Merge tag 'nfs-for-5.0-3' of git://git.linux-nfs.org/projects/anna/linux-nfs
[sfrench/cifs-2.6.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/pat.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51
52 /*
53  * When setting this variable to true it enables Two-Dimensional-Paging
54  * where the hardware walks 2 page tables:
55  * 1. the guest-virtual to guest-physical
56  * 2. while doing 1. it walks guest-physical to host-physical
57  * If the hardware supports that we don't need to do shadow paging.
58  */
59 bool tdp_enabled = false;
60
61 enum {
62         AUDIT_PRE_PAGE_FAULT,
63         AUDIT_POST_PAGE_FAULT,
64         AUDIT_PRE_PTE_WRITE,
65         AUDIT_POST_PTE_WRITE,
66         AUDIT_PRE_SYNC,
67         AUDIT_POST_SYNC
68 };
69
70 #undef MMU_DEBUG
71
72 #ifdef MMU_DEBUG
73 static bool dbg = 0;
74 module_param(dbg, bool, 0644);
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78 #define MMU_WARN_ON(x) WARN_ON(x)
79 #else
80 #define pgprintk(x...) do { } while (0)
81 #define rmap_printk(x...) do { } while (0)
82 #define MMU_WARN_ON(x) do { } while (0)
83 #endif
84
85 #define PTE_PREFETCH_NUM                8
86
87 #define PT_FIRST_AVAIL_BITS_SHIFT 10
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
90 #define PT64_LEVEL_BITS 9
91
92 #define PT64_LEVEL_SHIFT(level) \
93                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
94
95 #define PT64_INDEX(address, level)\
96         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
103
104 #define PT32_LVL_OFFSET_MASK(level) \
105         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106                                                 * PT32_LEVEL_BITS))) - 1))
107
108 #define PT32_INDEX(address, level)\
109         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
113 #define PT64_DIR_BASE_ADDR_MASK \
114         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 #define PT64_LVL_ADDR_MASK(level) \
116         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117                                                 * PT64_LEVEL_BITS))) - 1))
118 #define PT64_LVL_OFFSET_MASK(level) \
119         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                                 * PT64_LEVEL_BITS))) - 1))
121
122 #define PT32_BASE_ADDR_MASK PAGE_MASK
123 #define PT32_DIR_BASE_ADDR_MASK \
124         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 #define PT32_LVL_ADDR_MASK(level) \
126         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127                                             * PT32_LEVEL_BITS))) - 1))
128
129 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
131
132 #define ACC_EXEC_MASK    1
133 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
134 #define ACC_USER_MASK    PT_USER_MASK
135 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
137 /* The mask for the R/X bits in EPT PTEs */
138 #define PT64_EPT_READABLE_MASK                  0x1ull
139 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
140
141 #include <trace/events/kvm.h>
142
143 #define CREATE_TRACE_POINTS
144 #include "mmutrace.h"
145
146 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
148
149 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
151 /* make pte_list_desc fit well in cache line */
152 #define PTE_LIST_EXT 3
153
154 /*
155  * Return values of handle_mmio_page_fault and mmu.page_fault:
156  * RET_PF_RETRY: let CPU fault again on the address.
157  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158  *
159  * For handle_mmio_page_fault only:
160  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161  */
162 enum {
163         RET_PF_RETRY = 0,
164         RET_PF_EMULATE = 1,
165         RET_PF_INVALID = 2,
166 };
167
168 struct pte_list_desc {
169         u64 *sptes[PTE_LIST_EXT];
170         struct pte_list_desc *more;
171 };
172
173 struct kvm_shadow_walk_iterator {
174         u64 addr;
175         hpa_t shadow_addr;
176         u64 *sptep;
177         int level;
178         unsigned index;
179 };
180
181 static const union kvm_mmu_page_role mmu_base_role_mask = {
182         .cr0_wp = 1,
183         .cr4_pae = 1,
184         .nxe = 1,
185         .smep_andnot_wp = 1,
186         .smap_andnot_wp = 1,
187         .smm = 1,
188         .guest_mode = 1,
189         .ad_disabled = 1,
190 };
191
192 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
193         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
194                                          (_root), (_addr));                \
195              shadow_walk_okay(&(_walker));                                 \
196              shadow_walk_next(&(_walker)))
197
198 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
199         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
200              shadow_walk_okay(&(_walker));                      \
201              shadow_walk_next(&(_walker)))
202
203 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
204         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
205              shadow_walk_okay(&(_walker)) &&                            \
206                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
207              __shadow_walk_next(&(_walker), spte))
208
209 static struct kmem_cache *pte_list_desc_cache;
210 static struct kmem_cache *mmu_page_header_cache;
211 static struct percpu_counter kvm_total_used_mmu_pages;
212
213 static u64 __read_mostly shadow_nx_mask;
214 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
215 static u64 __read_mostly shadow_user_mask;
216 static u64 __read_mostly shadow_accessed_mask;
217 static u64 __read_mostly shadow_dirty_mask;
218 static u64 __read_mostly shadow_mmio_mask;
219 static u64 __read_mostly shadow_mmio_value;
220 static u64 __read_mostly shadow_present_mask;
221 static u64 __read_mostly shadow_me_mask;
222
223 /*
224  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
225  * Non-present SPTEs with shadow_acc_track_value set are in place for access
226  * tracking.
227  */
228 static u64 __read_mostly shadow_acc_track_mask;
229 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
230
231 /*
232  * The mask/shift to use for saving the original R/X bits when marking the PTE
233  * as not-present for access tracking purposes. We do not save the W bit as the
234  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
235  * restored only when a write is attempted to the page.
236  */
237 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
238                                                     PT64_EPT_EXECUTABLE_MASK;
239 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
240
241 /*
242  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
243  * to guard against L1TF attacks.
244  */
245 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
246
247 /*
248  * The number of high-order 1 bits to use in the mask above.
249  */
250 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
251
252 /*
253  * In some cases, we need to preserve the GFN of a non-present or reserved
254  * SPTE when we usurp the upper five bits of the physical address space to
255  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
256  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
257  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
258  * high and low parts.  This mask covers the lower bits of the GFN.
259  */
260 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
261
262
263 static void mmu_spte_set(u64 *sptep, u64 spte);
264 static union kvm_mmu_page_role
265 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
266
267
268 static inline bool kvm_available_flush_tlb_with_range(void)
269 {
270         return kvm_x86_ops->tlb_remote_flush_with_range;
271 }
272
273 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
274                 struct kvm_tlb_range *range)
275 {
276         int ret = -ENOTSUPP;
277
278         if (range && kvm_x86_ops->tlb_remote_flush_with_range)
279                 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
280
281         if (ret)
282                 kvm_flush_remote_tlbs(kvm);
283 }
284
285 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
286                 u64 start_gfn, u64 pages)
287 {
288         struct kvm_tlb_range range;
289
290         range.start_gfn = start_gfn;
291         range.pages = pages;
292
293         kvm_flush_remote_tlbs_with_range(kvm, &range);
294 }
295
296 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
297 {
298         BUG_ON((mmio_mask & mmio_value) != mmio_value);
299         shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
300         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
301 }
302 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
303
304 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
305 {
306         return sp->role.ad_disabled;
307 }
308
309 static inline bool spte_ad_enabled(u64 spte)
310 {
311         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
312         return !(spte & shadow_acc_track_value);
313 }
314
315 static inline u64 spte_shadow_accessed_mask(u64 spte)
316 {
317         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
318         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
319 }
320
321 static inline u64 spte_shadow_dirty_mask(u64 spte)
322 {
323         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
324         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
325 }
326
327 static inline bool is_access_track_spte(u64 spte)
328 {
329         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
330 }
331
332 /*
333  * the low bit of the generation number is always presumed to be zero.
334  * This disables mmio caching during memslot updates.  The concept is
335  * similar to a seqcount but instead of retrying the access we just punt
336  * and ignore the cache.
337  *
338  * spte bits 3-11 are used as bits 1-9 of the generation number,
339  * the bits 52-61 are used as bits 10-19 of the generation number.
340  */
341 #define MMIO_SPTE_GEN_LOW_SHIFT         2
342 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
343
344 #define MMIO_GEN_SHIFT                  20
345 #define MMIO_GEN_LOW_SHIFT              10
346 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
347 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
348
349 static u64 generation_mmio_spte_mask(unsigned int gen)
350 {
351         u64 mask;
352
353         WARN_ON(gen & ~MMIO_GEN_MASK);
354
355         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
356         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
357         return mask;
358 }
359
360 static unsigned int get_mmio_spte_generation(u64 spte)
361 {
362         unsigned int gen;
363
364         spte &= ~shadow_mmio_mask;
365
366         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
367         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
368         return gen;
369 }
370
371 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
372 {
373         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
374 }
375
376 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
377                            unsigned access)
378 {
379         unsigned int gen = kvm_current_mmio_generation(vcpu);
380         u64 mask = generation_mmio_spte_mask(gen);
381         u64 gpa = gfn << PAGE_SHIFT;
382
383         access &= ACC_WRITE_MASK | ACC_USER_MASK;
384         mask |= shadow_mmio_value | access;
385         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
386         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
387                 << shadow_nonpresent_or_rsvd_mask_len;
388
389         trace_mark_mmio_spte(sptep, gfn, access, gen);
390         mmu_spte_set(sptep, mask);
391 }
392
393 static bool is_mmio_spte(u64 spte)
394 {
395         return (spte & shadow_mmio_mask) == shadow_mmio_value;
396 }
397
398 static gfn_t get_mmio_spte_gfn(u64 spte)
399 {
400         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
401
402         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
403                & shadow_nonpresent_or_rsvd_mask;
404
405         return gpa >> PAGE_SHIFT;
406 }
407
408 static unsigned get_mmio_spte_access(u64 spte)
409 {
410         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
411         return (spte & ~mask) & ~PAGE_MASK;
412 }
413
414 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
415                           kvm_pfn_t pfn, unsigned access)
416 {
417         if (unlikely(is_noslot_pfn(pfn))) {
418                 mark_mmio_spte(vcpu, sptep, gfn, access);
419                 return true;
420         }
421
422         return false;
423 }
424
425 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
426 {
427         unsigned int kvm_gen, spte_gen;
428
429         kvm_gen = kvm_current_mmio_generation(vcpu);
430         spte_gen = get_mmio_spte_generation(spte);
431
432         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
433         return likely(kvm_gen == spte_gen);
434 }
435
436 /*
437  * Sets the shadow PTE masks used by the MMU.
438  *
439  * Assumptions:
440  *  - Setting either @accessed_mask or @dirty_mask requires setting both
441  *  - At least one of @accessed_mask or @acc_track_mask must be set
442  */
443 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
444                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
445                 u64 acc_track_mask, u64 me_mask)
446 {
447         BUG_ON(!dirty_mask != !accessed_mask);
448         BUG_ON(!accessed_mask && !acc_track_mask);
449         BUG_ON(acc_track_mask & shadow_acc_track_value);
450
451         shadow_user_mask = user_mask;
452         shadow_accessed_mask = accessed_mask;
453         shadow_dirty_mask = dirty_mask;
454         shadow_nx_mask = nx_mask;
455         shadow_x_mask = x_mask;
456         shadow_present_mask = p_mask;
457         shadow_acc_track_mask = acc_track_mask;
458         shadow_me_mask = me_mask;
459 }
460 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
461
462 static void kvm_mmu_reset_all_pte_masks(void)
463 {
464         u8 low_phys_bits;
465
466         shadow_user_mask = 0;
467         shadow_accessed_mask = 0;
468         shadow_dirty_mask = 0;
469         shadow_nx_mask = 0;
470         shadow_x_mask = 0;
471         shadow_mmio_mask = 0;
472         shadow_present_mask = 0;
473         shadow_acc_track_mask = 0;
474
475         /*
476          * If the CPU has 46 or less physical address bits, then set an
477          * appropriate mask to guard against L1TF attacks. Otherwise, it is
478          * assumed that the CPU is not vulnerable to L1TF.
479          */
480         low_phys_bits = boot_cpu_data.x86_phys_bits;
481         if (boot_cpu_data.x86_phys_bits <
482             52 - shadow_nonpresent_or_rsvd_mask_len) {
483                 shadow_nonpresent_or_rsvd_mask =
484                         rsvd_bits(boot_cpu_data.x86_phys_bits -
485                                   shadow_nonpresent_or_rsvd_mask_len,
486                                   boot_cpu_data.x86_phys_bits - 1);
487                 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
488         }
489         shadow_nonpresent_or_rsvd_lower_gfn_mask =
490                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
491 }
492
493 static int is_cpuid_PSE36(void)
494 {
495         return 1;
496 }
497
498 static int is_nx(struct kvm_vcpu *vcpu)
499 {
500         return vcpu->arch.efer & EFER_NX;
501 }
502
503 static int is_shadow_present_pte(u64 pte)
504 {
505         return (pte != 0) && !is_mmio_spte(pte);
506 }
507
508 static int is_large_pte(u64 pte)
509 {
510         return pte & PT_PAGE_SIZE_MASK;
511 }
512
513 static int is_last_spte(u64 pte, int level)
514 {
515         if (level == PT_PAGE_TABLE_LEVEL)
516                 return 1;
517         if (is_large_pte(pte))
518                 return 1;
519         return 0;
520 }
521
522 static bool is_executable_pte(u64 spte)
523 {
524         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
525 }
526
527 static kvm_pfn_t spte_to_pfn(u64 pte)
528 {
529         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
530 }
531
532 static gfn_t pse36_gfn_delta(u32 gpte)
533 {
534         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
535
536         return (gpte & PT32_DIR_PSE36_MASK) << shift;
537 }
538
539 #ifdef CONFIG_X86_64
540 static void __set_spte(u64 *sptep, u64 spte)
541 {
542         WRITE_ONCE(*sptep, spte);
543 }
544
545 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
546 {
547         WRITE_ONCE(*sptep, spte);
548 }
549
550 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
551 {
552         return xchg(sptep, spte);
553 }
554
555 static u64 __get_spte_lockless(u64 *sptep)
556 {
557         return READ_ONCE(*sptep);
558 }
559 #else
560 union split_spte {
561         struct {
562                 u32 spte_low;
563                 u32 spte_high;
564         };
565         u64 spte;
566 };
567
568 static void count_spte_clear(u64 *sptep, u64 spte)
569 {
570         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
571
572         if (is_shadow_present_pte(spte))
573                 return;
574
575         /* Ensure the spte is completely set before we increase the count */
576         smp_wmb();
577         sp->clear_spte_count++;
578 }
579
580 static void __set_spte(u64 *sptep, u64 spte)
581 {
582         union split_spte *ssptep, sspte;
583
584         ssptep = (union split_spte *)sptep;
585         sspte = (union split_spte)spte;
586
587         ssptep->spte_high = sspte.spte_high;
588
589         /*
590          * If we map the spte from nonpresent to present, We should store
591          * the high bits firstly, then set present bit, so cpu can not
592          * fetch this spte while we are setting the spte.
593          */
594         smp_wmb();
595
596         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
597 }
598
599 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
600 {
601         union split_spte *ssptep, sspte;
602
603         ssptep = (union split_spte *)sptep;
604         sspte = (union split_spte)spte;
605
606         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
607
608         /*
609          * If we map the spte from present to nonpresent, we should clear
610          * present bit firstly to avoid vcpu fetch the old high bits.
611          */
612         smp_wmb();
613
614         ssptep->spte_high = sspte.spte_high;
615         count_spte_clear(sptep, spte);
616 }
617
618 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
619 {
620         union split_spte *ssptep, sspte, orig;
621
622         ssptep = (union split_spte *)sptep;
623         sspte = (union split_spte)spte;
624
625         /* xchg acts as a barrier before the setting of the high bits */
626         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
627         orig.spte_high = ssptep->spte_high;
628         ssptep->spte_high = sspte.spte_high;
629         count_spte_clear(sptep, spte);
630
631         return orig.spte;
632 }
633
634 /*
635  * The idea using the light way get the spte on x86_32 guest is from
636  * gup_get_pte(arch/x86/mm/gup.c).
637  *
638  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
639  * coalesces them and we are running out of the MMU lock.  Therefore
640  * we need to protect against in-progress updates of the spte.
641  *
642  * Reading the spte while an update is in progress may get the old value
643  * for the high part of the spte.  The race is fine for a present->non-present
644  * change (because the high part of the spte is ignored for non-present spte),
645  * but for a present->present change we must reread the spte.
646  *
647  * All such changes are done in two steps (present->non-present and
648  * non-present->present), hence it is enough to count the number of
649  * present->non-present updates: if it changed while reading the spte,
650  * we might have hit the race.  This is done using clear_spte_count.
651  */
652 static u64 __get_spte_lockless(u64 *sptep)
653 {
654         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
655         union split_spte spte, *orig = (union split_spte *)sptep;
656         int count;
657
658 retry:
659         count = sp->clear_spte_count;
660         smp_rmb();
661
662         spte.spte_low = orig->spte_low;
663         smp_rmb();
664
665         spte.spte_high = orig->spte_high;
666         smp_rmb();
667
668         if (unlikely(spte.spte_low != orig->spte_low ||
669               count != sp->clear_spte_count))
670                 goto retry;
671
672         return spte.spte;
673 }
674 #endif
675
676 static bool spte_can_locklessly_be_made_writable(u64 spte)
677 {
678         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
679                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
680 }
681
682 static bool spte_has_volatile_bits(u64 spte)
683 {
684         if (!is_shadow_present_pte(spte))
685                 return false;
686
687         /*
688          * Always atomically update spte if it can be updated
689          * out of mmu-lock, it can ensure dirty bit is not lost,
690          * also, it can help us to get a stable is_writable_pte()
691          * to ensure tlb flush is not missed.
692          */
693         if (spte_can_locklessly_be_made_writable(spte) ||
694             is_access_track_spte(spte))
695                 return true;
696
697         if (spte_ad_enabled(spte)) {
698                 if ((spte & shadow_accessed_mask) == 0 ||
699                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
700                         return true;
701         }
702
703         return false;
704 }
705
706 static bool is_accessed_spte(u64 spte)
707 {
708         u64 accessed_mask = spte_shadow_accessed_mask(spte);
709
710         return accessed_mask ? spte & accessed_mask
711                              : !is_access_track_spte(spte);
712 }
713
714 static bool is_dirty_spte(u64 spte)
715 {
716         u64 dirty_mask = spte_shadow_dirty_mask(spte);
717
718         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
719 }
720
721 /* Rules for using mmu_spte_set:
722  * Set the sptep from nonpresent to present.
723  * Note: the sptep being assigned *must* be either not present
724  * or in a state where the hardware will not attempt to update
725  * the spte.
726  */
727 static void mmu_spte_set(u64 *sptep, u64 new_spte)
728 {
729         WARN_ON(is_shadow_present_pte(*sptep));
730         __set_spte(sptep, new_spte);
731 }
732
733 /*
734  * Update the SPTE (excluding the PFN), but do not track changes in its
735  * accessed/dirty status.
736  */
737 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
738 {
739         u64 old_spte = *sptep;
740
741         WARN_ON(!is_shadow_present_pte(new_spte));
742
743         if (!is_shadow_present_pte(old_spte)) {
744                 mmu_spte_set(sptep, new_spte);
745                 return old_spte;
746         }
747
748         if (!spte_has_volatile_bits(old_spte))
749                 __update_clear_spte_fast(sptep, new_spte);
750         else
751                 old_spte = __update_clear_spte_slow(sptep, new_spte);
752
753         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
754
755         return old_spte;
756 }
757
758 /* Rules for using mmu_spte_update:
759  * Update the state bits, it means the mapped pfn is not changed.
760  *
761  * Whenever we overwrite a writable spte with a read-only one we
762  * should flush remote TLBs. Otherwise rmap_write_protect
763  * will find a read-only spte, even though the writable spte
764  * might be cached on a CPU's TLB, the return value indicates this
765  * case.
766  *
767  * Returns true if the TLB needs to be flushed
768  */
769 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
770 {
771         bool flush = false;
772         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
773
774         if (!is_shadow_present_pte(old_spte))
775                 return false;
776
777         /*
778          * For the spte updated out of mmu-lock is safe, since
779          * we always atomically update it, see the comments in
780          * spte_has_volatile_bits().
781          */
782         if (spte_can_locklessly_be_made_writable(old_spte) &&
783               !is_writable_pte(new_spte))
784                 flush = true;
785
786         /*
787          * Flush TLB when accessed/dirty states are changed in the page tables,
788          * to guarantee consistency between TLB and page tables.
