Merge tag 'rpmsg-v4.14-fixes' of git://github.com/andersson/remoteproc
[sfrench/cifs-2.6.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/cmpxchg.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49 #include "trace.h"
50
51 /*
52  * When setting this variable to true it enables Two-Dimensional-Paging
53  * where the hardware walks 2 page tables:
54  * 1. the guest-virtual to guest-physical
55  * 2. while doing 1. it walks guest-physical to host-physical
56  * If the hardware supports that we don't need to do shadow paging.
57  */
58 bool tdp_enabled = false;
59
60 enum {
61         AUDIT_PRE_PAGE_FAULT,
62         AUDIT_POST_PAGE_FAULT,
63         AUDIT_PRE_PTE_WRITE,
64         AUDIT_POST_PTE_WRITE,
65         AUDIT_PRE_SYNC,
66         AUDIT_POST_SYNC
67 };
68
69 #undef MMU_DEBUG
70
71 #ifdef MMU_DEBUG
72 static bool dbg = 0;
73 module_param(dbg, bool, 0644);
74
75 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77 #define MMU_WARN_ON(x) WARN_ON(x)
78 #else
79 #define pgprintk(x...) do { } while (0)
80 #define rmap_printk(x...) do { } while (0)
81 #define MMU_WARN_ON(x) do { } while (0)
82 #endif
83
84 #define PTE_PREFETCH_NUM                8
85
86 #define PT_FIRST_AVAIL_BITS_SHIFT 10
87 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
88
89 #define PT64_LEVEL_BITS 9
90
91 #define PT64_LEVEL_SHIFT(level) \
92                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
93
94 #define PT64_INDEX(address, level)\
95         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
96
97
98 #define PT32_LEVEL_BITS 10
99
100 #define PT32_LEVEL_SHIFT(level) \
101                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
102
103 #define PT32_LVL_OFFSET_MASK(level) \
104         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
105                                                 * PT32_LEVEL_BITS))) - 1))
106
107 #define PT32_INDEX(address, level)\
108         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
112 #define PT64_DIR_BASE_ADDR_MASK \
113         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114 #define PT64_LVL_ADDR_MASK(level) \
115         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
116                                                 * PT64_LEVEL_BITS))) - 1))
117 #define PT64_LVL_OFFSET_MASK(level) \
118         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
119                                                 * PT64_LEVEL_BITS))) - 1))
120
121 #define PT32_BASE_ADDR_MASK PAGE_MASK
122 #define PT32_DIR_BASE_ADDR_MASK \
123         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
124 #define PT32_LVL_ADDR_MASK(level) \
125         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                             * PT32_LEVEL_BITS))) - 1))
127
128 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
129                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
130
131 #define ACC_EXEC_MASK    1
132 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
133 #define ACC_USER_MASK    PT_USER_MASK
134 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
135
136 /* The mask for the R/X bits in EPT PTEs */
137 #define PT64_EPT_READABLE_MASK                  0x1ull
138 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
139
140 #include <trace/events/kvm.h>
141
142 #define CREATE_TRACE_POINTS
143 #include "mmutrace.h"
144
145 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
146 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
147
148 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
149
150 /* make pte_list_desc fit well in cache line */
151 #define PTE_LIST_EXT 3
152
153 struct pte_list_desc {
154         u64 *sptes[PTE_LIST_EXT];
155         struct pte_list_desc *more;
156 };
157
158 struct kvm_shadow_walk_iterator {
159         u64 addr;
160         hpa_t shadow_addr;
161         u64 *sptep;
162         int level;
163         unsigned index;
164 };
165
166 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
167         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
168              shadow_walk_okay(&(_walker));                      \
169              shadow_walk_next(&(_walker)))
170
171 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
172         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
173              shadow_walk_okay(&(_walker)) &&                            \
174                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
175              __shadow_walk_next(&(_walker), spte))
176
177 static struct kmem_cache *pte_list_desc_cache;
178 static struct kmem_cache *mmu_page_header_cache;
179 static struct percpu_counter kvm_total_used_mmu_pages;
180
181 static u64 __read_mostly shadow_nx_mask;
182 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
183 static u64 __read_mostly shadow_user_mask;
184 static u64 __read_mostly shadow_accessed_mask;
185 static u64 __read_mostly shadow_dirty_mask;
186 static u64 __read_mostly shadow_mmio_mask;
187 static u64 __read_mostly shadow_mmio_value;
188 static u64 __read_mostly shadow_present_mask;
189 static u64 __read_mostly shadow_me_mask;
190
191 /*
192  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
193  * Non-present SPTEs with shadow_acc_track_value set are in place for access
194  * tracking.
195  */
196 static u64 __read_mostly shadow_acc_track_mask;
197 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
198
199 /*
200  * The mask/shift to use for saving the original R/X bits when marking the PTE
201  * as not-present for access tracking purposes. We do not save the W bit as the
202  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
203  * restored only when a write is attempted to the page.
204  */
205 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
206                                                     PT64_EPT_EXECUTABLE_MASK;
207 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
208
209 static void mmu_spte_set(u64 *sptep, u64 spte);
210 static void mmu_free_roots(struct kvm_vcpu *vcpu);
211
212 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
213 {
214         BUG_ON((mmio_mask & mmio_value) != mmio_value);
215         shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
216         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
217 }
218 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
219
220 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
221 {
222         return sp->role.ad_disabled;
223 }
224
225 static inline bool spte_ad_enabled(u64 spte)
226 {
227         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
228         return !(spte & shadow_acc_track_value);
229 }
230
231 static inline u64 spte_shadow_accessed_mask(u64 spte)
232 {
233         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
234         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
235 }
236
237 static inline u64 spte_shadow_dirty_mask(u64 spte)
238 {
239         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
240         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
241 }
242
243 static inline bool is_access_track_spte(u64 spte)
244 {
245         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
246 }
247
248 /*
249  * the low bit of the generation number is always presumed to be zero.
250  * This disables mmio caching during memslot updates.  The concept is
251  * similar to a seqcount but instead of retrying the access we just punt
252  * and ignore the cache.
253  *
254  * spte bits 3-11 are used as bits 1-9 of the generation number,
255  * the bits 52-61 are used as bits 10-19 of the generation number.
256  */
257 #define MMIO_SPTE_GEN_LOW_SHIFT         2
258 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
259
260 #define MMIO_GEN_SHIFT                  20
261 #define MMIO_GEN_LOW_SHIFT              10
262 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
263 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
264
265 static u64 generation_mmio_spte_mask(unsigned int gen)
266 {
267         u64 mask;
268
269         WARN_ON(gen & ~MMIO_GEN_MASK);
270
271         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
272         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
273         return mask;
274 }
275
276 static unsigned int get_mmio_spte_generation(u64 spte)
277 {
278         unsigned int gen;
279
280         spte &= ~shadow_mmio_mask;
281
282         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
283         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
284         return gen;
285 }
286
287 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
288 {
289         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
290 }
291
292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
293                            unsigned access)
294 {
295         unsigned int gen = kvm_current_mmio_generation(vcpu);
296         u64 mask = generation_mmio_spte_mask(gen);
297
298         access &= ACC_WRITE_MASK | ACC_USER_MASK;
299         mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
300
301         trace_mark_mmio_spte(sptep, gfn, access, gen);
302         mmu_spte_set(sptep, mask);
303 }
304
305 static bool is_mmio_spte(u64 spte)
306 {
307         return (spte & shadow_mmio_mask) == shadow_mmio_value;
308 }
309
310 static gfn_t get_mmio_spte_gfn(u64 spte)
311 {
312         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
313         return (spte & ~mask) >> PAGE_SHIFT;
314 }
315
316 static unsigned get_mmio_spte_access(u64 spte)
317 {
318         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
319         return (spte & ~mask) & ~PAGE_MASK;
320 }
321
322 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
323                           kvm_pfn_t pfn, unsigned access)
324 {
325         if (unlikely(is_noslot_pfn(pfn))) {
326                 mark_mmio_spte(vcpu, sptep, gfn, access);
327                 return true;
328         }
329
330         return false;
331 }
332
333 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
334 {
335         unsigned int kvm_gen, spte_gen;
336
337         kvm_gen = kvm_current_mmio_generation(vcpu);
338         spte_gen = get_mmio_spte_generation(spte);
339
340         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
341         return likely(kvm_gen == spte_gen);
342 }
343
344 /*
345  * Sets the shadow PTE masks used by the MMU.
346  *
347  * Assumptions:
348  *  - Setting either @accessed_mask or @dirty_mask requires setting both
349  *  - At least one of @accessed_mask or @acc_track_mask must be set
350  */
351 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
352                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
353                 u64 acc_track_mask, u64 me_mask)
354 {
355         BUG_ON(!dirty_mask != !accessed_mask);
356         BUG_ON(!accessed_mask && !acc_track_mask);
357         BUG_ON(acc_track_mask & shadow_acc_track_value);
358
359         shadow_user_mask = user_mask;
360         shadow_accessed_mask = accessed_mask;
361         shadow_dirty_mask = dirty_mask;
362         shadow_nx_mask = nx_mask;
363         shadow_x_mask = x_mask;
364         shadow_present_mask = p_mask;
365         shadow_acc_track_mask = acc_track_mask;
366         shadow_me_mask = me_mask;
367 }
368 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
369
370 void kvm_mmu_clear_all_pte_masks(void)
371 {
372         shadow_user_mask = 0;
373         shadow_accessed_mask = 0;
374         shadow_dirty_mask = 0;
375         shadow_nx_mask = 0;
376         shadow_x_mask = 0;
377         shadow_mmio_mask = 0;
378         shadow_present_mask = 0;
379         shadow_acc_track_mask = 0;
380 }
381
382 static int is_cpuid_PSE36(void)
383 {
384         return 1;
385 }
386
387 static int is_nx(struct kvm_vcpu *vcpu)
388 {
389         return vcpu->arch.efer & EFER_NX;
390 }
391
392 static int is_shadow_present_pte(u64 pte)
393 {
394         return (pte != 0) && !is_mmio_spte(pte);
395 }
396
397 static int is_large_pte(u64 pte)
398 {
399         return pte & PT_PAGE_SIZE_MASK;
400 }
401
402 static int is_last_spte(u64 pte, int level)
403 {
404         if (level == PT_PAGE_TABLE_LEVEL)
405                 return 1;
406         if (is_large_pte(pte))
407                 return 1;
408         return 0;
409 }
410
411 static bool is_executable_pte(u64 spte)
412 {
413         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
414 }
415
416 static kvm_pfn_t spte_to_pfn(u64 pte)
417 {
418         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
419 }
420
421 static gfn_t pse36_gfn_delta(u32 gpte)
422 {
423         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
424
425         return (gpte & PT32_DIR_PSE36_MASK) << shift;
426 }
427
428 #ifdef CONFIG_X86_64
429 static void __set_spte(u64 *sptep, u64 spte)
430 {
431         WRITE_ONCE(*sptep, spte);
432 }
433
434 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
435 {
436         WRITE_ONCE(*sptep, spte);
437 }
438
439 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
440 {
441         return xchg(sptep, spte);
442 }
443
444 static u64 __get_spte_lockless(u64 *sptep)
445 {
446         return ACCESS_ONCE(*sptep);
447 }
448 #else
449 union split_spte {
450         struct {
451                 u32 spte_low;
452                 u32 spte_high;
453         };
454         u64 spte;
455 };
456
457 static void count_spte_clear(u64 *sptep, u64 spte)
458 {
459         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
460
461         if (is_shadow_present_pte(spte))
462                 return;
463
464         /* Ensure the spte is completely set before we increase the count */
465         smp_wmb();
466         sp->clear_spte_count++;
467 }
468
469 static void __set_spte(u64 *sptep, u64 spte)
470 {
471         union split_spte *ssptep, sspte;
472
473         ssptep = (union split_spte *)sptep;
474         sspte = (union split_spte)spte;
475
476         ssptep->spte_high = sspte.spte_high;
477
478         /*
479          * If we map the spte from nonpresent to present, We should store
480          * the high bits firstly, then set present bit, so cpu can not
481          * fetch this spte while we are setting the spte.
482          */
483         smp_wmb();
484
485         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
486 }
487
488 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
489 {
490         union split_spte *ssptep, sspte;
491
492         ssptep = (union split_spte *)sptep;
493         sspte = (union split_spte)spte;
494
495         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
496
497         /*
498          * If we map the spte from present to nonpresent, we should clear
499          * present bit firstly to avoid vcpu fetch the old high bits.
500          */
501         smp_wmb();
502
503         ssptep->spte_high = sspte.spte_high;
504         count_spte_clear(sptep, spte);
505 }
506
507 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
508 {
509         union split_spte *ssptep, sspte, orig;
510
511         ssptep = (union split_spte *)sptep;
512         sspte = (union split_spte)spte;
513
514         /* xchg acts as a barrier before the setting of the high bits */
515         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
516         orig.spte_high = ssptep->spte_high;
517         ssptep->spte_high = sspte.spte_high;
518         count_spte_clear(sptep, spte);
519
520         return orig.spte;
521 }
522
523 /*
524  * The idea using the light way get the spte on x86_32 guest is from
525  * gup_get_pte(arch/x86/mm/gup.c).
526  *
527  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
528  * coalesces them and we are running out of the MMU lock.  Therefore
529  * we need to protect against in-progress updates of the spte.
530  *
531  * Reading the spte while an update is in progress may get the old value
532  * for the high part of the spte.  The race is fine for a present->non-present
533  * change (because the high part of the spte is ignored for non-present spte),
534  * but for a present->present change we must reread the spte.
535  *
536  * All such changes are done in two steps (present->non-present and
537  * non-present->present), hence it is enough to count the number of
538  * present->non-present updates: if it changed while reading the spte,
539  * we might have hit the race.  This is done using clear_spte_count.
540  */
541 static u64 __get_spte_lockless(u64 *sptep)
542 {
543         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
544         union split_spte spte, *orig = (union split_spte *)sptep;
545         int count;
546
547 retry:
548         count = sp->clear_spte_count;
549         smp_rmb();
550
551         spte.spte_low = orig->spte_low;
552         smp_rmb();
553
554         spte.spte_high = orig->spte_high;
555         smp_rmb();
556
557         if (unlikely(spte.spte_low != orig->spte_low ||
558               count != sp->clear_spte_count))
559                 goto retry;
560
561         return spte.spte;
562 }
563 #endif
564
565 static bool spte_can_locklessly_be_made_writable(u64 spte)
566 {
567         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
568                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
569 }
570
571 static bool spte_has_volatile_bits(u64 spte)
572 {
573         if (!is_shadow_present_pte(spte))
574                 return false;
575
576         /*
577          * Always atomically update spte if it can be updated
578          * out of mmu-lock, it can ensure dirty bit is not lost,
579          * also, it can help us to get a stable is_writable_pte()
580          * to ensure tlb flush is not missed.
581          */
582         if (spte_can_locklessly_be_made_writable(spte) ||
583             is_access_track_spte(spte))
584                 return true;
585
586         if (spte_ad_enabled(spte)) {
587                 if ((spte & shadow_accessed_mask) == 0 ||
588                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
589                         return true;
590         }
591
592         return false;
593 }
594
595 static bool is_accessed_spte(u64 spte)
596 {
597         u64 accessed_mask = spte_shadow_accessed_mask(spte);
598
599         return accessed_mask ? spte & accessed_mask
600                              : !is_access_track_spte(spte);
601 }
602
603 static bool is_dirty_spte(u64 spte)
604 {
605         u64 dirty_mask = spte_shadow_dirty_mask(spte);
606
607         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
608 }
609
610 /* Rules for using mmu_spte_set:
611  * Set the sptep from nonpresent to present.
612  * Note: the sptep being assigned *must* be either not present
613  * or in a state where the hardware will not attempt to update
614  * the spte.
615  */
616 static void mmu_spte_set(u64 *sptep, u64 new_spte)
617 {
618         WARN_ON(is_shadow_present_pte(*sptep));
619         __set_spte(sptep, new_spte);
620 }
621
622 /*
623  * Update the SPTE (excluding the PFN), but do not track changes in its
624  * accessed/dirty status.
625  */
626 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
627 {
628         u64 old_spte = *sptep;
629
630         WARN_ON(!is_shadow_present_pte(new_spte));
631
632         if (!is_shadow_present_pte(old_spte)) {
633                 mmu_spte_set(sptep, new_spte);
634                 return old_spte;
635         }
636
637         if (!spte_has_volatile_bits(old_spte))
638                 __update_clear_spte_fast(sptep, new_spte);
639         else
640                 old_spte = __update_clear_spte_slow(sptep, new_spte);
641
642         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
643
644         return old_spte;
645 }
646
647 /* Rules for using mmu_spte_update:
648  * Update the state bits, it means the mapped pfn is not changed.
649  *
650  * Whenever we overwrite a writable spte with a read-only one we
651  * should flush remote TLBs. Otherwise rmap_write_protect
652  * will find a read-only spte, even though the writable spte
653  * might be cached on a CPU's TLB, the return value indicates this
654  * case.
655  *
656  * Returns true if the TLB needs to be flushed
657  */
658 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
659 {
660         bool flush = false;
661         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
662
663         if (!is_shadow_present_pte(old_spte))
664                 return false;
665
666         /*
667          * For the spte updated out of mmu-lock is safe, since
668          * we always atomically update it, see the comments in
669          * spte_has_volatile_bits().
670          */
671         if (spte_can_locklessly_be_made_writable(old_spte) &&
672               !is_writable_pte(new_spte))
673                 flush = true;
674
675         /*
676          * Flush TLB when accessed/dirty states are changed in the page tables,
677          * to guarantee consistency between TLB and page tables.
678          */
679
680         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
681                 flush = true;
682                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
683         }
684
685         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
686                 flush = true;
687                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
688         }
689
690         return flush;
691 }
692
693 /*
694  * Rules for using mmu_spte_clear_track_bits:
695  * It sets the sptep from present to nonpresent, and track the
696  * state bits, it is used to clear the last level sptep.
697  * Returns non-zero if the PTE was previously valid.
698  */
699 static int mmu_spte_clear_track_bits(u64 *sptep)
700 {
701         kvm_pfn_t pfn;
702         u64 old_spte = *sptep;
703
704         if (!spte_has_volatile_bits(old_spte))
705                 __update_clear_spte_fast(sptep, 0ull);
706         else
707                 old_spte = __update_clear_spte_slow(sptep, 0ull);
708
709         if (!is_shadow_present_pte(old_spte))
710                 return 0;
711
712         pfn = spte_to_pfn(old_spte);
713
714         /*
715          * KVM does not hold the refcount of the page used by
716          * kvm mmu, before reclaiming the page, we should
717          * unmap it from mmu first.
