Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include <linux/kvm_host.h>
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29
30 #include <asm/desc.h>
31
32 #include <asm/virtext.h>
33 #include "trace.h"
34
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
36
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
39
40 #define IOPM_ALLOC_ORDER 2
41 #define MSRPM_ALLOC_ORDER 1
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define SVM_FEATURE_NPT  (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_FEATURE_SVML (1 << 2)
49 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
50
51 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
52 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
53 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
54
55 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
56
57 static const u32 host_save_user_msrs[] = {
58 #ifdef CONFIG_X86_64
59         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
60         MSR_FS_BASE,
61 #endif
62         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
63 };
64
65 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
66
67 struct kvm_vcpu;
68
69 struct nested_state {
70         struct vmcb *hsave;
71         u64 hsave_msr;
72         u64 vmcb;
73
74         /* These are the merged vectors */
75         u32 *msrpm;
76
77         /* gpa pointers to the real vectors */
78         u64 vmcb_msrpm;
79
80         /* A VMEXIT is required but not yet emulated */
81         bool exit_required;
82
83         /* cache for intercepts of the guest */
84         u16 intercept_cr_read;
85         u16 intercept_cr_write;
86         u16 intercept_dr_read;
87         u16 intercept_dr_write;
88         u32 intercept_exceptions;
89         u64 intercept;
90
91 };
92
93 struct vcpu_svm {
94         struct kvm_vcpu vcpu;
95         struct vmcb *vmcb;
96         unsigned long vmcb_pa;
97         struct svm_cpu_data *svm_data;
98         uint64_t asid_generation;
99         uint64_t sysenter_esp;
100         uint64_t sysenter_eip;
101
102         u64 next_rip;
103
104         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
105         u64 host_gs_base;
106
107         u32 *msrpm;
108
109         struct nested_state nested;
110
111         bool nmi_singlestep;
112 };
113
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 static bool npt_enabled = true;
117 #else
118 static bool npt_enabled = false;
119 #endif
120 static int npt = 1;
121
122 module_param(npt, int, S_IRUGO);
123
124 static int nested = 1;
125 module_param(nested, int, S_IRUGO);
126
127 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
128 static void svm_complete_interrupts(struct vcpu_svm *svm);
129
130 static int nested_svm_exit_handled(struct vcpu_svm *svm);
131 static int nested_svm_vmexit(struct vcpu_svm *svm);
132 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
133                                       bool has_error_code, u32 error_code);
134
135 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
136 {
137         return container_of(vcpu, struct vcpu_svm, vcpu);
138 }
139
140 static inline bool is_nested(struct vcpu_svm *svm)
141 {
142         return svm->nested.vmcb;
143 }
144
145 static inline void enable_gif(struct vcpu_svm *svm)
146 {
147         svm->vcpu.arch.hflags |= HF_GIF_MASK;
148 }
149
150 static inline void disable_gif(struct vcpu_svm *svm)
151 {
152         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
153 }
154
155 static inline bool gif_set(struct vcpu_svm *svm)
156 {
157         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
158 }
159
160 static unsigned long iopm_base;
161
162 struct kvm_ldttss_desc {
163         u16 limit0;
164         u16 base0;
165         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
166         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
167         u32 base3;
168         u32 zero1;
169 } __attribute__((packed));
170
171 struct svm_cpu_data {
172         int cpu;
173
174         u64 asid_generation;
175         u32 max_asid;
176         u32 next_asid;
177         struct kvm_ldttss_desc *tss_desc;
178
179         struct page *save_area;
180 };
181
182 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
183 static uint32_t svm_features;
184
185 struct svm_init_data {
186         int cpu;
187         int r;
188 };
189
190 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
191
192 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
193 #define MSRS_RANGE_SIZE 2048
194 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
195
196 #define MAX_INST_SIZE 15
197
198 static inline u32 svm_has(u32 feat)
199 {
200         return svm_features & feat;
201 }
202
203 static inline void clgi(void)
204 {
205         asm volatile (__ex(SVM_CLGI));
206 }
207
208 static inline void stgi(void)
209 {
210         asm volatile (__ex(SVM_STGI));
211 }
212
213 static inline void invlpga(unsigned long addr, u32 asid)
214 {
215         asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
216 }
217
218 static inline void force_new_asid(struct kvm_vcpu *vcpu)
219 {
220         to_svm(vcpu)->asid_generation--;
221 }
222
223 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
224 {
225         force_new_asid(vcpu);
226 }
227
228 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
229 {
230         if (!npt_enabled && !(efer & EFER_LMA))
231                 efer &= ~EFER_LME;
232
233         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
234         vcpu->arch.shadow_efer = efer;
235 }
236
237 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
238                                 bool has_error_code, u32 error_code)
239 {
240         struct vcpu_svm *svm = to_svm(vcpu);
241
242         /* If we are within a nested VM we'd better #VMEXIT and let the
243            guest handle the exception */
244         if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
245                 return;
246
247         svm->vmcb->control.event_inj = nr
248                 | SVM_EVTINJ_VALID
249                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
250                 | SVM_EVTINJ_TYPE_EXEPT;
251         svm->vmcb->control.event_inj_err = error_code;
252 }
253
254 static int is_external_interrupt(u32 info)
255 {
256         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
257         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
258 }
259
260 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
261 {
262         struct vcpu_svm *svm = to_svm(vcpu);
263         u32 ret = 0;
264
265         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
266                 ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
267         return ret & mask;
268 }
269
270 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
271 {
272         struct vcpu_svm *svm = to_svm(vcpu);
273
274         if (mask == 0)
275                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
276         else
277                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
278
279 }
280
281 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
282 {
283         struct vcpu_svm *svm = to_svm(vcpu);
284
285         if (!svm->next_rip) {
286                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
287                                 EMULATE_DONE)
288                         printk(KERN_DEBUG "%s: NOP\n", __func__);
289                 return;
290         }
291         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
292                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
293                        __func__, kvm_rip_read(vcpu), svm->next_rip);
294
295         kvm_rip_write(vcpu, svm->next_rip);
296         svm_set_interrupt_shadow(vcpu, 0);
297 }
298
299 static int has_svm(void)
300 {
301         const char *msg;
302
303         if (!cpu_has_svm(&msg)) {
304                 printk(KERN_INFO "has_svm: %s\n", msg);
305                 return 0;
306         }
307
308         return 1;
309 }
310
311 static void svm_hardware_disable(void *garbage)
312 {
313         cpu_svm_disable();
314 }
315
316 static int svm_hardware_enable(void *garbage)
317 {
318
319         struct svm_cpu_data *sd;
320         uint64_t efer;
321         struct descriptor_table gdt_descr;
322         struct desc_struct *gdt;
323         int me = raw_smp_processor_id();
324
325         rdmsrl(MSR_EFER, efer);
326         if (efer & EFER_SVME)
327                 return -EBUSY;
328
329         if (!has_svm()) {
330                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
331                        me);
332                 return -EINVAL;
333         }
334         sd = per_cpu(svm_data, me);
335
336         if (!sd) {
337                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
338                        me);
339                 return -EINVAL;
340         }
341
342         sd->asid_generation = 1;
343         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
344         sd->next_asid = sd->max_asid + 1;
345
346         kvm_get_gdt(&gdt_descr);
347         gdt = (struct desc_struct *)gdt_descr.base;
348         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
349
350         wrmsrl(MSR_EFER, efer | EFER_SVME);
351
352         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
353
354         return 0;
355 }
356
357 static void svm_cpu_uninit(int cpu)
358 {
359         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
360
361         if (!sd)
362                 return;
363
364         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
365         __free_page(sd->save_area);
366         kfree(sd);
367 }
368
369 static int svm_cpu_init(int cpu)
370 {
371         struct svm_cpu_data *sd;
372         int r;
373
374         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
375         if (!sd)
376                 return -ENOMEM;
377         sd->cpu = cpu;
378         sd->save_area = alloc_page(GFP_KERNEL);
379         r = -ENOMEM;
380         if (!sd->save_area)
381                 goto err_1;
382
383         per_cpu(svm_data, cpu) = sd;
384
385         return 0;
386
387 err_1:
388         kfree(sd);
389         return r;
390
391 }
392
393 static void set_msr_interception(u32 *msrpm, unsigned msr,
394                                  int read, int write)
395 {
396         int i;
397
398         for (i = 0; i < NUM_MSR_MAPS; i++) {
399                 if (msr >= msrpm_ranges[i] &&
400                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
401                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
402                                           msrpm_ranges[i]) * 2;
403
404                         u32 *base = msrpm + (msr_offset / 32);
405                         u32 msr_shift = msr_offset % 32;
406                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
407                         *base = (*base & ~(0x3 << msr_shift)) |
408                                 (mask << msr_shift);
409                         return;
410                 }
411         }
412         BUG();
413 }
414
415 static void svm_vcpu_init_msrpm(u32 *msrpm)
416 {
417         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
418
419 #ifdef CONFIG_X86_64
420         set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
421         set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
422         set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
423         set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
424         set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
425         set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
426 #endif
427         set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
428         set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
429 }
430
431 static void svm_enable_lbrv(struct vcpu_svm *svm)
432 {
433         u32 *msrpm = svm->msrpm;
434
435         svm->vmcb->control.lbr_ctl = 1;
436         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
437         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
438         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
439         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
440 }
441
442 static void svm_disable_lbrv(struct vcpu_svm *svm)
443 {
444         u32 *msrpm = svm->msrpm;
445
446         svm->vmcb->control.lbr_ctl = 0;
447         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
448         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
449         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
450         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
451 }
452
453 static __init int svm_hardware_setup(void)
454 {
455         int cpu;
456         struct page *iopm_pages;
457         void *iopm_va;
458         int r;
459
460         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
461
462         if (!iopm_pages)
463                 return -ENOMEM;
464
465         iopm_va = page_address(iopm_pages);
466         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
467         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
468
469         if (boot_cpu_has(X86_FEATURE_NX))
470                 kvm_enable_efer_bits(EFER_NX);
471
472         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
473                 kvm_enable_efer_bits(EFER_FFXSR);
474
475         if (nested) {
476                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
477                 kvm_enable_efer_bits(EFER_SVME);
478         }
479
480         for_each_possible_cpu(cpu) {
481                 r = svm_cpu_init(cpu);
482                 if (r)
483                         goto err;
484         }
485
486         svm_features = cpuid_edx(SVM_CPUID_FUNC);
487
488         if (!svm_has(SVM_FEATURE_NPT))
489                 npt_enabled = false;
490
491         if (npt_enabled && !npt) {
492                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
493                 npt_enabled = false;
494         }
495
496         if (npt_enabled) {
497                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
