Merge branch 'bugfixes' of git://git.linux-nfs.org/projects/trondmy/nfs-2.6
[sfrench/cifs-2.6.git] / arch / x86 / kernel / uv_time.c
1 /*
2  * SGI RTC clock/timer routines.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, write to the Free Software
16  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  *
18  *  Copyright (c) 2009 Silicon Graphics, Inc.  All Rights Reserved.
19  *  Copyright (c) Dimitri Sivanich
20  */
21 #include <linux/clockchips.h>
22
23 #include <asm/uv/uv_mmrs.h>
24 #include <asm/uv/uv_hub.h>
25 #include <asm/uv/bios.h>
26 #include <asm/uv/uv.h>
27 #include <asm/apic.h>
28 #include <asm/cpu.h>
29
30 #define RTC_NAME                "sgi_rtc"
31
32 static cycle_t uv_read_rtc(struct clocksource *cs);
33 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
34 static void uv_rtc_timer_setup(enum clock_event_mode,
35                                 struct clock_event_device *);
36
37 static struct clocksource clocksource_uv = {
38         .name           = RTC_NAME,
39         .rating         = 400,
40         .read           = uv_read_rtc,
41         .mask           = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
42         .shift          = 10,
43         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
44 };
45
46 static struct clock_event_device clock_event_device_uv = {
47         .name           = RTC_NAME,
48         .features       = CLOCK_EVT_FEAT_ONESHOT,
49         .shift          = 20,
50         .rating         = 400,
51         .irq            = -1,
52         .set_next_event = uv_rtc_next_event,
53         .set_mode       = uv_rtc_timer_setup,
54         .event_handler  = NULL,
55 };
56
57 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
58
59 /* There is one of these allocated per node */
60 struct uv_rtc_timer_head {
61         spinlock_t      lock;
62         /* next cpu waiting for timer, local node relative: */
63         int             next_cpu;
64         /* number of cpus on this node: */
65         int             ncpus;
66         struct {
67                 int     lcpu;           /* systemwide logical cpu number */
68                 u64     expires;        /* next timer expiration for this cpu */
69         } cpu[1];
70 };
71
72 /*
73  * Access to uv_rtc_timer_head via blade id.
74  */
75 static struct uv_rtc_timer_head         **blade_info __read_mostly;
76
77 static int                              uv_rtc_evt_enable;
78
79 /*
80  * Hardware interface routines
81  */
82
83 /* Send IPIs to another node */
84 static void uv_rtc_send_IPI(int cpu)
85 {
86         unsigned long apicid, val;
87         int pnode;
88
89         apicid = cpu_physical_id(cpu);
90         pnode = uv_apicid_to_pnode(apicid);
91         val = (1UL << UVH_IPI_INT_SEND_SHFT) |
92               (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
93               (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
94
95         uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
96 }
97
98 /* Check for an RTC interrupt pending */
99 static int uv_intr_pending(int pnode)
100 {
101         return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
102                 UVH_EVENT_OCCURRED0_RTC1_MASK;
103 }
104
105 /* Setup interrupt and return non-zero if early expiration occurred. */
106 static int uv_setup_intr(int cpu, u64 expires)
107 {
108         u64 val;
109         int pnode = uv_cpu_to_pnode(cpu);
110
111         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
112                 UVH_RTC1_INT_CONFIG_M_MASK);
113         uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
114
115         uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
116                 UVH_EVENT_OCCURRED0_RTC1_MASK);
117
118         val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
119                 ((u64)cpu_physical_id(cpu) << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
120
121         /* Set configuration */
122         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
123         /* Initialize comparator value */
124         uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
125
126         if (uv_read_rtc(NULL) <= expires)
127                 return 0;
128
129         return !uv_intr_pending(pnode);
130 }
131
132 /*
133  * Per-cpu timer tracking routines
134  */
135
136 static __init void uv_rtc_deallocate_timers(void)
137 {
138         int bid;
139
140         for_each_possible_blade(bid) {
141                 kfree(blade_info[bid]);
142         }
143         kfree(blade_info);
144 }
145
146 /* Allocate per-node list of cpu timer expiration times. */
147 static __init int uv_rtc_allocate_timers(void)
148 {
