Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / x86 / kernel / tsc.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
16
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28 #include <asm/i8259.h>
29 #include <asm/uv/uv.h>
30
31 unsigned int __read_mostly cpu_khz;     /* TSC clocks / usec, not used here */
32 EXPORT_SYMBOL(cpu_khz);
33
34 unsigned int __read_mostly tsc_khz;
35 EXPORT_SYMBOL(tsc_khz);
36
37 #define KHZ     1000
38
39 /*
40  * TSC can be unstable due to cpufreq or due to unsynced TSCs
41  */
42 static int __read_mostly tsc_unstable;
43
44 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
45
46 int tsc_clocksource_reliable;
47
48 static u32 art_to_tsc_numerator;
49 static u32 art_to_tsc_denominator;
50 static u64 art_to_tsc_offset;
51 struct clocksource *art_related_clocksource;
52
53 struct cyc2ns {
54         struct cyc2ns_data data[2];     /*  0 + 2*16 = 32 */
55         seqcount_t         seq;         /* 32 + 4    = 36 */
56
57 }; /* fits one cacheline */
58
59 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
60
61 void __always_inline cyc2ns_read_begin(struct cyc2ns_data *data)
62 {
63         int seq, idx;
64
65         preempt_disable_notrace();
66
67         do {
68                 seq = this_cpu_read(cyc2ns.seq.sequence);
69                 idx = seq & 1;
70
71                 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
72                 data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
73                 data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
74
75         } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
76 }
77
78 void __always_inline cyc2ns_read_end(void)
79 {
80         preempt_enable_notrace();
81 }
82
83 /*
84  * Accelerators for sched_clock()
85  * convert from cycles(64bits) => nanoseconds (64bits)
86  *  basic equation:
87  *              ns = cycles / (freq / ns_per_sec)
88  *              ns = cycles * (ns_per_sec / freq)
89  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
90  *              ns = cycles * (10^6 / cpu_khz)
91  *
92  *      Then we use scaling math (suggested by george@mvista.com) to get:
93  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
94  *              ns = cycles * cyc2ns_scale / SC
95  *
96  *      And since SC is a constant power of two, we can convert the div
97  *  into a shift. The larger SC is, the more accurate the conversion, but
98  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
99  *  (64-bit result) can be used.
100  *
101  *  We can use khz divisor instead of mhz to keep a better precision.
102  *  (mathieu.desnoyers@polymtl.ca)
103  *
104  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
105  */
106
107 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
108 {
109         struct cyc2ns_data data;
110         unsigned long long ns;
111
112         cyc2ns_read_begin(&data);
113
114         ns = data.cyc2ns_offset;
115         ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
116
117         cyc2ns_read_end();
118
119         return ns;
120 }
121
122 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
123 {
124         unsigned long long ns_now;
125         struct cyc2ns_data data;
126         struct cyc2ns *c2n;
127
128         ns_now = cycles_2_ns(tsc_now);
129
130         /*
131          * Compute a new multiplier as per the above comment and ensure our
132          * time function is continuous; see the comment near struct
133          * cyc2ns_data.
134          */
135         clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
136                                NSEC_PER_MSEC, 0);
137
138         /*
139          * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
140          * not expected to be greater than 31 due to the original published
141          * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
142          * value) - refer perf_event_mmap_page documentation in perf_event.h.
143          */
144         if (data.cyc2ns_shift == 32) {
145                 data.cyc2ns_shift = 31;
146                 data.cyc2ns_mul >>= 1;
147         }
148
149         data.cyc2ns_offset = ns_now -
150                 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
151
152         c2n = per_cpu_ptr(&cyc2ns, cpu);
153
154         raw_write_seqcount_latch(&c2n->seq);
155         c2n->data[0] = data;
156         raw_write_seqcount_latch(&c2n->seq);
157         c2n->data[1] = data;
158 }
159
160 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
161 {
162         unsigned long flags;
163
164         local_irq_save(flags);
165         sched_clock_idle_sleep_event();
166
167         if (khz)
168                 __set_cyc2ns_scale(khz, cpu, tsc_now);
169
170         sched_clock_idle_wakeup_event();
171         local_irq_restore(flags);
172 }
173
174 /*
175  * Initialize cyc2ns for boot cpu
176  */
177 static void __init cyc2ns_init_boot_cpu(void)
178 {
179         struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
180
181         seqcount_init(&c2n->seq);
182         __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
183 }
184
185 /*
186  * Secondary CPUs do not run through tsc_init(), so set up
187  * all the scale factors for all CPUs, assuming the same
188  * speed as the bootup CPU. (cpufreq notifiers will fix this
189  * up if their speed diverges)
190  */
191 static void __init cyc2ns_init_secondary_cpus(void)
192 {
193         unsigned int cpu, this_cpu = smp_processor_id();
194         struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
195         struct cyc2ns_data *data = c2n->data;
196
197         for_each_possible_cpu(cpu) {
198                 if (cpu != this_cpu) {
199                         seqcount_init(&c2n->seq);
200                         c2n = per_cpu_ptr(&cyc2ns, cpu);
201                         c2n->data[0] = data[0];
202                         c2n->data[1] = data[1];
203                 }
204         }
205 }
206
207 /*
208  * Scheduler clock - returns current time in nanosec units.
209  */
210 u64 native_sched_clock(void)
211 {
212         if (static_branch_likely(&__use_tsc)) {
213                 u64 tsc_now = rdtsc();
214
215                 /* return the value in ns */
216                 return cycles_2_ns(tsc_now);
217         }
218
219         /*
220          * Fall back to jiffies if there's no TSC available:
221          * ( But note that we still use it if the TSC is marked
222          *   unstable. We do this because unlike Time Of Day,
223          *   the scheduler clock tolerates small errors and it's
224          *   very important for it to be as fast as the platform
225          *   can achieve it. )
226          */
227
228         /* No locking but a rare wrong value is not a big deal: */
229         return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
230 }
231
232 /*
233  * Generate a sched_clock if you already have a TSC value.