498                 kvm_enable_tdp();
499         } else
500                 kvm_disable_tdp();
501
502         return 0;
503
504 err:
505         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
506         iopm_base = 0;
507         return r;
508 }
509
510 static __exit void svm_hardware_unsetup(void)
511 {
512         int cpu;
513
514         for_each_possible_cpu(cpu)
515                 svm_cpu_uninit(cpu);
516
517         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
518         iopm_base = 0;
519 }
520
521 static void init_seg(struct vmcb_seg *seg)
522 {
523         seg->selector = 0;
524         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
525                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
526         seg->limit = 0xffff;
527         seg->base = 0;
528 }
529
530 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
531 {
532         seg->selector = 0;
533         seg->attrib = SVM_SELECTOR_P_MASK | type;
534         seg->limit = 0xffff;
535         seg->base = 0;
536 }
537
538 static void init_vmcb(struct vcpu_svm *svm)
539 {
540         struct vmcb_control_area *control = &svm->vmcb->control;
541         struct vmcb_save_area *save = &svm->vmcb->save;
542
543         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
544                                         INTERCEPT_CR3_MASK |
545                                         INTERCEPT_CR4_MASK;
546
547         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
548                                         INTERCEPT_CR3_MASK |
549                                         INTERCEPT_CR4_MASK |
550                                         INTERCEPT_CR8_MASK;
551
552         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
553                                         INTERCEPT_DR1_MASK |
554                                         INTERCEPT_DR2_MASK |
555                                         INTERCEPT_DR3_MASK;
556
557         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
558                                         INTERCEPT_DR1_MASK |
559                                         INTERCEPT_DR2_MASK |
560                                         INTERCEPT_DR3_MASK |
561                                         INTERCEPT_DR5_MASK |
562                                         INTERCEPT_DR7_MASK;
563
564         control->intercept_exceptions = (1 << PF_VECTOR) |
565                                         (1 << UD_VECTOR) |
566                                         (1 << MC_VECTOR);
567
568
569         control->intercept =    (1ULL << INTERCEPT_INTR) |
570                                 (1ULL << INTERCEPT_NMI) |
571                                 (1ULL << INTERCEPT_SMI) |
572                                 (1ULL << INTERCEPT_CPUID) |
573                                 (1ULL << INTERCEPT_INVD) |
574                                 (1ULL << INTERCEPT_HLT) |
575                                 (1ULL << INTERCEPT_INVLPG) |
576                                 (1ULL << INTERCEPT_INVLPGA) |
577                                 (1ULL << INTERCEPT_IOIO_PROT) |
578                                 (1ULL << INTERCEPT_MSR_PROT) |
579                                 (1ULL << INTERCEPT_TASK_SWITCH) |
580                                 (1ULL << INTERCEPT_SHUTDOWN) |
581                                 (1ULL << INTERCEPT_VMRUN) |
582                                 (1ULL << INTERCEPT_VMMCALL) |
583                                 (1ULL << INTERCEPT_VMLOAD) |
584                                 (1ULL << INTERCEPT_VMSAVE) |
585                                 (1ULL << INTERCEPT_STGI) |
586                                 (1ULL << INTERCEPT_CLGI) |
587                                 (1ULL << INTERCEPT_SKINIT) |
588                                 (1ULL << INTERCEPT_WBINVD) |
589                                 (1ULL << INTERCEPT_MONITOR) |
590                                 (1ULL << INTERCEPT_MWAIT);
591
592         control->iopm_base_pa = iopm_base;
593         control->msrpm_base_pa = __pa(svm->msrpm);
594         control->tsc_offset = 0;
595         control->int_ctl = V_INTR_MASKING_MASK;
596
597         init_seg(&save->es);
598         init_seg(&save->ss);
599         init_seg(&save->ds);
600         init_seg(&save->fs);
601         init_seg(&save->gs);
602
603         save->cs.selector = 0xf000;
604         /* Executable/Readable Code Segment */
605         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
606                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
607         save->cs.limit = 0xffff;
608         /*
609          * cs.base should really be 0xffff0000, but vmx can't handle that, so
610          * be consistent with it.
611          *
612          * Replace when we have real mode working for vmx.
613          */
614         save->cs.base = 0xf0000;
615
616         save->gdtr.limit = 0xffff;
617         save->idtr.limit = 0xffff;
618
619         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
620         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
621
622         save->efer = EFER_SVME;
623         save->dr6 = 0xffff0ff0;
624         save->dr7 = 0x400;
625         save->rflags = 2;
626         save->rip = 0x0000fff0;
627         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
628
629         /* This is the guest-visible cr0 value.
630          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
631          */
632         svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
633         kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
634
635         save->cr4 = X86_CR4_PAE;
636         /* rdx = ?? */
637
638         if (npt_enabled) {
639                 /* Setup VMCB for Nested Paging */
640                 control->nested_ctl = 1;
641                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
642                                         (1ULL << INTERCEPT_INVLPG));
643                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
644                 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
645                                                 INTERCEPT_CR3_MASK);
646                 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
647                                                  INTERCEPT_CR3_MASK);
648                 save->g_pat = 0x0007040600070406ULL;
649                 save->cr3 = 0;
650                 save->cr4 = 0;
651         }
652         force_new_asid(&svm->vcpu);
653
654         svm->nested.vmcb = 0;
655         svm->vcpu.arch.hflags = 0;
656
657         if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
658                 control->pause_filter_count = 3000;
659                 control->intercept |= (1ULL << INTERCEPT_PAUSE);
660         }
661
662         enable_gif(svm);
663 }
664
665 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
666 {
667         struct vcpu_svm *svm = to_svm(vcpu);
668
669         init_vmcb(svm);
670
671         if (!kvm_vcpu_is_bsp(vcpu)) {
672                 kvm_rip_write(vcpu, 0);
673                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
674                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
675         }
676         vcpu->arch.regs_avail = ~0;
677         vcpu->arch.regs_dirty = ~0;
678
679         return 0;
680 }
681
682 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
683 {
684         struct vcpu_svm *svm;
685         struct page *page;
686         struct page *msrpm_pages;
687         struct page *hsave_page;
688         struct page *nested_msrpm_pages;
689         int err;
690
691         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
692         if (!svm) {
693                 err = -ENOMEM;
694                 goto out;
695         }
696
697         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
698         if (err)
699                 goto free_svm;
700
701         page = alloc_page(GFP_KERNEL);
702         if (!page) {
703                 err = -ENOMEM;
704                 goto uninit;
705         }
706
707         err = -ENOMEM;
708         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
709         if (!msrpm_pages)
710                 goto uninit;
711
712         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
713         if (!nested_msrpm_pages)
714                 goto uninit;
715
716         svm->msrpm = page_address(msrpm_pages);
717         svm_vcpu_init_msrpm(svm->msrpm);
718
719         hsave_page = alloc_page(GFP_KERNEL);
720         if (!hsave_page)
721                 goto uninit;
722         svm->nested.hsave = page_address(hsave_page);
723
724         svm->nested.msrpm = page_address(nested_msrpm_pages);
725
726         svm->vmcb = page_address(page);
727         clear_page(svm->vmcb);
728         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
729         svm->asid_generation = 0;
730         init_vmcb(svm);
731
732         fx_init(&svm->vcpu);
733         svm->vcpu.fpu_active = 1;
734         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
735         if (kvm_vcpu_is_bsp(&svm->vcpu))
736                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
737
738         return &svm->vcpu;
739
740 uninit:
741         kvm_vcpu_uninit(&svm->vcpu);
742 free_svm:
743         kmem_cache_free(kvm_vcpu_cache, svm);
744 out:
745         return ERR_PTR(err);
746 }
747
748 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
749 {
750         struct vcpu_svm *svm = to_svm(vcpu);
751
752         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
753         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
754         __free_page(virt_to_page(svm->nested.hsave));
755         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
756         kvm_vcpu_uninit(vcpu);
757         kmem_cache_free(kvm_vcpu_cache, svm);
758 }
759
760 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
761 {
762         struct vcpu_svm *svm = to_svm(vcpu);
763         int i;
764
765         if (unlikely(cpu != vcpu->cpu)) {
766                 u64 delta;
767
768                 /*
769                  * Make sure that the guest sees a monotonically
770                  * increasing TSC.
771                  */
772                 delta = vcpu->arch.host_tsc - native_read_tsc();
773                 svm->vmcb->control.tsc_offset += delta;
774                 if (is_nested(svm))
775                         svm->nested.hsave->control.tsc_offset += delta;
776                 vcpu->cpu = cpu;
777                 kvm_migrate_timers(vcpu);
778                 svm->asid_generation = 0;
779         }
780
781         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
782                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
783 }
784
785 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
786 {
787         struct vcpu_svm *svm = to_svm(vcpu);
788         int i;
789
790         ++vcpu->stat.host_state_reload;
791         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
792                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
793
794         vcpu->arch.host_tsc = native_read_tsc();
795 }
796
797 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
798 {
799         return to_svm(vcpu)->vmcb->save.rflags;
800 }
801
802 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
803 {
804         to_svm(vcpu)->vmcb->save.rflags = rflags;
805 }
806
807 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
808 {
809         switch (reg) {
810         case VCPU_EXREG_PDPTR:
811                 BUG_ON(!npt_enabled);
812                 load_pdptrs(vcpu, vcpu->arch.cr3);
813                 break;
814         default:
815                 BUG();
816         }
817 }
818
819 static void svm_set_vintr(struct vcpu_svm *svm)
820 {
821         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
822 }
823
824 static void svm_clear_vintr(struct vcpu_svm *svm)
825 {
826         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
827 }
828
829 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
830 {
831         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
832
833         switch (seg) {
834         case VCPU_SREG_CS: return &save->cs;
835         case VCPU_SREG_DS: return &save->ds;
836         case VCPU_SREG_ES: return &save->es;
837         case VCPU_SREG_FS: return &save->fs;
838         case VCPU_SREG_GS: return &save->gs;
839         case VCPU_SREG_SS: return &save->ss;
840         case VCPU_SREG_TR: return &save->tr;
841         case VCPU_SREG_LDTR: return &save->ldtr;
842         }
843         BUG();
844         return NULL;
845 }
846
847 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
848 {
849         struct vmcb_seg *s = svm_seg(vcpu, seg);
850
851         return s->base;
852 }
853
854 static void svm_get_segment(struct kvm_vcpu *vcpu,
855                             struct kvm_segment *var, int seg)
856 {
857         struct vmcb_seg *s = svm_seg(vcpu, seg);
858
859         var->base = s->base;
860         var->limit = s->limit;
861         var->selector = s->selector;
862         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
863         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
864         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
865         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
866         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
867         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
868         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
869         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
870
871         /* AMD's VMCB does not have an explicit unusable field, so emulate it
872          * for cross vendor migration purposes by "not present"
873          */
874         var->unusable = !var->present || (var->type == 0);
875
876         switch (seg) {
877         case VCPU_SREG_CS:
878                 /*
879                  * SVM always stores 0 for the 'G' bit in the CS selector in
880                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
881                  * Intel's VMENTRY has a check on the 'G' bit.
