Merge remote-tracking branch 'asoc/topic/intel' into asoc-next
[sfrench/cifs-2.6.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/cmpxchg.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49
50 /*
51  * When setting this variable to true it enables Two-Dimensional-Paging
52  * where the hardware walks 2 page tables:
53  * 1. the guest-virtual to guest-physical
54  * 2. while doing 1. it walks guest-physical to host-physical
55  * If the hardware supports that we don't need to do shadow paging.
56  */
57 bool tdp_enabled = false;
58
59 enum {
60         AUDIT_PRE_PAGE_FAULT,
61         AUDIT_POST_PAGE_FAULT,
62         AUDIT_PRE_PTE_WRITE,
63         AUDIT_POST_PTE_WRITE,
64         AUDIT_PRE_SYNC,
65         AUDIT_POST_SYNC
66 };
67
68 #undef MMU_DEBUG
69
70 #ifdef MMU_DEBUG
71 static bool dbg = 0;
72 module_param(dbg, bool, 0644);
73
74 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
75 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
76 #define MMU_WARN_ON(x) WARN_ON(x)
77 #else
78 #define pgprintk(x...) do { } while (0)
79 #define rmap_printk(x...) do { } while (0)
80 #define MMU_WARN_ON(x) do { } while (0)
81 #endif
82
83 #define PTE_PREFETCH_NUM                8
84
85 #define PT_FIRST_AVAIL_BITS_SHIFT 10
86 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
87
88 #define PT64_LEVEL_BITS 9
89
90 #define PT64_LEVEL_SHIFT(level) \
91                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
92
93 #define PT64_INDEX(address, level)\
94         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
95
96
97 #define PT32_LEVEL_BITS 10
98
99 #define PT32_LEVEL_SHIFT(level) \
100                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
101
102 #define PT32_LVL_OFFSET_MASK(level) \
103         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
104                                                 * PT32_LEVEL_BITS))) - 1))
105
106 #define PT32_INDEX(address, level)\
107         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
108
109
110 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
111 #define PT64_DIR_BASE_ADDR_MASK \
112         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
113 #define PT64_LVL_ADDR_MASK(level) \
114         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
115                                                 * PT64_LEVEL_BITS))) - 1))
116 #define PT64_LVL_OFFSET_MASK(level) \
117         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
118                                                 * PT64_LEVEL_BITS))) - 1))
119
120 #define PT32_BASE_ADDR_MASK PAGE_MASK
121 #define PT32_DIR_BASE_ADDR_MASK \
122         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
123 #define PT32_LVL_ADDR_MASK(level) \
124         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
125                                             * PT32_LEVEL_BITS))) - 1))
126
127 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
128                         | shadow_x_mask | shadow_nx_mask)
129
130 #define ACC_EXEC_MASK    1
131 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
132 #define ACC_USER_MASK    PT_USER_MASK
133 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
134
135 /* The mask for the R/X bits in EPT PTEs */
136 #define PT64_EPT_READABLE_MASK                  0x1ull
137 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
138
139 #include <trace/events/kvm.h>
140
141 #define CREATE_TRACE_POINTS
142 #include "mmutrace.h"
143
144 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
145 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
146
147 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
148
149 /* make pte_list_desc fit well in cache line */
150 #define PTE_LIST_EXT 3
151
152 struct pte_list_desc {
153         u64 *sptes[PTE_LIST_EXT];
154         struct pte_list_desc *more;
155 };
156
157 struct kvm_shadow_walk_iterator {
158         u64 addr;
159         hpa_t shadow_addr;
160         u64 *sptep;
161         int level;
162         unsigned index;
163 };
164
165 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
166         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
167              shadow_walk_okay(&(_walker));                      \
168              shadow_walk_next(&(_walker)))
169
170 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
171         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
172              shadow_walk_okay(&(_walker)) &&                            \
173                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
174              __shadow_walk_next(&(_walker), spte))
175
176 static struct kmem_cache *pte_list_desc_cache;
177 static struct kmem_cache *mmu_page_header_cache;
178 static struct percpu_counter kvm_total_used_mmu_pages;
179
180 static u64 __read_mostly shadow_nx_mask;
181 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
182 static u64 __read_mostly shadow_user_mask;
183 static u64 __read_mostly shadow_accessed_mask;
184 static u64 __read_mostly shadow_dirty_mask;
185 static u64 __read_mostly shadow_mmio_mask;
186 static u64 __read_mostly shadow_present_mask;
187
188 /*
189  * The mask/value to distinguish a PTE that has been marked not-present for
190  * access tracking purposes.
191  * The mask would be either 0 if access tracking is disabled, or
192  * SPTE_SPECIAL_MASK|VMX_EPT_RWX_MASK if access tracking is enabled.
193  */
194 static u64 __read_mostly shadow_acc_track_mask;
195 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
196
197 /*
198  * The mask/shift to use for saving the original R/X bits when marking the PTE
199  * as not-present for access tracking purposes. We do not save the W bit as the
200  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
201  * restored only when a write is attempted to the page.
202  */
203 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
204                                                     PT64_EPT_EXECUTABLE_MASK;
205 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
206
207 static void mmu_spte_set(u64 *sptep, u64 spte);
208 static void mmu_free_roots(struct kvm_vcpu *vcpu);
209
210 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
211 {
212         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
213 }
214 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
215
216 static inline bool is_access_track_spte(u64 spte)
217 {
218         /* Always false if shadow_acc_track_mask is zero.  */
219         return (spte & shadow_acc_track_mask) == shadow_acc_track_value;
220 }
221
222 /*
223  * the low bit of the generation number is always presumed to be zero.
224  * This disables mmio caching during memslot updates.  The concept is
225  * similar to a seqcount but instead of retrying the access we just punt
226  * and ignore the cache.
227  *
228  * spte bits 3-11 are used as bits 1-9 of the generation number,
229  * the bits 52-61 are used as bits 10-19 of the generation number.
230  */
231 #define MMIO_SPTE_GEN_LOW_SHIFT         2
232 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
233
234 #define MMIO_GEN_SHIFT                  20
235 #define MMIO_GEN_LOW_SHIFT              10
236 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
237 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
238
239 static u64 generation_mmio_spte_mask(unsigned int gen)
240 {
241         u64 mask;
242
243         WARN_ON(gen & ~MMIO_GEN_MASK);
244
245         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
246         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
247         return mask;
248 }
249
250 static unsigned int get_mmio_spte_generation(u64 spte)
251 {
252         unsigned int gen;
253
254         spte &= ~shadow_mmio_mask;
255
256         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
257         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
258         return gen;
259 }
260
261 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
262 {
263         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
264 }
265
266 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
267                            unsigned access)
268 {
269         unsigned int gen = kvm_current_mmio_generation(vcpu);
270         u64 mask = generation_mmio_spte_mask(gen);
271
272         access &= ACC_WRITE_MASK | ACC_USER_MASK;
273         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
274
275         trace_mark_mmio_spte(sptep, gfn, access, gen);
276         mmu_spte_set(sptep, mask);
277 }
278
279 static bool is_mmio_spte(u64 spte)
280 {
281         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
282 }
283
284 static gfn_t get_mmio_spte_gfn(u64 spte)
285 {
286         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
287         return (spte & ~mask) >> PAGE_SHIFT;
288 }
289
290 static unsigned get_mmio_spte_access(u64 spte)
291 {
292         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
293         return (spte & ~mask) & ~PAGE_MASK;
294 }
295
296 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
297                           kvm_pfn_t pfn, unsigned access)
298 {
299         if (unlikely(is_noslot_pfn(pfn))) {
300                 mark_mmio_spte(vcpu, sptep, gfn, access);
301                 return true;
302         }
303
304         return false;
305 }
306
307 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
308 {
309         unsigned int kvm_gen, spte_gen;
310
311         kvm_gen = kvm_current_mmio_generation(vcpu);
312         spte_gen = get_mmio_spte_generation(spte);
313
314         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
315         return likely(kvm_gen == spte_gen);
316 }
317
318 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
319                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
320                 u64 acc_track_mask)
321 {
322         if (acc_track_mask != 0)
323                 acc_track_mask |= SPTE_SPECIAL_MASK;
324
325         shadow_user_mask = user_mask;
326         shadow_accessed_mask = accessed_mask;
327         shadow_dirty_mask = dirty_mask;
328         shadow_nx_mask = nx_mask;
329         shadow_x_mask = x_mask;
330         shadow_present_mask = p_mask;
331         shadow_acc_track_mask = acc_track_mask;
332         WARN_ON(shadow_accessed_mask != 0 && shadow_acc_track_mask != 0);
333 }
334 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
335
336 void kvm_mmu_clear_all_pte_masks(void)
337 {
338         shadow_user_mask = 0;
339         shadow_accessed_mask = 0;
340         shadow_dirty_mask = 0;
341         shadow_nx_mask = 0;
342         shadow_x_mask = 0;
343         shadow_mmio_mask = 0;
344         shadow_present_mask = 0;
345         shadow_acc_track_mask = 0;
346 }
347
348 static int is_cpuid_PSE36(void)
349 {
350         return 1;
351 }
352
353 static int is_nx(struct kvm_vcpu *vcpu)
354 {
355         return vcpu->arch.efer & EFER_NX;
356 }
357
358 static int is_shadow_present_pte(u64 pte)
359 {
360         return (pte != 0) && !is_mmio_spte(pte);
361 }
362
363 static int is_large_pte(u64 pte)
364 {
365         return pte & PT_PAGE_SIZE_MASK;
366 }
367
368 static int is_last_spte(u64 pte, int level)
369 {
370         if (level == PT_PAGE_TABLE_LEVEL)
371                 return 1;
372         if (is_large_pte(pte))
373                 return 1;
374         return 0;
375 }
376
377 static bool is_executable_pte(u64 spte)
378 {
379         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
380 }
381
382 static kvm_pfn_t spte_to_pfn(u64 pte)
383 {
384         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
385 }
386
387 static gfn_t pse36_gfn_delta(u32 gpte)
388 {
389         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
390
391         return (gpte & PT32_DIR_PSE36_MASK) << shift;
392 }
393
394 #ifdef CONFIG_X86_64
395 static void __set_spte(u64 *sptep, u64 spte)
396 {
397         WRITE_ONCE(*sptep, spte);
398 }
399
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402         WRITE_ONCE(*sptep, spte);
403 }
404
405 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
406 {
407         return xchg(sptep, spte);
408 }
409
410 static u64 __get_spte_lockless(u64 *sptep)
411 {
412         return ACCESS_ONCE(*sptep);
413 }
414 #else
415 union split_spte {
416         struct {
417                 u32 spte_low;
418                 u32 spte_high;
419         };
420         u64 spte;
421 };
422
423 static void count_spte_clear(u64 *sptep, u64 spte)
424 {
425         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
426
427         if (is_shadow_present_pte(spte))
428                 return;
429
430         /* Ensure the spte is completely set before we increase the count */
431         smp_wmb();
432         sp->clear_spte_count++;
433 }
434
435 static void __set_spte(u64 *sptep, u64 spte)
436 {
437         union split_spte *ssptep, sspte;
438
439         ssptep = (union split_spte *)sptep;
440         sspte = (union split_spte)spte;
441
442         ssptep->spte_high = sspte.spte_high;
443
444         /*
445          * If we map the spte from nonpresent to present, We should store
446          * the high bits firstly, then set present bit, so cpu can not
447          * fetch this spte while we are setting the spte.
448          */
449         smp_wmb();
450
451         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
452 }
453
454 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
455 {
456         union split_spte *ssptep, sspte;
457
458         ssptep = (union split_spte *)sptep;
459         sspte = (union split_spte)spte;
460
461         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
462
463         /*
464          * If we map the spte from present to nonpresent, we should clear
465          * present bit firstly to avoid vcpu fetch the old high bits.
466          */
467         smp_wmb();
468
469         ssptep->spte_high = sspte.spte_high;
470         count_spte_clear(sptep, spte);
471 }
472
473 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
474 {
475         union split_spte *ssptep, sspte, orig;
476
477         ssptep = (union split_spte *)sptep;
478         sspte = (union split_spte)spte;
479
480         /* xchg acts as a barrier before the setting of the high bits */
481         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
482         orig.spte_high = ssptep->spte_high;
483         ssptep->spte_high = sspte.spte_high;
484         count_spte_clear(sptep, spte);
485
486         return orig.spte;
487 }
488
489 /*
490  * The idea using the light way get the spte on x86_32 guest is from
491  * gup_get_pte(arch/x86/mm/gup.c).
492  *
493  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
494  * coalesces them and we are running out of the MMU lock.  Therefore
495  * we need to protect against in-progress updates of the spte.
496  *
497  * Reading the spte while an update is in progress may get the old value
498  * for the high part of the spte.  The race is fine for a present->non-present
499  * change (because the high part of the spte is ignored for non-present spte),
500  * but for a present->present change we must reread the spte.
501  *
502  * All such changes are done in two steps (present->non-present and
503  * non-present->present), hence it is enough to count the number of
504  * present->non-present updates: if it changed while reading the spte,
505  * we might have hit the race.  This is done using clear_spte_count.
506  */
507 static u64 __get_spte_lockless(u64 *sptep)
508 {
509         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
510         union split_spte spte, *orig = (union split_spte *)sptep;
511         int count;
512
513 retry:
514         count = sp->clear_spte_count;
515         smp_rmb();
516
517         spte.spte_low = orig->spte_low;
518         smp_rmb();
519
520         spte.spte_high = orig->spte_high;
521         smp_rmb();
522
523         if (unlikely(spte.spte_low != orig->spte_low ||
524               count != sp->clear_spte_count))
525                 goto retry;
526
527         return spte.spte;
528 }
529 #endif
530
531 static bool spte_can_locklessly_be_made_writable(u64 spte)
532 {
533         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
534                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
535 }
536
537 static bool spte_has_volatile_bits(u64 spte)
538 {
539         if (!is_shadow_present_pte(spte))
540                 return false;
541
542         /*
543          * Always atomically update spte if it can be updated
544          * out of mmu-lock, it can ensure dirty bit is not lost,
545          * also, it can help us to get a stable is_writable_pte()
546          * to ensure tlb flush is not missed.
547          */
548         if (spte_can_locklessly_be_made_writable(spte) ||
549             is_access_track_spte(spte))
550                 return true;
551
552         if (shadow_accessed_mask) {
553                 if ((spte & shadow_accessed_mask) == 0 ||
554                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
555                         return true;
556         }
557
558         return false;
559 }
560
561 static bool is_accessed_spte(u64 spte)
562 {
563         return shadow_accessed_mask ? spte & shadow_accessed_mask
564                                     : !is_access_track_spte(spte);
565 }
566
567 static bool is_dirty_spte(u64 spte)
568 {
569         return shadow_dirty_mask ? spte & shadow_dirty_mask
570                                  : spte & PT_WRITABLE_MASK;
571 }
572
573 /* Rules for using mmu_spte_set:
574  * Set the sptep from nonpresent to present.
575  * Note: the sptep being assigned *must* be either not present
576  * or in a state where the hardware will not attempt to update
577  * the spte.
578  */
579 static void mmu_spte_set(u64 *sptep, u64 new_spte)
580 {
581         WARN_ON(is_shadow_present_pte(*sptep));
582         __set_spte(sptep, new_spte);
583 }
584
585 /*
586  * Update the SPTE (excluding the PFN), but do not track changes in its
587  * accessed/dirty status.
588  */
589 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
590 {
591         u64 old_spte = *sptep;
592
593         WARN_ON(!is_shadow_present_pte(new_spte));
594
595         if (!is_shadow_present_pte(old_spte)) {
596                 mmu_spte_set(sptep, new_spte);
597                 return old_spte;
598         }
599
600         if (!spte_has_volatile_bits(old_spte))
601                 __update_clear_spte_fast(sptep, new_spte);
602         else
603                 old_spte = __update_clear_spte_slow(sptep, new_spte);
604
605         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
606
607         return old_spte;
608 }
609
610 /* Rules for using mmu_spte_update:
611  * Update the state bits, it means the mapped pfn is not changed.
612  *
613  * Whenever we overwrite a writable spte with a read-only one we
614  * should flush remote TLBs. Otherwise rmap_write_protect
615  * will find a read-only spte, even though the writable spte
616  * might be cached on a CPU's TLB, the return value indicates this
617  * case.
618  *
619  * Returns true if the TLB needs to be flushed
620  */
621 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
622 {
623         bool flush = false;
624         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
625
626         if (!is_shadow_present_pte(old_spte))
627                 return false;
628
629         /*
630          * For the spte updated out of mmu-lock is safe, since
631          * we always atomically update it, see the comments in
632          * spte_has_volatile_bits().
633          */
634         if (spte_can_locklessly_be_made_writable(old_spte) &&
635               !is_writable_pte(new_spte))
636                 flush = true;
637
638         /*
639          * Flush TLB when accessed/dirty states are changed in the page tables,
640          * to guarantee consistency between TLB and page tables.
641          */
642
643         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
644                 flush = true;
645                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
646         }
647
648         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
649                 flush = true;
650                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
651         }
652
653         return flush;
654 }
655
656 /*
657  * Rules for using mmu_spte_clear_track_bits:
658  * It sets the sptep from present to nonpresent, and track the
659  * state bits, it is used to clear the last level sptep.
660  * Returns non-zero if the PTE was previously valid.
661  */
662 static int mmu_spte_clear_track_bits(u64 *sptep)
663 {
664         kvm_pfn_t pfn;
665         u64 old_spte = *sptep;
666
667         if (!spte_has_volatile_bits(old_spte))
668                 __update_clear_spte_fast(sptep, 0ull);
669         else
670                 old_spte = __update_clear_spte_slow(sptep, 0ull);
671
672         if (!is_shadow_present_pte(old_spte))
673                 return 0;
674
675         pfn = spte_to_pfn(old_spte);
676
677         /*
678          * KVM does not hold the refcount of the page used by
679          * kvm mmu, before reclaiming the page, we should
680          * unmap it from mmu first.
