Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / arch / x86 / kvm / hyperv.c
1 /*
2  * KVM Microsoft Hyper-V emulation
3  *
4  * derived from arch/x86/kvm/x86.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  *   Andrey Smetanin <asmetanin@virtuozzo.com>
18  *
19  * This work is licensed under the terms of the GNU GPL, version 2.  See
20  * the COPYING file in the top-level directory.
21  *
22  */
23
24 #include "x86.h"
25 #include "lapic.h"
26 #include "ioapic.h"
27 #include "hyperv.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/highmem.h>
31 #include <linux/sched/cputime.h>
32 #include <linux/eventfd.h>
33
34 #include <asm/apicdef.h>
35 #include <trace/events/kvm.h>
36
37 #include "trace.h"
38
39 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
40
41 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
42                                 bool vcpu_kick);
43
44 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
45 {
46         return atomic64_read(&synic->sint[sint]);
47 }
48
49 static inline int synic_get_sint_vector(u64 sint_value)
50 {
51         if (sint_value & HV_SYNIC_SINT_MASKED)
52                 return -1;
53         return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
54 }
55
56 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
57                                       int vector)
58 {
59         int i;
60
61         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
62                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
63                         return true;
64         }
65         return false;
66 }
67
68 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
69                                      int vector)
70 {
71         int i;
72         u64 sint_value;
73
74         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
75                 sint_value = synic_read_sint(synic, i);
76                 if (synic_get_sint_vector(sint_value) == vector &&
77                     sint_value & HV_SYNIC_SINT_AUTO_EOI)
78                         return true;
79         }
80         return false;
81 }
82
83 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
84                                 int vector)
85 {
86         if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
87                 return;
88
89         if (synic_has_vector_connected(synic, vector))
90                 __set_bit(vector, synic->vec_bitmap);
91         else
92                 __clear_bit(vector, synic->vec_bitmap);
93
94         if (synic_has_vector_auto_eoi(synic, vector))
95                 __set_bit(vector, synic->auto_eoi_bitmap);
96         else
97                 __clear_bit(vector, synic->auto_eoi_bitmap);
98 }
99
100 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
101                           u64 data, bool host)
102 {
103         int vector, old_vector;
104         bool masked;
105
106         vector = data & HV_SYNIC_SINT_VECTOR_MASK;
107         masked = data & HV_SYNIC_SINT_MASKED;
108
109         /*
110          * Valid vectors are 16-255, however, nested Hyper-V attempts to write
111          * default '0x10000' value on boot and this should not #GP. We need to
112          * allow zero-initing the register from host as well.
113          */
114         if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
115                 return 1;
116         /*
117          * Guest may configure multiple SINTs to use the same vector, so
118          * we maintain a bitmap of vectors handled by synic, and a
119          * bitmap of vectors with auto-eoi behavior.  The bitmaps are
120          * updated here, and atomically queried on fast paths.
121          */
122         old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
123
124         atomic64_set(&synic->sint[sint], data);
125
126         synic_update_vector(synic, old_vector);
127
128         synic_update_vector(synic, vector);
129
130         /* Load SynIC vectors into EOI exit bitmap */
131         kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
132         return 0;
133 }
134
135 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
136 {
137         struct kvm_vcpu *vcpu = NULL;
138         int i;
139
140         if (vpidx >= KVM_MAX_VCPUS)
141                 return NULL;
142
143         vcpu = kvm_get_vcpu(kvm, vpidx);
144         if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
145                 return vcpu;
146         kvm_for_each_vcpu(i, vcpu, kvm)
147                 if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
148                         return vcpu;
149         return NULL;
150 }
151
152 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
153 {
154         struct kvm_vcpu *vcpu;
155         struct kvm_vcpu_hv_synic *synic;
156
157         vcpu = get_vcpu_by_vpidx(kvm, vpidx);
158         if (!vcpu)
159                 return NULL;
160         synic = vcpu_to_synic(vcpu);
161         return (synic->active) ? synic : NULL;
162 }
163
164 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
165 {
166         struct kvm *kvm = vcpu->kvm;
167         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
168         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
169         struct kvm_vcpu_hv_stimer *stimer;
170         int gsi, idx;
171
172         trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
173
174         /* Try to deliver pending Hyper-V SynIC timers messages */
175         for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
176                 stimer = &hv_vcpu->stimer[idx];
177                 if (stimer->msg_pending && stimer->config.enable &&
178                     !stimer->config.direct_mode &&
179                     stimer->config.sintx == sint)
180                         stimer_mark_pending(stimer, false);
181         }
182
183         idx = srcu_read_lock(&kvm->irq_srcu);
184         gsi = atomic_read(&synic->sint_to_gsi[sint]);
185         if (gsi != -1)
186                 kvm_notify_acked_gsi(kvm, gsi);
187         srcu_read_unlock(&kvm->irq_srcu, idx);
188 }
189
190 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
191 {
192         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
193         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
194
195         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
196         hv_vcpu->exit.u.synic.msr = msr;
197         hv_vcpu->exit.u.synic.control = synic->control;
198         hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
199         hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
200
201         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
202 }
203
204 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
205                          u32 msr, u64 data, bool host)
206 {
207         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
208         int ret;
209
210         if (!synic->active && !host)
211                 return 1;
212
213         trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
214
215         ret = 0;
216         switch (msr) {
217         case HV_X64_MSR_SCONTROL:
218                 synic->control = data;
219                 if (!host)
220                         synic_exit(synic, msr);
221                 break;
222         case HV_X64_MSR_SVERSION:
223                 if (!host) {
224                         ret = 1;
225                         break;
226                 }
227                 synic->version = data;
228                 break;
229         case HV_X64_MSR_SIEFP:
230                 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
231                     !synic->dont_zero_synic_pages)
232                         if (kvm_clear_guest(vcpu->kvm,
233                                             data & PAGE_MASK, PAGE_SIZE)) {
234                                 ret = 1;
235                                 break;
236                         }
237                 synic->evt_page = data;
238                 if (!host)
239                         synic_exit(synic, msr);
240                 break;
241         case HV_X64_MSR_SIMP:
242                 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
243                     !synic->dont_zero_synic_pages)
244                         if (kvm_clear_guest(vcpu->kvm,
245                                             data & PAGE_MASK, PAGE_SIZE)) {
246                                 ret = 1;
247                                 break;
248                         }
249                 synic->msg_page = data;
250                 if (!host)
251                         synic_exit(synic, msr);
252                 break;
253         case HV_X64_MSR_EOM: {