234  */
235 u64 native_sched_clock_from_tsc(u64 tsc)
236 {
237         return cycles_2_ns(tsc);
238 }
239
240 /* We need to define a real function for sched_clock, to override the
241    weak default version */
242 #ifdef CONFIG_PARAVIRT
243 unsigned long long sched_clock(void)
244 {
245         return paravirt_sched_clock();
246 }
247
248 bool using_native_sched_clock(void)
249 {
250         return pv_ops.time.sched_clock == native_sched_clock;
251 }
252 #else
253 unsigned long long
254 sched_clock(void) __attribute__((alias("native_sched_clock")));
255
256 bool using_native_sched_clock(void) { return true; }
257 #endif
258
259 int check_tsc_unstable(void)
260 {
261         return tsc_unstable;
262 }
263 EXPORT_SYMBOL_GPL(check_tsc_unstable);
264
265 #ifdef CONFIG_X86_TSC
266 int __init notsc_setup(char *str)
267 {
268         mark_tsc_unstable("boot parameter notsc");
269         return 1;
270 }
271 #else
272 /*
273  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
274  * in cpu/common.c
275  */
276 int __init notsc_setup(char *str)
277 {
278         setup_clear_cpu_cap(X86_FEATURE_TSC);
279         return 1;
280 }
281 #endif
282
283 __setup("notsc", notsc_setup);
284
285 static int no_sched_irq_time;
286
287 static int __init tsc_setup(char *str)
288 {
289         if (!strcmp(str, "reliable"))
290                 tsc_clocksource_reliable = 1;
291         if (!strncmp(str, "noirqtime", 9))
292                 no_sched_irq_time = 1;
293         if (!strcmp(str, "unstable"))
294                 mark_tsc_unstable("boot parameter");
295         return 1;
296 }
297
298 __setup("tsc=", tsc_setup);
299
300 #define MAX_RETRIES             5
301 #define TSC_DEFAULT_THRESHOLD   0x20000
302
303 /*
304  * Read TSC and the reference counters. Take care of any disturbances
305  */
306 static u64 tsc_read_refs(u64 *p, int hpet)
307 {
308         u64 t1, t2;
309         u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
310         int i;
311
312         for (i = 0; i < MAX_RETRIES; i++) {
313                 t1 = get_cycles();
314                 if (hpet)
315                         *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
316                 else
317                         *p = acpi_pm_read_early();
318                 t2 = get_cycles();
319                 if ((t2 - t1) < thresh)
320                         return t2;
321         }
322         return ULLONG_MAX;
323 }
324
325 /*
326  * Calculate the TSC frequency from HPET reference
327  */
328 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
329 {
330         u64 tmp;
331
332         if (hpet2 < hpet1)
333                 hpet2 += 0x100000000ULL;
334         hpet2 -= hpet1;
335         tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
336         do_div(tmp, 1000000);
337         deltatsc = div64_u64(deltatsc, tmp);
338
339         return (unsigned long) deltatsc;
340 }
341
342 /*
343  * Calculate the TSC frequency from PMTimer reference
344  */
345 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
346 {
347         u64 tmp;
348
349         if (!pm1 && !pm2)
350                 return ULONG_MAX;
351
352         if (pm2 < pm1)
353                 pm2 += (u64)ACPI_PM_OVRRUN;
354         pm2 -= pm1;
355         tmp = pm2 * 1000000000LL;
356         do_div(tmp, PMTMR_TICKS_PER_SEC);
357         do_div(deltatsc, tmp);
358
359         return (unsigned long) deltatsc;
360 }
361
362 #define CAL_MS          10
363 #define CAL_LATCH       (PIT_TICK_RATE / (1000 / CAL_MS))
364 #define CAL_PIT_LOOPS   1000
365
366 #define CAL2_MS         50
367 #define CAL2_LATCH      (PIT_TICK_RATE / (1000 / CAL2_MS))
368 #define CAL2_PIT_LOOPS  5000
369
370
371 /*
372  * Try to calibrate the TSC against the Programmable
373  * Interrupt Timer and return the frequency of the TSC
374  * in kHz.
375  *
376  * Return ULONG_MAX on failure to calibrate.
377  */
378 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
379 {
380         u64 tsc, t1, t2, delta;
381         unsigned long tscmin, tscmax;
382         int pitcnt;
383
384         if (!has_legacy_pic()) {
385                 /*
386                  * Relies on tsc_early_delay_calibrate() to have given us semi
387                  * usable udelay(), wait for the same 50ms we would have with
388                  * the PIT loop below.
389                  */
390                 udelay(10 * USEC_PER_MSEC);
391                 udelay(10 * USEC_PER_MSEC);
392                 udelay(10 * USEC_PER_MSEC);
393                 udelay(10 * USEC_PER_MSEC);
394                 udelay(10 * USEC_PER_MSEC);
395                 return ULONG_MAX;
396         }
397
398         /* Set the Gate high, disable speaker */
399         outb((inb(0x61) & ~0x02) | 0x01, 0x61);
400
401         /*
402          * Setup CTC channel 2* for mode 0, (interrupt on terminal
403          * count mode), binary count. Set the latch register to 50ms
404          * (LSB then MSB) to begin countdown.
