Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  *   Sheng Yang <sheng.yang@intel.com>
30  *   Based on QEMU and Xen.
31  */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "irq.h"
39 #include "i8254.h"
40 #include "x86.h"
41
42 #ifndef CONFIG_X86_64
43 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
44 #else
45 #define mod_64(x, y) ((x) % (y))
46 #endif
47
48 #define RW_STATE_LSB 1
49 #define RW_STATE_MSB 2
50 #define RW_STATE_WORD0 3
51 #define RW_STATE_WORD1 4
52
53 /* Compute with 96 bit intermediate result: (a*b)/c */
54 static u64 muldiv64(u64 a, u32 b, u32 c)
55 {
56         union {
57                 u64 ll;
58                 struct {
59                         u32 low, high;
60                 } l;
61         } u, res;
62         u64 rl, rh;
63
64         u.ll = a;
65         rl = (u64)u.l.low * (u64)b;
66         rh = (u64)u.l.high * (u64)b;
67         rh += (rl >> 32);
68         res.l.high = div64_u64(rh, c);
69         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
70         return res.ll;
71 }
72
73 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
74 {
75         struct kvm_kpit_channel_state *c =
76                 &kvm->arch.vpit->pit_state.channels[channel];
77
78         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
79
80         switch (c->mode) {
81         default:
82         case 0:
83         case 4:
84                 /* XXX: just disable/enable counting */
85                 break;
86         case 1:
87         case 2:
88         case 3:
89         case 5:
90                 /* Restart counting on rising edge. */
91                 if (c->gate < val)
92                         c->count_load_time = ktime_get();
93                 break;
94         }
95
96         c->gate = val;
97 }
98
99 static int pit_get_gate(struct kvm *kvm, int channel)
100 {
101         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
102
103         return kvm->arch.vpit->pit_state.channels[channel].gate;
104 }
105
106 static s64 __kpit_elapsed(struct kvm *kvm)
107 {
108         s64 elapsed;
109         ktime_t remaining;
110         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
111
112         if (!ps->period)
113                 return 0;
114
115         /*
116          * The Counter does not stop when it reaches zero. In
117          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
118          * the highest count, either FFFF hex for binary counting
119          * or 9999 for BCD counting, and continues counting.
120          * Modes 2 and 3 are periodic; the Counter reloads
121          * itself with the initial count and continues counting
122          * from there.
123          */
124         remaining = hrtimer_get_remaining(&ps->timer);
125         elapsed = ps->period - ktime_to_ns(remaining);
126
127         return elapsed;
128 }
129
130 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
131                         int channel)
132 {
133         if (channel == 0)
134                 return __kpit_elapsed(kvm);
135
136         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
137 }
138
139 static int pit_get_count(struct kvm *kvm, int channel)
140 {
141         struct kvm_kpit_channel_state *c =
142                 &kvm->arch.vpit->pit_state.channels[channel];
143         s64 d, t;
144         int counter;
145
146         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
147
148         t = kpit_elapsed(kvm, c, channel);
149         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150
151         switch (c->mode) {
152         case 0:
153         case 1:
154         case 4:
155         case 5:
156                 counter = (c->count - d) & 0xffff;
157                 break;
158         case 3:
159                 /* XXX: may be incorrect for odd counts */
160                 counter = c->count - (mod_64((2 * d), c->count));
161                 break;
162         default:
163                 counter = c->count - mod_64(d, c->count);
164                 break;
165         }
166         return counter;
167 }
168
169 static int pit_get_out(struct kvm *kvm, int channel)
170 {
171         struct kvm_kpit_channel_state *c =
172                 &kvm->arch.vpit->pit_state.channels[channel];
173         s64 d, t;
174         int out;
175
176         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
177
178         t = kpit_elapsed(kvm, c, channel);
179         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
180
181         switch (c->mode) {
182         default:
183         case 0:
184                 out = (d >= c->count);
185                 break;
186         case 1:
187                 out = (d < c->count);
188                 break;
189         case 2:
190                 out = ((mod_64(d, c->count) == 0) && (d != 0));
191                 break;
192         case 3:
193                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
194                 break;
195         case 4:
196         case 5:
197                 out = (d == c->count);
198                 break;
199         }
200
201         return out;
202 }
203
204 static void pit_latch_count(struct kvm *kvm, int channel)
205 {
206         struct kvm_kpit_channel_state *c =
207                 &kvm->arch.vpit->pit_state.channels[channel];
208
209         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
210
211         if (!c->count_latched) {
212                 c->latched_count = pit_get_count(kvm, channel);