789          */
790
791         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
792                 flush = true;
793                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
794         }
795
796         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
797                 flush = true;
798                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
799         }
800
801         return flush;
802 }
803
804 /*
805  * Rules for using mmu_spte_clear_track_bits:
806  * It sets the sptep from present to nonpresent, and track the
807  * state bits, it is used to clear the last level sptep.
808  * Returns non-zero if the PTE was previously valid.
809  */
810 static int mmu_spte_clear_track_bits(u64 *sptep)
811 {
812         kvm_pfn_t pfn;
813         u64 old_spte = *sptep;
814
815         if (!spte_has_volatile_bits(old_spte))
816                 __update_clear_spte_fast(sptep, 0ull);
817         else
818                 old_spte = __update_clear_spte_slow(sptep, 0ull);
819
820         if (!is_shadow_present_pte(old_spte))
821                 return 0;
822
823         pfn = spte_to_pfn(old_spte);
824
825         /*
826          * KVM does not hold the refcount of the page used by
827          * kvm mmu, before reclaiming the page, we should
828          * unmap it from mmu first.
829          */
830         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
831
832         if (is_accessed_spte(old_spte))
833                 kvm_set_pfn_accessed(pfn);
834
835         if (is_dirty_spte(old_spte))
836                 kvm_set_pfn_dirty(pfn);
837
838         return 1;
839 }
840
841 /*
842  * Rules for using mmu_spte_clear_no_track:
843  * Directly clear spte without caring the state bits of sptep,
844  * it is used to set the upper level spte.
845  */
846 static void mmu_spte_clear_no_track(u64 *sptep)
847 {
848         __update_clear_spte_fast(sptep, 0ull);
849 }
850
851 static u64 mmu_spte_get_lockless(u64 *sptep)
852 {
853         return __get_spte_lockless(sptep);
854 }
855
856 static u64 mark_spte_for_access_track(u64 spte)
857 {
858         if (spte_ad_enabled(spte))
859                 return spte & ~shadow_accessed_mask;
860
861         if (is_access_track_spte(spte))
862                 return spte;
863
864         /*
865          * Making an Access Tracking PTE will result in removal of write access
866          * from the PTE. So, verify that we will be able to restore the write
867          * access in the fast page fault path later on.
868          */
869         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
870                   !spte_can_locklessly_be_made_writable(spte),
871                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
872
873         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
874                           shadow_acc_track_saved_bits_shift),
875                   "kvm: Access Tracking saved bit locations are not zero\n");
876
877         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
878                 shadow_acc_track_saved_bits_shift;
879         spte &= ~shadow_acc_track_mask;
880
881         return spte;
882 }
883
884 /* Restore an acc-track PTE back to a regular PTE */
885 static u64 restore_acc_track_spte(u64 spte)
886 {
887         u64 new_spte = spte;
888         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
889                          & shadow_acc_track_saved_bits_mask;
890
891         WARN_ON_ONCE(spte_ad_enabled(spte));
892         WARN_ON_ONCE(!is_access_track_spte(spte));
893
894         new_spte &= ~shadow_acc_track_mask;
895         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
896                       shadow_acc_track_saved_bits_shift);
897         new_spte |= saved_bits;
898
899         return new_spte;
900 }
901
902 /* Returns the Accessed status of the PTE and resets it at the same time. */
903 static bool mmu_spte_age(u64 *sptep)
904 {
905         u64 spte = mmu_spte_get_lockless(sptep);
906
907         if (!is_accessed_spte(spte))
908                 return false;
909
910         if (spte_ad_enabled(spte)) {
911                 clear_bit((ffs(shadow_accessed_mask) - 1),
912                           (unsigned long *)sptep);
913         } else {
914                 /*
915                  * Capture the dirty status of the page, so that it doesn't get
916                  * lost when the SPTE is marked for access tracking.
917                  */
918                 if (is_writable_pte(spte))
919                         kvm_set_pfn_dirty(spte_to_pfn(spte));
920
921                 spte = mark_spte_for_access_track(spte);
922                 mmu_spte_update_no_track(sptep, spte);
923         }
924
925         return true;
926 }
927
928 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
929 {
930         /*
931          * Prevent page table teardown by making any free-er wait during
932          * kvm_flush_remote_tlbs() IPI to all active vcpus.
933          */
934         local_irq_disable();
935
936         /*
937          * Make sure a following spte read is not reordered ahead of the write
938          * to vcpu->mode.
939          */
940         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
941 }
942
943 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
944 {
945         /*
946          * Make sure the write to vcpu->mode is not reordered in front of
947          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
948          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
949          */
950         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
951         local_irq_enable();
952 }
953
954 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
955                                   struct kmem_cache *base_cache, int min)
956 {
957         void *obj;
958
959         if (cache->nobjs >= min)
960                 return 0;
961         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
962                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
963                 if (!obj)
964                         return cache->nobjs >= min ? 0 : -ENOMEM;
965                 cache->objects[cache->nobjs++] = obj;
966         }
967         return 0;
968 }
969
970 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
971 {
972         return cache->nobjs;
973 }
974
975 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
976                                   struct kmem_cache *cache)
977 {
978         while (mc->nobjs)
979                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
980 }
981
982 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
983                                        int min)
984 {
985         void *page;
986
987         if (cache->nobjs >= min)
988                 return 0;
989         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
990                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
991                 if (!page)
992                         return cache->nobjs >= min ? 0 : -ENOMEM;
993                 cache->objects[cache->nobjs++] = page;
994         }
995         return 0;
996 }
997
998 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
999 {
1000         while (mc->nobjs)
1001                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1002 }
1003
1004 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1005 {
1006         int r;
1007
1008         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1009                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1010         if (r)
1011                 goto out;
1012         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1013         if (r)
1014                 goto out;
1015         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1016                                    mmu_page_header_cache, 4);
1017 out:
1018         return r;
1019 }
1020
1021 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1022 {
1023         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1024                                 pte_list_desc_cache);
1025         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1026         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1027                                 mmu_page_header_cache);
1028 }
1029
1030 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1031 {
1032         void *p;
1033
1034         BUG_ON(!mc->nobjs);
1035         p = mc->objects[--mc->nobjs];
1036         return p;
1037 }
1038
1039 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1040 {
1041         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1042 }
1043
1044 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1045 {
1046         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1047 }
1048
1049 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1050 {
1051         if (!sp->role.direct)
1052                 return sp->gfns[index];
1053
1054         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1055 }
1056
1057 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1058 {
1059         if (sp->role.direct)
1060                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1061         else
1062                 sp->gfns[index] = gfn;
1063 }
1064
1065 /*
1066  * Return the pointer to the large page information for a given gfn,
1067  * handling slots that are not large page aligned.
1068  */
1069 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1070                                               struct kvm_memory_slot *slot,
1071                                               int level)
1072 {
1073         unsigned long idx;
1074
1075         idx = gfn_to_index(gfn, slot->base_gfn, level);
1076         return &slot->arch.lpage_info[level - 2][idx];
1077 }
1078
1079 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1080                                             gfn_t gfn, int count)
1081 {
1082         struct kvm_lpage_info *linfo;
1083         int i;
1084
1085         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1086                 linfo = lpage_info_slot(gfn, slot, i);
1087                 linfo->disallow_lpage += count;
1088                 WARN_ON(linfo->disallow_lpage < 0);
1089         }
1090 }
1091
1092 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1093 {
1094         update_gfn_disallow_lpage_count(slot, gfn, 1);
1095 }
1096
1097 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1098 {
1099         update_gfn_disallow_lpage_count(slot, gfn, -1);
1100 }
1101
1102 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1103 {
1104         struct kvm_memslots *slots;
1105         struct kvm_memory_slot *slot;
1106         gfn_t gfn;
1107
1108         kvm->arch.indirect_shadow_pages++;
1109         gfn = sp->gfn;
1110         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1111         slot = __gfn_to_memslot(slots, gfn);
1112
1113         /* the non-leaf shadow pages are keeping readonly. */
1114         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1115                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1116                                                     KVM_PAGE_TRACK_WRITE);
1117
1118         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1119 }
1120
1121 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1122 {
1123         struct kvm_memslots *slots;
1124         struct kvm_memory_slot *slot;
1125         gfn_t gfn;
1126
1127         kvm->arch.indirect_shadow_pages--;
1128         gfn = sp->gfn;
1129         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1130         slot = __gfn_to_memslot(slots, gfn);
1131         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1132                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1133                                                        KVM_PAGE_TRACK_WRITE);
1134
1135         kvm_mmu_gfn_allow_lpage(slot, gfn);
1136 }
1137
1138 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1139                                           struct kvm_memory_slot *slot)
1140 {
1141         struct kvm_lpage_info *linfo;
1142
1143         if (slot) {
1144                 linfo = lpage_info_slot(gfn, slot, level);
1145                 return !!linfo->disallow_lpage;
1146         }
1147
1148         return true;
1149 }
1150
1151 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1152                                         int level)
1153 {
1154         struct kvm_memory_slot *slot;
1155
1156         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1157         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1158 }
1159
1160 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1161 {
1162         unsigned long page_size;
1163         int i, ret = 0;
1164
1165         page_size = kvm_host_page_size(kvm, gfn);
1166
1167         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1168                 if (page_size >= KVM_HPAGE_SIZE(i))
1169                         ret = i;
1170                 else
1171                         break;
1172         }
1173
1174         return ret;
1175 }
1176
1177 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1178                                           bool no_dirty_log)
1179 {
1180         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1181                 return false;
1182         if (no_dirty_log && slot->dirty_bitmap)
1183                 return false;
1184
1185         return true;
1186 }
1187
1188 static struct kvm_memory_slot *
1189 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1190                             bool no_dirty_log)
1191 {
1192         struct kvm_memory_slot *slot;
1193
1194         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1195         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1196                 slot = NULL;
1197
1198         return slot;
1199 }
1200
1201 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1202                          bool *force_pt_level)
1203 {
1204         int host_level, level, max_level;
1205         struct kvm_memory_slot *slot;
1206
1207         if (unlikely(*force_pt_level))
1208                 return PT_PAGE_TABLE_LEVEL;
1209
1210         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1211         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1212         if (unlikely(*force_pt_level))
1213                 return PT_PAGE_TABLE_LEVEL;
1214
1215         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1216
1217         if (host_level == PT_PAGE_TABLE_LEVEL)
1218                 return host_level;
1219
1220         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1221
1222         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1223                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1224                         break;
1225
1226         return level - 1;
1227 }
1228
1229 /*
1230  * About rmap_head encoding:
1231  *
1232  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1233  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1234  * pte_list_desc containing more mappings.
1235  */
1236
1237 /*
1238  * Returns the number of pointers in the rmap chain, not counting the new one.
1239  */
1240 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1241                         struct kvm_rmap_head *rmap_head)
1242 {
1243         struct pte_list_desc *desc;
1244         int i, count = 0;
1245
1246         if (!rmap_head->val) {
1247                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1248                 rmap_head->val = (unsigned long)spte;
1249         } else if (!(rmap_head->val & 1)) {
1250                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1251                 desc = mmu_alloc_pte_list_desc(vcpu);
1252                 desc->sptes[0] = (u64 *)rmap_head->val;
1253                 desc->sptes[1] = spte;
1254                 rmap_head->val = (unsigned long)desc | 1;
1255                 ++count;
1256         } else {
1257                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1258                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1259                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1260                         desc = desc->more;
1261                         count += PTE_LIST_EXT;
1262                 }
1263                 if (desc->sptes[PTE_LIST_EXT-1]) {
1264                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1265                         desc = desc->more;
1266                 }
1267                 for (i = 0; desc->sptes[i]; ++i)
1268                         ++count;
1269                 desc->sptes[i] = spte;
1270         }
1271         return count;
1272 }
1273
1274 static void
1275 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1276                            struct pte_list_desc *desc, int i,
1277                            struct pte_list_desc *prev_desc)
1278 {
1279         int j;
1280
1281         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1282                 ;
1283         desc->sptes[i] = desc->sptes[j];
1284         desc->sptes[j] = NULL;
1285         if (j != 0)
1286                 return;
1287         if (!prev_desc && !desc->more)
1288                 rmap_head->val = (unsigned long)desc->sptes[0];
1289         else
1290                 if (prev_desc)
1291                         prev_desc->more = desc->more;
1292                 else
1293                         rmap_head->val = (unsigned long)desc->more | 1;
1294         mmu_free_pte_list_desc(desc);
1295 }
1296
1297 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1298 {
1299         struct pte_list_desc *desc;
1300         struct pte_list_desc *prev_desc;
1301         int i;
1302
1303         if (!rmap_head->val) {
1304                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1305                 BUG();
1306         } else if (!(rmap_head->val & 1)) {
1307                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1308                 if ((u64 *)rmap_head->val != spte) {
1309                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1310                         BUG();
1311                 }
1312                 rmap_head->val = 0;
1313         } else {
1314                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1315                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1316                 prev_desc = NULL;
1317                 while (desc) {
1318                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1319                                 if (desc->sptes[i] == spte) {
1320                                         pte_list_desc_remove_entry(rmap_head,
1321                                                         desc, i, prev_desc);
1322                                         return;
1323                                 }
1324                         }
1325                         prev_desc = desc;
1326                         desc = desc->more;
1327                 }
1328                 pr_err("%s: %p many->many\n", __func__, spte);
1329                 BUG();
1330         }
1331 }
1332
1333 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1334 {
1335         mmu_spte_clear_track_bits(sptep);
1336         __pte_list_remove(sptep, rmap_head);
1337 }
1338
1339 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1340                                            struct kvm_memory_slot *slot)
1341 {
1342         unsigned long idx;
1343
1344         idx = gfn_to_index(gfn, slot->base_gfn, level);
1345         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1346 }
1347
1348 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1349                                          struct kvm_mmu_page *sp)
1350 {
1351         struct kvm_memslots *slots;
1352         struct kvm_memory_slot *slot;
1353
1354         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1355         slot = __gfn_to_memslot(slots, gfn);
1356         return __gfn_to_rmap(gfn, sp->role.level, slot);
1357 }
1358
1359 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1360 {
1361         struct kvm_mmu_memory_cache *cache;
1362
1363         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1364         return mmu_memory_cache_free_objects(cache);
1365 }
1366
1367 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1368 {
1369         struct kvm_mmu_page *sp;
1370         struct kvm_rmap_head *rmap_head;
1371
1372         sp = page_header(__pa(spte));
1373         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1374         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1375         return pte_list_add(vcpu, spte, rmap_head);
1376 }
1377
1378 static void rmap_remove(struct kvm *kvm, u64 *spte)
1379 {
1380         struct kvm_mmu_page *sp;
1381         gfn_t gfn;
1382         struct kvm_rmap_head *rmap_head;
1383
1384         sp = page_header(__pa(spte));
1385         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1386         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1387         __pte_list_remove(spte, rmap_head);
1388 }
1389
1390 /*
1391  * Used by the following functions to iterate through the sptes linked by a
1392  * rmap.  All fields are private and not assumed to be used outside.
1393  */
1394 struct rmap_iterator {
1395         /* private fields */
1396         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1397         int pos;                        /* index of the sptep */
1398 };
1399
1400 /*
1401  * Iteration must be started by this function.  This should also be used after
1402  * removing/dropping sptes from the rmap link because in such cases the
1403  * information in the itererator may not be valid.
1404  *
1405  * Returns sptep if found, NULL otherwise.
1406  */
1407 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1408                            struct rmap_iterator *iter)
1409 {
1410         u64 *sptep;
1411
1412         if (!rmap_head->val)
1413                 return NULL;
1414
1415         if (!(rmap_head->val & 1)) {
1416                 iter->desc = NULL;
1417                 sptep = (u64 *)rmap_head->val;
1418                 goto out;
1419         }
1420
1421         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1422         iter->pos = 0;
1423         sptep = iter->desc->sptes[iter->pos];
1424 out:
1425         BUG_ON(!is_shadow_present_pte(*sptep));
1426         return sptep;
1427 }
1428
1429 /*
1430  * Must be used with a valid iterator: e.g. after rmap_get_first().
1431  *
1432  * Returns sptep if found, NULL otherwise.
1433  */
1434 static u64 *rmap_get_next(struct rmap_iterator *iter)
1435 {
1436         u64 *sptep;
1437
1438         if (iter->desc) {
1439                 if (iter->pos < PTE_LIST_EXT - 1) {
1440                         ++iter->pos;
1441                         sptep = iter->desc->sptes[iter->pos];
1442                         if (sptep)
1443                                 goto out;
1444                 }
1445
1446                 iter->desc = iter->desc->more;
1447
1448                 if (iter->desc) {
1449                         iter->pos = 0;
1450                         /* desc->sptes[0] cannot be NULL */
1451                         sptep = iter->desc->sptes[iter->pos];
1452                         goto out;
1453                 }
1454         }
1455
1456         return NULL;
1457 out:
1458         BUG_ON(!is_shadow_present_pte(*sptep));
1459         return sptep;
1460 }
1461
1462 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1463         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1464              _spte_; _spte_ = rmap_get_next(_iter_))
1465
1466 static void drop_spte(struct kvm *kvm, u64 *sptep)
1467 {
1468         if (mmu_spte_clear_track_bits(sptep))
1469                 rmap_remove(kvm, sptep);
1470 }
1471
1472
1473 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1474 {
1475         if (is_large_pte(*sptep)) {
1476                 WARN_ON(page_header(__pa(sptep))->role.level ==
1477                         PT_PAGE_TABLE_LEVEL);
1478                 drop_spte(kvm, sptep);
1479                 --kvm->stat.lpages;
1480                 return true;
1481         }
1482
1483         return false;
1484 }
1485
1486 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1487 {
1488         if (__drop_large_spte(vcpu->kvm, sptep)) {
1489                 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1490
1491                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1492                         KVM_PAGES_PER_HPAGE(sp->role.level));
1493         }
1494 }
1495
1496 /*
1497  * Write-protect on the specified @sptep, @pt_protect indicates whether
1498  * spte write-protection is caused by protecting shadow page table.
1499  *
1500  * Note: write protection is difference between dirty logging and spte
1501  * protection:
1502  * - for dirty logging, the spte can be set to writable at anytime if
1503  *   its dirty bitmap is properly set.
1504  * - for spte protection, the spte can be writable only after unsync-ing
1505  *   shadow page.
1506  *
1507  * Return true if tlb need be flushed.
1508  */
1509 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1510 {
1511         u64 spte = *sptep;
1512
1513         if (!is_writable_pte(spte) &&
1514               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1515                 return false;
1516
1517         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1518
1519         if (pt_protect)
1520                 spte &= ~SPTE_MMU_WRITEABLE;
1521         spte = spte & ~PT_WRITABLE_MASK;
1522
1523         return mmu_spte_update(sptep, spte);
1524 }
1525
1526 static bool __rmap_write_protect(struct kvm *kvm,
1527                                  struct kvm_rmap_head *rmap_head,
1528                                  bool pt_protect)
1529 {
1530         u64 *sptep;
1531         struct rmap_iterator iter;
1532         bool flush = false;
1533
1534         for_each_rmap_spte(rmap_head, &iter, sptep)
1535                 flush |= spte_write_protect(sptep, pt_protect);
1536
1537         return flush;
1538 }
1539
1540 static bool spte_clear_dirty(u64 *sptep)
1541 {
1542         u64 spte = *sptep;
1543
1544         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1545
1546         spte &= ~shadow_dirty_mask;
1547
1548         return mmu_spte_update(sptep, spte);
1549 }
1550
1551 static bool wrprot_ad_disabled_spte(u64 *sptep)
1552 {
1553         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1554                                                (unsigned long *)sptep);
1555         if (was_writable)
1556                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1557
1558         return was_writable;
1559 }
1560
1561 /*
1562  * Gets the GFN ready for another round of dirty logging by clearing the
1563  *      - D bit on ad-enabled SPTEs, and
1564  *      - W bit on ad-disabled SPTEs.
1565  * Returns true iff any D or W bits were cleared.
1566  */
1567 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1568 {
1569         u64 *sptep;
1570         struct rmap_iterator iter;
1571         bool flush = false;
1572
1573         for_each_rmap_spte(rmap_head, &iter, sptep)
1574                 if (spte_ad_enabled(*sptep))
1575                         flush |= spte_clear_dirty(sptep);
1576                 else
1577                         flush |= wrprot_ad_disabled_spte(sptep);
1578
1579         return flush;
1580 }
1581
1582 static bool spte_set_dirty(u64 *sptep)
1583 {
1584         u64 spte = *sptep;
1585
1586         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1587
1588         spte |= shadow_dirty_mask;
1589
1590         return mmu_spte_update(sptep, spte);
1591 }
1592
1593 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1594 {
1595         u64 *sptep;
1596         struct rmap_iterator iter;
1597         bool flush = false;
1598
1599         for_each_rmap_spte(rmap_head, &iter, sptep)
1600                 if (spte_ad_enabled(*sptep))
1601                         flush |= spte_set_dirty(sptep);
1602
1603         return flush;
1604 }
1605
1606 /**
1607  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1608  * @kvm: kvm instance
1609  * @slot: slot to protect
1610  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1611  * @mask: indicates which pages we should protect
1612  *
1613  * Used when we do not need to care about huge page mappings: e.g. during dirty
1614  * logging we do not have any such mappings.
