Merge branch 'x86-uv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / x86 / kernel / tlb_uv.c
1 /*
2  *      SGI UltraViolet TLB flush routines.
3  *
4  *      (c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI.
5  *
6  *      This code is released under the GNU General Public License version 2 or
7  *      later.
8  */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13
14 #include <asm/mmu_context.h>
15 #include <asm/uv/uv.h>
16 #include <asm/uv/uv_mmrs.h>
17 #include <asm/uv/uv_hub.h>
18 #include <asm/uv/uv_bau.h>
19 #include <asm/apic.h>
20 #include <asm/idle.h>
21 #include <asm/tsc.h>
22 #include <asm/irq_vectors.h>
23 #include <asm/timer.h>
24
25 struct msg_desc {
26         struct bau_payload_queue_entry *msg;
27         int msg_slot;
28         int sw_ack_slot;
29         struct bau_payload_queue_entry *va_queue_first;
30         struct bau_payload_queue_entry *va_queue_last;
31 };
32
33 #define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD 0x000000000bUL
34
35 static int uv_bau_max_concurrent __read_mostly;
36
37 static int nobau;
38 static int __init setup_nobau(char *arg)
39 {
40         nobau = 1;
41         return 0;
42 }
43 early_param("nobau", setup_nobau);
44
45 /* base pnode in this partition */
46 static int uv_partition_base_pnode __read_mostly;
47 /* position of pnode (which is nasid>>1): */
48 static int uv_nshift __read_mostly;
49 static unsigned long uv_mmask __read_mostly;
50
51 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
52 static DEFINE_PER_CPU(struct bau_control, bau_control);
53 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
54
55 struct reset_args {
56         int sender;
57 };
58
59 /*
60  * Determine the first node on a uvhub. 'Nodes' are used for kernel
61  * memory allocation.
62  */
63 static int __init uvhub_to_first_node(int uvhub)
64 {
65         int node, b;
66
67         for_each_online_node(node) {
68                 b = uv_node_to_blade_id(node);
69                 if (uvhub == b)
70                         return node;
71         }
72         return -1;
73 }
74
75 /*
76  * Determine the apicid of the first cpu on a uvhub.
77  */
78 static int __init uvhub_to_first_apicid(int uvhub)
79 {
80         int cpu;
81
82         for_each_present_cpu(cpu)
83                 if (uvhub == uv_cpu_to_blade_id(cpu))
84                         return per_cpu(x86_cpu_to_apicid, cpu);
85         return -1;
86 }
87
88 /*
89  * Free a software acknowledge hardware resource by clearing its Pending
90  * bit. This will return a reply to the sender.
91  * If the message has timed out, a reply has already been sent by the
92  * hardware but the resource has not been released. In that case our
93  * clear of the Timeout bit (as well) will free the resource. No reply will
94  * be sent (the hardware will only do one reply per message).
95  */
96 static inline void uv_reply_to_message(struct msg_desc *mdp,
97                                        struct bau_control *bcp)
98 {
99         unsigned long dw;
100         struct bau_payload_queue_entry *msg;
101
102         msg = mdp->msg;
103         if (!msg->canceled) {
104                 dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) |
105                                                 msg->sw_ack_vector;
106                 uv_write_local_mmr(
107                                 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
108         }
109         msg->replied_to = 1;
110         msg->sw_ack_vector = 0;
111 }
112
113 /*
114  * Process the receipt of a RETRY message
115  */
116 static inline void uv_bau_process_retry_msg(struct msg_desc *mdp,
117                                             struct bau_control *bcp)
118 {
119         int i;
120         int cancel_count = 0;
121         int slot2;
122         unsigned long msg_res;
123         unsigned long mmr = 0;
124         struct bau_payload_queue_entry *msg;
125         struct bau_payload_queue_entry *msg2;
126         struct ptc_stats *stat;
127
128         msg = mdp->msg;
129         stat = &per_cpu(ptcstats, bcp->cpu);
130         stat->d_retries++;
131         /*
132          * cancel any message from msg+1 to the retry itself
133          */
134         for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
135                 if (msg2 > mdp->va_queue_last)
136                         msg2 = mdp->va_queue_first;
137                 if (msg2 == msg)
138                         break;
139
140                 /* same conditions for cancellation as uv_do_reset */
141                 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
142                     (msg2->sw_ack_vector) && ((msg2->sw_ack_vector &
143                         msg->sw_ack_vector) == 0) &&
144                     (msg2->sending_cpu == msg->sending_cpu) &&
145                     (msg2->msg_type != MSG_NOOP)) {
146                         slot2 = msg2 - mdp->va_queue_first;
147                         mmr = uv_read_local_mmr
148                                 (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
149                         msg_res = ((msg2->sw_ack_vector << 8) |
150                                    msg2->sw_ack_vector);
151                         /*
152                          * This is a message retry; clear the resources held
153                          * by the previous message only if they timed out.