681          */
682         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
683
684         if (is_accessed_spte(old_spte))
685                 kvm_set_pfn_accessed(pfn);
686
687         if (is_dirty_spte(old_spte))
688                 kvm_set_pfn_dirty(pfn);
689
690         return 1;
691 }
692
693 /*
694  * Rules for using mmu_spte_clear_no_track:
695  * Directly clear spte without caring the state bits of sptep,
696  * it is used to set the upper level spte.
697  */
698 static void mmu_spte_clear_no_track(u64 *sptep)
699 {
700         __update_clear_spte_fast(sptep, 0ull);
701 }
702
703 static u64 mmu_spte_get_lockless(u64 *sptep)
704 {
705         return __get_spte_lockless(sptep);
706 }
707
708 static u64 mark_spte_for_access_track(u64 spte)
709 {
710         if (shadow_accessed_mask != 0)
711                 return spte & ~shadow_accessed_mask;
712
713         if (shadow_acc_track_mask == 0 || is_access_track_spte(spte))
714                 return spte;
715
716         /*
717          * Making an Access Tracking PTE will result in removal of write access
718          * from the PTE. So, verify that we will be able to restore the write
719          * access in the fast page fault path later on.
720          */
721         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
722                   !spte_can_locklessly_be_made_writable(spte),
723                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
724
725         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
726                           shadow_acc_track_saved_bits_shift),
727                   "kvm: Access Tracking saved bit locations are not zero\n");
728
729         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
730                 shadow_acc_track_saved_bits_shift;
731         spte &= ~shadow_acc_track_mask;
732         spte |= shadow_acc_track_value;
733
734         return spte;
735 }
736
737 /* Restore an acc-track PTE back to a regular PTE */
738 static u64 restore_acc_track_spte(u64 spte)
739 {
740         u64 new_spte = spte;
741         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
742                          & shadow_acc_track_saved_bits_mask;
743
744         WARN_ON_ONCE(!is_access_track_spte(spte));
745
746         new_spte &= ~shadow_acc_track_mask;
747         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
748                       shadow_acc_track_saved_bits_shift);
749         new_spte |= saved_bits;
750
751         return new_spte;
752 }
753
754 /* Returns the Accessed status of the PTE and resets it at the same time. */
755 static bool mmu_spte_age(u64 *sptep)
756 {
757         u64 spte = mmu_spte_get_lockless(sptep);
758
759         if (!is_accessed_spte(spte))
760                 return false;
761
762         if (shadow_accessed_mask) {
763                 clear_bit((ffs(shadow_accessed_mask) - 1),
764                           (unsigned long *)sptep);
765         } else {
766                 /*
767                  * Capture the dirty status of the page, so that it doesn't get
768                  * lost when the SPTE is marked for access tracking.
769                  */
770                 if (is_writable_pte(spte))
771                         kvm_set_pfn_dirty(spte_to_pfn(spte));
772
773                 spte = mark_spte_for_access_track(spte);
774                 mmu_spte_update_no_track(sptep, spte);
775         }
776
777         return true;
778 }
779
780 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
781 {
782         /*
783          * Prevent page table teardown by making any free-er wait during
784          * kvm_flush_remote_tlbs() IPI to all active vcpus.
785          */
786         local_irq_disable();
787
788         /*
789          * Make sure a following spte read is not reordered ahead of the write
790          * to vcpu->mode.
791          */
792         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
793 }
794
795 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
796 {
797         /*
798          * Make sure the write to vcpu->mode is not reordered in front of
799          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
800          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
801          */
802         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
803         local_irq_enable();
804 }
805
806 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
807                                   struct kmem_cache *base_cache, int min)
808 {
809         void *obj;
810
811         if (cache->nobjs >= min)
812                 return 0;
813         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
814                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
815                 if (!obj)
816                         return -ENOMEM;
817                 cache->objects[cache->nobjs++] = obj;
818         }
819         return 0;
820 }
821
822 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
823 {
824         return cache->nobjs;
825 }
826
827 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
828                                   struct kmem_cache *cache)
829 {
830         while (mc->nobjs)
831                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
832 }
833
834 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
835                                        int min)
836 {
837         void *page;
838
839         if (cache->nobjs >= min)
840                 return 0;
841         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842                 page = (void *)__get_free_page(GFP_KERNEL);
843                 if (!page)
844                         return -ENOMEM;
845                 cache->objects[cache->nobjs++] = page;
846         }
847         return 0;
848 }
849
850 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
851 {
852         while (mc->nobjs)
853                 free_page((unsigned long)mc->objects[--mc->nobjs]);
854 }
855
856 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
857 {
858         int r;
859
860         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
861                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
862         if (r)
863                 goto out;
864         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
865         if (r)
866                 goto out;
867         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
868                                    mmu_page_header_cache, 4);
869 out:
870         return r;
871 }
872
873 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
874 {
875         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
876                                 pte_list_desc_cache);
877         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
878         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
879                                 mmu_page_header_cache);
880 }
881
882 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
883 {
884         void *p;
885
886         BUG_ON(!mc->nobjs);
887         p = mc->objects[--mc->nobjs];
888         return p;
889 }
890
891 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
892 {
893         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
894 }
895
896 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
897 {
898         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
899 }
900
901 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
902 {
903         if (!sp->role.direct)
904                 return sp->gfns[index];
905
906         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
907 }
908
909 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
910 {
911         if (sp->role.direct)
912                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
913         else
914                 sp->gfns[index] = gfn;
915 }
916
917 /*
918  * Return the pointer to the large page information for a given gfn,
919  * handling slots that are not large page aligned.
920  */
921 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
922                                               struct kvm_memory_slot *slot,
923                                               int level)
924 {
925         unsigned long idx;
926
927         idx = gfn_to_index(gfn, slot->base_gfn, level);
928         return &slot->arch.lpage_info[level - 2][idx];
929 }
930
931 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
932                                             gfn_t gfn, int count)
933 {
934         struct kvm_lpage_info *linfo;
935         int i;
936
937         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
938                 linfo = lpage_info_slot(gfn, slot, i);
939                 linfo->disallow_lpage += count;
940                 WARN_ON(linfo->disallow_lpage < 0);
941         }
942 }
943
944 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
945 {
946         update_gfn_disallow_lpage_count(slot, gfn, 1);
947 }
948
949 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
950 {
951         update_gfn_disallow_lpage_count(slot, gfn, -1);
952 }
953
954 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
955 {
956         struct kvm_memslots *slots;
957         struct kvm_memory_slot *slot;
958         gfn_t gfn;
959
960         kvm->arch.indirect_shadow_pages++;
961         gfn = sp->gfn;
962         slots = kvm_memslots_for_spte_role(kvm, sp->role);
963         slot = __gfn_to_memslot(slots, gfn);
964
965         /* the non-leaf shadow pages are keeping readonly. */
966         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
967                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
968                                                     KVM_PAGE_TRACK_WRITE);
969
970         kvm_mmu_gfn_disallow_lpage(slot, gfn);
971 }
972
973 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
974 {
975         struct kvm_memslots *slots;
976         struct kvm_memory_slot *slot;
977         gfn_t gfn;
978
979         kvm->arch.indirect_shadow_pages--;
980         gfn = sp->gfn;
981         slots = kvm_memslots_for_spte_role(kvm, sp->role);
982         slot = __gfn_to_memslot(slots, gfn);
983         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
984                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
985                                                        KVM_PAGE_TRACK_WRITE);
986
987         kvm_mmu_gfn_allow_lpage(slot, gfn);
988 }
989
990 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
991                                           struct kvm_memory_slot *slot)
992 {
993         struct kvm_lpage_info *linfo;
994
995         if (slot) {
996                 linfo = lpage_info_slot(gfn, slot, level);
997                 return !!linfo->disallow_lpage;
998         }
999
1000         return true;
1001 }
1002
1003 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1004                                         int level)
1005 {
1006         struct kvm_memory_slot *slot;
1007
1008         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1009         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1010 }
1011
1012 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1013 {
1014         unsigned long page_size;
1015         int i, ret = 0;
1016
1017         page_size = kvm_host_page_size(kvm, gfn);
1018
1019         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1020                 if (page_size >= KVM_HPAGE_SIZE(i))
1021                         ret = i;
1022                 else
1023                         break;
1024         }
1025
1026         return ret;
1027 }
1028
1029 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1030                                           bool no_dirty_log)
1031 {
1032         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1033                 return false;
1034         if (no_dirty_log && slot->dirty_bitmap)
1035                 return false;
1036
1037         return true;
1038 }
1039
1040 static struct kvm_memory_slot *
1041 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1042                             bool no_dirty_log)
1043 {
1044         struct kvm_memory_slot *slot;
1045
1046         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1047         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1048                 slot = NULL;
1049
1050         return slot;
1051 }
1052
1053 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1054                          bool *force_pt_level)
1055 {
1056         int host_level, level, max_level;
1057         struct kvm_memory_slot *slot;
1058
1059         if (unlikely(*force_pt_level))
1060                 return PT_PAGE_TABLE_LEVEL;
1061
1062         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1063         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1064         if (unlikely(*force_pt_level))
1065                 return PT_PAGE_TABLE_LEVEL;
1066
1067         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1068
1069         if (host_level == PT_PAGE_TABLE_LEVEL)
1070                 return host_level;
1071
1072         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1073
1074         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1075                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1076                         break;
1077
1078         return level - 1;
1079 }
1080
1081 /*
1082  * About rmap_head encoding:
1083  *
1084  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1085  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1086  * pte_list_desc containing more mappings.
1087  */
1088
1089 /*
1090  * Returns the number of pointers in the rmap chain, not counting the new one.
1091  */
1092 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1093                         struct kvm_rmap_head *rmap_head)
1094 {
1095         struct pte_list_desc *desc;
1096         int i, count = 0;
1097
1098         if (!rmap_head->val) {
1099                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1100                 rmap_head->val = (unsigned long)spte;
1101         } else if (!(rmap_head->val & 1)) {
1102                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1103                 desc = mmu_alloc_pte_list_desc(vcpu);
1104                 desc->sptes[0] = (u64 *)rmap_head->val;
1105                 desc->sptes[1] = spte;
1106                 rmap_head->val = (unsigned long)desc | 1;
1107                 ++count;
1108         } else {
1109                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1110                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1111                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1112                         desc = desc->more;
1113                         count += PTE_LIST_EXT;
1114                 }
1115                 if (desc->sptes[PTE_LIST_EXT-1]) {
1116                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1117                         desc = desc->more;
1118                 }
1119                 for (i = 0; desc->sptes[i]; ++i)
1120                         ++count;
1121                 desc->sptes[i] = spte;
1122         }
1123         return count;
1124 }
1125
1126 static void
1127 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1128                            struct pte_list_desc *desc, int i,
1129                            struct pte_list_desc *prev_desc)
1130 {
1131         int j;
1132
1133         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1134                 ;
1135         desc->sptes[i] = desc->sptes[j];
1136         desc->sptes[j] = NULL;
1137         if (j != 0)
1138                 return;
1139         if (!prev_desc && !desc->more)
1140                 rmap_head->val = (unsigned long)desc->sptes[0];
1141         else
1142                 if (prev_desc)
1143                         prev_desc->more = desc->more;
1144                 else
1145                         rmap_head->val = (unsigned long)desc->more | 1;
1146         mmu_free_pte_list_desc(desc);
1147 }
1148
1149 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1150 {
1151         struct pte_list_desc *desc;
1152         struct pte_list_desc *prev_desc;
1153         int i;
1154
1155         if (!rmap_head->val) {
1156                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1157                 BUG();
1158         } else if (!(rmap_head->val & 1)) {
1159                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1160                 if ((u64 *)rmap_head->val != spte) {
1161                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1162                         BUG();
1163                 }
1164                 rmap_head->val = 0;
1165         } else {
1166                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1167                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1168                 prev_desc = NULL;
1169                 while (desc) {
1170                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1171                                 if (desc->sptes[i] == spte) {
1172                                         pte_list_desc_remove_entry(rmap_head,
1173                                                         desc, i, prev_desc);
1174                                         return;
1175                                 }
1176                         }
1177                         prev_desc = desc;
1178                         desc = desc->more;
1179                 }
1180                 pr_err("pte_list_remove: %p many->many\n", spte);
1181                 BUG();
1182         }
1183 }
1184
1185 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1186                                            struct kvm_memory_slot *slot)
1187 {
1188         unsigned long idx;
1189
1190         idx = gfn_to_index(gfn, slot->base_gfn, level);
1191         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1192 }
1193
1194 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1195                                          struct kvm_mmu_page *sp)
1196 {
1197         struct kvm_memslots *slots;
1198         struct kvm_memory_slot *slot;
1199
1200         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1201         slot = __gfn_to_memslot(slots, gfn);
1202         return __gfn_to_rmap(gfn, sp->role.level, slot);
1203 }
1204
1205 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1206 {
1207         struct kvm_mmu_memory_cache *cache;
1208
1209         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1210         return mmu_memory_cache_free_objects(cache);
1211 }
1212
1213 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1214 {
1215         struct kvm_mmu_page *sp;
1216         struct kvm_rmap_head *rmap_head;
1217
1218         sp = page_header(__pa(spte));
1219         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1220         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1221         return pte_list_add(vcpu, spte, rmap_head);
1222 }
1223
1224 static void rmap_remove(struct kvm *kvm, u64 *spte)
1225 {
1226         struct kvm_mmu_page *sp;
1227         gfn_t gfn;
1228         struct kvm_rmap_head *rmap_head;
1229
1230         sp = page_header(__pa(spte));
1231         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1232         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1233         pte_list_remove(spte, rmap_head);
1234 }
1235
1236 /*
1237  * Used by the following functions to iterate through the sptes linked by a
1238  * rmap.  All fields are private and not assumed to be used outside.
1239  */
1240 struct rmap_iterator {
1241         /* private fields */
1242         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1243         int pos;                        /* index of the sptep */
1244 };
1245
1246 /*
1247  * Iteration must be started by this function.  This should also be used after
1248  * removing/dropping sptes from the rmap link because in such cases the
1249  * information in the itererator may not be valid.
1250  *
1251  * Returns sptep if found, NULL otherwise.
1252  */
1253 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1254                            struct rmap_iterator *iter)
1255 {
1256         u64 *sptep;
1257
1258         if (!rmap_head->val)
1259                 return NULL;
1260
1261         if (!(rmap_head->val & 1)) {
1262                 iter->desc = NULL;
1263                 sptep = (u64 *)rmap_head->val;
1264                 goto out;
1265         }
1266
1267         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1268         iter->pos = 0;
1269         sptep = iter->desc->sptes[iter->pos];
1270 out:
1271         BUG_ON(!is_shadow_present_pte(*sptep));
1272         return sptep;
1273 }
1274
1275 /*
1276  * Must be used with a valid iterator: e.g. after rmap_get_first().
1277  *
1278  * Returns sptep if found, NULL otherwise.
1279  */
1280 static u64 *rmap_get_next(struct rmap_iterator *iter)
1281 {
1282         u64 *sptep;
1283
1284         if (iter->desc) {
1285                 if (iter->pos < PTE_LIST_EXT - 1) {
1286                         ++iter->pos;
1287                         sptep = iter->desc->sptes[iter->pos];
1288                         if (sptep)
1289                                 goto out;
1290                 }
1291
1292                 iter->desc = iter->desc->more;
1293
1294                 if (iter->desc) {
1295                         iter->pos = 0;
1296                         /* desc->sptes[0] cannot be NULL */
1297                         sptep = iter->desc->sptes[iter->pos];
1298                         goto out;
1299                 }
1300         }
1301
1302         return NULL;
1303 out:
1304         BUG_ON(!is_shadow_present_pte(*sptep));
1305         return sptep;
1306 }
1307
1308 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1309         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1310              _spte_; _spte_ = rmap_get_next(_iter_))
1311
1312 static void drop_spte(struct kvm *kvm, u64 *sptep)
1313 {
1314         if (mmu_spte_clear_track_bits(sptep))
1315                 rmap_remove(kvm, sptep);
1316 }
1317
1318
1319 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1320 {
1321         if (is_large_pte(*sptep)) {
1322                 WARN_ON(page_header(__pa(sptep))->role.level ==
1323                         PT_PAGE_TABLE_LEVEL);
1324                 drop_spte(kvm, sptep);
1325                 --kvm->stat.lpages;
1326                 return true;
1327         }
1328
1329         return false;
1330 }
1331
1332 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1333 {
1334         if (__drop_large_spte(vcpu->kvm, sptep))
1335                 kvm_flush_remote_tlbs(vcpu->kvm);
1336 }
1337
1338 /*
1339  * Write-protect on the specified @sptep, @pt_protect indicates whether
1340  * spte write-protection is caused by protecting shadow page table.
1341  *
1342  * Note: write protection is difference between dirty logging and spte
1343  * protection:
1344  * - for dirty logging, the spte can be set to writable at anytime if
1345  *   its dirty bitmap is properly set.
1346  * - for spte protection, the spte can be writable only after unsync-ing
1347  *   shadow page.
1348  *
1349  * Return true if tlb need be flushed.
1350  */
1351 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1352 {
1353         u64 spte = *sptep;
1354
1355         if (!is_writable_pte(spte) &&
1356               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1357                 return false;
1358
1359         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1360
1361         if (pt_protect)
1362                 spte &= ~SPTE_MMU_WRITEABLE;
1363         spte = spte & ~PT_WRITABLE_MASK;
1364
1365         return mmu_spte_update(sptep, spte);
1366 }
1367
1368 static bool __rmap_write_protect(struct kvm *kvm,
1369                                  struct kvm_rmap_head *rmap_head,
1370                                  bool pt_protect)
1371 {
1372         u64 *sptep;
1373         struct rmap_iterator iter;
1374         bool flush = false;
1375
1376         for_each_rmap_spte(rmap_head, &iter, sptep)
1377                 flush |= spte_write_protect(sptep, pt_protect);
1378
1379         return flush;
1380 }
1381
1382 static bool spte_clear_dirty(u64 *sptep)
1383 {
1384         u64 spte = *sptep;
1385
1386         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1387
1388         spte &= ~shadow_dirty_mask;
1389
1390         return mmu_spte_update(sptep, spte);
1391 }
1392
1393 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1394 {
1395         u64 *sptep;
1396         struct rmap_iterator iter;
1397         bool flush = false;
1398
1399         for_each_rmap_spte(rmap_head, &iter, sptep)
1400                 flush |= spte_clear_dirty(sptep);
1401
1402         return flush;
1403 }
1404
1405 static bool spte_set_dirty(u64 *sptep)
1406 {
1407         u64 spte = *sptep;
1408
1409         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1410
1411         spte |= shadow_dirty_mask;
1412
1413         return mmu_spte_update(sptep, spte);
1414 }
1415
1416 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1417 {
1418         u64 *sptep;
1419         struct rmap_iterator iter;
1420         bool flush = false;
1421
1422         for_each_rmap_spte(rmap_head, &iter, sptep)
1423                 flush |= spte_set_dirty(sptep);
1424
1425         return flush;
1426 }
1427
1428 /**
1429  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1430  * @kvm: kvm instance
1431  * @slot: slot to protect
1432  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1433  * @mask: indicates which pages we should protect
1434  *
1435  * Used when we do not need to care about huge page mappings: e.g. during dirty
1436  * logging we do not have any such mappings.
