Merge branch 'avr32-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/hskinnemo...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30
31 #include <asm/page.h>
32 #include <asm/cmpxchg.h>
33 #include <asm/io.h>
34
35 #undef MMU_DEBUG
36
37 #undef AUDIT
38
39 #ifdef AUDIT
40 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
41 #else
42 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
43 #endif
44
45 #ifdef MMU_DEBUG
46
47 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
48 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
49
50 #else
51
52 #define pgprintk(x...) do { } while (0)
53 #define rmap_printk(x...) do { } while (0)
54
55 #endif
56
57 #if defined(MMU_DEBUG) || defined(AUDIT)
58 static int dbg = 1;
59 #endif
60
61 #ifndef MMU_DEBUG
62 #define ASSERT(x) do { } while (0)
63 #else
64 #define ASSERT(x)                                                       \
65         if (!(x)) {                                                     \
66                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
67                        __FILE__, __LINE__, #x);                         \
68         }
69 #endif
70
71 #define PT64_PT_BITS 9
72 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
73 #define PT32_PT_BITS 10
74 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
75
76 #define PT_WRITABLE_SHIFT 1
77
78 #define PT_PRESENT_MASK (1ULL << 0)
79 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
80 #define PT_USER_MASK (1ULL << 2)
81 #define PT_PWT_MASK (1ULL << 3)
82 #define PT_PCD_MASK (1ULL << 4)
83 #define PT_ACCESSED_MASK (1ULL << 5)
84 #define PT_DIRTY_MASK (1ULL << 6)
85 #define PT_PAGE_SIZE_MASK (1ULL << 7)
86 #define PT_PAT_MASK (1ULL << 7)
87 #define PT_GLOBAL_MASK (1ULL << 8)
88 #define PT64_NX_SHIFT 63
89 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
90
91 #define PT_PAT_SHIFT 7
92 #define PT_DIR_PAT_SHIFT 12
93 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
94
95 #define PT32_DIR_PSE36_SIZE 4
96 #define PT32_DIR_PSE36_SHIFT 13
97 #define PT32_DIR_PSE36_MASK \
98         (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
99
100
101 #define PT_FIRST_AVAIL_BITS_SHIFT 9
102 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
103
104 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
105
106 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
107
108 #define PT64_LEVEL_BITS 9
109
110 #define PT64_LEVEL_SHIFT(level) \
111                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
112
113 #define PT64_LEVEL_MASK(level) \
114                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
115
116 #define PT64_INDEX(address, level)\
117         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
118
119
120 #define PT32_LEVEL_BITS 10
121
122 #define PT32_LEVEL_SHIFT(level) \
123                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
124
125 #define PT32_LEVEL_MASK(level) \
126                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
127
128 #define PT32_INDEX(address, level)\
129         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130
131
132 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
133 #define PT64_DIR_BASE_ADDR_MASK \
134         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
135
136 #define PT32_BASE_ADDR_MASK PAGE_MASK
137 #define PT32_DIR_BASE_ADDR_MASK \
138         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139
140 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
141                         | PT64_NX_MASK)
142
143 #define PFERR_PRESENT_MASK (1U << 0)
144 #define PFERR_WRITE_MASK (1U << 1)
145 #define PFERR_USER_MASK (1U << 2)
146 #define PFERR_FETCH_MASK (1U << 4)
147
148 #define PT64_ROOT_LEVEL 4
149 #define PT32_ROOT_LEVEL 2
150 #define PT32E_ROOT_LEVEL 3
151
152 #define PT_DIRECTORY_LEVEL 2
153 #define PT_PAGE_TABLE_LEVEL 1
154
155 #define RMAP_EXT 4
156
157 #define ACC_EXEC_MASK    1
158 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
159 #define ACC_USER_MASK    PT_USER_MASK
160 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
161
162 struct kvm_rmap_desc {
163         u64 *shadow_ptes[RMAP_EXT];
164         struct kvm_rmap_desc *more;
165 };
166
167 static struct kmem_cache *pte_chain_cache;
168 static struct kmem_cache *rmap_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170
171 static u64 __read_mostly shadow_trap_nonpresent_pte;
172 static u64 __read_mostly shadow_notrap_nonpresent_pte;
173
174 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
175 {
176         shadow_trap_nonpresent_pte = trap_pte;
177         shadow_notrap_nonpresent_pte = notrap_pte;
178 }
179 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
180
181 static int is_write_protection(struct kvm_vcpu *vcpu)
182 {
183         return vcpu->arch.cr0 & X86_CR0_WP;
184 }
185
186 static int is_cpuid_PSE36(void)
187 {
188         return 1;
189 }
190
191 static int is_nx(struct kvm_vcpu *vcpu)
192 {
193         return vcpu->arch.shadow_efer & EFER_NX;
194 }
195
196 static int is_present_pte(unsigned long pte)
197 {
198         return pte & PT_PRESENT_MASK;
199 }
200
201 static int is_shadow_present_pte(u64 pte)
202 {
203         pte &= ~PT_SHADOW_IO_MARK;
204         return pte != shadow_trap_nonpresent_pte
205                 && pte != shadow_notrap_nonpresent_pte;
206 }
207
208 static int is_writeble_pte(unsigned long pte)
209 {
210         return pte & PT_WRITABLE_MASK;
211 }
212
213 static int is_dirty_pte(unsigned long pte)
214 {
215         return pte & PT_DIRTY_MASK;
216 }
217
218 static int is_io_pte(unsigned long pte)
219 {
220         return pte & PT_SHADOW_IO_MARK;
221 }
222
223 static int is_rmap_pte(u64 pte)
224 {
225         return is_shadow_present_pte(pte);
226 }
227
228 static gfn_t pse36_gfn_delta(u32 gpte)
229 {
230         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
231
232         return (gpte & PT32_DIR_PSE36_MASK) << shift;
233 }
234
235 static void set_shadow_pte(u64 *sptep, u64 spte)
236 {
237 #ifdef CONFIG_X86_64
238         set_64bit((unsigned long *)sptep, spte);
239 #else
240         set_64bit((unsigned long long *)sptep, spte);
241 #endif
242 }
243
244 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
245                                   struct kmem_cache *base_cache, int min)
246 {
247         void *obj;
248
249         if (cache->nobjs >= min)
250                 return 0;
251         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
252                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
253                 if (!obj)
254                         return -ENOMEM;
255                 cache->objects[cache->nobjs++] = obj;
256         }
257         return 0;
258 }
259
260 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
261 {
262         while (mc->nobjs)
263                 kfree(mc->objects[--mc->nobjs]);
264 }
265
266 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
267                                        int min)
268 {
269         struct page *page;
270
271         if (cache->nobjs >= min)
272                 return 0;
273         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
274                 page = alloc_page(GFP_KERNEL);
275                 if (!page)
276                         return -ENOMEM;
277                 set_page_private(page, 0);
278                 cache->objects[cache->nobjs++] = page_address(page);
279         }
280         return 0;
281 }
282
283 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
284 {
285         while (mc->nobjs)
286                 free_page((unsigned long)mc->objects[--mc->nobjs]);
287 }
288
289 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
290 {
291         int r;
292
293         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
294                                    pte_chain_cache, 4);
295         if (r)
296                 goto out;
297         r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
298                                    rmap_desc_cache, 1);
299         if (r)
300                 goto out;
301         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
302         if (r)
303                 goto out;
304         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
305                                    mmu_page_header_cache, 4);
306 out:
307         return r;
308 }
309
310 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
311 {
312         mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
313         mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
314         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
315         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
316 }
317
318 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
319                                     size_t size)
320 {
321         void *p;
322
323         BUG_ON(!mc->nobjs);
324         p = mc->objects[--mc->nobjs];
325         memset(p, 0, size);
326         return p;
327 }
328
329 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
330 {
331         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
332                                       sizeof(struct kvm_pte_chain));
333 }
334
335 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
336 {
337         kfree(pc);
338 }
339
340 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
341 {
342         return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
343                                       sizeof(struct kvm_rmap_desc));
344 }
345
346 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
347 {
348         kfree(rd);
349 }
350
351 /*
352  * Take gfn and return the reverse mapping to it.