1615  */
1616 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1617                                      struct kvm_memory_slot *slot,
1618                                      gfn_t gfn_offset, unsigned long mask)
1619 {
1620         struct kvm_rmap_head *rmap_head;
1621
1622         while (mask) {
1623                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1624                                           PT_PAGE_TABLE_LEVEL, slot);
1625                 __rmap_write_protect(kvm, rmap_head, false);
1626
1627                 /* clear the first set bit */
1628                 mask &= mask - 1;
1629         }
1630 }
1631
1632 /**
1633  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1634  * protect the page if the D-bit isn't supported.
1635  * @kvm: kvm instance
1636  * @slot: slot to clear D-bit
1637  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1638  * @mask: indicates which pages we should clear D-bit
1639  *
1640  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1641  */
1642 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1643                                      struct kvm_memory_slot *slot,
1644                                      gfn_t gfn_offset, unsigned long mask)
1645 {
1646         struct kvm_rmap_head *rmap_head;
1647
1648         while (mask) {
1649                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1650                                           PT_PAGE_TABLE_LEVEL, slot);
1651                 __rmap_clear_dirty(kvm, rmap_head);
1652
1653                 /* clear the first set bit */
1654                 mask &= mask - 1;
1655         }
1656 }
1657 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1658
1659 /**
1660  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1661  * PT level pages.
1662  *
1663  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1664  * enable dirty logging for them.
1665  *
1666  * Used when we do not need to care about huge page mappings: e.g. during dirty
1667  * logging we do not have any such mappings.
1668  */
1669 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1670                                 struct kvm_memory_slot *slot,
1671                                 gfn_t gfn_offset, unsigned long mask)
1672 {
1673         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1674                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1675                                 mask);
1676         else
1677                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1678 }
1679
1680 /**
1681  * kvm_arch_write_log_dirty - emulate dirty page logging
1682  * @vcpu: Guest mode vcpu
1683  *
1684  * Emulate arch specific page modification logging for the
1685  * nested hypervisor
1686  */
1687 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1688 {
1689         if (kvm_x86_ops->write_log_dirty)
1690                 return kvm_x86_ops->write_log_dirty(vcpu);
1691
1692         return 0;
1693 }
1694
1695 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1696                                     struct kvm_memory_slot *slot, u64 gfn)
1697 {
1698         struct kvm_rmap_head *rmap_head;
1699         int i;
1700         bool write_protected = false;
1701
1702         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1703                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1704                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1705         }
1706
1707         return write_protected;
1708 }
1709
1710 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1711 {
1712         struct kvm_memory_slot *slot;
1713
1714         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1715         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1716 }
1717
1718 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1719 {
1720         u64 *sptep;
1721         struct rmap_iterator iter;
1722         bool flush = false;
1723
1724         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1725                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1726
1727                 pte_list_remove(rmap_head, sptep);
1728                 flush = true;
1729         }
1730
1731         return flush;
1732 }
1733
1734 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1735                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1736                            unsigned long data)
1737 {
1738         return kvm_zap_rmapp(kvm, rmap_head);
1739 }
1740
1741 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1742                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1743                              unsigned long data)
1744 {
1745         u64 *sptep;
1746         struct rmap_iterator iter;
1747         int need_flush = 0;
1748         u64 new_spte;
1749         pte_t *ptep = (pte_t *)data;
1750         kvm_pfn_t new_pfn;
1751
1752         WARN_ON(pte_huge(*ptep));
1753         new_pfn = pte_pfn(*ptep);
1754
1755 restart:
1756         for_each_rmap_spte(rmap_head, &iter, sptep) {
1757                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1758                             sptep, *sptep, gfn, level);
1759
1760                 need_flush = 1;
1761
1762                 if (pte_write(*ptep)) {
1763                         pte_list_remove(rmap_head, sptep);
1764                         goto restart;
1765                 } else {
1766                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1767                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1768
1769                         new_spte &= ~PT_WRITABLE_MASK;
1770                         new_spte &= ~SPTE_HOST_WRITEABLE;
1771
1772                         new_spte = mark_spte_for_access_track(new_spte);
1773
1774                         mmu_spte_clear_track_bits(sptep);
1775                         mmu_spte_set(sptep, new_spte);
1776                 }
1777         }
1778
1779         if (need_flush && kvm_available_flush_tlb_with_range()) {
1780                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1781                 return 0;
1782         }
1783
1784         return need_flush;
1785 }
1786
1787 struct slot_rmap_walk_iterator {
1788         /* input fields. */
1789         struct kvm_memory_slot *slot;
1790         gfn_t start_gfn;
1791         gfn_t end_gfn;
1792         int start_level;
1793         int end_level;
1794
1795         /* output fields. */
1796         gfn_t gfn;
1797         struct kvm_rmap_head *rmap;
1798         int level;
1799
1800         /* private field. */
1801         struct kvm_rmap_head *end_rmap;
1802 };
1803
1804 static void
1805 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1806 {
1807         iterator->level = level;
1808         iterator->gfn = iterator->start_gfn;
1809         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1810         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1811                                            iterator->slot);
1812 }
1813
1814 static void
1815 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1816                     struct kvm_memory_slot *slot, int start_level,
1817                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1818 {
1819         iterator->slot = slot;
1820         iterator->start_level = start_level;
1821         iterator->end_level = end_level;
1822         iterator->start_gfn = start_gfn;
1823         iterator->end_gfn = end_gfn;
1824
1825         rmap_walk_init_level(iterator, iterator->start_level);
1826 }
1827
1828 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1829 {
1830         return !!iterator->rmap;
1831 }
1832
1833 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1834 {
1835         if (++iterator->rmap <= iterator->end_rmap) {
1836                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1837                 return;
1838         }
1839
1840         if (++iterator->level > iterator->end_level) {
1841                 iterator->rmap = NULL;
1842                 return;
1843         }
1844
1845         rmap_walk_init_level(iterator, iterator->level);
1846 }
1847
1848 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1849            _start_gfn, _end_gfn, _iter_)                                \
1850         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1851                                  _end_level_, _start_gfn, _end_gfn);    \
1852              slot_rmap_walk_okay(_iter_);                               \
1853              slot_rmap_walk_next(_iter_))
1854
1855 static int kvm_handle_hva_range(struct kvm *kvm,
1856                                 unsigned long start,
1857                                 unsigned long end,
1858                                 unsigned long data,
1859                                 int (*handler)(struct kvm *kvm,
1860                                                struct kvm_rmap_head *rmap_head,
1861                                                struct kvm_memory_slot *slot,
1862                                                gfn_t gfn,
1863                                                int level,
1864                                                unsigned long data))
1865 {
1866         struct kvm_memslots *slots;
1867         struct kvm_memory_slot *memslot;
1868         struct slot_rmap_walk_iterator iterator;
1869         int ret = 0;
1870         int i;
1871
1872         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1873                 slots = __kvm_memslots(kvm, i);
1874                 kvm_for_each_memslot(memslot, slots) {
1875                         unsigned long hva_start, hva_end;
1876                         gfn_t gfn_start, gfn_end;
1877
1878                         hva_start = max(start, memslot->userspace_addr);
1879                         hva_end = min(end, memslot->userspace_addr +
1880                                       (memslot->npages << PAGE_SHIFT));
1881                         if (hva_start >= hva_end)
1882                                 continue;
1883                         /*
1884                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1885                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1886                          */
1887                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1888                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1889
1890                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1891                                                  PT_MAX_HUGEPAGE_LEVEL,
1892                                                  gfn_start, gfn_end - 1,
1893                                                  &iterator)
1894                                 ret |= handler(kvm, iterator.rmap, memslot,
1895                                                iterator.gfn, iterator.level, data);
1896                 }
1897         }
1898
1899         return ret;
1900 }
1901
1902 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1903                           unsigned long data,
1904                           int (*handler)(struct kvm *kvm,
1905                                          struct kvm_rmap_head *rmap_head,
1906                                          struct kvm_memory_slot *slot,
1907                                          gfn_t gfn, int level,
1908                                          unsigned long data))
1909 {
1910         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1911 }
1912
1913 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1914 {
1915         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1916 }
1917
1918 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1919 {
1920         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1921 }
1922
1923 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1924                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1925                          unsigned long data)
1926 {
1927         u64 *sptep;
1928         struct rmap_iterator uninitialized_var(iter);
1929         int young = 0;
1930
1931         for_each_rmap_spte(rmap_head, &iter, sptep)
1932                 young |= mmu_spte_age(sptep);
1933
1934         trace_kvm_age_page(gfn, level, slot, young);
1935         return young;
1936 }
1937
1938 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1939                               struct kvm_memory_slot *slot, gfn_t gfn,
1940                               int level, unsigned long data)
1941 {
1942         u64 *sptep;
1943         struct rmap_iterator iter;
1944
1945         for_each_rmap_spte(rmap_head, &iter, sptep)
1946                 if (is_accessed_spte(*sptep))
1947                         return 1;
1948         return 0;
1949 }
1950
1951 #define RMAP_RECYCLE_THRESHOLD 1000
1952
1953 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1954 {
1955         struct kvm_rmap_head *rmap_head;
1956         struct kvm_mmu_page *sp;
1957
1958         sp = page_header(__pa(spte));
1959
1960         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1961
1962         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1963         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1964                         KVM_PAGES_PER_HPAGE(sp->role.level));
1965 }
1966
1967 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1968 {
1969         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1970 }
1971
1972 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1973 {
1974         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1975 }
1976
1977 #ifdef MMU_DEBUG
1978 static int is_empty_shadow_page(u64 *spt)
1979 {
1980         u64 *pos;
1981         u64 *end;
1982
1983         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1984                 if (is_shadow_present_pte(*pos)) {
1985                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1986                                pos, *pos);
1987                         return 0;
1988                 }
1989         return 1;
1990 }
1991 #endif
1992
1993 /*
1994  * This value is the sum of all of the kvm instances's
1995  * kvm->arch.n_used_mmu_pages values.  We need a global,
1996  * aggregate version in order to make the slab shrinker
1997  * faster
1998  */
1999 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
2000 {
2001         kvm->arch.n_used_mmu_pages += nr;
2002         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2003 }
2004
2005 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2006 {
2007         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2008         hlist_del(&sp->hash_link);
2009         list_del(&sp->link);
2010         free_page((unsigned long)sp->spt);
2011         if (!sp->role.direct)
2012                 free_page((unsigned long)sp->gfns);
2013         kmem_cache_free(mmu_page_header_cache, sp);
2014 }
2015
2016 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2017 {
2018         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2019 }
2020
2021 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2022                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2023 {
2024         if (!parent_pte)
2025                 return;
2026
2027         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2028 }
2029
2030 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2031                                        u64 *parent_pte)
2032 {
2033         __pte_list_remove(parent_pte, &sp->parent_ptes);
2034 }
2035
2036 static void drop_parent_pte(struct kvm_mmu_page *sp,
2037                             u64 *parent_pte)
2038 {
2039         mmu_page_remove_parent_pte(sp, parent_pte);
2040         mmu_spte_clear_no_track(parent_pte);
2041 }
2042
2043 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2044 {
2045         struct kvm_mmu_page *sp;
2046
2047         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2048         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2049         if (!direct)
2050                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2051         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2052
2053         /*
2054          * The active_mmu_pages list is the FIFO list, do not move the
2055          * page until it is zapped. kvm_zap_obsolete_pages depends on
2056          * this feature. See the comments in kvm_zap_obsolete_pages().
2057          */
2058         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2059         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2060         return sp;
2061 }
2062
2063 static void mark_unsync(u64 *spte);
2064 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2065 {
2066         u64 *sptep;
2067         struct rmap_iterator iter;
2068
2069         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2070                 mark_unsync(sptep);
2071         }
2072 }
2073
2074 static void mark_unsync(u64 *spte)
2075 {
2076         struct kvm_mmu_page *sp;
2077         unsigned int index;
2078
2079         sp = page_header(__pa(spte));
2080         index = spte - sp->spt;
2081         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2082                 return;
2083         if (sp->unsync_children++)
2084                 return;
2085         kvm_mmu_mark_parents_unsync(sp);
2086 }
2087
2088 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2089                                struct kvm_mmu_page *sp)
2090 {
2091         return 0;
2092 }
2093
2094 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2095 {
2096 }
2097
2098 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2099                                  struct kvm_mmu_page *sp, u64 *spte,
2100                                  const void *pte)
2101 {
2102         WARN_ON(1);
2103 }
2104
2105 #define KVM_PAGE_ARRAY_NR 16
2106
2107 struct kvm_mmu_pages {
2108         struct mmu_page_and_offset {
2109                 struct kvm_mmu_page *sp;
2110                 unsigned int idx;
2111         } page[KVM_PAGE_ARRAY_NR];
2112         unsigned int nr;
2113 };
2114
2115 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2116                          int idx)
2117 {
2118         int i;
2119
2120         if (sp->unsync)
2121                 for (i=0; i < pvec->nr; i++)
2122                         if (pvec->page[i].sp == sp)
2123                                 return 0;
2124
2125         pvec->page[pvec->nr].sp = sp;
2126         pvec->page[pvec->nr].idx = idx;
2127         pvec->nr++;
2128         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2129 }
2130
2131 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2132 {
2133         --sp->unsync_children;
2134         WARN_ON((int)sp->unsync_children < 0);
2135         __clear_bit(idx, sp->unsync_child_bitmap);
2136 }
2137
2138 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2139                            struct kvm_mmu_pages *pvec)
2140 {
2141         int i, ret, nr_unsync_leaf = 0;
2142
2143         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2144                 struct kvm_mmu_page *child;
2145                 u64 ent = sp->spt[i];
2146
2147                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2148                         clear_unsync_child_bit(sp, i);
2149                         continue;
2150                 }
2151
2152                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2153
2154                 if (child->unsync_children) {
2155                         if (mmu_pages_add(pvec, child, i))
2156                                 return -ENOSPC;
2157
2158                         ret = __mmu_unsync_walk(child, pvec);
2159                         if (!ret) {
2160                                 clear_unsync_child_bit(sp, i);
2161                                 continue;
2162                         } else if (ret > 0) {
2163                                 nr_unsync_leaf += ret;
2164                         } else
2165                                 return ret;
2166                 } else if (child->unsync) {
2167                         nr_unsync_leaf++;
2168                         if (mmu_pages_add(pvec, child, i))
2169                                 return -ENOSPC;
2170                 } else
2171                         clear_unsync_child_bit(sp, i);
2172         }
2173
2174         return nr_unsync_leaf;
2175 }
2176
2177 #define INVALID_INDEX (-1)
2178
2179 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2180                            struct kvm_mmu_pages *pvec)
2181 {
2182         pvec->nr = 0;
2183         if (!sp->unsync_children)
2184                 return 0;
2185
2186         mmu_pages_add(pvec, sp, INVALID_INDEX);
2187         return __mmu_unsync_walk(sp, pvec);
2188 }
2189
2190 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2191 {
2192         WARN_ON(!sp->unsync);
2193         trace_kvm_mmu_sync_page(sp);
2194         sp->unsync = 0;
2195         --kvm->stat.mmu_unsync;
2196 }
2197
2198 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2199                                     struct list_head *invalid_list);
2200 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2201                                     struct list_head *invalid_list);
2202
2203 /*
2204  * NOTE: we should pay more attention on the zapped-obsolete page
2205  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2206  * since it has been deleted from active_mmu_pages but still can be found
2207  * at hast list.
2208  *
2209  * for_each_valid_sp() has skipped that kind of pages.
2210  */
2211 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2212         hlist_for_each_entry(_sp,                                       \
2213           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2214                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2215                 } else
2216
2217 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2218         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2219                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2220
2221 /* @sp->gfn should be write-protected at the call site */
2222 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2223                             struct list_head *invalid_list)
2224 {
2225         if (sp->role.cr4_pae != !!is_pae(vcpu)
2226             || vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2227                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2228                 return false;
2229         }
2230
2231         return true;
2232 }
2233
2234 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2235                                  struct list_head *invalid_list,
2236                                  bool remote_flush, bool local_flush)
2237 {
2238         if (!list_empty(invalid_list)) {
2239                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2240                 return;
2241         }
2242
2243         if (remote_flush)
2244                 kvm_flush_remote_tlbs(vcpu->kvm);
2245         else if (local_flush)
2246                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2247 }
2248
2249 #ifdef CONFIG_KVM_MMU_AUDIT
2250 #include "mmu_audit.c"
2251 #else
2252 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2253 static void mmu_audit_disable(void) { }
2254 #endif
2255
2256 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2257 {
2258         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2259 }
2260
2261 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2262                          struct list_head *invalid_list)
2263 {
2264         kvm_unlink_unsync_page(vcpu->kvm, sp);
2265         return __kvm_sync_page(vcpu, sp, invalid_list);
2266 }
2267
2268 /* @gfn should be write-protected at the call site */
2269 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2270                            struct list_head *invalid_list)
2271 {
2272         struct kvm_mmu_page *s;
2273         bool ret = false;
2274
2275         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2276                 if (!s->unsync)
2277                         continue;
2278
2279                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2280                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2281         }
2282
2283         return ret;
2284 }
2285
2286 struct mmu_page_path {
2287         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2288         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2289 };
2290
2291 #define for_each_sp(pvec, sp, parents, i)                       \
2292                 for (i = mmu_pages_first(&pvec, &parents);      \
2293                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2294                         i = mmu_pages_next(&pvec, &parents, i))
2295
2296 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2297                           struct mmu_page_path *parents,
2298                           int i)
2299 {
2300         int n;
2301
2302         for (n = i+1; n < pvec->nr; n++) {
2303                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2304                 unsigned idx = pvec->page[n].idx;
2305                 int level = sp->role.level;
2306
2307                 parents->idx[level-1] = idx;
2308                 if (level == PT_PAGE_TABLE_LEVEL)
2309                         break;
2310
2311                 parents->parent[level-2] = sp;
2312         }
2313
2314         return n;
2315 }
2316
2317 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2318                            struct mmu_page_path *parents)
2319 {
2320         struct kvm_mmu_page *sp;
2321         int level;
2322
2323         if (pvec->nr == 0)
2324                 return 0;
2325
2326         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2327
2328         sp = pvec->page[0].sp;
2329         level = sp->role.level;
2330         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2331
2332         parents->parent[level-2] = sp;
2333
2334         /* Also set up a sentinel.  Further entries in pvec are all
2335          * children of sp, so this element is never overwritten.
2336          */
2337         parents->parent[level-1] = NULL;
2338         return mmu_pages_next(pvec, parents, 0);
2339 }
2340
2341 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2342 {
2343         struct kvm_mmu_page *sp;
2344         unsigned int level = 0;
2345
2346         do {
2347                 unsigned int idx = parents->idx[level];
2348                 sp = parents->parent[level];
2349                 if (!sp)
2350                         return;
2351
2352                 WARN_ON(idx == INVALID_INDEX);
2353                 clear_unsync_child_bit(sp, idx);
2354                 level++;
2355         } while (!sp->unsync_children);
2356 }
2357
2358 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2359                               struct kvm_mmu_page *parent)
2360 {
2361         int i;
2362         struct kvm_mmu_page *sp;
2363         struct mmu_page_path parents;
2364         struct kvm_mmu_pages pages;
2365         LIST_HEAD(invalid_list);
2366         bool flush = false;
2367
2368         while (mmu_unsync_walk(parent, &pages)) {
2369                 bool protected = false;
2370
2371                 for_each_sp(pages, sp, parents, i)
2372                         protected |= rmap_write_protect(vcpu, sp->gfn);
2373
2374                 if (protected) {
2375                         kvm_flush_remote_tlbs(vcpu->kvm);
2376                         flush = false;
2377                 }
2378
2379                 for_each_sp(pages, sp, parents, i) {
2380                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2381                         mmu_pages_clear_parents(&parents);
2382                 }
2383                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2384                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2385                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2386                         flush = false;
2387                 }
2388         }
2389
2390         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2391 }
2392
2393 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2394 {
2395         atomic_set(&sp->write_flooding_count,  0);
2396 }
2397
2398 static void clear_sp_write_flooding_count(u64 *spte)
2399 {
2400         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2401
2402         __clear_sp_write_flooding_count(sp);
2403 }
2404
2405 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2406                                              gfn_t gfn,
2407                                              gva_t gaddr,
2408                                              unsigned level,
2409                                              int direct,
2410                                              unsigned access)
2411 {
2412         union kvm_mmu_page_role role;
2413         unsigned quadrant;
2414         struct kvm_mmu_page *sp;
2415         bool need_sync = false;
2416         bool flush = false;
2417         int collisions = 0;
2418         LIST_HEAD(invalid_list);
2419
2420         role = vcpu->arch.mmu->mmu_role.base;
2421         role.level = level;
2422         role.direct = direct;
2423         if (role.direct)
2424                 role.cr4_pae = 0;
2425         role.access = access;
2426         if (!vcpu->arch.mmu->direct_map
2427             && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2428                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2429                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2430                 role.quadrant = quadrant;
2431         }
2432         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2433                 if (sp->gfn != gfn) {
2434                         collisions++;
2435                         continue;
2436                 }
2437
2438                 if (!need_sync && sp->unsync)
2439                         need_sync = true;
2440
2441                 if (sp->role.word != role.word)
2442                         continue;
2443
2444                 if (sp->unsync) {
2445                         /* The page is good, but __kvm_sync_page might still end
2446                          * up zapping it.  If so, break in order to rebuild it.
