Merge git://git.kernel.org/pub/scm/linux/kernel/git/agk/linux-2.6-dm
[sfrench/cifs-2.6.git] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31
32 #define pr_fmt(fmt) "pit: " fmt
33
34 #include <linux/kvm_host.h>
35
36 #include "irq.h"
37 #include "i8254.h"
38
39 #ifndef CONFIG_X86_64
40 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
41 #else
42 #define mod_64(x, y) ((x) % (y))
43 #endif
44
45 #define RW_STATE_LSB 1
46 #define RW_STATE_MSB 2
47 #define RW_STATE_WORD0 3
48 #define RW_STATE_WORD1 4
49
50 /* Compute with 96 bit intermediate result: (a*b)/c */
51 static u64 muldiv64(u64 a, u32 b, u32 c)
52 {
53         union {
54                 u64 ll;
55                 struct {
56                         u32 low, high;
57                 } l;
58         } u, res;
59         u64 rl, rh;
60
61         u.ll = a;
62         rl = (u64)u.l.low * (u64)b;
63         rh = (u64)u.l.high * (u64)b;
64         rh += (rl >> 32);
65         res.l.high = div64_u64(rh, c);
66         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
67         return res.ll;
68 }
69
70 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
71 {
72         struct kvm_kpit_channel_state *c =
73                 &kvm->arch.vpit->pit_state.channels[channel];
74
75         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
76
77         switch (c->mode) {
78         default:
79         case 0:
80         case 4:
81                 /* XXX: just disable/enable counting */
82                 break;
83         case 1:
84         case 2:
85         case 3:
86         case 5:
87                 /* Restart counting on rising edge. */
88                 if (c->gate < val)
89                         c->count_load_time = ktime_get();
90                 break;
91         }
92
93         c->gate = val;
94 }
95
96 static int pit_get_gate(struct kvm *kvm, int channel)
97 {
98         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
99
100         return kvm->arch.vpit->pit_state.channels[channel].gate;
101 }
102
103 static s64 __kpit_elapsed(struct kvm *kvm)
104 {
105         s64 elapsed;
106         ktime_t remaining;
107         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
108
109         if (!ps->pit_timer.period)
110                 return 0;
111
112         /*
113          * The Counter does not stop when it reaches zero. In
114          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
115          * the highest count, either FFFF hex for binary counting
116          * or 9999 for BCD counting, and continues counting.
117          * Modes 2 and 3 are periodic; the Counter reloads
118          * itself with the initial count and continues counting
119          * from there.
120          */
121         remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
122         elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
123         elapsed = mod_64(elapsed, ps->pit_timer.period);
124
125         return elapsed;
126 }
127
128 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
129                         int channel)
130 {
131         if (channel == 0)
132                 return __kpit_elapsed(kvm);
133
134         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
135 }
136
137 static int pit_get_count(struct kvm *kvm, int channel)
138 {
139         struct kvm_kpit_channel_state *c =
140                 &kvm->arch.vpit->pit_state.channels[channel];
141         s64 d, t;
142         int counter;
143
144         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
145
146         t = kpit_elapsed(kvm, c, channel);
147         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
148
149         switch (c->mode) {
150         case 0:
151         case 1:
152         case 4:
153         case 5:
154                 counter = (c->count - d) & 0xffff;
155                 break;
156         case 3:
157                 /* XXX: may be incorrect for odd counts */
158                 counter = c->count - (mod_64((2 * d), c->count));
159                 break;
160         default:
161                 counter = c->count - mod_64(d, c->count);
162                 break;
163         }
164         return counter;
165 }
166
167 static int pit_get_out(struct kvm *kvm, int channel)
168 {
169         struct kvm_kpit_channel_state *c =
170                 &kvm->arch.vpit->pit_state.channels[channel];
171         s64 d, t;
172         int out;
173
174         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
175
176         t = kpit_elapsed(kvm, c, channel);
177         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
178
179         switch (c->mode) {
