reason;
3150         int int_type = svm->vmcb->control.exit_int_info &
3151                 SVM_EXITINTINFO_TYPE_MASK;
3152         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3153         uint32_t type =
3154                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3155         uint32_t idt_v =
3156                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3157         bool has_error_code = false;
3158         u32 error_code = 0;
3159
3160         tss_selector = (u16)svm->vmcb->control.exit_info_1;
3161
3162         if (svm->vmcb->control.exit_info_2 &
3163             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3164                 reason = TASK_SWITCH_IRET;
3165         else if (svm->vmcb->control.exit_info_2 &
3166                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3167                 reason = TASK_SWITCH_JMP;
3168         else if (idt_v)
3169                 reason = TASK_SWITCH_GATE;
3170         else
3171                 reason = TASK_SWITCH_CALL;
3172
3173         if (reason == TASK_SWITCH_GATE) {
3174                 switch (type) {
3175                 case SVM_EXITINTINFO_TYPE_NMI:
3176                         svm->vcpu.arch.nmi_injected = false;
3177                         break;
3178                 case SVM_EXITINTINFO_TYPE_EXEPT:
3179                         if (svm->vmcb->control.exit_info_2 &
3180                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3181                                 has_error_code = true;
3182                                 error_code =
3183                                         (u32)svm->vmcb->control.exit_info_2;
3184                         }
3185                         kvm_clear_exception_queue(&svm->vcpu);
3186                         break;
3187                 case SVM_EXITINTINFO_TYPE_INTR:
3188                         kvm_clear_interrupt_queue(&svm->vcpu);
3189                         break;
3190                 default:
3191                         break;
3192                 }
3193         }
3194
3195         if (reason != TASK_SWITCH_GATE ||
3196             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3197             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3198              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3199                 skip_emulated_instruction(&svm->vcpu);
3200
3201         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3202                 int_vec = -1;
3203
3204         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3205                                 has_error_code, error_code) == EMULATE_FAIL) {
3206                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3207                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3208                 svm->vcpu.run->internal.ndata = 0;
3209                 return 0;
3210         }
3211         return 1;
3212 }
3213
3214 static int cpuid_interception(struct vcpu_svm *svm)
3215 {
3216         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3217         return kvm_emulate_cpuid(&svm->vcpu);
3218 }
3219
3220 static int iret_interception(struct vcpu_svm *svm)
3221 {
3222         ++svm->vcpu.stat.nmi_window_exits;
3223         clr_intercept(svm, INTERCEPT_IRET);
3224         svm->vcpu.arch.hflags |= HF_IRET_MASK;
3225         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3226         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3227         return 1;
3228 }
3229
3230 static int invlpg_interception(struct vcpu_svm *svm)
3231 {
3232         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3233                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3234
3235         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3236         skip_emulated_instruction(&svm->vcpu);
3237         return 1;
3238 }
3239
3240 static int emulate_on_interception(struct vcpu_svm *svm)
3241 {
3242         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3243 }
3244
3245 static int rdpmc_interception(struct vcpu_svm *svm)
3246 {
3247         int err;
3248
3249         if (!static_cpu_has(X86_FEATURE_NRIPS))
3250                 return emulate_on_interception(svm);
3251
3252         err = kvm_rdpmc(&svm->vcpu);
3253         return kvm_complete_insn_gp(&svm->vcpu, err);
3254 }
3255
3256 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3257                                             unsigned long val)
3258 {
3259         unsigned long cr0 = svm->vcpu.arch.cr0;
3260         bool ret = false;
3261         u64 intercept;
3262
3263         intercept = svm->nested.intercept;
3264
3265         if (!is_guest_mode(&svm->vcpu) ||
3266             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3267                 return false;
3268
3269         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3270         val &= ~SVM_CR0_SELECTIVE_MASK;
3271
3272         if (cr0 ^ val) {
3273                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3274                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3275         }
3276
3277         return ret;
3278 }
3279
3280 #define CR_VALID (1ULL << 63)
3281
3282 static int cr_interception(struct vcpu_svm *svm)
3283 {
3284         int reg, cr;
3285         unsigned long val;
3286         int err;
3287
3288         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3289                 return emulate_on_interception(svm);
3290
3291         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3292                 return emulate_on_interception(svm);
3293
3294         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3295         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3296                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3297         else
3298                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3299
3300         err = 0;
3301         if (cr >= 16) { /* mov to cr */
3302                 cr -= 16;
3303                 val = kvm_register_read(&svm->vcpu, reg);
3304                 switch (cr) {
3305                 case 0:
3306                         if (!check_selective_cr0_intercepted(svm, val))
3307                                 err = kvm_set_cr0(&svm->vcpu, val);
3308                         else
3309                                 return 1;
3310
3311                         break;
3312                 case 3:
3313                         err = kvm_set_cr3(&svm->vcpu, val);
3314                         break;
3315                 case 4:
3316                         err = kvm_set_cr4(&svm->vcpu, val);
3317                         break;
3318                 case 8:
3319                         err = kvm_set_cr8(&svm->vcpu, val);
3320                         break;
3321                 default:
3322                         WARN(1, "unhandled write to CR%d", cr);
3323                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3324                         return 1;
3325                 }
3326         } else { /* mov from cr */
3327                 switch (cr) {
3328                 case 0:
3329                         val = kvm_read_cr0(&svm->vcpu);
3330                         break;
3331                 case 2:
3332                         val = svm->vcpu.arch.cr2;
3333                         break;
3334                 case 3:
3335                         val = kvm_read_cr3(&svm->vcpu);
3336                         break;
3337                 case 4:
3338                         val = kvm_read_cr4(&svm->vcpu);
3339                         break;
3340                 case 8:
3341                         val = kvm_get_cr8(&svm->vcpu);
3342                         break;
3343                 default:
3344                         WARN(1, "unhandled read from CR%d", cr);
3345                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3346                         return 1;
3347                 }
3348                 kvm_register_write(&svm->vcpu, reg, val);
3349         }
3350         return kvm_complete_insn_gp(&svm->vcpu, err);
3351 }
3352
3353 static int dr_interception(struct vcpu_svm *svm)
3354 {
3355         int reg, dr;
3356         unsigned long val;
3357
3358         if (svm->vcpu.guest_debug == 0) {
3359                 /*
3360                  * No more DR vmexits; force a reload of the debug registers
3361                  * and reenter on this instruction.  The next vmexit will
3362                  * retrieve the full state of the debug registers.
3363                  */
3364                 clr_dr_intercepts(svm);
3365                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3366                 return 1;
3367         }
3368
3369         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3370                 return emulate_on_interception(svm);
3371
3372         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3373         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3374
3375         if (dr >= 16) { /* mov to DRn */
3376                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3377                         return 1;
3378                 val = kvm_register_read(&svm->vcpu, reg);
3379                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3380         } else {
3381                 if (!kvm_require_dr(&svm->vcpu, dr))
3382                         return 1;
3383                 kvm_get_dr(&svm->vcpu, dr, &val);
3384                 kvm_register_write(&svm->vcpu, reg, val);
3385         }
3386
3387         skip_emulated_instruction(&svm->vcpu);
3388
3389         return 1;
3390 }
3391
3392 static int cr8_write_interception(struct vcpu_svm *svm)
3393 {
3394         struct kvm_run *kvm_run = svm->vcpu.run;
3395         int r;
3396
3397         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3398         /* instruction emulation calls kvm_set_cr8() */
3399         r = cr_interception(svm);
3400         if (lapic_in_kernel(&svm->vcpu))
3401                 return r;
3402         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3403                 return r;
3404         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3405         return 0;
3406 }
3407
3408 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3409 {
3410         struct vcpu_svm *svm = to_svm(vcpu);
3411
3412         switch (msr_info->index) {
3413         case MSR_IA32_TSC: {
3414                 msr_info->data = svm->vmcb->control.tsc_offset +
3415                         kvm_scale_tsc(vcpu, rdtsc());
3416
3417                 break;
3418         }
3419         case MSR_STAR:
3420                 msr_info->data = svm->vmcb->save.star;
3421                 break;
3422 #ifdef CONFIG_X86_64
3423         case MSR_LSTAR:
3424                 msr_info->data = svm->vmcb->save.lstar;
3425                 break;
3426         case MSR_CSTAR:
3427                 msr_info->data = svm->vmcb->save.cstar;
3428                 break;
3429         case MSR_KERNEL_GS_BASE:
3430                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3431                 break;
3432         case MSR_SYSCALL_MASK:
3433                 msr_info->data = svm->vmcb->save.sfmask;
3434                 break;
3435 #endif
3436         case MSR_IA32_SYSENTER_CS:
3437                 msr_info->data = svm->vmcb->save.sysenter_cs;
3438                 break;
3439         case MSR_IA32_SYSENTER_EIP:
3440                 msr_info->data = svm->sysenter_eip;
3441                 break;
3442         case MSR_IA32_SYSENTER_ESP:
3443                 msr_info->data = svm->sysenter_esp;
3444                 break;
3445         case MSR_TSC_AUX:
3446                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3447                         return 1;
3448                 msr_info->data = svm->tsc_aux;
3449                 break;
3450         /*
3451          * Nobody will change the following 5 values in the VMCB so we can
3452          * safely return them on rdmsr. They will always be 0 until LBRV is
3453          * implemented.