2447                          */
2448                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2449                                 break;
2450
2451                         WARN_ON(!list_empty(&invalid_list));
2452                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2453                 }
2454
2455                 if (sp->unsync_children)
2456                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2457
2458                 __clear_sp_write_flooding_count(sp);
2459                 trace_kvm_mmu_get_page(sp, false);
2460                 goto out;
2461         }
2462
2463         ++vcpu->kvm->stat.mmu_cache_miss;
2464
2465         sp = kvm_mmu_alloc_page(vcpu, direct);
2466
2467         sp->gfn = gfn;
2468         sp->role = role;
2469         hlist_add_head(&sp->hash_link,
2470                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2471         if (!direct) {
2472                 /*
2473                  * we should do write protection before syncing pages
2474                  * otherwise the content of the synced shadow page may
2475                  * be inconsistent with guest page table.
2476                  */
2477                 account_shadowed(vcpu->kvm, sp);
2478                 if (level == PT_PAGE_TABLE_LEVEL &&
2479                       rmap_write_protect(vcpu, gfn))
2480                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2481
2482                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2483                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2484         }
2485         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2486         clear_page(sp->spt);
2487         trace_kvm_mmu_get_page(sp, true);
2488
2489         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2490 out:
2491         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2492                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2493         return sp;
2494 }
2495
2496 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2497                                         struct kvm_vcpu *vcpu, hpa_t root,
2498                                         u64 addr)
2499 {
2500         iterator->addr = addr;
2501         iterator->shadow_addr = root;
2502         iterator->level = vcpu->arch.mmu->shadow_root_level;
2503
2504         if (iterator->level == PT64_ROOT_4LEVEL &&
2505             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2506             !vcpu->arch.mmu->direct_map)
2507                 --iterator->level;
2508
2509         if (iterator->level == PT32E_ROOT_LEVEL) {
2510                 /*
2511                  * prev_root is currently only used for 64-bit hosts. So only
2512                  * the active root_hpa is valid here.
2513                  */
2514                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2515
2516                 iterator->shadow_addr
2517                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2518                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2519                 --iterator->level;
2520                 if (!iterator->shadow_addr)
2521                         iterator->level = 0;
2522         }
2523 }
2524
2525 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2526                              struct kvm_vcpu *vcpu, u64 addr)
2527 {
2528         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2529                                     addr);
2530 }
2531
2532 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2533 {
2534         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2535                 return false;
2536
2537         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2538         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2539         return true;
2540 }
2541
2542 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2543                                u64 spte)
2544 {
2545         if (is_last_spte(spte, iterator->level)) {
2546                 iterator->level = 0;
2547                 return;
2548         }
2549
2550         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2551         --iterator->level;
2552 }
2553
2554 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2555 {
2556         __shadow_walk_next(iterator, *iterator->sptep);
2557 }
2558
2559 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2560                              struct kvm_mmu_page *sp)
2561 {
2562         u64 spte;
2563
2564         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2565
2566         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2567                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2568
2569         if (sp_ad_disabled(sp))
2570                 spte |= shadow_acc_track_value;
2571         else
2572                 spte |= shadow_accessed_mask;
2573
2574         mmu_spte_set(sptep, spte);
2575
2576         mmu_page_add_parent_pte(vcpu, sp, sptep);
2577
2578         if (sp->unsync_children || sp->unsync)
2579                 mark_unsync(sptep);
2580 }
2581
2582 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2583                                    unsigned direct_access)
2584 {
2585         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2586                 struct kvm_mmu_page *child;
2587
2588                 /*
2589                  * For the direct sp, if the guest pte's dirty bit
2590                  * changed form clean to dirty, it will corrupt the
2591                  * sp's access: allow writable in the read-only sp,
2592                  * so we should update the spte at this point to get
2593                  * a new sp with the correct access.
2594                  */
2595                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2596                 if (child->role.access == direct_access)
2597                         return;
2598
2599                 drop_parent_pte(child, sptep);
2600                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2601         }
2602 }
2603
2604 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2605                              u64 *spte)
2606 {
2607         u64 pte;
2608         struct kvm_mmu_page *child;
2609
2610         pte = *spte;
2611         if (is_shadow_present_pte(pte)) {
2612                 if (is_last_spte(pte, sp->role.level)) {
2613                         drop_spte(kvm, spte);
2614                         if (is_large_pte(pte))
2615                                 --kvm->stat.lpages;
2616                 } else {
2617                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2618                         drop_parent_pte(child, spte);
2619                 }
2620                 return true;
2621         }
2622
2623         if (is_mmio_spte(pte))
2624                 mmu_spte_clear_no_track(spte);
2625
2626         return false;
2627 }
2628
2629 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2630                                          struct kvm_mmu_page *sp)
2631 {
2632         unsigned i;
2633
2634         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2635                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2636 }
2637
2638 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2639 {
2640         u64 *sptep;
2641         struct rmap_iterator iter;
2642
2643         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2644                 drop_parent_pte(sp, sptep);
2645 }
2646
2647 static int mmu_zap_unsync_children(struct kvm *kvm,
2648                                    struct kvm_mmu_page *parent,
2649                                    struct list_head *invalid_list)
2650 {
2651         int i, zapped = 0;
2652         struct mmu_page_path parents;
2653         struct kvm_mmu_pages pages;
2654
2655         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2656                 return 0;
2657
2658         while (mmu_unsync_walk(parent, &pages)) {
2659                 struct kvm_mmu_page *sp;
2660
2661                 for_each_sp(pages, sp, parents, i) {
2662                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2663                         mmu_pages_clear_parents(&parents);
2664                         zapped++;
2665                 }
2666         }
2667
2668         return zapped;
2669 }
2670
2671 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2672                                     struct list_head *invalid_list)
2673 {
2674         int ret;
2675
2676         trace_kvm_mmu_prepare_zap_page(sp);
2677         ++kvm->stat.mmu_shadow_zapped;
2678         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2679         kvm_mmu_page_unlink_children(kvm, sp);
2680         kvm_mmu_unlink_parents(kvm, sp);
2681
2682         if (!sp->role.invalid && !sp->role.direct)
2683                 unaccount_shadowed(kvm, sp);
2684
2685         if (sp->unsync)
2686                 kvm_unlink_unsync_page(kvm, sp);
2687         if (!sp->root_count) {
2688                 /* Count self */
2689                 ret++;
2690                 list_move(&sp->link, invalid_list);
2691                 kvm_mod_used_mmu_pages(kvm, -1);
2692         } else {
2693                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2694
2695                 /*
2696                  * The obsolete pages can not be used on any vcpus.
2697                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2698                  */
2699                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2700                         kvm_reload_remote_mmus(kvm);
2701         }
2702
2703         sp->role.invalid = 1;
2704         return ret;
2705 }
2706
2707 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2708                                     struct list_head *invalid_list)
2709 {
2710         struct kvm_mmu_page *sp, *nsp;
2711
2712         if (list_empty(invalid_list))
2713                 return;
2714
2715         /*
2716          * We need to make sure everyone sees our modifications to
2717          * the page tables and see changes to vcpu->mode here. The barrier
2718          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2719          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2720          *
2721          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2722          * guest mode and/or lockless shadow page table walks.
2723          */
2724         kvm_flush_remote_tlbs(kvm);
2725
2726         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2727                 WARN_ON(!sp->role.invalid || sp->root_count);
2728                 kvm_mmu_free_page(sp);
2729         }
2730 }
2731
2732 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2733                                         struct list_head *invalid_list)
2734 {
2735         struct kvm_mmu_page *sp;
2736
2737         if (list_empty(&kvm->arch.active_mmu_pages))
2738                 return false;
2739
2740         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2741                              struct kvm_mmu_page, link);
2742         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2743 }
2744
2745 /*
2746  * Changing the number of mmu pages allocated to the vm
2747  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2748  */
2749 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2750 {
2751         LIST_HEAD(invalid_list);
2752
2753         spin_lock(&kvm->mmu_lock);
2754
2755         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2756                 /* Need to free some mmu pages to achieve the goal. */
2757                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2758                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2759                                 break;
2760
2761                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2762                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2763         }
2764
2765         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2766
2767         spin_unlock(&kvm->mmu_lock);
2768 }
2769
2770 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2771 {
2772         struct kvm_mmu_page *sp;
2773         LIST_HEAD(invalid_list);
2774         int r;
2775
2776         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2777         r = 0;
2778         spin_lock(&kvm->mmu_lock);
2779         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2780                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2781                          sp->role.word);
2782                 r = 1;
2783                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2784         }
2785         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2786         spin_unlock(&kvm->mmu_lock);
2787
2788         return r;
2789 }
2790 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2791
2792 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2793 {
2794         trace_kvm_mmu_unsync_page(sp);
2795         ++vcpu->kvm->stat.mmu_unsync;
2796         sp->unsync = 1;
2797
2798         kvm_mmu_mark_parents_unsync(sp);
2799 }
2800
2801 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2802                                    bool can_unsync)
2803 {
2804         struct kvm_mmu_page *sp;
2805
2806         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2807                 return true;
2808
2809         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2810                 if (!can_unsync)
2811                         return true;
2812
2813                 if (sp->unsync)
2814                         continue;
2815
2816                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2817                 kvm_unsync_page(vcpu, sp);
2818         }
2819
2820         /*
2821          * We need to ensure that the marking of unsync pages is visible
2822          * before the SPTE is updated to allow writes because
2823          * kvm_mmu_sync_roots() checks the unsync flags without holding
2824          * the MMU lock and so can race with this. If the SPTE was updated
2825          * before the page had been marked as unsync-ed, something like the
2826          * following could happen:
2827          *
2828          * CPU 1                    CPU 2
2829          * ---------------------------------------------------------------------
2830          * 1.2 Host updates SPTE
2831          *     to be writable
2832          *                      2.1 Guest writes a GPTE for GVA X.
2833          *                          (GPTE being in the guest page table shadowed
2834          *                           by the SP from CPU 1.)
2835          *                          This reads SPTE during the page table walk.
2836          *                          Since SPTE.W is read as 1, there is no
2837          *                          fault.
2838          *
2839          *                      2.2 Guest issues TLB flush.
2840          *                          That causes a VM Exit.
2841          *
2842          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2843          *                          Since it is false, so it just returns.
2844          *
2845          *                      2.4 Guest accesses GVA X.
2846          *                          Since the mapping in the SP was not updated,
2847          *                          so the old mapping for GVA X incorrectly
2848          *                          gets used.
2849          * 1.1 Host marks SP
2850          *     as unsync
2851          *     (sp->unsync = true)
2852          *
2853          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2854          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2855          * pairs with this write barrier.
2856          */
2857         smp_wmb();
2858
2859         return false;
2860 }
2861
2862 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2863 {
2864         if (pfn_valid(pfn))
2865                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2866                         /*
2867                          * Some reserved pages, such as those from NVDIMM
2868                          * DAX devices, are not for MMIO, and can be mapped
2869                          * with cached memory type for better performance.
2870                          * However, the above check misconceives those pages
2871                          * as MMIO, and results in KVM mapping them with UC
2872                          * memory type, which would hurt the performance.
2873                          * Therefore, we check the host memory type in addition
2874                          * and only treat UC/UC-/WC pages as MMIO.
2875                          */
2876                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2877
2878         return true;
2879 }
2880
2881 /* Bits which may be returned by set_spte() */
2882 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2883 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2884
2885 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2886                     unsigned pte_access, int level,
2887                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2888                     bool can_unsync, bool host_writable)
2889 {
2890         u64 spte = 0;
2891         int ret = 0;
2892         struct kvm_mmu_page *sp;
2893
2894         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2895                 return 0;
2896
2897         sp = page_header(__pa(sptep));
2898         if (sp_ad_disabled(sp))
2899                 spte |= shadow_acc_track_value;
2900
2901         /*
2902          * For the EPT case, shadow_present_mask is 0 if hardware
2903          * supports exec-only page table entries.  In that case,
2904          * ACC_USER_MASK and shadow_user_mask are used to represent
2905          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2906          */
2907         spte |= shadow_present_mask;
2908         if (!speculative)
2909                 spte |= spte_shadow_accessed_mask(spte);
2910
2911         if (pte_access & ACC_EXEC_MASK)
2912                 spte |= shadow_x_mask;
2913         else
2914                 spte |= shadow_nx_mask;
2915
2916         if (pte_access & ACC_USER_MASK)
2917                 spte |= shadow_user_mask;
2918
2919         if (level > PT_PAGE_TABLE_LEVEL)
2920                 spte |= PT_PAGE_SIZE_MASK;
2921         if (tdp_enabled)
2922                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2923                         kvm_is_mmio_pfn(pfn));
2924
2925         if (host_writable)
2926                 spte |= SPTE_HOST_WRITEABLE;
2927         else
2928                 pte_access &= ~ACC_WRITE_MASK;
2929
2930         if (!kvm_is_mmio_pfn(pfn))
2931                 spte |= shadow_me_mask;
2932
2933         spte |= (u64)pfn << PAGE_SHIFT;
2934
2935         if (pte_access & ACC_WRITE_MASK) {
2936
2937                 /*
2938                  * Other vcpu creates new sp in the window between
2939                  * mapping_level() and acquiring mmu-lock. We can
2940                  * allow guest to retry the access, the mapping can
2941                  * be fixed if guest refault.
2942                  */
2943                 if (level > PT_PAGE_TABLE_LEVEL &&
2944                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2945                         goto done;
2946
2947                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2948
2949                 /*
2950                  * Optimization: for pte sync, if spte was writable the hash
2951                  * lookup is unnecessary (and expensive). Write protection
2952                  * is responsibility of mmu_get_page / kvm_sync_page.
2953                  * Same reasoning can be applied to dirty page accounting.
2954                  */
2955                 if (!can_unsync && is_writable_pte(*sptep))
2956                         goto set_pte;
2957
2958                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2959                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2960                                  __func__, gfn);
2961                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
2962                         pte_access &= ~ACC_WRITE_MASK;
2963                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2964                 }
2965         }
2966
2967         if (pte_access & ACC_WRITE_MASK) {
2968                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2969                 spte |= spte_shadow_dirty_mask(spte);
2970         }
2971
2972         if (speculative)
2973                 spte = mark_spte_for_access_track(spte);
2974
2975 set_pte:
2976         if (mmu_spte_update(sptep, spte))
2977                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2978 done:
2979         return ret;
2980 }
2981
2982 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2983                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2984                         bool speculative, bool host_writable)
2985 {
2986         int was_rmapped = 0;
2987         int rmap_count;
2988         int set_spte_ret;
2989         int ret = RET_PF_RETRY;
2990         bool flush = false;
2991
2992         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2993                  *sptep, write_fault, gfn);
2994
2995         if (is_shadow_present_pte(*sptep)) {
2996                 /*
2997                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2998                  * the parent of the now unreachable PTE.
2999                  */
3000                 if (level > PT_PAGE_TABLE_LEVEL &&
3001                     !is_large_pte(*sptep)) {
3002                         struct kvm_mmu_page *child;
3003                         u64 pte = *sptep;
3004
3005                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3006                         drop_parent_pte(child, sptep);
3007                         flush = true;
3008                 } else if (pfn != spte_to_pfn(*sptep)) {
3009                         pgprintk("hfn old %llx new %llx\n",
3010                                  spte_to_pfn(*sptep), pfn);
3011                         drop_spte(vcpu->kvm, sptep);
3012                         flush = true;
3013                 } else
3014                         was_rmapped = 1;
3015         }
3016
3017         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3018                                 speculative, true, host_writable);
3019         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3020                 if (write_fault)
3021                         ret = RET_PF_EMULATE;
3022                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3023         }
3024
3025         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3026                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3027                                 KVM_PAGES_PER_HPAGE(level));
3028
3029         if (unlikely(is_mmio_spte(*sptep)))
3030                 ret = RET_PF_EMULATE;
3031
3032         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3033         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
3034                  is_large_pte(*sptep)? "2MB" : "4kB",
3035                  *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
3036                  *sptep, sptep);
3037         if (!was_rmapped && is_large_pte(*sptep))
3038                 ++vcpu->kvm->stat.lpages;
3039
3040         if (is_shadow_present_pte(*sptep)) {
3041                 if (!was_rmapped) {
3042                         rmap_count = rmap_add(vcpu, sptep, gfn);
3043                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3044                                 rmap_recycle(vcpu, sptep, gfn);
3045                 }
3046         }
3047
3048         kvm_release_pfn_clean(pfn);
3049
3050         return ret;
3051 }
3052
3053 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3054                                      bool no_dirty_log)
3055 {
3056         struct kvm_memory_slot *slot;
3057
3058         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3059         if (!slot)
3060                 return KVM_PFN_ERR_FAULT;
3061
3062         return gfn_to_pfn_memslot_atomic(slot, gfn);
3063 }
3064
3065 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3066                                     struct kvm_mmu_page *sp,
3067                                     u64 *start, u64 *end)
3068 {
3069         struct page *pages[PTE_PREFETCH_NUM];
3070         struct kvm_memory_slot *slot;
3071         unsigned access = sp->role.access;
3072         int i, ret;
3073         gfn_t gfn;
3074
3075         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3076         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3077         if (!slot)
3078                 return -1;
3079
3080         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3081         if (ret <= 0)
3082                 return -1;
3083
3084         for (i = 0; i < ret; i++, gfn++, start++)
3085                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3086                              page_to_pfn(pages[i]), true, true);
3087
3088         return 0;
3089 }
3090
3091 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3092                                   struct kvm_mmu_page *sp, u64 *sptep)
3093 {
3094         u64 *spte, *start = NULL;
3095         int i;
3096
3097         WARN_ON(!sp->role.direct);
3098
3099         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3100         spte = sp->spt + i;
3101
3102         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3103                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3104                         if (!start)
3105                                 continue;
3106                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3107                                 break;
3108                         start = NULL;
3109                 } else if (!start)
3110                         start = spte;
3111         }
3112 }
3113
3114 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3115 {
3116         struct kvm_mmu_page *sp;
3117
3118         sp = page_header(__pa(sptep));
3119
3120         /*
3121          * Without accessed bits, there's no way to distinguish between
3122          * actually accessed translations and prefetched, so disable pte
3123          * prefetch if accessed bits aren't available.
3124          */
3125         if (sp_ad_disabled(sp))
3126                 return;
3127
3128         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3129                 return;
3130
3131         __direct_pte_prefetch(vcpu, sp, sptep);
3132 }
3133
3134 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
3135                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
3136 {
3137         struct kvm_shadow_walk_iterator iterator;
3138         struct kvm_mmu_page *sp;
3139         int emulate = 0;
3140         gfn_t pseudo_gfn;
3141
3142         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3143                 return 0;
3144
3145         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
3146                 if (iterator.level == level) {
3147                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3148                                                write, level, gfn, pfn, prefault,
3149                                                map_writable);
3150                         direct_pte_prefetch(vcpu, iterator.sptep);
3151                         ++vcpu->stat.pf_fixed;
3152                         break;
3153                 }
3154
3155                 drop_large_spte(vcpu, iterator.sptep);
3156                 if (!is_shadow_present_pte(*iterator.sptep)) {
3157                         u64 base_addr = iterator.addr;
3158
3159                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3160                         pseudo_gfn = base_addr >> PAGE_SHIFT;
3161                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
3162                                               iterator.level - 1, 1, ACC_ALL);
3163
3164                         link_shadow_page(vcpu, iterator.sptep, sp);
3165                 }
3166         }
3167         return emulate;
3168 }
3169
3170 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3171 {
3172         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3173 }
3174
3175 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3176 {
3177         /*
3178          * Do not cache the mmio info caused by writing the readonly gfn
3179          * into the spte otherwise read access on readonly gfn also can
3180          * caused mmio page fault and treat it as mmio access.