353  * Note: gfn must be unaliased before this function get called
354  */
355
356 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
357 {
358         struct kvm_memory_slot *slot;
359
360         slot = gfn_to_memslot(kvm, gfn);
361         return &slot->rmap[gfn - slot->base_gfn];
362 }
363
364 /*
365  * Reverse mapping data structures:
366  *
367  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
368  * that points to page_address(page).
369  *
370  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
371  * containing more mappings.
372  */
373 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
374 {
375         struct kvm_mmu_page *sp;
376         struct kvm_rmap_desc *desc;
377         unsigned long *rmapp;
378         int i;
379
380         if (!is_rmap_pte(*spte))
381                 return;
382         gfn = unalias_gfn(vcpu->kvm, gfn);
383         sp = page_header(__pa(spte));
384         sp->gfns[spte - sp->spt] = gfn;
385         rmapp = gfn_to_rmap(vcpu->kvm, gfn);
386         if (!*rmapp) {
387                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
388                 *rmapp = (unsigned long)spte;
389         } else if (!(*rmapp & 1)) {
390                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
391                 desc = mmu_alloc_rmap_desc(vcpu);
392                 desc->shadow_ptes[0] = (u64 *)*rmapp;
393                 desc->shadow_ptes[1] = spte;
394                 *rmapp = (unsigned long)desc | 1;
395         } else {
396                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
397                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
398                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
399                         desc = desc->more;
400                 if (desc->shadow_ptes[RMAP_EXT-1]) {
401                         desc->more = mmu_alloc_rmap_desc(vcpu);
402                         desc = desc->more;
403                 }
404                 for (i = 0; desc->shadow_ptes[i]; ++i)
405                         ;
406                 desc->shadow_ptes[i] = spte;
407         }
408 }
409
410 static void rmap_desc_remove_entry(unsigned long *rmapp,
411                                    struct kvm_rmap_desc *desc,
412                                    int i,
413                                    struct kvm_rmap_desc *prev_desc)
414 {
415         int j;
416
417         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
418                 ;
419         desc->shadow_ptes[i] = desc->shadow_ptes[j];
420         desc->shadow_ptes[j] = NULL;
421         if (j != 0)
422                 return;
423         if (!prev_desc && !desc->more)
424                 *rmapp = (unsigned long)desc->shadow_ptes[0];
425         else
426                 if (prev_desc)
427                         prev_desc->more = desc->more;
428                 else
429                         *rmapp = (unsigned long)desc->more | 1;
430         mmu_free_rmap_desc(desc);
431 }
432
433 static void rmap_remove(struct kvm *kvm, u64 *spte)
434 {
435         struct kvm_rmap_desc *desc;
436         struct kvm_rmap_desc *prev_desc;
437         struct kvm_mmu_page *sp;
438         struct page *page;
439         unsigned long *rmapp;
440         int i;
441
442         if (!is_rmap_pte(*spte))
443                 return;
444         sp = page_header(__pa(spte));
445         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
446         mark_page_accessed(page);
447         if (is_writeble_pte(*spte))
448                 kvm_release_page_dirty(page);
449         else
450                 kvm_release_page_clean(page);
451         rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt]);
452         if (!*rmapp) {
453                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
454                 BUG();
455         } else if (!(*rmapp & 1)) {
456                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
457                 if ((u64 *)*rmapp != spte) {
458                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
459                                spte, *spte);
460                         BUG();
461                 }
462                 *rmapp = 0;
463         } else {
464                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
465                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
466                 prev_desc = NULL;
467                 while (desc) {
468                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
469                                 if (desc->shadow_ptes[i] == spte) {
470                                         rmap_desc_remove_entry(rmapp,
471                                                                desc, i,
472                                                                prev_desc);
473                                         return;
474                                 }
475                         prev_desc = desc;
476                         desc = desc->more;
477                 }
478                 BUG();
479         }
480 }
481
482 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
483 {
484         struct kvm_rmap_desc *desc;
485         struct kvm_rmap_desc *prev_desc;
486         u64 *prev_spte;
487         int i;
488
489         if (!*rmapp)
490                 return NULL;
491         else if (!(*rmapp & 1)) {
492                 if (!spte)
493                         return (u64 *)*rmapp;
494                 return NULL;
495         }
496         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
497         prev_desc = NULL;
498         prev_spte = NULL;
499         while (desc) {
500                 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
501                         if (prev_spte == spte)
502                                 return desc->shadow_ptes[i];
503                         prev_spte = desc->shadow_ptes[i];
504                 }
505                 desc = desc->more;
506         }
507         return NULL;
508 }
509
510 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
511 {
512         unsigned long *rmapp;
513         u64 *spte;
514         int write_protected = 0;
515
516         gfn = unalias_gfn(kvm, gfn);
517         rmapp = gfn_to_rmap(kvm, gfn);
518
519         spte = rmap_next(kvm, rmapp, NULL);
520         while (spte) {
521                 BUG_ON(!spte);
522                 BUG_ON(!(*spte & PT_PRESENT_MASK));
523                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
524                 if (is_writeble_pte(*spte)) {
525                         set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
526                         write_protected = 1;
527                 }
528                 spte = rmap_next(kvm, rmapp, spte);
529         }
530         if (write_protected)
531                 kvm_flush_remote_tlbs(kvm);
532 }
533
534 #ifdef MMU_DEBUG
535 static int is_empty_shadow_page(u64 *spt)
536 {
537         u64 *pos;
538         u64 *end;
539
540         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
541                 if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
542                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
543                                pos, *pos);
544                         return 0;
545                 }
546         return 1;
547 }
548 #endif
549
550 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
551 {
552         ASSERT(is_empty_shadow_page(sp->spt));
553         list_del(&sp->link);
554         __free_page(virt_to_page(sp->spt));
555         __free_page(virt_to_page(sp->gfns));
556         kfree(sp);
557         ++kvm->arch.n_free_mmu_pages;
558 }
559
560 static unsigned kvm_page_table_hashfn(gfn_t gfn)
561 {
562         return gfn;
563 }
564
565 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
566                                                u64 *parent_pte)
567 {
568         struct kvm_mmu_page *sp;
569
570         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
571         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
572         sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
573         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
574         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
575         ASSERT(is_empty_shadow_page(sp->spt));
576         sp->slot_bitmap = 0;
577         sp->multimapped = 0;
578         sp->parent_pte = parent_pte;
579         --vcpu->kvm->arch.n_free_mmu_pages;