405          */
406         outb(0xb0, 0x43);
407         outb(latch & 0xff, 0x42);
408         outb(latch >> 8, 0x42);
409
410         tsc = t1 = t2 = get_cycles();
411
412         pitcnt = 0;
413         tscmax = 0;
414         tscmin = ULONG_MAX;
415         while ((inb(0x61) & 0x20) == 0) {
416                 t2 = get_cycles();
417                 delta = t2 - tsc;
418                 tsc = t2;
419                 if ((unsigned long) delta < tscmin)
420                         tscmin = (unsigned int) delta;
421                 if ((unsigned long) delta > tscmax)
422                         tscmax = (unsigned int) delta;
423                 pitcnt++;
424         }
425
426         /*
427          * Sanity checks:
428          *
429          * If we were not able to read the PIT more than loopmin
430          * times, then we have been hit by a massive SMI
431          *
432          * If the maximum is 10 times larger than the minimum,
433          * then we got hit by an SMI as well.
434          */
435         if (pitcnt < loopmin || tscmax > 10 * tscmin)
436                 return ULONG_MAX;
437
438         /* Calculate the PIT value */
439         delta = t2 - t1;
440         do_div(delta, ms);
441         return delta;
442 }
443
444 /*
445  * This reads the current MSB of the PIT counter, and
446  * checks if we are running on sufficiently fast and
447  * non-virtualized hardware.
448  *
449  * Our expectations are:
450  *
451  *  - the PIT is running at roughly 1.19MHz
452  *
453  *  - each IO is going to take about 1us on real hardware,
454  *    but we allow it to be much faster (by a factor of 10) or
455  *    _slightly_ slower (ie we allow up to a 2us read+counter
456  *    update - anything else implies a unacceptably slow CPU
457  *    or PIT for the fast calibration to work.
458  *
459  *  - with 256 PIT ticks to read the value, we have 214us to
460  *    see the same MSB (and overhead like doing a single TSC
461  *    read per MSB value etc).
462  *
463  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
464  *    them each to take about a microsecond on real hardware.
465  *    So we expect a count value of around 100. But we'll be
466  *    generous, and accept anything over 50.
467  *
468  *  - if the PIT is stuck, and we see *many* more reads, we
469  *    return early (and the next caller of pit_expect_msb()
470  *    then consider it a failure when they don't see the
471  *    next expected value).
472  *
473  * These expectations mean that we know that we have seen the
474  * transition from one expected value to another with a fairly
475  * high accuracy, and we didn't miss any events. We can thus
476  * use the TSC value at the transitions to calculate a pretty
477  * good value for the TSC frequencty.
478  */
479 static inline int pit_verify_msb(unsigned char val)
480 {
481         /* Ignore LSB */
482         inb(0x42);
483         return inb(0x42) == val;
484 }
485
486 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
487 {
488         int count;
489         u64 tsc = 0, prev_tsc = 0;
490
491         for (count = 0; count < 50000; count++) {
492                 if (!pit_verify_msb(val))
493                         break;
494                 prev_tsc = tsc;
495                 tsc = get_cycles();
496         }
497         *deltap = get_cycles() - prev_tsc;
498         *tscp = tsc;
499
500         /*
501          * We require _some_ success, but the quality control
502          * will be based on the error terms on the TSC values.
503          */
504         return count > 5;
505 }
506
507 /*
508  * How many MSB values do we want to see? We aim for
509  * a maximum error rate of 500ppm (in practice the
510  * real error is much smaller), but refuse to spend
511  * more than 50ms on it.
512  */
513 #define MAX_QUICK_PIT_MS 50
514 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
515
516 static unsigned long quick_pit_calibrate(void)
517 {
518         int i;
519         u64 tsc, delta;
520         unsigned long d1, d2;
521
522         if (!has_legacy_pic())
523                 return 0;
524
525         /* Set the Gate high, disable speaker */
526         outb((inb(0x61) & ~0x02) | 0x01, 0x61);
527
528         /*
529          * Counter 2, mode 0 (one-shot), binary count
530          *
531          * NOTE! Mode 2 decrements by two (and then the
532          * output is flipped each time, giving the same
533          * final output frequency as a decrement-by-one),
534          * so mode 0 is much better when looking at the
535          * individual counts.
536          */
537         outb(0xb0, 0x43);
538
539         /* Start at 0xffff */
540         outb(0xff, 0x42);
541         outb(0xff, 0x42);
542
543         /*
544          * The PIT starts counting at the next edge, so we
545          * need to delay for a microsecond. The easiest way
546          * to do that is to just read back the 16-bit counter
547          * once from the PIT.
548          */
549         pit_verify_msb(0);
550
551         if (pit_expect_msb(0xff, &tsc, &d1)) {
552                 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
553                         if (!pit_expect_msb(0xff-i, &delta, &d2))
554                                 break;
555
556                         delta -= tsc;
557
558                         /*
559                          * Extrapolate the error and fail fast if the error will
560                          * never be below 500 ppm.
561                          */
562                         if (i == 1 &&
563                             d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
564                                 return 0;
565
566                         /*
567                          * Iterate until the error is less than 500 ppm
568                          */
569                         if (d1+d2 >= delta >> 11)
570                                 continue;
571
572                         /*
573                          * Check the PIT one more time to verify that
574                          * all TSC reads were stable wrt the PIT.
575                          *
576                          * This also guarantees serialization of the
577                          * last cycle read ('d2') in pit_expect_msb.
578                          */
579                         if (!pit_verify_msb(0xfe - i))
580                                 break;
581                         goto success;
582                 }
583         }
584         pr_info("Fast TSC calibration failed\n");
585         return 0;
586
587 success:
588         /*
589          * Ok, if we get here, then we've seen the
590          * MSB of the PIT decrement 'i' times, and the
591          * error has shrunk to less than 500 ppm.
592          *
593          * As a result, we can depend on there not being
594          * any odd delays anywhere, and the TSC reads are
595          * reliable (within the error).