3454          */
3455         case MSR_IA32_DEBUGCTLMSR:
3456                 msr_info->data = svm->vmcb->save.dbgctl;
3457                 break;
3458         case MSR_IA32_LASTBRANCHFROMIP:
3459                 msr_info->data = svm->vmcb->save.br_from;
3460                 break;
3461         case MSR_IA32_LASTBRANCHTOIP:
3462                 msr_info->data = svm->vmcb->save.br_to;
3463                 break;
3464         case MSR_IA32_LASTINTFROMIP:
3465                 msr_info->data = svm->vmcb->save.last_excp_from;
3466                 break;
3467         case MSR_IA32_LASTINTTOIP:
3468                 msr_info->data = svm->vmcb->save.last_excp_to;
3469                 break;
3470         case MSR_VM_HSAVE_PA:
3471                 msr_info->data = svm->nested.hsave_msr;
3472                 break;
3473         case MSR_VM_CR:
3474                 msr_info->data = svm->nested.vm_cr_msr;
3475                 break;
3476         case MSR_IA32_UCODE_REV:
3477                 msr_info->data = 0x01000065;
3478                 break;
3479         case MSR_F15H_IC_CFG: {
3480
3481                 int family, model;
3482
3483                 family = guest_cpuid_family(vcpu);
3484                 model  = guest_cpuid_model(vcpu);
3485
3486                 if (family < 0 || model < 0)
3487                         return kvm_get_msr_common(vcpu, msr_info);
3488
3489                 msr_info->data = 0;
3490
3491                 if (family == 0x15 &&
3492                     (model >= 0x2 && model < 0x20))
3493                         msr_info->data = 0x1E;
3494                 }
3495                 break;
3496         default:
3497                 return kvm_get_msr_common(vcpu, msr_info);
3498         }
3499         return 0;
3500 }
3501
3502 static int rdmsr_interception(struct vcpu_svm *svm)
3503 {
3504         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3505         struct msr_data msr_info;
3506
3507         msr_info.index = ecx;
3508         msr_info.host_initiated = false;
3509         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3510                 trace_kvm_msr_read_ex(ecx);
3511                 kvm_inject_gp(&svm->vcpu, 0);
3512         } else {
3513                 trace_kvm_msr_read(ecx, msr_info.data);
3514
3515                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3516                                    msr_info.data & 0xffffffff);
3517                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3518                                    msr_info.data >> 32);
3519                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3520                 skip_emulated_instruction(&svm->vcpu);
3521         }
3522         return 1;
3523 }
3524
3525 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3526 {
3527         struct vcpu_svm *svm = to_svm(vcpu);
3528         int svm_dis, chg_mask;
3529
3530         if (data & ~SVM_VM_CR_VALID_MASK)
3531                 return 1;
3532
3533         chg_mask = SVM_VM_CR_VALID_MASK;
3534
3535         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3536                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3537
3538         svm->nested.vm_cr_msr &= ~chg_mask;
3539         svm->nested.vm_cr_msr |= (data & chg_mask);
3540
3541         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3542
3543         /* check for svm_disable while efer.svme is set */
3544         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3545                 return 1;
3546
3547         return 0;
3548 }
3549
3550 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3551 {
3552         struct vcpu_svm *svm = to_svm(vcpu);
3553
3554         u32 ecx = msr->index;
3555         u64 data = msr->data;
3556         switch (ecx) {
3557         case MSR_IA32_TSC:
3558                 kvm_write_tsc(vcpu, msr);
3559                 break;
3560         case MSR_STAR:
3561                 svm->vmcb->save.star = data;
3562                 break;
3563 #ifdef CONFIG_X86_64
3564         case MSR_LSTAR:
3565                 svm->vmcb->save.lstar = data;
3566                 break;
3567         case MSR_CSTAR:
3568                 svm->vmcb->save.cstar = data;
3569                 break;
3570         case MSR_KERNEL_GS_BASE:
3571                 svm->vmcb->save.kernel_gs_base = data;
3572                 break;
3573         case MSR_SYSCALL_MASK:
3574                 svm->vmcb->save.sfmask = data;
3575                 break;
3576 #endif
3577         case MSR_IA32_SYSENTER_CS:
3578                 svm->vmcb->save.sysenter_cs = data;
3579                 break;
3580         case MSR_IA32_SYSENTER_EIP:
3581                 svm->sysenter_eip = data;
3582                 svm->vmcb->save.sysenter_eip = data;
3583                 break;
3584         case MSR_IA32_SYSENTER_ESP:
3585                 svm->sysenter_esp = data;
3586                 svm->vmcb->save.sysenter_esp = data;
3587                 break;
3588         case MSR_TSC_AUX:
3589                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3590                         return 1;
3591
3592                 /*
3593                  * This is rare, so we update the MSR here instead of using
3594                  * direct_access_msrs.  Doing that would require a rdmsr in
3595                  * svm_vcpu_put.
3596                  */
3597                 svm->tsc_aux = data;
3598                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3599                 break;
3600         case MSR_IA32_DEBUGCTLMSR:
3601                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3602                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3603                                     __func__, data);
3604                         break;
3605                 }
3606                 if (data & DEBUGCTL_RESERVED_BITS)
3607                         return 1;
3608
3609                 svm->vmcb->save.dbgctl = data;
3610                 mark_dirty(svm->vmcb, VMCB_LBR);
3611                 if (data & (1ULL<<0))
3612                         svm_enable_lbrv(svm);
3613                 else
3614                         svm_disable_lbrv(svm);
3615                 break;
3616         case MSR_VM_HSAVE_PA:
3617                 svm->nested.hsave_msr = data;
3618                 break;
3619         case MSR_VM_CR:
3620                 return svm_set_vm_cr(vcpu, data);
3621         case MSR_VM_IGNNE:
3622                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3623                 break;
3624         case MSR_IA32_APICBASE:
3625                 if (kvm_vcpu_apicv_active(vcpu))
3626                         avic_update_vapic_bar(to_svm(vcpu), data);
3627                 /* Follow through */
3628         default:
3629                 return kvm_set_msr_common(vcpu, msr);
3630         }
3631         return 0;
3632 }
3633
3634 static int wrmsr_interception(struct vcpu_svm *svm)
3635 {
3636         struct msr_data msr;
3637         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3638         u64 data = kvm_read_edx_eax(&svm->vcpu);
3639
3640         msr.data = data;
3641         msr.index = ecx;
3642         msr.host_initiated = false;
3643
3644         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3645         if (kvm_set_msr(&svm->vcpu, &msr)) {
3646                 trace_kvm_msr_write_ex(ecx, data);
3647                 kvm_inject_gp(&svm->vcpu, 0);
3648         } else {
3649                 trace_kvm_msr_write(ecx, data);
3650                 skip_emulated_instruction(&svm->vcpu);
3651         }
3652         return 1;
3653 }
3654
3655 static int msr_interception(struct vcpu_svm *svm)
3656 {
3657         if (svm->vmcb->control.exit_info_1)
3658                 return wrmsr_interception(svm);
3659         else
3660                 return rdmsr_interception(svm);
3661 }
3662
3663 static int interrupt_window_interception(struct vcpu_svm *svm)
3664 {
3665         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3666         svm_clear_vintr(svm);
3667         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3668         mark_dirty(svm->vmcb, VMCB_INTR);
3669         ++svm->vcpu.stat.irq_window_exits;
3670         return 1;
3671 }
3672
3673 static int pause_interception(struct vcpu_svm *svm)
3674 {
3675         kvm_vcpu_on_spin(&(svm->vcpu));
3676         return 1;
3677 }
3678
3679 static int nop_interception(struct vcpu_svm *svm)
3680 {
3681         skip_emulated_instruction(&(svm->vcpu));
3682         return 1;
3683 }
3684
3685 static int monitor_interception(struct vcpu_svm *svm)
3686 {
3687         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3688         return nop_interception(svm);
3689 }
3690
3691 static int mwait_interception(struct vcpu_svm *svm)
3692 {
3693         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3694         return nop_interception(svm);
3695 }
3696
3697 enum avic_ipi_failure_cause {
3698         AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3699         AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3700         AVIC_IPI_FAILURE_INVALID_TARGET,
3701         AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3702 };
3703
3704 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3705 {
3706         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3707         u32 icrl = svm->vmcb->control.exit_info_1;
3708         u32 id = svm->vmcb->control.exit_info_2 >> 32;
3709         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3710         struct kvm_lapic *apic = svm->vcpu.arch.apic;
3711
3712         trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3713
3714         switch (id) {
3715         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3716                 /*
3717                  * AVIC hardware handles the generation of
3718                  * IPIs when the specified Message Type is Fixed
3719                  * (also known as fixed delivery mode) and
3720                  * the Trigger Mode is edge-triggered. The hardware
3721                  * also supports self and broadcast delivery modes
3722                  * specified via the Destination Shorthand(DSH)
3723                  * field of the ICRL. Logical and physical APIC ID
3724                  * formats are supported. All other IPI types cause
3725                  * a #VMEXIT, which needs to emulated.