580         return sp;
581 }
582
583 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
584                                     struct kvm_mmu_page *sp, u64 *parent_pte)
585 {
586         struct kvm_pte_chain *pte_chain;
587         struct hlist_node *node;
588         int i;
589
590         if (!parent_pte)
591                 return;
592         if (!sp->multimapped) {
593                 u64 *old = sp->parent_pte;
594
595                 if (!old) {
596                         sp->parent_pte = parent_pte;
597                         return;
598                 }
599                 sp->multimapped = 1;
600                 pte_chain = mmu_alloc_pte_chain(vcpu);
601                 INIT_HLIST_HEAD(&sp->parent_ptes);
602                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
603                 pte_chain->parent_ptes[0] = old;
604         }
605         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
606                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
607                         continue;
608                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
609                         if (!pte_chain->parent_ptes[i]) {
610                                 pte_chain->parent_ptes[i] = parent_pte;
611                                 return;
612                         }
613         }
614         pte_chain = mmu_alloc_pte_chain(vcpu);
615         BUG_ON(!pte_chain);
616         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
617         pte_chain->parent_ptes[0] = parent_pte;
618 }
619
620 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
621                                        u64 *parent_pte)
622 {
623         struct kvm_pte_chain *pte_chain;
624         struct hlist_node *node;
625         int i;
626
627         if (!sp->multimapped) {
628                 BUG_ON(sp->parent_pte != parent_pte);
629                 sp->parent_pte = NULL;
630                 return;
631         }
632         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
633                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
634                         if (!pte_chain->parent_ptes[i])
635                                 break;
636                         if (pte_chain->parent_ptes[i] != parent_pte)
637                                 continue;
638                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
639                                 && pte_chain->parent_ptes[i + 1]) {
640                                 pte_chain->parent_ptes[i]
641                                         = pte_chain->parent_ptes[i + 1];
642                                 ++i;
643                         }
644                         pte_chain->parent_ptes[i] = NULL;
645                         if (i == 0) {
646                                 hlist_del(&pte_chain->link);
647                                 mmu_free_pte_chain(pte_chain);
648                                 if (hlist_empty(&sp->parent_ptes)) {
649                                         sp->multimapped = 0;
650                                         sp->parent_pte = NULL;
651                                 }
652                         }
653                         return;
654                 }
655         BUG();
656 }
657
658 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
659 {
660         unsigned index;
661         struct hlist_head *bucket;
662         struct kvm_mmu_page *sp;
663         struct hlist_node *node;
664
665         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
666         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
667         bucket = &kvm->arch.mmu_page_hash[index];
668         hlist_for_each_entry(sp, node, bucket, hash_link)
669                 if (sp->gfn == gfn && !sp->role.metaphysical) {
670                         pgprintk("%s: found role %x\n",
671                                  __FUNCTION__, sp->role.word);
672                         return sp;
673                 }
674         return NULL;
675 }
676
677 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
678                                              gfn_t gfn,
679                                              gva_t gaddr,
680                                              unsigned level,
681                                              int metaphysical,
682                                              unsigned access,
683                                              u64 *parent_pte)
684 {
685         union kvm_mmu_page_role role;
686         unsigned index;
687         unsigned quadrant;
688         struct hlist_head *bucket;
689         struct kvm_mmu_page *sp;
690         struct hlist_node *node;
691
692         role.word = 0;
693         role.glevels = vcpu->arch.mmu.root_level;
694         role.level = level;
695         role.metaphysical = metaphysical;
696         role.access = access;
697         if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
698                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
699                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
700                 role.quadrant = quadrant;
701         }
702         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
703                  gfn, role.word);
704         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
705         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
706         hlist_for_each_entry(sp, node, bucket, hash_link)
707                 if (sp->gfn == gfn && sp->role.word == role.word) {
708                         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
709                         pgprintk("%s: found\n", __FUNCTION__);
710                         return sp;
711                 }
712         ++vcpu->kvm->stat.mmu_cache_miss;
713         sp = kvm_mmu_alloc_page(vcpu, parent_pte);
714         if (!sp)
715                 return sp;
716         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
717         sp->gfn = gfn;
718         sp->role = role;
719         hlist_add_head(&sp->hash_link, bucket);
720         vcpu->arch.mmu.prefetch_page(vcpu, sp);
721         if (!metaphysical)
722                 rmap_write_protect(vcpu->kvm, gfn);
723         return sp;
724 }
725
726 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
727                                          struct kvm_mmu_page *sp)
728 {
729         unsigned i;
730         u64 *pt;
731         u64 ent;
732
733         pt = sp->spt;
734
735         if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
736                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
737                         if (is_shadow_present_pte(pt[i]))
738                                 rmap_remove(kvm, &pt[i]);
739                         pt[i] = shadow_trap_nonpresent_pte;
740                 }
741                 kvm_flush_remote_tlbs(kvm);
742                 return;
743         }
744
745         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
746                 ent = pt[i];
747
748                 pt[i] = shadow_trap_nonpresent_pte;
749                 if (!is_shadow_present_pte(ent))
750                         continue;
751                 ent &= PT64_BASE_ADDR_MASK;
752                 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
753         }
754         kvm_flush_remote_tlbs(kvm);
755 }
756
757 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
758 {
759         mmu_page_remove_parent_pte(sp, parent_pte);
760 }
761
762 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
763 {
764         int i;
765
766         for (i = 0; i < KVM_MAX_VCPUS; ++i)
767                 if (kvm->vcpus[i])
768                         kvm->vcpus[i]->arch.last_pte_updated = NULL;
769 }
770
771 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
772 {
773         u64 *parent_pte;
774
775         ++kvm->stat.mmu_shadow_zapped;
776         while (sp->multimapped || sp->parent_pte) {
777                 if (!sp->multimapped)
778                         parent_pte = sp->parent_pte;
779                 else {
780                         struct kvm_pte_chain *chain;
781
782                         chain = container_of(sp->parent_ptes.first,
783                                              struct kvm_pte_chain, link);
784                         parent_pte = chain->parent_ptes[0];
785                 }
786                 BUG_ON(!parent_pte);
787                 kvm_mmu_put_page(sp, parent_pte);