1437  */
1438 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1439                                      struct kvm_memory_slot *slot,
1440                                      gfn_t gfn_offset, unsigned long mask)
1441 {
1442         struct kvm_rmap_head *rmap_head;
1443
1444         while (mask) {
1445                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1446                                           PT_PAGE_TABLE_LEVEL, slot);
1447                 __rmap_write_protect(kvm, rmap_head, false);
1448
1449                 /* clear the first set bit */
1450                 mask &= mask - 1;
1451         }
1452 }
1453
1454 /**
1455  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1456  * @kvm: kvm instance
1457  * @slot: slot to clear D-bit
1458  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1459  * @mask: indicates which pages we should clear D-bit
1460  *
1461  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1462  */
1463 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1464                                      struct kvm_memory_slot *slot,
1465                                      gfn_t gfn_offset, unsigned long mask)
1466 {
1467         struct kvm_rmap_head *rmap_head;
1468
1469         while (mask) {
1470                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1471                                           PT_PAGE_TABLE_LEVEL, slot);
1472                 __rmap_clear_dirty(kvm, rmap_head);
1473
1474                 /* clear the first set bit */
1475                 mask &= mask - 1;
1476         }
1477 }
1478 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1479
1480 /**
1481  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1482  * PT level pages.
1483  *
1484  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1485  * enable dirty logging for them.
1486  *
1487  * Used when we do not need to care about huge page mappings: e.g. during dirty
1488  * logging we do not have any such mappings.
1489  */
1490 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1491                                 struct kvm_memory_slot *slot,
1492                                 gfn_t gfn_offset, unsigned long mask)
1493 {
1494         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1495                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1496                                 mask);
1497         else
1498                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1499 }
1500
1501 /**
1502  * kvm_arch_write_log_dirty - emulate dirty page logging
1503  * @vcpu: Guest mode vcpu
1504  *
1505  * Emulate arch specific page modification logging for the
1506  * nested hypervisor
1507  */
1508 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1509 {
1510         if (kvm_x86_ops->write_log_dirty)
1511                 return kvm_x86_ops->write_log_dirty(vcpu);
1512
1513         return 0;
1514 }
1515
1516 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1517                                     struct kvm_memory_slot *slot, u64 gfn)
1518 {
1519         struct kvm_rmap_head *rmap_head;
1520         int i;
1521         bool write_protected = false;
1522
1523         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1524                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1525                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1526         }
1527
1528         return write_protected;
1529 }
1530
1531 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1532 {
1533         struct kvm_memory_slot *slot;
1534
1535         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1536         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1537 }
1538
1539 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1540 {
1541         u64 *sptep;
1542         struct rmap_iterator iter;
1543         bool flush = false;
1544
1545         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1546                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1547
1548                 drop_spte(kvm, sptep);
1549                 flush = true;
1550         }
1551
1552         return flush;
1553 }
1554
1555 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1556                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1557                            unsigned long data)
1558 {
1559         return kvm_zap_rmapp(kvm, rmap_head);
1560 }
1561
1562 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1563                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1564                              unsigned long data)
1565 {
1566         u64 *sptep;
1567         struct rmap_iterator iter;
1568         int need_flush = 0;
1569         u64 new_spte;
1570         pte_t *ptep = (pte_t *)data;
1571         kvm_pfn_t new_pfn;
1572
1573         WARN_ON(pte_huge(*ptep));
1574         new_pfn = pte_pfn(*ptep);
1575
1576 restart:
1577         for_each_rmap_spte(rmap_head, &iter, sptep) {
1578                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1579                             sptep, *sptep, gfn, level);
1580
1581                 need_flush = 1;
1582
1583                 if (pte_write(*ptep)) {
1584                         drop_spte(kvm, sptep);
1585                         goto restart;
1586                 } else {
1587                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1588                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1589
1590                         new_spte &= ~PT_WRITABLE_MASK;
1591                         new_spte &= ~SPTE_HOST_WRITEABLE;
1592
1593                         new_spte = mark_spte_for_access_track(new_spte);
1594
1595                         mmu_spte_clear_track_bits(sptep);
1596                         mmu_spte_set(sptep, new_spte);
1597                 }
1598         }
1599
1600         if (need_flush)
1601                 kvm_flush_remote_tlbs(kvm);
1602
1603         return 0;
1604 }
1605
1606 struct slot_rmap_walk_iterator {
1607         /* input fields. */
1608         struct kvm_memory_slot *slot;
1609         gfn_t start_gfn;
1610         gfn_t end_gfn;
1611         int start_level;
1612         int end_level;
1613
1614         /* output fields. */
1615         gfn_t gfn;
1616         struct kvm_rmap_head *rmap;
1617         int level;
1618
1619         /* private field. */
1620         struct kvm_rmap_head *end_rmap;
1621 };
1622
1623 static void
1624 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1625 {
1626         iterator->level = level;
1627         iterator->gfn = iterator->start_gfn;
1628         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1629         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1630                                            iterator->slot);
1631 }
1632
1633 static void
1634 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1635                     struct kvm_memory_slot *slot, int start_level,
1636                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1637 {
1638         iterator->slot = slot;
1639         iterator->start_level = start_level;
1640         iterator->end_level = end_level;
1641         iterator->start_gfn = start_gfn;
1642         iterator->end_gfn = end_gfn;
1643
1644         rmap_walk_init_level(iterator, iterator->start_level);
1645 }
1646
1647 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1648 {
1649         return !!iterator->rmap;
1650 }
1651
1652 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1653 {
1654         if (++iterator->rmap <= iterator->end_rmap) {
1655                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1656                 return;
1657         }
1658
1659         if (++iterator->level > iterator->end_level) {
1660                 iterator->rmap = NULL;
1661                 return;
1662         }
1663
1664         rmap_walk_init_level(iterator, iterator->level);
1665 }
1666
1667 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1668            _start_gfn, _end_gfn, _iter_)                                \
1669         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1670                                  _end_level_, _start_gfn, _end_gfn);    \
1671              slot_rmap_walk_okay(_iter_);                               \
1672              slot_rmap_walk_next(_iter_))
1673
1674 static int kvm_handle_hva_range(struct kvm *kvm,
1675                                 unsigned long start,
1676                                 unsigned long end,
1677                                 unsigned long data,
1678                                 int (*handler)(struct kvm *kvm,
1679                                                struct kvm_rmap_head *rmap_head,
1680                                                struct kvm_memory_slot *slot,
1681                                                gfn_t gfn,
1682                                                int level,
1683                                                unsigned long data))
1684 {
1685         struct kvm_memslots *slots;
1686         struct kvm_memory_slot *memslot;
1687         struct slot_rmap_walk_iterator iterator;
1688         int ret = 0;
1689         int i;
1690
1691         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1692                 slots = __kvm_memslots(kvm, i);
1693                 kvm_for_each_memslot(memslot, slots) {
1694                         unsigned long hva_start, hva_end;
1695                         gfn_t gfn_start, gfn_end;
1696
1697                         hva_start = max(start, memslot->userspace_addr);
1698                         hva_end = min(end, memslot->userspace_addr +
1699                                       (memslot->npages << PAGE_SHIFT));
1700                         if (hva_start >= hva_end)
1701                                 continue;
1702                         /*
1703                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1704                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1705                          */
1706                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1707                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1708
1709                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1710                                                  PT_MAX_HUGEPAGE_LEVEL,
1711                                                  gfn_start, gfn_end - 1,
1712                                                  &iterator)
1713                                 ret |= handler(kvm, iterator.rmap, memslot,
1714                                                iterator.gfn, iterator.level, data);
1715                 }
1716         }
1717
1718         return ret;
1719 }
1720
1721 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1722                           unsigned long data,
1723                           int (*handler)(struct kvm *kvm,
1724                                          struct kvm_rmap_head *rmap_head,
1725                                          struct kvm_memory_slot *slot,
1726                                          gfn_t gfn, int level,
1727                                          unsigned long data))
1728 {
1729         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1730 }
1731
1732 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1733 {
1734         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1735 }
1736
1737 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1738 {
1739         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1740 }
1741
1742 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1743 {
1744         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1745 }
1746
1747 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1748                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1749                          unsigned long data)
1750 {
1751         u64 *sptep;
1752         struct rmap_iterator uninitialized_var(iter);
1753         int young = 0;
1754
1755         for_each_rmap_spte(rmap_head, &iter, sptep)
1756                 young |= mmu_spte_age(sptep);
1757
1758         trace_kvm_age_page(gfn, level, slot, young);
1759         return young;
1760 }
1761
1762 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1763                               struct kvm_memory_slot *slot, gfn_t gfn,
1764                               int level, unsigned long data)
1765 {
1766         u64 *sptep;
1767         struct rmap_iterator iter;
1768
1769         /*
1770          * If there's no access bit in the secondary pte set by the hardware and
1771          * fast access tracking is also not enabled, it's up to gup-fast/gup to
1772          * set the access bit in the primary pte or in the page structure.
1773          */
1774         if (!shadow_accessed_mask && !shadow_acc_track_mask)
1775                 goto out;
1776
1777         for_each_rmap_spte(rmap_head, &iter, sptep)
1778                 if (is_accessed_spte(*sptep))
1779                         return 1;
1780 out:
1781         return 0;
1782 }
1783
1784 #define RMAP_RECYCLE_THRESHOLD 1000
1785
1786 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1787 {
1788         struct kvm_rmap_head *rmap_head;
1789         struct kvm_mmu_page *sp;
1790
1791         sp = page_header(__pa(spte));
1792
1793         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1794
1795         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1796         kvm_flush_remote_tlbs(vcpu->kvm);
1797 }
1798
1799 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1800 {
1801         /*
1802          * In case of absence of EPT Access and Dirty Bits supports,
1803          * emulate the accessed bit for EPT, by checking if this page has
1804          * an EPT mapping, and clearing it if it does. On the next access,
1805          * a new EPT mapping will be established.
1806          * This has some overhead, but not as much as the cost of swapping
1807          * out actively used pages or breaking up actively used hugepages.
1808          */
1809         if (!shadow_accessed_mask && !shadow_acc_track_mask)
1810                 return kvm_handle_hva_range(kvm, start, end, 0,
1811                                             kvm_unmap_rmapp);
1812
1813         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1814 }
1815
1816 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1817 {
1818         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1819 }
1820
1821 #ifdef MMU_DEBUG
1822 static int is_empty_shadow_page(u64 *spt)
1823 {
1824         u64 *pos;
1825         u64 *end;
1826
1827         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1828                 if (is_shadow_present_pte(*pos)) {
1829                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1830                                pos, *pos);
1831                         return 0;
1832                 }
1833         return 1;
1834 }
1835 #endif
1836
1837 /*
1838  * This value is the sum of all of the kvm instances's
1839  * kvm->arch.n_used_mmu_pages values.  We need a global,
1840  * aggregate version in order to make the slab shrinker
1841  * faster
1842  */
1843 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1844 {
1845         kvm->arch.n_used_mmu_pages += nr;
1846         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1847 }
1848
1849 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1850 {
1851         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1852         hlist_del(&sp->hash_link);
1853         list_del(&sp->link);
1854         free_page((unsigned long)sp->spt);
1855         if (!sp->role.direct)
1856                 free_page((unsigned long)sp->gfns);
1857         kmem_cache_free(mmu_page_header_cache, sp);
1858 }
1859
1860 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1861 {
1862         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1863 }
1864
1865 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1866                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1867 {
1868         if (!parent_pte)
1869                 return;
1870
1871         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1872 }
1873
1874 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1875                                        u64 *parent_pte)
1876 {
1877         pte_list_remove(parent_pte, &sp->parent_ptes);
1878 }
1879
1880 static void drop_parent_pte(struct kvm_mmu_page *sp,
1881                             u64 *parent_pte)
1882 {
1883         mmu_page_remove_parent_pte(sp, parent_pte);
1884         mmu_spte_clear_no_track(parent_pte);
1885 }
1886
1887 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1888 {
1889         struct kvm_mmu_page *sp;
1890
1891         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1892         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1893         if (!direct)
1894                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1895         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1896
1897         /*
1898          * The active_mmu_pages list is the FIFO list, do not move the
1899          * page until it is zapped. kvm_zap_obsolete_pages depends on
1900          * this feature. See the comments in kvm_zap_obsolete_pages().
1901          */
1902         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1903         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1904         return sp;
1905 }
1906
1907 static void mark_unsync(u64 *spte);
1908 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1909 {
1910         u64 *sptep;
1911         struct rmap_iterator iter;
1912
1913         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1914                 mark_unsync(sptep);
1915         }
1916 }
1917
1918 static void mark_unsync(u64 *spte)
1919 {
1920         struct kvm_mmu_page *sp;
1921         unsigned int index;
1922
1923         sp = page_header(__pa(spte));
1924         index = spte - sp->spt;
1925         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1926                 return;
1927         if (sp->unsync_children++)
1928                 return;
1929         kvm_mmu_mark_parents_unsync(sp);
1930 }
1931
1932 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1933                                struct kvm_mmu_page *sp)
1934 {
1935         return 0;
1936 }
1937
1938 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1939 {
1940 }
1941
1942 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1943                                  struct kvm_mmu_page *sp, u64 *spte,
1944                                  const void *pte)
1945 {
1946         WARN_ON(1);
1947 }
1948
1949 #define KVM_PAGE_ARRAY_NR 16
1950
1951 struct kvm_mmu_pages {
1952         struct mmu_page_and_offset {
1953                 struct kvm_mmu_page *sp;
1954                 unsigned int idx;
1955         } page[KVM_PAGE_ARRAY_NR];
1956         unsigned int nr;
1957 };
1958
1959 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1960                          int idx)
1961 {
1962         int i;
1963
1964         if (sp->unsync)
1965                 for (i=0; i < pvec->nr; i++)
1966                         if (pvec->page[i].sp == sp)
1967                                 return 0;
1968
1969         pvec->page[pvec->nr].sp = sp;
1970         pvec->page[pvec->nr].idx = idx;
1971         pvec->nr++;
1972         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1973 }
1974
1975 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1976 {
1977         --sp->unsync_children;
1978         WARN_ON((int)sp->unsync_children < 0);
1979         __clear_bit(idx, sp->unsync_child_bitmap);
1980 }
1981
1982 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1983                            struct kvm_mmu_pages *pvec)
1984 {
1985         int i, ret, nr_unsync_leaf = 0;
1986
1987         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1988                 struct kvm_mmu_page *child;
1989                 u64 ent = sp->spt[i];
1990
1991                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1992                         clear_unsync_child_bit(sp, i);
1993                         continue;
1994                 }
1995
1996                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1997
1998                 if (child->unsync_children) {
1999                         if (mmu_pages_add(pvec, child, i))
2000                                 return -ENOSPC;
2001
2002                         ret = __mmu_unsync_walk(child, pvec);
2003                         if (!ret) {
2004                                 clear_unsync_child_bit(sp, i);
2005                                 continue;
2006                         } else if (ret > 0) {
2007                                 nr_unsync_leaf += ret;
2008                         } else
2009                                 return ret;
2010                 } else if (child->unsync) {
2011                         nr_unsync_leaf++;
2012                         if (mmu_pages_add(pvec, child, i))
2013                                 return -ENOSPC;
2014                 } else
2015                         clear_unsync_child_bit(sp, i);
2016         }
2017
2018         return nr_unsync_leaf;
2019 }
2020
2021 #define INVALID_INDEX (-1)
2022
2023 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2024                            struct kvm_mmu_pages *pvec)
2025 {
2026         pvec->nr = 0;
2027         if (!sp->unsync_children)
2028                 return 0;
2029
2030         mmu_pages_add(pvec, sp, INVALID_INDEX);
2031         return __mmu_unsync_walk(sp, pvec);
2032 }
2033
2034 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2035 {
2036         WARN_ON(!sp->unsync);
2037         trace_kvm_mmu_sync_page(sp);
2038         sp->unsync = 0;
2039         --kvm->stat.mmu_unsync;
2040 }
2041
2042 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2043                                     struct list_head *invalid_list);
2044 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2045                                     struct list_head *invalid_list);
2046
2047 /*
2048  * NOTE: we should pay more attention on the zapped-obsolete page
2049  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2050  * since it has been deleted from active_mmu_pages but still can be found
2051  * at hast list.
2052  *
2053  * for_each_valid_sp() has skipped that kind of pages.