213                 c->count_latched = c->rw_mode;
214         }
215 }
216
217 static void pit_latch_status(struct kvm *kvm, int channel)
218 {
219         struct kvm_kpit_channel_state *c =
220                 &kvm->arch.vpit->pit_state.channels[channel];
221
222         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
223
224         if (!c->status_latched) {
225                 /* TODO: Return NULL COUNT (bit 6). */
226                 c->status = ((pit_get_out(kvm, channel) << 7) |
227                                 (c->rw_mode << 4) |
228                                 (c->mode << 1) |
229                                 c->bcd);
230                 c->status_latched = 1;
231         }
232 }
233
234 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
235 {
236         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
237                                                  irq_ack_notifier);
238         int value;
239
240         spin_lock(&ps->inject_lock);
241         value = atomic_dec_return(&ps->pending);
242         if (value < 0)
243                 /* spurious acks can be generated if, for example, the
244                  * PIC is being reset.  Handle it gracefully here
245                  */
246                 atomic_inc(&ps->pending);
247         else if (value > 0)
248                 /* in this case, we had multiple outstanding pit interrupts
249                  * that we needed to inject.  Reinject
250                  */
251                 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
252         ps->irq_ack = 1;
253         spin_unlock(&ps->inject_lock);
254 }
255
256 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
257 {
258         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
259         struct hrtimer *timer;
260
261         if (!kvm_vcpu_is_bsp(vcpu) || !pit)
262                 return;
263
264         timer = &pit->pit_state.timer;
265         mutex_lock(&pit->pit_state.lock);
266         if (hrtimer_cancel(timer))
267                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
268         mutex_unlock(&pit->pit_state.lock);
269 }
270
271 static void destroy_pit_timer(struct kvm_pit *pit)
272 {
273         hrtimer_cancel(&pit->pit_state.timer);
274         flush_kthread_work(&pit->expired);
275 }
276
277 static void pit_do_work(struct kthread_work *work)
278 {
279         struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
280         struct kvm *kvm = pit->kvm;
281         struct kvm_vcpu *vcpu;
282         int i;
283         struct kvm_kpit_state *ps = &pit->pit_state;
284         int inject = 0;
285
286         /* Try to inject pending interrupts when
287          * last one has been acked.
288          */
289         spin_lock(&ps->inject_lock);
290         if (ps->irq_ack) {
291                 ps->irq_ack = 0;
292                 inject = 1;
293         }
294         spin_unlock(&ps->inject_lock);
295         if (inject) {
296                 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
297                 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
298
299                 /*
300                  * Provides NMI watchdog support via Virtual Wire mode.
301                  * The route is: PIT -> PIC -> LVT0 in NMI mode.
302                  *
303                  * Note: Our Virtual Wire implementation is simplified, only
304                  * propagating PIT interrupts to all VCPUs when they have set
305                  * LVT0 to NMI delivery. Other PIC interrupts are just sent to
306                  * VCPU0, and only if its LVT0 is in EXTINT mode.
307                  */
308                 if (kvm->arch.vapics_in_nmi_mode > 0)
309                         kvm_for_each_vcpu(i, vcpu, kvm)
310                                 kvm_apic_nmi_wd_deliver(vcpu);
311         }
312 }
313
314 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
315 {
316         struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
317         struct kvm_pit *pt = ps->kvm->arch.vpit;
318
319         if (ps->reinject || !atomic_read(&ps->pending)) {
320                 atomic_inc(&ps->pending);
321                 queue_kthread_work(&pt->worker, &pt->expired);
322         }
323
324         if (ps->is_periodic) {
325                 hrtimer_add_expires_ns(&ps->timer, ps->period);
326                 return HRTIMER_RESTART;
327         } else
328                 return HRTIMER_NORESTART;
329 }
330
331 static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
332 {
333         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
334         s64 interval;
335
336         if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
337                 return;
338
339         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
340
341         pr_debug("create pit timer, interval is %llu nsec\n", interval);
342
343         /* TODO The new value only affected after the retriggered */
344         hrtimer_cancel(&ps->timer);
345         flush_kthread_work(&ps->pit->expired);
346         ps->period = interval;
347         ps->is_periodic = is_period;
348
349         ps->timer.function = pit_timer_fn;
350         ps->kvm = ps->pit->kvm;
351
352         atomic_set(&ps->pending, 0);
353         ps->irq_ack = 1;
354
355         /*
356          * Do not allow the guest to program periodic timers with small
357          * interval, since the hrtimers are not throttled by the host
358          * scheduler.