788                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
789         }
790         kvm_mmu_page_unlink_children(kvm, sp);
791         if (!sp->root_count) {
792                 hlist_del(&sp->hash_link);
793                 kvm_mmu_free_page(kvm, sp);
794         } else
795                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
796         kvm_mmu_reset_last_pte_updated(kvm);
797 }
798
799 /*
800  * Changing the number of mmu pages allocated to the vm
801  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
802  */
803 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
804 {
805         /*
806          * If we set the number of mmu pages to be smaller be than the
807          * number of actived pages , we must to free some mmu pages before we
808          * change the value
809          */
810
811         if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
812             kvm_nr_mmu_pages) {
813                 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
814                                        - kvm->arch.n_free_mmu_pages;
815
816                 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
817                         struct kvm_mmu_page *page;
818
819                         page = container_of(kvm->arch.active_mmu_pages.prev,
820                                             struct kvm_mmu_page, link);
821                         kvm_mmu_zap_page(kvm, page);
822                         n_used_mmu_pages--;
823                 }
824                 kvm->arch.n_free_mmu_pages = 0;
825         }
826         else
827                 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
828                                          - kvm->arch.n_alloc_mmu_pages;
829
830         kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
831 }
832
833 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
834 {
835         unsigned index;
836         struct hlist_head *bucket;
837         struct kvm_mmu_page *sp;
838         struct hlist_node *node, *n;
839         int r;
840
841         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
842         r = 0;
843         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
844         bucket = &kvm->arch.mmu_page_hash[index];
845         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
846                 if (sp->gfn == gfn && !sp->role.metaphysical) {
847                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
848                                  sp->role.word);
849                         kvm_mmu_zap_page(kvm, sp);
850                         r = 1;
851                 }
852         return r;
853 }
854
855 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
856 {
857         struct kvm_mmu_page *sp;
858
859         while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
860                 pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, sp->role.word);
861                 kvm_mmu_zap_page(kvm, sp);
862         }
863 }
864
865 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
866 {
867         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
868         struct kvm_mmu_page *sp = page_header(__pa(pte));
869
870         __set_bit(slot, &sp->slot_bitmap);
871 }
872
873 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
874 {
875         struct page *page;
876
877         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
878
879         if (gpa == UNMAPPED_GVA)
880                 return NULL;
881
882         down_read(&current->mm->mmap_sem);
883         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
884         up_read(&current->mm->mmap_sem);
885
886         return page;
887 }
888
889 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
890                          unsigned pt_access, unsigned pte_access,
891                          int user_fault, int write_fault, int dirty,
892                          int *ptwrite, gfn_t gfn, struct page *page)
893 {
894         u64 spte;
895         int was_rmapped = 0;
896         int was_writeble = is_writeble_pte(*shadow_pte);
897         hfn_t host_pfn = (*shadow_pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
898
899         pgprintk("%s: spte %llx access %x write_fault %d"
900                  " user_fault %d gfn %lx\n",
901                  __FUNCTION__, *shadow_pte, pt_access,
902                  write_fault, user_fault, gfn);
903
904         if (is_rmap_pte(*shadow_pte)) {
905                 if (host_pfn != page_to_pfn(page)) {
906                         pgprintk("hfn old %lx new %lx\n",
907                                  host_pfn, page_to_pfn(page));
908                         rmap_remove(vcpu->kvm, shadow_pte);
909                 }
910                 else
911                         was_rmapped = 1;
912         }
913
914         /*
915          * We don't set the accessed bit, since we sometimes want to see
916          * whether the guest actually used the pte (in order to detect
917          * demand paging).
918          */
919         spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
920         if (!dirty)
921                 pte_access &= ~ACC_WRITE_MASK;
922         if (!(pte_access & ACC_EXEC_MASK))
923                 spte |= PT64_NX_MASK;
924
925         spte |= PT_PRESENT_MASK;
926         if (pte_access & ACC_USER_MASK)
927                 spte |= PT_USER_MASK;
928
929         if (is_error_page(page)) {
930                 set_shadow_pte(shadow_pte,
931                                shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
932                 kvm_release_page_clean(page);
933                 return;
934         }
935
936         spte |= page_to_phys(page);
937
938         if ((pte_access & ACC_WRITE_MASK)
939             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
940                 struct kvm_mmu_page *shadow;
941
942                 spte |= PT_WRITABLE_MASK;
943                 if (user_fault) {
944                         mmu_unshadow(vcpu->kvm, gfn);
945                         goto unshadowed;
946                 }
947
948                 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
949                 if (shadow) {
950                         pgprintk("%s: found shadow page for %lx, marking ro\n",
951                                  __FUNCTION__, gfn);
952                         pte_access &= ~ACC_WRITE_MASK;
953                         if (is_writeble_pte(spte)) {
954                                 spte &= ~PT_WRITABLE_MASK;
955                                 kvm_x86_ops->tlb_flush(vcpu);
956                         }
957                         if (write_fault)
958                                 *ptwrite = 1;
959                 }
960         }
961
962 unshadowed:
963
964         if (pte_access & ACC_WRITE_MASK)
965                 mark_page_dirty(vcpu->kvm, gfn);
966
967         pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
968         set_shadow_pte(shadow_pte, spte);
969         page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
970         if (!was_rmapped) {
971                 rmap_add(vcpu, shadow_pte, gfn);
972                 if (!is_rmap_pte(*shadow_pte))
973                         kvm_release_page_clean(page);
974         } else {
975                 if (was_writeble)
976                         kvm_release_page_dirty(page);
977                 else
978                         kvm_release_page_clean(page);
979         }
980         if (!ptwrite || !*ptwrite)
981                 vcpu->arch.last_pte_updated = shadow_pte;
982 }
983
984 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
985 {
986 }
987
988 static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write,
989                            gfn_t gfn, struct page *page)
990 {
991         int level = PT32E_ROOT_LEVEL;
992         hpa_t table_addr = vcpu->arch.mmu.root_hpa;
993         int pt_write = 0;
994
995         for (; ; level--) {
996                 u32 index = PT64_INDEX(v, level);
997                 u64 *table;
998
999                 ASSERT(VALID_PAGE(table_addr));
1000                 table = __va(table_addr);
1001
1002                 if (level == 1) {
1003                         mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1004                                      0, write, 1, &pt_write, gfn, page);
1005                         return pt_write || is_io_pte(table[index]);
1006                 }
1007