2054  */
2055 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2056         hlist_for_each_entry(_sp,                                       \
2057           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2058                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2059                 } else
2060
2061 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2062         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2063                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2064
2065 /* @sp->gfn should be write-protected at the call site */
2066 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2067                             struct list_head *invalid_list)
2068 {
2069         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2070                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2071                 return false;
2072         }
2073
2074         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2075                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2076                 return false;
2077         }
2078
2079         return true;
2080 }
2081
2082 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2083                                  struct list_head *invalid_list,
2084                                  bool remote_flush, bool local_flush)
2085 {
2086         if (!list_empty(invalid_list)) {
2087                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2088                 return;
2089         }
2090
2091         if (remote_flush)
2092                 kvm_flush_remote_tlbs(vcpu->kvm);
2093         else if (local_flush)
2094                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2095 }
2096
2097 #ifdef CONFIG_KVM_MMU_AUDIT
2098 #include "mmu_audit.c"
2099 #else
2100 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2101 static void mmu_audit_disable(void) { }
2102 #endif
2103
2104 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2105 {
2106         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2107 }
2108
2109 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2110                          struct list_head *invalid_list)
2111 {
2112         kvm_unlink_unsync_page(vcpu->kvm, sp);
2113         return __kvm_sync_page(vcpu, sp, invalid_list);
2114 }
2115
2116 /* @gfn should be write-protected at the call site */
2117 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2118                            struct list_head *invalid_list)
2119 {
2120         struct kvm_mmu_page *s;
2121         bool ret = false;
2122
2123         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2124                 if (!s->unsync)
2125                         continue;
2126
2127                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2128                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2129         }
2130
2131         return ret;
2132 }
2133
2134 struct mmu_page_path {
2135         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
2136         unsigned int idx[PT64_ROOT_LEVEL];
2137 };
2138
2139 #define for_each_sp(pvec, sp, parents, i)                       \
2140                 for (i = mmu_pages_first(&pvec, &parents);      \
2141                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2142                         i = mmu_pages_next(&pvec, &parents, i))
2143
2144 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2145                           struct mmu_page_path *parents,
2146                           int i)
2147 {
2148         int n;
2149
2150         for (n = i+1; n < pvec->nr; n++) {
2151                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2152                 unsigned idx = pvec->page[n].idx;
2153                 int level = sp->role.level;
2154
2155                 parents->idx[level-1] = idx;
2156                 if (level == PT_PAGE_TABLE_LEVEL)
2157                         break;
2158
2159                 parents->parent[level-2] = sp;
2160         }
2161
2162         return n;
2163 }
2164
2165 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2166                            struct mmu_page_path *parents)
2167 {
2168         struct kvm_mmu_page *sp;
2169         int level;
2170
2171         if (pvec->nr == 0)
2172                 return 0;
2173
2174         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2175
2176         sp = pvec->page[0].sp;
2177         level = sp->role.level;
2178         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2179
2180         parents->parent[level-2] = sp;
2181
2182         /* Also set up a sentinel.  Further entries in pvec are all
2183          * children of sp, so this element is never overwritten.
2184          */
2185         parents->parent[level-1] = NULL;
2186         return mmu_pages_next(pvec, parents, 0);
2187 }
2188
2189 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2190 {
2191         struct kvm_mmu_page *sp;
2192         unsigned int level = 0;
2193
2194         do {
2195                 unsigned int idx = parents->idx[level];
2196                 sp = parents->parent[level];
2197                 if (!sp)
2198                         return;
2199
2200                 WARN_ON(idx == INVALID_INDEX);
2201                 clear_unsync_child_bit(sp, idx);
2202                 level++;
2203         } while (!sp->unsync_children);
2204 }
2205
2206 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2207                               struct kvm_mmu_page *parent)
2208 {
2209         int i;
2210         struct kvm_mmu_page *sp;
2211         struct mmu_page_path parents;
2212         struct kvm_mmu_pages pages;
2213         LIST_HEAD(invalid_list);
2214         bool flush = false;
2215
2216         while (mmu_unsync_walk(parent, &pages)) {
2217                 bool protected = false;
2218
2219                 for_each_sp(pages, sp, parents, i)
2220                         protected |= rmap_write_protect(vcpu, sp->gfn);
2221
2222                 if (protected) {
2223                         kvm_flush_remote_tlbs(vcpu->kvm);
2224                         flush = false;
2225                 }
2226
2227                 for_each_sp(pages, sp, parents, i) {
2228                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2229                         mmu_pages_clear_parents(&parents);
2230                 }
2231                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2232                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2233                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2234                         flush = false;
2235                 }
2236         }
2237
2238         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2239 }
2240
2241 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2242 {
2243         atomic_set(&sp->write_flooding_count,  0);
2244 }
2245
2246 static void clear_sp_write_flooding_count(u64 *spte)
2247 {
2248         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2249
2250         __clear_sp_write_flooding_count(sp);
2251 }
2252
2253 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2254                                              gfn_t gfn,
2255                                              gva_t gaddr,
2256                                              unsigned level,
2257                                              int direct,
2258                                              unsigned access)
2259 {
2260         union kvm_mmu_page_role role;
2261         unsigned quadrant;
2262         struct kvm_mmu_page *sp;
2263         bool need_sync = false;
2264         bool flush = false;
2265         int collisions = 0;
2266         LIST_HEAD(invalid_list);
2267
2268         role = vcpu->arch.mmu.base_role;
2269         role.level = level;
2270         role.direct = direct;
2271         if (role.direct)
2272                 role.cr4_pae = 0;
2273         role.access = access;
2274         if (!vcpu->arch.mmu.direct_map
2275             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2276                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2277                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2278                 role.quadrant = quadrant;
2279         }
2280         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2281                 if (sp->gfn != gfn) {
2282                         collisions++;
2283                         continue;
2284                 }
2285
2286                 if (!need_sync && sp->unsync)
2287                         need_sync = true;
2288
2289                 if (sp->role.word != role.word)
2290                         continue;
2291
2292                 if (sp->unsync) {
2293                         /* The page is good, but __kvm_sync_page might still end
2294                          * up zapping it.  If so, break in order to rebuild it.
2295                          */
2296                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2297                                 break;
2298
2299                         WARN_ON(!list_empty(&invalid_list));
2300                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2301                 }
2302
2303                 if (sp->unsync_children)
2304                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2305
2306                 __clear_sp_write_flooding_count(sp);
2307                 trace_kvm_mmu_get_page(sp, false);
2308                 goto out;
2309         }
2310
2311         ++vcpu->kvm->stat.mmu_cache_miss;
2312
2313         sp = kvm_mmu_alloc_page(vcpu, direct);
2314
2315         sp->gfn = gfn;
2316         sp->role = role;
2317         hlist_add_head(&sp->hash_link,
2318                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2319         if (!direct) {
2320                 /*
2321                  * we should do write protection before syncing pages
2322                  * otherwise the content of the synced shadow page may
2323                  * be inconsistent with guest page table.
2324                  */
2325                 account_shadowed(vcpu->kvm, sp);
2326                 if (level == PT_PAGE_TABLE_LEVEL &&
2327                       rmap_write_protect(vcpu, gfn))
2328                         kvm_flush_remote_tlbs(vcpu->kvm);
2329
2330                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2331                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2332         }
2333         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2334         clear_page(sp->spt);
2335         trace_kvm_mmu_get_page(sp, true);
2336
2337         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2338 out:
2339         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2340                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2341         return sp;
2342 }
2343
2344 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2345                              struct kvm_vcpu *vcpu, u64 addr)
2346 {
2347         iterator->addr = addr;
2348         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2349         iterator->level = vcpu->arch.mmu.shadow_root_level;
2350
2351         if (iterator->level == PT64_ROOT_LEVEL &&
2352             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2353             !vcpu->arch.mmu.direct_map)
2354                 --iterator->level;
2355
2356         if (iterator->level == PT32E_ROOT_LEVEL) {
2357                 iterator->shadow_addr
2358                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2359                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2360                 --iterator->level;
2361                 if (!iterator->shadow_addr)
2362                         iterator->level = 0;
2363         }
2364 }
2365
2366 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2367 {
2368         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2369                 return false;
2370
2371         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2372         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2373         return true;
2374 }
2375
2376 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2377                                u64 spte)
2378 {
2379         if (is_last_spte(spte, iterator->level)) {
2380                 iterator->level = 0;
2381                 return;
2382         }
2383
2384         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2385         --iterator->level;
2386 }
2387
2388 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2389 {
2390         return __shadow_walk_next(iterator, *iterator->sptep);
2391 }
2392
2393 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2394                              struct kvm_mmu_page *sp)
2395 {
2396         u64 spte;
2397
2398         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2399
2400         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2401                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2402
2403         mmu_spte_set(sptep, spte);
2404
2405         mmu_page_add_parent_pte(vcpu, sp, sptep);
2406
2407         if (sp->unsync_children || sp->unsync)
2408                 mark_unsync(sptep);
2409 }
2410
2411 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2412                                    unsigned direct_access)
2413 {
2414         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2415                 struct kvm_mmu_page *child;
2416
2417                 /*
2418                  * For the direct sp, if the guest pte's dirty bit
2419                  * changed form clean to dirty, it will corrupt the
2420                  * sp's access: allow writable in the read-only sp,
2421                  * so we should update the spte at this point to get
2422                  * a new sp with the correct access.
2423                  */
2424                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2425                 if (child->role.access == direct_access)
2426                         return;
2427
2428                 drop_parent_pte(child, sptep);
2429                 kvm_flush_remote_tlbs(vcpu->kvm);
2430         }
2431 }
2432
2433 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2434                              u64 *spte)
2435 {
2436         u64 pte;
2437         struct kvm_mmu_page *child;
2438
2439         pte = *spte;
2440         if (is_shadow_present_pte(pte)) {
2441                 if (is_last_spte(pte, sp->role.level)) {
2442                         drop_spte(kvm, spte);
2443                         if (is_large_pte(pte))
2444                                 --kvm->stat.lpages;
2445                 } else {
2446                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2447                         drop_parent_pte(child, spte);
2448                 }
2449                 return true;
2450         }
2451
2452         if (is_mmio_spte(pte))
2453                 mmu_spte_clear_no_track(spte);
2454
2455         return false;
2456 }
2457
2458 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2459                                          struct kvm_mmu_page *sp)
2460 {
2461         unsigned i;
2462
2463         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2464                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2465 }
2466
2467 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2468 {
2469         u64 *sptep;
2470         struct rmap_iterator iter;
2471
2472         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2473                 drop_parent_pte(sp, sptep);
2474 }
2475
2476 static int mmu_zap_unsync_children(struct kvm *kvm,
2477                                    struct kvm_mmu_page *parent,
2478                                    struct list_head *invalid_list)
2479 {
2480         int i, zapped = 0;
2481         struct mmu_page_path parents;
2482         struct kvm_mmu_pages pages;
2483
2484         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2485                 return 0;
2486
2487         while (mmu_unsync_walk(parent, &pages)) {
2488                 struct kvm_mmu_page *sp;
2489
2490                 for_each_sp(pages, sp, parents, i) {
2491                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2492                         mmu_pages_clear_parents(&parents);
2493                         zapped++;
2494                 }
2495         }
2496
2497         return zapped;
2498 }
2499
2500 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2501                                     struct list_head *invalid_list)
2502 {
2503         int ret;
2504
2505         trace_kvm_mmu_prepare_zap_page(sp);
2506         ++kvm->stat.mmu_shadow_zapped;
2507         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2508         kvm_mmu_page_unlink_children(kvm, sp);
2509         kvm_mmu_unlink_parents(kvm, sp);
2510
2511         if (!sp->role.invalid && !sp->role.direct)
2512                 unaccount_shadowed(kvm, sp);
2513
2514         if (sp->unsync)
2515                 kvm_unlink_unsync_page(kvm, sp);
2516         if (!sp->root_count) {
2517                 /* Count self */
2518                 ret++;
2519                 list_move(&sp->link, invalid_list);
2520                 kvm_mod_used_mmu_pages(kvm, -1);
2521         } else {
2522                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2523
2524                 /*
2525                  * The obsolete pages can not be used on any vcpus.
2526                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2527                  */
2528                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2529                         kvm_reload_remote_mmus(kvm);
2530         }
2531
2532         sp->role.invalid = 1;
2533         return ret;
2534 }
2535
2536 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2537                                     struct list_head *invalid_list)
2538 {
2539         struct kvm_mmu_page *sp, *nsp;
2540
2541         if (list_empty(invalid_list))
2542                 return;
2543
2544         /*
2545          * We need to make sure everyone sees our modifications to
2546          * the page tables and see changes to vcpu->mode here. The barrier
2547          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2548          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2549          *
2550          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2551          * guest mode and/or lockless shadow page table walks.
2552          */
2553         kvm_flush_remote_tlbs(kvm);
2554
2555         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2556                 WARN_ON(!sp->role.invalid || sp->root_count);
2557                 kvm_mmu_free_page(sp);
2558         }
2559 }
2560
2561 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2562                                         struct list_head *invalid_list)
2563 {
2564         struct kvm_mmu_page *sp;
2565
2566         if (list_empty(&kvm->arch.active_mmu_pages))
2567                 return false;
2568
2569         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2570                              struct kvm_mmu_page, link);
2571         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2572
2573         return true;
2574 }
2575
2576 /*
2577  * Changing the number of mmu pages allocated to the vm
2578  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2579  */
2580 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2581 {
2582         LIST_HEAD(invalid_list);
2583
2584         spin_lock(&kvm->mmu_lock);
2585
2586         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2587                 /* Need to free some mmu pages to achieve the goal. */
2588                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2589                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2590                                 break;
2591
2592                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2593                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2594         }
2595
2596         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2597
2598         spin_unlock(&kvm->mmu_lock);
2599 }
2600
2601 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2602 {
2603         struct kvm_mmu_page *sp;
2604         LIST_HEAD(invalid_list);
2605         int r;
2606
2607         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2608         r = 0;
2609         spin_lock(&kvm->mmu_lock);
2610         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2611                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2612                          sp->role.word);
2613                 r = 1;
2614                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2615         }
2616         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2617         spin_unlock(&kvm->mmu_lock);
2618
2619         return r;
2620 }
2621 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2622
2623 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2624 {
2625         trace_kvm_mmu_unsync_page(sp);
2626         ++vcpu->kvm->stat.mmu_unsync;
2627         sp->unsync = 1;
2628
2629         kvm_mmu_mark_parents_unsync(sp);
2630 }
2631
2632 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2633                                    bool can_unsync)
2634 {
2635         struct kvm_mmu_page *sp;
2636
2637         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2638                 return true;
2639
2640         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2641                 if (!can_unsync)
2642                         return true;
2643
2644                 if (sp->unsync)
2645                         continue;
2646
2647                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2648                 kvm_unsync_page(vcpu, sp);
2649         }
2650
2651         return false;
2652 }
2653
2654 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2655 {
2656         if (pfn_valid(pfn))
2657                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2658
2659         return true;
2660 }
2661
2662 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2663                     unsigned pte_access, int level,
2664                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2665                     bool can_unsync, bool host_writable)
2666 {
2667         u64 spte = 0;
2668         int ret = 0;
2669
2670         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2671                 return 0;
2672
2673         /*
2674          * For the EPT case, shadow_present_mask is 0 if hardware
2675          * supports exec-only page table entries.  In that case,
2676          * ACC_USER_MASK and shadow_user_mask are used to represent
2677          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2678          */
2679         spte |= shadow_present_mask;
2680         if (!speculative)
2681                 spte |= shadow_accessed_mask;
2682
2683         if (pte_access & ACC_EXEC_MASK)
2684                 spte |= shadow_x_mask;
2685         else
2686                 spte |= shadow_nx_mask;
2687
2688         if (pte_access & ACC_USER_MASK)
2689                 spte |= shadow_user_mask;
2690
2691         if (level > PT_PAGE_TABLE_LEVEL)
2692                 spte |= PT_PAGE_SIZE_MASK;
2693         if (tdp_enabled)
2694                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2695                         kvm_is_mmio_pfn(pfn));
2696
2697         if (host_writable)
2698                 spte |= SPTE_HOST_WRITEABLE;
2699         else
2700                 pte_access &= ~ACC_WRITE_MASK;
2701
2702         spte |= (u64)pfn << PAGE_SHIFT;
2703
2704         if (pte_access & ACC_WRITE_MASK) {
2705
2706                 /*
2707                  * Other vcpu creates new sp in the window between
2708                  * mapping_level() and acquiring mmu-lock. We can
2709                  * allow guest to retry the access, the mapping can
2710                  * be fixed if guest refault.
2711                  */
2712                 if (level > PT_PAGE_TABLE_LEVEL &&
2713                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2714                         goto done;
2715
2716                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2717
2718                 /*
2719                  * Optimization: for pte sync, if spte was writable the hash
2720                  * lookup is unnecessary (and expensive). Write protection
2721                  * is responsibility of mmu_get_page / kvm_sync_page.
2722                  * Same reasoning can be applied to dirty page accounting.
2723                  */
2724                 if (!can_unsync && is_writable_pte(*sptep))
2725                         goto set_pte;
2726
2727                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2728                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2729                                  __func__, gfn);
2730                         ret = 1;
2731                         pte_access &= ~ACC_WRITE_MASK;
2732                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2733                 }
2734         }
2735
2736         if (pte_access & ACC_WRITE_MASK) {
2737                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2738                 spte |= shadow_dirty_mask;
2739         }
2740
2741         if (speculative)
2742                 spte = mark_spte_for_access_track(spte);
2743
2744 set_pte:
2745         if (mmu_spte_update(sptep, spte))
2746                 kvm_flush_remote_tlbs(vcpu->kvm);
2747 done:
2748         return ret;
2749 }
2750
2751 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2752                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2753                          bool speculative, bool host_writable)
2754 {
2755         int was_rmapped = 0;
2756         int rmap_count;
2757         bool emulate = false;
2758
2759         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2760                  *sptep, write_fault, gfn);
2761
2762         if (is_shadow_present_pte(*sptep)) {
2763                 /*
2764                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2765                  * the parent of the now unreachable PTE.