3726                  */
3727                 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3728                 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3729                 break;
3730         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3731                 int i;
3732                 struct kvm_vcpu *vcpu;
3733                 struct kvm *kvm = svm->vcpu.kvm;
3734                 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3735
3736                 /*
3737                  * At this point, we expect that the AVIC HW has already
3738                  * set the appropriate IRR bits on the valid target
3739                  * vcpus. So, we just need to kick the appropriate vcpu.
3740                  */
3741                 kvm_for_each_vcpu(i, vcpu, kvm) {
3742                         bool m = kvm_apic_match_dest(vcpu, apic,
3743                                                      icrl & KVM_APIC_SHORT_MASK,
3744                                                      GET_APIC_DEST_FIELD(icrh),
3745                                                      icrl & KVM_APIC_DEST_MASK);
3746
3747                         if (m && !avic_vcpu_is_running(vcpu))
3748                                 kvm_vcpu_wake_up(vcpu);
3749                 }
3750                 break;
3751         }
3752         case AVIC_IPI_FAILURE_INVALID_TARGET:
3753                 break;
3754         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3755                 WARN_ONCE(1, "Invalid backing page\n");
3756                 break;
3757         default:
3758                 pr_err("Unknown IPI interception\n");
3759         }
3760
3761         return 1;
3762 }
3763
3764 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3765 {
3766         struct kvm_arch *vm_data = &vcpu->kvm->arch;
3767         int index;
3768         u32 *logical_apic_id_table;
3769         int dlid = GET_APIC_LOGICAL_ID(ldr);
3770
3771         if (!dlid)
3772                 return NULL;
3773
3774         if (flat) { /* flat */
3775                 index = ffs(dlid) - 1;
3776                 if (index > 7)
3777                         return NULL;
3778         } else { /* cluster */
3779                 int cluster = (dlid & 0xf0) >> 4;
3780                 int apic = ffs(dlid & 0x0f) - 1;
3781
3782                 if ((apic < 0) || (apic > 7) ||
3783                     (cluster >= 0xf))
3784                         return NULL;
3785                 index = (cluster << 2) + apic;
3786         }
3787
3788         logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3789
3790         return &logical_apic_id_table[index];
3791 }
3792
3793 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3794                           bool valid)
3795 {
3796         bool flat;
3797         u32 *entry, new_entry;
3798
3799         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3800         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3801         if (!entry)
3802                 return -EINVAL;
3803
3804         new_entry = READ_ONCE(*entry);
3805         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3806         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3807         if (valid)
3808                 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3809         else
3810                 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3811         WRITE_ONCE(*entry, new_entry);
3812
3813         return 0;
3814 }
3815
3816 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3817 {
3818         int ret;
3819         struct vcpu_svm *svm = to_svm(vcpu);
3820         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3821
3822         if (!ldr)
3823                 return 1;
3824
3825         ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3826         if (ret && svm->ldr_reg) {
3827                 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3828                 svm->ldr_reg = 0;
3829         } else {
3830                 svm->ldr_reg = ldr;
3831         }
3832         return ret;
3833 }
3834
3835 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3836 {
3837         u64 *old, *new;
3838         struct vcpu_svm *svm = to_svm(vcpu);
3839         u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3840         u32 id = (apic_id_reg >> 24) & 0xff;
3841
3842         if (vcpu->vcpu_id == id)
3843                 return 0;
3844
3845         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3846         new = avic_get_physical_id_entry(vcpu, id);
3847         if (!new || !old)
3848                 return 1;
3849
3850         /* We need to move physical_id_entry to new offset */
3851         *new = *old;
3852         *old = 0ULL;
3853         to_svm(vcpu)->avic_physical_id_cache = new;
3854
3855         /*
3856          * Also update the guest physical APIC ID in the logical
3857          * APIC ID table entry if already setup the LDR.
3858          */
3859         if (svm->ldr_reg)
3860                 avic_handle_ldr_update(vcpu);
3861
3862         return 0;
3863 }
3864
3865 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3866 {
3867         struct vcpu_svm *svm = to_svm(vcpu);
3868         struct kvm_arch *vm_data = &vcpu->kvm->arch;
3869         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3870         u32 mod = (dfr >> 28) & 0xf;
3871
3872         /*
3873          * We assume that all local APICs are using the same type.
3874          * If this changes, we need to flush the AVIC logical
3875          * APID id table.
3876          */
3877         if (vm_data->ldr_mode == mod)
3878                 return 0;
3879
3880         clear_page(page_address(vm_data->avic_logical_id_table_page));
3881         vm_data->ldr_mode = mod;
3882
3883         if (svm->ldr_reg)
3884                 avic_handle_ldr_update(vcpu);
3885         return 0;
3886 }
3887
3888 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3889 {
3890         struct kvm_lapic *apic = svm->vcpu.arch.apic;
3891         u32 offset = svm->vmcb->control.exit_info_1 &
3892                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3893
3894         switch (offset) {
3895         case APIC_ID:
3896                 if (avic_handle_apic_id_update(&svm->vcpu))
3897                         return 0;
3898                 break;
3899         case APIC_LDR:
3900                 if (avic_handle_ldr_update(&svm->vcpu))
3901                         return 0;
3902                 break;
3903         case APIC_DFR:
3904                 avic_handle_dfr_update(&svm->vcpu);
3905                 break;
3906         default:
3907                 break;
3908         }
3909
3910         kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
3911
3912         return 1;
3913 }
3914
3915 static bool is_avic_unaccelerated_access_trap(u32 offset)
3916 {
3917         bool ret = false;
3918
3919         switch (offset) {
3920         case APIC_ID:
3921         case APIC_EOI:
3922         case APIC_RRR:
3923         case APIC_LDR:
3924         case APIC_DFR:
3925         case APIC_SPIV:
3926         case APIC_ESR:
3927         case APIC_ICR:
3928         case APIC_LVTT:
3929         case APIC_LVTTHMR:
3930         case APIC_LVTPC:
3931         case APIC_LVT0:
3932         case APIC_LVT1:
3933         case APIC_LVTERR:
3934         case APIC_TMICT:
3935         case APIC_TDCR:
3936                 ret = true;
3937                 break;
3938         default:
3939                 break;
3940         }
3941         return ret;
3942 }
3943
3944 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
3945 {
3946         int ret = 0;
3947         u32 offset = svm->vmcb->control.exit_info_1 &
3948                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3949         u32 vector = svm->vmcb->control.exit_info_2 &
3950                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
3951         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
3952                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
3953         bool trap = is_avic_unaccelerated_access_trap(offset);
3954
3955         trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
3956                                             trap, write, vector);
3957         if (trap) {
3958                 /* Handling Trap */
3959                 WARN_ONCE(!write, "svm: Handling trap read.\n");
3960                 ret = avic_unaccel_trap_write(svm);
3961         } else {
3962                 /* Handling Fault */
3963                 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
3964         }
3965
3966         return ret;
3967 }
3968
3969 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3970         [SVM_EXIT_READ_CR0]                     = cr_interception,
3971         [SVM_EXIT_READ_CR3]                     = cr_interception,
3972         [SVM_EXIT_READ_CR4]                     = cr_interception,
3973         [SVM_EXIT_READ_CR8]                     = cr_interception,
3974         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3975         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3976         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3977         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3978         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3979         [SVM_EXIT_READ_DR0]                     = dr_interception,
3980         [SVM_EXIT_READ_DR1]                     = dr_interception,
3981         [SVM_EXIT_READ_DR2]                     = dr_interception,
3982         [SVM_EXIT_READ_DR3]                     = dr_interception,
3983         [SVM_EXIT_READ_DR4]                     = dr_interception,
3984         [SVM_EXIT_READ_DR5]                     = dr_interception,
3985         [SVM_EXIT_READ_DR6]                     = dr_interception,
3986         [SVM_EXIT_READ_DR7]                     = dr_interception,
3987         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3988         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3989         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3990         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3991         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3992         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3993         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3994         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3995         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3996         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3997         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3998         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3999         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4000         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4001         [SVM_EXIT_INTR]                         = intr_interception,
4002         [SVM_EXIT_NMI]                          = nmi_interception,