180         default:
181         case 0:
182                 out = (d >= c->count);
183                 break;
184         case 1:
185                 out = (d < c->count);
186                 break;
187         case 2:
188                 out = ((mod_64(d, c->count) == 0) && (d != 0));
189                 break;
190         case 3:
191                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
192                 break;
193         case 4:
194         case 5:
195                 out = (d == c->count);
196                 break;
197         }
198
199         return out;
200 }
201
202 static void pit_latch_count(struct kvm *kvm, int channel)
203 {
204         struct kvm_kpit_channel_state *c =
205                 &kvm->arch.vpit->pit_state.channels[channel];
206
207         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
208
209         if (!c->count_latched) {
210                 c->latched_count = pit_get_count(kvm, channel);
211                 c->count_latched = c->rw_mode;
212         }
213 }
214
215 static void pit_latch_status(struct kvm *kvm, int channel)
216 {
217         struct kvm_kpit_channel_state *c =
218                 &kvm->arch.vpit->pit_state.channels[channel];
219
220         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
221
222         if (!c->status_latched) {
223                 /* TODO: Return NULL COUNT (bit 6). */
224                 c->status = ((pit_get_out(kvm, channel) << 7) |
225                                 (c->rw_mode << 4) |
226                                 (c->mode << 1) |
227                                 c->bcd);
228                 c->status_latched = 1;
229         }
230 }
231
232 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
233 {
234         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
235
236         if (pit && kvm_vcpu_is_bsp(vcpu) && pit->pit_state.irq_ack)
237                 return atomic_read(&pit->pit_state.pit_timer.pending);
238         return 0;
239 }
240
241 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
242 {
243         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
244                                                  irq_ack_notifier);
245         spin_lock(&ps->inject_lock);
246         if (atomic_dec_return(&ps->pit_timer.pending) < 0)
247                 atomic_inc(&ps->pit_timer.pending);
248         ps->irq_ack = 1;
249         spin_unlock(&ps->inject_lock);
250 }
251
252 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
253 {
254         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
255         struct hrtimer *timer;
256
257         if (!kvm_vcpu_is_bsp(vcpu) || !pit)
258                 return;
259
260         timer = &pit->pit_state.pit_timer.timer;
261         if (hrtimer_cancel(timer))
262                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
263 }
264
265 static void destroy_pit_timer(struct kvm_timer *pt)
266 {
267         pr_debug("execute del timer!\n");
268         hrtimer_cancel(&pt->timer);
269 }
270
271 static bool kpit_is_periodic(struct kvm_timer *ktimer)
272 {
273         struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
274                                                  pit_timer);
275         return ps->is_periodic;
276 }
277
278 static struct kvm_timer_ops kpit_ops = {
279         .is_periodic = kpit_is_periodic,
280 };
281
282 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
283 {
284         struct kvm_timer *pt = &ps->pit_timer;
285         s64 interval;
286
287         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
288
289         pr_debug("create pit timer, interval is %llu nsec\n", interval);
290
291         /* TODO The new value only affected after the retriggered */
292         hrtimer_cancel(&pt->timer);
293         pt->period = interval;
294         ps->is_periodic = is_period;
295
296         pt->timer.function = kvm_timer_fn;
297         pt->t_ops = &kpit_ops;
298         pt->kvm = ps->pit->kvm;
299         pt->vcpu = pt->kvm->bsp_vcpu;
300
301         atomic_set(&pt->pending, 0);
302         ps->irq_ack = 1;
303
304         hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
305                       HRTIMER_MODE_ABS);
306 }
307
308 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
309 {
310         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
311
312         WARN_ON(!mutex_is_locked(&ps->lock));
313
314         pr_debug("load_count val is %d, channel is %d\n", val, channel);
315
316         /*
317          * The largest possible initial count is 0; this is equivalent
318          * to 216 for binary counting and 104 for BCD counting.