154                          * If it has not timed out we have an unexpected
155                          * situation to report.
156                          */
157                         if (mmr & (msg_res << 8)) {
158                                 /*
159                                  * is the resource timed out?
160                                  * make everyone ignore the cancelled message.
161                                  */
162                                 msg2->canceled = 1;
163                                 stat->d_canceled++;
164                                 cancel_count++;
165                                 uv_write_local_mmr(
166                                     UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
167                                         (msg_res << 8) | msg_res);
168                         } else
169                                 printk(KERN_INFO "note bau retry: no effect\n");
170                 }
171         }
172         if (!cancel_count)
173                 stat->d_nocanceled++;
174 }
175
176 /*
177  * Do all the things a cpu should do for a TLB shootdown message.
178  * Other cpu's may come here at the same time for this message.
179  */
180 static void uv_bau_process_message(struct msg_desc *mdp,
181                                    struct bau_control *bcp)
182 {
183         int msg_ack_count;
184         short socket_ack_count = 0;
185         struct ptc_stats *stat;
186         struct bau_payload_queue_entry *msg;
187         struct bau_control *smaster = bcp->socket_master;
188
189         /*
190          * This must be a normal message, or retry of a normal message
191          */
192         msg = mdp->msg;
193         stat = &per_cpu(ptcstats, bcp->cpu);
194         if (msg->address == TLB_FLUSH_ALL) {
195                 local_flush_tlb();
196                 stat->d_alltlb++;
197         } else {
198                 __flush_tlb_one(msg->address);
199                 stat->d_onetlb++;
200         }
201         stat->d_requestee++;
202
203         /*
204          * One cpu on each uvhub has the additional job on a RETRY
205          * of releasing the resource held by the message that is
206          * being retried.  That message is identified by sending
207          * cpu number.
208          */
209         if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
210                 uv_bau_process_retry_msg(mdp, bcp);
211
212         /*
213          * This is a sw_ack message, so we have to reply to it.
214          * Count each responding cpu on the socket. This avoids
215          * pinging the count's cache line back and forth between
216          * the sockets.
217          */
218         socket_ack_count = atomic_add_short_return(1, (struct atomic_short *)
219                         &smaster->socket_acknowledge_count[mdp->msg_slot]);
220         if (socket_ack_count == bcp->cpus_in_socket) {
221                 /*
222                  * Both sockets dump their completed count total into
223                  * the message's count.
224                  */
225                 smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
226                 msg_ack_count = atomic_add_short_return(socket_ack_count,
227                                 (struct atomic_short *)&msg->acknowledge_count);
228
229                 if (msg_ack_count == bcp->cpus_in_uvhub) {
230                         /*
231                          * All cpus in uvhub saw it; reply
232                          */
233                         uv_reply_to_message(mdp, bcp);
234                 }
235         }
236
237         return;
238 }
239
240 /*
241  * Determine the first cpu on a uvhub.
242  */
243 static int uvhub_to_first_cpu(int uvhub)
244 {
245         int cpu;
246         for_each_present_cpu(cpu)
247                 if (uvhub == uv_cpu_to_blade_id(cpu))
248                         return cpu;
249         return -1;
250 }
251
252 /*
253  * Last resort when we get a large number of destination timeouts is
254  * to clear resources held by a given cpu.
255  * Do this with IPI so that all messages in the BAU message queue
256  * can be identified by their nonzero sw_ack_vector field.
257  *
258  * This is entered for a single cpu on the uvhub.
259  * The sender want's this uvhub to free a specific message's
260  * sw_ack resources.
261  */
262 static void
263 uv_do_reset(void *ptr)
264 {
265         int i;
266         int slot;
267         int count = 0;
268         unsigned long mmr;
269         unsigned long msg_res;
270         struct bau_control *bcp;
271         struct reset_args *rap;
272         struct bau_payload_queue_entry *msg;
273         struct ptc_stats *stat;
274
275         bcp = &per_cpu(bau_control, smp_processor_id());
276         rap = (struct reset_args *)ptr;
277         stat = &per_cpu(ptcstats, bcp->cpu);
278         stat->d_resets++;
279
280         /*
281          * We're looking for the given sender, and
282          * will free its sw_ack resource.