718          */
719         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
720
721         if (is_accessed_spte(old_spte))
722                 kvm_set_pfn_accessed(pfn);
723
724         if (is_dirty_spte(old_spte))
725                 kvm_set_pfn_dirty(pfn);
726
727         return 1;
728 }
729
730 /*
731  * Rules for using mmu_spte_clear_no_track:
732  * Directly clear spte without caring the state bits of sptep,
733  * it is used to set the upper level spte.
734  */
735 static void mmu_spte_clear_no_track(u64 *sptep)
736 {
737         __update_clear_spte_fast(sptep, 0ull);
738 }
739
740 static u64 mmu_spte_get_lockless(u64 *sptep)
741 {
742         return __get_spte_lockless(sptep);
743 }
744
745 static u64 mark_spte_for_access_track(u64 spte)
746 {
747         if (spte_ad_enabled(spte))
748                 return spte & ~shadow_accessed_mask;
749
750         if (is_access_track_spte(spte))
751                 return spte;
752
753         /*
754          * Making an Access Tracking PTE will result in removal of write access
755          * from the PTE. So, verify that we will be able to restore the write
756          * access in the fast page fault path later on.
757          */
758         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
759                   !spte_can_locklessly_be_made_writable(spte),
760                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
761
762         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
763                           shadow_acc_track_saved_bits_shift),
764                   "kvm: Access Tracking saved bit locations are not zero\n");
765
766         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
767                 shadow_acc_track_saved_bits_shift;
768         spte &= ~shadow_acc_track_mask;
769
770         return spte;
771 }
772
773 /* Restore an acc-track PTE back to a regular PTE */
774 static u64 restore_acc_track_spte(u64 spte)
775 {
776         u64 new_spte = spte;
777         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
778                          & shadow_acc_track_saved_bits_mask;
779
780         WARN_ON_ONCE(spte_ad_enabled(spte));
781         WARN_ON_ONCE(!is_access_track_spte(spte));
782
783         new_spte &= ~shadow_acc_track_mask;
784         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
785                       shadow_acc_track_saved_bits_shift);
786         new_spte |= saved_bits;
787
788         return new_spte;
789 }
790
791 /* Returns the Accessed status of the PTE and resets it at the same time. */
792 static bool mmu_spte_age(u64 *sptep)
793 {
794         u64 spte = mmu_spte_get_lockless(sptep);
795
796         if (!is_accessed_spte(spte))
797                 return false;
798
799         if (spte_ad_enabled(spte)) {
800                 clear_bit((ffs(shadow_accessed_mask) - 1),
801                           (unsigned long *)sptep);
802         } else {
803                 /*
804                  * Capture the dirty status of the page, so that it doesn't get
805                  * lost when the SPTE is marked for access tracking.
806                  */
807                 if (is_writable_pte(spte))
808                         kvm_set_pfn_dirty(spte_to_pfn(spte));
809
810                 spte = mark_spte_for_access_track(spte);
811                 mmu_spte_update_no_track(sptep, spte);
812         }
813
814         return true;
815 }
816
817 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
818 {
819         /*
820          * Prevent page table teardown by making any free-er wait during
821          * kvm_flush_remote_tlbs() IPI to all active vcpus.
822          */
823         local_irq_disable();
824
825         /*
826          * Make sure a following spte read is not reordered ahead of the write
827          * to vcpu->mode.
828          */
829         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
830 }
831
832 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
833 {
834         /*
835          * Make sure the write to vcpu->mode is not reordered in front of
836          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
837          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
838          */
839         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
840         local_irq_enable();
841 }
842
843 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
844                                   struct kmem_cache *base_cache, int min)
845 {
846         void *obj;
847
848         if (cache->nobjs >= min)
849                 return 0;
850         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
851                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
852                 if (!obj)
853                         return -ENOMEM;
854                 cache->objects[cache->nobjs++] = obj;
855         }
856         return 0;
857 }
858
859 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
860 {
861         return cache->nobjs;
862 }
863
864 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
865                                   struct kmem_cache *cache)
866 {
867         while (mc->nobjs)
868                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
869 }
870
871 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
872                                        int min)
873 {
874         void *page;
875
876         if (cache->nobjs >= min)
877                 return 0;
878         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
879                 page = (void *)__get_free_page(GFP_KERNEL);
880                 if (!page)
881                         return -ENOMEM;
882                 cache->objects[cache->nobjs++] = page;
883         }
884         return 0;
885 }
886
887 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
888 {
889         while (mc->nobjs)
890                 free_page((unsigned long)mc->objects[--mc->nobjs]);
891 }
892
893 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
894 {
895         int r;
896
897         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
898                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
899         if (r)
900                 goto out;
901         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
902         if (r)
903                 goto out;
904         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
905                                    mmu_page_header_cache, 4);
906 out:
907         return r;
908 }
909
910 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
911 {
912         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
913                                 pte_list_desc_cache);
914         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
915         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
916                                 mmu_page_header_cache);
917 }
918
919 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
920 {
921         void *p;
922
923         BUG_ON(!mc->nobjs);
924         p = mc->objects[--mc->nobjs];
925         return p;
926 }
927
928 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
929 {
930         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
931 }
932
933 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
934 {
935         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
936 }
937
938 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
939 {
940         if (!sp->role.direct)
941                 return sp->gfns[index];
942
943         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
944 }
945
946 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
947 {
948         if (sp->role.direct)
949                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
950         else
951                 sp->gfns[index] = gfn;
952 }
953
954 /*
955  * Return the pointer to the large page information for a given gfn,
956  * handling slots that are not large page aligned.
957  */
958 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
959                                               struct kvm_memory_slot *slot,
960                                               int level)
961 {
962         unsigned long idx;
963
964         idx = gfn_to_index(gfn, slot->base_gfn, level);
965         return &slot->arch.lpage_info[level - 2][idx];
966 }
967
968 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
969                                             gfn_t gfn, int count)
970 {
971         struct kvm_lpage_info *linfo;
972         int i;
973
974         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
975                 linfo = lpage_info_slot(gfn, slot, i);
976                 linfo->disallow_lpage += count;
977                 WARN_ON(linfo->disallow_lpage < 0);
978         }
979 }
980
981 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
982 {
983         update_gfn_disallow_lpage_count(slot, gfn, 1);
984 }
985
986 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
987 {
988         update_gfn_disallow_lpage_count(slot, gfn, -1);
989 }
990
991 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
992 {
993         struct kvm_memslots *slots;
994         struct kvm_memory_slot *slot;
995         gfn_t gfn;
996
997         kvm->arch.indirect_shadow_pages++;
998         gfn = sp->gfn;
999         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1000         slot = __gfn_to_memslot(slots, gfn);
1001
1002         /* the non-leaf shadow pages are keeping readonly. */
1003         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1004                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1005                                                     KVM_PAGE_TRACK_WRITE);
1006
1007         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1008 }
1009
1010 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1011 {
1012         struct kvm_memslots *slots;
1013         struct kvm_memory_slot *slot;
1014         gfn_t gfn;
1015
1016         kvm->arch.indirect_shadow_pages--;
1017         gfn = sp->gfn;
1018         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1019         slot = __gfn_to_memslot(slots, gfn);
1020         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1021                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1022                                                        KVM_PAGE_TRACK_WRITE);
1023
1024         kvm_mmu_gfn_allow_lpage(slot, gfn);
1025 }
1026
1027 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1028                                           struct kvm_memory_slot *slot)
1029 {
1030         struct kvm_lpage_info *linfo;
1031
1032         if (slot) {
1033                 linfo = lpage_info_slot(gfn, slot, level);
1034                 return !!linfo->disallow_lpage;
1035         }
1036
1037         return true;
1038 }
1039
1040 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1041                                         int level)
1042 {
1043         struct kvm_memory_slot *slot;
1044
1045         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1046         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1047 }
1048
1049 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1050 {
1051         unsigned long page_size;
1052         int i, ret = 0;
1053
1054         page_size = kvm_host_page_size(kvm, gfn);
1055
1056         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1057                 if (page_size >= KVM_HPAGE_SIZE(i))
1058                         ret = i;
1059                 else
1060                         break;
1061         }
1062
1063         return ret;
1064 }
1065
1066 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1067                                           bool no_dirty_log)
1068 {
1069         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1070                 return false;
1071         if (no_dirty_log && slot->dirty_bitmap)
1072                 return false;
1073
1074         return true;
1075 }
1076
1077 static struct kvm_memory_slot *
1078 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1079                             bool no_dirty_log)
1080 {
1081         struct kvm_memory_slot *slot;
1082
1083         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1084         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1085                 slot = NULL;
1086
1087         return slot;
1088 }
1089
1090 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1091                          bool *force_pt_level)
1092 {
1093         int host_level, level, max_level;
1094         struct kvm_memory_slot *slot;
1095
1096         if (unlikely(*force_pt_level))
1097                 return PT_PAGE_TABLE_LEVEL;
1098
1099         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1100         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1101         if (unlikely(*force_pt_level))
1102                 return PT_PAGE_TABLE_LEVEL;
1103
1104         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1105
1106         if (host_level == PT_PAGE_TABLE_LEVEL)
1107                 return host_level;
1108
1109         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1110
1111         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1112                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1113                         break;
1114
1115         return level - 1;
1116 }
1117
1118 /*
1119  * About rmap_head encoding:
1120  *
1121  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1122  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1123  * pte_list_desc containing more mappings.
1124  */
1125
1126 /*
1127  * Returns the number of pointers in the rmap chain, not counting the new one.
1128  */
1129 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1130                         struct kvm_rmap_head *rmap_head)
1131 {
1132         struct pte_list_desc *desc;
1133         int i, count = 0;
1134
1135         if (!rmap_head->val) {
1136                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1137                 rmap_head->val = (unsigned long)spte;
1138         } else if (!(rmap_head->val & 1)) {
1139                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1140                 desc = mmu_alloc_pte_list_desc(vcpu);
1141                 desc->sptes[0] = (u64 *)rmap_head->val;
1142                 desc->sptes[1] = spte;
1143                 rmap_head->val = (unsigned long)desc | 1;
1144                 ++count;
1145         } else {
1146                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1147                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1148                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1149                         desc = desc->more;
1150                         count += PTE_LIST_EXT;
1151                 }
1152                 if (desc->sptes[PTE_LIST_EXT-1]) {
1153                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1154                         desc = desc->more;
1155                 }
1156                 for (i = 0; desc->sptes[i]; ++i)
1157                         ++count;
1158                 desc->sptes[i] = spte;
1159         }
1160         return count;
1161 }
1162
1163 static void
1164 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1165                            struct pte_list_desc *desc, int i,
1166                            struct pte_list_desc *prev_desc)
1167 {
1168         int j;
1169
1170         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1171                 ;
1172         desc->sptes[i] = desc->sptes[j];
1173         desc->sptes[j] = NULL;
1174         if (j != 0)
1175                 return;
1176         if (!prev_desc && !desc->more)
1177                 rmap_head->val = (unsigned long)desc->sptes[0];
1178         else
1179                 if (prev_desc)
1180                         prev_desc->more = desc->more;
1181                 else
1182                         rmap_head->val = (unsigned long)desc->more | 1;
1183         mmu_free_pte_list_desc(desc);
1184 }
1185
1186 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1187 {
1188         struct pte_list_desc *desc;
1189         struct pte_list_desc *prev_desc;
1190         int i;
1191
1192         if (!rmap_head->val) {
1193                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1194                 BUG();
1195         } else if (!(rmap_head->val & 1)) {
1196                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1197                 if ((u64 *)rmap_head->val != spte) {
1198                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1199                         BUG();
1200                 }
1201                 rmap_head->val = 0;
1202         } else {
1203                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1204                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1205                 prev_desc = NULL;
1206                 while (desc) {
1207                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1208                                 if (desc->sptes[i] == spte) {
1209                                         pte_list_desc_remove_entry(rmap_head,
1210                                                         desc, i, prev_desc);
1211                                         return;
1212                                 }
1213                         }
1214                         prev_desc = desc;
1215                         desc = desc->more;
1216                 }
1217                 pr_err("pte_list_remove: %p many->many\n", spte);
1218                 BUG();
1219         }
1220 }
1221
1222 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1223                                            struct kvm_memory_slot *slot)
1224 {
1225         unsigned long idx;
1226
1227         idx = gfn_to_index(gfn, slot->base_gfn, level);
1228         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1229 }
1230
1231 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1232                                          struct kvm_mmu_page *sp)
1233 {
1234         struct kvm_memslots *slots;
1235         struct kvm_memory_slot *slot;
1236
1237         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1238         slot = __gfn_to_memslot(slots, gfn);
1239         return __gfn_to_rmap(gfn, sp->role.level, slot);
1240 }
1241
1242 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1243 {
1244         struct kvm_mmu_memory_cache *cache;
1245
1246         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1247         return mmu_memory_cache_free_objects(cache);
1248 }
1249
1250 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1251 {
1252         struct kvm_mmu_page *sp;
1253         struct kvm_rmap_head *rmap_head;
1254
1255         sp = page_header(__pa(spte));
1256         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1257         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1258         return pte_list_add(vcpu, spte, rmap_head);
1259 }
1260
1261 static void rmap_remove(struct kvm *kvm, u64 *spte)
1262 {
1263         struct kvm_mmu_page *sp;
1264         gfn_t gfn;
1265         struct kvm_rmap_head *rmap_head;
1266
1267         sp = page_header(__pa(spte));
1268         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1269         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1270         pte_list_remove(spte, rmap_head);
1271 }
1272
1273 /*
1274  * Used by the following functions to iterate through the sptes linked by a
1275  * rmap.  All fields are private and not assumed to be used outside.
1276  */
1277 struct rmap_iterator {
1278         /* private fields */
1279         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1280         int pos;                        /* index of the sptep */
1281 };
1282
1283 /*
1284  * Iteration must be started by this function.  This should also be used after
1285  * removing/dropping sptes from the rmap link because in such cases the
1286  * information in the itererator may not be valid.
1287  *
1288  * Returns sptep if found, NULL otherwise.
1289  */
1290 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1291                            struct rmap_iterator *iter)
1292 {
1293         u64 *sptep;
1294
1295         if (!rmap_head->val)
1296                 return NULL;
1297
1298         if (!(rmap_head->val & 1)) {
1299                 iter->desc = NULL;
1300                 sptep = (u64 *)rmap_head->val;
1301                 goto out;
1302         }
1303
1304         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1305         iter->pos = 0;
1306         sptep = iter->desc->sptes[iter->pos];
1307 out:
1308         BUG_ON(!is_shadow_present_pte(*sptep));
1309         return sptep;
1310 }
1311
1312 /*
1313  * Must be used with a valid iterator: e.g. after rmap_get_first().
1314  *
1315  * Returns sptep if found, NULL otherwise.
1316  */
1317 static u64 *rmap_get_next(struct rmap_iterator *iter)
1318 {
1319         u64 *sptep;
1320
1321         if (iter->desc) {
1322                 if (iter->pos < PTE_LIST_EXT - 1) {
1323                         ++iter->pos;
1324                         sptep = iter->desc->sptes[iter->pos];
1325                         if (sptep)
1326                                 goto out;
1327                 }
1328
1329                 iter->desc = iter->desc->more;
1330
1331                 if (iter->desc) {
1332                         iter->pos = 0;
1333                         /* desc->sptes[0] cannot be NULL */
1334                         sptep = iter->desc->sptes[iter->pos];
1335                         goto out;
1336                 }
1337         }
1338
1339         return NULL;
1340 out:
1341         BUG_ON(!is_shadow_present_pte(*sptep));
1342         return sptep;
1343 }
1344
1345 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1346         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1347              _spte_; _spte_ = rmap_get_next(_iter_))
1348
1349 static void drop_spte(struct kvm *kvm, u64 *sptep)
1350 {
1351         if (mmu_spte_clear_track_bits(sptep))
1352                 rmap_remove(kvm, sptep);
1353 }
1354
1355
1356 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1357 {
1358         if (is_large_pte(*sptep)) {
1359                 WARN_ON(page_header(__pa(sptep))->role.level ==
1360                         PT_PAGE_TABLE_LEVEL);
1361                 drop_spte(kvm, sptep);
1362                 --kvm->stat.lpages;
1363                 return true;
1364         }
1365
1366         return false;
1367 }
1368
1369 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1370 {
1371         if (__drop_large_spte(vcpu->kvm, sptep))
1372                 kvm_flush_remote_tlbs(vcpu->kvm);
1373 }
1374
1375 /*
1376  * Write-protect on the specified @sptep, @pt_protect indicates whether
1377  * spte write-protection is caused by protecting shadow page table.
1378  *
1379  * Note: write protection is difference between dirty logging and spte
1380  * protection:
1381  * - for dirty logging, the spte can be set to writable at anytime if
1382  *   its dirty bitmap is properly set.
1383  * - for spte protection, the spte can be writable only after unsync-ing
1384  *   shadow page.
1385  *
1386  * Return true if tlb need be flushed.
1387  */
1388 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1389 {
1390         u64 spte = *sptep;
1391
1392         if (!is_writable_pte(spte) &&
1393               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1394                 return false;
1395
1396         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1397
1398         if (pt_protect)
1399                 spte &= ~SPTE_MMU_WRITEABLE;
1400         spte = spte & ~PT_WRITABLE_MASK;
1401
1402         return mmu_spte_update(sptep, spte);
1403 }
1404
1405 static bool __rmap_write_protect(struct kvm *kvm,
1406                                  struct kvm_rmap_head *rmap_head,
1407                                  bool pt_protect)
1408 {
1409         u64 *sptep;
1410         struct rmap_iterator iter;
1411         bool flush = false;
1412
1413         for_each_rmap_spte(rmap_head, &iter, sptep)
1414                 flush |= spte_write_protect(sptep, pt_protect);
1415
1416         return flush;
1417 }
1418
1419 static bool spte_clear_dirty(u64 *sptep)
1420 {
1421         u64 spte = *sptep;
1422
1423         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1424
1425         spte &= ~shadow_dirty_mask;
1426
1427         return mmu_spte_update(sptep, spte);
1428 }
1429
1430 static bool wrprot_ad_disabled_spte(u64 *sptep)
1431 {
1432         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1433                                                (unsigned long *)sptep);
1434         if (was_writable)
1435                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1436
1437         return was_writable;
1438 }
1439
1440 /*
1441  * Gets the GFN ready for another round of dirty logging by clearing the
1442  *      - D bit on ad-enabled SPTEs, and
1443  *      - W bit on ad-disabled SPTEs.
1444  * Returns true iff any D or W bits were cleared.