882                  */
883                 var->g = s->limit > 0xfffff;
884                 break;
885         case VCPU_SREG_TR:
886                 /*
887                  * Work around a bug where the busy flag in the tr selector
888                  * isn't exposed
889                  */
890                 var->type |= 0x2;
891                 break;
892         case VCPU_SREG_DS:
893         case VCPU_SREG_ES:
894         case VCPU_SREG_FS:
895         case VCPU_SREG_GS:
896                 /*
897                  * The accessed bit must always be set in the segment
898                  * descriptor cache, although it can be cleared in the
899                  * descriptor, the cached bit always remains at 1. Since
900                  * Intel has a check on this, set it here to support
901                  * cross-vendor migration.
902                  */
903                 if (!var->unusable)
904                         var->type |= 0x1;
905                 break;
906         case VCPU_SREG_SS:
907                 /* On AMD CPUs sometimes the DB bit in the segment
908                  * descriptor is left as 1, although the whole segment has
909                  * been made unusable. Clear it here to pass an Intel VMX
910                  * entry check when cross vendor migrating.
911                  */
912                 if (var->unusable)
913                         var->db = 0;
914                 break;
915         }
916 }
917
918 static int svm_get_cpl(struct kvm_vcpu *vcpu)
919 {
920         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
921
922         return save->cpl;
923 }
924
925 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
926 {
927         struct vcpu_svm *svm = to_svm(vcpu);
928
929         dt->limit = svm->vmcb->save.idtr.limit;
930         dt->base = svm->vmcb->save.idtr.base;
931 }
932
933 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
934 {
935         struct vcpu_svm *svm = to_svm(vcpu);
936
937         svm->vmcb->save.idtr.limit = dt->limit;
938         svm->vmcb->save.idtr.base = dt->base ;
939 }
940
941 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
942 {
943         struct vcpu_svm *svm = to_svm(vcpu);
944
945         dt->limit = svm->vmcb->save.gdtr.limit;
946         dt->base = svm->vmcb->save.gdtr.base;
947 }
948
949 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
950 {
951         struct vcpu_svm *svm = to_svm(vcpu);
952
953         svm->vmcb->save.gdtr.limit = dt->limit;
954         svm->vmcb->save.gdtr.base = dt->base ;
955 }
956
957 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
958 {
959 }
960
961 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
962 {
963         struct vcpu_svm *svm = to_svm(vcpu);
964
965 #ifdef CONFIG_X86_64
966         if (vcpu->arch.shadow_efer & EFER_LME) {
967                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
968                         vcpu->arch.shadow_efer |= EFER_LMA;
969                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
970                 }
971
972                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
973                         vcpu->arch.shadow_efer &= ~EFER_LMA;
974                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
975                 }
976         }
977 #endif
978         if (npt_enabled)
979                 goto set;
980
981         if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
982                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
983                 vcpu->fpu_active = 1;
984         }
985
986         vcpu->arch.cr0 = cr0;
987         cr0 |= X86_CR0_PG | X86_CR0_WP;
988         if (!vcpu->fpu_active) {
989                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
990                 cr0 |= X86_CR0_TS;
991         }
992 set:
993         /*
994          * re-enable caching here because the QEMU bios
995          * does not do it - this results in some delay at
996          * reboot
997          */
998         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
999         svm->vmcb->save.cr0 = cr0;
1000 }
1001
1002 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1003 {
1004         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1005         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1006
1007         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1008                 force_new_asid(vcpu);
1009
1010         vcpu->arch.cr4 = cr4;
1011         if (!npt_enabled)
1012                 cr4 |= X86_CR4_PAE;
1013         cr4 |= host_cr4_mce;
1014         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1015 }
1016
1017 static void svm_set_segment(struct kvm_vcpu *vcpu,
1018                             struct kvm_segment *var, int seg)
1019 {
1020         struct vcpu_svm *svm = to_svm(vcpu);
1021         struct vmcb_seg *s = svm_seg(vcpu, seg);
1022
1023         s->base = var->base;
1024         s->limit = var->limit;
1025         s->selector = var->selector;
1026         if (var->unusable)
1027                 s->attrib = 0;
1028         else {
1029                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1030                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1031                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1032                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1033                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1034                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1035                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1036                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1037         }
1038         if (seg == VCPU_SREG_CS)
1039                 svm->vmcb->save.cpl
1040                         = (svm->vmcb->save.cs.attrib
1041                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1042
1043 }
1044
1045 static void update_db_intercept(struct kvm_vcpu *vcpu)
1046 {
1047         struct vcpu_svm *svm = to_svm(vcpu);
1048
1049         svm->vmcb->control.intercept_exceptions &=
1050                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1051
1052         if (svm->nmi_singlestep)
1053                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1054
1055         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1056                 if (vcpu->guest_debug &
1057                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1058                         svm->vmcb->control.intercept_exceptions |=
1059                                 1 << DB_VECTOR;
1060                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1061                         svm->vmcb->control.intercept_exceptions |=
1062                                 1 << BP_VECTOR;
1063         } else
1064                 vcpu->guest_debug = 0;
1065 }
1066
1067 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1068 {
1069         struct vcpu_svm *svm = to_svm(vcpu);
1070
1071         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1072                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1073         else
1074                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1075
1076         update_db_intercept(vcpu);
1077 }
1078
1079 static void load_host_msrs(struct kvm_vcpu *vcpu)
1080 {
1081 #ifdef CONFIG_X86_64
1082         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1083 #endif
1084 }
1085
1086 static void save_host_msrs(struct kvm_vcpu *vcpu)
1087 {
1088 #ifdef CONFIG_X86_64
1089         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1090 #endif
1091 }
1092
1093 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1094 {
1095         if (sd->next_asid > sd->max_asid) {
1096                 ++sd->asid_generation;
1097                 sd->next_asid = 1;
1098                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1099         }
1100
1101         svm->asid_generation = sd->asid_generation;
1102         svm->vmcb->control.asid = sd->next_asid++;
1103 }
1104
1105 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
1106 {
1107         struct vcpu_svm *svm = to_svm(vcpu);
1108         unsigned long val;
1109
1110         switch (dr) {
1111         case 0 ... 3:
1112                 val = vcpu->arch.db[dr];
1113                 break;
1114         case 6:
1115                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1116                         val = vcpu->arch.dr6;
1117                 else
1118                         val = svm->vmcb->save.dr6;
1119                 break;
1120         case 7:
1121                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1122                         val = vcpu->arch.dr7;
1123                 else
1124                         val = svm->vmcb->save.dr7;
1125                 break;
1126         default:
1127                 val = 0;
1128         }
1129
1130         return val;
1131 }
1132
1133 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
1134                        int *exception)
1135 {
1136         struct vcpu_svm *svm = to_svm(vcpu);
1137
1138         *exception = 0;
1139
1140         switch (dr) {
1141         case 0 ... 3:
1142                 vcpu->arch.db[dr] = value;
1143                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1144                         vcpu->arch.eff_db[dr] = value;
1145                 return;
1146         case 4 ... 5:
1147                 if (vcpu->arch.cr4 & X86_CR4_DE)
1148                         *exception = UD_VECTOR;
1149                 return;
1150         case 6:
1151                 if (value & 0xffffffff00000000ULL) {
1152                         *exception = GP_VECTOR;
1153                         return;
1154                 }
1155                 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1156                 return;
1157         case 7:
1158                 if (value & 0xffffffff00000000ULL) {
1159                         *exception = GP_VECTOR;
1160                         return;
1161                 }
1162                 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1163                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1164                         svm->vmcb->save.dr7 = vcpu->arch.dr7;
1165                         vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1166                 }
1167                 return;
1168         default:
1169                 /* FIXME: Possible case? */
1170                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1171                        __func__, dr);
1172                 *exception = UD_VECTOR;
1173                 return;
1174         }
1175 }
1176
1177 static int pf_interception(struct vcpu_svm *svm)
1178 {
1179         u64 fault_address;
1180         u32 error_code;
1181
1182         fault_address  = svm->vmcb->control.exit_info_2;
1183         error_code = svm->vmcb->control.exit_info_1;
1184
1185         trace_kvm_page_fault(fault_address, error_code);
1186         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1187                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1188         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1189 }
1190
1191 static int db_interception(struct vcpu_svm *svm)
1192 {
1193         struct kvm_run *kvm_run = svm->vcpu.run;
1194
1195         if (!(svm->vcpu.guest_debug &
1196               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1197                 !svm->nmi_singlestep) {
1198                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1199                 return 1;
1200         }
1201
1202         if (svm->nmi_singlestep) {
1203                 svm->nmi_singlestep = false;
1204                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1205                         svm->vmcb->save.rflags &=
1206                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1207                 update_db_intercept(&svm->vcpu);
1208         }
1209
1210         if (svm->vcpu.guest_debug &
1211             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1212                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1213                 kvm_run->debug.arch.pc =
1214                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1215                 kvm_run->debug.arch.exception = DB_VECTOR;
1216                 return 0;
1217         }
1218
1219         return 1;
1220 }
1221
1222 static int bp_interception(struct vcpu_svm *svm)
1223 {
1224         struct kvm_run *kvm_run = svm->vcpu.run;
1225
1226         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1227         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1228         kvm_run->debug.arch.exception = BP_VECTOR;
1229         return 0;
1230 }
1231
1232 static int ud_interception(struct vcpu_svm *svm)
1233 {
1234         int er;
1235
1236         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1237         if (er != EMULATE_DONE)
1238                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1239         return 1;
1240 }
1241
1242 static int nm_interception(struct vcpu_svm *svm)
1243 {
1244         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1245         if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1246                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1247         svm->vcpu.fpu_active = 1;
1248
1249         return 1;
1250 }
1251
1252 static int mc_interception(struct vcpu_svm *svm)
1253 {
1254         /*
1255          * On an #MC intercept the MCE handler is not called automatically in
1256          * the host. So do it by hand here.
1257          */
1258         asm volatile (
1259                 "int $0x12\n");
1260         /* not sure if we ever come back to this point */
1261
1262         return 1;
1263 }
1264
1265 static int shutdown_interception(struct vcpu_svm *svm)
1266 {
1267         struct kvm_run *kvm_run = svm->vcpu.run;
1268
1269         /*
1270          * VMCB is undefined after a SHUTDOWN intercept
1271          * so reinitialize it.