319          */
320         if (val == 0)
321                 val = 0x10000;
322
323         ps->channels[channel].count = val;
324
325         if (channel != 0) {
326                 ps->channels[channel].count_load_time = ktime_get();
327                 return;
328         }
329
330         /* Two types of timer
331          * mode 1 is one shot, mode 2 is period, otherwise del timer */
332         switch (ps->channels[0].mode) {
333         case 0:
334         case 1:
335         /* FIXME: enhance mode 4 precision */
336         case 4:
337                 if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)) {
338                         create_pit_timer(ps, val, 0);
339                 }
340                 break;
341         case 2:
342         case 3:
343                 if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)){
344                         create_pit_timer(ps, val, 1);
345                 }
346                 break;
347         default:
348                 destroy_pit_timer(&ps->pit_timer);
349         }
350 }
351
352 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
353 {
354         u8 saved_mode;
355         if (hpet_legacy_start) {
356                 /* save existing mode for later reenablement */
357                 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
358                 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
359                 pit_load_count(kvm, channel, val);
360                 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
361         } else {
362                 pit_load_count(kvm, channel, val);
363         }
364 }
365
366 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
367 {
368         return container_of(dev, struct kvm_pit, dev);
369 }
370
371 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
372 {
373         return container_of(dev, struct kvm_pit, speaker_dev);
374 }
375
376 static inline int pit_in_range(gpa_t addr)
377 {
378         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
379                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
380 }
381
382 static int pit_ioport_write(struct kvm_io_device *this,
383                             gpa_t addr, int len, const void *data)
384 {
385         struct kvm_pit *pit = dev_to_pit(this);
386         struct kvm_kpit_state *pit_state = &pit->pit_state;
387         struct kvm *kvm = pit->kvm;
388         int channel, access;
389         struct kvm_kpit_channel_state *s;
390         u32 val = *(u32 *) data;
391         if (!pit_in_range(addr))
392                 return -EOPNOTSUPP;
393
394         val  &= 0xff;
395         addr &= KVM_PIT_CHANNEL_MASK;
396
397         mutex_lock(&pit_state->lock);
398
399         if (val != 0)
400                 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
401                          (unsigned int)addr, len, val);
402
403         if (addr == 3) {
404                 channel = val >> 6;
405                 if (channel == 3) {
406                         /* Read-Back Command. */
407                         for (channel = 0; channel < 3; channel++) {
408                                 s = &pit_state->channels[channel];
409                                 if (val & (2 << channel)) {
410                                         if (!(val & 0x20))
411                                                 pit_latch_count(kvm, channel);
412                                         if (!(val & 0x10))
413                                                 pit_latch_status(kvm, channel);
414                                 }
415                         }
416                 } else {
417                         /* Select Counter <channel>. */
418                         s = &pit_state->channels[channel];
419                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
420                         if (access == 0) {
421                                 pit_latch_count(kvm, channel);
422                         } else {
423                                 s->rw_mode = access;
424                                 s->read_state = access;
425                                 s->write_state = access;
426                                 s->mode = (val >> 1) & 7;
427                                 if (s->mode > 5)
428                                         s->mode -= 4;
429                                 s->bcd = val & 1;
430                         }
431                 }
432         } else {
433                 /* Write Count. */
434                 s = &pit_state->channels[addr];
435                 switch (s->write_state) {
436                 default:
437                 case RW_STATE_LSB:
438                         pit_load_count(kvm, addr, val);
439                         break;
440                 case RW_STATE_MSB:
441                         pit_load_count(kvm, addr, val << 8);
442                         break;
443                 case RW_STATE_WORD0:
444                         s->write_latch = val;
445                         s->write_state = RW_STATE_WORD1;
446                         break;
447                 case RW_STATE_WORD1:
448                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