2766                  */
2767                 if (level > PT_PAGE_TABLE_LEVEL &&
2768                     !is_large_pte(*sptep)) {
2769                         struct kvm_mmu_page *child;
2770                         u64 pte = *sptep;
2771
2772                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2773                         drop_parent_pte(child, sptep);
2774                         kvm_flush_remote_tlbs(vcpu->kvm);
2775                 } else if (pfn != spte_to_pfn(*sptep)) {
2776                         pgprintk("hfn old %llx new %llx\n",
2777                                  spte_to_pfn(*sptep), pfn);
2778                         drop_spte(vcpu->kvm, sptep);
2779                         kvm_flush_remote_tlbs(vcpu->kvm);
2780                 } else
2781                         was_rmapped = 1;
2782         }
2783
2784         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2785               true, host_writable)) {
2786                 if (write_fault)
2787                         emulate = true;
2788                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2789         }
2790
2791         if (unlikely(is_mmio_spte(*sptep)))
2792                 emulate = true;
2793
2794         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2795         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2796                  is_large_pte(*sptep)? "2MB" : "4kB",
2797                  *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2798                  *sptep, sptep);
2799         if (!was_rmapped && is_large_pte(*sptep))
2800                 ++vcpu->kvm->stat.lpages;
2801
2802         if (is_shadow_present_pte(*sptep)) {
2803                 if (!was_rmapped) {
2804                         rmap_count = rmap_add(vcpu, sptep, gfn);
2805                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2806                                 rmap_recycle(vcpu, sptep, gfn);
2807                 }
2808         }
2809
2810         kvm_release_pfn_clean(pfn);
2811
2812         return emulate;
2813 }
2814
2815 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2816                                      bool no_dirty_log)
2817 {
2818         struct kvm_memory_slot *slot;
2819
2820         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2821         if (!slot)
2822                 return KVM_PFN_ERR_FAULT;
2823
2824         return gfn_to_pfn_memslot_atomic(slot, gfn);
2825 }
2826
2827 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2828                                     struct kvm_mmu_page *sp,
2829                                     u64 *start, u64 *end)
2830 {
2831         struct page *pages[PTE_PREFETCH_NUM];
2832         struct kvm_memory_slot *slot;
2833         unsigned access = sp->role.access;
2834         int i, ret;
2835         gfn_t gfn;
2836
2837         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2838         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2839         if (!slot)
2840                 return -1;
2841
2842         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2843         if (ret <= 0)
2844                 return -1;
2845
2846         for (i = 0; i < ret; i++, gfn++, start++)
2847                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2848                              page_to_pfn(pages[i]), true, true);
2849
2850         return 0;
2851 }
2852
2853 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2854                                   struct kvm_mmu_page *sp, u64 *sptep)
2855 {
2856         u64 *spte, *start = NULL;
2857         int i;
2858
2859         WARN_ON(!sp->role.direct);
2860
2861         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2862         spte = sp->spt + i;
2863
2864         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2865                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2866                         if (!start)
2867                                 continue;
2868                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2869                                 break;
2870                         start = NULL;
2871                 } else if (!start)
2872                         start = spte;
2873         }
2874 }
2875
2876 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2877 {
2878         struct kvm_mmu_page *sp;
2879
2880         /*
2881          * Since it's no accessed bit on EPT, it's no way to
2882          * distinguish between actually accessed translations
2883          * and prefetched, so disable pte prefetch if EPT is
2884          * enabled.
2885          */
2886         if (!shadow_accessed_mask)
2887                 return;
2888
2889         sp = page_header(__pa(sptep));
2890         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2891                 return;
2892
2893         __direct_pte_prefetch(vcpu, sp, sptep);
2894 }
2895
2896 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2897                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2898 {
2899         struct kvm_shadow_walk_iterator iterator;
2900         struct kvm_mmu_page *sp;
2901         int emulate = 0;
2902         gfn_t pseudo_gfn;
2903
2904         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2905                 return 0;
2906
2907         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2908                 if (iterator.level == level) {
2909                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2910                                                write, level, gfn, pfn, prefault,
2911                                                map_writable);
2912                         direct_pte_prefetch(vcpu, iterator.sptep);
2913                         ++vcpu->stat.pf_fixed;
2914                         break;
2915                 }
2916
2917                 drop_large_spte(vcpu, iterator.sptep);
2918                 if (!is_shadow_present_pte(*iterator.sptep)) {
2919                         u64 base_addr = iterator.addr;
2920
2921                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2922                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2923                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2924                                               iterator.level - 1, 1, ACC_ALL);
2925
2926                         link_shadow_page(vcpu, iterator.sptep, sp);
2927                 }
2928         }
2929         return emulate;
2930 }
2931
2932 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2933 {
2934         siginfo_t info;
2935
2936         info.si_signo   = SIGBUS;
2937         info.si_errno   = 0;
2938         info.si_code    = BUS_MCEERR_AR;
2939         info.si_addr    = (void __user *)address;
2940         info.si_addr_lsb = PAGE_SHIFT;
2941
2942         send_sig_info(SIGBUS, &info, tsk);
2943 }
2944
2945 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2946 {
2947         /*
2948          * Do not cache the mmio info caused by writing the readonly gfn
2949          * into the spte otherwise read access on readonly gfn also can
2950          * caused mmio page fault and treat it as mmio access.
2951          * Return 1 to tell kvm to emulate it.
2952          */
2953         if (pfn == KVM_PFN_ERR_RO_FAULT)
2954                 return 1;
2955
2956         if (pfn == KVM_PFN_ERR_HWPOISON) {
2957                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2958                 return 0;
2959         }
2960
2961         return -EFAULT;
2962 }
2963
2964 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2965                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2966                                         int *levelp)
2967 {
2968         kvm_pfn_t pfn = *pfnp;
2969         gfn_t gfn = *gfnp;
2970         int level = *levelp;
2971
2972         /*
2973          * Check if it's a transparent hugepage. If this would be an
2974          * hugetlbfs page, level wouldn't be set to
2975          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2976          * here.
2977          */
2978         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2979             level == PT_PAGE_TABLE_LEVEL &&
2980             PageTransCompoundMap(pfn_to_page(pfn)) &&
2981             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2982                 unsigned long mask;
2983                 /*
2984                  * mmu_notifier_retry was successful and we hold the
2985                  * mmu_lock here, so the pmd can't become splitting
2986                  * from under us, and in turn
2987                  * __split_huge_page_refcount() can't run from under
2988                  * us and we can safely transfer the refcount from
2989                  * PG_tail to PG_head as we switch the pfn to tail to
2990                  * head.
2991                  */
2992                 *levelp = level = PT_DIRECTORY_LEVEL;
2993                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2994                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2995                 if (pfn & mask) {
2996                         gfn &= ~mask;
2997                         *gfnp = gfn;
2998                         kvm_release_pfn_clean(pfn);
2999                         pfn &= ~mask;
3000                         kvm_get_pfn(pfn);
3001                         *pfnp = pfn;
3002                 }
3003         }
3004 }
3005
3006 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3007                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3008 {
3009         /* The pfn is invalid, report the error! */
3010         if (unlikely(is_error_pfn(pfn))) {
3011                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3012                 return true;
3013         }
3014
3015         if (unlikely(is_noslot_pfn(pfn)))
3016                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3017
3018         return false;
3019 }
3020
3021 static bool page_fault_can_be_fast(u32 error_code)
3022 {
3023         /*
3024          * Do not fix the mmio spte with invalid generation number which
3025          * need to be updated by slow page fault path.
3026          */
3027         if (unlikely(error_code & PFERR_RSVD_MASK))
3028                 return false;
3029
3030         /* See if the page fault is due to an NX violation */
3031         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3032                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3033                 return false;
3034
3035         /*
3036          * #PF can be fast if:
3037          * 1. The shadow page table entry is not present, which could mean that
3038          *    the fault is potentially caused by access tracking (if enabled).
3039          * 2. The shadow page table entry is present and the fault
3040          *    is caused by write-protect, that means we just need change the W
3041          *    bit of the spte which can be done out of mmu-lock.
3042          *
3043          * However, if access tracking is disabled we know that a non-present
3044          * page must be a genuine page fault where we have to create a new SPTE.
3045          * So, if access tracking is disabled, we return true only for write
3046          * accesses to a present page.
3047          */
3048
3049         return shadow_acc_track_mask != 0 ||
3050                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3051                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3052 }
3053
3054 /*
3055  * Returns true if the SPTE was fixed successfully. Otherwise,
3056  * someone else modified the SPTE from its original value.
3057  */
3058 static bool
3059 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3060                         u64 *sptep, u64 old_spte, u64 new_spte)
3061 {
3062         gfn_t gfn;
3063
3064         WARN_ON(!sp->role.direct);
3065
3066         /*
3067          * Theoretically we could also set dirty bit (and flush TLB) here in
3068          * order to eliminate unnecessary PML logging. See comments in
3069          * set_spte. But fast_page_fault is very unlikely to happen with PML
3070          * enabled, so we do not do this. This might result in the same GPA
3071          * to be logged in PML buffer again when the write really happens, and
3072          * eventually to be called by mark_page_dirty twice. But it's also no
3073          * harm. This also avoids the TLB flush needed after setting dirty bit
3074          * so non-PML cases won't be impacted.
3075          *
3076          * Compare with set_spte where instead shadow_dirty_mask is set.
3077          */
3078         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3079                 return false;
3080
3081         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3082                 /*
3083                  * The gfn of direct spte is stable since it is
3084                  * calculated by sp->gfn.
3085                  */
3086                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3087                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3088         }
3089
3090         return true;
3091 }
3092
3093 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3094 {
3095         if (fault_err_code & PFERR_FETCH_MASK)
3096                 return is_executable_pte(spte);
3097
3098         if (fault_err_code & PFERR_WRITE_MASK)
3099                 return is_writable_pte(spte);
3100
3101         /* Fault was on Read access */
3102         return spte & PT_PRESENT_MASK;
3103 }
3104
3105 /*
3106  * Return value:
3107  * - true: let the vcpu to access on the same address again.
3108  * - false: let the real page fault path to fix it.
3109  */
3110 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3111                             u32 error_code)
3112 {
3113         struct kvm_shadow_walk_iterator iterator;
3114         struct kvm_mmu_page *sp;
3115         bool fault_handled = false;
3116         u64 spte = 0ull;
3117         uint retry_count = 0;
3118
3119         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3120                 return false;
3121
3122         if (!page_fault_can_be_fast(error_code))
3123                 return false;
3124
3125         walk_shadow_page_lockless_begin(vcpu);
3126
3127         do {
3128                 u64 new_spte;
3129
3130                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3131                         if (!is_shadow_present_pte(spte) ||
3132                             iterator.level < level)
3133                                 break;
3134
3135                 sp = page_header(__pa(iterator.sptep));
3136                 if (!is_last_spte(spte, sp->role.level))
3137                         break;
3138
3139                 /*
3140                  * Check whether the memory access that caused the fault would
3141                  * still cause it if it were to be performed right now. If not,
3142                  * then this is a spurious fault caused by TLB lazily flushed,
3143                  * or some other CPU has already fixed the PTE after the
3144                  * current CPU took the fault.
3145                  *
3146                  * Need not check the access of upper level table entries since
3147                  * they are always ACC_ALL.
3148                  */
3149                 if (is_access_allowed(error_code, spte)) {
3150                         fault_handled = true;
3151                         break;
3152                 }
3153
3154                 new_spte = spte;
3155
3156                 if (is_access_track_spte(spte))
3157                         new_spte = restore_acc_track_spte(new_spte);
3158
3159                 /*
3160                  * Currently, to simplify the code, write-protection can
3161                  * be removed in the fast path only if the SPTE was
3162                  * write-protected for dirty-logging or access tracking.
3163                  */
3164                 if ((error_code & PFERR_WRITE_MASK) &&
3165                     spte_can_locklessly_be_made_writable(spte))
3166                 {
3167                         new_spte |= PT_WRITABLE_MASK;
3168
3169                         /*
3170                          * Do not fix write-permission on the large spte.  Since
3171                          * we only dirty the first page into the dirty-bitmap in
3172                          * fast_pf_fix_direct_spte(), other pages are missed
3173                          * if its slot has dirty logging enabled.
3174                          *
3175                          * Instead, we let the slow page fault path create a
3176                          * normal spte to fix the access.
3177                          *
3178                          * See the comments in kvm_arch_commit_memory_region().
3179                          */
3180                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3181                                 break;
3182                 }
3183
3184                 /* Verify that the fault can be handled in the fast path */
3185                 if (new_spte == spte ||
3186                     !is_access_allowed(error_code, new_spte))
3187                         break;
3188
3189                 /*
3190                  * Currently, fast page fault only works for direct mapping
3191                  * since the gfn is not stable for indirect shadow page. See
3192                  * Documentation/virtual/kvm/locking.txt to get more detail.
3193                  */
3194                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3195                                                         iterator.sptep, spte,
3196                                                         new_spte);
3197                 if (fault_handled)
3198                         break;
3199
3200                 if (++retry_count > 4) {
3201                         printk_once(KERN_WARNING
3202                                 "kvm: Fast #PF retrying more than 4 times.\n");
3203                         break;
3204                 }
3205
3206         } while (true);
3207
3208         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3209                               spte, fault_handled);
3210         walk_shadow_page_lockless_end(vcpu);
3211
3212         return fault_handled;
3213 }
3214
3215 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3216                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3217 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3218
3219 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3220                          gfn_t gfn, bool prefault)
3221 {
3222         int r;
3223         int level;
3224         bool force_pt_level = false;
3225         kvm_pfn_t pfn;
3226         unsigned long mmu_seq;
3227         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3228
3229         level = mapping_level(vcpu, gfn, &force_pt_level);
3230         if (likely(!force_pt_level)) {
3231                 /*
3232                  * This path builds a PAE pagetable - so we can map
3233                  * 2mb pages at maximum. Therefore check if the level
3234                  * is larger than that.
3235                  */
3236                 if (level > PT_DIRECTORY_LEVEL)
3237                         level = PT_DIRECTORY_LEVEL;
3238
3239                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3240         }
3241
3242         if (fast_page_fault(vcpu, v, level, error_code))
3243                 return 0;
3244
3245         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3246         smp_rmb();
3247
3248         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3249                 return 0;
3250
3251         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3252                 return r;
3253
3254         spin_lock(&vcpu->kvm->mmu_lock);
3255         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3256                 goto out_unlock;
3257         make_mmu_pages_available(vcpu);
3258         if (likely(!force_pt_level))
3259                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3260         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3261         spin_unlock(&vcpu->kvm->mmu_lock);
3262
3263         return r;
3264
3265 out_unlock:
3266         spin_unlock(&vcpu->kvm->mmu_lock);
3267         kvm_release_pfn_clean(pfn);
3268         return 0;
3269 }
3270
3271
3272 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3273 {
3274         int i;
3275         struct kvm_mmu_page *sp;
3276         LIST_HEAD(invalid_list);
3277
3278         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3279                 return;
3280
3281         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3282             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3283              vcpu->arch.mmu.direct_map)) {
3284                 hpa_t root = vcpu->arch.mmu.root_hpa;
3285
3286                 spin_lock(&vcpu->kvm->mmu_lock);
3287                 sp = page_header(root);
3288                 --sp->root_count;
3289                 if (!sp->root_count && sp->role.invalid) {
3290                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3291                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3292                 }
3293                 spin_unlock(&vcpu->kvm->mmu_lock);
3294                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3295                 return;
3296         }
3297
3298         spin_lock(&vcpu->kvm->mmu_lock);
3299         for (i = 0; i < 4; ++i) {
3300                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3301
3302                 if (root) {
3303                         root &= PT64_BASE_ADDR_MASK;
3304                         sp = page_header(root);
3305                         --sp->root_count;
3306                         if (!sp->root_count && sp->role.invalid)
3307                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3308                                                          &invalid_list);
3309                 }
3310                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3311         }
3312         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3313         spin_unlock(&vcpu->kvm->mmu_lock);
3314         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3315 }
3316
3317 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3318 {
3319         int ret = 0;
3320
3321         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3322                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3323                 ret = 1;
3324         }
3325
3326         return ret;
3327 }
3328
3329 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3330 {
3331         struct kvm_mmu_page *sp;
3332         unsigned i;
3333
3334         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3335                 spin_lock(&vcpu->kvm->mmu_lock);
3336                 make_mmu_pages_available(vcpu);
3337                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3338                 ++sp->root_count;
3339                 spin_unlock(&vcpu->kvm->mmu_lock);
3340                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3341         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3342                 for (i = 0; i < 4; ++i) {
3343                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3344
3345                         MMU_WARN_ON(VALID_PAGE(root));
3346                         spin_lock(&vcpu->kvm->mmu_lock);
3347                         make_mmu_pages_available(vcpu);
3348                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3349                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3350                         root = __pa(sp->spt);
3351                         ++sp->root_count;
3352                         spin_unlock(&vcpu->kvm->mmu_lock);
3353                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3354                 }
3355                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3356         } else
3357                 BUG();
3358
3359         return 0;
3360 }
3361
3362 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3363 {
3364         struct kvm_mmu_page *sp;
3365         u64 pdptr, pm_mask;
3366         gfn_t root_gfn;
3367         int i;
3368
3369         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3370
3371         if (mmu_check_root(vcpu, root_gfn))
3372                 return 1;
3373
3374         /*
3375          * Do we shadow a long mode page table? If so we need to
3376          * write-protect the guests page table root.
3377          */
3378         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3379                 hpa_t root = vcpu->arch.mmu.root_hpa;
3380
3381                 MMU_WARN_ON(VALID_PAGE(root));
3382
3383                 spin_lock(&vcpu->kvm->mmu_lock);
3384                 make_mmu_pages_available(vcpu);
3385                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3386                                       0, ACC_ALL);
3387                 root = __pa(sp->spt);
3388                 ++sp->root_count;
3389                 spin_unlock(&vcpu->kvm->mmu_lock);
3390                 vcpu->arch.mmu.root_hpa = root;
3391                 return 0;
3392         }
3393
3394         /*
3395          * We shadow a 32 bit page table. This may be a legacy 2-level
3396          * or a PAE 3-level page table. In either case we need to be aware that
3397          * the shadow page table may be a PAE or a long mode page table.
3398          */
3399         pm_mask = PT_PRESENT_MASK;
3400         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3401                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3402
3403         for (i = 0; i < 4; ++i) {
3404                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3405
3406                 MMU_WARN_ON(VALID_PAGE(root));
3407                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3408                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3409                         if (!(pdptr & PT_PRESENT_MASK)) {
3410                                 vcpu->arch.mmu.pae_root[i] = 0;
3411                                 continue;
3412                         }
3413                         root_gfn = pdptr >> PAGE_SHIFT;
3414                         if (mmu_check_root(vcpu, root_gfn))
3415                                 return 1;
3416                 }
3417                 spin_lock(&vcpu->kvm->mmu_lock);
3418                 make_mmu_pages_available(vcpu);
3419                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3420                                       0, ACC_ALL);
3421                 root = __pa(sp->spt);
3422                 ++sp->root_count;
3423                 spin_unlock(&vcpu->kvm->mmu_lock);
3424
3425                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3426         }
3427         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3428
3429         /*
3430          * If we shadow a 32 bit page table with a long mode page
3431          * table we enter this path.