1272          */
1273         clear_page(svm->vmcb);
1274         init_vmcb(svm);
1275
1276         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1277         return 0;
1278 }
1279
1280 static int io_interception(struct vcpu_svm *svm)
1281 {
1282         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1283         int size, in, string;
1284         unsigned port;
1285
1286         ++svm->vcpu.stat.io_exits;
1287
1288         svm->next_rip = svm->vmcb->control.exit_info_2;
1289
1290         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1291
1292         if (string) {
1293                 if (emulate_instruction(&svm->vcpu,
1294                                         0, 0, 0) == EMULATE_DO_MMIO)
1295                         return 0;
1296                 return 1;
1297         }
1298
1299         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1300         port = io_info >> 16;
1301         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1302
1303         skip_emulated_instruction(&svm->vcpu);
1304         return kvm_emulate_pio(&svm->vcpu, in, size, port);
1305 }
1306
1307 static int nmi_interception(struct vcpu_svm *svm)
1308 {
1309         return 1;
1310 }
1311
1312 static int intr_interception(struct vcpu_svm *svm)
1313 {
1314         ++svm->vcpu.stat.irq_exits;
1315         return 1;
1316 }
1317
1318 static int nop_on_interception(struct vcpu_svm *svm)
1319 {
1320         return 1;
1321 }
1322
1323 static int halt_interception(struct vcpu_svm *svm)
1324 {
1325         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1326         skip_emulated_instruction(&svm->vcpu);
1327         return kvm_emulate_halt(&svm->vcpu);
1328 }
1329
1330 static int vmmcall_interception(struct vcpu_svm *svm)
1331 {
1332         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1333         skip_emulated_instruction(&svm->vcpu);
1334         kvm_emulate_hypercall(&svm->vcpu);
1335         return 1;
1336 }
1337
1338 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1339 {
1340         if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
1341             || !is_paging(&svm->vcpu)) {
1342                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1343                 return 1;
1344         }
1345
1346         if (svm->vmcb->save.cpl) {
1347                 kvm_inject_gp(&svm->vcpu, 0);
1348                 return 1;
1349         }
1350
1351        return 0;
1352 }
1353
1354 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1355                                       bool has_error_code, u32 error_code)
1356 {
1357         if (!is_nested(svm))
1358                 return 0;
1359
1360         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1361         svm->vmcb->control.exit_code_hi = 0;
1362         svm->vmcb->control.exit_info_1 = error_code;
1363         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1364
1365         return nested_svm_exit_handled(svm);
1366 }
1367
1368 static inline int nested_svm_intr(struct vcpu_svm *svm)
1369 {
1370         if (!is_nested(svm))
1371                 return 0;
1372
1373         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1374                 return 0;
1375
1376         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1377                 return 0;
1378
1379         svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1380
1381         if (svm->nested.intercept & 1ULL) {
1382                 /*
1383                  * The #vmexit can't be emulated here directly because this
1384                  * code path runs with irqs and preemtion disabled. A
1385                  * #vmexit emulation might sleep. Only signal request for
1386                  * the #vmexit here.
1387                  */
1388                 svm->nested.exit_required = true;
1389                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1390                 return 1;
1391         }
1392
1393         return 0;
1394 }
1395
1396 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, enum km_type idx)
1397 {
1398         struct page *page;
1399
1400         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1401         if (is_error_page(page))
1402                 goto error;
1403
1404         return kmap_atomic(page, idx);
1405
1406 error:
1407         kvm_release_page_clean(page);
1408         kvm_inject_gp(&svm->vcpu, 0);
1409
1410         return NULL;
1411 }
1412
1413 static void nested_svm_unmap(void *addr, enum km_type idx)
1414 {
1415         struct page *page;
1416
1417         if (!addr)
1418                 return;
1419
1420         page = kmap_atomic_to_page(addr);
1421
1422         kunmap_atomic(addr, idx);
1423         kvm_release_page_dirty(page);
1424 }
1425
1426 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1427 {
1428         u32 param = svm->vmcb->control.exit_info_1 & 1;
1429         u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1430         bool ret = false;
1431         u32 t0, t1;
1432         u8 *msrpm;
1433
1434         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1435                 return false;
1436
1437         msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1438
1439         if (!msrpm)
1440                 goto out;
1441
1442         switch (msr) {
1443         case 0 ... 0x1fff:
1444                 t0 = (msr * 2) % 8;
1445                 t1 = msr / 8;
1446                 break;
1447         case 0xc0000000 ... 0xc0001fff:
1448                 t0 = (8192 + msr - 0xc0000000) * 2;
1449                 t1 = (t0 / 8);
1450                 t0 %= 8;
1451                 break;
1452         case 0xc0010000 ... 0xc0011fff:
1453                 t0 = (16384 + msr - 0xc0010000) * 2;
1454                 t1 = (t0 / 8);
1455                 t0 %= 8;
1456                 break;
1457         default:
1458                 ret = true;
1459                 goto out;
1460         }
1461
1462         ret = msrpm[t1] & ((1 << param) << t0);
1463
1464 out:
1465         nested_svm_unmap(msrpm, KM_USER0);
1466
1467         return ret;
1468 }
1469
1470 static int nested_svm_exit_special(struct vcpu_svm *svm)
1471 {
1472         u32 exit_code = svm->vmcb->control.exit_code;
1473
1474         switch (exit_code) {
1475         case SVM_EXIT_INTR:
1476         case SVM_EXIT_NMI:
1477                 return NESTED_EXIT_HOST;
1478                 /* For now we are always handling NPFs when using them */
1479         case SVM_EXIT_NPF:
1480                 if (npt_enabled)
1481                         return NESTED_EXIT_HOST;
1482                 break;
1483         /* When we're shadowing, trap PFs */
1484         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1485                 if (!npt_enabled)
1486                         return NESTED_EXIT_HOST;
1487                 break;
1488         default:
1489                 break;
1490         }
1491
1492         return NESTED_EXIT_CONTINUE;
1493 }
1494
1495 /*
1496  * If this function returns true, this #vmexit was already handled
1497  */
1498 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1499 {
1500         u32 exit_code = svm->vmcb->control.exit_code;
1501         int vmexit = NESTED_EXIT_HOST;
1502
1503         switch (exit_code) {
1504         case SVM_EXIT_MSR:
1505                 vmexit = nested_svm_exit_handled_msr(svm);
1506                 break;
1507         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1508                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1509                 if (svm->nested.intercept_cr_read & cr_bits)
1510                         vmexit = NESTED_EXIT_DONE;
1511                 break;
1512         }
1513         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1514                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1515                 if (svm->nested.intercept_cr_write & cr_bits)
1516                         vmexit = NESTED_EXIT_DONE;
1517                 break;
1518         }
1519         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1520                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1521                 if (svm->nested.intercept_dr_read & dr_bits)
1522                         vmexit = NESTED_EXIT_DONE;
1523                 break;
1524         }
1525         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1526                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1527                 if (svm->nested.intercept_dr_write & dr_bits)
1528                         vmexit = NESTED_EXIT_DONE;
1529                 break;
1530         }
1531         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1532                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1533                 if (svm->nested.intercept_exceptions & excp_bits)
1534                         vmexit = NESTED_EXIT_DONE;
1535                 break;
1536         }
1537         default: {
1538                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1539                 if (svm->nested.intercept & exit_bits)
1540                         vmexit = NESTED_EXIT_DONE;
1541         }
1542         }
1543
1544         if (vmexit == NESTED_EXIT_DONE) {
1545                 nested_svm_vmexit(svm);
1546         }
1547
1548         return vmexit;
1549 }
1550
1551 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1552 {
1553         struct vmcb_control_area *dst  = &dst_vmcb->control;
1554         struct vmcb_control_area *from = &from_vmcb->control;
1555
1556         dst->intercept_cr_read    = from->intercept_cr_read;
1557         dst->intercept_cr_write   = from->intercept_cr_write;
1558         dst->intercept_dr_read    = from->intercept_dr_read;
1559         dst->intercept_dr_write   = from->intercept_dr_write;
1560         dst->intercept_exceptions = from->intercept_exceptions;
1561         dst->intercept            = from->intercept;
1562         dst->iopm_base_pa         = from->iopm_base_pa;
1563         dst->msrpm_base_pa        = from->msrpm_base_pa;
1564         dst->tsc_offset           = from->tsc_offset;
1565         dst->asid                 = from->asid;
1566         dst->tlb_ctl              = from->tlb_ctl;
1567         dst->int_ctl              = from->int_ctl;
1568         dst->int_vector           = from->int_vector;
1569         dst->int_state            = from->int_state;
1570         dst->exit_code            = from->exit_code;
1571         dst->exit_code_hi         = from->exit_code_hi;
1572         dst->exit_info_1          = from->exit_info_1;
1573         dst->exit_info_2          = from->exit_info_2;
1574         dst->exit_int_info        = from->exit_int_info;
1575         dst->exit_int_info_err    = from->exit_int_info_err;
1576         dst->nested_ctl           = from->nested_ctl;
1577         dst->event_inj            = from->event_inj;
1578         dst->event_inj_err        = from->event_inj_err;
1579         dst->nested_cr3           = from->nested_cr3;
1580         dst->lbr_ctl              = from->lbr_ctl;
1581 }
1582
1583 static int nested_svm_vmexit(struct vcpu_svm *svm)
1584 {
1585         struct vmcb *nested_vmcb;
1586         struct vmcb *hsave = svm->nested.hsave;
1587         struct vmcb *vmcb = svm->vmcb;
1588
1589         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1590                                        vmcb->control.exit_info_1,
1591                                        vmcb->control.exit_info_2,
1592                                        vmcb->control.exit_int_info,
1593                                        vmcb->control.exit_int_info_err);
1594
1595         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, KM_USER0);
1596         if (!nested_vmcb)
1597                 return 1;
1598
1599         /* Give the current vmcb to the guest */
1600         disable_gif(svm);
1601
1602         nested_vmcb->save.es     = vmcb->save.es;
1603         nested_vmcb->save.cs     = vmcb->save.cs;
1604         nested_vmcb->save.ss     = vmcb->save.ss;
1605         nested_vmcb->save.ds     = vmcb->save.ds;
1606         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1607         nested_vmcb->save.idtr   = vmcb->save.idtr;
1608         if (npt_enabled)
1609                 nested_vmcb->save.cr3    = vmcb->save.cr3;
1610         nested_vmcb->save.cr2    = vmcb->save.cr2;
1611         nested_vmcb->save.rflags = vmcb->save.rflags;
1612         nested_vmcb->save.rip    = vmcb->save.rip;
1613         nested_vmcb->save.rsp    = vmcb->save.rsp;
1614         nested_vmcb->save.rax    = vmcb->save.rax;
1615         nested_vmcb->save.dr7    = vmcb->save.dr7;
1616         nested_vmcb->save.dr6    = vmcb->save.dr6;
1617         nested_vmcb->save.cpl    = vmcb->save.cpl;
1618
1619         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1620         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
1621         nested_vmcb->control.int_state         = vmcb->control.int_state;
1622         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
1623         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
1624         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
1625         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
1626         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
1627         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1628
1629         /*
1630          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1631          * to make sure that we do not lose injected events. So check event_inj
1632          * here and copy it to exit_int_info if it is valid.