1445  */
1446 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1447 {
1448         u64 *sptep;
1449         struct rmap_iterator iter;
1450         bool flush = false;
1451
1452         for_each_rmap_spte(rmap_head, &iter, sptep)
1453                 if (spte_ad_enabled(*sptep))
1454                         flush |= spte_clear_dirty(sptep);
1455                 else
1456                         flush |= wrprot_ad_disabled_spte(sptep);
1457
1458         return flush;
1459 }
1460
1461 static bool spte_set_dirty(u64 *sptep)
1462 {
1463         u64 spte = *sptep;
1464
1465         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1466
1467         spte |= shadow_dirty_mask;
1468
1469         return mmu_spte_update(sptep, spte);
1470 }
1471
1472 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1473 {
1474         u64 *sptep;
1475         struct rmap_iterator iter;
1476         bool flush = false;
1477
1478         for_each_rmap_spte(rmap_head, &iter, sptep)
1479                 if (spte_ad_enabled(*sptep))
1480                         flush |= spte_set_dirty(sptep);
1481
1482         return flush;
1483 }
1484
1485 /**
1486  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1487  * @kvm: kvm instance
1488  * @slot: slot to protect
1489  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1490  * @mask: indicates which pages we should protect
1491  *
1492  * Used when we do not need to care about huge page mappings: e.g. during dirty
1493  * logging we do not have any such mappings.
1494  */
1495 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1496                                      struct kvm_memory_slot *slot,
1497                                      gfn_t gfn_offset, unsigned long mask)
1498 {
1499         struct kvm_rmap_head *rmap_head;
1500
1501         while (mask) {
1502                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1503                                           PT_PAGE_TABLE_LEVEL, slot);
1504                 __rmap_write_protect(kvm, rmap_head, false);
1505
1506                 /* clear the first set bit */
1507                 mask &= mask - 1;
1508         }
1509 }
1510
1511 /**
1512  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1513  * protect the page if the D-bit isn't supported.
1514  * @kvm: kvm instance
1515  * @slot: slot to clear D-bit
1516  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1517  * @mask: indicates which pages we should clear D-bit
1518  *
1519  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1520  */
1521 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1522                                      struct kvm_memory_slot *slot,
1523                                      gfn_t gfn_offset, unsigned long mask)
1524 {
1525         struct kvm_rmap_head *rmap_head;
1526
1527         while (mask) {
1528                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1529                                           PT_PAGE_TABLE_LEVEL, slot);
1530                 __rmap_clear_dirty(kvm, rmap_head);
1531
1532                 /* clear the first set bit */
1533                 mask &= mask - 1;
1534         }
1535 }
1536 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1537
1538 /**
1539  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1540  * PT level pages.
1541  *
1542  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1543  * enable dirty logging for them.
1544  *
1545  * Used when we do not need to care about huge page mappings: e.g. during dirty
1546  * logging we do not have any such mappings.
1547  */
1548 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1549                                 struct kvm_memory_slot *slot,
1550                                 gfn_t gfn_offset, unsigned long mask)
1551 {
1552         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1553                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1554                                 mask);
1555         else
1556                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1557 }
1558
1559 /**
1560  * kvm_arch_write_log_dirty - emulate dirty page logging
1561  * @vcpu: Guest mode vcpu
1562  *
1563  * Emulate arch specific page modification logging for the
1564  * nested hypervisor
1565  */
1566 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1567 {
1568         if (kvm_x86_ops->write_log_dirty)
1569                 return kvm_x86_ops->write_log_dirty(vcpu);
1570
1571         return 0;
1572 }
1573
1574 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1575                                     struct kvm_memory_slot *slot, u64 gfn)
1576 {
1577         struct kvm_rmap_head *rmap_head;
1578         int i;
1579         bool write_protected = false;
1580
1581         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1582                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1583                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1584         }
1585
1586         return write_protected;
1587 }
1588
1589 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1590 {
1591         struct kvm_memory_slot *slot;
1592
1593         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1594         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1595 }
1596
1597 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1598 {
1599         u64 *sptep;
1600         struct rmap_iterator iter;
1601         bool flush = false;
1602
1603         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1604                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1605
1606                 drop_spte(kvm, sptep);
1607                 flush = true;
1608         }
1609
1610         return flush;
1611 }
1612
1613 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1614                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1615                            unsigned long data)
1616 {
1617         return kvm_zap_rmapp(kvm, rmap_head);
1618 }
1619
1620 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1621                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1622                              unsigned long data)
1623 {
1624         u64 *sptep;
1625         struct rmap_iterator iter;
1626         int need_flush = 0;
1627         u64 new_spte;
1628         pte_t *ptep = (pte_t *)data;
1629         kvm_pfn_t new_pfn;
1630
1631         WARN_ON(pte_huge(*ptep));
1632         new_pfn = pte_pfn(*ptep);
1633
1634 restart:
1635         for_each_rmap_spte(rmap_head, &iter, sptep) {
1636                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1637                             sptep, *sptep, gfn, level);
1638
1639                 need_flush = 1;
1640
1641                 if (pte_write(*ptep)) {
1642                         drop_spte(kvm, sptep);
1643                         goto restart;
1644                 } else {
1645                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1646                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1647
1648                         new_spte &= ~PT_WRITABLE_MASK;
1649                         new_spte &= ~SPTE_HOST_WRITEABLE;
1650
1651                         new_spte = mark_spte_for_access_track(new_spte);
1652
1653                         mmu_spte_clear_track_bits(sptep);
1654                         mmu_spte_set(sptep, new_spte);
1655                 }
1656         }
1657
1658         if (need_flush)
1659                 kvm_flush_remote_tlbs(kvm);
1660
1661         return 0;
1662 }
1663
1664 struct slot_rmap_walk_iterator {
1665         /* input fields. */
1666         struct kvm_memory_slot *slot;
1667         gfn_t start_gfn;
1668         gfn_t end_gfn;
1669         int start_level;
1670         int end_level;
1671
1672         /* output fields. */
1673         gfn_t gfn;
1674         struct kvm_rmap_head *rmap;
1675         int level;
1676
1677         /* private field. */
1678         struct kvm_rmap_head *end_rmap;
1679 };
1680
1681 static void
1682 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1683 {
1684         iterator->level = level;
1685         iterator->gfn = iterator->start_gfn;
1686         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1687         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1688                                            iterator->slot);
1689 }
1690
1691 static void
1692 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1693                     struct kvm_memory_slot *slot, int start_level,
1694                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1695 {
1696         iterator->slot = slot;
1697         iterator->start_level = start_level;
1698         iterator->end_level = end_level;
1699         iterator->start_gfn = start_gfn;
1700         iterator->end_gfn = end_gfn;
1701
1702         rmap_walk_init_level(iterator, iterator->start_level);
1703 }
1704
1705 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1706 {
1707         return !!iterator->rmap;
1708 }
1709
1710 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1711 {
1712         if (++iterator->rmap <= iterator->end_rmap) {
1713                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1714                 return;
1715         }
1716
1717         if (++iterator->level > iterator->end_level) {
1718                 iterator->rmap = NULL;
1719                 return;
1720         }
1721
1722         rmap_walk_init_level(iterator, iterator->level);
1723 }
1724
1725 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1726            _start_gfn, _end_gfn, _iter_)                                \
1727         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1728                                  _end_level_, _start_gfn, _end_gfn);    \
1729              slot_rmap_walk_okay(_iter_);                               \
1730              slot_rmap_walk_next(_iter_))
1731
1732 static int kvm_handle_hva_range(struct kvm *kvm,
1733                                 unsigned long start,
1734                                 unsigned long end,
1735                                 unsigned long data,
1736                                 int (*handler)(struct kvm *kvm,
1737                                                struct kvm_rmap_head *rmap_head,
1738                                                struct kvm_memory_slot *slot,
1739                                                gfn_t gfn,
1740                                                int level,
1741                                                unsigned long data))
1742 {
1743         struct kvm_memslots *slots;
1744         struct kvm_memory_slot *memslot;
1745         struct slot_rmap_walk_iterator iterator;
1746         int ret = 0;
1747         int i;
1748
1749         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1750                 slots = __kvm_memslots(kvm, i);
1751                 kvm_for_each_memslot(memslot, slots) {
1752                         unsigned long hva_start, hva_end;
1753                         gfn_t gfn_start, gfn_end;
1754
1755                         hva_start = max(start, memslot->userspace_addr);
1756                         hva_end = min(end, memslot->userspace_addr +
1757                                       (memslot->npages << PAGE_SHIFT));
1758                         if (hva_start >= hva_end)
1759                                 continue;
1760                         /*
1761                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1762                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1763                          */
1764                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1765                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1766
1767                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1768                                                  PT_MAX_HUGEPAGE_LEVEL,
1769                                                  gfn_start, gfn_end - 1,
1770                                                  &iterator)
1771                                 ret |= handler(kvm, iterator.rmap, memslot,
1772                                                iterator.gfn, iterator.level, data);
1773                 }
1774         }
1775
1776         return ret;
1777 }
1778
1779 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1780                           unsigned long data,
1781                           int (*handler)(struct kvm *kvm,
1782                                          struct kvm_rmap_head *rmap_head,
1783                                          struct kvm_memory_slot *slot,
1784                                          gfn_t gfn, int level,
1785                                          unsigned long data))
1786 {
1787         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1788 }
1789
1790 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1791 {
1792         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1793 }
1794
1795 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1796 {
1797         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1798 }
1799
1800 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1801 {
1802         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1803 }
1804
1805 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1806                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1807                          unsigned long data)
1808 {
1809         u64 *sptep;
1810         struct rmap_iterator uninitialized_var(iter);
1811         int young = 0;
1812
1813         for_each_rmap_spte(rmap_head, &iter, sptep)
1814                 young |= mmu_spte_age(sptep);
1815
1816         trace_kvm_age_page(gfn, level, slot, young);
1817         return young;
1818 }
1819
1820 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1821                               struct kvm_memory_slot *slot, gfn_t gfn,
1822                               int level, unsigned long data)
1823 {
1824         u64 *sptep;
1825         struct rmap_iterator iter;
1826
1827         for_each_rmap_spte(rmap_head, &iter, sptep)
1828                 if (is_accessed_spte(*sptep))
1829                         return 1;
1830         return 0;
1831 }
1832
1833 #define RMAP_RECYCLE_THRESHOLD 1000
1834
1835 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1836 {
1837         struct kvm_rmap_head *rmap_head;
1838         struct kvm_mmu_page *sp;
1839
1840         sp = page_header(__pa(spte));
1841
1842         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1843
1844         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1845         kvm_flush_remote_tlbs(vcpu->kvm);
1846 }
1847
1848 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1849 {
1850         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1851 }
1852
1853 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1854 {
1855         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1856 }
1857
1858 #ifdef MMU_DEBUG
1859 static int is_empty_shadow_page(u64 *spt)
1860 {
1861         u64 *pos;
1862         u64 *end;
1863
1864         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1865                 if (is_shadow_present_pte(*pos)) {
1866                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1867                                pos, *pos);
1868                         return 0;
1869                 }
1870         return 1;
1871 }
1872 #endif
1873
1874 /*
1875  * This value is the sum of all of the kvm instances's
1876  * kvm->arch.n_used_mmu_pages values.  We need a global,
1877  * aggregate version in order to make the slab shrinker
1878  * faster
1879  */
1880 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1881 {
1882         kvm->arch.n_used_mmu_pages += nr;
1883         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1884 }
1885
1886 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1887 {
1888         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1889         hlist_del(&sp->hash_link);
1890         list_del(&sp->link);
1891         free_page((unsigned long)sp->spt);
1892         if (!sp->role.direct)
1893                 free_page((unsigned long)sp->gfns);
1894         kmem_cache_free(mmu_page_header_cache, sp);
1895 }
1896
1897 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1898 {
1899         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1900 }
1901
1902 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1903                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1904 {
1905         if (!parent_pte)
1906                 return;
1907
1908         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1909 }
1910
1911 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1912                                        u64 *parent_pte)
1913 {
1914         pte_list_remove(parent_pte, &sp->parent_ptes);
1915 }
1916
1917 static void drop_parent_pte(struct kvm_mmu_page *sp,
1918                             u64 *parent_pte)
1919 {
1920         mmu_page_remove_parent_pte(sp, parent_pte);
1921         mmu_spte_clear_no_track(parent_pte);
1922 }
1923
1924 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1925 {
1926         struct kvm_mmu_page *sp;
1927
1928         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1929         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1930         if (!direct)
1931                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1932         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1933
1934         /*
1935          * The active_mmu_pages list is the FIFO list, do not move the
1936          * page until it is zapped. kvm_zap_obsolete_pages depends on
1937          * this feature. See the comments in kvm_zap_obsolete_pages().
1938          */
1939         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1940         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1941         return sp;
1942 }
1943
1944 static void mark_unsync(u64 *spte);
1945 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1946 {
1947         u64 *sptep;
1948         struct rmap_iterator iter;
1949
1950         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1951                 mark_unsync(sptep);
1952         }
1953 }
1954
1955 static void mark_unsync(u64 *spte)
1956 {
1957         struct kvm_mmu_page *sp;
1958         unsigned int index;
1959
1960         sp = page_header(__pa(spte));
1961         index = spte - sp->spt;
1962         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1963                 return;
1964         if (sp->unsync_children++)
1965                 return;
1966         kvm_mmu_mark_parents_unsync(sp);
1967 }
1968
1969 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1970                                struct kvm_mmu_page *sp)
1971 {
1972         return 0;
1973 }
1974
1975 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1976 {
1977 }
1978
1979 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1980                                  struct kvm_mmu_page *sp, u64 *spte,
1981                                  const void *pte)
1982 {
1983         WARN_ON(1);
1984 }
1985
1986 #define KVM_PAGE_ARRAY_NR 16
1987
1988 struct kvm_mmu_pages {
1989         struct mmu_page_and_offset {
1990                 struct kvm_mmu_page *sp;
1991                 unsigned int idx;
1992         } page[KVM_PAGE_ARRAY_NR];
1993         unsigned int nr;
1994 };
1995
1996 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1997                          int idx)
1998 {
1999         int i;
2000
2001         if (sp->unsync)
2002                 for (i=0; i < pvec->nr; i++)
2003                         if (pvec->page[i].sp == sp)
2004                                 return 0;
2005
2006         pvec->page[pvec->nr].sp = sp;
2007         pvec->page[pvec->nr].idx = idx;
2008         pvec->nr++;
2009         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2010 }
2011
2012 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2013 {
2014         --sp->unsync_children;
2015         WARN_ON((int)sp->unsync_children < 0);
2016         __clear_bit(idx, sp->unsync_child_bitmap);
2017 }
2018
2019 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2020                            struct kvm_mmu_pages *pvec)
2021 {
2022         int i, ret, nr_unsync_leaf = 0;
2023
2024         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2025                 struct kvm_mmu_page *child;
2026                 u64 ent = sp->spt[i];
2027
2028                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2029                         clear_unsync_child_bit(sp, i);
2030                         continue;
2031                 }
2032
2033                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2034
2035                 if (child->unsync_children) {
2036                         if (mmu_pages_add(pvec, child, i))
2037                                 return -ENOSPC;
2038
2039                         ret = __mmu_unsync_walk(child, pvec);
2040                         if (!ret) {
2041                                 clear_unsync_child_bit(sp, i);
2042                                 continue;
2043                         } else if (ret > 0) {
2044                                 nr_unsync_leaf += ret;
2045                         } else
2046                                 return ret;
2047                 } else if (child->unsync) {
2048                         nr_unsync_leaf++;
2049                         if (mmu_pages_add(pvec, child, i))
2050                                 return -ENOSPC;
2051                 } else
2052                         clear_unsync_child_bit(sp, i);
2053         }
2054
2055         return nr_unsync_leaf;
2056 }
2057
2058 #define INVALID_INDEX (-1)
2059
2060 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2061                            struct kvm_mmu_pages *pvec)
2062 {
2063         pvec->nr = 0;
2064         if (!sp->unsync_children)
2065                 return 0;
2066
2067         mmu_pages_add(pvec, sp, INVALID_INDEX);
2068         return __mmu_unsync_walk(sp, pvec);
2069 }
2070
2071 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2072 {
2073         WARN_ON(!sp->unsync);
2074         trace_kvm_mmu_sync_page(sp);
2075         sp->unsync = 0;
2076         --kvm->stat.mmu_unsync;
2077 }
2078
2079 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2080                                     struct list_head *invalid_list);
2081 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2082                                     struct list_head *invalid_list);
2083
2084 /*
2085  * NOTE: we should pay more attention on the zapped-obsolete page
2086  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2087  * since it has been deleted from active_mmu_pages but still can be found
2088  * at hast list.
2089  *
2090  * for_each_valid_sp() has skipped that kind of pages.
2091  */
2092 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2093         hlist_for_each_entry(_sp,                                       \
2094           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2095                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2096                 } else
2097
2098 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2099         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2100                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2101
2102 /* @sp->gfn should be write-protected at the call site */
2103 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2104                             struct list_head *invalid_list)
2105 {
2106         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2107                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2108                 return false;
2109         }
2110
2111         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2112                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2113                 return false;
2114         }
2115
2116         return true;
2117 }
2118
2119 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2120                                  struct list_head *invalid_list,
2121                                  bool remote_flush, bool local_flush)
2122 {
2123         if (!list_empty(invalid_list)) {
2124                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2125                 return;
2126         }
2127
2128         if (remote_flush)
2129                 kvm_flush_remote_tlbs(vcpu->kvm);
2130         else if (local_flush)
2131                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2132 }
2133
2134 #ifdef CONFIG_KVM_MMU_AUDIT
2135 #include "mmu_audit.c"
2136 #else
2137 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2138 static void mmu_audit_disable(void) { }
2139 #endif
2140
2141 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2142 {
2143         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2144 }
2145
2146 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2147                          struct list_head *invalid_list)
2148 {
2149         kvm_unlink_unsync_page(vcpu->kvm, sp);
2150         return __kvm_sync_page(vcpu, sp, invalid_list);
2151 }
2152
2153 /* @gfn should be write-protected at the call site */
2154 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2155                            struct list_head *invalid_list)
2156 {
2157         struct kvm_mmu_page *s;
2158         bool ret = false;
2159
2160         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2161                 if (!s->unsync)
2162                         continue;
2163
2164                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2165                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2166         }
2167
2168         return ret;
2169 }
2170
2171 struct mmu_page_path {
2172         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2173         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2174 };
2175
2176 #define for_each_sp(pvec, sp, parents, i)                       \
2177                 for (i = mmu_pages_first(&pvec, &parents);      \
2178                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2179                         i = mmu_pages_next(&pvec, &parents, i))
2180
2181 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2182                           struct mmu_page_path *parents,
2183                           int i)
2184 {
2185         int n;
2186
2187         for (n = i+1; n < pvec->nr; n++) {
2188                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2189                 unsigned idx = pvec->page[n].idx;
2190                 int level = sp->role.level;
2191
2192                 parents->idx[level-1] = idx;
2193                 if (level == PT_PAGE_TABLE_LEVEL)
2194                         break;
2195
2196                 parents->parent[level-2] = sp;
2197         }
2198
2199         return n;
2200 }
2201
2202 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2203                            struct mmu_page_path *parents)
2204 {
2205         struct kvm_mmu_page *sp;
2206         int level;
2207
2208         if (pvec->nr == 0)
2209                 return 0;
2210
2211         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2212
2213         sp = pvec->page[0].sp;
2214         level = sp->role.level;
2215         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2216
2217         parents->parent[level-2] = sp;
2218
2219         /* Also set up a sentinel.  Further entries in pvec are all
2220          * children of sp, so this element is never overwritten.