359          */
360         if (ps->is_periodic) {
361                 s64 min_period = min_timer_period_us * 1000LL;
362
363                 if (ps->period < min_period) {
364                         pr_info_ratelimited(
365                             "kvm: requested %lld ns "
366                             "i8254 timer period limited to %lld ns\n",
367                             ps->period, min_period);
368                         ps->period = min_period;
369                 }
370         }
371
372         hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
373                       HRTIMER_MODE_ABS);
374 }
375
376 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
377 {
378         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
379
380         WARN_ON(!mutex_is_locked(&ps->lock));
381
382         pr_debug("load_count val is %d, channel is %d\n", val, channel);
383
384         /*
385          * The largest possible initial count is 0; this is equivalent
386          * to 216 for binary counting and 104 for BCD counting.
387          */
388         if (val == 0)
389                 val = 0x10000;
390
391         ps->channels[channel].count = val;
392
393         if (channel != 0) {
394                 ps->channels[channel].count_load_time = ktime_get();
395                 return;
396         }
397
398         /* Two types of timer
399          * mode 1 is one shot, mode 2 is period, otherwise del timer */
400         switch (ps->channels[0].mode) {
401         case 0:
402         case 1:
403         /* FIXME: enhance mode 4 precision */
404         case 4:
405                 create_pit_timer(kvm, val, 0);
406                 break;
407         case 2:
408         case 3:
409                 create_pit_timer(kvm, val, 1);
410                 break;
411         default:
412                 destroy_pit_timer(kvm->arch.vpit);
413         }
414 }
415
416 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
417 {
418         u8 saved_mode;
419         if (hpet_legacy_start) {
420                 /* save existing mode for later reenablement */
421                 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
422                 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
423                 pit_load_count(kvm, channel, val);
424                 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
425         } else {
426                 pit_load_count(kvm, channel, val);
427         }
428 }
429
430 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
431 {
432         return container_of(dev, struct kvm_pit, dev);
433 }
434
435 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
436 {
437         return container_of(dev, struct kvm_pit, speaker_dev);
438 }
439
440 static inline int pit_in_range(gpa_t addr)
441 {
442         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
443                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
444 }
445
446 static int pit_ioport_write(struct kvm_io_device *this,
447                             gpa_t addr, int len, const void *data)
448 {
449         struct kvm_pit *pit = dev_to_pit(this);
450         struct kvm_kpit_state *pit_state = &pit->pit_state;
451         struct kvm *kvm = pit->kvm;
452         int channel, access;
453         struct kvm_kpit_channel_state *s;
454         u32 val = *(u32 *) data;
455         if (!pit_in_range(addr))
456                 return -EOPNOTSUPP;
457
458         val  &= 0xff;
459         addr &= KVM_PIT_CHANNEL_MASK;
460
461         mutex_lock(&pit_state->lock);
462
463         if (val != 0)
464                 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
465                          (unsigned int)addr, len, val);
466
467         if (addr == 3) {
468                 channel = val >> 6;
469                 if (channel == 3) {
470                         /* Read-Back Command. */
471                         for (channel = 0; channel < 3; channel++) {
472                                 s = &pit_state->channels[channel];
473                                 if (val & (2 << channel)) {
474                                         if (!(val & 0x20))
475                                                 pit_latch_count(kvm, channel);
476                                         if (!(val & 0x10))
477                                                 pit_latch_status(kvm, channel);
478                                 }
479                         }
480                 } else {
481                         /* Select Counter <channel>. */
482                         s = &pit_state->channels[channel];
483                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
484                         if (access == 0) {
485                                 pit_latch_count(kvm, channel);
486                         } else {
487                                 s->rw_mode = access;
488                                 s->read_state = access;
489                                 s->write_state = access;
490                                 s->mode = (val >> 1) & 7;
491                                 if (s->mode > 5)
492                                         s->mode -= 4;
493                                 s->bcd = val & 1;
494                         }
495                 }
496         } else {
497                 /* Write Count. */