254                 int i;
255
256                 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
257                         kvm_hv_notify_acked_sint(vcpu, i);
258                 break;
259         }
260         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
261                 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
262                 break;
263         default:
264                 ret = 1;
265                 break;
266         }
267         return ret;
268 }
269
270 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
271                          bool host)
272 {
273         int ret;
274
275         if (!synic->active && !host)
276                 return 1;
277
278         ret = 0;
279         switch (msr) {
280         case HV_X64_MSR_SCONTROL:
281                 *pdata = synic->control;
282                 break;
283         case HV_X64_MSR_SVERSION:
284                 *pdata = synic->version;
285                 break;
286         case HV_X64_MSR_SIEFP:
287                 *pdata = synic->evt_page;
288                 break;
289         case HV_X64_MSR_SIMP:
290                 *pdata = synic->msg_page;
291                 break;
292         case HV_X64_MSR_EOM:
293                 *pdata = 0;
294                 break;
295         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
296                 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
297                 break;
298         default:
299                 ret = 1;
300                 break;
301         }
302         return ret;
303 }
304
305 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
306 {
307         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
308         struct kvm_lapic_irq irq;
309         int ret, vector;
310
311         if (sint >= ARRAY_SIZE(synic->sint))
312                 return -EINVAL;
313
314         vector = synic_get_sint_vector(synic_read_sint(synic, sint));
315         if (vector < 0)
316                 return -ENOENT;
317
318         memset(&irq, 0, sizeof(irq));
319         irq.shorthand = APIC_DEST_SELF;
320         irq.dest_mode = APIC_DEST_PHYSICAL;
321         irq.delivery_mode = APIC_DM_FIXED;
322         irq.vector = vector;
323         irq.level = 1;
324
325         ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
326         trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
327         return ret;
328 }
329
330 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
331 {
332         struct kvm_vcpu_hv_synic *synic;
333
334         synic = synic_get(kvm, vpidx);
335         if (!synic)
336                 return -EINVAL;
337
338         return synic_set_irq(synic, sint);
339 }
340
341 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
342 {
343         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
344         int i;
345
346         trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
347
348         for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
349                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
350                         kvm_hv_notify_acked_sint(vcpu, i);
351 }
352
353 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
354 {
355         struct kvm_vcpu_hv_synic *synic;
356
357         synic = synic_get(kvm, vpidx);
358         if (!synic)
359                 return -EINVAL;
360
361         if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
362                 return -EINVAL;
363
364         atomic_set(&synic->sint_to_gsi[sint], gsi);
365         return 0;
366 }
367
368 void kvm_hv_irq_routing_update(struct kvm *kvm)
369 {
370         struct kvm_irq_routing_table *irq_rt;
371         struct kvm_kernel_irq_routing_entry *e;
372         u32 gsi;
373
374         irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
375                                         lockdep_is_held(&kvm->irq_lock));
376
377         for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
378                 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
379                         if (e->type == KVM_IRQ_ROUTING_HV_SINT)
380                                 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
381                                                     e->hv_sint.sint, gsi);
382                 }
383         }
384 }
385
386 static void synic_init(struct kvm_vcpu_hv_synic *synic)
387 {
388         int i;
389
390         memset(synic, 0, sizeof(*synic));
391         synic->version = HV_SYNIC_VERSION_1;
392         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
393                 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
394                 atomic_set(&synic->sint_to_gsi[i], -1);
395         }
396 }
397
398 static u64 get_time_ref_counter(struct kvm *kvm)
399 {
400         struct kvm_hv *hv = &kvm->arch.hyperv;
401         struct kvm_vcpu *vcpu;
402         u64 tsc;
403
404         /*
405          * The guest has not set up the TSC page or the clock isn't
406          * stable, fall back to get_kvmclock_ns.
407          */
408         if (!hv->tsc_ref.tsc_sequence)
409                 return div_u64(get_kvmclock_ns(kvm), 100);
410
411         vcpu = kvm_get_vcpu(kvm, 0);
412         tsc = kvm_read_l1_tsc(vcpu, rdtsc());
413         return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
414                 + hv->tsc_ref.tsc_offset;
415 }
416
417 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
418                                 bool vcpu_kick)
419 {
420         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
421
422         set_bit(stimer->index,
423                 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
424         kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
425         if (vcpu_kick)
426                 kvm_vcpu_kick(vcpu);
427 }
428
429 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
430 {
431         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
432
433         trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
434                                     stimer->index);
435
436         hrtimer_cancel(&stimer->timer);
437         clear_bit(stimer->index,
438                   vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
439         stimer->msg_pending = false;
440         stimer->exp_time = 0;
441 }
442
443 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
444 {
445         struct kvm_vcpu_hv_stimer *stimer;
446
447         stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
448         trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
449                                      stimer->index);
450         stimer_mark_pending(stimer, true);
451
452         return HRTIMER_NORESTART;
453 }
454
455 /*
456  * stimer_start() assumptions:
457  * a) stimer->count is not equal to 0
458  * b) stimer->config has HV_STIMER_ENABLE flag
459  */
460 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
461 {
462         u64 time_now;
463         ktime_t ktime_now;
464
465         time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
466         ktime_now = ktime_get();
467
468         if (stimer->config.periodic) {
469                 if (stimer->exp_time) {
470                         if (time_now >= stimer->exp_time) {
471                                 u64 remainder;
472
473                                 div64_u64_rem(time_now - stimer->exp_time,
474                                               stimer->count, &remainder);
475                                 stimer->exp_time =
476                                         time_now + (stimer->count - remainder);
477                         }
478                 } else
479                         stimer->exp_time = time_now + stimer->count;
480
481                 trace_kvm_hv_stimer_start_periodic(
482                                         stimer_to_vcpu(stimer)->vcpu_id,
483                                         stimer->index,
484                                         time_now, stimer->exp_time);
485
486                 hrtimer_start(&stimer->timer,
487                               ktime_add_ns(ktime_now,
488                                            100 * (stimer->exp_time - time_now)),
489                               HRTIMER_MODE_ABS);
490                 return 0;
491         }
492         stimer->exp_time = stimer->count;
493         if (time_now >= stimer->count) {
494                 /*
495                  * Expire timer according to Hypervisor Top-Level Functional
496                  * specification v4(15.3.1):
497                  * "If a one shot is enabled and the specified count is in
498                  * the past, it will expire immediately."