283          * If all cpu's finally responded after the timeout, its
284          * message 'replied_to' was set.
285          */
286         for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
287                 /* uv_do_reset: same conditions for cancellation as
288                    uv_bau_process_retry_msg() */
289                 if ((msg->replied_to == 0) &&
290                     (msg->canceled == 0) &&
291                     (msg->sending_cpu == rap->sender) &&
292                     (msg->sw_ack_vector) &&
293                     (msg->msg_type != MSG_NOOP)) {
294                         /*
295                          * make everyone else ignore this message
296                          */
297                         msg->canceled = 1;
298                         slot = msg - bcp->va_queue_first;
299                         count++;
300                         /*
301                          * only reset the resource if it is still pending
302                          */
303                         mmr = uv_read_local_mmr
304                                         (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
305                         msg_res = ((msg->sw_ack_vector << 8) |
306                                                    msg->sw_ack_vector);
307                         if (mmr & msg_res) {
308                                 stat->d_rcanceled++;
309                                 uv_write_local_mmr(
310                                     UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
311                                                         msg_res);
312                         }
313                 }
314         }
315         return;
316 }
317
318 /*
319  * Use IPI to get all target uvhubs to release resources held by
320  * a given sending cpu number.
321  */
322 static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution,
323                               int sender)
324 {
325         int uvhub;
326         int cpu;
327         cpumask_t mask;
328         struct reset_args reset_args;
329
330         reset_args.sender = sender;
331
332         cpus_clear(mask);
333         /* find a single cpu for each uvhub in this distribution mask */
334         for (uvhub = 0;
335                     uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE;
336                     uvhub++) {
337                 if (!bau_uvhub_isset(uvhub, distribution))
338                         continue;
339                 /* find a cpu for this uvhub */
340                 cpu = uvhub_to_first_cpu(uvhub);
341                 cpu_set(cpu, mask);
342         }
343         /* IPI all cpus; Preemption is already disabled */
344         smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1);
345         return;
346 }
347
348 static inline unsigned long
349 cycles_2_us(unsigned long long cyc)
350 {
351         unsigned long long ns;
352         unsigned long us;
353         ns =  (cyc * per_cpu(cyc2ns, smp_processor_id()))
354                                                 >> CYC2NS_SCALE_FACTOR;
355         us = ns / 1000;
356         return us;
357 }
358
359 /*
360  * wait for all cpus on this hub to finish their sends and go quiet
361  * leaves uvhub_quiesce set so that no new broadcasts are started by
362  * bau_flush_send_and_wait()
363  */
364 static inline void
365 quiesce_local_uvhub(struct bau_control *hmaster)
366 {
367         atomic_add_short_return(1, (struct atomic_short *)
368                  &hmaster->uvhub_quiesce);
369 }
370
371 /*
372  * mark this quiet-requestor as done
373  */
374 static inline void
375 end_uvhub_quiesce(struct bau_control *hmaster)
376 {
377         atomic_add_short_return(-1, (struct atomic_short *)
378                 &hmaster->uvhub_quiesce);
379 }
380
381 /*
382  * Wait for completion of a broadcast software ack message
383  * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
384  */
385 static int uv_wait_completion(struct bau_desc *bau_desc,
386         unsigned long mmr_offset, int right_shift, int this_cpu,
387         struct bau_control *bcp, struct bau_control *smaster, long try)
388 {
389         int relaxes = 0;
390         unsigned long descriptor_status;
391         unsigned long mmr;
392         unsigned long mask;
393         cycles_t ttime;
394         cycles_t timeout_time;
395         struct ptc_stats *stat = &per_cpu(ptcstats, this_cpu);
396         struct bau_control *hmaster;
397
398         hmaster = bcp->uvhub_master;
399         timeout_time = get_cycles() + bcp->timeout_interval;
400
401         /* spin on the status MMR, waiting for it to go idle */
402         while ((descriptor_status = (((unsigned long)
403                 uv_read_local_mmr(mmr_offset) >>
404                         right_shift) & UV_ACT_STATUS_MASK)) !=
405                         DESC_STATUS_IDLE) {
406                 /*
407                  * Our software ack messages may be blocked because there are
408                  * no swack resources available.  As long as none of them
409                  * has timed out hardware will NACK our message and its
410                  * state will stay IDLE.