2221          */
2222         parents->parent[level-1] = NULL;
2223         return mmu_pages_next(pvec, parents, 0);
2224 }
2225
2226 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2227 {
2228         struct kvm_mmu_page *sp;
2229         unsigned int level = 0;
2230
2231         do {
2232                 unsigned int idx = parents->idx[level];
2233                 sp = parents->parent[level];
2234                 if (!sp)
2235                         return;
2236
2237                 WARN_ON(idx == INVALID_INDEX);
2238                 clear_unsync_child_bit(sp, idx);
2239                 level++;
2240         } while (!sp->unsync_children);
2241 }
2242
2243 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2244                               struct kvm_mmu_page *parent)
2245 {
2246         int i;
2247         struct kvm_mmu_page *sp;
2248         struct mmu_page_path parents;
2249         struct kvm_mmu_pages pages;
2250         LIST_HEAD(invalid_list);
2251         bool flush = false;
2252
2253         while (mmu_unsync_walk(parent, &pages)) {
2254                 bool protected = false;
2255
2256                 for_each_sp(pages, sp, parents, i)
2257                         protected |= rmap_write_protect(vcpu, sp->gfn);
2258
2259                 if (protected) {
2260                         kvm_flush_remote_tlbs(vcpu->kvm);
2261                         flush = false;
2262                 }
2263
2264                 for_each_sp(pages, sp, parents, i) {
2265                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2266                         mmu_pages_clear_parents(&parents);
2267                 }
2268                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2269                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2270                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2271                         flush = false;
2272                 }
2273         }
2274
2275         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2276 }
2277
2278 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2279 {
2280         atomic_set(&sp->write_flooding_count,  0);
2281 }
2282
2283 static void clear_sp_write_flooding_count(u64 *spte)
2284 {
2285         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2286
2287         __clear_sp_write_flooding_count(sp);
2288 }
2289
2290 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2291                                              gfn_t gfn,
2292                                              gva_t gaddr,
2293                                              unsigned level,
2294                                              int direct,
2295                                              unsigned access)
2296 {
2297         union kvm_mmu_page_role role;
2298         unsigned quadrant;
2299         struct kvm_mmu_page *sp;
2300         bool need_sync = false;
2301         bool flush = false;
2302         int collisions = 0;
2303         LIST_HEAD(invalid_list);
2304
2305         role = vcpu->arch.mmu.base_role;
2306         role.level = level;
2307         role.direct = direct;
2308         if (role.direct)
2309                 role.cr4_pae = 0;
2310         role.access = access;
2311         if (!vcpu->arch.mmu.direct_map
2312             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2313                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2314                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2315                 role.quadrant = quadrant;
2316         }
2317         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2318                 if (sp->gfn != gfn) {
2319                         collisions++;
2320                         continue;
2321                 }
2322
2323                 if (!need_sync && sp->unsync)
2324                         need_sync = true;
2325
2326                 if (sp->role.word != role.word)
2327                         continue;
2328
2329                 if (sp->unsync) {
2330                         /* The page is good, but __kvm_sync_page might still end
2331                          * up zapping it.  If so, break in order to rebuild it.
2332                          */
2333                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2334                                 break;
2335
2336                         WARN_ON(!list_empty(&invalid_list));
2337                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2338                 }
2339
2340                 if (sp->unsync_children)
2341                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2342
2343                 __clear_sp_write_flooding_count(sp);
2344                 trace_kvm_mmu_get_page(sp, false);
2345                 goto out;
2346         }
2347
2348         ++vcpu->kvm->stat.mmu_cache_miss;
2349
2350         sp = kvm_mmu_alloc_page(vcpu, direct);
2351
2352         sp->gfn = gfn;
2353         sp->role = role;
2354         hlist_add_head(&sp->hash_link,
2355                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2356         if (!direct) {
2357                 /*
2358                  * we should do write protection before syncing pages
2359                  * otherwise the content of the synced shadow page may
2360                  * be inconsistent with guest page table.
2361                  */
2362                 account_shadowed(vcpu->kvm, sp);
2363                 if (level == PT_PAGE_TABLE_LEVEL &&
2364                       rmap_write_protect(vcpu, gfn))
2365                         kvm_flush_remote_tlbs(vcpu->kvm);
2366
2367                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2368                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2369         }
2370         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2371         clear_page(sp->spt);
2372         trace_kvm_mmu_get_page(sp, true);
2373
2374         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2375 out:
2376         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2377                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2378         return sp;
2379 }
2380
2381 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2382                              struct kvm_vcpu *vcpu, u64 addr)
2383 {
2384         iterator->addr = addr;
2385         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2386         iterator->level = vcpu->arch.mmu.shadow_root_level;
2387
2388         if (iterator->level == PT64_ROOT_4LEVEL &&
2389             vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2390             !vcpu->arch.mmu.direct_map)
2391                 --iterator->level;
2392
2393         if (iterator->level == PT32E_ROOT_LEVEL) {
2394                 iterator->shadow_addr
2395                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2396                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2397                 --iterator->level;
2398                 if (!iterator->shadow_addr)
2399                         iterator->level = 0;
2400         }
2401 }
2402
2403 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2404 {
2405         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2406                 return false;
2407
2408         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2409         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2410         return true;
2411 }
2412
2413 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2414                                u64 spte)
2415 {
2416         if (is_last_spte(spte, iterator->level)) {
2417                 iterator->level = 0;
2418                 return;
2419         }
2420
2421         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2422         --iterator->level;
2423 }
2424
2425 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2426 {
2427         return __shadow_walk_next(iterator, *iterator->sptep);
2428 }
2429
2430 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2431                              struct kvm_mmu_page *sp)
2432 {
2433         u64 spte;
2434
2435         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2436
2437         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2438                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2439
2440         if (sp_ad_disabled(sp))
2441                 spte |= shadow_acc_track_value;
2442         else
2443                 spte |= shadow_accessed_mask;
2444
2445         mmu_spte_set(sptep, spte);
2446
2447         mmu_page_add_parent_pte(vcpu, sp, sptep);
2448
2449         if (sp->unsync_children || sp->unsync)
2450                 mark_unsync(sptep);
2451 }
2452
2453 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2454                                    unsigned direct_access)
2455 {
2456         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2457                 struct kvm_mmu_page *child;
2458
2459                 /*
2460                  * For the direct sp, if the guest pte's dirty bit
2461                  * changed form clean to dirty, it will corrupt the
2462                  * sp's access: allow writable in the read-only sp,
2463                  * so we should update the spte at this point to get
2464                  * a new sp with the correct access.
2465                  */
2466                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2467                 if (child->role.access == direct_access)
2468                         return;
2469
2470                 drop_parent_pte(child, sptep);
2471                 kvm_flush_remote_tlbs(vcpu->kvm);
2472         }
2473 }
2474
2475 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2476                              u64 *spte)
2477 {
2478         u64 pte;
2479         struct kvm_mmu_page *child;
2480
2481         pte = *spte;
2482         if (is_shadow_present_pte(pte)) {
2483                 if (is_last_spte(pte, sp->role.level)) {
2484                         drop_spte(kvm, spte);
2485                         if (is_large_pte(pte))
2486                                 --kvm->stat.lpages;
2487                 } else {
2488                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2489                         drop_parent_pte(child, spte);
2490                 }
2491                 return true;
2492         }
2493
2494         if (is_mmio_spte(pte))
2495                 mmu_spte_clear_no_track(spte);
2496
2497         return false;
2498 }
2499
2500 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2501                                          struct kvm_mmu_page *sp)
2502 {
2503         unsigned i;
2504
2505         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2506                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2507 }
2508
2509 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2510 {
2511         u64 *sptep;
2512         struct rmap_iterator iter;
2513
2514         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2515                 drop_parent_pte(sp, sptep);
2516 }
2517
2518 static int mmu_zap_unsync_children(struct kvm *kvm,
2519                                    struct kvm_mmu_page *parent,
2520                                    struct list_head *invalid_list)
2521 {
2522         int i, zapped = 0;
2523         struct mmu_page_path parents;
2524         struct kvm_mmu_pages pages;
2525
2526         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2527                 return 0;
2528
2529         while (mmu_unsync_walk(parent, &pages)) {
2530                 struct kvm_mmu_page *sp;
2531
2532                 for_each_sp(pages, sp, parents, i) {
2533                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2534                         mmu_pages_clear_parents(&parents);
2535                         zapped++;
2536                 }
2537         }
2538
2539         return zapped;
2540 }
2541
2542 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2543                                     struct list_head *invalid_list)
2544 {
2545         int ret;
2546
2547         trace_kvm_mmu_prepare_zap_page(sp);
2548         ++kvm->stat.mmu_shadow_zapped;
2549         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2550         kvm_mmu_page_unlink_children(kvm, sp);
2551         kvm_mmu_unlink_parents(kvm, sp);
2552
2553         if (!sp->role.invalid && !sp->role.direct)
2554                 unaccount_shadowed(kvm, sp);
2555
2556         if (sp->unsync)
2557                 kvm_unlink_unsync_page(kvm, sp);
2558         if (!sp->root_count) {
2559                 /* Count self */
2560                 ret++;
2561                 list_move(&sp->link, invalid_list);
2562                 kvm_mod_used_mmu_pages(kvm, -1);
2563         } else {
2564                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2565
2566                 /*
2567                  * The obsolete pages can not be used on any vcpus.
2568                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2569                  */
2570                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2571                         kvm_reload_remote_mmus(kvm);
2572         }
2573
2574         sp->role.invalid = 1;
2575         return ret;
2576 }
2577
2578 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2579                                     struct list_head *invalid_list)
2580 {
2581         struct kvm_mmu_page *sp, *nsp;
2582
2583         if (list_empty(invalid_list))
2584                 return;
2585
2586         /*
2587          * We need to make sure everyone sees our modifications to
2588          * the page tables and see changes to vcpu->mode here. The barrier
2589          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2590          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2591          *
2592          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2593          * guest mode and/or lockless shadow page table walks.
2594          */
2595         kvm_flush_remote_tlbs(kvm);
2596
2597         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2598                 WARN_ON(!sp->role.invalid || sp->root_count);
2599                 kvm_mmu_free_page(sp);
2600         }
2601 }
2602
2603 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2604                                         struct list_head *invalid_list)
2605 {
2606         struct kvm_mmu_page *sp;
2607
2608         if (list_empty(&kvm->arch.active_mmu_pages))
2609                 return false;
2610
2611         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2612                              struct kvm_mmu_page, link);
2613         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2614 }
2615
2616 /*
2617  * Changing the number of mmu pages allocated to the vm
2618  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2619  */
2620 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2621 {
2622         LIST_HEAD(invalid_list);
2623
2624         spin_lock(&kvm->mmu_lock);
2625
2626         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2627                 /* Need to free some mmu pages to achieve the goal. */
2628                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2629                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2630                                 break;
2631
2632                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2633                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2634         }
2635
2636         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2637
2638         spin_unlock(&kvm->mmu_lock);
2639 }
2640
2641 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2642 {
2643         struct kvm_mmu_page *sp;
2644         LIST_HEAD(invalid_list);
2645         int r;
2646
2647         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2648         r = 0;
2649         spin_lock(&kvm->mmu_lock);
2650         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2651                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2652                          sp->role.word);
2653                 r = 1;
2654                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2655         }
2656         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2657         spin_unlock(&kvm->mmu_lock);
2658
2659         return r;
2660 }
2661 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2662
2663 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2664 {
2665         trace_kvm_mmu_unsync_page(sp);
2666         ++vcpu->kvm->stat.mmu_unsync;
2667         sp->unsync = 1;
2668
2669         kvm_mmu_mark_parents_unsync(sp);
2670 }
2671
2672 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2673                                    bool can_unsync)
2674 {
2675         struct kvm_mmu_page *sp;
2676
2677         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2678                 return true;
2679
2680         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2681                 if (!can_unsync)
2682                         return true;
2683
2684                 if (sp->unsync)
2685                         continue;
2686
2687                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2688                 kvm_unsync_page(vcpu, sp);
2689         }
2690
2691         return false;
2692 }
2693
2694 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2695 {
2696         if (pfn_valid(pfn))
2697                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2698
2699         return true;
2700 }
2701
2702 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2703                     unsigned pte_access, int level,
2704                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2705                     bool can_unsync, bool host_writable)
2706 {
2707         u64 spte = 0;
2708         int ret = 0;
2709         struct kvm_mmu_page *sp;
2710
2711         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2712                 return 0;
2713
2714         sp = page_header(__pa(sptep));
2715         if (sp_ad_disabled(sp))
2716                 spte |= shadow_acc_track_value;
2717
2718         /*
2719          * For the EPT case, shadow_present_mask is 0 if hardware
2720          * supports exec-only page table entries.  In that case,
2721          * ACC_USER_MASK and shadow_user_mask are used to represent
2722          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2723          */
2724         spte |= shadow_present_mask;
2725         if (!speculative)
2726                 spte |= spte_shadow_accessed_mask(spte);
2727
2728         if (pte_access & ACC_EXEC_MASK)
2729                 spte |= shadow_x_mask;
2730         else
2731                 spte |= shadow_nx_mask;
2732
2733         if (pte_access & ACC_USER_MASK)
2734                 spte |= shadow_user_mask;
2735
2736         if (level > PT_PAGE_TABLE_LEVEL)
2737                 spte |= PT_PAGE_SIZE_MASK;
2738         if (tdp_enabled)
2739                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2740                         kvm_is_mmio_pfn(pfn));
2741
2742         if (host_writable)
2743                 spte |= SPTE_HOST_WRITEABLE;
2744         else
2745                 pte_access &= ~ACC_WRITE_MASK;
2746
2747         spte |= (u64)pfn << PAGE_SHIFT;
2748         spte |= shadow_me_mask;
2749
2750         if (pte_access & ACC_WRITE_MASK) {
2751
2752                 /*
2753                  * Other vcpu creates new sp in the window between
2754                  * mapping_level() and acquiring mmu-lock. We can
2755                  * allow guest to retry the access, the mapping can
2756                  * be fixed if guest refault.
2757                  */
2758                 if (level > PT_PAGE_TABLE_LEVEL &&
2759                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2760                         goto done;
2761
2762                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2763
2764                 /*
2765                  * Optimization: for pte sync, if spte was writable the hash
2766                  * lookup is unnecessary (and expensive). Write protection
2767                  * is responsibility of mmu_get_page / kvm_sync_page.
2768                  * Same reasoning can be applied to dirty page accounting.
2769                  */
2770                 if (!can_unsync && is_writable_pte(*sptep))
2771                         goto set_pte;
2772
2773                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2774                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2775                                  __func__, gfn);
2776                         ret = 1;
2777                         pte_access &= ~ACC_WRITE_MASK;
2778                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2779                 }
2780         }
2781
2782         if (pte_access & ACC_WRITE_MASK) {
2783                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2784                 spte |= spte_shadow_dirty_mask(spte);
2785         }
2786
2787         if (speculative)
2788                 spte = mark_spte_for_access_track(spte);
2789
2790 set_pte:
2791         if (mmu_spte_update(sptep, spte))
2792                 kvm_flush_remote_tlbs(vcpu->kvm);
2793 done:
2794         return ret;
2795 }
2796
2797 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2798                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2799                          bool speculative, bool host_writable)
2800 {
2801         int was_rmapped = 0;
2802         int rmap_count;
2803         bool emulate = false;
2804
2805         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2806                  *sptep, write_fault, gfn);
2807
2808         if (is_shadow_present_pte(*sptep)) {
2809                 /*
2810                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2811                  * the parent of the now unreachable PTE.
2812                  */
2813                 if (level > PT_PAGE_TABLE_LEVEL &&
2814                     !is_large_pte(*sptep)) {
2815                         struct kvm_mmu_page *child;
2816                         u64 pte = *sptep;
2817
2818                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2819                         drop_parent_pte(child, sptep);
2820                         kvm_flush_remote_tlbs(vcpu->kvm);
2821                 } else if (pfn != spte_to_pfn(*sptep)) {
2822                         pgprintk("hfn old %llx new %llx\n",
2823                                  spte_to_pfn(*sptep), pfn);
2824                         drop_spte(vcpu->kvm, sptep);
2825                         kvm_flush_remote_tlbs(vcpu->kvm);
2826                 } else
2827                         was_rmapped = 1;
2828         }
2829
2830         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2831               true, host_writable)) {
2832                 if (write_fault)
2833                         emulate = true;
2834                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2835         }
2836
2837         if (unlikely(is_mmio_spte(*sptep)))
2838                 emulate = true;
2839
2840         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2841         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2842                  is_large_pte(*sptep)? "2MB" : "4kB",
2843                  *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2844                  *sptep, sptep);
2845         if (!was_rmapped && is_large_pte(*sptep))
2846                 ++vcpu->kvm->stat.lpages;
2847
2848         if (is_shadow_present_pte(*sptep)) {
2849                 if (!was_rmapped) {
2850                         rmap_count = rmap_add(vcpu, sptep, gfn);
2851                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2852                                 rmap_recycle(vcpu, sptep, gfn);
2853                 }
2854         }
2855
2856         kvm_release_pfn_clean(pfn);
2857
2858         return emulate;
2859 }
2860
2861 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2862                                      bool no_dirty_log)
2863 {
2864         struct kvm_memory_slot *slot;
2865
2866         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2867         if (!slot)
2868                 return KVM_PFN_ERR_FAULT;
2869
2870         return gfn_to_pfn_memslot_atomic(slot, gfn);
2871 }
2872
2873 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2874                                     struct kvm_mmu_page *sp,
2875                                     u64 *start, u64 *end)
2876 {
2877         struct page *pages[PTE_PREFETCH_NUM];
2878         struct kvm_memory_slot *slot;
2879         unsigned access = sp->role.access;
2880         int i, ret;
2881         gfn_t gfn;
2882
2883         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2884         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2885         if (!slot)
2886                 return -1;
2887
2888         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2889         if (ret <= 0)
2890                 return -1;
2891
2892         for (i = 0; i < ret; i++, gfn++, start++)
2893                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2894                              page_to_pfn(pages[i]), true, true);
2895
2896         return 0;
2897 }
2898
2899 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2900                                   struct kvm_mmu_page *sp, u64 *sptep)
2901 {
2902         u64 *spte, *start = NULL;
2903         int i;
2904
2905         WARN_ON(!sp->role.direct);
2906
2907         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2908         spte = sp->spt + i;
2909
2910         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2911                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2912                         if (!start)
2913                                 continue;
2914                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2915                                 break;
2916                         start = NULL;
2917                 } else if (!start)
2918                         start = spte;
2919         }
2920 }
2921
2922 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2923 {
2924         struct kvm_mmu_page *sp;
2925
2926         sp = page_header(__pa(sptep));
2927
2928         /*
2929          * Without accessed bits, there's no way to distinguish between
2930          * actually accessed translations and prefetched, so disable pte
2931          * prefetch if accessed bits aren't available.