499                  */
500                 stimer_mark_pending(stimer, false);
501                 return 0;
502         }
503
504         trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
505                                            stimer->index,
506                                            time_now, stimer->count);
507
508         hrtimer_start(&stimer->timer,
509                       ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
510                       HRTIMER_MODE_ABS);
511         return 0;
512 }
513
514 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
515                              bool host)
516 {
517         union hv_stimer_config new_config = {.as_uint64 = config},
518                 old_config = {.as_uint64 = stimer->config.as_uint64};
519
520         trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
521                                        stimer->index, config, host);
522
523         stimer_cleanup(stimer);
524         if (old_config.enable &&
525             !new_config.direct_mode && new_config.sintx == 0)
526                 new_config.enable = 0;
527         stimer->config.as_uint64 = new_config.as_uint64;
528
529         if (stimer->config.enable)
530                 stimer_mark_pending(stimer, false);
531
532         return 0;
533 }
534
535 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
536                             bool host)
537 {
538         trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
539                                       stimer->index, count, host);
540
541         stimer_cleanup(stimer);
542         stimer->count = count;
543         if (stimer->count == 0)
544                 stimer->config.enable = 0;
545         else if (stimer->config.auto_enable)
546                 stimer->config.enable = 1;
547
548         if (stimer->config.enable)
549                 stimer_mark_pending(stimer, false);
550
551         return 0;
552 }
553
554 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
555 {
556         *pconfig = stimer->config.as_uint64;
557         return 0;
558 }
559
560 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
561 {
562         *pcount = stimer->count;
563         return 0;
564 }
565
566 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
567                              struct hv_message *src_msg, bool no_retry)
568 {
569         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
570         int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
571         gfn_t msg_page_gfn;
572         struct hv_message_header hv_hdr;
573         int r;
574
575         if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
576                 return -ENOENT;
577
578         msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
579
580         /*
581          * Strictly following the spec-mandated ordering would assume setting
582          * .msg_pending before checking .message_type.  However, this function
583          * is only called in vcpu context so the entire update is atomic from
584          * guest POV and thus the exact order here doesn't matter.
585          */
586         r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
587                                      msg_off + offsetof(struct hv_message,
588                                                         header.message_type),
589                                      sizeof(hv_hdr.message_type));
590         if (r < 0)
591                 return r;
592
593         if (hv_hdr.message_type != HVMSG_NONE) {
594                 if (no_retry)
595                         return 0;
596
597                 hv_hdr.message_flags.msg_pending = 1;
598                 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
599                                               &hv_hdr.message_flags,
600                                               msg_off +
601                                               offsetof(struct hv_message,
602                                                        header.message_flags),
603                                               sizeof(hv_hdr.message_flags));
604                 if (r < 0)
605                         return r;
606                 return -EAGAIN;
607         }
608
609         r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
610                                       sizeof(src_msg->header) +
611                                       src_msg->header.payload_size);
612         if (r < 0)
613                 return r;
614
615         r = synic_set_irq(synic, sint);
616         if (r < 0)
617                 return r;
618         if (r == 0)
619                 return -EFAULT;
620         return 0;
621 }
622
623 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
624 {
625         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
626         struct hv_message *msg = &stimer->msg;
627         struct hv_timer_message_payload *payload =
628                         (struct hv_timer_message_payload *)&msg->u.payload;
629
630         /*
631          * To avoid piling up periodic ticks, don't retry message
632          * delivery for them (within "lazy" lost ticks policy).
633          */
634         bool no_retry = stimer->config.periodic;
635
636         payload->expiration_time = stimer->exp_time;
637         payload->delivery_time = get_time_ref_counter(vcpu->kvm);
638         return synic_deliver_msg(vcpu_to_synic(vcpu),
639                                  stimer->config.sintx, msg,
640                                  no_retry);
641 }
642
643 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
644 {
645         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
646         struct kvm_lapic_irq irq = {
647                 .delivery_mode = APIC_DM_FIXED,
648                 .vector = stimer->config.apic_vector
649         };
650
651         return !kvm_apic_set_irq(vcpu, &irq, NULL);
652 }
653
654 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
655 {
656         int r, direct = stimer->config.direct_mode;
657
658         stimer->msg_pending = true;
659         if (!direct)
660                 r = stimer_send_msg(stimer);
661         else
662                 r = stimer_notify_direct(stimer);
663         trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
664                                        stimer->index, direct, r);
665         if (!r) {
666                 stimer->msg_pending = false;
667                 if (!(stimer->config.periodic))
668                         stimer->config.enable = 0;
669         }
670 }
671
672 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
673 {
674         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
675         struct kvm_vcpu_hv_stimer *stimer;
676         u64 time_now, exp_time;
677         int i;
678
679         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
680                 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
681                         stimer = &hv_vcpu->stimer[i];
682                         if (stimer->config.enable) {
683                                 exp_time = stimer->exp_time;
684
685                                 if (exp_time) {
686                                         time_now =
687                                                 get_time_ref_counter(vcpu->kvm);
688                                         if (time_now >= exp_time)
689                                                 stimer_expiration(stimer);
690                                 }
691
692                                 if ((stimer->config.enable) &&
693                                     stimer->count) {
694                                         if (!stimer->msg_pending)
695                                                 stimer_start(stimer);
696                                 } else
697                                         stimer_cleanup(stimer);
698                         }
699                 }
700 }
701
702 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
703 {
704         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
705         int i;
706
707         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
708                 stimer_cleanup(&hv_vcpu->stimer[i]);
709 }
710
711 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
712 {
713         if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
714                 return false;
715         return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
716 }
717 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
718
719 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
720                             struct hv_vp_assist_page *assist_page)
721 {
722         if (!kvm_hv_assist_page_enabled(vcpu))
723                 return false;
724         return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
725                                       assist_page, sizeof(*assist_page));
726 }
727 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
728
729 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