149         int cpu;
150
151         blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
152         if (!blade_info)
153                 return -ENOMEM;
154         memset(blade_info, 0, uv_possible_blades * sizeof(void *));
155
156         for_each_present_cpu(cpu) {
157                 int nid = cpu_to_node(cpu);
158                 int bid = uv_cpu_to_blade_id(cpu);
159                 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
160                 struct uv_rtc_timer_head *head = blade_info[bid];
161
162                 if (!head) {
163                         head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
164                                 (uv_blade_nr_possible_cpus(bid) *
165                                         2 * sizeof(u64)),
166                                 GFP_KERNEL, nid);
167                         if (!head) {
168                                 uv_rtc_deallocate_timers();
169                                 return -ENOMEM;
170                         }
171                         spin_lock_init(&head->lock);
172                         head->ncpus = uv_blade_nr_possible_cpus(bid);
173                         head->next_cpu = -1;
174                         blade_info[bid] = head;
175                 }
176
177                 head->cpu[bcpu].lcpu = cpu;
178                 head->cpu[bcpu].expires = ULLONG_MAX;
179         }
180
181         return 0;
182 }
183
184 /* Find and set the next expiring timer.  */
185 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
186 {
187         u64 lowest = ULLONG_MAX;
188         int c, bcpu = -1;
189
190         head->next_cpu = -1;
191         for (c = 0; c < head->ncpus; c++) {
192                 u64 exp = head->cpu[c].expires;
193                 if (exp < lowest) {
194                         bcpu = c;
195                         lowest = exp;
196                 }
197         }
198         if (bcpu >= 0) {
199                 head->next_cpu = bcpu;
200                 c = head->cpu[bcpu].lcpu;
201                 if (uv_setup_intr(c, lowest))
202                         /* If we didn't set it up in time, trigger */
203                         uv_rtc_send_IPI(c);
204         } else {
205                 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
206                         UVH_RTC1_INT_CONFIG_M_MASK);
207         }
208 }
209
210 /*
211  * Set expiration time for current cpu.
212  *
213  * Returns 1 if we missed the expiration time.
214  */
215 static int uv_rtc_set_timer(int cpu, u64 expires)
216 {
217         int pnode = uv_cpu_to_pnode(cpu);
218         int bid = uv_cpu_to_blade_id(cpu);
219         struct uv_rtc_timer_head *head = blade_info[bid];
220         int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
221         u64 *t = &head->cpu[bcpu].expires;
222         unsigned long flags;
223         int next_cpu;
224
225         spin_lock_irqsave(&head->lock, flags);
226
227         next_cpu = head->next_cpu;
228         *t = expires;
229
230         /* Will this one be next to go off? */
231         if (next_cpu < 0 || bcpu == next_cpu ||
232                         expires < head->cpu[next_cpu].expires) {
233                 head->next_cpu = bcpu;
234                 if (uv_setup_intr(cpu, expires)) {
235                         *t = ULLONG_MAX;
236                         uv_rtc_find_next_timer(head, pnode);
237                         spin_unlock_irqrestore(&head->lock, flags);
238                         return -ETIME;
239                 }
240         }
241
242         spin_unlock_irqrestore(&head->lock, flags);
243         return 0;
244 }
245
246 /*
247  * Unset expiration time for current cpu.
248  *
249  * Returns 1 if this timer was pending.
250  */
251 static int uv_rtc_unset_timer(int cpu, int force)
252 {
253         int pnode = uv_cpu_to_pnode(cpu);
254         int bid = uv_cpu_to_blade_id(cpu);
255         struct uv_rtc_timer_head *head = blade_info[bid];
256         int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
257         u64 *t = &head->cpu[bcpu].expires;
258         unsigned long flags;
259         int rc = 0;
260
261         spin_lock_irqsave(&head->lock, flags);
262
263         if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
264                 rc = 1;
265
266         if (rc) {
267                 *t = ULLONG_MAX;
268                 /* Was the hardware setup for this timer? */
269                 if (head->next_cpu == bcpu)
270                         uv_rtc_find_next_timer(head, pnode);
271         }
272
273         spin_unlock_irqrestore(&head->lock, flags);
274
275         return rc;
276 }
277
278
279 /*
280  * Kernel interface routines.