2932          */
2933         if (sp_ad_disabled(sp))
2934                 return;
2935
2936         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2937                 return;
2938
2939         __direct_pte_prefetch(vcpu, sp, sptep);
2940 }
2941
2942 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2943                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2944 {
2945         struct kvm_shadow_walk_iterator iterator;
2946         struct kvm_mmu_page *sp;
2947         int emulate = 0;
2948         gfn_t pseudo_gfn;
2949
2950         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2951                 return 0;
2952
2953         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2954                 if (iterator.level == level) {
2955                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2956                                                write, level, gfn, pfn, prefault,
2957                                                map_writable);
2958                         direct_pte_prefetch(vcpu, iterator.sptep);
2959                         ++vcpu->stat.pf_fixed;
2960                         break;
2961                 }
2962
2963                 drop_large_spte(vcpu, iterator.sptep);
2964                 if (!is_shadow_present_pte(*iterator.sptep)) {
2965                         u64 base_addr = iterator.addr;
2966
2967                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2968                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2969                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2970                                               iterator.level - 1, 1, ACC_ALL);
2971
2972                         link_shadow_page(vcpu, iterator.sptep, sp);
2973                 }
2974         }
2975         return emulate;
2976 }
2977
2978 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2979 {
2980         siginfo_t info;
2981
2982         info.si_signo   = SIGBUS;
2983         info.si_errno   = 0;
2984         info.si_code    = BUS_MCEERR_AR;
2985         info.si_addr    = (void __user *)address;
2986         info.si_addr_lsb = PAGE_SHIFT;
2987
2988         send_sig_info(SIGBUS, &info, tsk);
2989 }
2990
2991 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2992 {
2993         /*
2994          * Do not cache the mmio info caused by writing the readonly gfn
2995          * into the spte otherwise read access on readonly gfn also can
2996          * caused mmio page fault and treat it as mmio access.
2997          * Return 1 to tell kvm to emulate it.
2998          */
2999         if (pfn == KVM_PFN_ERR_RO_FAULT)
3000                 return 1;
3001
3002         if (pfn == KVM_PFN_ERR_HWPOISON) {
3003                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3004                 return 0;
3005         }
3006
3007         return -EFAULT;
3008 }
3009
3010 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3011                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
3012                                         int *levelp)
3013 {
3014         kvm_pfn_t pfn = *pfnp;
3015         gfn_t gfn = *gfnp;
3016         int level = *levelp;
3017
3018         /*
3019          * Check if it's a transparent hugepage. If this would be an
3020          * hugetlbfs page, level wouldn't be set to
3021          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3022          * here.
3023          */
3024         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3025             level == PT_PAGE_TABLE_LEVEL &&
3026             PageTransCompoundMap(pfn_to_page(pfn)) &&
3027             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3028                 unsigned long mask;
3029                 /*
3030                  * mmu_notifier_retry was successful and we hold the
3031                  * mmu_lock here, so the pmd can't become splitting
3032                  * from under us, and in turn
3033                  * __split_huge_page_refcount() can't run from under
3034                  * us and we can safely transfer the refcount from
3035                  * PG_tail to PG_head as we switch the pfn to tail to
3036                  * head.
3037                  */
3038                 *levelp = level = PT_DIRECTORY_LEVEL;
3039                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3040                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3041                 if (pfn & mask) {
3042                         gfn &= ~mask;
3043                         *gfnp = gfn;
3044                         kvm_release_pfn_clean(pfn);
3045                         pfn &= ~mask;
3046                         kvm_get_pfn(pfn);
3047                         *pfnp = pfn;
3048                 }
3049         }
3050 }
3051
3052 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3053                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3054 {
3055         /* The pfn is invalid, report the error! */
3056         if (unlikely(is_error_pfn(pfn))) {
3057                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3058                 return true;
3059         }
3060
3061         if (unlikely(is_noslot_pfn(pfn)))
3062                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3063
3064         return false;
3065 }
3066
3067 static bool page_fault_can_be_fast(u32 error_code)
3068 {
3069         /*
3070          * Do not fix the mmio spte with invalid generation number which
3071          * need to be updated by slow page fault path.
3072          */
3073         if (unlikely(error_code & PFERR_RSVD_MASK))
3074                 return false;
3075
3076         /* See if the page fault is due to an NX violation */
3077         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3078                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3079                 return false;
3080
3081         /*
3082          * #PF can be fast if:
3083          * 1. The shadow page table entry is not present, which could mean that
3084          *    the fault is potentially caused by access tracking (if enabled).
3085          * 2. The shadow page table entry is present and the fault
3086          *    is caused by write-protect, that means we just need change the W
3087          *    bit of the spte which can be done out of mmu-lock.
3088          *
3089          * However, if access tracking is disabled we know that a non-present
3090          * page must be a genuine page fault where we have to create a new SPTE.
3091          * So, if access tracking is disabled, we return true only for write
3092          * accesses to a present page.
3093          */
3094
3095         return shadow_acc_track_mask != 0 ||
3096                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3097                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3098 }
3099
3100 /*
3101  * Returns true if the SPTE was fixed successfully. Otherwise,
3102  * someone else modified the SPTE from its original value.
3103  */
3104 static bool
3105 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3106                         u64 *sptep, u64 old_spte, u64 new_spte)
3107 {
3108         gfn_t gfn;
3109
3110         WARN_ON(!sp->role.direct);
3111
3112         /*
3113          * Theoretically we could also set dirty bit (and flush TLB) here in
3114          * order to eliminate unnecessary PML logging. See comments in
3115          * set_spte. But fast_page_fault is very unlikely to happen with PML
3116          * enabled, so we do not do this. This might result in the same GPA
3117          * to be logged in PML buffer again when the write really happens, and
3118          * eventually to be called by mark_page_dirty twice. But it's also no
3119          * harm. This also avoids the TLB flush needed after setting dirty bit
3120          * so non-PML cases won't be impacted.
3121          *
3122          * Compare with set_spte where instead shadow_dirty_mask is set.
3123          */
3124         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3125                 return false;
3126
3127         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3128                 /*
3129                  * The gfn of direct spte is stable since it is
3130                  * calculated by sp->gfn.
3131                  */
3132                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3133                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3134         }
3135
3136         return true;
3137 }
3138
3139 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3140 {
3141         if (fault_err_code & PFERR_FETCH_MASK)
3142                 return is_executable_pte(spte);
3143
3144         if (fault_err_code & PFERR_WRITE_MASK)
3145                 return is_writable_pte(spte);
3146
3147         /* Fault was on Read access */
3148         return spte & PT_PRESENT_MASK;
3149 }
3150
3151 /*
3152  * Return value:
3153  * - true: let the vcpu to access on the same address again.
3154  * - false: let the real page fault path to fix it.
3155  */
3156 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3157                             u32 error_code)
3158 {
3159         struct kvm_shadow_walk_iterator iterator;
3160         struct kvm_mmu_page *sp;
3161         bool fault_handled = false;
3162         u64 spte = 0ull;
3163         uint retry_count = 0;
3164
3165         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3166                 return false;
3167
3168         if (!page_fault_can_be_fast(error_code))
3169                 return false;
3170
3171         walk_shadow_page_lockless_begin(vcpu);
3172
3173         do {
3174                 u64 new_spte;
3175
3176                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3177                         if (!is_shadow_present_pte(spte) ||
3178                             iterator.level < level)
3179                                 break;
3180
3181                 sp = page_header(__pa(iterator.sptep));
3182                 if (!is_last_spte(spte, sp->role.level))
3183                         break;
3184
3185                 /*
3186                  * Check whether the memory access that caused the fault would
3187                  * still cause it if it were to be performed right now. If not,
3188                  * then this is a spurious fault caused by TLB lazily flushed,
3189                  * or some other CPU has already fixed the PTE after the
3190                  * current CPU took the fault.
3191                  *
3192                  * Need not check the access of upper level table entries since
3193                  * they are always ACC_ALL.
3194                  */
3195                 if (is_access_allowed(error_code, spte)) {
3196                         fault_handled = true;
3197                         break;
3198                 }
3199
3200                 new_spte = spte;
3201
3202                 if (is_access_track_spte(spte))
3203                         new_spte = restore_acc_track_spte(new_spte);
3204
3205                 /*
3206                  * Currently, to simplify the code, write-protection can
3207                  * be removed in the fast path only if the SPTE was
3208                  * write-protected for dirty-logging or access tracking.
3209                  */
3210                 if ((error_code & PFERR_WRITE_MASK) &&
3211                     spte_can_locklessly_be_made_writable(spte))
3212                 {
3213                         new_spte |= PT_WRITABLE_MASK;
3214
3215                         /*
3216                          * Do not fix write-permission on the large spte.  Since
3217                          * we only dirty the first page into the dirty-bitmap in
3218                          * fast_pf_fix_direct_spte(), other pages are missed
3219                          * if its slot has dirty logging enabled.
3220                          *
3221                          * Instead, we let the slow page fault path create a
3222                          * normal spte to fix the access.
3223                          *
3224                          * See the comments in kvm_arch_commit_memory_region().
3225                          */
3226                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3227                                 break;
3228                 }
3229
3230                 /* Verify that the fault can be handled in the fast path */
3231                 if (new_spte == spte ||
3232                     !is_access_allowed(error_code, new_spte))
3233                         break;
3234
3235                 /*
3236                  * Currently, fast page fault only works for direct mapping
3237                  * since the gfn is not stable for indirect shadow page. See
3238                  * Documentation/virtual/kvm/locking.txt to get more detail.
3239                  */
3240                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3241                                                         iterator.sptep, spte,
3242                                                         new_spte);
3243                 if (fault_handled)
3244                         break;
3245
3246                 if (++retry_count > 4) {
3247                         printk_once(KERN_WARNING
3248                                 "kvm: Fast #PF retrying more than 4 times.\n");
3249                         break;
3250                 }
3251
3252         } while (true);
3253
3254         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3255                               spte, fault_handled);
3256         walk_shadow_page_lockless_end(vcpu);
3257
3258         return fault_handled;
3259 }
3260
3261 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3262                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3263 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3264
3265 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3266                          gfn_t gfn, bool prefault)
3267 {
3268         int r;
3269         int level;
3270         bool force_pt_level = false;
3271         kvm_pfn_t pfn;
3272         unsigned long mmu_seq;
3273         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3274
3275         level = mapping_level(vcpu, gfn, &force_pt_level);
3276         if (likely(!force_pt_level)) {
3277                 /*
3278                  * This path builds a PAE pagetable - so we can map
3279                  * 2mb pages at maximum. Therefore check if the level
3280                  * is larger than that.
3281                  */
3282                 if (level > PT_DIRECTORY_LEVEL)
3283                         level = PT_DIRECTORY_LEVEL;
3284
3285                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3286         }
3287
3288         if (fast_page_fault(vcpu, v, level, error_code))
3289                 return 0;
3290
3291         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3292         smp_rmb();
3293
3294         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3295                 return 0;
3296
3297         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3298                 return r;
3299
3300         spin_lock(&vcpu->kvm->mmu_lock);
3301         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3302                 goto out_unlock;
3303         if (make_mmu_pages_available(vcpu) < 0)
3304                 goto out_unlock;
3305         if (likely(!force_pt_level))
3306                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3307         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3308         spin_unlock(&vcpu->kvm->mmu_lock);
3309
3310         return r;
3311
3312 out_unlock:
3313         spin_unlock(&vcpu->kvm->mmu_lock);
3314         kvm_release_pfn_clean(pfn);
3315         return 0;
3316 }
3317
3318
3319 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3320 {
3321         int i;
3322         struct kvm_mmu_page *sp;
3323         LIST_HEAD(invalid_list);
3324
3325         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3326                 return;
3327
3328         if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
3329             (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
3330              vcpu->arch.mmu.direct_map)) {
3331                 hpa_t root = vcpu->arch.mmu.root_hpa;
3332
3333                 spin_lock(&vcpu->kvm->mmu_lock);
3334                 sp = page_header(root);
3335                 --sp->root_count;
3336                 if (!sp->root_count && sp->role.invalid) {
3337                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3338                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3339                 }
3340                 spin_unlock(&vcpu->kvm->mmu_lock);
3341                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3342                 return;
3343         }
3344
3345         spin_lock(&vcpu->kvm->mmu_lock);
3346         for (i = 0; i < 4; ++i) {
3347                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3348
3349                 if (root) {
3350                         root &= PT64_BASE_ADDR_MASK;
3351                         sp = page_header(root);
3352                         --sp->root_count;
3353                         if (!sp->root_count && sp->role.invalid)
3354                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3355                                                          &invalid_list);
3356                 }
3357                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3358         }
3359         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3360         spin_unlock(&vcpu->kvm->mmu_lock);
3361         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3362 }
3363
3364 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3365 {
3366         int ret = 0;
3367
3368         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3369                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3370                 ret = 1;
3371         }
3372
3373         return ret;
3374 }
3375
3376 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3377 {
3378         struct kvm_mmu_page *sp;
3379         unsigned i;
3380
3381         if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3382                 spin_lock(&vcpu->kvm->mmu_lock);
3383                 if(make_mmu_pages_available(vcpu) < 0) {
3384                         spin_unlock(&vcpu->kvm->mmu_lock);
3385                         return 1;
3386                 }
3387                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3388                                 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3389                 ++sp->root_count;
3390                 spin_unlock(&vcpu->kvm->mmu_lock);
3391                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3392         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3393                 for (i = 0; i < 4; ++i) {
3394                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3395
3396                         MMU_WARN_ON(VALID_PAGE(root));
3397                         spin_lock(&vcpu->kvm->mmu_lock);
3398                         if (make_mmu_pages_available(vcpu) < 0) {
3399                                 spin_unlock(&vcpu->kvm->mmu_lock);
3400                                 return 1;
3401                         }
3402                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3403                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3404                         root = __pa(sp->spt);
3405                         ++sp->root_count;
3406                         spin_unlock(&vcpu->kvm->mmu_lock);
3407                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3408                 }
3409                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3410         } else
3411                 BUG();
3412
3413         return 0;
3414 }
3415
3416 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3417 {
3418         struct kvm_mmu_page *sp;
3419         u64 pdptr, pm_mask;
3420         gfn_t root_gfn;
3421         int i;
3422
3423         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3424
3425         if (mmu_check_root(vcpu, root_gfn))
3426                 return 1;
3427
3428         /*
3429          * Do we shadow a long mode page table? If so we need to
3430          * write-protect the guests page table root.
3431          */
3432         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3433                 hpa_t root = vcpu->arch.mmu.root_hpa;
3434
3435                 MMU_WARN_ON(VALID_PAGE(root));
3436
3437                 spin_lock(&vcpu->kvm->mmu_lock);
3438                 if (make_mmu_pages_available(vcpu) < 0) {
3439                         spin_unlock(&vcpu->kvm->mmu_lock);
3440                         return 1;
3441                 }
3442                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3443                                 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3444                 root = __pa(sp->spt);
3445                 ++sp->root_count;
3446                 spin_unlock(&vcpu->kvm->mmu_lock);
3447                 vcpu->arch.mmu.root_hpa = root;
3448                 return 0;
3449         }
3450
3451         /*
3452          * We shadow a 32 bit page table. This may be a legacy 2-level
3453          * or a PAE 3-level page table. In either case we need to be aware that
3454          * the shadow page table may be a PAE or a long mode page table.
3455          */
3456         pm_mask = PT_PRESENT_MASK;
3457         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3458                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3459
3460         for (i = 0; i < 4; ++i) {
3461                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3462
3463                 MMU_WARN_ON(VALID_PAGE(root));
3464                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3465                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3466                         if (!(pdptr & PT_PRESENT_MASK)) {
3467                                 vcpu->arch.mmu.pae_root[i] = 0;
3468                                 continue;
3469                         }
3470                         root_gfn = pdptr >> PAGE_SHIFT;
3471                         if (mmu_check_root(vcpu, root_gfn))
3472                                 return 1;
3473                 }
3474                 spin_lock(&vcpu->kvm->mmu_lock);
3475                 if (make_mmu_pages_available(vcpu) < 0) {
3476                         spin_unlock(&vcpu->kvm->mmu_lock);
3477                         return 1;
3478                 }
3479                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3480                                       0, ACC_ALL);
3481                 root = __pa(sp->spt);
3482                 ++sp->root_count;
3483                 spin_unlock(&vcpu->kvm->mmu_lock);
3484
3485                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3486         }
3487         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3488
3489         /*
3490          * If we shadow a 32 bit page table with a long mode page
3491          * table we enter this path.
3492          */
3493         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3494                 if (vcpu->arch.mmu.lm_root == NULL) {
3495                         /*
3496                          * The additional page necessary for this is only
3497                          * allocated on demand.