1008                 if (table[index] == shadow_trap_nonpresent_pte) {
1009                         struct kvm_mmu_page *new_table;
1010                         gfn_t pseudo_gfn;
1011
1012                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1013                                 >> PAGE_SHIFT;
1014                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1015                                                      v, level - 1,
1016                                                      1, ACC_ALL, &table[index]);
1017                         if (!new_table) {
1018                                 pgprintk("nonpaging_map: ENOMEM\n");
1019                                 kvm_release_page_clean(page);
1020                                 return -ENOMEM;
1021                         }
1022
1023                         table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1024                                 | PT_WRITABLE_MASK | PT_USER_MASK;
1025                 }
1026                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1027         }
1028 }
1029
1030 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1031 {
1032         int r;
1033
1034         struct page *page;
1035
1036         down_read(&vcpu->kvm->slots_lock);
1037
1038         down_read(&current->mm->mmap_sem);
1039         page = gfn_to_page(vcpu->kvm, gfn);
1040         up_read(&current->mm->mmap_sem);
1041
1042         spin_lock(&vcpu->kvm->mmu_lock);
1043         kvm_mmu_free_some_pages(vcpu);
1044         r = __nonpaging_map(vcpu, v, write, gfn, page);
1045         spin_unlock(&vcpu->kvm->mmu_lock);
1046
1047         up_read(&vcpu->kvm->slots_lock);
1048
1049         return r;
1050 }
1051
1052
1053 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1054                                     struct kvm_mmu_page *sp)
1055 {
1056         int i;
1057
1058         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1059                 sp->spt[i] = shadow_trap_nonpresent_pte;
1060 }
1061
1062 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1063 {
1064         int i;
1065         struct kvm_mmu_page *sp;
1066
1067         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1068                 return;
1069         spin_lock(&vcpu->kvm->mmu_lock);
1070 #ifdef CONFIG_X86_64
1071         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1072                 hpa_t root = vcpu->arch.mmu.root_hpa;
1073
1074                 sp = page_header(root);
1075                 --sp->root_count;
1076                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1077                 spin_unlock(&vcpu->kvm->mmu_lock);
1078                 return;
1079         }
1080 #endif
1081         for (i = 0; i < 4; ++i) {
1082                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1083
1084                 if (root) {
1085                         root &= PT64_BASE_ADDR_MASK;
1086                         sp = page_header(root);
1087                         --sp->root_count;
1088                 }
1089                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1090         }
1091         spin_unlock(&vcpu->kvm->mmu_lock);
1092         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1093 }
1094
1095 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1096 {
1097         int i;
1098         gfn_t root_gfn;
1099         struct kvm_mmu_page *sp;
1100
1101         root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1102
1103 #ifdef CONFIG_X86_64
1104         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1105                 hpa_t root = vcpu->arch.mmu.root_hpa;
1106
1107                 ASSERT(!VALID_PAGE(root));
1108                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1109                                       PT64_ROOT_LEVEL, 0, ACC_ALL, NULL);
1110                 root = __pa(sp->spt);
1111                 ++sp->root_count;
1112                 vcpu->arch.mmu.root_hpa = root;
1113                 return;
1114         }
1115 #endif
1116         for (i = 0; i < 4; ++i) {
1117                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1118
1119                 ASSERT(!VALID_PAGE(root));
1120                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1121                         if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1122                                 vcpu->arch.mmu.pae_root[i] = 0;
1123                                 continue;
1124                         }
1125                         root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1126                 } else if (vcpu->arch.mmu.root_level == 0)
1127                         root_gfn = 0;
1128                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1129                                       PT32_ROOT_LEVEL, !is_paging(vcpu),
1130                                       ACC_ALL, NULL);
1131                 root = __pa(sp->spt);
1132                 ++sp->root_count;
1133                 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1134         }
1135         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1136 }
1137
1138 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1139 {
1140         return vaddr;
1141 }
1142
1143 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1144                                 u32 error_code)
1145 {
1146         gfn_t gfn;
1147         int r;
1148
1149         pgprintk("%s: gva %lx error %x\n", __FUNCTION__, gva, error_code);
1150         r = mmu_topup_memory_caches(vcpu);
1151         if (r)
1152                 return r;
1153
1154         ASSERT(vcpu);
1155         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1156
1157         gfn = gva >> PAGE_SHIFT;
1158
1159         return nonpaging_map(vcpu, gva & PAGE_MASK,
1160                              error_code & PFERR_WRITE_MASK, gfn);
1161 }
1162
1163 static void nonpaging_free(struct kvm_vcpu *vcpu)
1164 {
1165         mmu_free_roots(vcpu);
1166 }
1167
1168 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1169 {
1170         struct kvm_mmu *context = &vcpu->arch.mmu;
1171
1172         context->new_cr3 = nonpaging_new_cr3;
1173         context->page_fault = nonpaging_page_fault;
1174         context->gva_to_gpa = nonpaging_gva_to_gpa;
1175         context->free = nonpaging_free;
1176         context->prefetch_page = nonpaging_prefetch_page;
1177         context->root_level = 0;
1178         context->shadow_root_level = PT32E_ROOT_LEVEL;
1179         context->root_hpa = INVALID_PAGE;
1180         return 0;
1181 }
1182
1183 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1184 {
1185         ++vcpu->stat.tlb_flush;
1186         kvm_x86_ops->tlb_flush(vcpu);
1187 }
1188
1189 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1190 {
1191         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->arch.cr3);
1192         mmu_free_roots(vcpu);
1193 }
1194
1195 static void inject_page_fault(struct kvm_vcpu *vcpu,
1196                               u64 addr,
1197                               u32 err_code)
1198 {
1199         kvm_inject_page_fault(vcpu, addr, err_code);
1200 }
1201
1202 static void paging_free(struct kvm_vcpu *vcpu)
1203 {
1204         nonpaging_free(vcpu);
1205 }
1206
1207 #define PTTYPE 64
1208 #include "paging_tmpl.h"
1209 #undef PTTYPE
1210
1211 #define PTTYPE 32
1212 #include "paging_tmpl.h"
1213 #undef PTTYPE
1214
1215 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1216 {
1217         struct kvm_mmu *context = &vcpu->arch.mmu;
1218
1219         ASSERT(is_pae(vcpu));
1220         context->new_cr3 = paging_new_cr3;
1221         context->page_fault = paging64_page_fault;
1222         context->gva_to_gpa = paging64_gva_to_gpa;
1223         context->prefetch_page = paging64_prefetch_page;
1224         context->free = paging_free;
1225         context->root_level = level;
1226         context->shadow_root_level = level;
1227         context->root_hpa = INVALID_PAGE;
1228         return 0;
1229 }
1230
1231 static int paging64_init_context(struct kvm_vcpu *vcpu)
1232 {
1233         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1234 }
1235
1236 static int paging32_init_context(struct kvm_vcpu *vcpu)
1237 {
1238         struct kvm_mmu *context = &vcpu->arch.mmu;
1239
1240         context->new_cr3 = paging_new_cr3;
1241         context->page_fault = paging32_page_fault;
1242         context->gva_to_gpa = paging32_gva_to_gpa;
1243         context->free = paging_free;