730 {
731         struct hv_message *msg = &stimer->msg;
732         struct hv_timer_message_payload *payload =
733                         (struct hv_timer_message_payload *)&msg->u.payload;
734
735         memset(&msg->header, 0, sizeof(msg->header));
736         msg->header.message_type = HVMSG_TIMER_EXPIRED;
737         msg->header.payload_size = sizeof(*payload);
738
739         payload->timer_index = stimer->index;
740         payload->expiration_time = 0;
741         payload->delivery_time = 0;
742 }
743
744 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
745 {
746         memset(stimer, 0, sizeof(*stimer));
747         stimer->index = timer_index;
748         hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
749         stimer->timer.function = stimer_timer_callback;
750         stimer_prepare_msg(stimer);
751 }
752
753 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
754 {
755         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
756         int i;
757
758         synic_init(&hv_vcpu->synic);
759
760         bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
761         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
762                 stimer_init(&hv_vcpu->stimer[i], i);
763 }
764
765 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
766 {
767         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
768
769         hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
770 }
771
772 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
773 {
774         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
775
776         /*
777          * Hyper-V SynIC auto EOI SINT's are
778          * not compatible with APICV, so deactivate APICV
779          */
780         kvm_vcpu_deactivate_apicv(vcpu);
781         synic->active = true;
782         synic->dont_zero_synic_pages = dont_zero_synic_pages;
783         return 0;
784 }
785
786 static bool kvm_hv_msr_partition_wide(u32 msr)
787 {
788         bool r = false;
789
790         switch (msr) {
791         case HV_X64_MSR_GUEST_OS_ID:
792         case HV_X64_MSR_HYPERCALL:
793         case HV_X64_MSR_REFERENCE_TSC:
794         case HV_X64_MSR_TIME_REF_COUNT:
795         case HV_X64_MSR_CRASH_CTL:
796         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
797         case HV_X64_MSR_RESET:
798         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
799         case HV_X64_MSR_TSC_EMULATION_CONTROL:
800         case HV_X64_MSR_TSC_EMULATION_STATUS:
801                 r = true;
802                 break;
803         }
804
805         return r;
806 }
807
808 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
809                                      u32 index, u64 *pdata)
810 {
811         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
812
813         if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
814                 return -EINVAL;
815
816         *pdata = hv->hv_crash_param[index];
817         return 0;
818 }
819
820 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
821 {
822         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
823
824         *pdata = hv->hv_crash_ctl;
825         return 0;
826 }
827
828 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
829 {
830         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
831
832         if (host)
833                 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
834
835         if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
836
837                 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
838                           hv->hv_crash_param[0],
839                           hv->hv_crash_param[1],
840                           hv->hv_crash_param[2],
841                           hv->hv_crash_param[3],
842                           hv->hv_crash_param[4]);
843
844                 /* Send notification about crash to user space */
845                 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
846         }
847
848         return 0;
849 }
850
851 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
852                                      u32 index, u64 data)
853 {
854         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
855
856         if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
857                 return -EINVAL;
858
859         hv->hv_crash_param[index] = data;
860         return 0;
861 }
862
863 /*
864  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
865  * between them is possible:
866  *
867  * kvmclock formula:
868  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
869  *           + system_time
870  *
871  * Hyper-V formula:
872  *    nsec/100 = ticks * scale / 2^64 + offset
873  *
874  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
875  * By dividing the kvmclock formula by 100 and equating what's left we get:
876  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
877  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
878  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
879  *
880  * Now expand the kvmclock formula and divide by 100:
881  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
882  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
883  *           + system_time
884  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
885  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
886  *               + system_time / 100
887  *
888  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
889  *    nsec/100 = ticks * scale / 2^64
890  *               - tsc_timestamp * scale / 2^64
891  *               + system_time / 100
892  *
893  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
894  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
895  *
896  * These two equivalencies are implemented in this function.
897  */
898 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
899                                         HV_REFERENCE_TSC_PAGE *tsc_ref)
900 {
901         u64 max_mul;
902
903         if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
904                 return false;
905
906         /*
907          * check if scale would overflow, if so we use the time ref counter
908          *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
909          *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
910          *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
911          */
912         max_mul = 100ull << (32 - hv_clock->tsc_shift);
913         if (hv_clock->tsc_to_system_mul >= max_mul)
914                 return false;
915
916         /*
917          * Otherwise compute the scale and offset according to the formulas
918          * derived above.
919          */
920         tsc_ref->tsc_scale =
921                 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
922                                 hv_clock->tsc_to_system_mul,
923                                 100);
924
925         tsc_ref->tsc_offset = hv_clock->system_time;
926         do_div(tsc_ref->tsc_offset, 100);
927         tsc_ref->tsc_offset -=
928                 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
929         return true;
930 }
931
932 void kvm_hv_setup_tsc_page(struct kvm *kvm,
933                            struct pvclock_vcpu_time_info *hv_clock)
934 {
935         struct kvm_hv *hv = &kvm->arch.hyperv;
936         u32 tsc_seq;
937         u64 gfn;
938
939         BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
940         BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0);
941
942         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
943                 return;
944
945         mutex_lock(&kvm->arch.hyperv.hv_lock);
946         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
947                 goto out_unlock;
948
949         gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
950         /*
951          * Because the TSC parameters only vary when there is a
952          * change in the master clock, do not bother with caching.
953          */
954         if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
955                                     &tsc_seq, sizeof(tsc_seq))))
956                 goto out_unlock;
957
958         /*
959          * While we're computing and writing the parameters, force the
960          * guest to use the time reference count MSR.
961          */
962         hv->tsc_ref.tsc_sequence = 0;
963         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
964                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
965                 goto out_unlock;
966
967         if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
968                 goto out_unlock;
969
970         /* Ensure sequence is zero before writing the rest of the struct.  */
971         smp_wmb();
972         if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
973                 goto out_unlock;
974
975         /*
976          * Now switch to the TSC page mechanism by writing the sequence.