3432          */
3433         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3434                 if (vcpu->arch.mmu.lm_root == NULL) {
3435                         /*
3436                          * The additional page necessary for this is only
3437                          * allocated on demand.
3438                          */
3439
3440                         u64 *lm_root;
3441
3442                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3443                         if (lm_root == NULL)
3444                                 return 1;
3445
3446                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3447
3448                         vcpu->arch.mmu.lm_root = lm_root;
3449                 }
3450
3451                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3452         }
3453
3454         return 0;
3455 }
3456
3457 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3458 {
3459         if (vcpu->arch.mmu.direct_map)
3460                 return mmu_alloc_direct_roots(vcpu);
3461         else
3462                 return mmu_alloc_shadow_roots(vcpu);
3463 }
3464
3465 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3466 {
3467         int i;
3468         struct kvm_mmu_page *sp;
3469
3470         if (vcpu->arch.mmu.direct_map)
3471                 return;
3472
3473         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3474                 return;
3475
3476         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3477         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3478         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3479                 hpa_t root = vcpu->arch.mmu.root_hpa;
3480                 sp = page_header(root);
3481                 mmu_sync_children(vcpu, sp);
3482                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3483                 return;
3484         }
3485         for (i = 0; i < 4; ++i) {
3486                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3487
3488                 if (root && VALID_PAGE(root)) {
3489                         root &= PT64_BASE_ADDR_MASK;
3490                         sp = page_header(root);
3491                         mmu_sync_children(vcpu, sp);
3492                 }
3493         }
3494         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3495 }
3496
3497 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3498 {
3499         spin_lock(&vcpu->kvm->mmu_lock);
3500         mmu_sync_roots(vcpu);
3501         spin_unlock(&vcpu->kvm->mmu_lock);
3502 }
3503 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3504
3505 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3506                                   u32 access, struct x86_exception *exception)
3507 {
3508         if (exception)
3509                 exception->error_code = 0;
3510         return vaddr;
3511 }
3512
3513 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3514                                          u32 access,
3515                                          struct x86_exception *exception)
3516 {
3517         if (exception)
3518                 exception->error_code = 0;
3519         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3520 }
3521
3522 static bool
3523 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3524 {
3525         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3526
3527         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3528                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3529 }
3530
3531 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3532 {
3533         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3534 }
3535
3536 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3537 {
3538         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3539 }
3540
3541 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3542 {
3543         if (direct)
3544                 return vcpu_match_mmio_gpa(vcpu, addr);
3545
3546         return vcpu_match_mmio_gva(vcpu, addr);
3547 }
3548
3549 /* return true if reserved bit is detected on spte. */
3550 static bool
3551 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3552 {
3553         struct kvm_shadow_walk_iterator iterator;
3554         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3555         int root, leaf;
3556         bool reserved = false;
3557
3558         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3559                 goto exit;
3560
3561         walk_shadow_page_lockless_begin(vcpu);
3562
3563         for (shadow_walk_init(&iterator, vcpu, addr),
3564                  leaf = root = iterator.level;
3565              shadow_walk_okay(&iterator);
3566              __shadow_walk_next(&iterator, spte)) {
3567                 spte = mmu_spte_get_lockless(iterator.sptep);
3568
3569                 sptes[leaf - 1] = spte;
3570                 leaf--;
3571
3572                 if (!is_shadow_present_pte(spte))
3573                         break;
3574
3575                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3576                                                     iterator.level);
3577         }
3578
3579         walk_shadow_page_lockless_end(vcpu);
3580
3581         if (reserved) {
3582                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3583                        __func__, addr);
3584                 while (root > leaf) {
3585                         pr_err("------ spte 0x%llx level %d.\n",
3586                                sptes[root - 1], root);
3587                         root--;
3588                 }
3589         }
3590 exit:
3591         *sptep = spte;
3592         return reserved;
3593 }
3594
3595 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3596 {
3597         u64 spte;
3598         bool reserved;
3599
3600         if (mmio_info_in_cache(vcpu, addr, direct))
3601                 return RET_MMIO_PF_EMULATE;
3602
3603         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3604         if (WARN_ON(reserved))
3605                 return RET_MMIO_PF_BUG;
3606
3607         if (is_mmio_spte(spte)) {
3608                 gfn_t gfn = get_mmio_spte_gfn(spte);
3609                 unsigned access = get_mmio_spte_access(spte);
3610
3611                 if (!check_mmio_spte(vcpu, spte))
3612                         return RET_MMIO_PF_INVALID;
3613
3614                 if (direct)
3615                         addr = 0;
3616
3617                 trace_handle_mmio_page_fault(addr, gfn, access);
3618                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3619                 return RET_MMIO_PF_EMULATE;
3620         }
3621
3622         /*
3623          * If the page table is zapped by other cpus, let CPU fault again on
3624          * the address.
3625          */
3626         return RET_MMIO_PF_RETRY;
3627 }
3628 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3629
3630 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3631                                          u32 error_code, gfn_t gfn)
3632 {
3633         if (unlikely(error_code & PFERR_RSVD_MASK))
3634                 return false;
3635
3636         if (!(error_code & PFERR_PRESENT_MASK) ||
3637               !(error_code & PFERR_WRITE_MASK))
3638                 return false;
3639
3640         /*
3641          * guest is writing the page which is write tracked which can
3642          * not be fixed by page fault handler.
3643          */
3644         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3645                 return true;
3646
3647         return false;
3648 }
3649
3650 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3651 {
3652         struct kvm_shadow_walk_iterator iterator;
3653         u64 spte;
3654
3655         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3656                 return;
3657
3658         walk_shadow_page_lockless_begin(vcpu);
3659         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3660                 clear_sp_write_flooding_count(iterator.sptep);
3661                 if (!is_shadow_present_pte(spte))
3662                         break;
3663         }
3664         walk_shadow_page_lockless_end(vcpu);
3665 }
3666
3667 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3668                                 u32 error_code, bool prefault)
3669 {
3670         gfn_t gfn = gva >> PAGE_SHIFT;
3671         int r;
3672
3673         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3674
3675         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3676                 return 1;
3677
3678         r = mmu_topup_memory_caches(vcpu);
3679         if (r)
3680                 return r;
3681
3682         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3683
3684
3685         return nonpaging_map(vcpu, gva & PAGE_MASK,
3686                              error_code, gfn, prefault);
3687 }
3688
3689 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3690 {
3691         struct kvm_arch_async_pf arch;
3692
3693         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3694         arch.gfn = gfn;
3695         arch.direct_map = vcpu->arch.mmu.direct_map;
3696         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3697
3698         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3699 }
3700
3701 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3702 {
3703         if (unlikely(!lapic_in_kernel(vcpu) ||
3704                      kvm_event_needs_reinjection(vcpu)))
3705                 return false;
3706
3707         if (is_guest_mode(vcpu))
3708                 return false;
3709
3710         return kvm_x86_ops->interrupt_allowed(vcpu);
3711 }
3712
3713 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3714                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3715 {
3716         struct kvm_memory_slot *slot;
3717         bool async;
3718
3719         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3720         async = false;
3721         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3722         if (!async)
3723                 return false; /* *pfn has correct page already */
3724
3725         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3726                 trace_kvm_try_async_get_page(gva, gfn);
3727                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3728                         trace_kvm_async_pf_doublefault(gva, gfn);
3729                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3730                         return true;
3731                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3732                         return true;
3733         }
3734
3735         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3736         return false;
3737 }
3738
3739 static bool
3740 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3741 {
3742         int page_num = KVM_PAGES_PER_HPAGE(level);
3743
3744         gfn &= ~(page_num - 1);
3745
3746         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3747 }
3748
3749 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3750                           bool prefault)
3751 {
3752         kvm_pfn_t pfn;
3753         int r;
3754         int level;
3755         bool force_pt_level;
3756         gfn_t gfn = gpa >> PAGE_SHIFT;
3757         unsigned long mmu_seq;
3758         int write = error_code & PFERR_WRITE_MASK;
3759         bool map_writable;
3760
3761         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3762
3763         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3764                 return 1;
3765
3766         r = mmu_topup_memory_caches(vcpu);
3767         if (r)
3768                 return r;
3769
3770         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3771                                                            PT_DIRECTORY_LEVEL);
3772         level = mapping_level(vcpu, gfn, &force_pt_level);
3773         if (likely(!force_pt_level)) {
3774                 if (level > PT_DIRECTORY_LEVEL &&
3775                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3776                         level = PT_DIRECTORY_LEVEL;
3777                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3778         }
3779
3780         if (fast_page_fault(vcpu, gpa, level, error_code))
3781                 return 0;
3782
3783         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3784         smp_rmb();
3785
3786         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3787                 return 0;
3788
3789         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3790                 return r;
3791
3792         spin_lock(&vcpu->kvm->mmu_lock);
3793         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3794                 goto out_unlock;
3795         make_mmu_pages_available(vcpu);
3796         if (likely(!force_pt_level))
3797                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3798         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3799         spin_unlock(&vcpu->kvm->mmu_lock);
3800
3801         return r;
3802
3803 out_unlock:
3804         spin_unlock(&vcpu->kvm->mmu_lock);
3805         kvm_release_pfn_clean(pfn);
3806         return 0;
3807 }
3808
3809 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3810                                    struct kvm_mmu *context)
3811 {
3812         context->page_fault = nonpaging_page_fault;
3813         context->gva_to_gpa = nonpaging_gva_to_gpa;
3814         context->sync_page = nonpaging_sync_page;
3815         context->invlpg = nonpaging_invlpg;
3816         context->update_pte = nonpaging_update_pte;
3817         context->root_level = 0;
3818         context->shadow_root_level = PT32E_ROOT_LEVEL;
3819         context->root_hpa = INVALID_PAGE;
3820         context->direct_map = true;
3821         context->nx = false;
3822 }
3823
3824 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3825 {
3826         mmu_free_roots(vcpu);
3827 }
3828
3829 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3830 {
3831         return kvm_read_cr3(vcpu);
3832 }
3833
3834 static void inject_page_fault(struct kvm_vcpu *vcpu,
3835                               struct x86_exception *fault)
3836 {
3837         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3838 }
3839
3840 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3841                            unsigned access, int *nr_present)
3842 {
3843         if (unlikely(is_mmio_spte(*sptep))) {
3844                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3845                         mmu_spte_clear_no_track(sptep);
3846                         return true;
3847                 }
3848
3849                 (*nr_present)++;
3850                 mark_mmio_spte(vcpu, sptep, gfn, access);
3851                 return true;
3852         }
3853
3854         return false;
3855 }
3856
3857 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3858                                 unsigned level, unsigned gpte)
3859 {
3860         /*
3861          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3862          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3863          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3864          */
3865         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3866
3867         /*
3868          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3869          * If it is clear, there are no large pages at this level, so clear
3870          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3871          */
3872         gpte &= level - mmu->last_nonleaf_level;
3873
3874         return gpte & PT_PAGE_SIZE_MASK;
3875 }
3876
3877 #define PTTYPE_EPT 18 /* arbitrary */
3878 #define PTTYPE PTTYPE_EPT
3879 #include "paging_tmpl.h"
3880 #undef PTTYPE
3881
3882 #define PTTYPE 64
3883 #include "paging_tmpl.h"
3884 #undef PTTYPE
3885
3886 #define PTTYPE 32
3887 #include "paging_tmpl.h"
3888 #undef PTTYPE
3889
3890 static void
3891 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3892                         struct rsvd_bits_validate *rsvd_check,
3893                         int maxphyaddr, int level, bool nx, bool gbpages,
3894                         bool pse, bool amd)
3895 {
3896         u64 exb_bit_rsvd = 0;
3897         u64 gbpages_bit_rsvd = 0;
3898         u64 nonleaf_bit8_rsvd = 0;
3899
3900         rsvd_check->bad_mt_xwr = 0;
3901
3902         if (!nx)
3903                 exb_bit_rsvd = rsvd_bits(63, 63);
3904         if (!gbpages)
3905                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3906
3907         /*
3908          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3909          * leaf entries) on AMD CPUs only.
3910          */
3911         if (amd)
3912                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3913
3914         switch (level) {
3915         case PT32_ROOT_LEVEL:
3916                 /* no rsvd bits for 2 level 4K page table entries */
3917                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3918                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3919                 rsvd_check->rsvd_bits_mask[1][0] =
3920                         rsvd_check->rsvd_bits_mask[0][0];
3921
3922                 if (!pse) {
3923                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3924                         break;
3925                 }
3926
3927                 if (is_cpuid_PSE36())
3928                         /* 36bits PSE 4MB page */
3929                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3930                 else
3931                         /* 32 bits PSE 4MB page */
3932                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3933                 break;
3934         case PT32E_ROOT_LEVEL:
3935                 rsvd_check->rsvd_bits_mask[0][2] =
3936                         rsvd_bits(maxphyaddr, 63) |
3937                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3938                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3939                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3940                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3941                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3942                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3943                         rsvd_bits(maxphyaddr, 62) |
3944                         rsvd_bits(13, 20);              /* large page */
3945                 rsvd_check->rsvd_bits_mask[1][0] =
3946                         rsvd_check->rsvd_bits_mask[0][0];
3947                 break;
3948         case PT64_ROOT_LEVEL:
3949                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3950                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3951                         rsvd_bits(maxphyaddr, 51);
3952                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3953                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3954                         rsvd_bits(maxphyaddr, 51);
3955                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3956                         rsvd_bits(maxphyaddr, 51);
3957                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3958                         rsvd_bits(maxphyaddr, 51);
3959                 rsvd_check->rsvd_bits_mask[1][3] =
3960                         rsvd_check->rsvd_bits_mask[0][3];
3961                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3962                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3963                         rsvd_bits(13, 29);
3964                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3965                         rsvd_bits(maxphyaddr, 51) |
3966                         rsvd_bits(13, 20);              /* large page */
3967                 rsvd_check->rsvd_bits_mask[1][0] =
3968                         rsvd_check->rsvd_bits_mask[0][0];
3969                 break;
3970         }
3971 }
3972
3973 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3974                                   struct kvm_mmu *context)
3975 {
3976         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3977                                 cpuid_maxphyaddr(vcpu), context->root_level,
3978                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3979                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3980 }
3981
3982 static void
3983 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3984                             int maxphyaddr, bool execonly)
3985 {
3986         u64 bad_mt_xwr;
3987
3988         rsvd_check->rsvd_bits_mask[0][3] =
3989                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3990         rsvd_check->rsvd_bits_mask[0][2] =
3991                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3992         rsvd_check->rsvd_bits_mask[0][1] =
3993                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3994         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3995
3996         /* large page */
3997         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3998         rsvd_check->rsvd_bits_mask[1][2] =
3999                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4000         rsvd_check->rsvd_bits_mask[1][1] =
4001                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4002         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4003
4004         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4005         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4006         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4007         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4008         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4009         if (!execonly) {
4010                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4011                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4012         }
4013         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4014 }
4015
4016 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4017                 struct kvm_mmu *context, bool execonly)
4018 {
4019         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4020                                     cpuid_maxphyaddr(vcpu), execonly);
4021 }
4022
4023 /*
4024  * the page table on host is the shadow page table for the page
4025  * table in guest or amd nested guest, its mmu features completely
4026  * follow the features in guest.
4027  */
4028 void
4029 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4030 {
4031         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4032
4033         /*
4034          * Passing "true" to the last argument is okay; it adds a check
4035          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4036          */
4037         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4038                                 boot_cpu_data.x86_phys_bits,
4039                                 context->shadow_root_level, uses_nx,
4040                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
4041                                 true);
4042 }
4043 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4044
4045 static inline bool boot_cpu_is_amd(void)
4046 {
4047         WARN_ON_ONCE(!tdp_enabled);
4048         return shadow_x_mask == 0;
4049 }
4050
4051 /*
4052  * the direct page table on host, use as much mmu features as
4053  * possible, however, kvm currently does not do execution-protection.
4054  */
4055 static void
4056 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4057                                 struct kvm_mmu *context)
4058 {
4059         if (boot_cpu_is_amd())
4060                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4061                                         boot_cpu_data.x86_phys_bits,
4062                                         context->shadow_root_level, false,
4063                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4064                                         true, true);
4065         else
4066                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4067                                             boot_cpu_data.x86_phys_bits,
4068                                             false);
4069
4070 }
4071
4072 /*
4073  * as the comments in reset_shadow_zero_bits_mask() except it
4074  * is the shadow page table for intel nested guest.
4075  */
4076 static void
4077 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4078                                 struct kvm_mmu *context, bool execonly)
4079 {
4080         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4081                                     boot_cpu_data.x86_phys_bits, execonly);
4082 }
4083
4084 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4085                                       struct kvm_mmu *mmu, bool ept)
4086 {
4087         unsigned bit, byte, pfec;
4088         u8 map;
4089         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
4090
4091         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4092         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4093         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4094                 pfec = byte << 1;
4095                 map = 0;
4096                 wf = pfec & PFERR_WRITE_MASK;
4097                 uf = pfec & PFERR_USER_MASK;
4098                 ff = pfec & PFERR_FETCH_MASK;
4099                 /*
4100                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
4101                  * subject to SMAP restrictions, and cleared otherwise. The
4102                  * bit is only meaningful if the SMAP bit is set in CR4.
4103                  */
4104                 smapf = !(pfec & PFERR_RSVD_MASK);
4105                 for (bit = 0; bit < 8; ++bit) {
4106                         x = bit & ACC_EXEC_MASK;
4107                         w = bit & ACC_WRITE_MASK;
4108                         u = bit & ACC_USER_MASK;
4109
4110                         if (!ept) {
4111                                 /* Not really needed: !nx will cause pte.nx to fault */
4112                                 x |= !mmu->nx;
4113                                 /* Allow supervisor writes if !cr0.wp */
4114                                 w |= !is_write_protection(vcpu) && !uf;
4115                                 /* Disallow supervisor fetches of user code if cr4.smep */
4116                                 x &= !(cr4_smep && u && !uf);
4117
4118                                 /*
4119                                  * SMAP:kernel-mode data accesses from user-mode
4120                                  * mappings should fault. A fault is considered
4121                                  * as a SMAP violation if all of the following
4122                                  * conditions are ture:
4123                                  *   - X86_CR4_SMAP is set in CR4
4124                                  *   - A user page is accessed
4125                                  *   - Page fault in kernel mode
4126                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
4127                                  *
4128                                  *   Here, we cover the first three conditions.