1633          * Exit_int_info and event_inj can't be both valid because the case
1634          * below only happens on a VMRUN instruction intercept which has
1635          * no valid exit_int_info set.
1636          */
1637         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1638                 struct vmcb_control_area *nc = &nested_vmcb->control;
1639
1640                 nc->exit_int_info     = vmcb->control.event_inj;
1641                 nc->exit_int_info_err = vmcb->control.event_inj_err;
1642         }
1643
1644         nested_vmcb->control.tlb_ctl           = 0;
1645         nested_vmcb->control.event_inj         = 0;
1646         nested_vmcb->control.event_inj_err     = 0;
1647
1648         /* We always set V_INTR_MASKING and remember the old value in hflags */
1649         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1650                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1651
1652         /* Restore the original control entries */
1653         copy_vmcb_control_area(vmcb, hsave);
1654
1655         kvm_clear_exception_queue(&svm->vcpu);
1656         kvm_clear_interrupt_queue(&svm->vcpu);
1657
1658         /* Restore selected save entries */
1659         svm->vmcb->save.es = hsave->save.es;
1660         svm->vmcb->save.cs = hsave->save.cs;
1661         svm->vmcb->save.ss = hsave->save.ss;
1662         svm->vmcb->save.ds = hsave->save.ds;
1663         svm->vmcb->save.gdtr = hsave->save.gdtr;
1664         svm->vmcb->save.idtr = hsave->save.idtr;
1665         svm->vmcb->save.rflags = hsave->save.rflags;
1666         svm_set_efer(&svm->vcpu, hsave->save.efer);
1667         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1668         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1669         if (npt_enabled) {
1670                 svm->vmcb->save.cr3 = hsave->save.cr3;
1671                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1672         } else {
1673                 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1674         }
1675         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1676         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1677         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1678         svm->vmcb->save.dr7 = 0;
1679         svm->vmcb->save.cpl = 0;
1680         svm->vmcb->control.exit_int_info = 0;
1681
1682         /* Exit nested SVM mode */
1683         svm->nested.vmcb = 0;
1684
1685         nested_svm_unmap(nested_vmcb, KM_USER0);
1686
1687         kvm_mmu_reset_context(&svm->vcpu);
1688         kvm_mmu_load(&svm->vcpu);
1689
1690         return 0;
1691 }
1692
1693 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1694 {
1695         u32 *nested_msrpm;
1696         int i;
1697
1698         nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1699         if (!nested_msrpm)
1700                 return false;
1701
1702         for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1703                 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1704
1705         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1706
1707         nested_svm_unmap(nested_msrpm, KM_USER0);
1708
1709         return true;
1710 }
1711
1712 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1713 {
1714         struct vmcb *nested_vmcb;
1715         struct vmcb *hsave = svm->nested.hsave;
1716         struct vmcb *vmcb = svm->vmcb;
1717
1718         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1719         if (!nested_vmcb)
1720                 return false;
1721
1722         /* nested_vmcb is our indicator if nested SVM is activated */
1723         svm->nested.vmcb = svm->vmcb->save.rax;
1724
1725         trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, svm->nested.vmcb,
1726                                nested_vmcb->save.rip,
1727                                nested_vmcb->control.int_ctl,
1728                                nested_vmcb->control.event_inj,
1729                                nested_vmcb->control.nested_ctl);
1730
1731         /* Clear internal status */
1732         kvm_clear_exception_queue(&svm->vcpu);
1733         kvm_clear_interrupt_queue(&svm->vcpu);
1734
1735         /* Save the old vmcb, so we don't need to pick what we save, but
1736            can restore everything when a VMEXIT occurs */
1737         hsave->save.es     = vmcb->save.es;
1738         hsave->save.cs     = vmcb->save.cs;
1739         hsave->save.ss     = vmcb->save.ss;
1740         hsave->save.ds     = vmcb->save.ds;
1741         hsave->save.gdtr   = vmcb->save.gdtr;
1742         hsave->save.idtr   = vmcb->save.idtr;
1743         hsave->save.efer   = svm->vcpu.arch.shadow_efer;
1744         hsave->save.cr0    = svm->vcpu.arch.cr0;
1745         hsave->save.cr4    = svm->vcpu.arch.cr4;
1746         hsave->save.rflags = vmcb->save.rflags;
1747         hsave->save.rip    = svm->next_rip;
1748         hsave->save.rsp    = vmcb->save.rsp;
1749         hsave->save.rax    = vmcb->save.rax;
1750         if (npt_enabled)
1751                 hsave->save.cr3    = vmcb->save.cr3;
1752         else
1753                 hsave->save.cr3    = svm->vcpu.arch.cr3;
1754
1755         copy_vmcb_control_area(hsave, vmcb);
1756
1757         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1758                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1759         else
1760                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1761
1762         /* Load the nested guest state */
1763         svm->vmcb->save.es = nested_vmcb->save.es;
1764         svm->vmcb->save.cs = nested_vmcb->save.cs;
1765         svm->vmcb->save.ss = nested_vmcb->save.ss;
1766         svm->vmcb->save.ds = nested_vmcb->save.ds;
1767         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1768         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1769         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1770         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1771         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1772         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1773         if (npt_enabled) {
1774                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1775                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1776         } else {
1777                 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1778                 kvm_mmu_reset_context(&svm->vcpu);
1779         }
1780         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1781         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1782         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1783         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1784         /* In case we don't even reach vcpu_run, the fields are not updated */
1785         svm->vmcb->save.rax = nested_vmcb->save.rax;
1786         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1787         svm->vmcb->save.rip = nested_vmcb->save.rip;
1788         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1789         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1790         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1791
1792         /* We don't want a nested guest to be more powerful than the guest,
1793            so all intercepts are ORed */
1794         svm->vmcb->control.intercept_cr_read |=
1795                 nested_vmcb->control.intercept_cr_read;
1796         svm->vmcb->control.intercept_cr_write |=
1797                 nested_vmcb->control.intercept_cr_write;
1798         svm->vmcb->control.intercept_dr_read |=
1799                 nested_vmcb->control.intercept_dr_read;
1800         svm->vmcb->control.intercept_dr_write |=
1801                 nested_vmcb->control.intercept_dr_write;
1802         svm->vmcb->control.intercept_exceptions |=
1803                 nested_vmcb->control.intercept_exceptions;
1804
1805         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1806
1807         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1808
1809         /* cache intercepts */
1810         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
1811         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
1812         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
1813         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
1814         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1815         svm->nested.intercept            = nested_vmcb->control.intercept;
1816
1817         force_new_asid(&svm->vcpu);
1818         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1819         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1820                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1821         else
1822                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1823
1824         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1825         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1826         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1827         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1828         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1829
1830         nested_svm_unmap(nested_vmcb, KM_USER0);
1831
1832         enable_gif(svm);
1833
1834         return true;
1835 }
1836
1837 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1838 {
1839         to_vmcb->save.fs = from_vmcb->save.fs;
1840         to_vmcb->save.gs = from_vmcb->save.gs;
1841         to_vmcb->save.tr = from_vmcb->save.tr;
1842         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1843         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1844         to_vmcb->save.star = from_vmcb->save.star;
1845         to_vmcb->save.lstar = from_vmcb->save.lstar;
1846         to_vmcb->save.cstar = from_vmcb->save.cstar;
1847         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1848         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1849         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1850         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1851 }
1852
1853 static int vmload_interception(struct vcpu_svm *svm)
1854 {
1855         struct vmcb *nested_vmcb;
1856
1857         if (nested_svm_check_permissions(svm))
1858                 return 1;
1859
1860         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1861         skip_emulated_instruction(&svm->vcpu);
1862
1863         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1864         if (!nested_vmcb)
1865                 return 1;
1866
1867         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1868         nested_svm_unmap(nested_vmcb, KM_USER0);
1869
1870         return 1;
1871 }
1872
1873 static int vmsave_interception(struct vcpu_svm *svm)
1874 {
1875         struct vmcb *nested_vmcb;
1876
1877         if (nested_svm_check_permissions(svm))
1878                 return 1;
1879
1880         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1881         skip_emulated_instruction(&svm->vcpu);
1882
1883         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1884         if (!nested_vmcb)
1885                 return 1;
1886
1887         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1888         nested_svm_unmap(nested_vmcb, KM_USER0);
1889
1890         return 1;
1891 }
1892
1893 static int vmrun_interception(struct vcpu_svm *svm)
1894 {
1895         if (nested_svm_check_permissions(svm))
1896                 return 1;
1897
1898         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1899         skip_emulated_instruction(&svm->vcpu);
1900
1901         if (!nested_svm_vmrun(svm))
1902                 return 1;
1903
1904         if (!nested_svm_vmrun_msrpm(svm))
1905                 goto failed;
1906
1907         return 1;
1908
1909 failed:
1910
1911         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
1912         svm->vmcb->control.exit_code_hi = 0;
1913         svm->vmcb->control.exit_info_1  = 0;
1914         svm->vmcb->control.exit_info_2  = 0;
1915
1916         nested_svm_vmexit(svm);
1917
1918         return 1;
1919 }
1920
1921 static int stgi_interception(struct vcpu_svm *svm)
1922 {
1923         if (nested_svm_check_permissions(svm))
1924                 return 1;
1925
1926         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1927         skip_emulated_instruction(&svm->vcpu);
1928
1929         enable_gif(svm);
1930
1931         return 1;
1932 }
1933
1934 static int clgi_interception(struct vcpu_svm *svm)
1935 {
1936         if (nested_svm_check_permissions(svm))
1937                 return 1;
1938
1939         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1940         skip_emulated_instruction(&svm->vcpu);
1941
1942         disable_gif(svm);
1943
1944         /* After a CLGI no interrupts should come */
1945         svm_clear_vintr(svm);
1946         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1947
1948         return 1;
1949 }
1950
1951 static int invlpga_interception(struct vcpu_svm *svm)
1952 {
1953         struct kvm_vcpu *vcpu = &svm->vcpu;
1954
1955         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
1956                           vcpu->arch.regs[VCPU_REGS_RAX]);
1957
1958         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1959         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
1960
1961         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1962         skip_emulated_instruction(&svm->vcpu);
1963         return 1;
1964 }
1965
1966 static int skinit_interception(struct vcpu_svm *svm)