596          *
597          * kHz = ticks / time-in-seconds / 1000;
598          * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
599          * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
600          */
601         delta *= PIT_TICK_RATE;
602         do_div(delta, i*256*1000);
603         pr_info("Fast TSC calibration using PIT\n");
604         return delta;
605 }
606
607 /**
608  * native_calibrate_tsc
609  * Determine TSC frequency via CPUID, else return 0.
610  */
611 unsigned long native_calibrate_tsc(void)
612 {
613         unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
614         unsigned int crystal_khz;
615
616         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
617                 return 0;
618
619         if (boot_cpu_data.cpuid_level < 0x15)
620                 return 0;
621
622         eax_denominator = ebx_numerator = ecx_hz = edx = 0;
623
624         /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
625         cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
626
627         if (ebx_numerator == 0 || eax_denominator == 0)
628                 return 0;
629
630         crystal_khz = ecx_hz / 1000;
631
632         if (crystal_khz == 0) {
633                 switch (boot_cpu_data.x86_model) {
634                 case INTEL_FAM6_SKYLAKE_MOBILE:
635                 case INTEL_FAM6_SKYLAKE_DESKTOP:
636                 case INTEL_FAM6_KABYLAKE_MOBILE:
637                 case INTEL_FAM6_KABYLAKE_DESKTOP:
638                         crystal_khz = 24000;    /* 24.0 MHz */
639                         break;
640                 case INTEL_FAM6_ATOM_GOLDMONT_X:
641                         crystal_khz = 25000;    /* 25.0 MHz */
642                         break;
643                 case INTEL_FAM6_ATOM_GOLDMONT:
644                         crystal_khz = 19200;    /* 19.2 MHz */
645                         break;
646                 }
647         }
648
649         if (crystal_khz == 0)
650                 return 0;
651         /*
652          * TSC frequency determined by CPUID is a "hardware reported"
653          * frequency and is the most accurate one so far we have. This
654          * is considered a known frequency.
655          */
656         setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
657
658         /*
659          * For Atom SoCs TSC is the only reliable clocksource.
660          * Mark TSC reliable so no watchdog on it.
661          */
662         if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
663                 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
664
665         return crystal_khz * ebx_numerator / eax_denominator;
666 }
667
668 static unsigned long cpu_khz_from_cpuid(void)
669 {
670         unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
671
672         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
673                 return 0;
674
675         if (boot_cpu_data.cpuid_level < 0x16)
676                 return 0;
677
678         eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
679
680         cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
681
682         return eax_base_mhz * 1000;
683 }
684
685 /*
686  * calibrate cpu using pit, hpet, and ptimer methods. They are available
687  * later in boot after acpi is initialized.
688  */
689 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
690 {
691         u64 tsc1, tsc2, delta, ref1, ref2;
692         unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
693         unsigned long flags, latch, ms;
694         int hpet = is_hpet_enabled(), i, loopmin;
695
696         /*
697          * Run 5 calibration loops to get the lowest frequency value
698          * (the best estimate). We use two different calibration modes
699          * here:
700          *
701          * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
702          * load a timeout of 50ms. We read the time right after we
703          * started the timer and wait until the PIT count down reaches
704          * zero. In each wait loop iteration we read the TSC and check
705          * the delta to the previous read. We keep track of the min
706          * and max values of that delta. The delta is mostly defined
707          * by the IO time of the PIT access, so we can detect when
708          * any disturbance happened between the two reads. If the
709          * maximum time is significantly larger than the minimum time,
710          * then we discard the result and have another try.
711          *
712          * 2) Reference counter. If available we use the HPET or the
713          * PMTIMER as a reference to check the sanity of that value.
714          * We use separate TSC readouts and check inside of the
715          * reference read for any possible disturbance. We dicard
716          * disturbed values here as well. We do that around the PIT
717          * calibration delay loop as we have to wait for a certain
718          * amount of time anyway.
719          */
720
721         /* Preset PIT loop values */
722         latch = CAL_LATCH;
723         ms = CAL_MS;
724         loopmin = CAL_PIT_LOOPS;
725
726         for (i = 0; i < 3; i++) {
727                 unsigned long tsc_pit_khz;
728
729                 /*
730                  * Read the start value and the reference count of
731                  * hpet/pmtimer when available. Then do the PIT
732                  * calibration, which will take at least 50ms, and
733                  * read the end value.
734                  */
735                 local_irq_save(flags);
736                 tsc1 = tsc_read_refs(&ref1, hpet);
737                 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
738                 tsc2 = tsc_read_refs(&ref2, hpet);
739                 local_irq_restore(flags);
740
741                 /* Pick the lowest PIT TSC calibration so far */
742                 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
743
744                 /* hpet or pmtimer available ? */
745                 if (ref1 == ref2)
746                         continue;
747
748                 /* Check, whether the sampling was disturbed */
749                 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
750                         continue;
751
752                 tsc2 = (tsc2 - tsc1) * 1000000LL;
753                 if (hpet)
754                         tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
755                 else
756                         tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
757
758                 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
759
760                 /* Check the reference deviation */
761                 delta = ((u64) tsc_pit_min) * 100;
762                 do_div(delta, tsc_ref_min);
763
764                 /*
765                  * If both calibration results are inside a 10% window
766                  * then we can be sure, that the calibration
767                  * succeeded. We break out of the loop right away. We
768                  * use the reference value, as it is more precise.
769                  */
770                 if (delta >= 90 && delta <= 110) {
771                         pr_info("PIT calibration matches %s. %d loops\n",
772                                 hpet ? "HPET" : "PMTIMER", i + 1);
773                         return tsc_ref_min;
774                 }
775
776                 /*
777                  * Check whether PIT failed more than once. This
778                  * happens in virtualized environments. We need to
779                  * give the virtual PC a slightly longer timeframe for
780                  * the HPET/PMTIMER to make the result precise.