4003         [SVM_EXIT_SMI]                          = nop_on_interception,
4004         [SVM_EXIT_INIT]                         = nop_on_interception,
4005         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4006         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4007         [SVM_EXIT_CPUID]                        = cpuid_interception,
4008         [SVM_EXIT_IRET]                         = iret_interception,
4009         [SVM_EXIT_INVD]                         = emulate_on_interception,
4010         [SVM_EXIT_PAUSE]                        = pause_interception,
4011         [SVM_EXIT_HLT]                          = halt_interception,
4012         [SVM_EXIT_INVLPG]                       = invlpg_interception,
4013         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4014         [SVM_EXIT_IOIO]                         = io_interception,
4015         [SVM_EXIT_MSR]                          = msr_interception,
4016         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4017         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4018         [SVM_EXIT_VMRUN]                        = vmrun_interception,
4019         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4020         [SVM_EXIT_VMLOAD]                       = vmload_interception,
4021         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4022         [SVM_EXIT_STGI]                         = stgi_interception,
4023         [SVM_EXIT_CLGI]                         = clgi_interception,
4024         [SVM_EXIT_SKINIT]                       = skinit_interception,
4025         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4026         [SVM_EXIT_MONITOR]                      = monitor_interception,
4027         [SVM_EXIT_MWAIT]                        = mwait_interception,
4028         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4029         [SVM_EXIT_NPF]                          = pf_interception,
4030         [SVM_EXIT_RSM]                          = emulate_on_interception,
4031         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4032         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4033 };
4034
4035 static void dump_vmcb(struct kvm_vcpu *vcpu)
4036 {
4037         struct vcpu_svm *svm = to_svm(vcpu);
4038         struct vmcb_control_area *control = &svm->vmcb->control;
4039         struct vmcb_save_area *save = &svm->vmcb->save;
4040
4041         pr_err("VMCB Control Area:\n");
4042         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4043         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4044         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4045         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4046         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4047         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4048         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4049         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4050         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4051         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4052         pr_err("%-20s%d\n", "asid:", control->asid);
4053         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4054         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4055         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4056         pr_err("%-20s%08x\n", "int_state:", control->int_state);
4057         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4058         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4059         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4060         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4061         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4062         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4063         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4064         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4065         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4066         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4067         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
4068         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4069         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4070         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4071         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4072         pr_err("VMCB State Save Area:\n");
4073         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4074                "es:",
4075                save->es.selector, save->es.attrib,
4076                save->es.limit, save->es.base);
4077         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4078                "cs:",
4079                save->cs.selector, save->cs.attrib,
4080                save->cs.limit, save->cs.base);
4081         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4082                "ss:",
4083                save->ss.selector, save->ss.attrib,
4084                save->ss.limit, save->ss.base);
4085         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4086                "ds:",
4087                save->ds.selector, save->ds.attrib,
4088                save->ds.limit, save->ds.base);
4089         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4090                "fs:",
4091                save->fs.selector, save->fs.attrib,
4092                save->fs.limit, save->fs.base);
4093         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4094                "gs:",
4095                save->gs.selector, save->gs.attrib,
4096                save->gs.limit, save->gs.base);
4097         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4098                "gdtr:",
4099                save->gdtr.selector, save->gdtr.attrib,
4100                save->gdtr.limit, save->gdtr.base);
4101         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4102                "ldtr:",
4103                save->ldtr.selector, save->ldtr.attrib,
4104                save->ldtr.limit, save->ldtr.base);
4105         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4106                "idtr:",
4107                save->idtr.selector, save->idtr.attrib,
4108                save->idtr.limit, save->idtr.base);
4109         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4110                "tr:",
4111                save->tr.selector, save->tr.attrib,
4112                save->tr.limit, save->tr.base);
4113         pr_err("cpl:            %d                efer:         %016llx\n",
4114                 save->cpl, save->efer);
4115         pr_err("%-15s %016llx %-13s %016llx\n",
4116                "cr0:", save->cr0, "cr2:", save->cr2);
4117         pr_err("%-15s %016llx %-13s %016llx\n",
4118                "cr3:", save->cr3, "cr4:", save->cr4);
4119         pr_err("%-15s %016llx %-13s %016llx\n",
4120                "dr6:", save->dr6, "dr7:", save->dr7);
4121         pr_err("%-15s %016llx %-13s %016llx\n",
4122                "rip:", save->rip, "rflags:", save->rflags);
4123         pr_err("%-15s %016llx %-13s %016llx\n",
4124                "rsp:", save->rsp, "rax:", save->rax);
4125         pr_err("%-15s %016llx %-13s %016llx\n",
4126                "star:", save->star, "lstar:", save->lstar);
4127         pr_err("%-15s %016llx %-13s %016llx\n",
4128                "cstar:", save->cstar, "sfmask:", save->sfmask);
4129         pr_err("%-15s %016llx %-13s %016llx\n",
4130                "kernel_gs_base:", save->kernel_gs_base,
4131                "sysenter_cs:", save->sysenter_cs);
4132         pr_err("%-15s %016llx %-13s %016llx\n",
4133                "sysenter_esp:", save->sysenter_esp,
4134                "sysenter_eip:", save->sysenter_eip);
4135         pr_err("%-15s %016llx %-13s %016llx\n",
4136                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4137         pr_err("%-15s %016llx %-13s %016llx\n",
4138                "br_from:", save->br_from, "br_to:", save->br_to);
4139         pr_err("%-15s %016llx %-13s %016llx\n",
4140                "excp_from:", save->last_excp_from,
4141                "excp_to:", save->last_excp_to);
4142 }
4143
4144 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4145 {
4146         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4147
4148         *info1 = control->exit_info_1;
4149         *info2 = control->exit_info_2;
4150 }
4151
4152 static int handle_exit(struct kvm_vcpu *vcpu)
4153 {
4154         struct vcpu_svm *svm = to_svm(vcpu);
4155         struct kvm_run *kvm_run = vcpu->run;
4156         u32 exit_code = svm->vmcb->control.exit_code;
4157
4158         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4159
4160         vcpu->arch.gpa_available = (exit_code == SVM_EXIT_NPF);
4161
4162         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4163                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4164         if (npt_enabled)
4165                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4166
4167         if (unlikely(svm->nested.exit_required)) {
4168                 nested_svm_vmexit(svm);
4169                 svm->nested.exit_required = false;
4170
4171                 return 1;
4172         }
4173
4174         if (is_guest_mode(vcpu)) {
4175                 int vmexit;
4176
4177                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4178                                         svm->vmcb->control.exit_info_1,
4179                                         svm->vmcb->control.exit_info_2,
4180                                         svm->vmcb->control.exit_int_info,
4181                                         svm->vmcb->control.exit_int_info_err,
4182                                         KVM_ISA_SVM);
4183
4184                 vmexit = nested_svm_exit_special(svm);
4185
4186                 if (vmexit == NESTED_EXIT_CONTINUE)
4187                         vmexit = nested_svm_exit_handled(svm);
4188
4189                 if (vmexit == NESTED_EXIT_DONE)
4190                         return 1;
4191         }
4192
4193         svm_complete_interrupts(svm);
4194
4195         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4196                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4197                 kvm_run->fail_entry.hardware_entry_failure_reason
4198                         = svm->vmcb->control.exit_code;
4199                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4200                 dump_vmcb(vcpu);
4201                 return 0;
4202         }
4203
4204         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4205             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4206             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4207             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4208                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4209                        "exit_code 0x%x\n",