3181          */
3182         if (pfn == KVM_PFN_ERR_RO_FAULT)
3183                 return RET_PF_EMULATE;
3184
3185         if (pfn == KVM_PFN_ERR_HWPOISON) {
3186                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3187                 return RET_PF_RETRY;
3188         }
3189
3190         return -EFAULT;
3191 }
3192
3193 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3194                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
3195                                         int *levelp)
3196 {
3197         kvm_pfn_t pfn = *pfnp;
3198         gfn_t gfn = *gfnp;
3199         int level = *levelp;
3200
3201         /*
3202          * Check if it's a transparent hugepage. If this would be an
3203          * hugetlbfs page, level wouldn't be set to
3204          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3205          * here.
3206          */
3207         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3208             level == PT_PAGE_TABLE_LEVEL &&
3209             PageTransCompoundMap(pfn_to_page(pfn)) &&
3210             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3211                 unsigned long mask;
3212                 /*
3213                  * mmu_notifier_retry was successful and we hold the
3214                  * mmu_lock here, so the pmd can't become splitting
3215                  * from under us, and in turn
3216                  * __split_huge_page_refcount() can't run from under
3217                  * us and we can safely transfer the refcount from
3218                  * PG_tail to PG_head as we switch the pfn to tail to
3219                  * head.
3220                  */
3221                 *levelp = level = PT_DIRECTORY_LEVEL;
3222                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3223                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3224                 if (pfn & mask) {
3225                         gfn &= ~mask;
3226                         *gfnp = gfn;
3227                         kvm_release_pfn_clean(pfn);
3228                         pfn &= ~mask;
3229                         kvm_get_pfn(pfn);
3230                         *pfnp = pfn;
3231                 }
3232         }
3233 }
3234
3235 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3236                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3237 {
3238         /* The pfn is invalid, report the error! */
3239         if (unlikely(is_error_pfn(pfn))) {
3240                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3241                 return true;
3242         }
3243
3244         if (unlikely(is_noslot_pfn(pfn)))
3245                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3246
3247         return false;
3248 }
3249
3250 static bool page_fault_can_be_fast(u32 error_code)
3251 {
3252         /*
3253          * Do not fix the mmio spte with invalid generation number which
3254          * need to be updated by slow page fault path.
3255          */
3256         if (unlikely(error_code & PFERR_RSVD_MASK))
3257                 return false;
3258
3259         /* See if the page fault is due to an NX violation */
3260         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3261                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3262                 return false;
3263
3264         /*
3265          * #PF can be fast if:
3266          * 1. The shadow page table entry is not present, which could mean that
3267          *    the fault is potentially caused by access tracking (if enabled).
3268          * 2. The shadow page table entry is present and the fault
3269          *    is caused by write-protect, that means we just need change the W
3270          *    bit of the spte which can be done out of mmu-lock.
3271          *
3272          * However, if access tracking is disabled we know that a non-present
3273          * page must be a genuine page fault where we have to create a new SPTE.
3274          * So, if access tracking is disabled, we return true only for write
3275          * accesses to a present page.
3276          */
3277
3278         return shadow_acc_track_mask != 0 ||
3279                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3280                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3281 }
3282
3283 /*
3284  * Returns true if the SPTE was fixed successfully. Otherwise,
3285  * someone else modified the SPTE from its original value.
3286  */
3287 static bool
3288 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3289                         u64 *sptep, u64 old_spte, u64 new_spte)
3290 {
3291         gfn_t gfn;
3292
3293         WARN_ON(!sp->role.direct);
3294
3295         /*
3296          * Theoretically we could also set dirty bit (and flush TLB) here in
3297          * order to eliminate unnecessary PML logging. See comments in
3298          * set_spte. But fast_page_fault is very unlikely to happen with PML
3299          * enabled, so we do not do this. This might result in the same GPA
3300          * to be logged in PML buffer again when the write really happens, and
3301          * eventually to be called by mark_page_dirty twice. But it's also no
3302          * harm. This also avoids the TLB flush needed after setting dirty bit
3303          * so non-PML cases won't be impacted.
3304          *
3305          * Compare with set_spte where instead shadow_dirty_mask is set.
3306          */
3307         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3308                 return false;
3309
3310         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3311                 /*
3312                  * The gfn of direct spte is stable since it is
3313                  * calculated by sp->gfn.
3314                  */
3315                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3316                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3317         }
3318
3319         return true;
3320 }
3321
3322 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3323 {
3324         if (fault_err_code & PFERR_FETCH_MASK)
3325                 return is_executable_pte(spte);
3326
3327         if (fault_err_code & PFERR_WRITE_MASK)
3328                 return is_writable_pte(spte);
3329
3330         /* Fault was on Read access */
3331         return spte & PT_PRESENT_MASK;
3332 }
3333
3334 /*
3335  * Return value:
3336  * - true: let the vcpu to access on the same address again.
3337  * - false: let the real page fault path to fix it.
3338  */
3339 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3340                             u32 error_code)
3341 {
3342         struct kvm_shadow_walk_iterator iterator;
3343         struct kvm_mmu_page *sp;
3344         bool fault_handled = false;
3345         u64 spte = 0ull;
3346         uint retry_count = 0;
3347
3348         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3349                 return false;
3350
3351         if (!page_fault_can_be_fast(error_code))
3352                 return false;
3353
3354         walk_shadow_page_lockless_begin(vcpu);
3355
3356         do {
3357                 u64 new_spte;
3358
3359                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3360                         if (!is_shadow_present_pte(spte) ||
3361                             iterator.level < level)
3362                                 break;
3363
3364                 sp = page_header(__pa(iterator.sptep));
3365                 if (!is_last_spte(spte, sp->role.level))
3366                         break;
3367
3368                 /*
3369                  * Check whether the memory access that caused the fault would
3370                  * still cause it if it were to be performed right now. If not,
3371                  * then this is a spurious fault caused by TLB lazily flushed,
3372                  * or some other CPU has already fixed the PTE after the
3373                  * current CPU took the fault.
3374                  *
3375                  * Need not check the access of upper level table entries since
3376                  * they are always ACC_ALL.
3377                  */
3378                 if (is_access_allowed(error_code, spte)) {
3379                         fault_handled = true;
3380                         break;
3381                 }
3382
3383                 new_spte = spte;
3384
3385                 if (is_access_track_spte(spte))
3386                         new_spte = restore_acc_track_spte(new_spte);
3387
3388                 /*
3389                  * Currently, to simplify the code, write-protection can
3390                  * be removed in the fast path only if the SPTE was
3391                  * write-protected for dirty-logging or access tracking.
3392                  */
3393                 if ((error_code & PFERR_WRITE_MASK) &&
3394                     spte_can_locklessly_be_made_writable(spte))
3395                 {
3396                         new_spte |= PT_WRITABLE_MASK;
3397
3398                         /*
3399                          * Do not fix write-permission on the large spte.  Since
3400                          * we only dirty the first page into the dirty-bitmap in
3401                          * fast_pf_fix_direct_spte(), other pages are missed
3402                          * if its slot has dirty logging enabled.
3403                          *
3404                          * Instead, we let the slow page fault path create a
3405                          * normal spte to fix the access.
3406                          *
3407                          * See the comments in kvm_arch_commit_memory_region().
3408                          */
3409                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3410                                 break;
3411                 }
3412
3413                 /* Verify that the fault can be handled in the fast path */
3414                 if (new_spte == spte ||
3415                     !is_access_allowed(error_code, new_spte))
3416                         break;
3417
3418                 /*
3419                  * Currently, fast page fault only works for direct mapping
3420                  * since the gfn is not stable for indirect shadow page. See
3421                  * Documentation/virtual/kvm/locking.txt to get more detail.
3422                  */
3423                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3424                                                         iterator.sptep, spte,
3425                                                         new_spte);
3426                 if (fault_handled)
3427                         break;
3428
3429                 if (++retry_count > 4) {
3430                         printk_once(KERN_WARNING
3431                                 "kvm: Fast #PF retrying more than 4 times.\n");
3432                         break;
3433                 }
3434
3435         } while (true);
3436
3437         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3438                               spte, fault_handled);
3439         walk_shadow_page_lockless_end(vcpu);
3440
3441         return fault_handled;
3442 }
3443
3444 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3445                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3446 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3447
3448 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3449                          gfn_t gfn, bool prefault)
3450 {
3451         int r;
3452         int level;
3453         bool force_pt_level = false;
3454         kvm_pfn_t pfn;
3455         unsigned long mmu_seq;
3456         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3457
3458         level = mapping_level(vcpu, gfn, &force_pt_level);
3459         if (likely(!force_pt_level)) {
3460                 /*
3461                  * This path builds a PAE pagetable - so we can map
3462                  * 2mb pages at maximum. Therefore check if the level
3463                  * is larger than that.
3464                  */
3465                 if (level > PT_DIRECTORY_LEVEL)
3466                         level = PT_DIRECTORY_LEVEL;
3467
3468                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3469         }
3470
3471         if (fast_page_fault(vcpu, v, level, error_code))
3472                 return RET_PF_RETRY;
3473
3474         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3475         smp_rmb();
3476
3477         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3478                 return RET_PF_RETRY;
3479
3480         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3481                 return r;
3482
3483         spin_lock(&vcpu->kvm->mmu_lock);
3484         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3485                 goto out_unlock;
3486         if (make_mmu_pages_available(vcpu) < 0)
3487                 goto out_unlock;
3488         if (likely(!force_pt_level))
3489                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3490         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3491         spin_unlock(&vcpu->kvm->mmu_lock);
3492
3493         return r;
3494
3495 out_unlock:
3496         spin_unlock(&vcpu->kvm->mmu_lock);
3497         kvm_release_pfn_clean(pfn);
3498         return RET_PF_RETRY;
3499 }
3500
3501 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3502                                struct list_head *invalid_list)
3503 {
3504         struct kvm_mmu_page *sp;
3505
3506         if (!VALID_PAGE(*root_hpa))
3507                 return;
3508
3509         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3510         --sp->root_count;
3511         if (!sp->root_count && sp->role.invalid)
3512                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3513
3514         *root_hpa = INVALID_PAGE;
3515 }
3516
3517 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3518 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3519                         ulong roots_to_free)
3520 {
3521         int i;
3522         LIST_HEAD(invalid_list);
3523         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3524
3525         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3526
3527         /* Before acquiring the MMU lock, see if we need to do any real work. */
3528         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3529                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3530                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3531                             VALID_PAGE(mmu->prev_roots[i].hpa))
3532                                 break;
3533
3534                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3535                         return;
3536         }
3537
3538         spin_lock(&vcpu->kvm->mmu_lock);
3539
3540         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3541                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3542                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3543                                            &invalid_list);
3544
3545         if (free_active_root) {
3546                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3547                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3548                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3549                                            &invalid_list);
3550                 } else {
3551                         for (i = 0; i < 4; ++i)
3552                                 if (mmu->pae_root[i] != 0)
3553                                         mmu_free_root_page(vcpu->kvm,
3554                                                            &mmu->pae_root[i],
3555                                                            &invalid_list);
3556                         mmu->root_hpa = INVALID_PAGE;
3557                 }
3558         }
3559
3560         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3561         spin_unlock(&vcpu->kvm->mmu_lock);
3562 }
3563 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3564
3565 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3566 {
3567         int ret = 0;
3568
3569         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3570                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3571                 ret = 1;
3572         }
3573
3574         return ret;
3575 }
3576
3577 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3578 {
3579         struct kvm_mmu_page *sp;
3580         unsigned i;
3581
3582         if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3583                 spin_lock(&vcpu->kvm->mmu_lock);
3584                 if(make_mmu_pages_available(vcpu) < 0) {
3585                         spin_unlock(&vcpu->kvm->mmu_lock);
3586                         return -ENOSPC;
3587                 }
3588                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3589                                 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3590                 ++sp->root_count;
3591                 spin_unlock(&vcpu->kvm->mmu_lock);
3592                 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3593         } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3594                 for (i = 0; i < 4; ++i) {
3595                         hpa_t root = vcpu->arch.mmu->pae_root[i];
3596
3597                         MMU_WARN_ON(VALID_PAGE(root));
3598                         spin_lock(&vcpu->kvm->mmu_lock);
3599                         if (make_mmu_pages_available(vcpu) < 0) {
3600                                 spin_unlock(&vcpu->kvm->mmu_lock);
3601                                 return -ENOSPC;
3602                         }
3603                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3604                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3605                         root = __pa(sp->spt);
3606                         ++sp->root_count;
3607                         spin_unlock(&vcpu->kvm->mmu_lock);
3608                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3609                 }
3610                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3611         } else
3612                 BUG();
3613
3614         return 0;
3615 }
3616
3617 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3618 {
3619         struct kvm_mmu_page *sp;
3620         u64 pdptr, pm_mask;
3621         gfn_t root_gfn;
3622         int i;
3623
3624         root_gfn = vcpu->arch.mmu->get_cr3(vcpu) >> PAGE_SHIFT;
3625
3626         if (mmu_check_root(vcpu, root_gfn))
3627                 return 1;
3628
3629         /*
3630          * Do we shadow a long mode page table? If so we need to
3631          * write-protect the guests page table root.
3632          */
3633         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3634                 hpa_t root = vcpu->arch.mmu->root_hpa;
3635
3636                 MMU_WARN_ON(VALID_PAGE(root));
3637
3638                 spin_lock(&vcpu->kvm->mmu_lock);
3639                 if (make_mmu_pages_available(vcpu) < 0) {
3640                         spin_unlock(&vcpu->kvm->mmu_lock);
3641                         return -ENOSPC;
3642                 }
3643                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3644                                 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3645                 root = __pa(sp->spt);
3646                 ++sp->root_count;
3647                 spin_unlock(&vcpu->kvm->mmu_lock);
3648                 vcpu->arch.mmu->root_hpa = root;
3649                 return 0;
3650         }
3651
3652         /*
3653          * We shadow a 32 bit page table. This may be a legacy 2-level
3654          * or a PAE 3-level page table. In either case we need to be aware that
3655          * the shadow page table may be a PAE or a long mode page table.
3656          */
3657         pm_mask = PT_PRESENT_MASK;
3658         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3659                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3660
3661         for (i = 0; i < 4; ++i) {
3662                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3663
3664                 MMU_WARN_ON(VALID_PAGE(root));
3665                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3666                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3667                         if (!(pdptr & PT_PRESENT_MASK)) {
3668                                 vcpu->arch.mmu->pae_root[i] = 0;
3669                                 continue;
3670                         }
3671                         root_gfn = pdptr >> PAGE_SHIFT;
3672                         if (mmu_check_root(vcpu, root_gfn))
3673                                 return 1;
3674                 }
3675                 spin_lock(&vcpu->kvm->mmu_lock);
3676                 if (make_mmu_pages_available(vcpu) < 0) {
3677                         spin_unlock(&vcpu->kvm->mmu_lock);
3678                         return -ENOSPC;
3679                 }
3680                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3681                                       0, ACC_ALL);
3682                 root = __pa(sp->spt);
3683                 ++sp->root_count;
3684                 spin_unlock(&vcpu->kvm->mmu_lock);
3685
3686                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3687         }
3688         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3689
3690         /*
3691          * If we shadow a 32 bit page table with a long mode page
3692          * table we enter this path.
3693          */
3694         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3695                 if (vcpu->arch.mmu->lm_root == NULL) {
3696                         /*
3697                          * The additional page necessary for this is only
3698                          * allocated on demand.
3699                          */
3700
3701                         u64 *lm_root;
3702
3703                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3704                         if (lm_root == NULL)
3705                                 return 1;
3706
3707                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3708
3709                         vcpu->arch.mmu->lm_root = lm_root;
3710                 }
3711
3712                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3713         }
3714
3715         return 0;
3716 }
3717
3718 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3719 {
3720         if (vcpu->arch.mmu->direct_map)
3721                 return mmu_alloc_direct_roots(vcpu);
3722         else
3723                 return mmu_alloc_shadow_roots(vcpu);
3724 }
3725
3726 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3727 {
3728         int i;
3729         struct kvm_mmu_page *sp;
3730
3731         if (vcpu->arch.mmu->direct_map)
3732                 return;
3733
3734         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3735                 return;
3736
3737         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3738
3739         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3740                 hpa_t root = vcpu->arch.mmu->root_hpa;
3741                 sp = page_header(root);
3742
3743                 /*
3744                  * Even if another CPU was marking the SP as unsync-ed
3745                  * simultaneously, any guest page table changes are not
3746                  * guaranteed to be visible anyway until this VCPU issues a TLB
3747                  * flush strictly after those changes are made. We only need to
3748                  * ensure that the other CPU sets these flags before any actual
3749                  * changes to the page tables are made. The comments in
3750                  * mmu_need_write_protect() describe what could go wrong if this
3751                  * requirement isn't satisfied.
3752                  */
3753                 if (!smp_load_acquire(&sp->unsync) &&
3754                     !smp_load_acquire(&sp->unsync_children))
3755                         return;
3756
3757                 spin_lock(&vcpu->kvm->mmu_lock);
3758                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3759
3760                 mmu_sync_children(vcpu, sp);
3761
3762                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3763                 spin_unlock(&vcpu->kvm->mmu_lock);
3764                 return;
3765         }
3766
3767         spin_lock(&vcpu->kvm->mmu_lock);
3768         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3769
3770         for (i = 0; i < 4; ++i) {
3771                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3772
3773                 if (root && VALID_PAGE(root)) {
3774                         root &= PT64_BASE_ADDR_MASK;
3775                         sp = page_header(root);
3776                         mmu_sync_children(vcpu, sp);
3777                 }
3778         }
3779
3780         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3781         spin_unlock(&vcpu->kvm->mmu_lock);
3782 }
3783 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3784
3785 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3786                                   u32 access, struct x86_exception *exception)
3787 {
3788         if (exception)
3789                 exception->error_code = 0;
3790         return vaddr;
3791 }
3792
3793 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3794                                          u32 access,
3795                                          struct x86_exception *exception)
3796 {
3797         if (exception)
3798                 exception->error_code = 0;
3799         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3800 }
3801
3802 static bool
3803 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3804 {
3805         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3806
3807         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3808                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3809 }
3810
3811 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3812 {
3813         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3814 }
3815
3816 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3817 {
3818         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3819 }
3820
3821 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3822 {
3823         /*
3824          * A nested guest cannot use the MMIO cache if it is using nested
3825          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3826          */
3827         if (mmu_is_nested(vcpu))
3828                 return false;
3829
3830         if (direct)
3831                 return vcpu_match_mmio_gpa(vcpu, addr);
3832
3833         return vcpu_match_mmio_gva(vcpu, addr);
3834 }
3835
3836 /* return true if reserved bit is detected on spte. */
3837 static bool
3838 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3839 {
3840         struct kvm_shadow_walk_iterator iterator;
3841         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3842         int root, leaf;
3843         bool reserved = false;
3844
3845         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3846                 goto exit;
3847
3848         walk_shadow_page_lockless_begin(vcpu);
3849
3850         for (shadow_walk_init(&iterator, vcpu, addr),
3851                  leaf = root = iterator.level;
3852              shadow_walk_okay(&iterator);
3853              __shadow_walk_next(&iterator, spte)) {
3854                 spte = mmu_spte_get_lockless(iterator.sptep);
3855
3856                 sptes[leaf - 1] = spte;
3857                 leaf--;
3858
3859                 if (!is_shadow_present_pte(spte))
3860                         break;
3861
3862                 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
3863                                                     iterator.level);
3864         }
3865
3866         walk_shadow_page_lockless_end(vcpu);
3867
3868         if (reserved) {
3869                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3870                        __func__, addr);
3871                 while (root > leaf) {
3872                         pr_err("------ spte 0x%llx level %d.\n",
3873                                sptes[root - 1], root);
3874                         root--;
3875                 }
3876         }
3877 exit:
3878         *sptep = spte;
3879         return reserved;
3880 }
3881
3882 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3883 {
3884         u64 spte;
3885         bool reserved;
3886
3887         if (mmio_info_in_cache(vcpu, addr, direct))
3888                 return RET_PF_EMULATE;
3889
3890         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3891         if (WARN_ON(reserved))
3892                 return -EINVAL;
3893
3894         if (is_mmio_spte(spte)) {
3895                 gfn_t gfn = get_mmio_spte_gfn(spte);
3896                 unsigned access = get_mmio_spte_access(spte);
3897
3898                 if (!check_mmio_spte(vcpu, spte))
3899                         return RET_PF_INVALID;
3900
3901                 if (direct)
3902                         addr = 0;
3903
3904                 trace_handle_mmio_page_fault(addr, gfn, access);
3905                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3906                 return RET_PF_EMULATE;
3907         }
3908
3909         /*
3910          * If the page table is zapped by other cpus, let CPU fault again on
3911          * the address.