1244         context->prefetch_page = paging32_prefetch_page;
1245         context->root_level = PT32_ROOT_LEVEL;
1246         context->shadow_root_level = PT32E_ROOT_LEVEL;
1247         context->root_hpa = INVALID_PAGE;
1248         return 0;
1249 }
1250
1251 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1252 {
1253         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1254 }
1255
1256 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1257 {
1258         ASSERT(vcpu);
1259         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1260
1261         if (!is_paging(vcpu))
1262                 return nonpaging_init_context(vcpu);
1263         else if (is_long_mode(vcpu))
1264                 return paging64_init_context(vcpu);
1265         else if (is_pae(vcpu))
1266                 return paging32E_init_context(vcpu);
1267         else
1268                 return paging32_init_context(vcpu);
1269 }
1270
1271 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1272 {
1273         ASSERT(vcpu);
1274         if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1275                 vcpu->arch.mmu.free(vcpu);
1276                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1277         }
1278 }
1279
1280 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1281 {
1282         destroy_kvm_mmu(vcpu);
1283         return init_kvm_mmu(vcpu);
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1286
1287 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1288 {
1289         int r;
1290
1291         r = mmu_topup_memory_caches(vcpu);
1292         if (r)
1293                 goto out;
1294         spin_lock(&vcpu->kvm->mmu_lock);
1295         kvm_mmu_free_some_pages(vcpu);
1296         mmu_alloc_roots(vcpu);
1297         spin_unlock(&vcpu->kvm->mmu_lock);
1298         kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1299         kvm_mmu_flush_tlb(vcpu);
1300 out:
1301         return r;
1302 }
1303 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1304
1305 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1306 {
1307         mmu_free_roots(vcpu);
1308 }
1309
1310 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1311                                   struct kvm_mmu_page *sp,
1312                                   u64 *spte)
1313 {
1314         u64 pte;
1315         struct kvm_mmu_page *child;
1316
1317         pte = *spte;
1318         if (is_shadow_present_pte(pte)) {
1319                 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
1320                         rmap_remove(vcpu->kvm, spte);
1321                 else {
1322                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1323                         mmu_page_remove_parent_pte(child, spte);
1324                 }
1325         }
1326         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1327 }
1328
1329 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1330                                   struct kvm_mmu_page *sp,
1331                                   u64 *spte,
1332                                   const void *new, int bytes,
1333                                   int offset_in_pte)
1334 {
1335         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
1336                 ++vcpu->kvm->stat.mmu_pde_zapped;
1337                 return;
1338         }
1339
1340         ++vcpu->kvm->stat.mmu_pte_updated;
1341         if (sp->role.glevels == PT32_ROOT_LEVEL)
1342                 paging32_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1343         else
1344                 paging64_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1345 }
1346
1347 static bool need_remote_flush(u64 old, u64 new)
1348 {
1349         if (!is_shadow_present_pte(old))
1350                 return false;
1351         if (!is_shadow_present_pte(new))
1352                 return true;
1353         if ((old ^ new) & PT64_BASE_ADDR_MASK)
1354                 return true;
1355         old ^= PT64_NX_MASK;
1356         new ^= PT64_NX_MASK;
1357         return (old & ~new & PT64_PERM_MASK) != 0;
1358 }
1359
1360 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1361 {
1362         if (need_remote_flush(old, new))
1363                 kvm_flush_remote_tlbs(vcpu->kvm);
1364         else
1365                 kvm_mmu_flush_tlb(vcpu);
1366 }
1367
1368 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1369 {
1370         u64 *spte = vcpu->arch.last_pte_updated;
1371
1372         return !!(spte && (*spte & PT_ACCESSED_MASK));
1373 }
1374
1375 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1376                                           const u8 *new, int bytes)
1377 {
1378         gfn_t gfn;
1379         int r;
1380         u64 gpte = 0;
1381         struct page *page;
1382
1383         if (bytes != 4 && bytes != 8)
1384                 return;
1385
1386         /*
1387          * Assume that the pte write on a page table of the same type
1388          * as the current vcpu paging mode.  This is nearly always true
1389          * (might be false while changing modes).  Note it is verified later
1390          * by update_pte().
1391          */
1392         if (is_pae(vcpu)) {
1393                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1394                 if ((bytes == 4) && (gpa % 4 == 0)) {
1395                         r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1396                         if (r)
1397                                 return;
1398                         memcpy((void *)&gpte + (gpa % 8), new, 4);
1399                 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1400                         memcpy((void *)&gpte, new, 8);
1401                 }
1402         } else {
1403                 if ((bytes == 4) && (gpa % 4 == 0))
1404                         memcpy((void *)&gpte, new, 4);
1405         }
1406         if (!is_present_pte(gpte))
1407                 return;
1408         gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1409
1410         down_read(&current->mm->mmap_sem);
1411         page = gfn_to_page(vcpu->kvm, gfn);
1412         up_read(&current->mm->mmap_sem);
1413
1414         vcpu->arch.update_pte.gfn = gfn;
1415         vcpu->arch.update_pte.page = page;
1416 }
1417
1418 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1419                        const u8 *new, int bytes)
1420 {
1421         gfn_t gfn = gpa >> PAGE_SHIFT;
1422         struct kvm_mmu_page *sp;
1423         struct hlist_node *node, *n;
1424         struct hlist_head *bucket;
1425         unsigned index;
1426         u64 entry;
1427         u64 *spte;
1428         unsigned offset = offset_in_page(gpa);
1429         unsigned pte_size;
1430         unsigned page_offset;
1431         unsigned misaligned;
1432         unsigned quadrant;
1433         int level;
1434         int flooded = 0;
1435         int npte;
1436
1437         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1438         mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1439         spin_lock(&vcpu->kvm->mmu_lock);
1440         kvm_mmu_free_some_pages(vcpu);
1441         ++vcpu->kvm->stat.mmu_pte_write;
1442         kvm_mmu_audit(vcpu, "pre pte write");
1443         if (gfn == vcpu->arch.last_pt_write_gfn
1444             && !last_updated_pte_accessed(vcpu)) {
1445                 ++vcpu->arch.last_pt_write_count;
1446                 if (vcpu->arch.last_pt_write_count >= 3)
1447                         flooded = 1;
1448         } else {
1449                 vcpu->arch.last_pt_write_gfn = gfn;
1450                 vcpu->arch.last_pt_write_count = 1;
1451                 vcpu->arch.last_pte_updated = NULL;
1452         }
1453         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1454         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1455         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1456                 if (sp->gfn != gfn || sp->role.metaphysical)
1457                         continue;
1458                 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1459                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1460                 misaligned |= bytes < 4;
1461                 if (misaligned || flooded) {
1462                         /*
1463                          * Misaligned accesses are too much trouble to fix
1464                          * up; also, they usually indicate a page is not used
1465                          * as a page table.