1967 {
1968         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
1969
1970         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1971         return 1;
1972 }
1973
1974 static int invalid_op_interception(struct vcpu_svm *svm)
1975 {
1976         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1977         return 1;
1978 }
1979
1980 static int task_switch_interception(struct vcpu_svm *svm)
1981 {
1982         u16 tss_selector;
1983         int reason;
1984         int int_type = svm->vmcb->control.exit_int_info &
1985                 SVM_EXITINTINFO_TYPE_MASK;
1986         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
1987         uint32_t type =
1988                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
1989         uint32_t idt_v =
1990                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
1991
1992         tss_selector = (u16)svm->vmcb->control.exit_info_1;
1993
1994         if (svm->vmcb->control.exit_info_2 &
1995             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1996                 reason = TASK_SWITCH_IRET;
1997         else if (svm->vmcb->control.exit_info_2 &
1998                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
1999                 reason = TASK_SWITCH_JMP;
2000         else if (idt_v)
2001                 reason = TASK_SWITCH_GATE;
2002         else
2003                 reason = TASK_SWITCH_CALL;
2004
2005         if (reason == TASK_SWITCH_GATE) {
2006                 switch (type) {
2007                 case SVM_EXITINTINFO_TYPE_NMI:
2008                         svm->vcpu.arch.nmi_injected = false;
2009                         break;
2010                 case SVM_EXITINTINFO_TYPE_EXEPT:
2011                         kvm_clear_exception_queue(&svm->vcpu);
2012                         break;
2013                 case SVM_EXITINTINFO_TYPE_INTR:
2014                         kvm_clear_interrupt_queue(&svm->vcpu);
2015                         break;
2016                 default:
2017                         break;
2018                 }
2019         }
2020
2021         if (reason != TASK_SWITCH_GATE ||
2022             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2023             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2024              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2025                 skip_emulated_instruction(&svm->vcpu);
2026
2027         return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2028 }
2029
2030 static int cpuid_interception(struct vcpu_svm *svm)
2031 {
2032         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2033         kvm_emulate_cpuid(&svm->vcpu);
2034         return 1;
2035 }
2036
2037 static int iret_interception(struct vcpu_svm *svm)
2038 {
2039         ++svm->vcpu.stat.nmi_window_exits;
2040         svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2041         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2042         return 1;
2043 }
2044
2045 static int invlpg_interception(struct vcpu_svm *svm)
2046 {
2047         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2048                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2049         return 1;
2050 }
2051
2052 static int emulate_on_interception(struct vcpu_svm *svm)
2053 {
2054         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2055                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2056         return 1;
2057 }
2058
2059 static int cr8_write_interception(struct vcpu_svm *svm)
2060 {
2061         struct kvm_run *kvm_run = svm->vcpu.run;
2062
2063         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2064         /* instruction emulation calls kvm_set_cr8() */
2065         emulate_instruction(&svm->vcpu, 0, 0, 0);
2066         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2067                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2068                 return 1;
2069         }
2070         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2071                 return 1;
2072         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2073         return 0;
2074 }
2075
2076 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2077 {
2078         struct vcpu_svm *svm = to_svm(vcpu);
2079
2080         switch (ecx) {
2081         case MSR_IA32_TSC: {
2082                 u64 tsc_offset;
2083
2084                 if (is_nested(svm))
2085                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2086                 else
2087                         tsc_offset = svm->vmcb->control.tsc_offset;
2088
2089                 *data = tsc_offset + native_read_tsc();
2090                 break;
2091         }
2092         case MSR_K6_STAR:
2093                 *data = svm->vmcb->save.star;
2094                 break;
2095 #ifdef CONFIG_X86_64
2096         case MSR_LSTAR:
2097                 *data = svm->vmcb->save.lstar;
2098                 break;
2099         case MSR_CSTAR:
2100                 *data = svm->vmcb->save.cstar;
2101                 break;
2102         case MSR_KERNEL_GS_BASE:
2103                 *data = svm->vmcb->save.kernel_gs_base;
2104                 break;
2105         case MSR_SYSCALL_MASK:
2106                 *data = svm->vmcb->save.sfmask;
2107                 break;
2108 #endif
2109         case MSR_IA32_SYSENTER_CS:
2110                 *data = svm->vmcb->save.sysenter_cs;
2111                 break;
2112         case MSR_IA32_SYSENTER_EIP:
2113                 *data = svm->sysenter_eip;
2114                 break;
2115         case MSR_IA32_SYSENTER_ESP:
2116                 *data = svm->sysenter_esp;
2117                 break;
2118         /* Nobody will change the following 5 values in the VMCB so
2119            we can safely return them on rdmsr. They will always be 0
2120            until LBRV is implemented. */
2121         case MSR_IA32_DEBUGCTLMSR:
2122                 *data = svm->vmcb->save.dbgctl;
2123                 break;
2124         case MSR_IA32_LASTBRANCHFROMIP:
2125                 *data = svm->vmcb->save.br_from;
2126                 break;
2127         case MSR_IA32_LASTBRANCHTOIP:
2128                 *data = svm->vmcb->save.br_to;
2129                 break;
2130         case MSR_IA32_LASTINTFROMIP:
2131                 *data = svm->vmcb->save.last_excp_from;
2132                 break;
2133         case MSR_IA32_LASTINTTOIP:
2134                 *data = svm->vmcb->save.last_excp_to;
2135                 break;
2136         case MSR_VM_HSAVE_PA:
2137                 *data = svm->nested.hsave_msr;
2138                 break;
2139         case MSR_VM_CR:
2140                 *data = 0;
2141                 break;
2142         case MSR_IA32_UCODE_REV:
2143                 *data = 0x01000065;
2144                 break;
2145         default:
2146                 return kvm_get_msr_common(vcpu, ecx, data);
2147         }
2148         return 0;
2149 }
2150
2151 static int rdmsr_interception(struct vcpu_svm *svm)
2152 {
2153         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2154         u64 data;
2155
2156         if (svm_get_msr(&svm->vcpu, ecx, &data))
2157                 kvm_inject_gp(&svm->vcpu, 0);
2158         else {
2159                 trace_kvm_msr_read(ecx, data);
2160
2161                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2162                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2163                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2164                 skip_emulated_instruction(&svm->vcpu);
2165         }
2166         return 1;
2167 }
2168
2169 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2170 {
2171         struct vcpu_svm *svm = to_svm(vcpu);
2172
2173         switch (ecx) {
2174         case MSR_IA32_TSC: {
2175                 u64 tsc_offset = data - native_read_tsc();
2176                 u64 g_tsc_offset = 0;
2177
2178                 if (is_nested(svm)) {
2179                         g_tsc_offset = svm->vmcb->control.tsc_offset -
2180                                        svm->nested.hsave->control.tsc_offset;
2181                         svm->nested.hsave->control.tsc_offset = tsc_offset;
2182                 }
2183
2184                 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2185
2186                 break;
2187         }
2188         case MSR_K6_STAR:
2189                 svm->vmcb->save.star = data;
2190                 break;
2191 #ifdef CONFIG_X86_64
2192         case MSR_LSTAR:
2193                 svm->vmcb->save.lstar = data;
2194                 break;
2195         case MSR_CSTAR:
2196                 svm->vmcb->save.cstar = data;
2197                 break;
2198         case MSR_KERNEL_GS_BASE:
2199                 svm->vmcb->save.kernel_gs_base = data;
2200                 break;
2201         case MSR_SYSCALL_MASK:
2202                 svm->vmcb->save.sfmask = data;
2203                 break;
2204 #endif
2205         case MSR_IA32_SYSENTER_CS:
2206                 svm->vmcb->save.sysenter_cs = data;
2207                 break;
2208         case MSR_IA32_SYSENTER_EIP:
2209                 svm->sysenter_eip = data;
2210                 svm->vmcb->save.sysenter_eip = data;
2211                 break;
2212         case MSR_IA32_SYSENTER_ESP:
2213                 svm->sysenter_esp = data;
2214                 svm->vmcb->save.sysenter_esp = data;
2215                 break;
2216         case MSR_IA32_DEBUGCTLMSR:
2217                 if (!svm_has(SVM_FEATURE_LBRV)) {
2218                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2219                                         __func__, data);
2220                         break;
2221                 }
2222                 if (data & DEBUGCTL_RESERVED_BITS)
2223                         return 1;
2224
2225                 svm->vmcb->save.dbgctl = data;
2226                 if (data & (1ULL<<0))
2227                         svm_enable_lbrv(svm);
2228                 else
2229                         svm_disable_lbrv(svm);
2230                 break;
2231         case MSR_VM_HSAVE_PA:
2232                 svm->nested.hsave_msr = data;
2233                 break;
2234         case MSR_VM_CR:
2235         case MSR_VM_IGNNE:
2236                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2237                 break;
2238         default:
2239                 return kvm_set_msr_common(vcpu, ecx, data);
2240         }
2241         return 0;
2242 }
2243
2244 static int wrmsr_interception(struct vcpu_svm *svm)
2245 {
2246         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2247         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2248                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2249
2250         trace_kvm_msr_write(ecx, data);
2251
2252         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2253         if (svm_set_msr(&svm->vcpu, ecx, data))
2254                 kvm_inject_gp(&svm->vcpu, 0);
2255         else
2256                 skip_emulated_instruction(&svm->vcpu);
2257         return 1;
2258 }
2259
2260 static int msr_interception(struct vcpu_svm *svm)
2261 {
2262         if (svm->vmcb->control.exit_info_1)
2263                 return wrmsr_interception(svm);
2264         else
2265                 return rdmsr_interception(svm);
2266 }
2267
2268 static int interrupt_window_interception(struct vcpu_svm *svm)
2269 {
2270         struct kvm_run *kvm_run = svm->vcpu.run;
2271
2272         svm_clear_vintr(svm);
2273         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2274         /*
2275          * If the user space waits to inject interrupts, exit as soon as
2276          * possible
2277          */
2278         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2279             kvm_run->request_interrupt_window &&
2280             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2281                 ++svm->vcpu.stat.irq_window_exits;
2282                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2283                 return 0;
2284         }
2285
2286         return 1;
2287 }
2288
2289 static int pause_interception(struct vcpu_svm *svm)
2290 {
2291         kvm_vcpu_on_spin(&(svm->vcpu));
2292         return 1;
2293 }
2294
2295 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2296         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2297         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2298         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2299         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2300         /* for now: */
2301         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
2302         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2303         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2304         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2305         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2306         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2307         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2308         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2309         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2310         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2311         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2312         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2313         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2314         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2315         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2316         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2317         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2318         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2319         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2320         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2321         [SVM_EXIT_INTR]                         = intr_interception,