3912          */
3913         return RET_PF_RETRY;
3914 }
3915
3916 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3917                                          u32 error_code, gfn_t gfn)
3918 {
3919         if (unlikely(error_code & PFERR_RSVD_MASK))
3920                 return false;
3921
3922         if (!(error_code & PFERR_PRESENT_MASK) ||
3923               !(error_code & PFERR_WRITE_MASK))
3924                 return false;
3925
3926         /*
3927          * guest is writing the page which is write tracked which can
3928          * not be fixed by page fault handler.
3929          */
3930         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3931                 return true;
3932
3933         return false;
3934 }
3935
3936 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3937 {
3938         struct kvm_shadow_walk_iterator iterator;
3939         u64 spte;
3940
3941         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3942                 return;
3943
3944         walk_shadow_page_lockless_begin(vcpu);
3945         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3946                 clear_sp_write_flooding_count(iterator.sptep);
3947                 if (!is_shadow_present_pte(spte))
3948                         break;
3949         }
3950         walk_shadow_page_lockless_end(vcpu);
3951 }
3952
3953 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3954                                 u32 error_code, bool prefault)
3955 {
3956         gfn_t gfn = gva >> PAGE_SHIFT;
3957         int r;
3958
3959         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3960
3961         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3962                 return RET_PF_EMULATE;
3963
3964         r = mmu_topup_memory_caches(vcpu);
3965         if (r)
3966                 return r;
3967
3968         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
3969
3970
3971         return nonpaging_map(vcpu, gva & PAGE_MASK,
3972                              error_code, gfn, prefault);
3973 }
3974
3975 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3976 {
3977         struct kvm_arch_async_pf arch;
3978
3979         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3980         arch.gfn = gfn;
3981         arch.direct_map = vcpu->arch.mmu->direct_map;
3982         arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3983
3984         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3985 }
3986
3987 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3988 {
3989         if (unlikely(!lapic_in_kernel(vcpu) ||
3990                      kvm_event_needs_reinjection(vcpu) ||
3991                      vcpu->arch.exception.pending))
3992                 return false;
3993
3994         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3995                 return false;
3996
3997         return kvm_x86_ops->interrupt_allowed(vcpu);
3998 }
3999
4000 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4001                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
4002 {
4003         struct kvm_memory_slot *slot;
4004         bool async;
4005
4006         /*
4007          * Don't expose private memslots to L2.
4008          */
4009         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4010                 *pfn = KVM_PFN_NOSLOT;
4011                 return false;
4012         }
4013
4014         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4015         async = false;
4016         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4017         if (!async)
4018                 return false; /* *pfn has correct page already */
4019
4020         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4021                 trace_kvm_try_async_get_page(gva, gfn);
4022                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4023                         trace_kvm_async_pf_doublefault(gva, gfn);
4024                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4025                         return true;
4026                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4027                         return true;
4028         }
4029
4030         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4031         return false;
4032 }
4033
4034 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4035                                 u64 fault_address, char *insn, int insn_len)
4036 {
4037         int r = 1;
4038
4039         vcpu->arch.l1tf_flush_l1d = true;
4040         switch (vcpu->arch.apf.host_apf_reason) {
4041         default:
4042                 trace_kvm_page_fault(fault_address, error_code);
4043
4044                 if (kvm_event_needs_reinjection(vcpu))
4045                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4046                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4047                                 insn_len);
4048                 break;
4049         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4050                 vcpu->arch.apf.host_apf_reason = 0;
4051                 local_irq_disable();
4052                 kvm_async_pf_task_wait(fault_address, 0);
4053                 local_irq_enable();
4054                 break;
4055         case KVM_PV_REASON_PAGE_READY:
4056                 vcpu->arch.apf.host_apf_reason = 0;
4057                 local_irq_disable();
4058                 kvm_async_pf_task_wake(fault_address);
4059                 local_irq_enable();
4060                 break;
4061         }
4062         return r;
4063 }
4064 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4065
4066 static bool
4067 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4068 {
4069         int page_num = KVM_PAGES_PER_HPAGE(level);
4070
4071         gfn &= ~(page_num - 1);
4072
4073         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4074 }
4075
4076 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4077                           bool prefault)
4078 {
4079         kvm_pfn_t pfn;
4080         int r;
4081         int level;
4082         bool force_pt_level;
4083         gfn_t gfn = gpa >> PAGE_SHIFT;
4084         unsigned long mmu_seq;
4085         int write = error_code & PFERR_WRITE_MASK;
4086         bool map_writable;
4087
4088         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4089
4090         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4091                 return RET_PF_EMULATE;
4092
4093         r = mmu_topup_memory_caches(vcpu);
4094         if (r)
4095                 return r;
4096
4097         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4098                                                            PT_DIRECTORY_LEVEL);
4099         level = mapping_level(vcpu, gfn, &force_pt_level);
4100         if (likely(!force_pt_level)) {
4101                 if (level > PT_DIRECTORY_LEVEL &&
4102                     !check_hugepage_cache_consistency(vcpu, gfn, level))
4103                         level = PT_DIRECTORY_LEVEL;
4104                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4105         }
4106
4107         if (fast_page_fault(vcpu, gpa, level, error_code))
4108                 return RET_PF_RETRY;
4109
4110         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4111         smp_rmb();
4112
4113         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4114                 return RET_PF_RETRY;
4115
4116         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4117                 return r;
4118
4119         spin_lock(&vcpu->kvm->mmu_lock);
4120         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4121                 goto out_unlock;
4122         if (make_mmu_pages_available(vcpu) < 0)
4123                 goto out_unlock;
4124         if (likely(!force_pt_level))
4125                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
4126         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
4127         spin_unlock(&vcpu->kvm->mmu_lock);
4128
4129         return r;
4130
4131 out_unlock:
4132         spin_unlock(&vcpu->kvm->mmu_lock);
4133         kvm_release_pfn_clean(pfn);
4134         return RET_PF_RETRY;
4135 }
4136
4137 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4138                                    struct kvm_mmu *context)
4139 {
4140         context->page_fault = nonpaging_page_fault;
4141         context->gva_to_gpa = nonpaging_gva_to_gpa;
4142         context->sync_page = nonpaging_sync_page;
4143         context->invlpg = nonpaging_invlpg;
4144         context->update_pte = nonpaging_update_pte;
4145         context->root_level = 0;
4146         context->shadow_root_level = PT32E_ROOT_LEVEL;
4147         context->direct_map = true;
4148         context->nx = false;
4149 }
4150
4151 /*
4152  * Find out if a previously cached root matching the new CR3/role is available.
4153  * The current root is also inserted into the cache.
4154  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4155  * returned.
4156  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4157  * false is returned. This root should now be freed by the caller.
4158  */
4159 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4160                                   union kvm_mmu_page_role new_role)
4161 {
4162         uint i;
4163         struct kvm_mmu_root_info root;
4164         struct kvm_mmu *mmu = vcpu->arch.mmu;
4165
4166         root.cr3 = mmu->get_cr3(vcpu);
4167         root.hpa = mmu->root_hpa;
4168
4169         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4170                 swap(root, mmu->prev_roots[i]);
4171
4172                 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4173                     page_header(root.hpa) != NULL &&
4174                     new_role.word == page_header(root.hpa)->role.word)
4175                         break;
4176         }
4177
4178         mmu->root_hpa = root.hpa;
4179
4180         return i < KVM_MMU_NUM_PREV_ROOTS;
4181 }
4182
4183 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4184                             union kvm_mmu_page_role new_role,
4185                             bool skip_tlb_flush)
4186 {
4187         struct kvm_mmu *mmu = vcpu->arch.mmu;
4188
4189         /*
4190          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4191          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4192          * later if necessary.
4193          */
4194         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4195             mmu->root_level >= PT64_ROOT_4LEVEL) {
4196                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4197                         return false;
4198
4199                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4200                         /*
4201                          * It is possible that the cached previous root page is
4202                          * obsolete because of a change in the MMU
4203                          * generation number. However, that is accompanied by
4204                          * KVM_REQ_MMU_RELOAD, which will free the root that we
4205                          * have set here and allocate a new one.
4206                          */
4207
4208                         kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4209                         if (!skip_tlb_flush) {
4210                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4211                                 kvm_x86_ops->tlb_flush(vcpu, true);
4212                         }
4213
4214                         /*
4215                          * The last MMIO access's GVA and GPA are cached in the
4216                          * VCPU. When switching to a new CR3, that GVA->GPA
4217                          * mapping may no longer be valid. So clear any cached
4218                          * MMIO info even when we don't need to sync the shadow
4219                          * page tables.
4220                          */
4221                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4222
4223                         __clear_sp_write_flooding_count(
4224                                 page_header(mmu->root_hpa));
4225
4226                         return true;
4227                 }
4228         }
4229
4230         return false;
4231 }
4232
4233 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4234                               union kvm_mmu_page_role new_role,
4235                               bool skip_tlb_flush)
4236 {
4237         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4238                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4239                                    KVM_MMU_ROOT_CURRENT);
4240 }
4241
4242 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4243 {
4244         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4245                           skip_tlb_flush);
4246 }
4247 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4248
4249 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4250 {
4251         return kvm_read_cr3(vcpu);
4252 }
4253
4254 static void inject_page_fault(struct kvm_vcpu *vcpu,
4255                               struct x86_exception *fault)
4256 {
4257         vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4258 }
4259
4260 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4261                            unsigned access, int *nr_present)
4262 {
4263         if (unlikely(is_mmio_spte(*sptep))) {
4264                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4265                         mmu_spte_clear_no_track(sptep);
4266                         return true;
4267                 }
4268
4269                 (*nr_present)++;
4270                 mark_mmio_spte(vcpu, sptep, gfn, access);
4271                 return true;
4272         }
4273
4274         return false;
4275 }
4276
4277 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4278                                 unsigned level, unsigned gpte)
4279 {
4280         /*
4281          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4282          * If it is clear, there are no large pages at this level, so clear
4283          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4284          */
4285         gpte &= level - mmu->last_nonleaf_level;
4286
4287         /*
4288          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4289          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4290          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4291          */
4292         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4293
4294         return gpte & PT_PAGE_SIZE_MASK;
4295 }
4296
4297 #define PTTYPE_EPT 18 /* arbitrary */
4298 #define PTTYPE PTTYPE_EPT
4299 #include "paging_tmpl.h"
4300 #undef PTTYPE
4301
4302 #define PTTYPE 64
4303 #include "paging_tmpl.h"
4304 #undef PTTYPE
4305
4306 #define PTTYPE 32
4307 #include "paging_tmpl.h"
4308 #undef PTTYPE
4309
4310 static void
4311 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4312                         struct rsvd_bits_validate *rsvd_check,
4313                         int maxphyaddr, int level, bool nx, bool gbpages,
4314                         bool pse, bool amd)
4315 {
4316         u64 exb_bit_rsvd = 0;
4317         u64 gbpages_bit_rsvd = 0;
4318         u64 nonleaf_bit8_rsvd = 0;
4319
4320         rsvd_check->bad_mt_xwr = 0;
4321
4322         if (!nx)
4323                 exb_bit_rsvd = rsvd_bits(63, 63);
4324         if (!gbpages)
4325                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4326
4327         /*
4328          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4329          * leaf entries) on AMD CPUs only.
4330          */
4331         if (amd)
4332                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4333
4334         switch (level) {
4335         case PT32_ROOT_LEVEL:
4336                 /* no rsvd bits for 2 level 4K page table entries */
4337                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4338                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4339                 rsvd_check->rsvd_bits_mask[1][0] =
4340                         rsvd_check->rsvd_bits_mask[0][0];
4341
4342                 if (!pse) {
4343                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4344                         break;
4345                 }
4346
4347                 if (is_cpuid_PSE36())
4348                         /* 36bits PSE 4MB page */
4349                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4350                 else
4351                         /* 32 bits PSE 4MB page */
4352                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4353                 break;
4354         case PT32E_ROOT_LEVEL:
4355                 rsvd_check->rsvd_bits_mask[0][2] =
4356                         rsvd_bits(maxphyaddr, 63) |
4357                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4358                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4359                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4360                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4361                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4362                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4363                         rsvd_bits(maxphyaddr, 62) |
4364                         rsvd_bits(13, 20);              /* large page */
4365                 rsvd_check->rsvd_bits_mask[1][0] =
4366                         rsvd_check->rsvd_bits_mask[0][0];
4367                 break;
4368         case PT64_ROOT_5LEVEL:
4369                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4370                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4371                         rsvd_bits(maxphyaddr, 51);
4372                 rsvd_check->rsvd_bits_mask[1][4] =
4373                         rsvd_check->rsvd_bits_mask[0][4];
4374                 /* fall through */
4375         case PT64_ROOT_4LEVEL:
4376                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4377                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4378                         rsvd_bits(maxphyaddr, 51);
4379                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4380                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4381                         rsvd_bits(maxphyaddr, 51);
4382                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4383                         rsvd_bits(maxphyaddr, 51);
4384                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4385                         rsvd_bits(maxphyaddr, 51);
4386                 rsvd_check->rsvd_bits_mask[1][3] =
4387                         rsvd_check->rsvd_bits_mask[0][3];
4388                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4389                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4390                         rsvd_bits(13, 29);
4391                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4392                         rsvd_bits(maxphyaddr, 51) |
4393                         rsvd_bits(13, 20);              /* large page */
4394                 rsvd_check->rsvd_bits_mask[1][0] =
4395                         rsvd_check->rsvd_bits_mask[0][0];
4396                 break;
4397         }
4398 }
4399
4400 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4401                                   struct kvm_mmu *context)
4402 {
4403         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4404                                 cpuid_maxphyaddr(vcpu), context->root_level,
4405                                 context->nx,
4406                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4407                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4408 }
4409
4410 static void
4411 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4412                             int maxphyaddr, bool execonly)
4413 {
4414         u64 bad_mt_xwr;
4415
4416         rsvd_check->rsvd_bits_mask[0][4] =
4417                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4418         rsvd_check->rsvd_bits_mask[0][3] =
4419                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4420         rsvd_check->rsvd_bits_mask[0][2] =
4421                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4422         rsvd_check->rsvd_bits_mask[0][1] =
4423                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4424         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4425
4426         /* large page */
4427         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4428         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4429         rsvd_check->rsvd_bits_mask[1][2] =
4430                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4431         rsvd_check->rsvd_bits_mask[1][1] =
4432                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4433         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4434
4435         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4436         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4437         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4438         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4439         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4440         if (!execonly) {
4441                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4442                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4443         }
4444         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4445 }
4446
4447 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4448                 struct kvm_mmu *context, bool execonly)
4449 {
4450         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4451                                     cpuid_maxphyaddr(vcpu), execonly);
4452 }
4453
4454 /*
4455  * the page table on host is the shadow page table for the page
4456  * table in guest or amd nested guest, its mmu features completely
4457  * follow the features in guest.
4458  */
4459 void
4460 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4461 {
4462         bool uses_nx = context->nx ||
4463                 context->mmu_role.base.smep_andnot_wp;
4464         struct rsvd_bits_validate *shadow_zero_check;
4465         int i;
4466
4467         /*
4468          * Passing "true" to the last argument is okay; it adds a check
4469          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4470          */
4471         shadow_zero_check = &context->shadow_zero_check;
4472         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4473                                 boot_cpu_data.x86_phys_bits,
4474                                 context->shadow_root_level, uses_nx,
4475                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4476                                 is_pse(vcpu), true);
4477
4478         if (!shadow_me_mask)
4479                 return;
4480
4481         for (i = context->shadow_root_level; --i >= 0;) {
4482                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4483                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4484         }
4485
4486 }
4487 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4488
4489 static inline bool boot_cpu_is_amd(void)
4490 {
4491         WARN_ON_ONCE(!tdp_enabled);
4492         return shadow_x_mask == 0;
4493 }
4494
4495 /*
4496  * the direct page table on host, use as much mmu features as
4497  * possible, however, kvm currently does not do execution-protection.
4498  */
4499 static void
4500 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4501                                 struct kvm_mmu *context)
4502 {
4503         struct rsvd_bits_validate *shadow_zero_check;
4504         int i;
4505
4506         shadow_zero_check = &context->shadow_zero_check;
4507
4508         if (boot_cpu_is_amd())
4509                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4510                                         boot_cpu_data.x86_phys_bits,
4511                                         context->shadow_root_level, false,
4512                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4513                                         true, true);
4514         else
4515                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4516                                             boot_cpu_data.x86_phys_bits,
4517                                             false);
4518
4519         if (!shadow_me_mask)
4520                 return;
4521
4522         for (i = context->shadow_root_level; --i >= 0;) {
4523                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4524                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4525         }
4526 }
4527
4528 /*
4529  * as the comments in reset_shadow_zero_bits_mask() except it
4530  * is the shadow page table for intel nested guest.
4531  */
4532 static void
4533 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4534                                 struct kvm_mmu *context, bool execonly)
4535 {
4536         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4537                                     boot_cpu_data.x86_phys_bits, execonly);
4538 }
4539
4540 #define BYTE_MASK(access) \
4541         ((1 & (access) ? 2 : 0) | \
4542          (2 & (access) ? 4 : 0) | \
4543          (3 & (access) ? 8 : 0) | \
4544          (4 & (access) ? 16 : 0) | \
4545          (5 & (access) ? 32 : 0) | \
4546          (6 & (access) ? 64 : 0) | \
4547          (7 & (access) ? 128 : 0))
4548
4549
4550 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4551                                       struct kvm_mmu *mmu, bool ept)
4552 {
4553         unsigned byte;
4554
4555         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4556         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4557         const u8 u = BYTE_MASK(ACC_USER_MASK);
4558
4559         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4560         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4561         bool cr0_wp = is_write_protection(vcpu);
4562
4563         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4564                 unsigned pfec = byte << 1;
4565
4566                 /*
4567                  * Each "*f" variable has a 1 bit for each UWX value
4568                  * that causes a fault with the given PFEC.
4569                  */
4570
4571                 /* Faults from writes to non-writable pages */
4572                 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4573                 /* Faults from user mode accesses to supervisor pages */
4574                 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4575                 /* Faults from fetches of non-executable pages*/
4576                 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4577                 /* Faults from kernel mode fetches of user pages */
4578                 u8 smepf = 0;
4579                 /* Faults from kernel mode accesses of user pages */
4580                 u8 smapf = 0;
4581
4582                 if (!ept) {
4583                         /* Faults from kernel mode accesses to user pages */
4584                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4585
4586                         /* Not really needed: !nx will cause pte.nx to fault */
4587                         if (!mmu->nx)
4588                                 ff = 0;
4589
4590                         /* Allow supervisor writes if !cr0.wp */
4591                         if (!cr0_wp)
4592                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4593
4594                         /* Disallow supervisor fetches of user code if cr4.smep */
4595                         if (cr4_smep)
4596                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4597
4598                         /*
4599                          * SMAP:kernel-mode data accesses from user-mode
4600                          * mappings should fault. A fault is considered
4601                          * as a SMAP violation if all of the following
4602                          * conditions are true:
4603                          *   - X86_CR4_SMAP is set in CR4
4604                          *   - A user page is accessed
4605                          *   - The access is not a fetch
4606                          *   - Page fault in kernel mode
4607                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4608                          *
4609                          * Here, we cover the first three conditions.
4610                          * The fourth is computed dynamically in permission_fault();
4611                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4612                          * *not* subject to SMAP restrictions.
4613                          */
4614                         if (cr4_smap)
4615                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4616                 }
4617
4618                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4619         }
4620 }
4621
4622 /*
4623 * PKU is an additional mechanism by which the paging controls access to
4624 * user-mode addresses based on the value in the PKRU register.  Protection
4625 * key violations are reported through a bit in the page fault error code.
4626 * Unlike other bits of the error code, the PK bit is not known at the
4627 * call site of e.g. gva_to_gpa; it must be computed directly in
4628 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4629 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4630 *
4631 * In particular the following conditions come from the error code, the
4632 * page tables and the machine state:
4633 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4634 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4635 * - PK is always zero if U=0 in the page tables
4636 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4637 *
4638 * The PKRU bitmask caches the result of these four conditions.  The error
4639 * code (minus the P bit) and the page table's U bit form an index into the
4640 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4641 * with the two bits of the PKRU register corresponding to the protection key.