1466                          *
1467                          * If we're seeing too many writes to a page,
1468                          * it may no longer be a page table, or we may be
1469                          * forking, in which case it is better to unmap the
1470                          * page.
1471                          */
1472                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1473                                  gpa, bytes, sp->role.word);
1474                         kvm_mmu_zap_page(vcpu->kvm, sp);
1475                         ++vcpu->kvm->stat.mmu_flooded;
1476                         continue;
1477                 }
1478                 page_offset = offset;
1479                 level = sp->role.level;
1480                 npte = 1;
1481                 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1482                         page_offset <<= 1;      /* 32->64 */
1483                         /*
1484                          * A 32-bit pde maps 4MB while the shadow pdes map
1485                          * only 2MB.  So we need to double the offset again
1486                          * and zap two pdes instead of one.
1487                          */
1488                         if (level == PT32_ROOT_LEVEL) {
1489                                 page_offset &= ~7; /* kill rounding error */
1490                                 page_offset <<= 1;
1491                                 npte = 2;
1492                         }
1493                         quadrant = page_offset >> PAGE_SHIFT;
1494                         page_offset &= ~PAGE_MASK;
1495                         if (quadrant != sp->role.quadrant)
1496                                 continue;
1497                 }
1498                 spte = &sp->spt[page_offset / sizeof(*spte)];
1499                 while (npte--) {
1500                         entry = *spte;
1501                         mmu_pte_write_zap_pte(vcpu, sp, spte);
1502                         mmu_pte_write_new_pte(vcpu, sp, spte, new, bytes,
1503                                               page_offset & (pte_size - 1));
1504                         mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1505                         ++spte;
1506                 }
1507         }
1508         kvm_mmu_audit(vcpu, "post pte write");
1509         spin_unlock(&vcpu->kvm->mmu_lock);
1510         if (vcpu->arch.update_pte.page) {
1511                 kvm_release_page_clean(vcpu->arch.update_pte.page);
1512                 vcpu->arch.update_pte.page = NULL;
1513         }
1514 }
1515
1516 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1517 {
1518         gpa_t gpa;
1519         int r;
1520
1521         down_read(&vcpu->kvm->slots_lock);
1522         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1523         up_read(&vcpu->kvm->slots_lock);
1524
1525         spin_lock(&vcpu->kvm->mmu_lock);
1526         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1527         spin_unlock(&vcpu->kvm->mmu_lock);
1528         return r;
1529 }
1530
1531 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1532 {
1533         while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1534                 struct kvm_mmu_page *sp;
1535
1536                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1537                                   struct kvm_mmu_page, link);
1538                 kvm_mmu_zap_page(vcpu->kvm, sp);
1539                 ++vcpu->kvm->stat.mmu_recycled;
1540         }
1541 }
1542
1543 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1544 {
1545         int r;
1546         enum emulation_result er;
1547
1548         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1549         if (r < 0)
1550                 goto out;
1551
1552         if (!r) {
1553                 r = 1;
1554                 goto out;
1555         }
1556
1557         r = mmu_topup_memory_caches(vcpu);
1558         if (r)
1559                 goto out;
1560
1561         er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1562
1563         switch (er) {
1564         case EMULATE_DONE:
1565                 return 1;
1566         case EMULATE_DO_MMIO:
1567                 ++vcpu->stat.mmio_exits;
1568                 return 0;
1569         case EMULATE_FAIL:
1570                 kvm_report_emulation_failure(vcpu, "pagetable");
1571                 return 1;
1572         default:
1573                 BUG();
1574         }
1575 out:
1576         return r;
1577 }
1578 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1579
1580 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1581 {
1582         struct kvm_mmu_page *sp;
1583
1584         while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1585                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1586                                   struct kvm_mmu_page, link);
1587                 kvm_mmu_zap_page(vcpu->kvm, sp);
1588         }
1589         free_page((unsigned long)vcpu->arch.mmu.pae_root);
1590 }
1591
1592 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1593 {
1594         struct page *page;
1595         int i;
1596
1597         ASSERT(vcpu);
1598
1599         if (vcpu->kvm->arch.n_requested_mmu_pages)
1600                 vcpu->kvm->arch.n_free_mmu_pages =
1601                                         vcpu->kvm->arch.n_requested_mmu_pages;
1602         else
1603                 vcpu->kvm->arch.n_free_mmu_pages =
1604                                         vcpu->kvm->arch.n_alloc_mmu_pages;
1605         /*
1606          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1607          * Therefore we need to allocate shadow page tables in the first
1608          * 4GB of memory, which happens to fit the DMA32 zone.
1609          */
1610         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1611         if (!page)
1612                 goto error_1;
1613         vcpu->arch.mmu.pae_root = page_address(page);
1614         for (i = 0; i < 4; ++i)
1615                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1616
1617         return 0;
1618
1619 error_1:
1620         free_mmu_pages(vcpu);
1621         return -ENOMEM;
1622 }
1623
1624 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1625 {
1626         ASSERT(vcpu);
1627         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1628
1629         return alloc_mmu_pages(vcpu);
1630 }
1631
1632 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1633 {
1634         ASSERT(vcpu);
1635         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1636
1637         return init_kvm_mmu(vcpu);
1638 }
1639
1640 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1641 {
1642         ASSERT(vcpu);
1643
1644         destroy_kvm_mmu(vcpu);
1645         free_mmu_pages(vcpu);
1646         mmu_free_memory_caches(vcpu);
1647 }
1648
1649 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1650 {
1651         struct kvm_mmu_page *sp;
1652
1653         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
1654                 int i;
1655                 u64 *pt;
1656
1657                 if (!test_bit(slot, &sp->slot_bitmap))
1658                         continue;
1659
1660                 pt = sp->spt;
1661                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1662                         /* avoid RMW */
1663                         if (pt[i] & PT_WRITABLE_MASK)
1664                                 pt[i] &= ~PT_WRITABLE_MASK;
1665         }
1666 }
1667
1668 void kvm_mmu_zap_all(struct kvm *kvm)
1669 {
1670         struct kvm_mmu_page *sp, *node;
1671
1672         spin_lock(&kvm->mmu_lock);
1673         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
1674                 kvm_mmu_zap_page(kvm, sp);
1675         spin_unlock(&kvm->mmu_lock);
1676
1677         kvm_flush_remote_tlbs(kvm);
1678 }
1679
1680 void kvm_mmu_module_exit(void)
1681 {
1682         if (pte_chain_cache)
1683                 kmem_cache_destroy(pte_chain_cache);
1684         if (rmap_desc_cache)
1685                 kmem_cache_destroy(rmap_desc_cache);
1686         if (mmu_page_header_cache)
1687                 kmem_cache_destroy(mmu_page_header_cache);
1688 }
1689
1690 int kvm_mmu_module_init(void)
1691 {
1692         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1693                                             sizeof(struct kvm_pte_chain),
1694                                             0, 0, NULL);
1695         if (!pte_chain_cache)
1696                 goto nomem;
1697         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1698                                             sizeof(struct kvm_rmap_desc),
1699                                             0, 0, NULL);
1700         if (!rmap_desc_cache)
1701                 goto nomem;
1702
1703         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1704                                                   sizeof(struct kvm_mmu_page),
1705                                                   0, 0, NULL);
1706         if (!mmu_page_header_cache)
1707                 goto nomem;
1708
1709         return 0;
1710
1711 nomem:
1712         kvm_mmu_module_exit();
1713         return -ENOMEM;
1714 }
1715
1716 /*
1717  * Caculate mmu pages needed for kvm.