781                  */
782                 if (i == 1 && tsc_pit_min == ULONG_MAX) {
783                         latch = CAL2_LATCH;
784                         ms = CAL2_MS;
785                         loopmin = CAL2_PIT_LOOPS;
786                 }
787         }
788
789         /*
790          * Now check the results.
791          */
792         if (tsc_pit_min == ULONG_MAX) {
793                 /* PIT gave no useful value */
794                 pr_warn("Unable to calibrate against PIT\n");
795
796                 /* We don't have an alternative source, disable TSC */
797                 if (!hpet && !ref1 && !ref2) {
798                         pr_notice("No reference (HPET/PMTIMER) available\n");
799                         return 0;
800                 }
801
802                 /* The alternative source failed as well, disable TSC */
803                 if (tsc_ref_min == ULONG_MAX) {
804                         pr_warn("HPET/PMTIMER calibration failed\n");
805                         return 0;
806                 }
807
808                 /* Use the alternative source */
809                 pr_info("using %s reference calibration\n",
810                         hpet ? "HPET" : "PMTIMER");
811
812                 return tsc_ref_min;
813         }
814
815         /* We don't have an alternative source, use the PIT calibration value */
816         if (!hpet && !ref1 && !ref2) {
817                 pr_info("Using PIT calibration value\n");
818                 return tsc_pit_min;
819         }
820
821         /* The alternative source failed, use the PIT calibration value */
822         if (tsc_ref_min == ULONG_MAX) {
823                 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
824                 return tsc_pit_min;
825         }
826
827         /*
828          * The calibration values differ too much. In doubt, we use
829          * the PIT value as we know that there are PMTIMERs around
830          * running at double speed. At least we let the user know:
831          */
832         pr_warn("PIT calibration deviates from %s: %lu %lu\n",
833                 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
834         pr_info("Using PIT calibration value\n");
835         return tsc_pit_min;
836 }
837
838 /**
839  * native_calibrate_cpu_early - can calibrate the cpu early in boot
840  */
841 unsigned long native_calibrate_cpu_early(void)
842 {
843         unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
844
845         if (!fast_calibrate)
846                 fast_calibrate = cpu_khz_from_msr();
847         if (!fast_calibrate) {
848                 local_irq_save(flags);
849                 fast_calibrate = quick_pit_calibrate();
850                 local_irq_restore(flags);
851         }
852         return fast_calibrate;
853 }
854
855
856 /**
857  * native_calibrate_cpu - calibrate the cpu
858  */
859 static unsigned long native_calibrate_cpu(void)
860 {
861         unsigned long tsc_freq = native_calibrate_cpu_early();
862
863         if (!tsc_freq)
864                 tsc_freq = pit_hpet_ptimer_calibrate_cpu();
865
866         return tsc_freq;
867 }
868
869 void recalibrate_cpu_khz(void)
870 {
871 #ifndef CONFIG_SMP
872         unsigned long cpu_khz_old = cpu_khz;
873
874         if (!boot_cpu_has(X86_FEATURE_TSC))
875                 return;
876
877         cpu_khz = x86_platform.calibrate_cpu();
878         tsc_khz = x86_platform.calibrate_tsc();
879         if (tsc_khz == 0)
880                 tsc_khz = cpu_khz;
881         else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
882                 cpu_khz = tsc_khz;
883         cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
884                                                     cpu_khz_old, cpu_khz);
885 #endif
886 }
887
888 EXPORT_SYMBOL(recalibrate_cpu_khz);
889
890
891 static unsigned long long cyc2ns_suspend;
892
893 void tsc_save_sched_clock_state(void)
894 {
895         if (!sched_clock_stable())
896                 return;
897
898         cyc2ns_suspend = sched_clock();
899 }
900
901 /*
902  * Even on processors with invariant TSC, TSC gets reset in some the
903  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
904  * arbitrary value (still sync'd across cpu's) during resume from such sleep
905  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
906  * that sched_clock() continues from the point where it was left off during
907  * suspend.
908  */
909 void tsc_restore_sched_clock_state(void)
910 {
911         unsigned long long offset;
912         unsigned long flags;
913         int cpu;
914
915         if (!sched_clock_stable())
916                 return;
917
918         local_irq_save(flags);
919
920         /*
921          * We're coming out of suspend, there's no concurrency yet; don't
922          * bother being nice about the RCU stuff, just write to both
923          * data fields.
924          */
925
926         this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
927         this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
928
929         offset = cyc2ns_suspend - sched_clock();
930
931         for_each_possible_cpu(cpu) {
932                 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
933                 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
934         }
935
936         local_irq_restore(flags);
937 }
938
939 #ifdef CONFIG_CPU_FREQ
940 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
941  * changes.
942  *
943  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
944  * not that important because current Opteron setups do not support
945  * scaling on SMP anyroads.
946  *
947  * Should fix up last_tsc too. Currently gettimeofday in the
948  * first tick after the change will be slightly wrong.