4210                        __func__, svm->vmcb->control.exit_int_info,
4211                        exit_code);
4212
4213         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4214             || !svm_exit_handlers[exit_code]) {
4215                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4216                 kvm_queue_exception(vcpu, UD_VECTOR);
4217                 return 1;
4218         }
4219
4220         return svm_exit_handlers[exit_code](svm);
4221 }
4222
4223 static void reload_tss(struct kvm_vcpu *vcpu)
4224 {
4225         int cpu = raw_smp_processor_id();
4226
4227         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4228         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4229         load_TR_desc();
4230 }
4231
4232 static void pre_svm_run(struct vcpu_svm *svm)
4233 {
4234         int cpu = raw_smp_processor_id();
4235
4236         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4237
4238         /* FIXME: handle wraparound of asid_generation */
4239         if (svm->asid_generation != sd->asid_generation)
4240                 new_asid(svm, sd);
4241 }
4242
4243 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4244 {
4245         struct vcpu_svm *svm = to_svm(vcpu);
4246
4247         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4248         vcpu->arch.hflags |= HF_NMI_MASK;
4249         set_intercept(svm, INTERCEPT_IRET);
4250         ++vcpu->stat.nmi_injections;
4251 }
4252
4253 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4254 {
4255         struct vmcb_control_area *control;
4256
4257         /* The following fields are ignored when AVIC is enabled */
4258         control = &svm->vmcb->control;
4259         control->int_vector = irq;
4260         control->int_ctl &= ~V_INTR_PRIO_MASK;
4261         control->int_ctl |= V_IRQ_MASK |
4262                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4263         mark_dirty(svm->vmcb, VMCB_INTR);
4264 }
4265
4266 static void svm_set_irq(struct kvm_vcpu *vcpu)
4267 {
4268         struct vcpu_svm *svm = to_svm(vcpu);
4269
4270         BUG_ON(!(gif_set(svm)));
4271
4272         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4273         ++vcpu->stat.irq_injections;
4274
4275         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4276                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4277 }
4278
4279 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4280 {
4281         return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4282 }
4283
4284 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4285 {
4286         struct vcpu_svm *svm = to_svm(vcpu);
4287
4288         if (svm_nested_virtualize_tpr(vcpu) ||
4289             kvm_vcpu_apicv_active(vcpu))
4290                 return;
4291
4292         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4293
4294         if (irr == -1)
4295                 return;
4296
4297         if (tpr >= irr)
4298                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4299 }
4300
4301 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4302 {
4303         return;
4304 }
4305
4306 static bool svm_get_enable_apicv(void)
4307 {
4308         return avic;
4309 }
4310
4311 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4312 {
4313 }
4314
4315 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4316 {
4317 }
4318
4319 /* Note: Currently only used by Hyper-V. */
4320 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4321 {
4322         struct vcpu_svm *svm = to_svm(vcpu);
4323         struct vmcb *vmcb = svm->vmcb;
4324
4325         if (!avic)
4326                 return;
4327
4328         vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4329         mark_dirty(vmcb, VMCB_INTR);
4330 }
4331
4332 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4333 {
4334         return;
4335 }
4336
4337 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4338 {
4339         kvm_lapic_set_irr(vec, vcpu->arch.apic);
4340         smp_mb__after_atomic();
4341
4342         if (avic_vcpu_is_running(vcpu))
4343                 wrmsrl(SVM_AVIC_DOORBELL,
4344                        kvm_cpu_get_apicid(vcpu->cpu));
4345         else
4346                 kvm_vcpu_wake_up(vcpu);
4347 }
4348
4349 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4350 {
4351         unsigned long flags;
4352         struct amd_svm_iommu_ir *cur;
4353
4354         spin_lock_irqsave(&svm->ir_list_lock, flags);
4355         list_for_each_entry(cur, &svm->ir_list, node) {
4356                 if (cur->data != pi->ir_data)
4357                         continue;
4358                 list_del(&cur->node);
4359                 kfree(cur);
4360                 break;
4361         }
4362         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4363 }
4364
4365 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4366 {
4367         int ret = 0;
4368         unsigned long flags;
4369         struct amd_svm_iommu_ir *ir;
4370
4371         /**
4372          * In some cases, the existing irte is updaed and re-set,
4373          * so we need to check here if it's already been * added
4374          * to the ir_list.
4375          */
4376         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4377                 struct kvm *kvm = svm->vcpu.kvm;
4378                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4379                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4380                 struct vcpu_svm *prev_svm;
4381
4382                 if (!prev_vcpu) {
4383                         ret = -EINVAL;
4384                         goto out;
4385                 }
4386
4387                 prev_svm = to_svm(prev_vcpu);
4388                 svm_ir_list_del(prev_svm, pi);
4389         }
4390
4391         /**
4392          * Allocating new amd_iommu_pi_data, which will get
4393          * add to the per-vcpu ir_list.
4394          */
4395         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4396         if (!ir) {
4397                 ret = -ENOMEM;
4398                 goto out;
4399         }
4400         ir->data = pi->ir_data;
4401
4402         spin_lock_irqsave(&svm->ir_list_lock, flags);
4403         list_add(&ir->node, &svm->ir_list);
4404         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4405 out:
4406         return ret;
4407 }
4408
4409 /**
4410  * Note:
4411  * The HW cannot support posting multicast/broadcast
4412  * interrupts to a vCPU. So, we still use legacy interrupt
4413  * remapping for these kind of interrupts.
4414  *
4415  * For lowest-priority interrupts, we only support
4416  * those with single CPU as the destination, e.g. user
4417  * configures the interrupts via /proc/irq or uses
4418  * irqbalance to make the interrupts single-CPU.
4419  */
4420 static int
4421 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4422                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4423 {
4424         struct kvm_lapic_irq irq;
4425         struct kvm_vcpu *vcpu = NULL;
4426
4427         kvm_set_msi_irq(kvm, e, &irq);
4428
4429         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4430                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4431                          __func__, irq.vector);
4432                 return -1;
4433         }
4434
4435         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4436                  irq.vector);
4437         *svm = to_svm(vcpu);
4438         vcpu_info->pi_desc_addr = page_to_phys((*svm)->avic_backing_page);
4439         vcpu_info->vector = irq.vector;
4440
4441         return 0;
4442 }
4443
4444 /*
4445  * svm_update_pi_irte - set IRTE for Posted-Interrupts
4446  *
4447  * @kvm: kvm
4448  * @host_irq: host irq of the interrupt
4449  * @guest_irq: gsi of the interrupt
4450  * @set: set or unset PI
4451  * returns 0 on success, < 0 on failure
4452  */
4453 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4454                               uint32_t guest_irq, bool set)
4455 {
4456         struct kvm_kernel_irq_routing_entry *e;
4457         struct kvm_irq_routing_table *irq_rt;
4458         int idx, ret = -EINVAL;
4459
4460         if (!kvm_arch_has_assigned_device(kvm) ||
4461             !irq_remapping_cap(IRQ_POSTING_CAP))
4462                 return 0;
4463
4464         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4465                  __func__, host_irq, guest_irq, set);
4466
4467         idx = srcu_read_lock(&kvm->irq_srcu);
4468         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4469         WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4470
4471         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4472                 struct vcpu_data vcpu_info;
4473                 struct vcpu_svm *svm = NULL;
4474
4475                 if (e->type != KVM_IRQ_ROUTING_MSI)
4476                         continue;
4477
4478                 /**
4479                  * Here, we setup with legacy mode in the following cases:
4480                  * 1. When cannot target interrupt to a specific vcpu.
4481                  * 2. Unsetting posted interrupt.
4482                  * 3. APIC virtialization is disabled for the vcpu.
4483                  */
4484                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4485                     kvm_vcpu_apicv_active(&svm->vcpu)) {
4486                         struct amd_iommu_pi_data pi;
4487
4488                         /* Try to enable guest_mode in IRTE */
4489                         pi.base = page_to_phys(svm->avic_backing_page) & AVIC_HPA_MASK;
4490                         pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4491                                                      svm->vcpu.vcpu_id);
4492                         pi.is_guest_mode = true;
4493                         pi.vcpu_data = &vcpu_info;
4494                         ret = irq_set_vcpu_affinity(host_irq, &pi);
4495
4496                         /**
4497                          * Here, we successfully setting up vcpu affinity in
4498                          * IOMMU guest mode. Now, we need to store the posted
4499                          * interrupt information in a per-vcpu ir_list so that
4500                          * we can reference to them directly when we update vcpu
4501                          * scheduling information in IOMMU irte.
4502                          */
4503                         if (!ret && pi.is_guest_mode)
4504                                 svm_ir_list_add(svm, &pi);
4505                 } else {
4506                         /* Use legacy mode in IRTE */
4507                         struct amd_iommu_pi_data pi;
4508
4509                         /**
4510                          * Here, pi is used to:
4511                          * - Tell IOMMU to use legacy mode for this interrupt.
4512                          * - Retrieve ga_tag of prior interrupt remapping data.