4129                                  *   The fourth is computed dynamically in
4130                                  *   permission_fault() and is in smapf.
4131                                  *
4132                                  *   Also, SMAP does not affect instruction
4133                                  *   fetches, add the !ff check here to make it
4134                                  *   clearer.
4135                                  */
4136                                 smap = cr4_smap && u && !uf && !ff;
4137                         }
4138
4139                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
4140                                 (smapf && smap);
4141                         map |= fault << bit;
4142                 }
4143                 mmu->permissions[byte] = map;
4144         }
4145 }
4146
4147 /*
4148 * PKU is an additional mechanism by which the paging controls access to
4149 * user-mode addresses based on the value in the PKRU register.  Protection
4150 * key violations are reported through a bit in the page fault error code.
4151 * Unlike other bits of the error code, the PK bit is not known at the
4152 * call site of e.g. gva_to_gpa; it must be computed directly in
4153 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4154 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4155 *
4156 * In particular the following conditions come from the error code, the
4157 * page tables and the machine state:
4158 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4159 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4160 * - PK is always zero if U=0 in the page tables
4161 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4162 *
4163 * The PKRU bitmask caches the result of these four conditions.  The error
4164 * code (minus the P bit) and the page table's U bit form an index into the
4165 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4166 * with the two bits of the PKRU register corresponding to the protection key.
4167 * For the first three conditions above the bits will be 00, thus masking
4168 * away both AD and WD.  For all reads or if the last condition holds, WD
4169 * only will be masked away.
4170 */
4171 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4172                                 bool ept)
4173 {
4174         unsigned bit;
4175         bool wp;
4176
4177         if (ept) {
4178                 mmu->pkru_mask = 0;
4179                 return;
4180         }
4181
4182         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4183         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4184                 mmu->pkru_mask = 0;
4185                 return;
4186         }
4187
4188         wp = is_write_protection(vcpu);
4189
4190         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4191                 unsigned pfec, pkey_bits;
4192                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4193
4194                 pfec = bit << 1;
4195                 ff = pfec & PFERR_FETCH_MASK;
4196                 uf = pfec & PFERR_USER_MASK;
4197                 wf = pfec & PFERR_WRITE_MASK;
4198
4199                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4200                 pte_user = pfec & PFERR_RSVD_MASK;
4201
4202                 /*
4203                  * Only need to check the access which is not an
4204                  * instruction fetch and is to a user page.
4205                  */
4206                 check_pkey = (!ff && pte_user);
4207                 /*
4208                  * write access is controlled by PKRU if it is a
4209                  * user access or CR0.WP = 1.
4210                  */
4211                 check_write = check_pkey && wf && (uf || wp);
4212
4213                 /* PKRU.AD stops both read and write access. */
4214                 pkey_bits = !!check_pkey;
4215                 /* PKRU.WD stops write access. */
4216                 pkey_bits |= (!!check_write) << 1;
4217
4218                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4219         }
4220 }
4221
4222 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4223 {
4224         unsigned root_level = mmu->root_level;
4225
4226         mmu->last_nonleaf_level = root_level;
4227         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4228                 mmu->last_nonleaf_level++;
4229 }
4230
4231 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4232                                          struct kvm_mmu *context,
4233                                          int level)
4234 {
4235         context->nx = is_nx(vcpu);
4236         context->root_level = level;
4237
4238         reset_rsvds_bits_mask(vcpu, context);
4239         update_permission_bitmask(vcpu, context, false);
4240         update_pkru_bitmask(vcpu, context, false);
4241         update_last_nonleaf_level(vcpu, context);
4242
4243         MMU_WARN_ON(!is_pae(vcpu));
4244         context->page_fault = paging64_page_fault;
4245         context->gva_to_gpa = paging64_gva_to_gpa;
4246         context->sync_page = paging64_sync_page;
4247         context->invlpg = paging64_invlpg;
4248         context->update_pte = paging64_update_pte;
4249         context->shadow_root_level = level;
4250         context->root_hpa = INVALID_PAGE;
4251         context->direct_map = false;
4252 }
4253
4254 static void paging64_init_context(struct kvm_vcpu *vcpu,
4255                                   struct kvm_mmu *context)
4256 {
4257         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4258 }
4259
4260 static void paging32_init_context(struct kvm_vcpu *vcpu,
4261                                   struct kvm_mmu *context)
4262 {
4263         context->nx = false;
4264         context->root_level = PT32_ROOT_LEVEL;
4265
4266         reset_rsvds_bits_mask(vcpu, context);
4267         update_permission_bitmask(vcpu, context, false);
4268         update_pkru_bitmask(vcpu, context, false);
4269         update_last_nonleaf_level(vcpu, context);
4270
4271         context->page_fault = paging32_page_fault;
4272         context->gva_to_gpa = paging32_gva_to_gpa;
4273         context->sync_page = paging32_sync_page;
4274         context->invlpg = paging32_invlpg;
4275         context->update_pte = paging32_update_pte;
4276         context->shadow_root_level = PT32E_ROOT_LEVEL;
4277         context->root_hpa = INVALID_PAGE;
4278         context->direct_map = false;
4279 }
4280
4281 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4282                                    struct kvm_mmu *context)
4283 {
4284         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4285 }
4286
4287 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4288 {
4289         struct kvm_mmu *context = &vcpu->arch.mmu;
4290
4291         context->base_role.word = 0;
4292         context->base_role.smm = is_smm(vcpu);
4293         context->page_fault = tdp_page_fault;
4294         context->sync_page = nonpaging_sync_page;
4295         context->invlpg = nonpaging_invlpg;
4296         context->update_pte = nonpaging_update_pte;
4297         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4298         context->root_hpa = INVALID_PAGE;
4299         context->direct_map = true;
4300         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4301         context->get_cr3 = get_cr3;
4302         context->get_pdptr = kvm_pdptr_read;
4303         context->inject_page_fault = kvm_inject_page_fault;
4304
4305         if (!is_paging(vcpu)) {
4306                 context->nx = false;
4307                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4308                 context->root_level = 0;
4309         } else if (is_long_mode(vcpu)) {
4310                 context->nx = is_nx(vcpu);
4311                 context->root_level = PT64_ROOT_LEVEL;
4312                 reset_rsvds_bits_mask(vcpu, context);
4313                 context->gva_to_gpa = paging64_gva_to_gpa;
4314         } else if (is_pae(vcpu)) {
4315                 context->nx = is_nx(vcpu);
4316                 context->root_level = PT32E_ROOT_LEVEL;
4317                 reset_rsvds_bits_mask(vcpu, context);
4318                 context->gva_to_gpa = paging64_gva_to_gpa;
4319         } else {
4320                 context->nx = false;
4321                 context->root_level = PT32_ROOT_LEVEL;
4322                 reset_rsvds_bits_mask(vcpu, context);
4323                 context->gva_to_gpa = paging32_gva_to_gpa;
4324         }
4325
4326         update_permission_bitmask(vcpu, context, false);
4327         update_pkru_bitmask(vcpu, context, false);
4328         update_last_nonleaf_level(vcpu, context);
4329         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4330 }
4331
4332 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4333 {
4334         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4335         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4336         struct kvm_mmu *context = &vcpu->arch.mmu;
4337
4338         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4339
4340         if (!is_paging(vcpu))
4341                 nonpaging_init_context(vcpu, context);
4342         else if (is_long_mode(vcpu))
4343                 paging64_init_context(vcpu, context);
4344         else if (is_pae(vcpu))
4345                 paging32E_init_context(vcpu, context);
4346         else
4347                 paging32_init_context(vcpu, context);
4348
4349         context->base_role.nxe = is_nx(vcpu);
4350         context->base_role.cr4_pae = !!is_pae(vcpu);
4351         context->base_role.cr0_wp  = is_write_protection(vcpu);
4352         context->base_role.smep_andnot_wp
4353                 = smep && !is_write_protection(vcpu);
4354         context->base_role.smap_andnot_wp
4355                 = smap && !is_write_protection(vcpu);
4356         context->base_role.smm = is_smm(vcpu);
4357         reset_shadow_zero_bits_mask(vcpu, context);
4358 }
4359 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4360
4361 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4362                              bool accessed_dirty)
4363 {
4364         struct kvm_mmu *context = &vcpu->arch.mmu;
4365
4366         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4367
4368         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4369
4370         context->nx = true;
4371         context->ept_ad = accessed_dirty;
4372         context->page_fault = ept_page_fault;
4373         context->gva_to_gpa = ept_gva_to_gpa;
4374         context->sync_page = ept_sync_page;
4375         context->invlpg = ept_invlpg;
4376         context->update_pte = ept_update_pte;
4377         context->root_level = context->shadow_root_level;
4378         context->root_hpa = INVALID_PAGE;
4379         context->direct_map = false;
4380
4381         update_permission_bitmask(vcpu, context, true);
4382         update_pkru_bitmask(vcpu, context, true);
4383         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4384         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4385 }
4386 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4387
4388 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4389 {
4390         struct kvm_mmu *context = &vcpu->arch.mmu;
4391
4392         kvm_init_shadow_mmu(vcpu);
4393         context->set_cr3           = kvm_x86_ops->set_cr3;
4394         context->get_cr3           = get_cr3;
4395         context->get_pdptr         = kvm_pdptr_read;
4396         context->inject_page_fault = kvm_inject_page_fault;
4397 }
4398
4399 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4400 {
4401         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4402
4403         g_context->get_cr3           = get_cr3;
4404         g_context->get_pdptr         = kvm_pdptr_read;
4405         g_context->inject_page_fault = kvm_inject_page_fault;
4406
4407         /*
4408          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4409          * L1's nested page tables (e.g. EPT12). The nested translation
4410          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4411          * L2's page tables as the first level of translation and L1's
4412          * nested page tables as the second level of translation. Basically
4413          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4414          */
4415         if (!is_paging(vcpu)) {
4416                 g_context->nx = false;
4417                 g_context->root_level = 0;
4418                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4419         } else if (is_long_mode(vcpu)) {
4420                 g_context->nx = is_nx(vcpu);
4421                 g_context->root_level = PT64_ROOT_LEVEL;
4422                 reset_rsvds_bits_mask(vcpu, g_context);
4423                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4424         } else if (is_pae(vcpu)) {
4425                 g_context->nx = is_nx(vcpu);
4426                 g_context->root_level = PT32E_ROOT_LEVEL;
4427                 reset_rsvds_bits_mask(vcpu, g_context);
4428                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4429         } else {
4430                 g_context->nx = false;
4431                 g_context->root_level = PT32_ROOT_LEVEL;
4432                 reset_rsvds_bits_mask(vcpu, g_context);
4433                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4434         }
4435
4436         update_permission_bitmask(vcpu, g_context, false);
4437         update_pkru_bitmask(vcpu, g_context, false);
4438         update_last_nonleaf_level(vcpu, g_context);
4439 }
4440
4441 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4442 {
4443         if (mmu_is_nested(vcpu))
4444                 init_kvm_nested_mmu(vcpu);
4445         else if (tdp_enabled)
4446                 init_kvm_tdp_mmu(vcpu);
4447         else
4448                 init_kvm_softmmu(vcpu);
4449 }
4450
4451 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4452 {
4453         kvm_mmu_unload(vcpu);
4454         init_kvm_mmu(vcpu);
4455 }
4456 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4457
4458 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4459 {
4460         int r;
4461
4462         r = mmu_topup_memory_caches(vcpu);
4463         if (r)
4464                 goto out;
4465         r = mmu_alloc_roots(vcpu);
4466         kvm_mmu_sync_roots(vcpu);
4467         if (r)
4468                 goto out;
4469         /* set_cr3() should ensure TLB has been flushed */
4470         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4471 out:
4472         return r;
4473 }
4474 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4475
4476 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4477 {
4478         mmu_free_roots(vcpu);
4479         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4480 }
4481 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4482
4483 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4484                                   struct kvm_mmu_page *sp, u64 *spte,
4485                                   const void *new)
4486 {
4487         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4488                 ++vcpu->kvm->stat.mmu_pde_zapped;
4489                 return;
4490         }
4491
4492         ++vcpu->kvm->stat.mmu_pte_updated;
4493         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4494 }
4495
4496 static bool need_remote_flush(u64 old, u64 new)
4497 {
4498         if (!is_shadow_present_pte(old))
4499                 return false;
4500         if (!is_shadow_present_pte(new))
4501                 return true;
4502         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4503                 return true;
4504         old ^= shadow_nx_mask;
4505         new ^= shadow_nx_mask;
4506         return (old & ~new & PT64_PERM_MASK) != 0;
4507 }
4508
4509 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4510                                     const u8 *new, int *bytes)
4511 {
4512         u64 gentry;
4513         int r;
4514
4515         /*
4516          * Assume that the pte write on a page table of the same type
4517          * as the current vcpu paging mode since we update the sptes only
4518          * when they have the same mode.
4519          */
4520         if (is_pae(vcpu) && *bytes == 4) {
4521                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4522                 *gpa &= ~(gpa_t)7;
4523                 *bytes = 8;
4524                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4525                 if (r)
4526                         gentry = 0;
4527                 new = (const u8 *)&gentry;
4528         }
4529
4530         switch (*bytes) {
4531         case 4:
4532                 gentry = *(const u32 *)new;
4533                 break;
4534         case 8:
4535                 gentry = *(const u64 *)new;
4536                 break;
4537         default:
4538                 gentry = 0;
4539                 break;
4540         }
4541
4542         return gentry;
4543 }
4544
4545 /*
4546  * If we're seeing too many writes to a page, it may no longer be a page table,
4547  * or we may be forking, in which case it is better to unmap the page.
4548  */
4549 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4550 {
4551         /*
4552          * Skip write-flooding detected for the sp whose level is 1, because
4553          * it can become unsync, then the guest page is not write-protected.
4554          */
4555         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4556                 return false;
4557
4558         atomic_inc(&sp->write_flooding_count);
4559         return atomic_read(&sp->write_flooding_count) >= 3;
4560 }
4561
4562 /*
4563  * Misaligned accesses are too much trouble to fix up; also, they usually
4564  * indicate a page is not used as a page table.
4565  */
4566 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4567                                     int bytes)
4568 {
4569         unsigned offset, pte_size, misaligned;
4570
4571         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4572                  gpa, bytes, sp->role.word);
4573
4574         offset = offset_in_page(gpa);
4575         pte_size = sp->role.cr4_pae ? 8 : 4;
4576
4577         /*
4578          * Sometimes, the OS only writes the last one bytes to update status
4579          * bits, for example, in linux, andb instruction is used in clear_bit().
4580          */
4581         if (!(offset & (pte_size - 1)) && bytes == 1)
4582                 return false;
4583
4584         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4585         misaligned |= bytes < 4;
4586
4587         return misaligned;
4588 }
4589
4590 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4591 {
4592         unsigned page_offset, quadrant;
4593         u64 *spte;
4594         int level;
4595
4596         page_offset = offset_in_page(gpa);
4597         level = sp->role.level;
4598         *nspte = 1;
4599         if (!sp->role.cr4_pae) {
4600                 page_offset <<= 1;      /* 32->64 */
4601                 /*
4602                  * A 32-bit pde maps 4MB while the shadow pdes map
4603                  * only 2MB.  So we need to double the offset again
4604                  * and zap two pdes instead of one.
4605                  */
4606                 if (level == PT32_ROOT_LEVEL) {
4607                         page_offset &= ~7; /* kill rounding error */
4608                         page_offset <<= 1;
4609                         *nspte = 2;
4610                 }
4611                 quadrant = page_offset >> PAGE_SHIFT;
4612                 page_offset &= ~PAGE_MASK;
4613                 if (quadrant != sp->role.quadrant)
4614                         return NULL;
4615         }
4616
4617         spte = &sp->spt[page_offset / sizeof(*spte)];
4618         return spte;
4619 }
4620
4621 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4622                               const u8 *new, int bytes,
4623                               struct kvm_page_track_notifier_node *node)
4624 {
4625         gfn_t gfn = gpa >> PAGE_SHIFT;
4626         struct kvm_mmu_page *sp;
4627         LIST_HEAD(invalid_list);
4628         u64 entry, gentry, *spte;
4629         int npte;
4630         bool remote_flush, local_flush;
4631         union kvm_mmu_page_role mask = { };
4632
4633         mask.cr0_wp = 1;
4634         mask.cr4_pae = 1;
4635         mask.nxe = 1;
4636         mask.smep_andnot_wp = 1;
4637         mask.smap_andnot_wp = 1;
4638         mask.smm = 1;
4639
4640         /*
4641          * If we don't have indirect shadow pages, it means no page is
4642          * write-protected, so we can exit simply.
4643          */
4644         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4645                 return;
4646
4647         remote_flush = local_flush = false;
4648
4649         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4650
4651         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4652
4653         /*
4654          * No need to care whether allocation memory is successful
4655          * or not since pte prefetch is skiped if it does not have
4656          * enough objects in the cache.