411                  */
412                 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
413                         stat->s_stimeout++;
414                         return FLUSH_GIVEUP;
415                 } else if (descriptor_status ==
416                                         DESC_STATUS_DESTINATION_TIMEOUT) {
417                         stat->s_dtimeout++;
418                         ttime = get_cycles();
419
420                         /*
421                          * Our retries may be blocked by all destination
422                          * swack resources being consumed, and a timeout
423                          * pending.  In that case hardware returns the
424                          * ERROR that looks like a destination timeout.
425                          */
426                         if (cycles_2_us(ttime - bcp->send_message) < BIOS_TO) {
427                                 bcp->conseccompletes = 0;
428                                 return FLUSH_RETRY_PLUGGED;
429                         }
430
431                         bcp->conseccompletes = 0;
432                         return FLUSH_RETRY_TIMEOUT;
433                 } else {
434                         /*
435                          * descriptor_status is still BUSY
436                          */
437                         cpu_relax();
438                         relaxes++;
439                         if (relaxes >= 10000) {
440                                 relaxes = 0;
441                                 if (get_cycles() > timeout_time) {
442                                         quiesce_local_uvhub(hmaster);
443
444                                         /* single-thread the register change */
445                                         spin_lock(&hmaster->masks_lock);
446                                         mmr = uv_read_local_mmr(mmr_offset);
447                                         mask = 0UL;
448                                         mask |= (3UL < right_shift);
449                                         mask = ~mask;
450                                         mmr &= mask;
451                                         uv_write_local_mmr(mmr_offset, mmr);
452                                         spin_unlock(&hmaster->masks_lock);
453                                         end_uvhub_quiesce(hmaster);
454                                         stat->s_busy++;
455                                         return FLUSH_GIVEUP;
456                                 }
457                         }
458                 }
459         }
460         bcp->conseccompletes++;
461         return FLUSH_COMPLETE;
462 }
463
464 static inline cycles_t
465 sec_2_cycles(unsigned long sec)
466 {
467         unsigned long ns;
468         cycles_t cyc;
469
470         ns = sec * 1000000000;
471         cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
472         return cyc;
473 }
474
475 /*
476  * conditionally add 1 to *v, unless *v is >= u
477  * return 0 if we cannot add 1 to *v because it is >= u
478  * return 1 if we can add 1 to *v because it is < u
479  * the add is atomic
480  *
481  * This is close to atomic_add_unless(), but this allows the 'u' value
482  * to be lowered below the current 'v'.  atomic_add_unless can only stop
483  * on equal.
484  */
485 static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u)
486 {
487         spin_lock(lock);
488         if (atomic_read(v) >= u) {
489                 spin_unlock(lock);
490                 return 0;
491         }
492         atomic_inc(v);
493         spin_unlock(lock);
494         return 1;
495 }
496
497 /**
498  * uv_flush_send_and_wait
499  *
500  * Send a broadcast and wait for it to complete.
501  *
502  * The flush_mask contains the cpus the broadcast is to be sent to, plus
503  * cpus that are on the local uvhub.
504  *
505  * Returns NULL if all flushing represented in the mask was done. The mask
506  * is zeroed.
507  * Returns @flush_mask if some remote flushing remains to be done. The
508  * mask will have some bits still set, representing any cpus on the local
509  * uvhub (not current cpu) and any on remote uvhubs if the broadcast failed.
510  */
511 const struct cpumask *uv_flush_send_and_wait(struct bau_desc *bau_desc,
512                                              struct cpumask *flush_mask,
513                                              struct bau_control *bcp)
514 {
515         int right_shift;
516         int uvhub;
517         int bit;
518         int completion_status = 0;
519         int seq_number = 0;
520         long try = 0;
521         int cpu = bcp->uvhub_cpu;
522         int this_cpu = bcp->cpu;
523         int this_uvhub = bcp->uvhub;
524         unsigned long mmr_offset;
525         unsigned long index;
526         cycles_t time1;
527         cycles_t time2;
528         struct ptc_stats *stat = &per_cpu(ptcstats, bcp->cpu);
529         struct bau_control *smaster = bcp->socket_master;
530         struct bau_control *hmaster = bcp->uvhub_master;
531
532         /*
533          * Spin here while there are hmaster->max_concurrent or more active
534          * descriptors. This is the per-uvhub 'throttle'.