4513                          */
4514                         pi.is_guest_mode = false;
4515                         ret = irq_set_vcpu_affinity(host_irq, &pi);
4516
4517                         /**
4518                          * Check if the posted interrupt was previously
4519                          * setup with the guest_mode by checking if the ga_tag
4520                          * was cached. If so, we need to clean up the per-vcpu
4521                          * ir_list.
4522                          */
4523                         if (!ret && pi.prev_ga_tag) {
4524                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4525                                 struct kvm_vcpu *vcpu;
4526
4527                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
4528                                 if (vcpu)
4529                                         svm_ir_list_del(to_svm(vcpu), &pi);
4530                         }
4531                 }
4532
4533                 if (!ret && svm) {
4534                         trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4535                                                  host_irq, e->gsi,
4536                                                  vcpu_info.vector,
4537                                                  vcpu_info.pi_desc_addr, set);
4538                 }
4539
4540                 if (ret < 0) {
4541                         pr_err("%s: failed to update PI IRTE\n", __func__);
4542                         goto out;
4543                 }
4544         }
4545
4546         ret = 0;
4547 out:
4548         srcu_read_unlock(&kvm->irq_srcu, idx);
4549         return ret;
4550 }
4551
4552 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4553 {
4554         struct vcpu_svm *svm = to_svm(vcpu);
4555         struct vmcb *vmcb = svm->vmcb;
4556         int ret;
4557         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4558               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4559         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4560
4561         return ret;
4562 }
4563
4564 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4565 {
4566         struct vcpu_svm *svm = to_svm(vcpu);
4567
4568         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4569 }
4570
4571 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4572 {
4573         struct vcpu_svm *svm = to_svm(vcpu);
4574
4575         if (masked) {
4576                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4577                 set_intercept(svm, INTERCEPT_IRET);
4578         } else {
4579                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4580                 clr_intercept(svm, INTERCEPT_IRET);
4581         }
4582 }
4583
4584 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4585 {
4586         struct vcpu_svm *svm = to_svm(vcpu);
4587         struct vmcb *vmcb = svm->vmcb;
4588         int ret;
4589
4590         if (!gif_set(svm) ||
4591              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4592                 return 0;
4593
4594         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4595
4596         if (is_guest_mode(vcpu))
4597                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4598
4599         return ret;
4600 }
4601
4602 static void enable_irq_window(struct kvm_vcpu *vcpu)
4603 {
4604         struct vcpu_svm *svm = to_svm(vcpu);
4605
4606         if (kvm_vcpu_apicv_active(vcpu))
4607                 return;
4608
4609         /*
4610          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4611          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
4612          * get that intercept, this function will be called again though and
4613          * we'll get the vintr intercept.
4614          */
4615         if (gif_set(svm) && nested_svm_intr(svm)) {
4616                 svm_set_vintr(svm);
4617                 svm_inject_irq(svm, 0x0);
4618         }
4619 }
4620
4621 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4622 {
4623         struct vcpu_svm *svm = to_svm(vcpu);
4624
4625         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4626             == HF_NMI_MASK)
4627                 return; /* IRET will cause a vm exit */
4628
4629         /*
4630          * Something prevents NMI from been injected. Single step over possible
4631          * problem (IRET or exception injection or interrupt shadow)
4632          */
4633         svm->nmi_singlestep = true;
4634         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4635 }
4636
4637 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4638 {
4639         return 0;
4640 }
4641
4642 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4643 {
4644         struct vcpu_svm *svm = to_svm(vcpu);
4645
4646         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4647                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4648         else
4649                 svm->asid_generation--;
4650 }
4651
4652 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4653 {
4654 }
4655
4656 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4657 {
4658         struct vcpu_svm *svm = to_svm(vcpu);
4659
4660         if (svm_nested_virtualize_tpr(vcpu))
4661                 return;
4662
4663         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4664                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4665                 kvm_set_cr8(vcpu, cr8);
4666         }
4667 }
4668
4669 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4670 {
4671         struct vcpu_svm *svm = to_svm(vcpu);
4672         u64 cr8;
4673
4674         if (svm_nested_virtualize_tpr(vcpu) ||
4675             kvm_vcpu_apicv_active(vcpu))
4676                 return;
4677
4678         cr8 = kvm_get_cr8(vcpu);
4679         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4680         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4681 }
4682
4683 static void svm_complete_interrupts(struct vcpu_svm *svm)
4684 {
4685         u8 vector;
4686         int type;
4687         u32 exitintinfo = svm->vmcb->control.exit_int_info;
4688         unsigned int3_injected = svm->int3_injected;
4689
4690         svm->int3_injected = 0;
4691
4692         /*
4693          * If we've made progress since setting HF_IRET_MASK, we've
4694          * executed an IRET and can allow NMI injection.
4695          */
4696         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4697             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4698                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4699                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4700         }
4701
4702         svm->vcpu.arch.nmi_injected = false;
4703         kvm_clear_exception_queue(&svm->vcpu);
4704         kvm_clear_interrupt_queue(&svm->vcpu);
4705
4706         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4707                 return;
4708
4709         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4710
4711         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4712         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4713
4714         switch (type) {
4715         case SVM_EXITINTINFO_TYPE_NMI:
4716                 svm->vcpu.arch.nmi_injected = true;
4717                 break;
4718         case SVM_EXITINTINFO_TYPE_EXEPT:
4719                 /*
4720                  * In case of software exceptions, do not reinject the vector,
4721                  * but re-execute the instruction instead. Rewind RIP first
4722                  * if we emulated INT3 before.
4723                  */
4724                 if (kvm_exception_is_soft(vector)) {
4725                         if (vector == BP_VECTOR && int3_injected &&
4726                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4727                                 kvm_rip_write(&svm->vcpu,
4728                                               kvm_rip_read(&svm->vcpu) -
4729                                               int3_injected);
4730                         break;
4731                 }
4732                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4733                         u32 err = svm->vmcb->control.exit_int_info_err;
4734                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
4735
4736                 } else
4737                         kvm_requeue_exception(&svm->vcpu, vector);
4738                 break;
4739         case SVM_EXITINTINFO_TYPE_INTR:
4740                 kvm_queue_interrupt(&svm->vcpu, vector, false);
4741                 break;
4742         default:
4743                 break;
4744         }
4745 }
4746
4747 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4748 {
4749         struct vcpu_svm *svm = to_svm(vcpu);
4750         struct vmcb_control_area *control = &svm->vmcb->control;
4751
4752         control->exit_int_info = control->event_inj;
4753         control->exit_int_info_err = control->event_inj_err;
4754         control->event_inj = 0;
4755         svm_complete_interrupts(svm);
4756 }
4757
4758 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4759 {
4760         struct vcpu_svm *svm = to_svm(vcpu);
4761
4762         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4763         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4764         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4765
4766         /*
4767          * A vmexit emulation is required before the vcpu can be executed
4768          * again.