949  */
950
951 static unsigned int  ref_freq;
952 static unsigned long loops_per_jiffy_ref;
953 static unsigned long tsc_khz_ref;
954
955 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
956                                 void *data)
957 {
958         struct cpufreq_freqs *freq = data;
959         unsigned long *lpj;
960
961         lpj = &boot_cpu_data.loops_per_jiffy;
962 #ifdef CONFIG_SMP
963         if (!(freq->flags & CPUFREQ_CONST_LOOPS))
964                 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
965 #endif
966
967         if (!ref_freq) {
968                 ref_freq = freq->old;
969                 loops_per_jiffy_ref = *lpj;
970                 tsc_khz_ref = tsc_khz;
971         }
972         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
973                         (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
974                 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
975
976                 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
977                 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
978                         mark_tsc_unstable("cpufreq changes");
979
980                 set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
981         }
982
983         return 0;
984 }
985
986 static struct notifier_block time_cpufreq_notifier_block = {
987         .notifier_call  = time_cpufreq_notifier
988 };
989
990 static int __init cpufreq_register_tsc_scaling(void)
991 {
992         if (!boot_cpu_has(X86_FEATURE_TSC))
993                 return 0;
994         if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
995                 return 0;
996         cpufreq_register_notifier(&time_cpufreq_notifier_block,
997                                 CPUFREQ_TRANSITION_NOTIFIER);
998         return 0;
999 }
1000
1001 core_initcall(cpufreq_register_tsc_scaling);
1002
1003 #endif /* CONFIG_CPU_FREQ */
1004
1005 #define ART_CPUID_LEAF (0x15)
1006 #define ART_MIN_DENOMINATOR (1)
1007
1008
1009 /*
1010  * If ART is present detect the numerator:denominator to convert to TSC
1011  */
1012 static void __init detect_art(void)
1013 {
1014         unsigned int unused[2];
1015
1016         if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1017                 return;
1018
1019         /*
1020          * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1021          * and the TSC counter resets must not occur asynchronously.
1022          */
1023         if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1024             !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1025             !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1026             tsc_async_resets)
1027                 return;
1028
1029         cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1030               &art_to_tsc_numerator, unused, unused+1);
1031
1032         if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1033                 return;
1034
1035         rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1036
1037         /* Make this sticky over multiple CPU init calls */
1038         setup_force_cpu_cap(X86_FEATURE_ART);
1039 }
1040
1041
1042 /* clocksource code */
1043
1044 static void tsc_resume(struct clocksource *cs)
1045 {
1046         tsc_verify_tsc_adjust(true);
1047 }
1048
1049 /*
1050  * We used to compare the TSC to the cycle_last value in the clocksource
1051  * structure to avoid a nasty time-warp. This can be observed in a
1052  * very small window right after one CPU updated cycle_last under
1053  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1054  * is smaller than the cycle_last reference value due to a TSC which
1055  * is slighty behind. This delta is nowhere else observable, but in
1056  * that case it results in a forward time jump in the range of hours
1057  * due to the unsigned delta calculation of the time keeping core
1058  * code, which is necessary to support wrapping clocksources like pm
1059  * timer.
1060  *
1061  * This sanity check is now done in the core timekeeping code.
1062  * checking the result of read_tsc() - cycle_last for being negative.
1063  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1064  */
1065 static u64 read_tsc(struct clocksource *cs)
1066 {
1067         return (u64)rdtsc_ordered();
1068 }
1069
1070 static void tsc_cs_mark_unstable(struct clocksource *cs)
1071 {
1072         if (tsc_unstable)
1073                 return;
1074
1075         tsc_unstable = 1;
1076         if (using_native_sched_clock())
1077                 clear_sched_clock_stable();
1078         disable_sched_clock_irqtime();
1079         pr_info("Marking TSC unstable due to clocksource watchdog\n");
1080 }
1081
1082 static void tsc_cs_tick_stable(struct clocksource *cs)
1083 {
1084         if (tsc_unstable)
1085                 return;
1086
1087         if (using_native_sched_clock())
1088                 sched_clock_tick_stable();
1089 }
1090
1091 /*
1092  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1093  */
1094 static struct clocksource clocksource_tsc_early = {
1095         .name                   = "tsc-early",
1096         .rating                 = 299,
1097         .read                   = read_tsc,
1098         .mask                   = CLOCKSOURCE_MASK(64),
1099         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1100                                   CLOCK_SOURCE_MUST_VERIFY,
1101         .archdata               = { .vclock_mode = VCLOCK_TSC },
1102         .resume                 = tsc_resume,
1103         .mark_unstable          = tsc_cs_mark_unstable,
1104         .tick_stable            = tsc_cs_tick_stable,
1105         .list                   = LIST_HEAD_INIT(clocksource_tsc_early.list),
1106 };
1107
1108 /*
1109  * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1110  * this one will immediately take over. We will only register if TSC has
1111  * been found good.
1112  */
1113 static struct clocksource clocksource_tsc = {
1114         .name                   = "tsc",
1115         .rating                 = 300,
1116         .read                   = read_tsc,
1117         .mask                   = CLOCKSOURCE_MASK(64),
1118         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1119                                   CLOCK_SOURCE_VALID_FOR_HRES |
1120                                   CLOCK_SOURCE_MUST_VERIFY,
1121         .archdata               = { .vclock_mode = VCLOCK_TSC },
1122         .resume                 = tsc_resume,
1123         .mark_unstable          = tsc_cs_mark_unstable,
1124         .tick_stable            = tsc_cs_tick_stable,
1125         .list                   = LIST_HEAD_INIT(clocksource_tsc.list),
1126 };
1127
1128 void mark_tsc_unstable(char *reason)
1129 {
1130         if (tsc_unstable)
1131                 return;
1132
1133         tsc_unstable = 1;
1134         if (using_native_sched_clock())
1135                 clear_sched_clock_stable();
1136         disable_sched_clock_irqtime();
1137         pr_info("Marking TSC unstable due to %s\n", reason);
1138
1139         clocksource_mark_unstable(&clocksource_tsc_early);
1140         clocksource_mark_unstable(&clocksource_tsc);
1141 }
1142
1143 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1144
1145 static void __init check_system_tsc_reliable(void)
1146 {
1147 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1148         if (is_geode_lx()) {
1149                 /* RTSC counts during suspend */
1150 #define RTSC_SUSP 0x100
1151                 unsigned long res_low, res_high;
1152
1153                 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1154                 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1155                 if (res_low & RTSC_SUSP)
1156                         tsc_clocksource_reliable = 1;
1157         }
1158 #endif
1159         if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1160                 tsc_clocksource_reliable = 1;
1161 }
1162
1163 /*
1164  * Make an educated guess if the TSC is trustworthy and synchronized
1165  * over all CPUs.