977          */
978         tsc_seq++;
979         if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
980                 tsc_seq = 1;
981
982         /* Write the struct entirely before the non-zero sequence.  */
983         smp_wmb();
984
985         hv->tsc_ref.tsc_sequence = tsc_seq;
986         kvm_write_guest(kvm, gfn_to_gpa(gfn),
987                         &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
988 out_unlock:
989         mutex_unlock(&kvm->arch.hyperv.hv_lock);
990 }
991
992 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
993                              bool host)
994 {
995         struct kvm *kvm = vcpu->kvm;
996         struct kvm_hv *hv = &kvm->arch.hyperv;
997
998         switch (msr) {
999         case HV_X64_MSR_GUEST_OS_ID:
1000                 hv->hv_guest_os_id = data;
1001                 /* setting guest os id to zero disables hypercall page */
1002                 if (!hv->hv_guest_os_id)
1003                         hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1004                 break;
1005         case HV_X64_MSR_HYPERCALL: {
1006                 u64 gfn;
1007                 unsigned long addr;
1008                 u8 instructions[4];
1009
1010                 /* if guest os id is not set hypercall should remain disabled */
1011                 if (!hv->hv_guest_os_id)
1012                         break;
1013                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1014                         hv->hv_hypercall = data;
1015                         break;
1016                 }
1017                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1018                 addr = gfn_to_hva(kvm, gfn);
1019                 if (kvm_is_error_hva(addr))
1020                         return 1;
1021                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1022                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1023                 if (__copy_to_user((void __user *)addr, instructions, 4))
1024                         return 1;
1025                 hv->hv_hypercall = data;
1026                 mark_page_dirty(kvm, gfn);
1027                 break;
1028         }
1029         case HV_X64_MSR_REFERENCE_TSC:
1030                 hv->hv_tsc_page = data;
1031                 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
1032                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1033                 break;
1034         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1035                 return kvm_hv_msr_set_crash_data(vcpu,
1036                                                  msr - HV_X64_MSR_CRASH_P0,
1037                                                  data);
1038         case HV_X64_MSR_CRASH_CTL:
1039                 return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1040         case HV_X64_MSR_RESET:
1041                 if (data == 1) {
1042                         vcpu_debug(vcpu, "hyper-v reset requested\n");
1043                         kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1044                 }
1045                 break;
1046         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1047                 hv->hv_reenlightenment_control = data;
1048                 break;
1049         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1050                 hv->hv_tsc_emulation_control = data;
1051                 break;
1052         case HV_X64_MSR_TSC_EMULATION_STATUS:
1053                 hv->hv_tsc_emulation_status = data;
1054                 break;
1055         case HV_X64_MSR_TIME_REF_COUNT:
1056                 /* read-only, but still ignore it if host-initiated */
1057                 if (!host)
1058                         return 1;
1059                 break;
1060         default:
1061                 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1062                             msr, data);
1063                 return 1;
1064         }
1065         return 0;
1066 }
1067
1068 /* Calculate cpu time spent by current task in 100ns units */
1069 static u64 current_task_runtime_100ns(void)
1070 {
1071         u64 utime, stime;
1072
1073         task_cputime_adjusted(current, &utime, &stime);
1074
1075         return div_u64(utime + stime, 100);
1076 }
1077
1078 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1079 {
1080         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1081
1082         switch (msr) {
1083         case HV_X64_MSR_VP_INDEX: {
1084                 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
1085                 int vcpu_idx = kvm_vcpu_get_idx(vcpu);
1086                 u32 new_vp_index = (u32)data;
1087
1088                 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1089                         return 1;
1090
1091                 if (new_vp_index == hv_vcpu->vp_index)
1092                         return 0;
1093
1094                 /*
1095                  * The VP index is initialized to vcpu_index by
1096                  * kvm_hv_vcpu_postcreate so they initially match.  Now the
1097                  * VP index is changing, adjust num_mismatched_vp_indexes if
1098                  * it now matches or no longer matches vcpu_idx.
1099                  */
1100                 if (hv_vcpu->vp_index == vcpu_idx)
1101                         atomic_inc(&hv->num_mismatched_vp_indexes);
1102                 else if (new_vp_index == vcpu_idx)
1103                         atomic_dec(&hv->num_mismatched_vp_indexes);
1104
1105                 hv_vcpu->vp_index = new_vp_index;
1106                 break;
1107         }
1108         case HV_X64_MSR_VP_ASSIST_PAGE: {
1109                 u64 gfn;
1110                 unsigned long addr;
1111
1112                 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1113                         hv_vcpu->hv_vapic = data;
1114                         if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1115                                 return 1;
1116                         break;
1117                 }
1118                 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1119                 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1120                 if (kvm_is_error_hva(addr))
1121                         return 1;
1122
1123                 /*
1124                  * Clear apic_assist portion of f(struct hv_vp_assist_page
1125                  * only, there can be valuable data in the rest which needs
1126                  * to be preserved e.g. on migration.
1127                  */
1128                 if (__clear_user((void __user *)addr, sizeof(u32)))
1129                         return 1;
1130                 hv_vcpu->hv_vapic = data;
1131                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1132                 if (kvm_lapic_enable_pv_eoi(vcpu,
1133                                             gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1134                                             sizeof(struct hv_vp_assist_page)))
1135                         return 1;
1136                 break;
1137         }
1138         case HV_X64_MSR_EOI:
1139                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1140         case HV_X64_MSR_ICR:
1141                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1142         case HV_X64_MSR_TPR:
1143                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1144         case HV_X64_MSR_VP_RUNTIME:
1145                 if (!host)
1146                         return 1;
1147                 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1148                 break;
1149         case HV_X64_MSR_SCONTROL:
1150         case HV_X64_MSR_SVERSION:
1151         case HV_X64_MSR_SIEFP:
1152         case HV_X64_MSR_SIMP:
1153         case HV_X64_MSR_EOM:
1154         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1155                 return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1156         case HV_X64_MSR_STIMER0_CONFIG:
1157         case HV_X64_MSR_STIMER1_CONFIG:
1158         case HV_X64_MSR_STIMER2_CONFIG:
1159         case HV_X64_MSR_STIMER3_CONFIG: {
1160                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1161
1162                 return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1163                                          data, host);
1164         }
1165         case HV_X64_MSR_STIMER0_COUNT:
1166         case HV_X64_MSR_STIMER1_COUNT:
1167         case HV_X64_MSR_STIMER2_COUNT:
1168         case HV_X64_MSR_STIMER3_COUNT: {
1169                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1170
1171                 return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1172                                         data, host);
1173         }
1174         case HV_X64_MSR_TSC_FREQUENCY:
1175         case HV_X64_MSR_APIC_FREQUENCY:
1176                 /* read-only, but still ignore it if host-initiated */
1177                 if (!host)
1178                         return 1;
1179                 break;
1180         default:
1181                 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1182                             msr, data);
1183                 return 1;
1184         }
1185
1186         return 0;
1187 }
1188
1189 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1190 {
1191         u64 data = 0;
1192         struct kvm *kvm = vcpu->kvm;
1193         struct kvm_hv *hv = &kvm->arch.hyperv;
1194
1195         switch (msr) {
1196         case HV_X64_MSR_GUEST_OS_ID:
1197                 data = hv->hv_guest_os_id;
1198                 break;
1199         case HV_X64_MSR_HYPERCALL:
1200                 data = hv->hv_hypercall;