2322         [SVM_EXIT_NMI]                          = nmi_interception,
2323         [SVM_EXIT_SMI]                          = nop_on_interception,
2324         [SVM_EXIT_INIT]                         = nop_on_interception,
2325         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2326         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
2327         [SVM_EXIT_CPUID]                        = cpuid_interception,
2328         [SVM_EXIT_IRET]                         = iret_interception,
2329         [SVM_EXIT_INVD]                         = emulate_on_interception,
2330         [SVM_EXIT_PAUSE]                        = pause_interception,
2331         [SVM_EXIT_HLT]                          = halt_interception,
2332         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2333         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2334         [SVM_EXIT_IOIO]                         = io_interception,
2335         [SVM_EXIT_MSR]                          = msr_interception,
2336         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2337         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2338         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2339         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2340         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2341         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2342         [SVM_EXIT_STGI]                         = stgi_interception,
2343         [SVM_EXIT_CLGI]                         = clgi_interception,
2344         [SVM_EXIT_SKINIT]                       = skinit_interception,
2345         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2346         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2347         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2348         [SVM_EXIT_NPF]                          = pf_interception,
2349 };
2350
2351 static int handle_exit(struct kvm_vcpu *vcpu)
2352 {
2353         struct vcpu_svm *svm = to_svm(vcpu);
2354         struct kvm_run *kvm_run = vcpu->run;
2355         u32 exit_code = svm->vmcb->control.exit_code;
2356
2357         trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2358
2359         if (unlikely(svm->nested.exit_required)) {
2360                 nested_svm_vmexit(svm);
2361                 svm->nested.exit_required = false;
2362
2363                 return 1;
2364         }
2365
2366         if (is_nested(svm)) {
2367                 int vmexit;
2368
2369                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2370                                         svm->vmcb->control.exit_info_1,
2371                                         svm->vmcb->control.exit_info_2,
2372                                         svm->vmcb->control.exit_int_info,
2373                                         svm->vmcb->control.exit_int_info_err);
2374
2375                 vmexit = nested_svm_exit_special(svm);
2376
2377                 if (vmexit == NESTED_EXIT_CONTINUE)
2378                         vmexit = nested_svm_exit_handled(svm);
2379
2380                 if (vmexit == NESTED_EXIT_DONE)
2381                         return 1;
2382         }
2383
2384         svm_complete_interrupts(svm);
2385
2386         if (npt_enabled) {
2387                 int mmu_reload = 0;
2388                 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
2389                         svm_set_cr0(vcpu, svm->vmcb->save.cr0);
2390                         mmu_reload = 1;
2391                 }
2392                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2393                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2394                 if (mmu_reload) {
2395                         kvm_mmu_reset_context(vcpu);
2396                         kvm_mmu_load(vcpu);
2397                 }
2398         }
2399
2400
2401         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2402                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2403                 kvm_run->fail_entry.hardware_entry_failure_reason
2404                         = svm->vmcb->control.exit_code;
2405                 return 0;
2406         }
2407
2408         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2409             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2410             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2411                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2412                        "exit_code 0x%x\n",
2413                        __func__, svm->vmcb->control.exit_int_info,
2414                        exit_code);
2415
2416         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2417             || !svm_exit_handlers[exit_code]) {
2418                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2419                 kvm_run->hw.hardware_exit_reason = exit_code;
2420                 return 0;
2421         }
2422
2423         return svm_exit_handlers[exit_code](svm);
2424 }
2425
2426 static void reload_tss(struct kvm_vcpu *vcpu)
2427 {
2428         int cpu = raw_smp_processor_id();
2429
2430         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2431         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2432         load_TR_desc();
2433 }
2434
2435 static void pre_svm_run(struct vcpu_svm *svm)
2436 {
2437         int cpu = raw_smp_processor_id();
2438
2439         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2440
2441         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2442         /* FIXME: handle wraparound of asid_generation */
2443         if (svm->asid_generation != sd->asid_generation)
2444                 new_asid(svm, sd);
2445 }
2446
2447 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2448 {
2449         struct vcpu_svm *svm = to_svm(vcpu);
2450
2451         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2452         vcpu->arch.hflags |= HF_NMI_MASK;
2453         svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2454         ++vcpu->stat.nmi_injections;
2455 }
2456
2457 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2458 {
2459         struct vmcb_control_area *control;
2460
2461         trace_kvm_inj_virq(irq);
2462
2463         ++svm->vcpu.stat.irq_injections;
2464         control = &svm->vmcb->control;
2465         control->int_vector = irq;
2466         control->int_ctl &= ~V_INTR_PRIO_MASK;
2467         control->int_ctl |= V_IRQ_MASK |
2468                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2469 }
2470
2471 static void svm_set_irq(struct kvm_vcpu *vcpu)
2472 {
2473         struct vcpu_svm *svm = to_svm(vcpu);
2474
2475         BUG_ON(!(gif_set(svm)));
2476
2477         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2478                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2479 }
2480
2481 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2482 {
2483         struct vcpu_svm *svm = to_svm(vcpu);
2484
2485         if (irr == -1)
2486                 return;
2487
2488         if (tpr >= irr)
2489                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2490 }
2491
2492 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2493 {
2494         struct vcpu_svm *svm = to_svm(vcpu);
2495         struct vmcb *vmcb = svm->vmcb;
2496         return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2497                 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2498 }
2499
2500 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
2501 {
2502         struct vcpu_svm *svm = to_svm(vcpu);
2503
2504         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
2505 }
2506
2507 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2508 {
2509         struct vcpu_svm *svm = to_svm(vcpu);
2510
2511         if (masked) {
2512                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
2513                 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2514         } else {
2515                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
2516                 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2517         }
2518 }
2519
2520 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2521 {
2522         struct vcpu_svm *svm = to_svm(vcpu);
2523         struct vmcb *vmcb = svm->vmcb;
2524         int ret;
2525
2526         if (!gif_set(svm) ||
2527              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
2528                 return 0;
2529
2530         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
2531
2532         if (is_nested(svm))
2533                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
2534
2535         return ret;
2536 }
2537
2538 static void enable_irq_window(struct kvm_vcpu *vcpu)
2539 {
2540         struct vcpu_svm *svm = to_svm(vcpu);
2541
2542         nested_svm_intr(svm);
2543
2544         /* In case GIF=0 we can't rely on the CPU to tell us when
2545          * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2546          * The next time we get that intercept, this function will be
2547          * called again though and we'll get the vintr intercept. */
2548         if (gif_set(svm)) {
2549                 svm_set_vintr(svm);
2550                 svm_inject_irq(svm, 0x0);
2551         }
2552 }
2553
2554 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2555 {
2556         struct vcpu_svm *svm = to_svm(vcpu);
2557
2558         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2559             == HF_NMI_MASK)
2560                 return; /* IRET will cause a vm exit */
2561
2562         /* Something prevents NMI from been injected. Single step over
2563            possible problem (IRET or exception injection or interrupt
2564            shadow) */
2565         svm->nmi_singlestep = true;
2566         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2567         update_db_intercept(vcpu);
2568 }
2569
2570 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2571 {
2572         return 0;
2573 }
2574
2575 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2576 {
2577         force_new_asid(vcpu);
2578 }
2579
2580 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2581 {
2582 }
2583
2584 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2585 {
2586         struct vcpu_svm *svm = to_svm(vcpu);
2587
2588         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2589                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2590                 kvm_set_cr8(vcpu, cr8);
2591         }
2592 }
2593
2594 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2595 {
2596         struct vcpu_svm *svm = to_svm(vcpu);
2597         u64 cr8;
2598
2599         cr8 = kvm_get_cr8(vcpu);
2600         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2601         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2602 }
2603
2604 static void svm_complete_interrupts(struct vcpu_svm *svm)
2605 {
2606         u8 vector;
2607         int type;
2608         u32 exitintinfo = svm->vmcb->control.exit_int_info;
2609
2610         if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2611                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2612
2613         svm->vcpu.arch.nmi_injected = false;
2614         kvm_clear_exception_queue(&svm->vcpu);
2615         kvm_clear_interrupt_queue(&svm->vcpu);
2616
2617         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2618                 return;
2619
2620         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2621         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2622
2623         switch (type) {
2624         case SVM_EXITINTINFO_TYPE_NMI:
2625                 svm->vcpu.arch.nmi_injected = true;
2626                 break;
2627         case SVM_EXITINTINFO_TYPE_EXEPT:
2628                 /* In case of software exception do not reinject an exception
2629                    vector, but re-execute and instruction instead */
2630                 if (is_nested(svm))
2631                         break;
2632                 if (kvm_exception_is_soft(vector))
2633                         break;
2634                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2635                         u32 err = svm->vmcb->control.exit_int_info_err;
2636                         kvm_queue_exception_e(&svm->vcpu, vector, err);
2637
2638                 } else
2639                         kvm_queue_exception(&svm->vcpu, vector);
2640                 break;
2641         case SVM_EXITINTINFO_TYPE_INTR:
2642                 kvm_queue_interrupt(&svm->vcpu, vector, false);
2643                 break;
2644         default:
2645                 break;
2646         }
2647 }
2648
2649 #ifdef CONFIG_X86_64
2650 #define R "r"
2651 #else
2652 #define R "e"
2653 #endif
2654
2655 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
2656 {
2657         struct vcpu_svm *svm = to_svm(vcpu);
2658         u16 fs_selector;
2659         u16 gs_selector;
2660         u16 ldt_selector;
2661
2662         /*
2663          * A vmexit emulation is required before the vcpu can be executed
2664          * again.