3498                          */
3499
3500                         u64 *lm_root;
3501
3502                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3503                         if (lm_root == NULL)
3504                                 return 1;
3505
3506                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3507
3508                         vcpu->arch.mmu.lm_root = lm_root;
3509                 }
3510
3511                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3512         }
3513
3514         return 0;
3515 }
3516
3517 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3518 {
3519         if (vcpu->arch.mmu.direct_map)
3520                 return mmu_alloc_direct_roots(vcpu);
3521         else
3522                 return mmu_alloc_shadow_roots(vcpu);
3523 }
3524
3525 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3526 {
3527         int i;
3528         struct kvm_mmu_page *sp;
3529
3530         if (vcpu->arch.mmu.direct_map)
3531                 return;
3532
3533         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3534                 return;
3535
3536         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3537         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3538         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3539                 hpa_t root = vcpu->arch.mmu.root_hpa;
3540                 sp = page_header(root);
3541                 mmu_sync_children(vcpu, sp);
3542                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3543                 return;
3544         }
3545         for (i = 0; i < 4; ++i) {
3546                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3547
3548                 if (root && VALID_PAGE(root)) {
3549                         root &= PT64_BASE_ADDR_MASK;
3550                         sp = page_header(root);
3551                         mmu_sync_children(vcpu, sp);
3552                 }
3553         }
3554         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3555 }
3556
3557 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3558 {
3559         spin_lock(&vcpu->kvm->mmu_lock);
3560         mmu_sync_roots(vcpu);
3561         spin_unlock(&vcpu->kvm->mmu_lock);
3562 }
3563 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3564
3565 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3566                                   u32 access, struct x86_exception *exception)
3567 {
3568         if (exception)
3569                 exception->error_code = 0;
3570         return vaddr;
3571 }
3572
3573 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3574                                          u32 access,
3575                                          struct x86_exception *exception)
3576 {
3577         if (exception)
3578                 exception->error_code = 0;
3579         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3580 }
3581
3582 static bool
3583 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3584 {
3585         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3586
3587         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3588                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3589 }
3590
3591 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3592 {
3593         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3594 }
3595
3596 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3597 {
3598         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3599 }
3600
3601 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3602 {
3603         /*
3604          * A nested guest cannot use the MMIO cache if it is using nested
3605          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3606          */
3607         if (mmu_is_nested(vcpu))
3608                 return false;
3609
3610         if (direct)
3611                 return vcpu_match_mmio_gpa(vcpu, addr);
3612
3613         return vcpu_match_mmio_gva(vcpu, addr);
3614 }
3615
3616 /* return true if reserved bit is detected on spte. */
3617 static bool
3618 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3619 {
3620         struct kvm_shadow_walk_iterator iterator;
3621         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3622         int root, leaf;
3623         bool reserved = false;
3624
3625         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3626                 goto exit;
3627
3628         walk_shadow_page_lockless_begin(vcpu);
3629
3630         for (shadow_walk_init(&iterator, vcpu, addr),
3631                  leaf = root = iterator.level;
3632              shadow_walk_okay(&iterator);
3633              __shadow_walk_next(&iterator, spte)) {
3634                 spte = mmu_spte_get_lockless(iterator.sptep);
3635
3636                 sptes[leaf - 1] = spte;
3637                 leaf--;
3638
3639                 if (!is_shadow_present_pte(spte))
3640                         break;
3641
3642                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3643                                                     iterator.level);
3644         }
3645
3646         walk_shadow_page_lockless_end(vcpu);
3647
3648         if (reserved) {
3649                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3650                        __func__, addr);
3651                 while (root > leaf) {
3652                         pr_err("------ spte 0x%llx level %d.\n",
3653                                sptes[root - 1], root);
3654                         root--;
3655                 }
3656         }
3657 exit:
3658         *sptep = spte;
3659         return reserved;
3660 }
3661
3662 /*
3663  * Return values of handle_mmio_page_fault:
3664  * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
3665  *                      directly.
3666  * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
3667  *                      fault path update the mmio spte.
3668  * RET_MMIO_PF_RETRY: let CPU fault again on the address.
3669  * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
3670  */
3671 enum {
3672         RET_MMIO_PF_EMULATE = 1,
3673         RET_MMIO_PF_INVALID = 2,
3674         RET_MMIO_PF_RETRY = 0,
3675         RET_MMIO_PF_BUG = -1
3676 };
3677
3678 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3679 {
3680         u64 spte;
3681         bool reserved;
3682
3683         if (mmio_info_in_cache(vcpu, addr, direct))
3684                 return RET_MMIO_PF_EMULATE;
3685
3686         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3687         if (WARN_ON(reserved))
3688                 return RET_MMIO_PF_BUG;
3689
3690         if (is_mmio_spte(spte)) {
3691                 gfn_t gfn = get_mmio_spte_gfn(spte);
3692                 unsigned access = get_mmio_spte_access(spte);
3693
3694                 if (!check_mmio_spte(vcpu, spte))
3695                         return RET_MMIO_PF_INVALID;
3696
3697                 if (direct)
3698                         addr = 0;
3699
3700                 trace_handle_mmio_page_fault(addr, gfn, access);
3701                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3702                 return RET_MMIO_PF_EMULATE;
3703         }
3704
3705         /*
3706          * If the page table is zapped by other cpus, let CPU fault again on
3707          * the address.
3708          */
3709         return RET_MMIO_PF_RETRY;
3710 }
3711 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3712
3713 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3714                                          u32 error_code, gfn_t gfn)
3715 {
3716         if (unlikely(error_code & PFERR_RSVD_MASK))
3717                 return false;
3718
3719         if (!(error_code & PFERR_PRESENT_MASK) ||
3720               !(error_code & PFERR_WRITE_MASK))
3721                 return false;
3722
3723         /*
3724          * guest is writing the page which is write tracked which can
3725          * not be fixed by page fault handler.
3726          */
3727         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3728                 return true;
3729
3730         return false;
3731 }
3732
3733 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3734 {
3735         struct kvm_shadow_walk_iterator iterator;
3736         u64 spte;
3737
3738         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3739                 return;
3740
3741         walk_shadow_page_lockless_begin(vcpu);
3742         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3743                 clear_sp_write_flooding_count(iterator.sptep);
3744                 if (!is_shadow_present_pte(spte))
3745                         break;
3746         }
3747         walk_shadow_page_lockless_end(vcpu);
3748 }
3749
3750 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3751                                 u32 error_code, bool prefault)
3752 {
3753         gfn_t gfn = gva >> PAGE_SHIFT;
3754         int r;
3755
3756         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3757
3758         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3759                 return 1;
3760
3761         r = mmu_topup_memory_caches(vcpu);
3762         if (r)
3763                 return r;
3764
3765         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3766
3767
3768         return nonpaging_map(vcpu, gva & PAGE_MASK,
3769                              error_code, gfn, prefault);
3770 }
3771
3772 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3773 {
3774         struct kvm_arch_async_pf arch;
3775
3776         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3777         arch.gfn = gfn;
3778         arch.direct_map = vcpu->arch.mmu.direct_map;
3779         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3780
3781         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3782 }
3783
3784 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3785 {
3786         if (unlikely(!lapic_in_kernel(vcpu) ||
3787                      kvm_event_needs_reinjection(vcpu)))
3788                 return false;
3789
3790         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3791                 return false;
3792
3793         return kvm_x86_ops->interrupt_allowed(vcpu);
3794 }
3795
3796 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3797                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3798 {
3799         struct kvm_memory_slot *slot;
3800         bool async;
3801
3802         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3803         async = false;
3804         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3805         if (!async)
3806                 return false; /* *pfn has correct page already */
3807
3808         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3809                 trace_kvm_try_async_get_page(gva, gfn);
3810                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3811                         trace_kvm_async_pf_doublefault(gva, gfn);
3812                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3813                         return true;
3814                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3815                         return true;
3816         }
3817
3818         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3819         return false;
3820 }
3821
3822 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3823                                 u64 fault_address, char *insn, int insn_len,
3824                                 bool need_unprotect)
3825 {
3826         int r = 1;
3827
3828         switch (vcpu->arch.apf.host_apf_reason) {
3829         default:
3830                 trace_kvm_page_fault(fault_address, error_code);
3831
3832                 if (need_unprotect && kvm_event_needs_reinjection(vcpu))
3833                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3834                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3835                                 insn_len);
3836                 break;
3837         case KVM_PV_REASON_PAGE_NOT_PRESENT:
3838                 vcpu->arch.apf.host_apf_reason = 0;
3839                 local_irq_disable();
3840                 kvm_async_pf_task_wait(fault_address, 0);
3841                 local_irq_enable();
3842                 break;
3843         case KVM_PV_REASON_PAGE_READY:
3844                 vcpu->arch.apf.host_apf_reason = 0;
3845                 local_irq_disable();
3846                 kvm_async_pf_task_wake(fault_address);
3847                 local_irq_enable();
3848                 break;
3849         }
3850         return r;
3851 }
3852 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3853
3854 static bool
3855 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3856 {
3857         int page_num = KVM_PAGES_PER_HPAGE(level);
3858
3859         gfn &= ~(page_num - 1);
3860
3861         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3862 }
3863
3864 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3865                           bool prefault)
3866 {
3867         kvm_pfn_t pfn;
3868         int r;
3869         int level;
3870         bool force_pt_level;
3871         gfn_t gfn = gpa >> PAGE_SHIFT;
3872         unsigned long mmu_seq;
3873         int write = error_code & PFERR_WRITE_MASK;
3874         bool map_writable;
3875
3876         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3877
3878         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3879                 return 1;
3880
3881         r = mmu_topup_memory_caches(vcpu);
3882         if (r)
3883                 return r;
3884
3885         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3886                                                            PT_DIRECTORY_LEVEL);
3887         level = mapping_level(vcpu, gfn, &force_pt_level);
3888         if (likely(!force_pt_level)) {
3889                 if (level > PT_DIRECTORY_LEVEL &&
3890                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3891                         level = PT_DIRECTORY_LEVEL;
3892                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3893         }
3894
3895         if (fast_page_fault(vcpu, gpa, level, error_code))
3896                 return 0;
3897
3898         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3899         smp_rmb();
3900
3901         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3902                 return 0;
3903
3904         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3905                 return r;
3906
3907         spin_lock(&vcpu->kvm->mmu_lock);
3908         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3909                 goto out_unlock;
3910         if (make_mmu_pages_available(vcpu) < 0)
3911                 goto out_unlock;
3912         if (likely(!force_pt_level))
3913                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3914         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3915         spin_unlock(&vcpu->kvm->mmu_lock);
3916
3917         return r;
3918
3919 out_unlock:
3920         spin_unlock(&vcpu->kvm->mmu_lock);
3921         kvm_release_pfn_clean(pfn);
3922         return 0;
3923 }
3924
3925 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3926                                    struct kvm_mmu *context)
3927 {
3928         context->page_fault = nonpaging_page_fault;
3929         context->gva_to_gpa = nonpaging_gva_to_gpa;
3930         context->sync_page = nonpaging_sync_page;
3931         context->invlpg = nonpaging_invlpg;
3932         context->update_pte = nonpaging_update_pte;
3933         context->root_level = 0;
3934         context->shadow_root_level = PT32E_ROOT_LEVEL;
3935         context->root_hpa = INVALID_PAGE;
3936         context->direct_map = true;
3937         context->nx = false;
3938 }
3939
3940 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3941 {
3942         mmu_free_roots(vcpu);
3943 }
3944
3945 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3946 {
3947         return kvm_read_cr3(vcpu);
3948 }
3949
3950 static void inject_page_fault(struct kvm_vcpu *vcpu,
3951                               struct x86_exception *fault)
3952 {
3953         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3954 }
3955
3956 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3957                            unsigned access, int *nr_present)
3958 {
3959         if (unlikely(is_mmio_spte(*sptep))) {
3960                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3961                         mmu_spte_clear_no_track(sptep);
3962                         return true;
3963                 }
3964
3965                 (*nr_present)++;
3966                 mark_mmio_spte(vcpu, sptep, gfn, access);
3967                 return true;
3968         }
3969
3970         return false;
3971 }
3972
3973 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3974                                 unsigned level, unsigned gpte)
3975 {
3976         /*
3977          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3978          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3979          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3980          */
3981         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3982
3983         /*
3984          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3985          * If it is clear, there are no large pages at this level, so clear
3986          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3987          */
3988         gpte &= level - mmu->last_nonleaf_level;
3989
3990         return gpte & PT_PAGE_SIZE_MASK;
3991 }
3992
3993 #define PTTYPE_EPT 18 /* arbitrary */
3994 #define PTTYPE PTTYPE_EPT
3995 #include "paging_tmpl.h"
3996 #undef PTTYPE
3997
3998 #define PTTYPE 64
3999 #include "paging_tmpl.h"
4000 #undef PTTYPE
4001
4002 #define PTTYPE 32
4003 #include "paging_tmpl.h"
4004 #undef PTTYPE
4005
4006 static void
4007 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4008                         struct rsvd_bits_validate *rsvd_check,
4009                         int maxphyaddr, int level, bool nx, bool gbpages,
4010                         bool pse, bool amd)
4011 {
4012         u64 exb_bit_rsvd = 0;
4013         u64 gbpages_bit_rsvd = 0;
4014         u64 nonleaf_bit8_rsvd = 0;
4015
4016         rsvd_check->bad_mt_xwr = 0;
4017
4018         if (!nx)
4019                 exb_bit_rsvd = rsvd_bits(63, 63);
4020         if (!gbpages)
4021                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4022
4023         /*
4024          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4025          * leaf entries) on AMD CPUs only.
4026          */
4027         if (amd)
4028                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4029
4030         switch (level) {
4031         case PT32_ROOT_LEVEL:
4032                 /* no rsvd bits for 2 level 4K page table entries */
4033                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4034                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4035                 rsvd_check->rsvd_bits_mask[1][0] =
4036                         rsvd_check->rsvd_bits_mask[0][0];
4037
4038                 if (!pse) {
4039                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4040                         break;
4041                 }
4042
4043                 if (is_cpuid_PSE36())
4044                         /* 36bits PSE 4MB page */
4045                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4046                 else
4047                         /* 32 bits PSE 4MB page */
4048                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4049                 break;
4050         case PT32E_ROOT_LEVEL:
4051                 rsvd_check->rsvd_bits_mask[0][2] =
4052                         rsvd_bits(maxphyaddr, 63) |
4053                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4054                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4055                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4056                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4057                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4058                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4059                         rsvd_bits(maxphyaddr, 62) |
4060                         rsvd_bits(13, 20);              /* large page */
4061                 rsvd_check->rsvd_bits_mask[1][0] =
4062                         rsvd_check->rsvd_bits_mask[0][0];
4063                 break;
4064         case PT64_ROOT_5LEVEL:
4065                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4066                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4067                         rsvd_bits(maxphyaddr, 51);
4068                 rsvd_check->rsvd_bits_mask[1][4] =
4069                         rsvd_check->rsvd_bits_mask[0][4];
4070         case PT64_ROOT_4LEVEL:
4071                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4072                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4073                         rsvd_bits(maxphyaddr, 51);
4074                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4075                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4076                         rsvd_bits(maxphyaddr, 51);
4077                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4078                         rsvd_bits(maxphyaddr, 51);
4079                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4080                         rsvd_bits(maxphyaddr, 51);
4081                 rsvd_check->rsvd_bits_mask[1][3] =
4082                         rsvd_check->rsvd_bits_mask[0][3];
4083                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4084                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4085                         rsvd_bits(13, 29);
4086                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4087                         rsvd_bits(maxphyaddr, 51) |
4088                         rsvd_bits(13, 20);              /* large page */
4089                 rsvd_check->rsvd_bits_mask[1][0] =
4090                         rsvd_check->rsvd_bits_mask[0][0];
4091                 break;
4092         }
4093 }
4094
4095 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4096                                   struct kvm_mmu *context)
4097 {
4098         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4099                                 cpuid_maxphyaddr(vcpu), context->root_level,
4100                                 context->nx,
4101                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4102                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4103 }
4104
4105 static void
4106 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4107                             int maxphyaddr, bool execonly)
4108 {
4109         u64 bad_mt_xwr;
4110
4111         rsvd_check->rsvd_bits_mask[0][4] =
4112                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4113         rsvd_check->rsvd_bits_mask[0][3] =
4114                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4115         rsvd_check->rsvd_bits_mask[0][2] =
4116                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4117         rsvd_check->rsvd_bits_mask[0][1] =
4118                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4119         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4120
4121         /* large page */
4122         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4123         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4124         rsvd_check->rsvd_bits_mask[1][2] =
4125                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4126         rsvd_check->rsvd_bits_mask[1][1] =
4127                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4128         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4129
4130         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4131         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4132         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4133         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4134         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4135         if (!execonly) {
4136                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4137                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4138         }
4139         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4140 }
4141
4142 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4143                 struct kvm_mmu *context, bool execonly)
4144 {
4145         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4146                                     cpuid_maxphyaddr(vcpu), execonly);
4147 }
4148
4149 /*
4150  * the page table on host is the shadow page table for the page
4151  * table in guest or amd nested guest, its mmu features completely
4152  * follow the features in guest.
4153  */
4154 void
4155 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4156 {
4157         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4158         struct rsvd_bits_validate *shadow_zero_check;
4159         int i;
4160
4161         /*
4162          * Passing "true" to the last argument is okay; it adds a check
4163          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4164          */
4165         shadow_zero_check = &context->shadow_zero_check;
4166         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4167                                 boot_cpu_data.x86_phys_bits,
4168                                 context->shadow_root_level, uses_nx,
4169                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4170                                 is_pse(vcpu), true);
4171
4172         if (!shadow_me_mask)
4173                 return;
4174
4175         for (i = context->shadow_root_level; --i >= 0;) {
4176                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4177                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4178         }
4179
4180 }
4181 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4182
4183 static inline bool boot_cpu_is_amd(void)
4184 {
4185         WARN_ON_ONCE(!tdp_enabled);
4186         return shadow_x_mask == 0;
4187 }
4188
4189 /*
4190  * the direct page table on host, use as much mmu features as
4191  * possible, however, kvm currently does not do execution-protection.
4192  */
4193 static void
4194 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4195                                 struct kvm_mmu *context)
4196 {
4197         struct rsvd_bits_validate *shadow_zero_check;
4198         int i;
4199
4200         shadow_zero_check = &context->shadow_zero_check;
4201
4202         if (boot_cpu_is_amd())
4203                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4204                                         boot_cpu_data.x86_phys_bits,
4205                                         context->shadow_root_level, false,
4206                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4207                                         true, true);
4208         else
4209                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4210                                             boot_cpu_data.x86_phys_bits,
4211                                             false);
4212
4213         if (!shadow_me_mask)
4214                 return;
4215
4216         for (i = context->shadow_root_level; --i >= 0;) {
4217                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4218                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4219         }
4220 }
4221
4222 /*
4223  * as the comments in reset_shadow_zero_bits_mask() except it
4224  * is the shadow page table for intel nested guest.
4225  */
4226 static void
4227 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4228                                 struct kvm_mmu *context, bool execonly)
4229 {
4230         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4231                                     boot_cpu_data.x86_phys_bits, execonly);
4232 }
4233
4234 #define BYTE_MASK(access) \
4235         ((1 & (access) ? 2 : 0) | \
4236          (2 & (access) ? 4 : 0) | \
4237          (3 & (access) ? 8 : 0) | \
4238          (4 & (access) ? 16 : 0) | \
4239          (5 & (access) ? 32 : 0) | \
4240          (6 & (access) ? 64 : 0) | \
4241          (7 & (access) ? 128 : 0))
4242
4243
4244 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4245                                       struct kvm_mmu *mmu, bool ept)
4246 {
4247         unsigned byte;
4248
4249         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4250         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4251         const u8 u = BYTE_MASK(ACC_USER_MASK);
4252
4253         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4254         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4255         bool cr0_wp = is_write_protection(vcpu);
4256
4257         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4258                 unsigned pfec = byte << 1;
4259
4260                 /*
4261                  * Each "*f" variable has a 1 bit for each UWX value
4262                  * that causes a fault with the given PFEC.