1201                 break;
1202         case HV_X64_MSR_TIME_REF_COUNT:
1203                 data = get_time_ref_counter(kvm);
1204                 break;
1205         case HV_X64_MSR_REFERENCE_TSC:
1206                 data = hv->hv_tsc_page;
1207                 break;
1208         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1209                 return kvm_hv_msr_get_crash_data(vcpu,
1210                                                  msr - HV_X64_MSR_CRASH_P0,
1211                                                  pdata);
1212         case HV_X64_MSR_CRASH_CTL:
1213                 return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1214         case HV_X64_MSR_RESET:
1215                 data = 0;
1216                 break;
1217         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1218                 data = hv->hv_reenlightenment_control;
1219                 break;
1220         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1221                 data = hv->hv_tsc_emulation_control;
1222                 break;
1223         case HV_X64_MSR_TSC_EMULATION_STATUS:
1224                 data = hv->hv_tsc_emulation_status;
1225                 break;
1226         default:
1227                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1228                 return 1;
1229         }
1230
1231         *pdata = data;
1232         return 0;
1233 }
1234
1235 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1236                           bool host)
1237 {
1238         u64 data = 0;
1239         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1240
1241         switch (msr) {
1242         case HV_X64_MSR_VP_INDEX:
1243                 data = hv_vcpu->vp_index;
1244                 break;
1245         case HV_X64_MSR_EOI:
1246                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1247         case HV_X64_MSR_ICR:
1248                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1249         case HV_X64_MSR_TPR:
1250                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1251         case HV_X64_MSR_VP_ASSIST_PAGE:
1252                 data = hv_vcpu->hv_vapic;
1253                 break;
1254         case HV_X64_MSR_VP_RUNTIME:
1255                 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1256                 break;
1257         case HV_X64_MSR_SCONTROL:
1258         case HV_X64_MSR_SVERSION:
1259         case HV_X64_MSR_SIEFP:
1260         case HV_X64_MSR_SIMP:
1261         case HV_X64_MSR_EOM:
1262         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1263                 return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
1264         case HV_X64_MSR_STIMER0_CONFIG:
1265         case HV_X64_MSR_STIMER1_CONFIG:
1266         case HV_X64_MSR_STIMER2_CONFIG:
1267         case HV_X64_MSR_STIMER3_CONFIG: {
1268                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1269
1270                 return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1271                                          pdata);
1272         }
1273         case HV_X64_MSR_STIMER0_COUNT:
1274         case HV_X64_MSR_STIMER1_COUNT:
1275         case HV_X64_MSR_STIMER2_COUNT:
1276         case HV_X64_MSR_STIMER3_COUNT: {
1277                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1278
1279                 return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1280                                         pdata);
1281         }
1282         case HV_X64_MSR_TSC_FREQUENCY:
1283                 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1284                 break;
1285         case HV_X64_MSR_APIC_FREQUENCY:
1286                 data = APIC_BUS_FREQUENCY;
1287                 break;
1288         default:
1289                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1290                 return 1;
1291         }
1292         *pdata = data;
1293         return 0;
1294 }
1295
1296 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1297 {
1298         if (kvm_hv_msr_partition_wide(msr)) {
1299                 int r;
1300
1301                 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1302                 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1303                 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1304                 return r;
1305         } else
1306                 return kvm_hv_set_msr(vcpu, msr, data, host);
1307 }
1308
1309 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1310 {
1311         if (kvm_hv_msr_partition_wide(msr)) {
1312                 int r;
1313
1314                 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1315                 r = kvm_hv_get_msr_pw(vcpu, msr, pdata);
1316                 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1317                 return r;
1318         } else
1319                 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1320 }
1321
1322 static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1323         struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1324         u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1325 {
1326         struct kvm_hv *hv = &kvm->arch.hyperv;
1327         struct kvm_vcpu *vcpu;
1328         int i, bank, sbank = 0;
1329
1330         memset(vp_bitmap, 0,
1331                KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1332         for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1333                          KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1334                 vp_bitmap[bank] = sparse_banks[sbank++];
1335
1336         if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1337                 /* for all vcpus vp_index == vcpu_idx */
1338                 return (unsigned long *)vp_bitmap;
1339         }
1340
1341         bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1342         kvm_for_each_vcpu(i, vcpu, kvm) {
1343                 if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
1344                              (unsigned long *)vp_bitmap))
1345                         __set_bit(i, vcpu_bitmap);
1346         }
1347         return vcpu_bitmap;
1348 }
1349
1350 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1351                             u16 rep_cnt, bool ex)
1352 {
1353         struct kvm *kvm = current_vcpu->kvm;
1354         struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
1355         struct hv_tlb_flush_ex flush_ex;
1356         struct hv_tlb_flush flush;
1357         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1358         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1359         unsigned long *vcpu_mask;
1360         u64 valid_bank_mask;
1361         u64 sparse_banks[64];
1362         int sparse_banks_len;
1363         bool all_cpus;
1364
1365         if (!ex) {
1366                 if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1367                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1368
1369                 trace_kvm_hv_flush_tlb(flush.processor_mask,
1370                                        flush.address_space, flush.flags);
1371
1372                 valid_bank_mask = BIT_ULL(0);
1373                 sparse_banks[0] = flush.processor_mask;
1374
1375                 /*
1376                  * Work around possible WS2012 bug: it sends hypercalls
1377                  * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
1378                  * while also expecting us to flush something and crashing if
1379                  * we don't. Let's treat processor_mask == 0 same as
1380                  * HV_FLUSH_ALL_PROCESSORS.
1381                  */
1382                 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
1383                         flush.processor_mask == 0;
1384         } else {
1385                 if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1386                                             sizeof(flush_ex))))
1387                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1388
1389                 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1390                                           flush_ex.hv_vp_set.format,
1391                                           flush_ex.address_space,
1392                                           flush_ex.flags);
1393
1394                 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1395                 all_cpus = flush_ex.hv_vp_set.format !=
1396                         HV_GENERIC_SET_SPARSE_4K;
1397
1398                 sparse_banks_len =
1399                         bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1400                         sizeof(sparse_banks[0]);
1401
1402                 if (!sparse_banks_len && !all_cpus)
1403                         goto ret_success;
1404
1405                 if (!all_cpus &&
1406                     kvm_read_guest(kvm,
1407                                    ingpa + offsetof(struct hv_tlb_flush_ex,
1408                                                     hv_vp_set.bank_contents),
1409                                    sparse_banks,
1410                                    sparse_banks_len))
1411                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1412         }
1413
1414         cpumask_clear(&hv_vcpu->tlb_flush);
1415
1416         vcpu_mask = all_cpus ? NULL :
1417                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1418                                         vp_bitmap, vcpu_bitmap);
1419
1420         /*
1421          * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1422          * analyze it here, flush TLB regardless of the specified address space.