281  */
282
283 /*
284  * Read the RTC.
285  *
286  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
287  * cachelines of it's own page.  This allows faster simultaneous reads
288  * from a given socket.
289  */
290 static cycle_t uv_read_rtc(struct clocksource *cs)
291 {
292         unsigned long offset;
293
294         if (uv_get_min_hub_revision_id() == 1)
295                 offset = 0;
296         else
297                 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
298
299         return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
300 }
301
302 /*
303  * Program the next event, relative to now
304  */
305 static int uv_rtc_next_event(unsigned long delta,
306                              struct clock_event_device *ced)
307 {
308         int ced_cpu = cpumask_first(ced->cpumask);
309
310         return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
311 }
312
313 /*
314  * Setup the RTC timer in oneshot mode
315  */
316 static void uv_rtc_timer_setup(enum clock_event_mode mode,
317                                struct clock_event_device *evt)
318 {
319         int ced_cpu = cpumask_first(evt->cpumask);
320
321         switch (mode) {
322         case CLOCK_EVT_MODE_PERIODIC:
323         case CLOCK_EVT_MODE_ONESHOT:
324         case CLOCK_EVT_MODE_RESUME:
325                 /* Nothing to do here yet */
326                 break;
327         case CLOCK_EVT_MODE_UNUSED:
328         case CLOCK_EVT_MODE_SHUTDOWN:
329                 uv_rtc_unset_timer(ced_cpu, 1);
330                 break;
331         }
332 }
333
334 static void uv_rtc_interrupt(void)
335 {
336         int cpu = smp_processor_id();
337         struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
338
339         if (!ced || !ced->event_handler)
340                 return;
341
342         if (uv_rtc_unset_timer(cpu, 0) != 1)
343                 return;
344
345         ced->event_handler(ced);
346 }
347
348 static int __init uv_enable_evt_rtc(char *str)
349 {
350         uv_rtc_evt_enable = 1;
351
352         return 1;
353 }
354 __setup("uvrtcevt", uv_enable_evt_rtc);
355
356 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
357 {
358         struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
359
360         *ced = clock_event_device_uv;
361         ced->cpumask = cpumask_of(smp_processor_id());
362         clockevents_register_device(ced);
363 }
364
365 static __init int uv_rtc_setup_clock(void)
366 {
367         int rc;
368
369         if (!is_uv_system())
370                 return -ENODEV;
371
372         clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second,
373                                 clocksource_uv.shift);
374
375         /* If single blade, prefer tsc */
376         if (uv_num_possible_blades() == 1)
377                 clocksource_uv.rating = 250;
378
379         rc = clocksource_register(&clocksource_uv);
380         if (rc)
381                 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
382         else
383                 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
384                         sn_rtc_cycles_per_second/(unsigned long)1E6);
385
386         if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
387                 return rc;
388
389         /* Setup and register clockevents */
390         rc = uv_rtc_allocate_timers();
391         if (rc)
392                 goto error;
393
394         x86_platform_ipi_callback = uv_rtc_interrupt;
395
396         clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
397                                 NSEC_PER_SEC, clock_event_device_uv.shift);
398
399         clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
400                                                 sn_rtc_cycles_per_second;
401
402         clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
403                                 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
404
405         rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
406         if (rc) {
407                 x86_platform_ipi_callback = NULL;
408                 uv_rtc_deallocate_timers();
409                 goto error;
410         }
411
412         printk(KERN_INFO "UV RTC clockevents registered\n");
413
414         return 0;
415
416 error:
417         clocksource_unregister(&clocksource_uv);
418         printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
419
420         return rc;
421 }
422 arch_initcall(uv_rtc_setup_clock);