1166  */
1167 int unsynchronized_tsc(void)
1168 {
1169         if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1170                 return 1;
1171
1172 #ifdef CONFIG_SMP
1173         if (apic_is_clustered_box())
1174                 return 1;
1175 #endif
1176
1177         if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1178                 return 0;
1179
1180         if (tsc_clocksource_reliable)
1181                 return 0;
1182         /*
1183          * Intel systems are normally all synchronized.
1184          * Exceptions must mark TSC as unstable:
1185          */
1186         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1187                 /* assume multi socket systems are not synchronized: */
1188                 if (num_possible_cpus() > 1)
1189                         return 1;
1190         }
1191
1192         return 0;
1193 }
1194
1195 /*
1196  * Convert ART to TSC given numerator/denominator found in detect_art()
1197  */
1198 struct system_counterval_t convert_art_to_tsc(u64 art)
1199 {
1200         u64 tmp, res, rem;
1201
1202         rem = do_div(art, art_to_tsc_denominator);
1203
1204         res = art * art_to_tsc_numerator;
1205         tmp = rem * art_to_tsc_numerator;
1206
1207         do_div(tmp, art_to_tsc_denominator);
1208         res += tmp + art_to_tsc_offset;
1209
1210         return (struct system_counterval_t) {.cs = art_related_clocksource,
1211                         .cycles = res};
1212 }
1213 EXPORT_SYMBOL(convert_art_to_tsc);
1214
1215 /**
1216  * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1217  * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1218  *
1219  * PTM requires all timestamps to be in units of nanoseconds. When user
1220  * software requests a cross-timestamp, this function converts system timestamp
1221  * to TSC.
1222  *
1223  * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1224  * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1225  * that this flag is set before conversion to TSC is attempted.
1226  *
1227  * Return:
1228  * struct system_counterval_t - system counter value with the pointer to the
1229  *      corresponding clocksource
1230  *      @cycles:        System counter value
1231  *      @cs:            Clocksource corresponding to system counter value. Used
1232  *                      by timekeeping code to verify comparibility of two cycle
1233  *                      values.
1234  */
1235
1236 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1237 {
1238         u64 tmp, res, rem;
1239
1240         rem = do_div(art_ns, USEC_PER_SEC);
1241
1242         res = art_ns * tsc_khz;
1243         tmp = rem * tsc_khz;
1244
1245         do_div(tmp, USEC_PER_SEC);
1246         res += tmp;
1247
1248         return (struct system_counterval_t) { .cs = art_related_clocksource,
1249                                               .cycles = res};
1250 }
1251 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1252
1253
1254 static void tsc_refine_calibration_work(struct work_struct *work);
1255 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1256 /**
1257  * tsc_refine_calibration_work - Further refine tsc freq calibration
1258  * @work - ignored.
1259  *
1260  * This functions uses delayed work over a period of a
1261  * second to further refine the TSC freq value. Since this is
1262  * timer based, instead of loop based, we don't block the boot
1263  * process while this longer calibration is done.
1264  *
1265  * If there are any calibration anomalies (too many SMIs, etc),
1266  * or the refined calibration is off by 1% of the fast early
1267  * calibration, we throw out the new calibration and use the
1268  * early calibration.
1269  */
1270 static void tsc_refine_calibration_work(struct work_struct *work)
1271 {
1272         static u64 tsc_start = ULLONG_MAX, ref_start;
1273         static int hpet;
1274         u64 tsc_stop, ref_stop, delta;
1275         unsigned long freq;
1276         int cpu;
1277
1278         /* Don't bother refining TSC on unstable systems */
1279         if (tsc_unstable)
1280                 goto unreg;
1281
1282         /*
1283          * Since the work is started early in boot, we may be
1284          * delayed the first time we expire. So set the workqueue
1285          * again once we know timers are working.
1286          */
1287         if (tsc_start == ULLONG_MAX) {
1288 restart:
1289                 /*
1290                  * Only set hpet once, to avoid mixing hardware
1291                  * if the hpet becomes enabled later.
1292                  */
1293                 hpet = is_hpet_enabled();
1294                 tsc_start = tsc_read_refs(&ref_start, hpet);
1295                 schedule_delayed_work(&tsc_irqwork, HZ);
1296                 return;
1297         }
1298
1299         tsc_stop = tsc_read_refs(&ref_stop, hpet);
1300
1301         /* hpet or pmtimer available ? */
1302         if (ref_start == ref_stop)
1303                 goto out;
1304
1305         /* Check, whether the sampling was disturbed */
1306         if (tsc_stop == ULLONG_MAX)
1307                 goto restart;
1308
1309         delta = tsc_stop - tsc_start;
1310         delta *= 1000000LL;
1311         if (hpet)
1312                 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1313         else
1314                 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1315
1316         /* Make sure we're within 1% */
1317         if (abs(tsc_khz - freq) > tsc_khz/100)
1318                 goto out;
1319
1320         tsc_khz = freq;
1321         pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1322                 (unsigned long)tsc_khz / 1000,
1323                 (unsigned long)tsc_khz % 1000);
1324
1325         /* Inform the TSC deadline clockevent devices about the recalibration */
1326         lapic_update_tsc_freq();
1327
1328         /* Update the sched_clock() rate to match the clocksource one */
1329         for_each_possible_cpu(cpu)
1330                 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1331
1332 out:
1333         if (tsc_unstable)
1334                 goto unreg;
1335
1336         if (boot_cpu_has(X86_FEATURE_ART))
1337                 art_related_clocksource = &clocksource_tsc;
1338         clocksource_register_khz(&clocksource_tsc, tsc_khz);
1339 unreg:
1340         clocksource_unregister(&clocksource_tsc_early);
1341 }
1342
1343
1344 static int __init init_tsc_clocksource(void)
1345 {
1346         if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1347                 return 0;
1348
1349         if (tsc_unstable)
1350                 goto unreg;
1351
1352         if (tsc_clocksource_reliable)
1353                 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1354
1355         if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1356                 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1357
1358         /*
1359          * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1360          * the refined calibration and directly register it as a clocksource.