449                         s->write_state = RW_STATE_WORD0;
450                         break;
451                 }
452         }
453
454         mutex_unlock(&pit_state->lock);
455         return 0;
456 }
457
458 static int pit_ioport_read(struct kvm_io_device *this,
459                            gpa_t addr, int len, void *data)
460 {
461         struct kvm_pit *pit = dev_to_pit(this);
462         struct kvm_kpit_state *pit_state = &pit->pit_state;
463         struct kvm *kvm = pit->kvm;
464         int ret, count;
465         struct kvm_kpit_channel_state *s;
466         if (!pit_in_range(addr))
467                 return -EOPNOTSUPP;
468
469         addr &= KVM_PIT_CHANNEL_MASK;
470         s = &pit_state->channels[addr];
471
472         mutex_lock(&pit_state->lock);
473
474         if (s->status_latched) {
475                 s->status_latched = 0;
476                 ret = s->status;
477         } else if (s->count_latched) {
478                 switch (s->count_latched) {
479                 default:
480                 case RW_STATE_LSB:
481                         ret = s->latched_count & 0xff;
482                         s->count_latched = 0;
483                         break;
484                 case RW_STATE_MSB:
485                         ret = s->latched_count >> 8;
486                         s->count_latched = 0;
487                         break;
488                 case RW_STATE_WORD0:
489                         ret = s->latched_count & 0xff;
490                         s->count_latched = RW_STATE_MSB;
491                         break;
492                 }
493         } else {
494                 switch (s->read_state) {
495                 default:
496                 case RW_STATE_LSB:
497                         count = pit_get_count(kvm, addr);
498                         ret = count & 0xff;
499                         break;
500                 case RW_STATE_MSB:
501                         count = pit_get_count(kvm, addr);
502                         ret = (count >> 8) & 0xff;
503                         break;
504                 case RW_STATE_WORD0:
505                         count = pit_get_count(kvm, addr);
506                         ret = count & 0xff;
507                         s->read_state = RW_STATE_WORD1;
508                         break;
509                 case RW_STATE_WORD1:
510                         count = pit_get_count(kvm, addr);
511                         ret = (count >> 8) & 0xff;
512                         s->read_state = RW_STATE_WORD0;
513                         break;
514                 }
515         }
516
517         if (len > sizeof(ret))
518                 len = sizeof(ret);
519         memcpy(data, (char *)&ret, len);
520
521         mutex_unlock(&pit_state->lock);
522         return 0;
523 }
524
525 static int speaker_ioport_write(struct kvm_io_device *this,
526                                 gpa_t addr, int len, const void *data)
527 {
528         struct kvm_pit *pit = speaker_to_pit(this);
529         struct kvm_kpit_state *pit_state = &pit->pit_state;
530         struct kvm *kvm = pit->kvm;
531         u32 val = *(u32 *) data;
532         if (addr != KVM_SPEAKER_BASE_ADDRESS)
533                 return -EOPNOTSUPP;
534
535         mutex_lock(&pit_state->lock);
536         pit_state->speaker_data_on = (val >> 1) & 1;
537         pit_set_gate(kvm, 2, val & 1);
538         mutex_unlock(&pit_state->lock);
539         return 0;
540 }
541
542 static int speaker_ioport_read(struct kvm_io_device *this,
543                                gpa_t addr, int len, void *data)
544 {
545         struct kvm_pit *pit = speaker_to_pit(this);
546         struct kvm_kpit_state *pit_state = &pit->pit_state;
547         struct kvm *kvm = pit->kvm;
548         unsigned int refresh_clock;
549         int ret;
550         if (addr != KVM_SPEAKER_BASE_ADDRESS)
551                 return -EOPNOTSUPP;
552
553         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
554         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
555
556         mutex_lock(&pit_state->lock);
557         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
558                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
559         if (len > sizeof(ret))
560                 len = sizeof(ret);
561         memcpy(data, (char *)&ret, len);
562         mutex_unlock(&pit_state->lock);
563         return 0;
564 }
565
566 void kvm_pit_reset(struct kvm_pit *pit)
567 {
568         int i;
569         struct kvm_kpit_channel_state *c;
570
571         mutex_lock(&pit->pit_state.lock);
572         pit->pit_state.flags = 0;
573         for (i = 0; i < 3; i++) {
574                 c = &pit->pit_state.channels[i];
575                 c->mode = 0xff;
576                 c->gate = (i != 2);
577                 pit_load_count(pit->kvm, i, 0);
578         }
579         mutex_unlock(&pit->pit_state.lock);
580
581         atomic_set(&pit->pit_state.pit_timer.pending, 0);
582         pit->pit_state.irq_ack = 1;
583 }
584
585 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
586 {
587         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
588
589         if (!mask) {
590                 atomic_set(&pit->pit_state.pit_timer.pending, 0);