2665          */
2666         if (unlikely(svm->nested.exit_required))
2667                 return;
2668
2669         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2670         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2671         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2672
2673         pre_svm_run(svm);
2674
2675         sync_lapic_to_cr8(vcpu);
2676
2677         save_host_msrs(vcpu);
2678         fs_selector = kvm_read_fs();
2679         gs_selector = kvm_read_gs();
2680         ldt_selector = kvm_read_ldt();
2681         svm->vmcb->save.cr2 = vcpu->arch.cr2;
2682         /* required for live migration with NPT */
2683         if (npt_enabled)
2684                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2685
2686         clgi();
2687
2688         local_irq_enable();
2689
2690         asm volatile (
2691                 "push %%"R"bp; \n\t"
2692                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2693                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2694                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2695                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2696                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2697                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2698 #ifdef CONFIG_X86_64
2699                 "mov %c[r8](%[svm]),  %%r8  \n\t"
2700                 "mov %c[r9](%[svm]),  %%r9  \n\t"
2701                 "mov %c[r10](%[svm]), %%r10 \n\t"
2702                 "mov %c[r11](%[svm]), %%r11 \n\t"
2703                 "mov %c[r12](%[svm]), %%r12 \n\t"
2704                 "mov %c[r13](%[svm]), %%r13 \n\t"
2705                 "mov %c[r14](%[svm]), %%r14 \n\t"
2706                 "mov %c[r15](%[svm]), %%r15 \n\t"
2707 #endif
2708
2709                 /* Enter guest mode */
2710                 "push %%"R"ax \n\t"
2711                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2712                 __ex(SVM_VMLOAD) "\n\t"
2713                 __ex(SVM_VMRUN) "\n\t"
2714                 __ex(SVM_VMSAVE) "\n\t"
2715                 "pop %%"R"ax \n\t"
2716
2717                 /* Save guest registers, load host registers */
2718                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2719                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2720                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2721                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2722                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2723                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2724 #ifdef CONFIG_X86_64
2725                 "mov %%r8,  %c[r8](%[svm]) \n\t"
2726                 "mov %%r9,  %c[r9](%[svm]) \n\t"
2727                 "mov %%r10, %c[r10](%[svm]) \n\t"
2728                 "mov %%r11, %c[r11](%[svm]) \n\t"
2729                 "mov %%r12, %c[r12](%[svm]) \n\t"
2730                 "mov %%r13, %c[r13](%[svm]) \n\t"
2731                 "mov %%r14, %c[r14](%[svm]) \n\t"
2732                 "mov %%r15, %c[r15](%[svm]) \n\t"
2733 #endif
2734                 "pop %%"R"bp"
2735                 :
2736                 : [svm]"a"(svm),
2737                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2738                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2739                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2740                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2741                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2742                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2743                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2744 #ifdef CONFIG_X86_64
2745                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2746                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2747                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2748                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2749                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2750                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2751                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2752                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2753 #endif
2754                 : "cc", "memory"
2755                 , R"bx", R"cx", R"dx", R"si", R"di"
2756 #ifdef CONFIG_X86_64
2757                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2758 #endif
2759                 );
2760
2761         vcpu->arch.cr2 = svm->vmcb->save.cr2;
2762         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2763         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2764         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2765
2766         kvm_load_fs(fs_selector);
2767         kvm_load_gs(gs_selector);
2768         kvm_load_ldt(ldt_selector);
2769         load_host_msrs(vcpu);
2770
2771         reload_tss(vcpu);
2772
2773         local_irq_disable();
2774
2775         stgi();
2776
2777         sync_cr8_to_lapic(vcpu);
2778
2779         svm->next_rip = 0;
2780
2781         if (npt_enabled) {
2782                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2783                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2784         }
2785 }
2786
2787 #undef R
2788
2789 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2790 {
2791         struct vcpu_svm *svm = to_svm(vcpu);
2792
2793         if (npt_enabled) {
2794                 svm->vmcb->control.nested_cr3 = root;
2795                 force_new_asid(vcpu);
2796                 return;
2797         }
2798
2799         svm->vmcb->save.cr3 = root;
2800         force_new_asid(vcpu);
2801
2802         if (vcpu->fpu_active) {
2803                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
2804                 svm->vmcb->save.cr0 |= X86_CR0_TS;
2805                 vcpu->fpu_active = 0;
2806         }
2807 }
2808
2809 static int is_disabled(void)
2810 {
2811         u64 vm_cr;
2812
2813         rdmsrl(MSR_VM_CR, vm_cr);
2814         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2815                 return 1;
2816
2817         return 0;
2818 }
2819
2820 static void
2821 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2822 {
2823         /*
2824          * Patch in the VMMCALL instruction:
2825          */
2826         hypercall[0] = 0x0f;
2827         hypercall[1] = 0x01;
2828         hypercall[2] = 0xd9;
2829 }
2830
2831 static void svm_check_processor_compat(void *rtn)
2832 {
2833         *(int *)rtn = 0;
2834 }
2835
2836 static bool svm_cpu_has_accelerated_tpr(void)
2837 {
2838         return false;
2839 }
2840
2841 static int get_npt_level(void)
2842 {
2843 #ifdef CONFIG_X86_64
2844         return PT64_ROOT_LEVEL;
2845 #else
2846         return PT32E_ROOT_LEVEL;
2847 #endif
2848 }
2849
2850 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2851 {
2852         return 0;
2853 }
2854
2855 static const struct trace_print_flags svm_exit_reasons_str[] = {
2856         { SVM_EXIT_READ_CR0,                    "read_cr0" },
2857         { SVM_EXIT_READ_CR3,                    "read_cr3" },
2858         { SVM_EXIT_READ_CR4,                    "read_cr4" },
2859         { SVM_EXIT_READ_CR8,                    "read_cr8" },
2860         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
2861         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
2862         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
2863         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
2864         { SVM_EXIT_READ_DR0,                    "read_dr0" },
2865         { SVM_EXIT_READ_DR1,                    "read_dr1" },
2866         { SVM_EXIT_READ_DR2,                    "read_dr2" },
2867         { SVM_EXIT_READ_DR3,                    "read_dr3" },
2868         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
2869         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
2870         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
2871         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
2872         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
2873         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
2874         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
2875         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
2876         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
2877         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
2878         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
2879         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
2880         { SVM_EXIT_INTR,                        "interrupt" },
2881         { SVM_EXIT_NMI,                         "nmi" },
2882         { SVM_EXIT_SMI,                         "smi" },
2883         { SVM_EXIT_INIT,                        "init" },
2884         { SVM_EXIT_VINTR,                       "vintr" },
2885         { SVM_EXIT_CPUID,                       "cpuid" },
2886         { SVM_EXIT_INVD,                        "invd" },
2887         { SVM_EXIT_HLT,                         "hlt" },
2888         { SVM_EXIT_INVLPG,                      "invlpg" },
2889         { SVM_EXIT_INVLPGA,                     "invlpga" },
2890         { SVM_EXIT_IOIO,                        "io" },
2891         { SVM_EXIT_MSR,                         "msr" },
2892         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
2893         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
2894         { SVM_EXIT_VMRUN,                       "vmrun" },
2895         { SVM_EXIT_VMMCALL,                     "hypercall" },
2896         { SVM_EXIT_VMLOAD,                      "vmload" },
2897         { SVM_EXIT_VMSAVE,                      "vmsave" },
2898         { SVM_EXIT_STGI,                        "stgi" },
2899         { SVM_EXIT_CLGI,                        "clgi" },
2900         { SVM_EXIT_SKINIT,                      "skinit" },
2901         { SVM_EXIT_WBINVD,                      "wbinvd" },
2902         { SVM_EXIT_MONITOR,                     "monitor" },
2903         { SVM_EXIT_MWAIT,                       "mwait" },
2904         { SVM_EXIT_NPF,                         "npf" },
2905         { -1, NULL }
2906 };
2907
2908 static bool svm_gb_page_enable(void)
2909 {
2910         return true;
2911 }
2912
2913 static struct kvm_x86_ops svm_x86_ops = {
2914         .cpu_has_kvm_support = has_svm,
2915         .disabled_by_bios = is_disabled,
2916         .hardware_setup = svm_hardware_setup,
2917         .hardware_unsetup = svm_hardware_unsetup,
2918         .check_processor_compatibility = svm_check_processor_compat,
2919         .hardware_enable = svm_hardware_enable,
2920         .hardware_disable = svm_hardware_disable,
2921         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2922
2923         .vcpu_create = svm_create_vcpu,
2924         .vcpu_free = svm_free_vcpu,
2925         .vcpu_reset = svm_vcpu_reset,
2926
2927         .prepare_guest_switch = svm_prepare_guest_switch,
2928         .vcpu_load = svm_vcpu_load,
2929         .vcpu_put = svm_vcpu_put,
2930
2931         .set_guest_debug = svm_guest_debug,
2932         .get_msr = svm_get_msr,
2933         .set_msr = svm_set_msr,
2934         .get_segment_base = svm_get_segment_base,
2935         .get_segment = svm_get_segment,
2936         .set_segment = svm_set_segment,
2937         .get_cpl = svm_get_cpl,
2938         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2939         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2940         .set_cr0 = svm_set_cr0,
2941         .set_cr3 = svm_set_cr3,
2942         .set_cr4 = svm_set_cr4,
2943         .set_efer = svm_set_efer,
2944         .get_idt = svm_get_idt,
2945         .set_idt = svm_set_idt,
2946         .get_gdt = svm_get_gdt,
2947         .set_gdt = svm_set_gdt,
2948         .get_dr = svm_get_dr,
2949         .set_dr = svm_set_dr,
2950         .cache_reg = svm_cache_reg,
2951         .get_rflags = svm_get_rflags,
2952         .set_rflags = svm_set_rflags,
2953
2954         .tlb_flush = svm_flush_tlb,
2955
2956         .run = svm_vcpu_run,
2957         .handle_exit = handle_exit,
2958         .skip_emulated_instruction = skip_emulated_instruction,
2959         .set_interrupt_shadow = svm_set_interrupt_shadow,
2960         .get_interrupt_shadow = svm_get_interrupt_shadow,
2961         .patch_hypercall = svm_patch_hypercall,
2962         .set_irq = svm_set_irq,
2963         .set_nmi = svm_inject_nmi,
2964         .queue_exception = svm_queue_exception,
2965         .interrupt_allowed = svm_interrupt_allowed,
2966         .nmi_allowed = svm_nmi_allowed,
2967         .get_nmi_mask = svm_get_nmi_mask,
2968         .set_nmi_mask = svm_set_nmi_mask,
2969         .enable_nmi_window = enable_nmi_window,
2970         .enable_irq_window = enable_irq_window,
2971         .update_cr8_intercept = update_cr8_intercept,
2972
2973         .set_tss_addr = svm_set_tss_addr,
2974         .get_tdp_level = get_npt_level,
2975         .get_mt_mask = svm_get_mt_mask,
2976
2977         .exit_reasons_str = svm_exit_reasons_str,
2978         .gb_page_enable = svm_gb_page_enable,
2979 };
2980
2981 static int __init svm_init(void)
2982 {
2983         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
2984                               THIS_MODULE);
2985 }
2986
2987 static void __exit svm_exit(void)
2988 {
2989         kvm_exit();
2990 }
2991
2992 module_init(svm_init)
2993 module_exit(svm_exit)