4642 * For the first three conditions above the bits will be 00, thus masking
4643 * away both AD and WD.  For all reads or if the last condition holds, WD
4644 * only will be masked away.
4645 */
4646 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4647                                 bool ept)
4648 {
4649         unsigned bit;
4650         bool wp;
4651
4652         if (ept) {
4653                 mmu->pkru_mask = 0;
4654                 return;
4655         }
4656
4657         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4658         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4659                 mmu->pkru_mask = 0;
4660                 return;
4661         }
4662
4663         wp = is_write_protection(vcpu);
4664
4665         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4666                 unsigned pfec, pkey_bits;
4667                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4668
4669                 pfec = bit << 1;
4670                 ff = pfec & PFERR_FETCH_MASK;
4671                 uf = pfec & PFERR_USER_MASK;
4672                 wf = pfec & PFERR_WRITE_MASK;
4673
4674                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4675                 pte_user = pfec & PFERR_RSVD_MASK;
4676
4677                 /*
4678                  * Only need to check the access which is not an
4679                  * instruction fetch and is to a user page.
4680                  */
4681                 check_pkey = (!ff && pte_user);
4682                 /*
4683                  * write access is controlled by PKRU if it is a
4684                  * user access or CR0.WP = 1.
4685                  */
4686                 check_write = check_pkey && wf && (uf || wp);
4687
4688                 /* PKRU.AD stops both read and write access. */
4689                 pkey_bits = !!check_pkey;
4690                 /* PKRU.WD stops write access. */
4691                 pkey_bits |= (!!check_write) << 1;
4692
4693                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4694         }
4695 }
4696
4697 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4698 {
4699         unsigned root_level = mmu->root_level;
4700
4701         mmu->last_nonleaf_level = root_level;
4702         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4703                 mmu->last_nonleaf_level++;
4704 }
4705
4706 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4707                                          struct kvm_mmu *context,
4708                                          int level)
4709 {
4710         context->nx = is_nx(vcpu);
4711         context->root_level = level;
4712
4713         reset_rsvds_bits_mask(vcpu, context);
4714         update_permission_bitmask(vcpu, context, false);
4715         update_pkru_bitmask(vcpu, context, false);
4716         update_last_nonleaf_level(vcpu, context);
4717
4718         MMU_WARN_ON(!is_pae(vcpu));
4719         context->page_fault = paging64_page_fault;
4720         context->gva_to_gpa = paging64_gva_to_gpa;
4721         context->sync_page = paging64_sync_page;
4722         context->invlpg = paging64_invlpg;
4723         context->update_pte = paging64_update_pte;
4724         context->shadow_root_level = level;
4725         context->direct_map = false;
4726 }
4727
4728 static void paging64_init_context(struct kvm_vcpu *vcpu,
4729                                   struct kvm_mmu *context)
4730 {
4731         int root_level = is_la57_mode(vcpu) ?
4732                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4733
4734         paging64_init_context_common(vcpu, context, root_level);
4735 }
4736
4737 static void paging32_init_context(struct kvm_vcpu *vcpu,
4738                                   struct kvm_mmu *context)
4739 {
4740         context->nx = false;
4741         context->root_level = PT32_ROOT_LEVEL;
4742
4743         reset_rsvds_bits_mask(vcpu, context);
4744         update_permission_bitmask(vcpu, context, false);
4745         update_pkru_bitmask(vcpu, context, false);
4746         update_last_nonleaf_level(vcpu, context);
4747
4748         context->page_fault = paging32_page_fault;
4749         context->gva_to_gpa = paging32_gva_to_gpa;
4750         context->sync_page = paging32_sync_page;
4751         context->invlpg = paging32_invlpg;
4752         context->update_pte = paging32_update_pte;
4753         context->shadow_root_level = PT32E_ROOT_LEVEL;
4754         context->direct_map = false;
4755 }
4756
4757 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4758                                    struct kvm_mmu *context)
4759 {
4760         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4761 }
4762
4763 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4764 {
4765         union kvm_mmu_extended_role ext = {0};
4766
4767         ext.cr0_pg = !!is_paging(vcpu);
4768         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4769         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4770         ext.cr4_pse = !!is_pse(vcpu);
4771         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4772         ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4773
4774         ext.valid = 1;
4775
4776         return ext;
4777 }
4778
4779 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4780                                                    bool base_only)
4781 {
4782         union kvm_mmu_role role = {0};
4783
4784         role.base.access = ACC_ALL;
4785         role.base.nxe = !!is_nx(vcpu);
4786         role.base.cr4_pae = !!is_pae(vcpu);
4787         role.base.cr0_wp = is_write_protection(vcpu);
4788         role.base.smm = is_smm(vcpu);
4789         role.base.guest_mode = is_guest_mode(vcpu);
4790
4791         if (base_only)
4792                 return role;
4793
4794         role.ext = kvm_calc_mmu_role_ext(vcpu);
4795
4796         return role;
4797 }
4798
4799 static union kvm_mmu_role
4800 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4801 {
4802         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4803
4804         role.base.ad_disabled = (shadow_accessed_mask == 0);
4805         role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4806         role.base.direct = true;
4807
4808         return role;
4809 }
4810
4811 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4812 {
4813         struct kvm_mmu *context = vcpu->arch.mmu;
4814         union kvm_mmu_role new_role =
4815                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4816
4817         new_role.base.word &= mmu_base_role_mask.word;
4818         if (new_role.as_u64 == context->mmu_role.as_u64)
4819                 return;
4820
4821         context->mmu_role.as_u64 = new_role.as_u64;
4822         context->page_fault = tdp_page_fault;
4823         context->sync_page = nonpaging_sync_page;
4824         context->invlpg = nonpaging_invlpg;
4825         context->update_pte = nonpaging_update_pte;
4826         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4827         context->direct_map = true;
4828         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4829         context->get_cr3 = get_cr3;
4830         context->get_pdptr = kvm_pdptr_read;
4831         context->inject_page_fault = kvm_inject_page_fault;
4832
4833         if (!is_paging(vcpu)) {
4834                 context->nx = false;
4835                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4836                 context->root_level = 0;
4837         } else if (is_long_mode(vcpu)) {
4838                 context->nx = is_nx(vcpu);
4839                 context->root_level = is_la57_mode(vcpu) ?
4840                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4841                 reset_rsvds_bits_mask(vcpu, context);
4842                 context->gva_to_gpa = paging64_gva_to_gpa;
4843         } else if (is_pae(vcpu)) {
4844                 context->nx = is_nx(vcpu);
4845                 context->root_level = PT32E_ROOT_LEVEL;
4846                 reset_rsvds_bits_mask(vcpu, context);
4847                 context->gva_to_gpa = paging64_gva_to_gpa;
4848         } else {
4849                 context->nx = false;
4850                 context->root_level = PT32_ROOT_LEVEL;
4851                 reset_rsvds_bits_mask(vcpu, context);
4852                 context->gva_to_gpa = paging32_gva_to_gpa;
4853         }
4854
4855         update_permission_bitmask(vcpu, context, false);
4856         update_pkru_bitmask(vcpu, context, false);
4857         update_last_nonleaf_level(vcpu, context);
4858         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4859 }
4860
4861 static union kvm_mmu_role
4862 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4863 {
4864         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4865
4866         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4867                 !is_write_protection(vcpu);
4868         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4869                 !is_write_protection(vcpu);
4870         role.base.direct = !is_paging(vcpu);
4871
4872         if (!is_long_mode(vcpu))
4873                 role.base.level = PT32E_ROOT_LEVEL;
4874         else if (is_la57_mode(vcpu))
4875                 role.base.level = PT64_ROOT_5LEVEL;
4876         else
4877                 role.base.level = PT64_ROOT_4LEVEL;
4878
4879         return role;
4880 }
4881
4882 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4883 {
4884         struct kvm_mmu *context = vcpu->arch.mmu;
4885         union kvm_mmu_role new_role =
4886                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4887
4888         new_role.base.word &= mmu_base_role_mask.word;
4889         if (new_role.as_u64 == context->mmu_role.as_u64)
4890                 return;
4891
4892         if (!is_paging(vcpu))
4893                 nonpaging_init_context(vcpu, context);
4894         else if (is_long_mode(vcpu))
4895                 paging64_init_context(vcpu, context);
4896         else if (is_pae(vcpu))
4897                 paging32E_init_context(vcpu, context);
4898         else
4899                 paging32_init_context(vcpu, context);
4900
4901         context->mmu_role.as_u64 = new_role.as_u64;
4902         reset_shadow_zero_bits_mask(vcpu, context);
4903 }
4904 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4905
4906 static union kvm_mmu_role
4907 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4908                                    bool execonly)
4909 {
4910         union kvm_mmu_role role;
4911
4912         /* Base role is inherited from root_mmu */
4913         role.base.word = vcpu->arch.root_mmu.mmu_role.base.word;
4914         role.ext = kvm_calc_mmu_role_ext(vcpu);
4915
4916         role.base.level = PT64_ROOT_4LEVEL;
4917         role.base.direct = false;
4918         role.base.ad_disabled = !accessed_dirty;
4919         role.base.guest_mode = true;
4920         role.base.access = ACC_ALL;
4921
4922         role.ext.execonly = execonly;
4923
4924         return role;
4925 }
4926
4927 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4928                              bool accessed_dirty, gpa_t new_eptp)
4929 {
4930         struct kvm_mmu *context = vcpu->arch.mmu;
4931         union kvm_mmu_role new_role =
4932                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4933                                                    execonly);
4934
4935         __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4936
4937         new_role.base.word &= mmu_base_role_mask.word;
4938         if (new_role.as_u64 == context->mmu_role.as_u64)
4939                 return;
4940
4941         context->shadow_root_level = PT64_ROOT_4LEVEL;
4942
4943         context->nx = true;
4944         context->ept_ad = accessed_dirty;
4945         context->page_fault = ept_page_fault;
4946         context->gva_to_gpa = ept_gva_to_gpa;
4947         context->sync_page = ept_sync_page;
4948         context->invlpg = ept_invlpg;
4949         context->update_pte = ept_update_pte;
4950         context->root_level = PT64_ROOT_4LEVEL;
4951         context->direct_map = false;
4952         context->mmu_role.as_u64 = new_role.as_u64;
4953
4954         update_permission_bitmask(vcpu, context, true);
4955         update_pkru_bitmask(vcpu, context, true);
4956         update_last_nonleaf_level(vcpu, context);
4957         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4958         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4959 }
4960 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4961
4962 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4963 {
4964         struct kvm_mmu *context = vcpu->arch.mmu;
4965
4966         kvm_init_shadow_mmu(vcpu);
4967         context->set_cr3           = kvm_x86_ops->set_cr3;
4968         context->get_cr3           = get_cr3;
4969         context->get_pdptr         = kvm_pdptr_read;
4970         context->inject_page_fault = kvm_inject_page_fault;
4971 }
4972
4973 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4974 {
4975         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4976         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4977
4978         new_role.base.word &= mmu_base_role_mask.word;
4979         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4980                 return;
4981
4982         g_context->mmu_role.as_u64 = new_role.as_u64;
4983         g_context->get_cr3           = get_cr3;
4984         g_context->get_pdptr         = kvm_pdptr_read;
4985         g_context->inject_page_fault = kvm_inject_page_fault;
4986
4987         /*
4988          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4989          * L1's nested page tables (e.g. EPT12). The nested translation
4990          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4991          * L2's page tables as the first level of translation and L1's
4992          * nested page tables as the second level of translation. Basically
4993          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4994          */
4995         if (!is_paging(vcpu)) {
4996                 g_context->nx = false;
4997                 g_context->root_level = 0;
4998                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4999         } else if (is_long_mode(vcpu)) {
5000                 g_context->nx = is_nx(vcpu);
5001                 g_context->root_level = is_la57_mode(vcpu) ?
5002                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5003                 reset_rsvds_bits_mask(vcpu, g_context);
5004                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5005         } else if (is_pae(vcpu)) {
5006                 g_context->nx = is_nx(vcpu);
5007                 g_context->root_level = PT32E_ROOT_LEVEL;
5008                 reset_rsvds_bits_mask(vcpu, g_context);
5009                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5010         } else {
5011                 g_context->nx = false;
5012                 g_context->root_level = PT32_ROOT_LEVEL;
5013                 reset_rsvds_bits_mask(vcpu, g_context);
5014                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5015         }
5016
5017         update_permission_bitmask(vcpu, g_context, false);
5018         update_pkru_bitmask(vcpu, g_context, false);
5019         update_last_nonleaf_level(vcpu, g_context);
5020 }
5021
5022 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5023 {
5024         if (reset_roots) {
5025                 uint i;
5026
5027                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5028
5029                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5030                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5031         }
5032
5033         if (mmu_is_nested(vcpu))
5034                 init_kvm_nested_mmu(vcpu);
5035         else if (tdp_enabled)
5036                 init_kvm_tdp_mmu(vcpu);
5037         else
5038                 init_kvm_softmmu(vcpu);
5039 }
5040 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5041
5042 static union kvm_mmu_page_role
5043 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5044 {
5045         union kvm_mmu_role role;
5046
5047         if (tdp_enabled)
5048                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5049         else
5050                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5051
5052         return role.base;
5053 }
5054
5055 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5056 {
5057         kvm_mmu_unload(vcpu);
5058         kvm_init_mmu(vcpu, true);
5059 }
5060 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5061
5062 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5063 {
5064         int r;
5065
5066         r = mmu_topup_memory_caches(vcpu);
5067         if (r)
5068                 goto out;
5069         r = mmu_alloc_roots(vcpu);
5070         kvm_mmu_sync_roots(vcpu);
5071         if (r)
5072                 goto out;
5073         kvm_mmu_load_cr3(vcpu);
5074         kvm_x86_ops->tlb_flush(vcpu, true);
5075 out:
5076         return r;
5077 }
5078 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5079
5080 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5081 {
5082         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5083         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5084         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5085         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5086 }
5087 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5088
5089 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5090                                   struct kvm_mmu_page *sp, u64 *spte,
5091                                   const void *new)
5092 {
5093         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5094                 ++vcpu->kvm->stat.mmu_pde_zapped;
5095                 return;
5096         }
5097
5098         ++vcpu->kvm->stat.mmu_pte_updated;
5099         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5100 }
5101
5102 static bool need_remote_flush(u64 old, u64 new)
5103 {
5104         if (!is_shadow_present_pte(old))
5105                 return false;
5106         if (!is_shadow_present_pte(new))
5107                 return true;
5108         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5109                 return true;
5110         old ^= shadow_nx_mask;
5111         new ^= shadow_nx_mask;
5112         return (old & ~new & PT64_PERM_MASK) != 0;
5113 }
5114
5115 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5116                                     int *bytes)
5117 {
5118         u64 gentry = 0;
5119         int r;
5120
5121         /*
5122          * Assume that the pte write on a page table of the same type
5123          * as the current vcpu paging mode since we update the sptes only
5124          * when they have the same mode.
5125          */
5126         if (is_pae(vcpu) && *bytes == 4) {
5127                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5128                 *gpa &= ~(gpa_t)7;
5129                 *bytes = 8;
5130         }
5131
5132         if (*bytes == 4 || *bytes == 8) {
5133                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5134                 if (r)
5135                         gentry = 0;
5136         }
5137
5138         return gentry;
5139 }
5140
5141 /*
5142  * If we're seeing too many writes to a page, it may no longer be a page table,
5143  * or we may be forking, in which case it is better to unmap the page.
5144  */
5145 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5146 {
5147         /*
5148          * Skip write-flooding detected for the sp whose level is 1, because
5149          * it can become unsync, then the guest page is not write-protected.
5150          */
5151         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5152                 return false;
5153
5154         atomic_inc(&sp->write_flooding_count);
5155         return atomic_read(&sp->write_flooding_count) >= 3;
5156 }
5157
5158 /*
5159  * Misaligned accesses are too much trouble to fix up; also, they usually
5160  * indicate a page is not used as a page table.
5161  */
5162 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5163                                     int bytes)
5164 {
5165         unsigned offset, pte_size, misaligned;
5166
5167         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5168                  gpa, bytes, sp->role.word);
5169
5170         offset = offset_in_page(gpa);
5171         pte_size = sp->role.cr4_pae ? 8 : 4;
5172
5173         /*
5174          * Sometimes, the OS only writes the last one bytes to update status
5175          * bits, for example, in linux, andb instruction is used in clear_bit().
5176          */
5177         if (!(offset & (pte_size - 1)) && bytes == 1)
5178                 return false;
5179
5180         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5181         misaligned |= bytes < 4;
5182
5183         return misaligned;
5184 }
5185
5186 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5187 {
5188         unsigned page_offset, quadrant;
5189         u64 *spte;
5190         int level;
5191
5192         page_offset = offset_in_page(gpa);
5193         level = sp->role.level;
5194         *nspte = 1;
5195         if (!sp->role.cr4_pae) {
5196                 page_offset <<= 1;      /* 32->64 */
5197                 /*
5198                  * A 32-bit pde maps 4MB while the shadow pdes map
5199                  * only 2MB.  So we need to double the offset again
5200                  * and zap two pdes instead of one.
5201                  */
5202                 if (level == PT32_ROOT_LEVEL) {
5203                         page_offset &= ~7; /* kill rounding error */
5204                         page_offset <<= 1;
5205                         *nspte = 2;
5206                 }
5207                 quadrant = page_offset >> PAGE_SHIFT;
5208                 page_offset &= ~PAGE_MASK;
5209                 if (quadrant != sp->role.quadrant)
5210                         return NULL;
5211         }
5212
5213         spte = &sp->spt[page_offset / sizeof(*spte)];
5214         return spte;
5215 }
5216
5217 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5218                               const u8 *new, int bytes,
5219                               struct kvm_page_track_notifier_node *node)
5220 {
5221         gfn_t gfn = gpa >> PAGE_SHIFT;
5222         struct kvm_mmu_page *sp;
5223         LIST_HEAD(invalid_list);
5224         u64 entry, gentry, *spte;
5225         int npte;
5226         bool remote_flush, local_flush;
5227
5228         /*
5229          * If we don't have indirect shadow pages, it means no page is
5230          * write-protected, so we can exit simply.
5231          */
5232         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5233                 return;
5234
5235         remote_flush = local_flush = false;
5236
5237         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5238
5239         /*
5240          * No need to care whether allocation memory is successful
5241          * or not since pte prefetch is skiped if it does not have
5242          * enough objects in the cache.
5243          */
5244         mmu_topup_memory_caches(vcpu);
5245
5246         spin_lock(&vcpu->kvm->mmu_lock);
5247
5248         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5249
5250         ++vcpu->kvm->stat.mmu_pte_write;
5251         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5252
5253         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5254                 if (detect_write_misaligned(sp, gpa, bytes) ||
5255                       detect_write_flooding(sp)) {
5256                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5257                         ++vcpu->kvm->stat.mmu_flooded;
5258                         continue;
5259                 }
5260
5261                 spte = get_written_sptes(sp, gpa, &npte);
5262                 if (!spte)
5263                         continue;
5264
5265                 local_flush = true;
5266                 while (npte--) {
5267                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5268
5269                         entry = *spte;
5270                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5271                         if (gentry &&
5272                               !((sp->role.word ^ base_role)
5273                               & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5274                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5275                         if (need_remote_flush(entry, *spte))
5276                                 remote_flush = true;
5277                         ++spte;
5278                 }
5279         }
5280         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5281         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5282         spin_unlock(&vcpu->kvm->mmu_lock);
5283 }
5284
5285 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5286 {
5287         gpa_t gpa;
5288         int r;
5289
5290         if (vcpu->arch.mmu->direct_map)
5291                 return 0;
5292
5293         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5294
5295         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5296
5297         return r;
5298 }
5299 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5300
5301 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5302 {
5303         LIST_HEAD(invalid_list);
5304
5305         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5306                 return 0;
5307
5308         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5309                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5310                         break;
5311
5312                 ++vcpu->kvm->stat.mmu_recycled;
5313         }
5314         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5315
5316         if (!kvm_mmu_available_pages(vcpu->kvm))
5317                 return -ENOSPC;
5318         return 0;
5319 }
5320
5321 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5322                        void *insn, int insn_len)
5323 {
5324         int r, emulation_type = 0;
5325         enum emulation_result er;
5326         bool direct = vcpu->arch.mmu->direct_map;
5327
5328         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5329         if (vcpu->arch.mmu->direct_map) {
5330                 vcpu->arch.gpa_available = true;
5331                 vcpu->arch.gpa_val = cr2;
5332         }
5333
5334         r = RET_PF_INVALID;
5335         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5336                 r = handle_mmio_page_fault(vcpu, cr2, direct);
5337                 if (r == RET_PF_EMULATE)
5338                         goto emulate;
5339         }
5340
5341         if (r == RET_PF_INVALID) {
5342                 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5343                                                lower_32_bits(error_code),
5344                                                false);
5345                 WARN_ON(r == RET_PF_INVALID);
5346         }
5347
5348         if (r == RET_PF_RETRY)
5349                 return 1;
5350         if (r < 0)
5351                 return r;
5352
5353         /*
5354          * Before emulating the instruction, check if the error code
5355          * was due to a RO violation while translating the guest page.