4657          */
4658         mmu_topup_memory_caches(vcpu);
4659
4660         spin_lock(&vcpu->kvm->mmu_lock);
4661         ++vcpu->kvm->stat.mmu_pte_write;
4662         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4663
4664         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4665                 if (detect_write_misaligned(sp, gpa, bytes) ||
4666                       detect_write_flooding(sp)) {
4667                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4668                         ++vcpu->kvm->stat.mmu_flooded;
4669                         continue;
4670                 }
4671
4672                 spte = get_written_sptes(sp, gpa, &npte);
4673                 if (!spte)
4674                         continue;
4675
4676                 local_flush = true;
4677                 while (npte--) {
4678                         entry = *spte;
4679                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4680                         if (gentry &&
4681                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4682                               & mask.word) && rmap_can_add(vcpu))
4683                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4684                         if (need_remote_flush(entry, *spte))
4685                                 remote_flush = true;
4686                         ++spte;
4687                 }
4688         }
4689         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4690         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4691         spin_unlock(&vcpu->kvm->mmu_lock);
4692 }
4693
4694 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4695 {
4696         gpa_t gpa;
4697         int r;
4698
4699         if (vcpu->arch.mmu.direct_map)
4700                 return 0;
4701
4702         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4703
4704         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4705
4706         return r;
4707 }
4708 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4709
4710 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4711 {
4712         LIST_HEAD(invalid_list);
4713
4714         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4715                 return;
4716
4717         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4718                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4719                         break;
4720
4721                 ++vcpu->kvm->stat.mmu_recycled;
4722         }
4723         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4724 }
4725
4726 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4727                        void *insn, int insn_len)
4728 {
4729         int r, emulation_type = EMULTYPE_RETRY;
4730         enum emulation_result er;
4731         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4732
4733         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4734                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4735                 if (r == RET_MMIO_PF_EMULATE) {
4736                         emulation_type = 0;
4737                         goto emulate;
4738                 }
4739                 if (r == RET_MMIO_PF_RETRY)
4740                         return 1;
4741                 if (r < 0)
4742                         return r;
4743         }
4744
4745         r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4746                                       false);
4747         if (r < 0)
4748                 return r;
4749         if (!r)
4750                 return 1;
4751
4752         /*
4753          * Before emulating the instruction, check if the error code
4754          * was due to a RO violation while translating the guest page.
4755          * This can occur when using nested virtualization with nested
4756          * paging in both guests. If true, we simply unprotect the page
4757          * and resume the guest.
4758          *
4759          * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
4760          *       in PFERR_NEXT_GUEST_PAGE)
4761          */
4762         if (error_code == PFERR_NESTED_GUEST_PAGE) {
4763                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4764                 return 1;
4765         }
4766
4767         if (mmio_info_in_cache(vcpu, cr2, direct))
4768                 emulation_type = 0;
4769 emulate:
4770         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4771
4772         switch (er) {
4773         case EMULATE_DONE:
4774                 return 1;
4775         case EMULATE_USER_EXIT:
4776                 ++vcpu->stat.mmio_exits;
4777                 /* fall through */
4778         case EMULATE_FAIL:
4779                 return 0;
4780         default:
4781                 BUG();
4782         }
4783 }
4784 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4785
4786 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4787 {
4788         vcpu->arch.mmu.invlpg(vcpu, gva);
4789         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4790         ++vcpu->stat.invlpg;
4791 }
4792 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4793
4794 void kvm_enable_tdp(void)
4795 {
4796         tdp_enabled = true;
4797 }
4798 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4799
4800 void kvm_disable_tdp(void)
4801 {
4802         tdp_enabled = false;
4803 }
4804 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4805
4806 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4807 {
4808         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4809         if (vcpu->arch.mmu.lm_root != NULL)
4810                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4811 }
4812
4813 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4814 {
4815         struct page *page;
4816         int i;
4817
4818         /*
4819          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4820          * Therefore we need to allocate shadow page tables in the first
4821          * 4GB of memory, which happens to fit the DMA32 zone.
4822          */
4823         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4824         if (!page)
4825                 return -ENOMEM;
4826
4827         vcpu->arch.mmu.pae_root = page_address(page);
4828         for (i = 0; i < 4; ++i)
4829                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4830
4831         return 0;
4832 }
4833
4834 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4835 {
4836         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4837         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4838         vcpu->arch.mmu.translate_gpa = translate_gpa;
4839         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4840
4841         return alloc_mmu_pages(vcpu);
4842 }
4843
4844 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4845 {
4846         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4847
4848         init_kvm_mmu(vcpu);
4849 }
4850
4851 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
4852                         struct kvm_memory_slot *slot,
4853                         struct kvm_page_track_notifier_node *node)
4854 {
4855         kvm_mmu_invalidate_zap_all_pages(kvm);
4856 }
4857
4858 void kvm_mmu_init_vm(struct kvm *kvm)
4859 {
4860         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4861
4862         node->track_write = kvm_mmu_pte_write;
4863         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
4864         kvm_page_track_register_notifier(kvm, node);
4865 }
4866
4867 void kvm_mmu_uninit_vm(struct kvm *kvm)
4868 {
4869         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4870
4871         kvm_page_track_unregister_notifier(kvm, node);
4872 }
4873
4874 /* The return value indicates if tlb flush on all vcpus is needed. */
4875 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4876
4877 /* The caller should hold mmu-lock before calling this function. */
4878 static bool
4879 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4880                         slot_level_handler fn, int start_level, int end_level,
4881                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4882 {
4883         struct slot_rmap_walk_iterator iterator;
4884         bool flush = false;
4885
4886         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4887                         end_gfn, &iterator) {
4888                 if (iterator.rmap)
4889                         flush |= fn(kvm, iterator.rmap);
4890
4891                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4892                         if (flush && lock_flush_tlb) {
4893                                 kvm_flush_remote_tlbs(kvm);
4894                                 flush = false;
4895                         }
4896                         cond_resched_lock(&kvm->mmu_lock);
4897                 }
4898         }
4899
4900         if (flush && lock_flush_tlb) {
4901                 kvm_flush_remote_tlbs(kvm);
4902                 flush = false;
4903         }
4904
4905         return flush;
4906 }
4907
4908 static bool
4909 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4910                   slot_level_handler fn, int start_level, int end_level,
4911                   bool lock_flush_tlb)
4912 {
4913         return slot_handle_level_range(kvm, memslot, fn, start_level,
4914                         end_level, memslot->base_gfn,
4915                         memslot->base_gfn + memslot->npages - 1,
4916                         lock_flush_tlb);
4917 }
4918
4919 static bool
4920 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4921                       slot_level_handler fn, bool lock_flush_tlb)
4922 {
4923         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4924                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4925 }
4926
4927 static bool
4928 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4929                         slot_level_handler fn, bool lock_flush_tlb)
4930 {
4931         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4932                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4933 }
4934
4935 static bool
4936 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4937                  slot_level_handler fn, bool lock_flush_tlb)
4938 {
4939         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4940                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4941 }
4942
4943 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4944 {
4945         struct kvm_memslots *slots;
4946         struct kvm_memory_slot *memslot;
4947         int i;
4948
4949         spin_lock(&kvm->mmu_lock);
4950         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4951                 slots = __kvm_memslots(kvm, i);
4952                 kvm_for_each_memslot(memslot, slots) {
4953                         gfn_t start, end;
4954
4955                         start = max(gfn_start, memslot->base_gfn);
4956                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4957                         if (start >= end)
4958                                 continue;
4959
4960                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4961                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4962                                                 start, end - 1, true);
4963                 }
4964         }
4965
4966         spin_unlock(&kvm->mmu_lock);
4967 }
4968
4969 static bool slot_rmap_write_protect(struct kvm *kvm,
4970                                     struct kvm_rmap_head *rmap_head)
4971 {
4972         return __rmap_write_protect(kvm, rmap_head, false);
4973 }
4974
4975 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4976                                       struct kvm_memory_slot *memslot)
4977 {
4978         bool flush;
4979
4980         spin_lock(&kvm->mmu_lock);
4981         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4982                                       false);
4983         spin_unlock(&kvm->mmu_lock);
4984
4985         /*
4986          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4987          * which do tlb flush out of mmu-lock should be serialized by
4988          * kvm->slots_lock otherwise tlb flush would be missed.
4989          */
4990         lockdep_assert_held(&kvm->slots_lock);
4991
4992         /*
4993          * We can flush all the TLBs out of the mmu lock without TLB
4994          * corruption since we just change the spte from writable to
4995          * readonly so that we only need to care the case of changing
4996          * spte from present to present (changing the spte from present
4997          * to nonpresent will flush all the TLBs immediately), in other
4998          * words, the only case we care is mmu_spte_update() where we
4999          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5000          * instead of PT_WRITABLE_MASK, that means it does not depend
5001          * on PT_WRITABLE_MASK anymore.
5002          */
5003         if (flush)
5004                 kvm_flush_remote_tlbs(kvm);
5005 }
5006
5007 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5008                                          struct kvm_rmap_head *rmap_head)
5009 {
5010         u64 *sptep;
5011         struct rmap_iterator iter;
5012         int need_tlb_flush = 0;
5013         kvm_pfn_t pfn;
5014         struct kvm_mmu_page *sp;
5015
5016 restart:
5017         for_each_rmap_spte(rmap_head, &iter, sptep) {
5018                 sp = page_header(__pa(sptep));
5019                 pfn = spte_to_pfn(*sptep);
5020
5021                 /*
5022                  * We cannot do huge page mapping for indirect shadow pages,
5023                  * which are found on the last rmap (level = 1) when not using
5024                  * tdp; such shadow pages are synced with the page table in
5025                  * the guest, and the guest page table is using 4K page size
5026                  * mapping if the indirect sp has level = 1.
5027                  */
5028                 if (sp->role.direct &&
5029                         !kvm_is_reserved_pfn(pfn) &&
5030                         PageTransCompoundMap(pfn_to_page(pfn))) {
5031                         drop_spte(kvm, sptep);
5032                         need_tlb_flush = 1;
5033                         goto restart;
5034                 }
5035         }
5036
5037         return need_tlb_flush;
5038 }
5039
5040 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5041                                    const struct kvm_memory_slot *memslot)
5042 {
5043         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5044         spin_lock(&kvm->mmu_lock);
5045         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5046                          kvm_mmu_zap_collapsible_spte, true);
5047         spin_unlock(&kvm->mmu_lock);
5048 }
5049
5050 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5051                                    struct kvm_memory_slot *memslot)
5052 {
5053         bool flush;
5054
5055         spin_lock(&kvm->mmu_lock);
5056         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5057         spin_unlock(&kvm->mmu_lock);
5058
5059         lockdep_assert_held(&kvm->slots_lock);
5060
5061         /*
5062          * It's also safe to flush TLBs out of mmu lock here as currently this
5063          * function is only used for dirty logging, in which case flushing TLB
5064          * out of mmu lock also guarantees no dirty pages will be lost in
5065          * dirty_bitmap.
5066          */
5067         if (flush)
5068                 kvm_flush_remote_tlbs(kvm);
5069 }
5070 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5071
5072 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5073                                         struct kvm_memory_slot *memslot)
5074 {
5075         bool flush;
5076
5077         spin_lock(&kvm->mmu_lock);
5078         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5079                                         false);
5080         spin_unlock(&kvm->mmu_lock);
5081
5082         /* see kvm_mmu_slot_remove_write_access */
5083         lockdep_assert_held(&kvm->slots_lock);
5084
5085         if (flush)
5086                 kvm_flush_remote_tlbs(kvm);
5087 }
5088 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5089
5090 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5091                             struct kvm_memory_slot *memslot)
5092 {
5093         bool flush;
5094
5095         spin_lock(&kvm->mmu_lock);
5096         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5097         spin_unlock(&kvm->mmu_lock);
5098
5099         lockdep_assert_held(&kvm->slots_lock);
5100
5101         /* see kvm_mmu_slot_leaf_clear_dirty */
5102         if (flush)
5103                 kvm_flush_remote_tlbs(kvm);
5104 }
5105 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5106
5107 #define BATCH_ZAP_PAGES 10
5108 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5109 {
5110         struct kvm_mmu_page *sp, *node;
5111         int batch = 0;
5112
5113 restart:
5114         list_for_each_entry_safe_reverse(sp, node,
5115               &kvm->arch.active_mmu_pages, link) {
5116                 int ret;
5117
5118                 /*
5119                  * No obsolete page exists before new created page since
5120                  * active_mmu_pages is the FIFO list.
5121                  */
5122                 if (!is_obsolete_sp(kvm, sp))
5123                         break;
5124
5125                 /*
5126                  * Since we are reversely walking the list and the invalid
5127                  * list will be moved to the head, skip the invalid page
5128                  * can help us to avoid the infinity list walking.
5129                  */
5130                 if (sp->role.invalid)
5131                         continue;
5132
5133                 /*
5134                  * Need not flush tlb since we only zap the sp with invalid
5135                  * generation number.
5136                  */
5137                 if (batch >= BATCH_ZAP_PAGES &&
5138                       cond_resched_lock(&kvm->mmu_lock)) {
5139                         batch = 0;
5140                         goto restart;
5141                 }
5142
5143                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5144                                 &kvm->arch.zapped_obsolete_pages);
5145                 batch += ret;
5146
5147                 if (ret)
5148                         goto restart;
5149         }
5150
5151         /*
5152          * Should flush tlb before free page tables since lockless-walking
5153          * may use the pages.
5154          */
5155         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5156 }
5157
5158 /*
5159  * Fast invalidate all shadow pages and use lock-break technique
5160  * to zap obsolete pages.
5161  *
5162  * It's required when memslot is being deleted or VM is being
5163  * destroyed, in these cases, we should ensure that KVM MMU does
5164  * not use any resource of the being-deleted slot or all slots
5165  * after calling the function.
5166  */
5167 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5168 {
5169         spin_lock(&kvm->mmu_lock);
5170         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5171         kvm->arch.mmu_valid_gen++;
5172
5173         /*
5174          * Notify all vcpus to reload its shadow page table
5175          * and flush TLB. Then all vcpus will switch to new
5176          * shadow page table with the new mmu_valid_gen.
5177          *
5178          * Note: we should do this under the protection of
5179          * mmu-lock, otherwise, vcpu would purge shadow page
5180          * but miss tlb flush.
5181          */
5182         kvm_reload_remote_mmus(kvm);
5183
5184         kvm_zap_obsolete_pages(kvm);
5185         spin_unlock(&kvm->mmu_lock);
5186 }
5187
5188 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5189 {
5190         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5191 }
5192
5193 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5194 {
5195         /*
5196          * The very rare case: if the generation-number is round,
5197          * zap all shadow pages.
5198          */
5199         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5200                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5201                 kvm_mmu_invalidate_zap_all_pages(kvm);
5202         }
5203 }
5204
5205 static unsigned long
5206 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5207 {
5208         struct kvm *kvm;
5209         int nr_to_scan = sc->nr_to_scan;
5210         unsigned long freed = 0;
5211
5212         spin_lock(&kvm_lock);
5213
5214         list_for_each_entry(kvm, &vm_list, vm_list) {
5215                 int idx;
5216                 LIST_HEAD(invalid_list);
5217
5218                 /*
5219                  * Never scan more than sc->nr_to_scan VM instances.
5220                  * Will not hit this condition practically since we do not try
5221                  * to shrink more than one VM and it is very unlikely to see
5222                  * !n_used_mmu_pages so many times.
5223                  */
5224                 if (!nr_to_scan--)
5225                         break;
5226                 /*
5227                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5228                  * here. We may skip a VM instance errorneosly, but we do not
5229                  * want to shrink a VM that only started to populate its MMU
5230                  * anyway.
5231                  */
5232                 if (!kvm->arch.n_used_mmu_pages &&
5233                       !kvm_has_zapped_obsolete_pages(kvm))
5234                         continue;
5235
5236                 idx = srcu_read_lock(&kvm->srcu);
5237                 spin_lock(&kvm->mmu_lock);
5238
5239                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5240                         kvm_mmu_commit_zap_page(kvm,
5241                               &kvm->arch.zapped_obsolete_pages);
5242                         goto unlock;
5243                 }
5244
5245                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5246                         freed++;
5247                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5248
5249 unlock:
5250                 spin_unlock(&kvm->mmu_lock);
5251                 srcu_read_unlock(&kvm->srcu, idx);
5252
5253                 /*
5254                  * unfair on small ones
5255                  * per-vm shrinkers cry out
5256                  * sadness comes quickly
5257                  */
5258                 list_move_tail(&kvm->vm_list, &vm_list);
5259                 break;
5260         }
5261
5262         spin_unlock(&kvm_lock);
5263         return freed;
5264 }
5265
5266 static unsigned long
5267 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5268 {
5269         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5270 }
5271
5272 static struct shrinker mmu_shrinker = {
5273         .count_objects = mmu_shrink_count,
5274         .scan_objects = mmu_shrink_scan,
5275         .seeks = DEFAULT_SEEKS * 10,
5276 };
5277
5278 static void mmu_destroy_caches(void)
5279 {
5280         if (pte_list_desc_cache)
5281                 kmem_cache_destroy(pte_list_desc_cache);
5282         if (mmu_page_header_cache)
5283                 kmem_cache_destroy(mmu_page_header_cache);
5284 }
5285
5286 int kvm_mmu_module_init(void)
5287 {
5288         kvm_mmu_clear_all_pte_masks();
5289
5290         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5291                                             sizeof(struct pte_list_desc),
5292                                             0, 0, NULL);
5293         if (!pte_list_desc_cache)
5294                 goto nomem;
5295
5296         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5297                                                   sizeof(struct kvm_mmu_page),
5298                                                   0, 0, NULL);
5299         if (!mmu_page_header_cache)
5300                 goto nomem;
5301
5302         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5303                 goto nomem;
5304
5305         register_shrinker(&mmu_shrinker);
5306
5307         return 0;
5308
5309 nomem:
5310         mmu_destroy_caches();
5311         return -ENOMEM;
5312 }
5313
5314 /*
5315  * Caculate mmu pages needed for kvm.
5316  */
5317 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5318 {
5319         unsigned int nr_mmu_pages;
5320         unsigned int  nr_pages = 0;
5321         struct kvm_memslots *slots;
5322         struct kvm_memory_slot *memslot;
5323         int i;
5324
5325         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5326                 slots = __kvm_memslots(kvm, i);
5327
5328                 kvm_for_each_memslot(memslot, slots)
5329                         nr_pages += memslot->npages;
5330         }
5331
5332         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5333         nr_mmu_pages = max(nr_mmu_pages,
5334                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5335
5336         return nr_mmu_pages;
5337 }
5338
5339 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5340 {
5341         kvm_mmu_unload(vcpu);
5342         free_mmu_pages(vcpu);
5343         mmu_free_memory_caches(vcpu);
5344 }
5345
5346 void kvm_mmu_module_exit(void)
5347 {
5348         mmu_destroy_caches();
5349         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5350         unregister_shrinker(&mmu_shrinker);
5351         mmu_audit_disable();
5352 }