4263                  */
4264
4265                 /* Faults from writes to non-writable pages */
4266                 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4267                 /* Faults from user mode accesses to supervisor pages */
4268                 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4269                 /* Faults from fetches of non-executable pages*/
4270                 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4271                 /* Faults from kernel mode fetches of user pages */
4272                 u8 smepf = 0;
4273                 /* Faults from kernel mode accesses of user pages */
4274                 u8 smapf = 0;
4275
4276                 if (!ept) {
4277                         /* Faults from kernel mode accesses to user pages */
4278                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4279
4280                         /* Not really needed: !nx will cause pte.nx to fault */
4281                         if (!mmu->nx)
4282                                 ff = 0;
4283
4284                         /* Allow supervisor writes if !cr0.wp */
4285                         if (!cr0_wp)
4286                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4287
4288                         /* Disallow supervisor fetches of user code if cr4.smep */
4289                         if (cr4_smep)
4290                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4291
4292                         /*
4293                          * SMAP:kernel-mode data accesses from user-mode
4294                          * mappings should fault. A fault is considered
4295                          * as a SMAP violation if all of the following
4296                          * conditions are ture:
4297                          *   - X86_CR4_SMAP is set in CR4
4298                          *   - A user page is accessed
4299                          *   - The access is not a fetch
4300                          *   - Page fault in kernel mode
4301                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4302                          *
4303                          * Here, we cover the first three conditions.
4304                          * The fourth is computed dynamically in permission_fault();
4305                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4306                          * *not* subject to SMAP restrictions.
4307                          */
4308                         if (cr4_smap)
4309                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4310                 }
4311
4312                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4313         }
4314 }
4315
4316 /*
4317 * PKU is an additional mechanism by which the paging controls access to
4318 * user-mode addresses based on the value in the PKRU register.  Protection
4319 * key violations are reported through a bit in the page fault error code.
4320 * Unlike other bits of the error code, the PK bit is not known at the
4321 * call site of e.g. gva_to_gpa; it must be computed directly in
4322 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4323 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4324 *
4325 * In particular the following conditions come from the error code, the
4326 * page tables and the machine state:
4327 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4328 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4329 * - PK is always zero if U=0 in the page tables
4330 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4331 *
4332 * The PKRU bitmask caches the result of these four conditions.  The error
4333 * code (minus the P bit) and the page table's U bit form an index into the
4334 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4335 * with the two bits of the PKRU register corresponding to the protection key.
4336 * For the first three conditions above the bits will be 00, thus masking
4337 * away both AD and WD.  For all reads or if the last condition holds, WD
4338 * only will be masked away.
4339 */
4340 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4341                                 bool ept)
4342 {
4343         unsigned bit;
4344         bool wp;
4345
4346         if (ept) {
4347                 mmu->pkru_mask = 0;
4348                 return;
4349         }
4350
4351         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4352         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4353                 mmu->pkru_mask = 0;
4354                 return;
4355         }
4356
4357         wp = is_write_protection(vcpu);
4358
4359         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4360                 unsigned pfec, pkey_bits;
4361                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4362
4363                 pfec = bit << 1;
4364                 ff = pfec & PFERR_FETCH_MASK;
4365                 uf = pfec & PFERR_USER_MASK;
4366                 wf = pfec & PFERR_WRITE_MASK;
4367
4368                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4369                 pte_user = pfec & PFERR_RSVD_MASK;
4370
4371                 /*
4372                  * Only need to check the access which is not an
4373                  * instruction fetch and is to a user page.
4374                  */
4375                 check_pkey = (!ff && pte_user);
4376                 /*
4377                  * write access is controlled by PKRU if it is a
4378                  * user access or CR0.WP = 1.
4379                  */
4380                 check_write = check_pkey && wf && (uf || wp);
4381
4382                 /* PKRU.AD stops both read and write access. */
4383                 pkey_bits = !!check_pkey;
4384                 /* PKRU.WD stops write access. */
4385                 pkey_bits |= (!!check_write) << 1;
4386
4387                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4388         }
4389 }
4390
4391 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4392 {
4393         unsigned root_level = mmu->root_level;
4394
4395         mmu->last_nonleaf_level = root_level;
4396         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4397                 mmu->last_nonleaf_level++;
4398 }
4399
4400 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4401                                          struct kvm_mmu *context,
4402                                          int level)
4403 {
4404         context->nx = is_nx(vcpu);
4405         context->root_level = level;
4406
4407         reset_rsvds_bits_mask(vcpu, context);
4408         update_permission_bitmask(vcpu, context, false);
4409         update_pkru_bitmask(vcpu, context, false);
4410         update_last_nonleaf_level(vcpu, context);
4411
4412         MMU_WARN_ON(!is_pae(vcpu));
4413         context->page_fault = paging64_page_fault;
4414         context->gva_to_gpa = paging64_gva_to_gpa;
4415         context->sync_page = paging64_sync_page;
4416         context->invlpg = paging64_invlpg;
4417         context->update_pte = paging64_update_pte;
4418         context->shadow_root_level = level;
4419         context->root_hpa = INVALID_PAGE;
4420         context->direct_map = false;
4421 }
4422
4423 static void paging64_init_context(struct kvm_vcpu *vcpu,
4424                                   struct kvm_mmu *context)
4425 {
4426         int root_level = is_la57_mode(vcpu) ?
4427                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4428
4429         paging64_init_context_common(vcpu, context, root_level);
4430 }
4431
4432 static void paging32_init_context(struct kvm_vcpu *vcpu,
4433                                   struct kvm_mmu *context)
4434 {
4435         context->nx = false;
4436         context->root_level = PT32_ROOT_LEVEL;
4437
4438         reset_rsvds_bits_mask(vcpu, context);
4439         update_permission_bitmask(vcpu, context, false);
4440         update_pkru_bitmask(vcpu, context, false);
4441         update_last_nonleaf_level(vcpu, context);
4442
4443         context->page_fault = paging32_page_fault;
4444         context->gva_to_gpa = paging32_gva_to_gpa;
4445         context->sync_page = paging32_sync_page;
4446         context->invlpg = paging32_invlpg;
4447         context->update_pte = paging32_update_pte;
4448         context->shadow_root_level = PT32E_ROOT_LEVEL;
4449         context->root_hpa = INVALID_PAGE;
4450         context->direct_map = false;
4451 }
4452
4453 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4454                                    struct kvm_mmu *context)
4455 {
4456         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4457 }
4458
4459 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4460 {
4461         struct kvm_mmu *context = &vcpu->arch.mmu;
4462
4463         context->base_role.word = 0;
4464         context->base_role.smm = is_smm(vcpu);
4465         context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4466         context->page_fault = tdp_page_fault;
4467         context->sync_page = nonpaging_sync_page;
4468         context->invlpg = nonpaging_invlpg;
4469         context->update_pte = nonpaging_update_pte;
4470         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4471         context->root_hpa = INVALID_PAGE;
4472         context->direct_map = true;
4473         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4474         context->get_cr3 = get_cr3;
4475         context->get_pdptr = kvm_pdptr_read;
4476         context->inject_page_fault = kvm_inject_page_fault;
4477
4478         if (!is_paging(vcpu)) {
4479                 context->nx = false;
4480                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4481                 context->root_level = 0;
4482         } else if (is_long_mode(vcpu)) {
4483                 context->nx = is_nx(vcpu);
4484                 context->root_level = is_la57_mode(vcpu) ?
4485                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4486                 reset_rsvds_bits_mask(vcpu, context);
4487                 context->gva_to_gpa = paging64_gva_to_gpa;
4488         } else if (is_pae(vcpu)) {
4489                 context->nx = is_nx(vcpu);
4490                 context->root_level = PT32E_ROOT_LEVEL;
4491                 reset_rsvds_bits_mask(vcpu, context);
4492                 context->gva_to_gpa = paging64_gva_to_gpa;
4493         } else {
4494                 context->nx = false;
4495                 context->root_level = PT32_ROOT_LEVEL;
4496                 reset_rsvds_bits_mask(vcpu, context);
4497                 context->gva_to_gpa = paging32_gva_to_gpa;
4498         }
4499
4500         update_permission_bitmask(vcpu, context, false);
4501         update_pkru_bitmask(vcpu, context, false);
4502         update_last_nonleaf_level(vcpu, context);
4503         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4504 }
4505
4506 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4507 {
4508         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4509         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4510         struct kvm_mmu *context = &vcpu->arch.mmu;
4511
4512         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4513
4514         if (!is_paging(vcpu))
4515                 nonpaging_init_context(vcpu, context);
4516         else if (is_long_mode(vcpu))
4517                 paging64_init_context(vcpu, context);
4518         else if (is_pae(vcpu))
4519                 paging32E_init_context(vcpu, context);
4520         else
4521                 paging32_init_context(vcpu, context);
4522
4523         context->base_role.nxe = is_nx(vcpu);
4524         context->base_role.cr4_pae = !!is_pae(vcpu);
4525         context->base_role.cr0_wp  = is_write_protection(vcpu);
4526         context->base_role.smep_andnot_wp
4527                 = smep && !is_write_protection(vcpu);
4528         context->base_role.smap_andnot_wp
4529                 = smap && !is_write_protection(vcpu);
4530         context->base_role.smm = is_smm(vcpu);
4531         reset_shadow_zero_bits_mask(vcpu, context);
4532 }
4533 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4534
4535 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4536                              bool accessed_dirty)
4537 {
4538         struct kvm_mmu *context = &vcpu->arch.mmu;
4539
4540         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4541
4542         context->shadow_root_level = PT64_ROOT_4LEVEL;
4543
4544         context->nx = true;
4545         context->ept_ad = accessed_dirty;
4546         context->page_fault = ept_page_fault;
4547         context->gva_to_gpa = ept_gva_to_gpa;
4548         context->sync_page = ept_sync_page;
4549         context->invlpg = ept_invlpg;
4550         context->update_pte = ept_update_pte;
4551         context->root_level = PT64_ROOT_4LEVEL;
4552         context->root_hpa = INVALID_PAGE;
4553         context->direct_map = false;
4554         context->base_role.ad_disabled = !accessed_dirty;
4555
4556         update_permission_bitmask(vcpu, context, true);
4557         update_pkru_bitmask(vcpu, context, true);
4558         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4559         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4560 }
4561 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4562
4563 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4564 {
4565         struct kvm_mmu *context = &vcpu->arch.mmu;
4566
4567         kvm_init_shadow_mmu(vcpu);
4568         context->set_cr3           = kvm_x86_ops->set_cr3;
4569         context->get_cr3           = get_cr3;
4570         context->get_pdptr         = kvm_pdptr_read;
4571         context->inject_page_fault = kvm_inject_page_fault;
4572 }
4573
4574 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4575 {
4576         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4577
4578         g_context->get_cr3           = get_cr3;
4579         g_context->get_pdptr         = kvm_pdptr_read;
4580         g_context->inject_page_fault = kvm_inject_page_fault;
4581
4582         /*
4583          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4584          * L1's nested page tables (e.g. EPT12). The nested translation
4585          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4586          * L2's page tables as the first level of translation and L1's
4587          * nested page tables as the second level of translation. Basically
4588          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4589          */
4590         if (!is_paging(vcpu)) {
4591                 g_context->nx = false;
4592                 g_context->root_level = 0;
4593                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4594         } else if (is_long_mode(vcpu)) {
4595                 g_context->nx = is_nx(vcpu);
4596                 g_context->root_level = is_la57_mode(vcpu) ?
4597                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4598                 reset_rsvds_bits_mask(vcpu, g_context);
4599                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4600         } else if (is_pae(vcpu)) {
4601                 g_context->nx = is_nx(vcpu);
4602                 g_context->root_level = PT32E_ROOT_LEVEL;
4603                 reset_rsvds_bits_mask(vcpu, g_context);
4604                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4605         } else {
4606                 g_context->nx = false;
4607                 g_context->root_level = PT32_ROOT_LEVEL;
4608                 reset_rsvds_bits_mask(vcpu, g_context);
4609                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4610         }
4611
4612         update_permission_bitmask(vcpu, g_context, false);
4613         update_pkru_bitmask(vcpu, g_context, false);
4614         update_last_nonleaf_level(vcpu, g_context);
4615 }
4616
4617 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4618 {
4619         if (mmu_is_nested(vcpu))
4620                 init_kvm_nested_mmu(vcpu);
4621         else if (tdp_enabled)
4622                 init_kvm_tdp_mmu(vcpu);
4623         else
4624                 init_kvm_softmmu(vcpu);
4625 }
4626
4627 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4628 {
4629         kvm_mmu_unload(vcpu);
4630         init_kvm_mmu(vcpu);
4631 }
4632 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4633
4634 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4635 {
4636         int r;
4637
4638         r = mmu_topup_memory_caches(vcpu);
4639         if (r)
4640                 goto out;
4641         r = mmu_alloc_roots(vcpu);
4642         kvm_mmu_sync_roots(vcpu);
4643         if (r)
4644                 goto out;
4645         /* set_cr3() should ensure TLB has been flushed */
4646         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4647 out:
4648         return r;
4649 }
4650 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4651
4652 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4653 {
4654         mmu_free_roots(vcpu);
4655         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4656 }
4657 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4658
4659 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4660                                   struct kvm_mmu_page *sp, u64 *spte,
4661                                   const void *new)
4662 {
4663         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4664                 ++vcpu->kvm->stat.mmu_pde_zapped;
4665                 return;
4666         }
4667
4668         ++vcpu->kvm->stat.mmu_pte_updated;
4669         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4670 }
4671
4672 static bool need_remote_flush(u64 old, u64 new)
4673 {
4674         if (!is_shadow_present_pte(old))
4675                 return false;
4676         if (!is_shadow_present_pte(new))
4677                 return true;
4678         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4679                 return true;
4680         old ^= shadow_nx_mask;
4681         new ^= shadow_nx_mask;
4682         return (old & ~new & PT64_PERM_MASK) != 0;
4683 }
4684
4685 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4686                                     const u8 *new, int *bytes)
4687 {
4688         u64 gentry;
4689         int r;
4690
4691         /*
4692          * Assume that the pte write on a page table of the same type
4693          * as the current vcpu paging mode since we update the sptes only
4694          * when they have the same mode.
4695          */
4696         if (is_pae(vcpu) && *bytes == 4) {
4697                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4698                 *gpa &= ~(gpa_t)7;
4699                 *bytes = 8;
4700                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4701                 if (r)
4702                         gentry = 0;
4703                 new = (const u8 *)&gentry;
4704         }
4705
4706         switch (*bytes) {
4707         case 4:
4708                 gentry = *(const u32 *)new;
4709                 break;
4710         case 8:
4711                 gentry = *(const u64 *)new;
4712                 break;
4713         default:
4714                 gentry = 0;
4715                 break;
4716         }
4717
4718         return gentry;
4719 }
4720
4721 /*
4722  * If we're seeing too many writes to a page, it may no longer be a page table,
4723  * or we may be forking, in which case it is better to unmap the page.
4724  */
4725 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4726 {
4727         /*
4728          * Skip write-flooding detected for the sp whose level is 1, because
4729          * it can become unsync, then the guest page is not write-protected.
4730          */
4731         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4732                 return false;
4733
4734         atomic_inc(&sp->write_flooding_count);
4735         return atomic_read(&sp->write_flooding_count) >= 3;
4736 }
4737
4738 /*
4739  * Misaligned accesses are too much trouble to fix up; also, they usually
4740  * indicate a page is not used as a page table.
4741  */
4742 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4743                                     int bytes)
4744 {
4745         unsigned offset, pte_size, misaligned;
4746
4747         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4748                  gpa, bytes, sp->role.word);
4749
4750         offset = offset_in_page(gpa);
4751         pte_size = sp->role.cr4_pae ? 8 : 4;
4752
4753         /*
4754          * Sometimes, the OS only writes the last one bytes to update status
4755          * bits, for example, in linux, andb instruction is used in clear_bit().
4756          */
4757         if (!(offset & (pte_size - 1)) && bytes == 1)
4758                 return false;
4759
4760         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4761         misaligned |= bytes < 4;
4762
4763         return misaligned;
4764 }
4765
4766 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4767 {
4768         unsigned page_offset, quadrant;
4769         u64 *spte;
4770         int level;
4771
4772         page_offset = offset_in_page(gpa);
4773         level = sp->role.level;
4774         *nspte = 1;
4775         if (!sp->role.cr4_pae) {
4776                 page_offset <<= 1;      /* 32->64 */
4777                 /*
4778                  * A 32-bit pde maps 4MB while the shadow pdes map
4779                  * only 2MB.  So we need to double the offset again
4780                  * and zap two pdes instead of one.
4781                  */
4782                 if (level == PT32_ROOT_LEVEL) {
4783                         page_offset &= ~7; /* kill rounding error */
4784                         page_offset <<= 1;
4785                         *nspte = 2;
4786                 }
4787                 quadrant = page_offset >> PAGE_SHIFT;
4788                 page_offset &= ~PAGE_MASK;
4789                 if (quadrant != sp->role.quadrant)
4790                         return NULL;
4791         }
4792
4793         spte = &sp->spt[page_offset / sizeof(*spte)];
4794         return spte;
4795 }
4796
4797 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4798                               const u8 *new, int bytes,
4799                               struct kvm_page_track_notifier_node *node)
4800 {
4801         gfn_t gfn = gpa >> PAGE_SHIFT;
4802         struct kvm_mmu_page *sp;
4803         LIST_HEAD(invalid_list);
4804         u64 entry, gentry, *spte;
4805         int npte;
4806         bool remote_flush, local_flush;
4807         union kvm_mmu_page_role mask = { };
4808
4809         mask.cr0_wp = 1;
4810         mask.cr4_pae = 1;
4811         mask.nxe = 1;
4812         mask.smep_andnot_wp = 1;
4813         mask.smap_andnot_wp = 1;
4814         mask.smm = 1;
4815         mask.ad_disabled = 1;
4816
4817         /*
4818          * If we don't have indirect shadow pages, it means no page is
4819          * write-protected, so we can exit simply.
4820          */
4821         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4822                 return;
4823
4824         remote_flush = local_flush = false;
4825
4826         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4827
4828         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4829
4830         /*
4831          * No need to care whether allocation memory is successful
4832          * or not since pte prefetch is skiped if it does not have
4833          * enough objects in the cache.