591                 pit->pit_state.irq_ack = 1;
592         }
593 }
594
595 static const struct kvm_io_device_ops pit_dev_ops = {
596         .read     = pit_ioport_read,
597         .write    = pit_ioport_write,
598 };
599
600 static const struct kvm_io_device_ops speaker_dev_ops = {
601         .read     = speaker_ioport_read,
602         .write    = speaker_ioport_write,
603 };
604
605 /* Caller must have writers lock on slots_lock */
606 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
607 {
608         struct kvm_pit *pit;
609         struct kvm_kpit_state *pit_state;
610         int ret;
611
612         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
613         if (!pit)
614                 return NULL;
615
616         pit->irq_source_id = kvm_request_irq_source_id(kvm);
617         if (pit->irq_source_id < 0) {
618                 kfree(pit);
619                 return NULL;
620         }
621
622         mutex_init(&pit->pit_state.lock);
623         mutex_lock(&pit->pit_state.lock);
624         spin_lock_init(&pit->pit_state.inject_lock);
625
626         kvm->arch.vpit = pit;
627         pit->kvm = kvm;
628
629         pit_state = &pit->pit_state;
630         pit_state->pit = pit;
631         hrtimer_init(&pit_state->pit_timer.timer,
632                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
633         pit_state->irq_ack_notifier.gsi = 0;
634         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
635         kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
636         pit_state->pit_timer.reinject = true;
637         mutex_unlock(&pit->pit_state.lock);
638
639         kvm_pit_reset(pit);
640
641         pit->mask_notifier.func = pit_mask_notifer;
642         kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
643
644         kvm_iodevice_init(&pit->dev, &pit_dev_ops);
645         ret = __kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
646         if (ret < 0)
647                 goto fail;
648
649         if (flags & KVM_PIT_SPEAKER_DUMMY) {
650                 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
651                 ret = __kvm_io_bus_register_dev(&kvm->pio_bus,
652                                                 &pit->speaker_dev);
653                 if (ret < 0)
654                         goto fail_unregister;
655         }
656
657         return pit;
658
659 fail_unregister:
660         __kvm_io_bus_unregister_dev(&kvm->pio_bus, &pit->dev);
661
662 fail:
663         if (pit->irq_source_id >= 0)
664                 kvm_free_irq_source_id(kvm, pit->irq_source_id);
665
666         kfree(pit);
667         return NULL;
668 }
669
670 void kvm_free_pit(struct kvm *kvm)
671 {
672         struct hrtimer *timer;
673
674         if (kvm->arch.vpit) {
675                 kvm_unregister_irq_mask_notifier(kvm, 0,
676                                                &kvm->arch.vpit->mask_notifier);
677                 kvm_unregister_irq_ack_notifier(kvm,
678                                 &kvm->arch.vpit->pit_state.irq_ack_notifier);
679                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
680                 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
681                 hrtimer_cancel(timer);
682                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
683                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
684                 kfree(kvm->arch.vpit);
685         }
686 }
687
688 static void __inject_pit_timer_intr(struct kvm *kvm)
689 {
690         struct kvm_vcpu *vcpu;
691         int i;
692
693         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
694         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
695
696         /*
697          * Provides NMI watchdog support via Virtual Wire mode.
698          * The route is: PIT -> PIC -> LVT0 in NMI mode.
699          *
700          * Note: Our Virtual Wire implementation is simplified, only
701          * propagating PIT interrupts to all VCPUs when they have set
702          * LVT0 to NMI delivery. Other PIC interrupts are just sent to
703          * VCPU0, and only if its LVT0 is in EXTINT mode.
704          */
705         if (kvm->arch.vapics_in_nmi_mode > 0)
706                 kvm_for_each_vcpu(i, vcpu, kvm)
707                         kvm_apic_nmi_wd_deliver(vcpu);
708 }
709
710 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
711 {
712         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
713         struct kvm *kvm = vcpu->kvm;
714         struct kvm_kpit_state *ps;
715
716         if (pit) {
717                 int inject = 0;
718                 ps = &pit->pit_state;
719
720                 /* Try to inject pending interrupts when
721                  * last one has been acked.
722                  */
723                 spin_lock(&ps->inject_lock);
724                 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
725                         ps->irq_ack = 0;
726                         inject = 1;
727                 }
728                 spin_unlock(&ps->inject_lock);
729                 if (inject)
730                         __inject_pit_timer_intr(kvm);
731         }
732 }