1361          */
1362         if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1363                 if (boot_cpu_has(X86_FEATURE_ART))
1364                         art_related_clocksource = &clocksource_tsc;
1365                 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1366 unreg:
1367                 clocksource_unregister(&clocksource_tsc_early);
1368                 return 0;
1369         }
1370
1371         schedule_delayed_work(&tsc_irqwork, 0);
1372         return 0;
1373 }
1374 /*
1375  * We use device_initcall here, to ensure we run after the hpet
1376  * is fully initialized, which may occur at fs_initcall time.
1377  */
1378 device_initcall(init_tsc_clocksource);
1379
1380 static bool __init determine_cpu_tsc_frequencies(bool early)
1381 {
1382         /* Make sure that cpu and tsc are not already calibrated */
1383         WARN_ON(cpu_khz || tsc_khz);
1384
1385         if (early) {
1386                 cpu_khz = x86_platform.calibrate_cpu();
1387                 tsc_khz = x86_platform.calibrate_tsc();
1388         } else {
1389                 /* We should not be here with non-native cpu calibration */
1390                 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1391                 cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1392         }
1393
1394         /*
1395          * Trust non-zero tsc_khz as authoritative,
1396          * and use it to sanity check cpu_khz,
1397          * which will be off if system timer is off.
1398          */
1399         if (tsc_khz == 0)
1400                 tsc_khz = cpu_khz;
1401         else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1402                 cpu_khz = tsc_khz;
1403
1404         if (tsc_khz == 0)
1405                 return false;
1406
1407         pr_info("Detected %lu.%03lu MHz processor\n",
1408                 (unsigned long)cpu_khz / KHZ,
1409                 (unsigned long)cpu_khz % KHZ);
1410
1411         if (cpu_khz != tsc_khz) {
1412                 pr_info("Detected %lu.%03lu MHz TSC",
1413                         (unsigned long)tsc_khz / KHZ,
1414                         (unsigned long)tsc_khz % KHZ);
1415         }
1416         return true;
1417 }
1418
1419 static unsigned long __init get_loops_per_jiffy(void)
1420 {
1421         u64 lpj = (u64)tsc_khz * KHZ;
1422
1423         do_div(lpj, HZ);
1424         return lpj;
1425 }
1426
1427 static void __init tsc_enable_sched_clock(void)
1428 {
1429         /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1430         tsc_store_and_check_tsc_adjust(true);
1431         cyc2ns_init_boot_cpu();
1432         static_branch_enable(&__use_tsc);
1433 }
1434
1435 void __init tsc_early_init(void)
1436 {
1437         if (!boot_cpu_has(X86_FEATURE_TSC))
1438                 return;
1439         /* Don't change UV TSC multi-chassis synchronization */
1440         if (is_early_uv_system())
1441                 return;
1442         if (!determine_cpu_tsc_frequencies(true))
1443                 return;
1444         loops_per_jiffy = get_loops_per_jiffy();
1445
1446         tsc_enable_sched_clock();
1447 }
1448
1449 void __init tsc_init(void)
1450 {
1451         /*
1452          * native_calibrate_cpu_early can only calibrate using methods that are
1453          * available early in boot.
1454          */
1455         if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1456                 x86_platform.calibrate_cpu = native_calibrate_cpu;
1457
1458         if (!boot_cpu_has(X86_FEATURE_TSC)) {
1459                 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1460                 return;
1461         }
1462
1463         if (!tsc_khz) {
1464                 /* We failed to determine frequencies earlier, try again */
1465                 if (!determine_cpu_tsc_frequencies(false)) {
1466                         mark_tsc_unstable("could not calculate TSC khz");
1467                         setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1468                         return;
1469                 }
1470                 tsc_enable_sched_clock();
1471         }
1472
1473         cyc2ns_init_secondary_cpus();
1474
1475         if (!no_sched_irq_time)
1476                 enable_sched_clock_irqtime();
1477
1478         lpj_fine = get_loops_per_jiffy();
1479         use_tsc_delay();
1480
1481         check_system_tsc_reliable();
1482
1483         if (unsynchronized_tsc()) {
1484                 mark_tsc_unstable("TSCs unsynchronized");
1485                 return;
1486         }
1487
1488         clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1489         detect_art();
1490 }
1491
1492 #ifdef CONFIG_SMP
1493 /*
1494  * If we have a constant TSC and are using the TSC for the delay loop,
1495  * we can skip clock calibration if another cpu in the same socket has already
1496  * been calibrated. This assumes that CONSTANT_TSC applies to all
1497  * cpus in the socket - this should be a safe assumption.
1498  */
1499 unsigned long calibrate_delay_is_known(void)
1500 {
1501         int sibling, cpu = smp_processor_id();
1502         int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1503         const struct cpumask *mask = topology_core_cpumask(cpu);
1504
1505         if (!constant_tsc || !mask)
1506                 return 0;
1507
1508         sibling = cpumask_any_but(mask, cpu);
1509         if (sibling < nr_cpu_ids)
1510                 return cpu_data(sibling).loops_per_jiffy;
1511         return 0;
1512 }
1513 #endif