1423          */
1424         kvm_make_vcpus_request_mask(kvm,
1425                                     KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
1426                                     vcpu_mask, &hv_vcpu->tlb_flush);
1427
1428 ret_success:
1429         /* We always do full TLB flush, set rep_done = rep_cnt. */
1430         return (u64)HV_STATUS_SUCCESS |
1431                 ((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1432 }
1433
1434 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1435                                  unsigned long *vcpu_bitmap)
1436 {
1437         struct kvm_lapic_irq irq = {
1438                 .delivery_mode = APIC_DM_FIXED,
1439                 .vector = vector
1440         };
1441         struct kvm_vcpu *vcpu;
1442         int i;
1443
1444         kvm_for_each_vcpu(i, vcpu, kvm) {
1445                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1446                         continue;
1447
1448                 /* We fail only when APIC is disabled */
1449                 kvm_apic_set_irq(vcpu, &irq, NULL);
1450         }
1451 }
1452
1453 static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
1454                            bool ex, bool fast)
1455 {
1456         struct kvm *kvm = current_vcpu->kvm;
1457         struct hv_send_ipi_ex send_ipi_ex;
1458         struct hv_send_ipi send_ipi;
1459         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1460         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1461         unsigned long *vcpu_mask;
1462         unsigned long valid_bank_mask;
1463         u64 sparse_banks[64];
1464         int sparse_banks_len;
1465         u32 vector;
1466         bool all_cpus;
1467
1468         if (!ex) {
1469                 if (!fast) {
1470                         if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
1471                                                     sizeof(send_ipi))))
1472                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1473                         sparse_banks[0] = send_ipi.cpu_mask;
1474                         vector = send_ipi.vector;
1475                 } else {
1476                         /* 'reserved' part of hv_send_ipi should be 0 */
1477                         if (unlikely(ingpa >> 32 != 0))
1478                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1479                         sparse_banks[0] = outgpa;
1480                         vector = (u32)ingpa;
1481                 }
1482                 all_cpus = false;
1483                 valid_bank_mask = BIT_ULL(0);
1484
1485                 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1486         } else {
1487                 if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
1488                                             sizeof(send_ipi_ex))))
1489                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1490
1491                 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1492                                          send_ipi_ex.vp_set.format,
1493                                          send_ipi_ex.vp_set.valid_bank_mask);
1494
1495                 vector = send_ipi_ex.vector;
1496                 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1497                 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1498                         sizeof(sparse_banks[0]);
1499
1500                 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1501
1502                 if (!sparse_banks_len)
1503                         goto ret_success;
1504
1505                 if (!all_cpus &&
1506                     kvm_read_guest(kvm,
1507                                    ingpa + offsetof(struct hv_send_ipi_ex,
1508                                                     vp_set.bank_contents),
1509                                    sparse_banks,
1510                                    sparse_banks_len))
1511                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1512         }
1513
1514         if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1515                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1516
1517         vcpu_mask = all_cpus ? NULL :
1518                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1519                                         vp_bitmap, vcpu_bitmap);
1520
1521         kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1522
1523 ret_success:
1524         return HV_STATUS_SUCCESS;
1525 }
1526
1527 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1528 {
1529         return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
1530 }
1531
1532 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1533 {
1534         bool longmode;
1535
1536         longmode = is_64_bit_mode(vcpu);
1537         if (longmode)
1538                 kvm_register_write(vcpu, VCPU_REGS_RAX, result);
1539         else {
1540                 kvm_register_write(vcpu, VCPU_REGS_RDX, result >> 32);
1541                 kvm_register_write(vcpu, VCPU_REGS_RAX, result & 0xffffffff);
1542         }
1543 }
1544
1545 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1546 {
1547         kvm_hv_hypercall_set_result(vcpu, result);
1548         ++vcpu->stat.hypercalls;
1549         return kvm_skip_emulated_instruction(vcpu);
1550 }
1551
1552 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1553 {
1554         return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1555 }
1556
1557 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1558 {
1559         struct eventfd_ctx *eventfd;
1560
1561         if (unlikely(!fast)) {
1562                 int ret;
1563                 gpa_t gpa = param;
1564
1565                 if ((gpa & (__alignof__(param) - 1)) ||
1566                     offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1567                         return HV_STATUS_INVALID_ALIGNMENT;
1568
1569                 ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1570                 if (ret < 0)
1571                         return HV_STATUS_INVALID_ALIGNMENT;
1572         }
1573
1574         /*
1575          * Per spec, bits 32-47 contain the extra "flag number".  However, we
1576          * have no use for it, and in all known usecases it is zero, so just
1577          * report lookup failure if it isn't.
1578          */
1579         if (param & 0xffff00000000ULL)
1580                 return HV_STATUS_INVALID_PORT_ID;
1581         /* remaining bits are reserved-zero */
1582         if (param & ~KVM_HYPERV_CONN_ID_MASK)
1583                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1584
1585         /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1586         rcu_read_lock();
1587         eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1588         rcu_read_unlock();
1589         if (!eventfd)
1590                 return HV_STATUS_INVALID_PORT_ID;
1591
1592         eventfd_signal(eventfd, 1);
1593         return HV_STATUS_SUCCESS;
1594 }
1595
1596 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1597 {
1598         u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1599         uint16_t code, rep_idx, rep_cnt;
1600         bool fast, longmode, rep;
1601
1602         /*
1603          * hypercall generates UD from non zero cpl and real mode
1604          * per HYPER-V spec
1605          */
1606         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1607                 kvm_queue_exception(vcpu, UD_VECTOR);
1608                 return 1;
1609         }
1610
1611         longmode = is_64_bit_mode(vcpu);
1612
1613         if (!longmode) {
1614                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
1615                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
1616                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
1617                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
1618                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
1619                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
1620         }
1621 #ifdef CONFIG_X86_64
1622         else {
1623                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
1624                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
1625                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
1626         }
1627 #endif
1628
1629         code = param & 0xffff;
1630         fast = !!(param & HV_HYPERCALL_FAST_BIT);
1631         rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1632         rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1633         rep = !!(rep_cnt || rep_idx);
1634
1635         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1636
1637         switch (code) {
1638         case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1639                 if (unlikely(rep)) {
1640                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1641                         break;
1642                 }
1643                 kvm_vcpu_on_spin(vcpu, true);
1644                 break;
1645         case HVCALL_SIGNAL_EVENT:
1646                 if (unlikely(rep)) {
1647                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1648                         break;
1649                 }
1650                 ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1651                 if (ret != HV_STATUS_INVALID_PORT_ID)
1652                         break;
1653                 /* fall through - maybe userspace knows this conn_id. */
1654         case HVCALL_POST_MESSAGE:
1655                 /* don't bother userspace if it has no way to handle it */
1656                 if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
1657                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1658                         break;
1659                 }
1660                 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1661                 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1662                 vcpu->run->hyperv.u.hcall.input = param;
1663                 vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1664                 vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1665                 vcpu->arch.complete_userspace_io =