498                 s = &pit_state->channels[addr];
499                 switch (s->write_state) {
500                 default:
501                 case RW_STATE_LSB:
502                         pit_load_count(kvm, addr, val);
503                         break;
504                 case RW_STATE_MSB:
505                         pit_load_count(kvm, addr, val << 8);
506                         break;
507                 case RW_STATE_WORD0:
508                         s->write_latch = val;
509                         s->write_state = RW_STATE_WORD1;
510                         break;
511                 case RW_STATE_WORD1:
512                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
513                         s->write_state = RW_STATE_WORD0;
514                         break;
515                 }
516         }
517
518         mutex_unlock(&pit_state->lock);
519         return 0;
520 }
521
522 static int pit_ioport_read(struct kvm_io_device *this,
523                            gpa_t addr, int len, void *data)
524 {
525         struct kvm_pit *pit = dev_to_pit(this);
526         struct kvm_kpit_state *pit_state = &pit->pit_state;
527         struct kvm *kvm = pit->kvm;
528         int ret, count;
529         struct kvm_kpit_channel_state *s;
530         if (!pit_in_range(addr))
531                 return -EOPNOTSUPP;
532
533         addr &= KVM_PIT_CHANNEL_MASK;
534         if (addr == 3)
535                 return 0;
536
537         s = &pit_state->channels[addr];
538
539         mutex_lock(&pit_state->lock);
540
541         if (s->status_latched) {
542                 s->status_latched = 0;
543                 ret = s->status;
544         } else if (s->count_latched) {
545                 switch (s->count_latched) {
546                 default:
547                 case RW_STATE_LSB:
548                         ret = s->latched_count & 0xff;
549                         s->count_latched = 0;
550                         break;
551                 case RW_STATE_MSB:
552                         ret = s->latched_count >> 8;
553                         s->count_latched = 0;
554                         break;
555                 case RW_STATE_WORD0:
556                         ret = s->latched_count & 0xff;
557                         s->count_latched = RW_STATE_MSB;
558                         break;
559                 }
560         } else {
561                 switch (s->read_state) {
562                 default:
563                 case RW_STATE_LSB:
564                         count = pit_get_count(kvm, addr);
565                         ret = count & 0xff;
566                         break;
567                 case RW_STATE_MSB:
568                         count = pit_get_count(kvm, addr);
569                         ret = (count >> 8) & 0xff;
570                         break;
571                 case RW_STATE_WORD0:
572                         count = pit_get_count(kvm, addr);
573                         ret = count & 0xff;
574                         s->read_state = RW_STATE_WORD1;
575                         break;
576                 case RW_STATE_WORD1:
577                         count = pit_get_count(kvm, addr);
578                         ret = (count >> 8) & 0xff;
579                         s->read_state = RW_STATE_WORD0;
580                         break;
581                 }
582         }
583
584         if (len > sizeof(ret))
585                 len = sizeof(ret);
586         memcpy(data, (char *)&ret, len);
587
588         mutex_unlock(&pit_state->lock);
589         return 0;
590 }
591
592 static int speaker_ioport_write(struct kvm_io_device *this,
593                                 gpa_t addr, int len, const void *data)
594 {
595         struct kvm_pit *pit = speaker_to_pit(this);
596         struct kvm_kpit_state *pit_state = &pit->pit_state;
597         struct kvm *kvm = pit->kvm;
598         u32 val = *(u32 *) data;
599         if (addr != KVM_SPEAKER_BASE_ADDRESS)
600                 return -EOPNOTSUPP;
601
602         mutex_lock(&pit_state->lock);
603         pit_state->speaker_data_on = (val >> 1) & 1;
604         pit_set_gate(kvm, 2, val & 1);
605         mutex_unlock(&pit_state->lock);
606         return 0;
607 }
608
609 static int speaker_ioport_read(struct kvm_io_device *this,
610                                gpa_t addr, int len, void *data)
611 {
612         struct kvm_pit *pit = speaker_to_pit(this);
613         struct kvm_kpit_state *pit_state = &pit->pit_state;
614         struct kvm *kvm = pit->kvm;
615         unsigned int refresh_clock;
616         int ret;
617         if (addr != KVM_SPEAKER_BASE_ADDRESS)
618                 return -EOPNOTSUPP;
619
620         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
621         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
622
623         mutex_lock(&pit_state->lock);
624         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
625                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
626         if (len > sizeof(ret))
627                 len = sizeof(ret);
628         memcpy(data, (char *)&ret, len);
629         mutex_unlock(&pit_state->lock);
630         return 0;
631 }
632
633 void kvm_pit_reset(struct kvm_pit *pit)
634 {
635         int i;
636         struct kvm_kpit_channel_state *c;
637