1718  */
1719 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
1720 {
1721         int i;
1722         unsigned int nr_mmu_pages;
1723         unsigned int  nr_pages = 0;
1724
1725         for (i = 0; i < kvm->nmemslots; i++)
1726                 nr_pages += kvm->memslots[i].npages;
1727
1728         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
1729         nr_mmu_pages = max(nr_mmu_pages,
1730                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
1731
1732         return nr_mmu_pages;
1733 }
1734
1735 #ifdef AUDIT
1736
1737 static const char *audit_msg;
1738
1739 static gva_t canonicalize(gva_t gva)
1740 {
1741 #ifdef CONFIG_X86_64
1742         gva = (long long)(gva << 16) >> 16;
1743 #endif
1744         return gva;
1745 }
1746
1747 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1748                                 gva_t va, int level)
1749 {
1750         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1751         int i;
1752         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1753
1754         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1755                 u64 ent = pt[i];
1756
1757                 if (ent == shadow_trap_nonpresent_pte)
1758                         continue;
1759
1760                 va = canonicalize(va);
1761                 if (level > 1) {
1762                         if (ent == shadow_notrap_nonpresent_pte)
1763                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
1764                                        " in nonleaf level: levels %d gva %lx"
1765                                        " level %d pte %llx\n", audit_msg,
1766                                        vcpu->arch.mmu.root_level, va, level, ent);
1767
1768                         audit_mappings_page(vcpu, ent, va, level - 1);
1769                 } else {
1770                         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
1771                         struct page *page = gpa_to_page(vcpu, gpa);
1772                         hpa_t hpa = page_to_phys(page);
1773
1774                         if (is_shadow_present_pte(ent)
1775                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1776                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
1777                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
1778                                        audit_msg, vcpu->arch.mmu.root_level,
1779                                        va, gpa, hpa, ent,
1780                                        is_shadow_present_pte(ent));
1781                         else if (ent == shadow_notrap_nonpresent_pte
1782                                  && !is_error_hpa(hpa))
1783                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
1784                                        " valid guest gva %lx\n", audit_msg, va);
1785                         kvm_release_page_clean(page);
1786
1787                 }
1788         }
1789 }
1790
1791 static void audit_mappings(struct kvm_vcpu *vcpu)
1792 {
1793         unsigned i;
1794
1795         if (vcpu->arch.mmu.root_level == 4)
1796                 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
1797         else
1798                 for (i = 0; i < 4; ++i)
1799                         if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
1800                                 audit_mappings_page(vcpu,
1801                                                     vcpu->arch.mmu.pae_root[i],
1802                                                     i << 30,
1803                                                     2);
1804 }
1805
1806 static int count_rmaps(struct kvm_vcpu *vcpu)
1807 {
1808         int nmaps = 0;
1809         int i, j, k;
1810
1811         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1812                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1813                 struct kvm_rmap_desc *d;
1814
1815                 for (j = 0; j < m->npages; ++j) {
1816                         unsigned long *rmapp = &m->rmap[j];
1817
1818                         if (!*rmapp)
1819                                 continue;
1820                         if (!(*rmapp & 1)) {
1821                                 ++nmaps;
1822                                 continue;
1823                         }
1824                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
1825                         while (d) {
1826                                 for (k = 0; k < RMAP_EXT; ++k)
1827                                         if (d->shadow_ptes[k])
1828                                                 ++nmaps;
1829                                         else
1830                                                 break;
1831                                 d = d->more;
1832                         }
1833                 }
1834         }
1835         return nmaps;
1836 }
1837
1838 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1839 {
1840         int nmaps = 0;
1841         struct kvm_mmu_page *sp;
1842         int i;
1843
1844         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
1845                 u64 *pt = sp->spt;
1846
1847                 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
1848                         continue;
1849
1850                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1851                         u64 ent = pt[i];
1852
1853                         if (!(ent & PT_PRESENT_MASK))
1854                                 continue;
1855                         if (!(ent & PT_WRITABLE_MASK))
1856                                 continue;
1857                         ++nmaps;
1858                 }
1859         }
1860         return nmaps;
1861 }
1862
1863 static void audit_rmap(struct kvm_vcpu *vcpu)
1864 {
1865         int n_rmap = count_rmaps(vcpu);
1866         int n_actual = count_writable_mappings(vcpu);
1867
1868         if (n_rmap != n_actual)
1869                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1870                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1871 }
1872
1873 static void audit_write_protection(struct kvm_vcpu *vcpu)
1874 {
1875         struct kvm_mmu_page *sp;
1876         struct kvm_memory_slot *slot;
1877         unsigned long *rmapp;
1878         gfn_t gfn;
1879
1880         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
1881                 if (sp->role.metaphysical)
1882                         continue;
1883
1884                 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
1885                 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
1886                 rmapp = &slot->rmap[gfn - slot->base_gfn];
1887                 if (*rmapp)
1888                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1889                                " mappings: gfn %lx role %x\n",
1890                                __FUNCTION__, audit_msg, sp->gfn,
1891                                sp->role.word);
1892         }
1893 }
1894
1895 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1896 {
1897         int olddbg = dbg;
1898
1899         dbg = 0;
1900         audit_msg = msg;
1901         audit_rmap(vcpu);
1902         audit_write_protection(vcpu);
1903         audit_mappings(vcpu);
1904         dbg = olddbg;
1905 }
1906
1907 #endif