1666                                 kvm_hv_hypercall_complete_userspace;
1667                 return 0;
1668         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1669                 if (unlikely(fast || !rep_cnt || rep_idx)) {
1670                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1671                         break;
1672                 }
1673                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1674                 break;
1675         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1676                 if (unlikely(fast || rep)) {
1677                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1678                         break;
1679                 }
1680                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1681                 break;
1682         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1683                 if (unlikely(fast || !rep_cnt || rep_idx)) {
1684                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1685                         break;
1686                 }
1687                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1688                 break;
1689         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1690                 if (unlikely(fast || rep)) {
1691                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1692                         break;
1693                 }
1694                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1695                 break;
1696         case HVCALL_SEND_IPI:
1697                 if (unlikely(rep)) {
1698                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1699                         break;
1700                 }
1701                 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
1702                 break;
1703         case HVCALL_SEND_IPI_EX:
1704                 if (unlikely(fast || rep)) {
1705                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1706                         break;
1707                 }
1708                 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
1709                 break;
1710         default:
1711                 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1712                 break;
1713         }
1714
1715         return kvm_hv_hypercall_complete(vcpu, ret);
1716 }
1717
1718 void kvm_hv_init_vm(struct kvm *kvm)
1719 {
1720         mutex_init(&kvm->arch.hyperv.hv_lock);
1721         idr_init(&kvm->arch.hyperv.conn_to_evt);
1722 }
1723
1724 void kvm_hv_destroy_vm(struct kvm *kvm)
1725 {
1726         struct eventfd_ctx *eventfd;
1727         int i;
1728
1729         idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1730                 eventfd_ctx_put(eventfd);
1731         idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1732 }
1733
1734 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1735 {
1736         struct kvm_hv *hv = &kvm->arch.hyperv;
1737         struct eventfd_ctx *eventfd;
1738         int ret;
1739
1740         eventfd = eventfd_ctx_fdget(fd);
1741         if (IS_ERR(eventfd))
1742                 return PTR_ERR(eventfd);
1743
1744         mutex_lock(&hv->hv_lock);
1745         ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1746                         GFP_KERNEL_ACCOUNT);
1747         mutex_unlock(&hv->hv_lock);
1748
1749         if (ret >= 0)
1750                 return 0;
1751
1752         if (ret == -ENOSPC)
1753                 ret = -EEXIST;
1754         eventfd_ctx_put(eventfd);
1755         return ret;
1756 }
1757
1758 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1759 {
1760         struct kvm_hv *hv = &kvm->arch.hyperv;
1761         struct eventfd_ctx *eventfd;
1762
1763         mutex_lock(&hv->hv_lock);
1764         eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1765         mutex_unlock(&hv->hv_lock);
1766
1767         if (!eventfd)
1768                 return -ENOENT;
1769
1770         synchronize_srcu(&kvm->srcu);
1771         eventfd_ctx_put(eventfd);
1772         return 0;
1773 }
1774
1775 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1776 {
1777         if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1778             (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1779                 return -EINVAL;
1780
1781         if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1782                 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1783         return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1784 }
1785
1786 int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
1787                                 struct kvm_cpuid_entry2 __user *entries)
1788 {
1789         uint16_t evmcs_ver = kvm_x86_ops->nested_get_evmcs_version(vcpu);
1790         struct kvm_cpuid_entry2 cpuid_entries[] = {
1791                 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
1792                 { .function = HYPERV_CPUID_INTERFACE },
1793                 { .function = HYPERV_CPUID_VERSION },
1794                 { .function = HYPERV_CPUID_FEATURES },
1795                 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
1796                 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
1797                 { .function = HYPERV_CPUID_NESTED_FEATURES },
1798         };
1799         int i, nent = ARRAY_SIZE(cpuid_entries);
1800
1801         /* Skip NESTED_FEATURES if eVMCS is not supported */
1802         if (!evmcs_ver)
1803                 --nent;
1804
1805         if (cpuid->nent < nent)
1806                 return -E2BIG;
1807
1808         if (cpuid->nent > nent)
1809                 cpuid->nent = nent;
1810
1811         for (i = 0; i < nent; i++) {
1812                 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
1813                 u32 signature[3];
1814
1815                 switch (ent->function) {
1816                 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
1817                         memcpy(signature, "Linux KVM Hv", 12);
1818
1819                         ent->eax = HYPERV_CPUID_NESTED_FEATURES;
1820                         ent->ebx = signature[0];
1821                         ent->ecx = signature[1];
1822                         ent->edx = signature[2];
1823                         break;
1824
1825                 case HYPERV_CPUID_INTERFACE:
1826                         memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1827                         ent->eax = signature[0];
1828                         break;
1829
1830                 case HYPERV_CPUID_VERSION:
1831                         /*
1832                          * We implement some Hyper-V 2016 functions so let's use
1833                          * this version.
1834                          */
1835                         ent->eax = 0x00003839;
1836                         ent->ebx = 0x000A0000;
1837                         break;
1838
1839                 case HYPERV_CPUID_FEATURES:
1840                         ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
1841                         ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
1842                         ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
1843                         ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
1844                         ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
1845                         ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
1846                         ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
1847                         ent->eax |= HV_X64_MSR_RESET_AVAILABLE;
1848                         ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
1849                         ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS;
1850                         ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT;
1851
1852                         ent->ebx |= HV_X64_POST_MESSAGES;
1853                         ent->ebx |= HV_X64_SIGNAL_EVENTS;
1854
1855                         ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
1856                         ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1857                         ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
1858
1859                         break;
1860
1861                 case HYPERV_CPUID_ENLIGHTMENT_INFO:
1862                         ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
1863                         ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
1864                         ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
1865                         ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
1866                         ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
1867                         if (evmcs_ver)
1868                                 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
1869
1870                         /*
1871                          * Default number of spinlock retry attempts, matches
1872                          * HyperV 2016.
1873                          */
1874                         ent->ebx = 0x00000FFF;
1875
1876                         break;
1877
1878                 case HYPERV_CPUID_IMPLEMENT_LIMITS:
1879                         /* Maximum number of virtual processors */
1880                         ent->eax = KVM_MAX_VCPUS;
1881                         /*
1882                          * Maximum number of logical processors, matches
1883                          * HyperV 2016.
1884                          */
1885                         ent->ebx = 64;
1886
1887                         break;
1888
1889                 case HYPERV_CPUID_NESTED_FEATURES:
1890                         ent->eax = evmcs_ver;
1891
1892                         break;
1893
1894                 default:
1895                         break;
1896                 }
1897         }
1898
1899         if (copy_to_user(entries, cpuid_entries,
1900                          nent * sizeof(struct kvm_cpuid_entry2)))
1901                 return -EFAULT;
1902
1903         return 0;
1904 }