638         mutex_lock(&pit->pit_state.lock);
639         pit->pit_state.flags = 0;
640         for (i = 0; i < 3; i++) {
641                 c = &pit->pit_state.channels[i];
642                 c->mode = 0xff;
643                 c->gate = (i != 2);
644                 pit_load_count(pit->kvm, i, 0);
645         }
646         mutex_unlock(&pit->pit_state.lock);
647
648         atomic_set(&pit->pit_state.pending, 0);
649         pit->pit_state.irq_ack = 1;
650 }
651
652 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
653 {
654         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
655
656         if (!mask) {
657                 atomic_set(&pit->pit_state.pending, 0);
658                 pit->pit_state.irq_ack = 1;
659         }
660 }
661
662 static const struct kvm_io_device_ops pit_dev_ops = {
663         .read     = pit_ioport_read,
664         .write    = pit_ioport_write,
665 };
666
667 static const struct kvm_io_device_ops speaker_dev_ops = {
668         .read     = speaker_ioport_read,
669         .write    = speaker_ioport_write,
670 };
671
672 /* Caller must hold slots_lock */
673 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
674 {
675         struct kvm_pit *pit;
676         struct kvm_kpit_state *pit_state;
677         struct pid *pid;
678         pid_t pid_nr;
679         int ret;
680
681         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
682         if (!pit)
683                 return NULL;
684
685         pit->irq_source_id = kvm_request_irq_source_id(kvm);
686         if (pit->irq_source_id < 0) {
687                 kfree(pit);
688                 return NULL;
689         }
690
691         mutex_init(&pit->pit_state.lock);
692         mutex_lock(&pit->pit_state.lock);
693         spin_lock_init(&pit->pit_state.inject_lock);
694
695         pid = get_pid(task_tgid(current));
696         pid_nr = pid_vnr(pid);
697         put_pid(pid);
698
699         init_kthread_worker(&pit->worker);
700         pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
701                                        "kvm-pit/%d", pid_nr);
702         if (IS_ERR(pit->worker_task)) {
703                 mutex_unlock(&pit->pit_state.lock);
704                 kvm_free_irq_source_id(kvm, pit->irq_source_id);
705                 kfree(pit);
706                 return NULL;
707         }
708         init_kthread_work(&pit->expired, pit_do_work);
709
710         kvm->arch.vpit = pit;
711         pit->kvm = kvm;
712
713         pit_state = &pit->pit_state;
714         pit_state->pit = pit;
715         hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
716         pit_state->irq_ack_notifier.gsi = 0;
717         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
718         kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
719         pit_state->reinject = true;
720         mutex_unlock(&pit->pit_state.lock);
721
722         kvm_pit_reset(pit);
723
724         pit->mask_notifier.func = pit_mask_notifer;
725         kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
726
727         kvm_iodevice_init(&pit->dev, &pit_dev_ops);
728         ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
729                                       KVM_PIT_MEM_LENGTH, &pit->dev);
730         if (ret < 0)
731                 goto fail;
732
733         if (flags & KVM_PIT_SPEAKER_DUMMY) {
734                 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
735                 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
736                                               KVM_SPEAKER_BASE_ADDRESS, 4,
737                                               &pit->speaker_dev);
738                 if (ret < 0)
739                         goto fail_unregister;
740         }
741
742         return pit;
743
744 fail_unregister:
745         kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
746
747 fail:
748         kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
749         kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
750         kvm_free_irq_source_id(kvm, pit->irq_source_id);
751         kthread_stop(pit->worker_task);
752         kfree(pit);
753         return NULL;
754 }
755
756 void kvm_free_pit(struct kvm *kvm)
757 {
758         struct hrtimer *timer;
759
760         if (kvm->arch.vpit) {
761                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
762                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
763                                               &kvm->arch.vpit->speaker_dev);
764                 kvm_unregister_irq_mask_notifier(kvm, 0,
765                                                &kvm->arch.vpit->mask_notifier);
766                 kvm_unregister_irq_ack_notifier(kvm,
767                                 &kvm->arch.vpit->pit_state.irq_ack_notifier);
768                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
769                 timer = &kvm->arch.vpit->pit_state.timer;
770                 hrtimer_cancel(timer);
771                 flush_kthread_work(&kvm->arch.vpit->expired);
772                 kthread_stop(kvm->arch.vpit->worker_task);
773                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
774                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
775                 kfree(kvm->arch.vpit);
776         }
777 }