4769          */
4770         if (unlikely(svm->nested.exit_required))
4771                 return;
4772
4773         pre_svm_run(svm);
4774
4775         sync_lapic_to_cr8(vcpu);
4776
4777         svm->vmcb->save.cr2 = vcpu->arch.cr2;
4778
4779         clgi();
4780
4781         local_irq_enable();
4782
4783         asm volatile (
4784                 "push %%" _ASM_BP "; \n\t"
4785                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4786                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4787                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4788                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4789                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4790                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4791 #ifdef CONFIG_X86_64
4792                 "mov %c[r8](%[svm]),  %%r8  \n\t"
4793                 "mov %c[r9](%[svm]),  %%r9  \n\t"
4794                 "mov %c[r10](%[svm]), %%r10 \n\t"
4795                 "mov %c[r11](%[svm]), %%r11 \n\t"
4796                 "mov %c[r12](%[svm]), %%r12 \n\t"
4797                 "mov %c[r13](%[svm]), %%r13 \n\t"
4798                 "mov %c[r14](%[svm]), %%r14 \n\t"
4799                 "mov %c[r15](%[svm]), %%r15 \n\t"
4800 #endif
4801
4802                 /* Enter guest mode */
4803                 "push %%" _ASM_AX " \n\t"
4804                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4805                 __ex(SVM_VMLOAD) "\n\t"
4806                 __ex(SVM_VMRUN) "\n\t"
4807                 __ex(SVM_VMSAVE) "\n\t"
4808                 "pop %%" _ASM_AX " \n\t"
4809
4810                 /* Save guest registers, load host registers */
4811                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4812                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4813                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4814                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4815                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4816                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4817 #ifdef CONFIG_X86_64
4818                 "mov %%r8,  %c[r8](%[svm]) \n\t"
4819                 "mov %%r9,  %c[r9](%[svm]) \n\t"
4820                 "mov %%r10, %c[r10](%[svm]) \n\t"
4821                 "mov %%r11, %c[r11](%[svm]) \n\t"
4822                 "mov %%r12, %c[r12](%[svm]) \n\t"
4823                 "mov %%r13, %c[r13](%[svm]) \n\t"
4824                 "mov %%r14, %c[r14](%[svm]) \n\t"
4825                 "mov %%r15, %c[r15](%[svm]) \n\t"
4826 #endif
4827                 "pop %%" _ASM_BP
4828                 :
4829                 : [svm]"a"(svm),
4830                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4831                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4832                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4833                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4834                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4835                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4836                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4837 #ifdef CONFIG_X86_64
4838                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4839                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4840                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4841                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4842                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4843                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4844                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4845                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4846 #endif
4847                 : "cc", "memory"
4848 #ifdef CONFIG_X86_64
4849                 , "rbx", "rcx", "rdx", "rsi", "rdi"
4850                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4851 #else
4852                 , "ebx", "ecx", "edx", "esi", "edi"
4853 #endif
4854                 );
4855
4856 #ifdef CONFIG_X86_64
4857         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4858 #else
4859         loadsegment(fs, svm->host.fs);
4860 #ifndef CONFIG_X86_32_LAZY_GS
4861         loadsegment(gs, svm->host.gs);
4862 #endif
4863 #endif
4864
4865         reload_tss(vcpu);
4866
4867         local_irq_disable();
4868
4869         vcpu->arch.cr2 = svm->vmcb->save.cr2;
4870         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4871         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4872         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4873
4874         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4875                 kvm_before_handle_nmi(&svm->vcpu);
4876
4877         stgi();
4878
4879         /* Any pending NMI will happen here */
4880
4881         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4882                 kvm_after_handle_nmi(&svm->vcpu);
4883
4884         sync_cr8_to_lapic(vcpu);
4885
4886         svm->next_rip = 0;
4887
4888         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4889
4890         /* if exit due to PF check for async PF */
4891         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4892                 svm->apf_reason = kvm_read_and_reset_pf_reason();
4893
4894         if (npt_enabled) {
4895                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4896                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4897         }
4898
4899         /*
4900          * We need to handle MC intercepts here before the vcpu has a chance to
4901          * change the physical cpu
4902          */
4903         if (unlikely(svm->vmcb->control.exit_code ==
4904                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4905                 svm_handle_mce(svm);
4906
4907         mark_all_clean(svm->vmcb);
4908 }
4909
4910 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4911 {
4912         struct vcpu_svm *svm = to_svm(vcpu);
4913
4914         svm->vmcb->save.cr3 = root;
4915         mark_dirty(svm->vmcb, VMCB_CR);
4916         svm_flush_tlb(vcpu);
4917 }
4918
4919 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4920 {
4921         struct vcpu_svm *svm = to_svm(vcpu);
4922
4923         svm->vmcb->control.nested_cr3 = root;
4924         mark_dirty(svm->vmcb, VMCB_NPT);
4925
4926         /* Also sync guest cr3 here in case we live migrate */
4927         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4928         mark_dirty(svm->vmcb, VMCB_CR);
4929
4930         svm_flush_tlb(vcpu);
4931 }
4932
4933 static int is_disabled(void)
4934 {
4935         u64 vm_cr;
4936
4937         rdmsrl(MSR_VM_CR, vm_cr);
4938         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4939                 return 1;
4940
4941         return 0;
4942 }
4943
4944 static void
4945 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4946 {
4947         /*
4948          * Patch in the VMMCALL instruction:
4949          */
4950         hypercall[0] = 0x0f;
4951         hypercall[1] = 0x01;
4952         hypercall[2] = 0xd9;
4953 }
4954
4955 static void svm_check_processor_compat(void *rtn)
4956 {
4957         *(int *)rtn = 0;
4958 }
4959
4960 static bool svm_cpu_has_accelerated_tpr(void)
4961 {
4962         return false;
4963 }
4964
4965 static bool svm_has_high_real_mode_segbase(void)
4966 {
4967         return true;
4968 }
4969
4970 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4971 {
4972         return 0;
4973 }
4974
4975 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4976 {
4977         struct vcpu_svm *svm = to_svm(vcpu);
4978         struct kvm_cpuid_entry2 *entry;
4979
4980         /* Update nrips enabled cache */
4981         svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4982
4983         if (!kvm_vcpu_apicv_active(vcpu))
4984                 return;
4985
4986         entry = kvm_find_cpuid_entry(vcpu, 1, 0);
4987         if (entry)
4988                 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
4989 }
4990
4991 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4992 {
4993         switch (func) {
4994         case 0x1:
4995                 if (avic)
4996                         entry->ecx &= ~bit(X86_FEATURE_X2APIC);
4997                 break;
4998         case 0x80000001:
4999                 if (nested)
5000                         entry->ecx |= (1 << 2); /* Set SVM bit */
5001                 break;
5002         case 0x8000000A:
5003                 entry->eax = 1; /* SVM revision 1 */
5004                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5005                                    ASID emulation to nested SVM */
5006                 entry->ecx = 0; /* Reserved */
5007                 entry->edx = 0; /* Per default do not support any
5008                                    additional features */
5009
5010                 /* Support next_rip if host supports it */
5011                 if (boot_cpu_has(X86_FEATURE_NRIPS))
5012                         entry->edx |= SVM_FEATURE_NRIP;
5013
5014                 /* Support NPT for the guest if enabled */
5015                 if (npt_enabled)
5016                         entry->edx |= SVM_FEATURE_NPT;
5017
5018                 break;
5019         }
5020 }
5021
5022 static int svm_get_lpage_level(void)
5023 {
5024         return PT_PDPE_LEVEL;
5025 }
5026
5027 static bool svm_rdtscp_supported(void)
5028 {
5029         return boot_cpu_has(X86_FEATURE_RDTSCP);
5030 }
5031
5032 static bool svm_invpcid_supported(void)
5033 {
5034         return false;
5035 }
5036
5037 static bool svm_mpx_supported(void)
5038 {
5039         return false;
5040 }
5041
5042 static bool svm_xsaves_supported(void)
5043 {
5044         return false;
5045 }
5046
5047 static bool svm_has_wbinvd_exit(void)
5048 {
5049         return true;
5050 }
5051
5052 #define PRE_EX(exit)  { .exit_code = (exit), \
5053                         .stage = X86_ICPT_PRE_EXCEPT, }
5054 #define POST_EX(exit) { .exit_code = (exit), \
5055                         .stage = X86_ICPT_POST_EXCEPT, }
5056 #define POST_MEM(exit) { .exit_code = (exit), \
5057                         .stage = X86_ICPT_POST_MEMACCESS, }
5058
5059 static const struct __x86_intercept {
5060         u32 exit_code;
5061         enum x86_intercept_stage stage;
5062 } x86_intercept_map[] = {
5063         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
5064         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
5065         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
5066         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
5067         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
5068         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
5069         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
5070         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
5071         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
5072         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
5073         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
5074         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
5075         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
5076         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
5077         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
5078         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
5079         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
5080         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
5081         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
5082         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
5083         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
5084         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
5085         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
5086         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