5356          * This can occur when using nested virtualization with nested
5357          * paging in both guests. If true, we simply unprotect the page
5358          * and resume the guest.
5359          */
5360         if (vcpu->arch.mmu->direct_map &&
5361             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5362                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5363                 return 1;
5364         }
5365
5366         /*
5367          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5368          * optimistically try to just unprotect the page and let the processor
5369          * re-execute the instruction that caused the page fault.  Do not allow
5370          * retrying MMIO emulation, as it's not only pointless but could also
5371          * cause us to enter an infinite loop because the processor will keep
5372          * faulting on the non-existent MMIO address.  Retrying an instruction
5373          * from a nested guest is also pointless and dangerous as we are only
5374          * explicitly shadowing L1's page tables, i.e. unprotecting something
5375          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5376          */
5377         if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5378                 emulation_type = EMULTYPE_ALLOW_RETRY;
5379 emulate:
5380         /*
5381          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5382          * This can happen if a guest gets a page-fault on data access but the HW
5383          * table walker is not able to read the instruction page (e.g instruction
5384          * page is not present in memory). In those cases we simply restart the
5385          * guest.
5386          */
5387         if (unlikely(insn && !insn_len))
5388                 return 1;
5389
5390         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5391
5392         switch (er) {
5393         case EMULATE_DONE:
5394                 return 1;
5395         case EMULATE_USER_EXIT:
5396                 ++vcpu->stat.mmio_exits;
5397                 /* fall through */
5398         case EMULATE_FAIL:
5399                 return 0;
5400         default:
5401                 BUG();
5402         }
5403 }
5404 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5405
5406 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5407 {
5408         struct kvm_mmu *mmu = vcpu->arch.mmu;
5409         int i;
5410
5411         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5412         if (is_noncanonical_address(gva, vcpu))
5413                 return;
5414
5415         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5416
5417         /*
5418          * INVLPG is required to invalidate any global mappings for the VA,
5419          * irrespective of PCID. Since it would take us roughly similar amount
5420          * of work to determine whether any of the prev_root mappings of the VA
5421          * is marked global, or to just sync it blindly, so we might as well
5422          * just always sync it.
5423          *
5424          * Mappings not reachable via the current cr3 or the prev_roots will be
5425          * synced when switching to that cr3, so nothing needs to be done here
5426          * for them.
5427          */
5428         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5429                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5430                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5431
5432         kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5433         ++vcpu->stat.invlpg;
5434 }
5435 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5436
5437 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5438 {
5439         struct kvm_mmu *mmu = vcpu->arch.mmu;
5440         bool tlb_flush = false;
5441         uint i;
5442
5443         if (pcid == kvm_get_active_pcid(vcpu)) {
5444                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5445                 tlb_flush = true;
5446         }
5447
5448         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5449                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5450                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5451                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5452                         tlb_flush = true;
5453                 }
5454         }
5455
5456         if (tlb_flush)
5457                 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5458
5459         ++vcpu->stat.invlpg;
5460
5461         /*
5462          * Mappings not reachable via the current cr3 or the prev_roots will be
5463          * synced when switching to that cr3, so nothing needs to be done here
5464          * for them.
5465          */
5466 }
5467 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5468
5469 void kvm_enable_tdp(void)
5470 {
5471         tdp_enabled = true;
5472 }
5473 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5474
5475 void kvm_disable_tdp(void)
5476 {
5477         tdp_enabled = false;
5478 }
5479 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5480
5481 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5482 {
5483         free_page((unsigned long)vcpu->arch.mmu->pae_root);
5484         free_page((unsigned long)vcpu->arch.mmu->lm_root);
5485 }
5486
5487 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5488 {
5489         struct page *page;
5490         int i;
5491
5492         if (tdp_enabled)
5493                 return 0;
5494
5495         /*
5496          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5497          * Therefore we need to allocate shadow page tables in the first
5498          * 4GB of memory, which happens to fit the DMA32 zone.
5499          */
5500         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5501         if (!page)
5502                 return -ENOMEM;
5503
5504         vcpu->arch.mmu->pae_root = page_address(page);
5505         for (i = 0; i < 4; ++i)
5506                 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
5507
5508         return 0;
5509 }
5510
5511 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5512 {
5513         uint i;
5514
5515         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5516         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5517
5518         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5519         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5520         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5521                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5522
5523         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5524         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5525         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5526                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5527
5528         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5529         return alloc_mmu_pages(vcpu);
5530 }
5531
5532 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5533                         struct kvm_memory_slot *slot,
5534                         struct kvm_page_track_notifier_node *node)
5535 {
5536         kvm_mmu_invalidate_zap_all_pages(kvm);
5537 }
5538
5539 void kvm_mmu_init_vm(struct kvm *kvm)
5540 {
5541         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5542
5543         node->track_write = kvm_mmu_pte_write;
5544         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5545         kvm_page_track_register_notifier(kvm, node);
5546 }
5547
5548 void kvm_mmu_uninit_vm(struct kvm *kvm)
5549 {
5550         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5551
5552         kvm_page_track_unregister_notifier(kvm, node);
5553 }
5554
5555 /* The return value indicates if tlb flush on all vcpus is needed. */
5556 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5557
5558 /* The caller should hold mmu-lock before calling this function. */
5559 static __always_inline bool
5560 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5561                         slot_level_handler fn, int start_level, int end_level,
5562                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5563 {
5564         struct slot_rmap_walk_iterator iterator;
5565         bool flush = false;
5566
5567         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5568                         end_gfn, &iterator) {
5569                 if (iterator.rmap)
5570                         flush |= fn(kvm, iterator.rmap);
5571
5572                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5573                         if (flush && lock_flush_tlb) {
5574                                 kvm_flush_remote_tlbs(kvm);
5575                                 flush = false;
5576                         }
5577                         cond_resched_lock(&kvm->mmu_lock);
5578                 }
5579         }
5580
5581         if (flush && lock_flush_tlb) {
5582                 kvm_flush_remote_tlbs(kvm);
5583                 flush = false;
5584         }
5585
5586         return flush;
5587 }
5588
5589 static __always_inline bool
5590 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5591                   slot_level_handler fn, int start_level, int end_level,
5592                   bool lock_flush_tlb)
5593 {
5594         return slot_handle_level_range(kvm, memslot, fn, start_level,
5595                         end_level, memslot->base_gfn,
5596                         memslot->base_gfn + memslot->npages - 1,
5597                         lock_flush_tlb);
5598 }
5599
5600 static __always_inline bool
5601 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5602                       slot_level_handler fn, bool lock_flush_tlb)
5603 {
5604         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5605                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5606 }
5607
5608 static __always_inline bool
5609 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5610                         slot_level_handler fn, bool lock_flush_tlb)
5611 {
5612         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5613                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5614 }
5615
5616 static __always_inline bool
5617 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5618                  slot_level_handler fn, bool lock_flush_tlb)
5619 {
5620         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5621                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5622 }
5623
5624 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5625 {
5626         struct kvm_memslots *slots;
5627         struct kvm_memory_slot *memslot;
5628         bool flush_tlb = true;
5629         bool flush = false;
5630         int i;
5631
5632         if (kvm_available_flush_tlb_with_range())
5633                 flush_tlb = false;
5634
5635         spin_lock(&kvm->mmu_lock);
5636         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5637                 slots = __kvm_memslots(kvm, i);
5638                 kvm_for_each_memslot(memslot, slots) {
5639                         gfn_t start, end;
5640
5641                         start = max(gfn_start, memslot->base_gfn);
5642                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5643                         if (start >= end)
5644                                 continue;
5645
5646                         flush |= slot_handle_level_range(kvm, memslot,
5647                                         kvm_zap_rmapp, PT_PAGE_TABLE_LEVEL,
5648                                         PT_MAX_HUGEPAGE_LEVEL, start,
5649                                         end - 1, flush_tlb);
5650                 }
5651         }
5652
5653         if (flush)
5654                 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5655                                 gfn_end - gfn_start + 1);
5656
5657         spin_unlock(&kvm->mmu_lock);
5658 }
5659
5660 static bool slot_rmap_write_protect(struct kvm *kvm,
5661                                     struct kvm_rmap_head *rmap_head)
5662 {
5663         return __rmap_write_protect(kvm, rmap_head, false);
5664 }
5665
5666 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5667                                       struct kvm_memory_slot *memslot)
5668 {
5669         bool flush;
5670
5671         spin_lock(&kvm->mmu_lock);
5672         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5673                                       false);
5674         spin_unlock(&kvm->mmu_lock);
5675
5676         /*
5677          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5678          * which do tlb flush out of mmu-lock should be serialized by
5679          * kvm->slots_lock otherwise tlb flush would be missed.
5680          */
5681         lockdep_assert_held(&kvm->slots_lock);
5682
5683         /*
5684          * We can flush all the TLBs out of the mmu lock without TLB
5685          * corruption since we just change the spte from writable to
5686          * readonly so that we only need to care the case of changing
5687          * spte from present to present (changing the spte from present
5688          * to nonpresent will flush all the TLBs immediately), in other
5689          * words, the only case we care is mmu_spte_update() where we
5690          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5691          * instead of PT_WRITABLE_MASK, that means it does not depend
5692          * on PT_WRITABLE_MASK anymore.
5693          */
5694         if (flush)
5695                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5696                         memslot->npages);
5697 }
5698
5699 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5700                                          struct kvm_rmap_head *rmap_head)
5701 {
5702         u64 *sptep;
5703         struct rmap_iterator iter;
5704         int need_tlb_flush = 0;
5705         kvm_pfn_t pfn;
5706         struct kvm_mmu_page *sp;
5707
5708 restart:
5709         for_each_rmap_spte(rmap_head, &iter, sptep) {
5710                 sp = page_header(__pa(sptep));
5711                 pfn = spte_to_pfn(*sptep);
5712
5713                 /*
5714                  * We cannot do huge page mapping for indirect shadow pages,
5715                  * which are found on the last rmap (level = 1) when not using
5716                  * tdp; such shadow pages are synced with the page table in
5717                  * the guest, and the guest page table is using 4K page size
5718                  * mapping if the indirect sp has level = 1.
5719                  */
5720                 if (sp->role.direct &&
5721                         !kvm_is_reserved_pfn(pfn) &&
5722                         PageTransCompoundMap(pfn_to_page(pfn))) {
5723                         pte_list_remove(rmap_head, sptep);
5724
5725                         if (kvm_available_flush_tlb_with_range())
5726                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5727                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5728                         else
5729                                 need_tlb_flush = 1;
5730
5731                         goto restart;
5732                 }
5733         }
5734
5735         return need_tlb_flush;
5736 }
5737
5738 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5739                                    const struct kvm_memory_slot *memslot)
5740 {
5741         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5742         spin_lock(&kvm->mmu_lock);
5743         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5744                          kvm_mmu_zap_collapsible_spte, true);
5745         spin_unlock(&kvm->mmu_lock);
5746 }
5747
5748 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5749                                    struct kvm_memory_slot *memslot)
5750 {
5751         bool flush;
5752
5753         spin_lock(&kvm->mmu_lock);
5754         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5755         spin_unlock(&kvm->mmu_lock);
5756
5757         lockdep_assert_held(&kvm->slots_lock);
5758
5759         /*
5760          * It's also safe to flush TLBs out of mmu lock here as currently this
5761          * function is only used for dirty logging, in which case flushing TLB
5762          * out of mmu lock also guarantees no dirty pages will be lost in
5763          * dirty_bitmap.
5764          */
5765         if (flush)
5766                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5767                                 memslot->npages);
5768 }
5769 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5770
5771 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5772                                         struct kvm_memory_slot *memslot)
5773 {
5774         bool flush;
5775
5776         spin_lock(&kvm->mmu_lock);
5777         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5778                                         false);
5779         spin_unlock(&kvm->mmu_lock);
5780
5781         /* see kvm_mmu_slot_remove_write_access */
5782         lockdep_assert_held(&kvm->slots_lock);
5783
5784         if (flush)
5785                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5786                                 memslot->npages);
5787 }
5788 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5789
5790 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5791                             struct kvm_memory_slot *memslot)
5792 {
5793         bool flush;
5794
5795         spin_lock(&kvm->mmu_lock);
5796         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5797         spin_unlock(&kvm->mmu_lock);
5798
5799         lockdep_assert_held(&kvm->slots_lock);
5800
5801         /* see kvm_mmu_slot_leaf_clear_dirty */
5802         if (flush)
5803                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5804                                 memslot->npages);
5805 }
5806 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5807
5808 #define BATCH_ZAP_PAGES 10
5809 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5810 {
5811         struct kvm_mmu_page *sp, *node;
5812         int batch = 0;
5813
5814 restart:
5815         list_for_each_entry_safe_reverse(sp, node,
5816               &kvm->arch.active_mmu_pages, link) {
5817                 int ret;
5818
5819                 /*
5820                  * No obsolete page exists before new created page since
5821                  * active_mmu_pages is the FIFO list.
5822                  */
5823                 if (!is_obsolete_sp(kvm, sp))
5824                         break;
5825
5826                 /*
5827                  * Since we are reversely walking the list and the invalid
5828                  * list will be moved to the head, skip the invalid page
5829                  * can help us to avoid the infinity list walking.
5830                  */
5831                 if (sp->role.invalid)
5832                         continue;
5833
5834                 /*
5835                  * Need not flush tlb since we only zap the sp with invalid
5836                  * generation number.
5837                  */
5838                 if (batch >= BATCH_ZAP_PAGES &&
5839                       cond_resched_lock(&kvm->mmu_lock)) {
5840                         batch = 0;
5841                         goto restart;
5842                 }
5843
5844                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5845                                 &kvm->arch.zapped_obsolete_pages);
5846                 batch += ret;
5847
5848                 if (ret)
5849                         goto restart;
5850         }
5851
5852         /*
5853          * Should flush tlb before free page tables since lockless-walking
5854          * may use the pages.
5855          */
5856         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5857 }
5858
5859 /*
5860  * Fast invalidate all shadow pages and use lock-break technique
5861  * to zap obsolete pages.
5862  *
5863  * It's required when memslot is being deleted or VM is being
5864  * destroyed, in these cases, we should ensure that KVM MMU does
5865  * not use any resource of the being-deleted slot or all slots
5866  * after calling the function.
5867  */
5868 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5869 {
5870         spin_lock(&kvm->mmu_lock);
5871         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5872         kvm->arch.mmu_valid_gen++;
5873
5874         /*
5875          * Notify all vcpus to reload its shadow page table
5876          * and flush TLB. Then all vcpus will switch to new
5877          * shadow page table with the new mmu_valid_gen.
5878          *
5879          * Note: we should do this under the protection of
5880          * mmu-lock, otherwise, vcpu would purge shadow page
5881          * but miss tlb flush.
5882          */
5883         kvm_reload_remote_mmus(kvm);
5884
5885         kvm_zap_obsolete_pages(kvm);
5886         spin_unlock(&kvm->mmu_lock);
5887 }
5888
5889 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5890 {
5891         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5892 }
5893
5894 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5895 {
5896         /*
5897          * The very rare case: if the generation-number is round,
5898          * zap all shadow pages.
5899          */
5900         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5901                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5902                 kvm_mmu_invalidate_zap_all_pages(kvm);
5903         }
5904 }
5905
5906 static unsigned long
5907 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5908 {
5909         struct kvm *kvm;
5910         int nr_to_scan = sc->nr_to_scan;
5911         unsigned long freed = 0;
5912
5913         spin_lock(&kvm_lock);
5914
5915         list_for_each_entry(kvm, &vm_list, vm_list) {
5916                 int idx;
5917                 LIST_HEAD(invalid_list);
5918
5919                 /*
5920                  * Never scan more than sc->nr_to_scan VM instances.
5921                  * Will not hit this condition practically since we do not try
5922                  * to shrink more than one VM and it is very unlikely to see
5923                  * !n_used_mmu_pages so many times.
5924                  */
5925                 if (!nr_to_scan--)
5926                         break;
5927                 /*
5928                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5929                  * here. We may skip a VM instance errorneosly, but we do not
5930                  * want to shrink a VM that only started to populate its MMU
5931                  * anyway.
5932                  */
5933                 if (!kvm->arch.n_used_mmu_pages &&
5934                       !kvm_has_zapped_obsolete_pages(kvm))
5935                         continue;
5936
5937                 idx = srcu_read_lock(&kvm->srcu);
5938                 spin_lock(&kvm->mmu_lock);
5939
5940                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5941                         kvm_mmu_commit_zap_page(kvm,
5942                               &kvm->arch.zapped_obsolete_pages);
5943                         goto unlock;
5944                 }
5945
5946                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5947                         freed++;
5948                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5949
5950 unlock:
5951                 spin_unlock(&kvm->mmu_lock);
5952                 srcu_read_unlock(&kvm->srcu, idx);
5953
5954                 /*
5955                  * unfair on small ones
5956                  * per-vm shrinkers cry out
5957                  * sadness comes quickly
5958                  */
5959                 list_move_tail(&kvm->vm_list, &vm_list);
5960                 break;
5961         }
5962
5963         spin_unlock(&kvm_lock);
5964         return freed;
5965 }
5966
5967 static unsigned long
5968 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5969 {
5970         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5971 }
5972
5973 static struct shrinker mmu_shrinker = {
5974         .count_objects = mmu_shrink_count,
5975         .scan_objects = mmu_shrink_scan,
5976         .seeks = DEFAULT_SEEKS * 10,
5977 };
5978
5979 static void mmu_destroy_caches(void)
5980 {
5981         kmem_cache_destroy(pte_list_desc_cache);
5982         kmem_cache_destroy(mmu_page_header_cache);
5983 }
5984
5985 int kvm_mmu_module_init(void)
5986 {
5987         int ret = -ENOMEM;
5988
5989         /*
5990          * MMU roles use union aliasing which is, generally speaking, an
5991          * undefined behavior. However, we supposedly know how compilers behave
5992          * and the current status quo is unlikely to change. Guardians below are
5993          * supposed to let us know if the assumption becomes false.
5994          */
5995         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5996         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5997         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5998
5999         kvm_mmu_reset_all_pte_masks();
6000
6001         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6002                                             sizeof(struct pte_list_desc),
6003                                             0, SLAB_ACCOUNT, NULL);
6004         if (!pte_list_desc_cache)
6005                 goto out;
6006
6007         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6008                                                   sizeof(struct kvm_mmu_page),
6009                                                   0, SLAB_ACCOUNT, NULL);
6010         if (!mmu_page_header_cache)
6011                 goto out;
6012
6013         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6014                 goto out;
6015
6016         ret = register_shrinker(&mmu_shrinker);
6017         if (ret)
6018                 goto out;
6019
6020         return 0;
6021
6022 out:
6023         mmu_destroy_caches();
6024         return ret;
6025 }
6026
6027 /*
6028  * Calculate mmu pages needed for kvm.
6029  */
6030 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
6031 {
6032         unsigned int nr_mmu_pages;
6033         unsigned int  nr_pages = 0;
6034         struct kvm_memslots *slots;
6035         struct kvm_memory_slot *memslot;
6036         int i;
6037
6038         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6039                 slots = __kvm_memslots(kvm, i);
6040
6041                 kvm_for_each_memslot(memslot, slots)
6042                         nr_pages += memslot->npages;
6043         }
6044
6045         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6046         nr_mmu_pages = max(nr_mmu_pages,
6047                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
6048
6049         return nr_mmu_pages;
6050 }
6051
6052 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6053 {
6054         kvm_mmu_unload(vcpu);
6055         free_mmu_pages(vcpu);
6056         mmu_free_memory_caches(vcpu);
6057 }
6058
6059 void kvm_mmu_module_exit(void)
6060 {
6061         mmu_destroy_caches();
6062         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6063         unregister_shrinker(&mmu_shrinker);
6064         mmu_audit_disable();
6065 }