4834          */
4835         mmu_topup_memory_caches(vcpu);
4836
4837         spin_lock(&vcpu->kvm->mmu_lock);
4838         ++vcpu->kvm->stat.mmu_pte_write;
4839         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4840
4841         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4842                 if (detect_write_misaligned(sp, gpa, bytes) ||
4843                       detect_write_flooding(sp)) {
4844                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4845                         ++vcpu->kvm->stat.mmu_flooded;
4846                         continue;
4847                 }
4848
4849                 spte = get_written_sptes(sp, gpa, &npte);
4850                 if (!spte)
4851                         continue;
4852
4853                 local_flush = true;
4854                 while (npte--) {
4855                         entry = *spte;
4856                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4857                         if (gentry &&
4858                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4859                               & mask.word) && rmap_can_add(vcpu))
4860                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4861                         if (need_remote_flush(entry, *spte))
4862                                 remote_flush = true;
4863                         ++spte;
4864                 }
4865         }
4866         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4867         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4868         spin_unlock(&vcpu->kvm->mmu_lock);
4869 }
4870
4871 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4872 {
4873         gpa_t gpa;
4874         int r;
4875
4876         if (vcpu->arch.mmu.direct_map)
4877                 return 0;
4878
4879         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4880
4881         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4882
4883         return r;
4884 }
4885 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4886
4887 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
4888 {
4889         LIST_HEAD(invalid_list);
4890
4891         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4892                 return 0;
4893
4894         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4895                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4896                         break;
4897
4898                 ++vcpu->kvm->stat.mmu_recycled;
4899         }
4900         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4901
4902         if (!kvm_mmu_available_pages(vcpu->kvm))
4903                 return -ENOSPC;
4904         return 0;
4905 }
4906
4907 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4908                        void *insn, int insn_len)
4909 {
4910         int r, emulation_type = EMULTYPE_RETRY;
4911         enum emulation_result er;
4912         bool direct = vcpu->arch.mmu.direct_map;
4913
4914         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
4915         if (vcpu->arch.mmu.direct_map) {
4916                 vcpu->arch.gpa_available = true;
4917                 vcpu->arch.gpa_val = cr2;
4918         }
4919
4920         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4921                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4922                 if (r == RET_MMIO_PF_EMULATE) {
4923                         emulation_type = 0;
4924                         goto emulate;
4925                 }
4926                 if (r == RET_MMIO_PF_RETRY)
4927                         return 1;
4928                 if (r < 0)
4929                         return r;
4930                 /* Must be RET_MMIO_PF_INVALID.  */
4931         }
4932
4933         r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4934                                       false);
4935         if (r < 0)
4936                 return r;
4937         if (!r)
4938                 return 1;
4939
4940         /*
4941          * Before emulating the instruction, check if the error code
4942          * was due to a RO violation while translating the guest page.
4943          * This can occur when using nested virtualization with nested
4944          * paging in both guests. If true, we simply unprotect the page
4945          * and resume the guest.
4946          */
4947         if (vcpu->arch.mmu.direct_map &&
4948             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4949                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4950                 return 1;
4951         }
4952
4953         if (mmio_info_in_cache(vcpu, cr2, direct))
4954                 emulation_type = 0;
4955 emulate:
4956         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4957
4958         switch (er) {
4959         case EMULATE_DONE:
4960                 return 1;
4961         case EMULATE_USER_EXIT:
4962                 ++vcpu->stat.mmio_exits;
4963                 /* fall through */
4964         case EMULATE_FAIL:
4965                 return 0;
4966         default:
4967                 BUG();
4968         }
4969 }
4970 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4971
4972 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4973 {
4974         vcpu->arch.mmu.invlpg(vcpu, gva);
4975         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4976         ++vcpu->stat.invlpg;
4977 }
4978 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4979
4980 void kvm_enable_tdp(void)
4981 {
4982         tdp_enabled = true;
4983 }
4984 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4985
4986 void kvm_disable_tdp(void)
4987 {
4988         tdp_enabled = false;
4989 }
4990 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4991
4992 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4993 {
4994         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4995         if (vcpu->arch.mmu.lm_root != NULL)
4996                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4997 }
4998
4999 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5000 {
5001         struct page *page;
5002         int i;
5003
5004         /*
5005          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5006          * Therefore we need to allocate shadow page tables in the first
5007          * 4GB of memory, which happens to fit the DMA32 zone.
5008          */
5009         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5010         if (!page)
5011                 return -ENOMEM;
5012
5013         vcpu->arch.mmu.pae_root = page_address(page);
5014         for (i = 0; i < 4; ++i)
5015                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5016
5017         return 0;
5018 }
5019
5020 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5021 {
5022         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5023         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5024         vcpu->arch.mmu.translate_gpa = translate_gpa;
5025         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5026
5027         return alloc_mmu_pages(vcpu);
5028 }
5029
5030 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5031 {
5032         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5033
5034         init_kvm_mmu(vcpu);
5035 }
5036
5037 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5038                         struct kvm_memory_slot *slot,
5039                         struct kvm_page_track_notifier_node *node)
5040 {
5041         kvm_mmu_invalidate_zap_all_pages(kvm);
5042 }
5043
5044 void kvm_mmu_init_vm(struct kvm *kvm)
5045 {
5046         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5047
5048         node->track_write = kvm_mmu_pte_write;
5049         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5050         kvm_page_track_register_notifier(kvm, node);
5051 }
5052
5053 void kvm_mmu_uninit_vm(struct kvm *kvm)
5054 {
5055         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5056
5057         kvm_page_track_unregister_notifier(kvm, node);
5058 }
5059
5060 /* The return value indicates if tlb flush on all vcpus is needed. */
5061 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5062
5063 /* The caller should hold mmu-lock before calling this function. */
5064 static bool
5065 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5066                         slot_level_handler fn, int start_level, int end_level,
5067                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5068 {
5069         struct slot_rmap_walk_iterator iterator;
5070         bool flush = false;
5071
5072         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5073                         end_gfn, &iterator) {
5074                 if (iterator.rmap)
5075                         flush |= fn(kvm, iterator.rmap);
5076
5077                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5078                         if (flush && lock_flush_tlb) {
5079                                 kvm_flush_remote_tlbs(kvm);
5080                                 flush = false;
5081                         }
5082                         cond_resched_lock(&kvm->mmu_lock);
5083                 }
5084         }
5085
5086         if (flush && lock_flush_tlb) {
5087                 kvm_flush_remote_tlbs(kvm);
5088                 flush = false;
5089         }
5090
5091         return flush;
5092 }
5093
5094 static bool
5095 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5096                   slot_level_handler fn, int start_level, int end_level,
5097                   bool lock_flush_tlb)
5098 {
5099         return slot_handle_level_range(kvm, memslot, fn, start_level,
5100                         end_level, memslot->base_gfn,
5101                         memslot->base_gfn + memslot->npages - 1,
5102                         lock_flush_tlb);
5103 }
5104
5105 static bool
5106 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5107                       slot_level_handler fn, bool lock_flush_tlb)
5108 {
5109         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5110                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5111 }
5112
5113 static bool
5114 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5115                         slot_level_handler fn, bool lock_flush_tlb)
5116 {
5117         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5118                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5119 }
5120
5121 static bool
5122 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5123                  slot_level_handler fn, bool lock_flush_tlb)
5124 {
5125         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5126                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5127 }
5128
5129 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5130 {
5131         struct kvm_memslots *slots;
5132         struct kvm_memory_slot *memslot;
5133         int i;
5134
5135         spin_lock(&kvm->mmu_lock);
5136         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5137                 slots = __kvm_memslots(kvm, i);
5138                 kvm_for_each_memslot(memslot, slots) {
5139                         gfn_t start, end;
5140
5141                         start = max(gfn_start, memslot->base_gfn);
5142                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5143                         if (start >= end)
5144                                 continue;
5145
5146                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5147                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5148                                                 start, end - 1, true);
5149                 }
5150         }
5151
5152         spin_unlock(&kvm->mmu_lock);
5153 }
5154
5155 static bool slot_rmap_write_protect(struct kvm *kvm,
5156                                     struct kvm_rmap_head *rmap_head)
5157 {
5158         return __rmap_write_protect(kvm, rmap_head, false);
5159 }
5160
5161 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5162                                       struct kvm_memory_slot *memslot)
5163 {
5164         bool flush;
5165
5166         spin_lock(&kvm->mmu_lock);
5167         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5168                                       false);
5169         spin_unlock(&kvm->mmu_lock);
5170
5171         /*
5172          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5173          * which do tlb flush out of mmu-lock should be serialized by
5174          * kvm->slots_lock otherwise tlb flush would be missed.
5175          */
5176         lockdep_assert_held(&kvm->slots_lock);
5177
5178         /*
5179          * We can flush all the TLBs out of the mmu lock without TLB
5180          * corruption since we just change the spte from writable to
5181          * readonly so that we only need to care the case of changing
5182          * spte from present to present (changing the spte from present
5183          * to nonpresent will flush all the TLBs immediately), in other
5184          * words, the only case we care is mmu_spte_update() where we
5185          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5186          * instead of PT_WRITABLE_MASK, that means it does not depend
5187          * on PT_WRITABLE_MASK anymore.
5188          */
5189         if (flush)
5190                 kvm_flush_remote_tlbs(kvm);
5191 }
5192
5193 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5194                                          struct kvm_rmap_head *rmap_head)
5195 {
5196         u64 *sptep;
5197         struct rmap_iterator iter;
5198         int need_tlb_flush = 0;
5199         kvm_pfn_t pfn;
5200         struct kvm_mmu_page *sp;
5201
5202 restart:
5203         for_each_rmap_spte(rmap_head, &iter, sptep) {
5204                 sp = page_header(__pa(sptep));
5205                 pfn = spte_to_pfn(*sptep);
5206
5207                 /*
5208                  * We cannot do huge page mapping for indirect shadow pages,
5209                  * which are found on the last rmap (level = 1) when not using
5210                  * tdp; such shadow pages are synced with the page table in
5211                  * the guest, and the guest page table is using 4K page size
5212                  * mapping if the indirect sp has level = 1.
5213                  */
5214                 if (sp->role.direct &&
5215                         !kvm_is_reserved_pfn(pfn) &&
5216                         PageTransCompoundMap(pfn_to_page(pfn))) {
5217                         drop_spte(kvm, sptep);
5218                         need_tlb_flush = 1;
5219                         goto restart;
5220                 }
5221         }
5222
5223         return need_tlb_flush;
5224 }
5225
5226 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5227                                    const struct kvm_memory_slot *memslot)
5228 {
5229         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5230         spin_lock(&kvm->mmu_lock);
5231         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5232                          kvm_mmu_zap_collapsible_spte, true);
5233         spin_unlock(&kvm->mmu_lock);
5234 }
5235
5236 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5237                                    struct kvm_memory_slot *memslot)
5238 {
5239         bool flush;
5240
5241         spin_lock(&kvm->mmu_lock);
5242         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5243         spin_unlock(&kvm->mmu_lock);
5244
5245         lockdep_assert_held(&kvm->slots_lock);
5246
5247         /*
5248          * It's also safe to flush TLBs out of mmu lock here as currently this
5249          * function is only used for dirty logging, in which case flushing TLB
5250          * out of mmu lock also guarantees no dirty pages will be lost in
5251          * dirty_bitmap.
5252          */
5253         if (flush)
5254                 kvm_flush_remote_tlbs(kvm);
5255 }
5256 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5257
5258 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5259                                         struct kvm_memory_slot *memslot)
5260 {
5261         bool flush;
5262
5263         spin_lock(&kvm->mmu_lock);
5264         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5265                                         false);
5266         spin_unlock(&kvm->mmu_lock);
5267
5268         /* see kvm_mmu_slot_remove_write_access */
5269         lockdep_assert_held(&kvm->slots_lock);
5270
5271         if (flush)
5272                 kvm_flush_remote_tlbs(kvm);
5273 }
5274 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5275
5276 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5277                             struct kvm_memory_slot *memslot)
5278 {
5279         bool flush;
5280
5281         spin_lock(&kvm->mmu_lock);
5282         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5283         spin_unlock(&kvm->mmu_lock);
5284
5285         lockdep_assert_held(&kvm->slots_lock);
5286
5287         /* see kvm_mmu_slot_leaf_clear_dirty */
5288         if (flush)
5289                 kvm_flush_remote_tlbs(kvm);
5290 }
5291 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5292
5293 #define BATCH_ZAP_PAGES 10
5294 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5295 {
5296         struct kvm_mmu_page *sp, *node;
5297         int batch = 0;
5298
5299 restart:
5300         list_for_each_entry_safe_reverse(sp, node,
5301               &kvm->arch.active_mmu_pages, link) {
5302                 int ret;
5303
5304                 /*
5305                  * No obsolete page exists before new created page since
5306                  * active_mmu_pages is the FIFO list.
5307                  */
5308                 if (!is_obsolete_sp(kvm, sp))
5309                         break;
5310
5311                 /*
5312                  * Since we are reversely walking the list and the invalid
5313                  * list will be moved to the head, skip the invalid page
5314                  * can help us to avoid the infinity list walking.
5315                  */
5316                 if (sp->role.invalid)
5317                         continue;
5318
5319                 /*
5320                  * Need not flush tlb since we only zap the sp with invalid
5321                  * generation number.
5322                  */
5323                 if (batch >= BATCH_ZAP_PAGES &&
5324                       cond_resched_lock(&kvm->mmu_lock)) {
5325                         batch = 0;
5326                         goto restart;
5327                 }
5328
5329                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5330                                 &kvm->arch.zapped_obsolete_pages);
5331                 batch += ret;
5332
5333                 if (ret)
5334                         goto restart;
5335         }
5336
5337         /*
5338          * Should flush tlb before free page tables since lockless-walking
5339          * may use the pages.
5340          */
5341         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5342 }
5343
5344 /*
5345  * Fast invalidate all shadow pages and use lock-break technique
5346  * to zap obsolete pages.
5347  *
5348  * It's required when memslot is being deleted or VM is being
5349  * destroyed, in these cases, we should ensure that KVM MMU does
5350  * not use any resource of the being-deleted slot or all slots
5351  * after calling the function.
5352  */
5353 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5354 {
5355         spin_lock(&kvm->mmu_lock);
5356         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5357         kvm->arch.mmu_valid_gen++;
5358
5359         /*
5360          * Notify all vcpus to reload its shadow page table
5361          * and flush TLB. Then all vcpus will switch to new
5362          * shadow page table with the new mmu_valid_gen.
5363          *
5364          * Note: we should do this under the protection of
5365          * mmu-lock, otherwise, vcpu would purge shadow page
5366          * but miss tlb flush.
5367          */
5368         kvm_reload_remote_mmus(kvm);
5369
5370         kvm_zap_obsolete_pages(kvm);
5371         spin_unlock(&kvm->mmu_lock);
5372 }
5373
5374 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5375 {
5376         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5377 }
5378
5379 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5380 {
5381         /*
5382          * The very rare case: if the generation-number is round,
5383          * zap all shadow pages.
5384          */
5385         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5386                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5387                 kvm_mmu_invalidate_zap_all_pages(kvm);
5388         }
5389 }
5390
5391 static unsigned long
5392 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5393 {
5394         struct kvm *kvm;
5395         int nr_to_scan = sc->nr_to_scan;
5396         unsigned long freed = 0;
5397
5398         spin_lock(&kvm_lock);
5399
5400         list_for_each_entry(kvm, &vm_list, vm_list) {
5401                 int idx;
5402                 LIST_HEAD(invalid_list);
5403
5404                 /*
5405                  * Never scan more than sc->nr_to_scan VM instances.
5406                  * Will not hit this condition practically since we do not try
5407                  * to shrink more than one VM and it is very unlikely to see
5408                  * !n_used_mmu_pages so many times.
5409                  */
5410                 if (!nr_to_scan--)
5411                         break;
5412                 /*
5413                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5414                  * here. We may skip a VM instance errorneosly, but we do not
5415                  * want to shrink a VM that only started to populate its MMU
5416                  * anyway.
5417                  */
5418                 if (!kvm->arch.n_used_mmu_pages &&
5419                       !kvm_has_zapped_obsolete_pages(kvm))
5420                         continue;
5421
5422                 idx = srcu_read_lock(&kvm->srcu);
5423                 spin_lock(&kvm->mmu_lock);
5424
5425                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5426                         kvm_mmu_commit_zap_page(kvm,
5427                               &kvm->arch.zapped_obsolete_pages);
5428                         goto unlock;
5429                 }
5430
5431                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5432                         freed++;
5433                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5434
5435 unlock:
5436                 spin_unlock(&kvm->mmu_lock);
5437                 srcu_read_unlock(&kvm->srcu, idx);
5438
5439                 /*
5440                  * unfair on small ones
5441                  * per-vm shrinkers cry out
5442                  * sadness comes quickly
5443                  */
5444                 list_move_tail(&kvm->vm_list, &vm_list);
5445                 break;
5446         }
5447
5448         spin_unlock(&kvm_lock);
5449         return freed;
5450 }
5451
5452 static unsigned long
5453 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5454 {
5455         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5456 }
5457
5458 static struct shrinker mmu_shrinker = {
5459         .count_objects = mmu_shrink_count,
5460         .scan_objects = mmu_shrink_scan,
5461         .seeks = DEFAULT_SEEKS * 10,
5462 };
5463
5464 static void mmu_destroy_caches(void)
5465 {
5466         if (pte_list_desc_cache)
5467                 kmem_cache_destroy(pte_list_desc_cache);
5468         if (mmu_page_header_cache)
5469                 kmem_cache_destroy(mmu_page_header_cache);
5470 }
5471
5472 int kvm_mmu_module_init(void)
5473 {
5474         kvm_mmu_clear_all_pte_masks();
5475
5476         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5477                                             sizeof(struct pte_list_desc),
5478                                             0, 0, NULL);
5479         if (!pte_list_desc_cache)
5480                 goto nomem;
5481
5482         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5483                                                   sizeof(struct kvm_mmu_page),
5484                                                   0, 0, NULL);
5485         if (!mmu_page_header_cache)
5486                 goto nomem;
5487
5488         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5489                 goto nomem;
5490
5491         register_shrinker(&mmu_shrinker);
5492
5493         return 0;
5494
5495 nomem:
5496         mmu_destroy_caches();
5497         return -ENOMEM;
5498 }
5499
5500 /*
5501  * Caculate mmu pages needed for kvm.
5502  */
5503 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5504 {
5505         unsigned int nr_mmu_pages;
5506         unsigned int  nr_pages = 0;
5507         struct kvm_memslots *slots;
5508         struct kvm_memory_slot *memslot;
5509         int i;
5510
5511         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5512                 slots = __kvm_memslots(kvm, i);
5513
5514                 kvm_for_each_memslot(memslot, slots)
5515                         nr_pages += memslot->npages;
5516         }
5517
5518         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5519         nr_mmu_pages = max(nr_mmu_pages,
5520                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5521
5522         return nr_mmu_pages;
5523 }
5524
5525 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5526 {
5527         kvm_mmu_unload(vcpu);
5528         free_mmu_pages(vcpu);
5529         mmu_free_memory_caches(vcpu);
5530 }
5531
5532 void kvm_mmu_module_exit(void)
5533 {
5534         mmu_destroy_caches();
5535         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5536         unregister_shrinker(&mmu_shrinker);
5537         mmu_audit_disable();
5538 }