5087         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
5088         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
5089         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
5090         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
5091         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
5092         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
5093         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
5094         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
5095         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
5096         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
5097         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
5098         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
5099         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
5100         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
5101         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
5102         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
5103         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
5104         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
5105         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
5106         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
5107         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
5108         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
5109 };
5110
5111 #undef PRE_EX
5112 #undef POST_EX
5113 #undef POST_MEM
5114
5115 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5116                                struct x86_instruction_info *info,
5117                                enum x86_intercept_stage stage)
5118 {
5119         struct vcpu_svm *svm = to_svm(vcpu);
5120         int vmexit, ret = X86EMUL_CONTINUE;
5121         struct __x86_intercept icpt_info;
5122         struct vmcb *vmcb = svm->vmcb;
5123
5124         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5125                 goto out;
5126
5127         icpt_info = x86_intercept_map[info->intercept];
5128
5129         if (stage != icpt_info.stage)
5130                 goto out;
5131
5132         switch (icpt_info.exit_code) {
5133         case SVM_EXIT_READ_CR0:
5134                 if (info->intercept == x86_intercept_cr_read)
5135                         icpt_info.exit_code += info->modrm_reg;
5136                 break;
5137         case SVM_EXIT_WRITE_CR0: {
5138                 unsigned long cr0, val;
5139                 u64 intercept;
5140
5141                 if (info->intercept == x86_intercept_cr_write)
5142                         icpt_info.exit_code += info->modrm_reg;
5143
5144                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5145                     info->intercept == x86_intercept_clts)
5146                         break;
5147
5148                 intercept = svm->nested.intercept;
5149
5150                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5151                         break;
5152
5153                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5154                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
5155
5156                 if (info->intercept == x86_intercept_lmsw) {
5157                         cr0 &= 0xfUL;
5158                         val &= 0xfUL;
5159                         /* lmsw can't clear PE - catch this here */
5160                         if (cr0 & X86_CR0_PE)
5161                                 val |= X86_CR0_PE;
5162                 }
5163
5164                 if (cr0 ^ val)
5165                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5166
5167                 break;
5168         }
5169         case SVM_EXIT_READ_DR0:
5170         case SVM_EXIT_WRITE_DR0:
5171                 icpt_info.exit_code += info->modrm_reg;
5172                 break;
5173         case SVM_EXIT_MSR:
5174                 if (info->intercept == x86_intercept_wrmsr)
5175                         vmcb->control.exit_info_1 = 1;
5176                 else
5177                         vmcb->control.exit_info_1 = 0;
5178                 break;
5179         case SVM_EXIT_PAUSE:
5180                 /*
5181                  * We get this for NOP only, but pause
5182                  * is rep not, check this here
5183                  */
5184                 if (info->rep_prefix != REPE_PREFIX)
5185                         goto out;
5186         case SVM_EXIT_IOIO: {
5187                 u64 exit_info;
5188                 u32 bytes;
5189
5190                 if (info->intercept == x86_intercept_in ||
5191                     info->intercept == x86_intercept_ins) {
5192                         exit_info = ((info->src_val & 0xffff) << 16) |
5193                                 SVM_IOIO_TYPE_MASK;
5194                         bytes = info->dst_bytes;
5195                 } else {
5196                         exit_info = (info->dst_val & 0xffff) << 16;
5197                         bytes = info->src_bytes;
5198                 }
5199
5200                 if (info->intercept == x86_intercept_outs ||
5201                     info->intercept == x86_intercept_ins)
5202                         exit_info |= SVM_IOIO_STR_MASK;
5203
5204                 if (info->rep_prefix)
5205                         exit_info |= SVM_IOIO_REP_MASK;
5206
5207                 bytes = min(bytes, 4u);
5208
5209                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5210
5211                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5212
5213                 vmcb->control.exit_info_1 = exit_info;
5214                 vmcb->control.exit_info_2 = info->next_rip;
5215
5216                 break;
5217         }
5218         default:
5219                 break;
5220         }
5221
5222         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5223         if (static_cpu_has(X86_FEATURE_NRIPS))
5224                 vmcb->control.next_rip  = info->next_rip;
5225         vmcb->control.exit_code = icpt_info.exit_code;
5226         vmexit = nested_svm_exit_handled(svm);
5227
5228         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5229                                            : X86EMUL_CONTINUE;
5230
5231 out:
5232         return ret;
5233 }
5234
5235 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5236 {
5237         local_irq_enable();
5238         /*
5239          * We must have an instruction with interrupts enabled, so
5240          * the timer interrupt isn't delayed by the interrupt shadow.
5241          */
5242         asm("nop");
5243         local_irq_disable();
5244 }
5245
5246 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5247 {
5248 }
5249
5250 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5251 {
5252         if (avic_handle_apic_id_update(vcpu) != 0)
5253                 return;
5254         if (avic_handle_dfr_update(vcpu) != 0)
5255                 return;
5256         avic_handle_ldr_update(vcpu);
5257 }
5258
5259 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5260         .cpu_has_kvm_support = has_svm,
5261         .disabled_by_bios = is_disabled,
5262         .hardware_setup = svm_hardware_setup,
5263         .hardware_unsetup = svm_hardware_unsetup,
5264         .check_processor_compatibility = svm_check_processor_compat,
5265         .hardware_enable = svm_hardware_enable,
5266         .hardware_disable = svm_hardware_disable,
5267         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5268         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5269
5270         .vcpu_create = svm_create_vcpu,
5271         .vcpu_free = svm_free_vcpu,
5272         .vcpu_reset = svm_vcpu_reset,
5273
5274         .vm_init = avic_vm_init,
5275         .vm_destroy = avic_vm_destroy,
5276
5277         .prepare_guest_switch = svm_prepare_guest_switch,
5278         .vcpu_load = svm_vcpu_load,
5279         .vcpu_put = svm_vcpu_put,
5280         .vcpu_blocking = svm_vcpu_blocking,
5281         .vcpu_unblocking = svm_vcpu_unblocking,
5282
5283         .update_bp_intercept = update_bp_intercept,
5284         .get_msr = svm_get_msr,
5285         .set_msr = svm_set_msr,
5286         .get_segment_base = svm_get_segment_base,
5287         .get_segment = svm_get_segment,
5288         .set_segment = svm_set_segment,
5289         .get_cpl = svm_get_cpl,
5290         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5291         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5292         .decache_cr3 = svm_decache_cr3,
5293         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5294         .set_cr0 = svm_set_cr0,
5295         .set_cr3 = svm_set_cr3,
5296         .set_cr4 = svm_set_cr4,
5297         .set_efer = svm_set_efer,
5298         .get_idt = svm_get_idt,
5299         .set_idt = svm_set_idt,
5300         .get_gdt = svm_get_gdt,
5301         .set_gdt = svm_set_gdt,
5302         .get_dr6 = svm_get_dr6,
5303         .set_dr6 = svm_set_dr6,
5304         .set_dr7 = svm_set_dr7,
5305         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5306         .cache_reg = svm_cache_reg,
5307         .get_rflags = svm_get_rflags,
5308         .set_rflags = svm_set_rflags,
5309
5310         .get_pkru = svm_get_pkru,
5311
5312         .tlb_flush = svm_flush_tlb,
5313
5314         .run = svm_vcpu_run,
5315         .handle_exit = handle_exit,
5316         .skip_emulated_instruction = skip_emulated_instruction,
5317         .set_interrupt_shadow = svm_set_interrupt_shadow,
5318         .get_interrupt_shadow = svm_get_interrupt_shadow,
5319         .patch_hypercall = svm_patch_hypercall,
5320         .set_irq = svm_set_irq,
5321         .set_nmi = svm_inject_nmi,
5322         .queue_exception = svm_queue_exception,
5323         .cancel_injection = svm_cancel_injection,
5324         .interrupt_allowed = svm_interrupt_allowed,
5325         .nmi_allowed = svm_nmi_allowed,
5326         .get_nmi_mask = svm_get_nmi_mask,
5327         .set_nmi_mask = svm_set_nmi_mask,
5328         .enable_nmi_window = enable_nmi_window,
5329         .enable_irq_window = enable_irq_window,
5330         .update_cr8_intercept = update_cr8_intercept,
5331         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5332         .get_enable_apicv = svm_get_enable_apicv,
5333         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5334         .load_eoi_exitmap = svm_load_eoi_exitmap,
5335         .hwapic_irr_update = svm_hwapic_irr_update,
5336         .hwapic_isr_update = svm_hwapic_isr_update,
5337         .apicv_post_state_restore = avic_post_state_restore,
5338
5339         .set_tss_addr = svm_set_tss_addr,
5340         .get_tdp_level = get_npt_level,
5341         .get_mt_mask = svm_get_mt_mask,
5342
5343         .get_exit_info = svm_get_exit_info,
5344
5345         .get_lpage_level = svm_get_lpage_level,
5346
5347         .cpuid_update = svm_cpuid_update,
5348
5349         .rdtscp_supported = svm_rdtscp_supported,
5350         .invpcid_supported = svm_invpcid_supported,
5351         .mpx_supported = svm_mpx_supported,
5352         .xsaves_supported = svm_xsaves_supported,
5353
5354         .set_supported_cpuid = svm_set_supported_cpuid,
5355
5356         .has_wbinvd_exit = svm_has_wbinvd_exit,
5357
5358         .write_tsc_offset = svm_write_tsc_offset,
5359
5360         .set_tdp_cr3 = set_tdp_cr3,
5361
5362         .check_intercept = svm_check_intercept,
5363         .handle_external_intr = svm_handle_external_intr,
5364
5365         .sched_in = svm_sched_in,
5366
5367         .pmu_ops = &amd_pmu_ops,
5368         .deliver_posted_interrupt = svm_deliver_avic_intr,
5369         .update_pi_irte = svm_update_pi_irte,
5370 };
5371
5372 static int __init svm_init(void)
5373 {
5374         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5375                         __alignof__(struct vcpu_svm), THIS_MODULE);
5376 }
5377
5378 static void __exit svm_exit(void)
5379 {
5380         kvm_exit();
5381 }
5382
5383 module_init(svm_init)
5384 module_exit(svm_exit)