535          */
536         if (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
537                         &hmaster->active_descriptor_count,
538                         hmaster->max_concurrent)) {
539                 stat->s_throttles++;
540                 do {
541                         cpu_relax();
542                 } while (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
543                         &hmaster->active_descriptor_count,
544                         hmaster->max_concurrent));
545         }
546
547         while (hmaster->uvhub_quiesce)
548                 cpu_relax();
549
550         if (cpu < UV_CPUS_PER_ACT_STATUS) {
551                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
552                 right_shift = cpu * UV_ACT_STATUS_SIZE;
553         } else {
554                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
555                 right_shift =
556                     ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
557         }
558         time1 = get_cycles();
559         do {
560                 /*
561                  * Every message from any given cpu gets a unique message
562                  * sequence number. But retries use that same number.
563                  * Our message may have timed out at the destination because
564                  * all sw-ack resources are in use and there is a timeout
565                  * pending there.  In that case, our last send never got
566                  * placed into the queue and we need to persist until it
567                  * does.
568                  *
569                  * Make any retry a type MSG_RETRY so that the destination will
570                  * free any resource held by a previous message from this cpu.
571                  */
572                 if (try == 0) {
573                         /* use message type set by the caller the first time */
574                         seq_number = bcp->message_number++;
575                 } else {
576                         /* use RETRY type on all the rest; same sequence */
577                         bau_desc->header.msg_type = MSG_RETRY;
578                         stat->s_retry_messages++;
579                 }
580                 bau_desc->header.sequence = seq_number;
581                 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
582                         bcp->uvhub_cpu;
583                 bcp->send_message = get_cycles();
584
585                 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
586
587                 try++;
588                 completion_status = uv_wait_completion(bau_desc, mmr_offset,
589                         right_shift, this_cpu, bcp, smaster, try);
590
591                 if (completion_status == FLUSH_RETRY_PLUGGED) {
592                         /*
593                          * Our retries may be blocked by all destination swack
594                          * resources being consumed, and a timeout pending. In
595                          * that case hardware immediately returns the ERROR
596                          * that looks like a destination timeout.
597                          */
598                         udelay(TIMEOUT_DELAY);
599                         bcp->plugged_tries++;
600                         if (bcp->plugged_tries >= PLUGSB4RESET) {
601                                 bcp->plugged_tries = 0;
602                                 quiesce_local_uvhub(hmaster);
603                                 spin_lock(&hmaster->queue_lock);
604                                 uv_reset_with_ipi(&bau_desc->distribution,
605                                                         this_cpu);
606                                 spin_unlock(&hmaster->queue_lock);
607                                 end_uvhub_quiesce(hmaster);
608                                 bcp->ipi_attempts++;
609                                 stat->s_resets_plug++;
610                         }
611                 } else if (completion_status == FLUSH_RETRY_TIMEOUT) {
612                         hmaster->max_concurrent = 1;
613                         bcp->timeout_tries++;
614                         udelay(TIMEOUT_DELAY);
615                         if (bcp->timeout_tries >= TIMEOUTSB4RESET) {
616                                 bcp->timeout_tries = 0;
617                                 quiesce_local_uvhub(hmaster);
618                                 spin_lock(&hmaster->queue_lock);
619                                 uv_reset_with_ipi(&bau_desc->distribution,
620                                                                 this_cpu);
621                                 spin_unlock(&hmaster->queue_lock);
622                                 end_uvhub_quiesce(hmaster);
623                                 bcp->ipi_attempts++;
624                                 stat->s_resets_timeout++;
625                         }
626                 }
627                 if (bcp->ipi_attempts >= 3) {
628                         bcp->ipi_attempts = 0;
629                         completion_status = FLUSH_GIVEUP;
630                         break;
631                 }
632                 cpu_relax();
633         } while ((completion_status == FLUSH_RETRY_PLUGGED) ||
634                  (completion_status == FLUSH_RETRY_TIMEOUT));
635         time2 = get_cycles();
636
637         if ((completion_status == FLUSH_COMPLETE) && (bcp->conseccompletes > 5)
638             && (hmaster->max_concurrent < hmaster->max_concurrent_constant))
639                         hmaster->max_concurrent++;
640
641         /*
642          * hold any cpu not timing out here; no other cpu currently held by
643          * the 'throttle' should enter the activation code
644          */
645         while (hmaster->uvhub_quiesce)
646                 cpu_relax();
647         atomic_dec(&hmaster->active_descriptor_count);
648
649         /* guard against cycles wrap */
650         if (time2 > time1)
651                 stat->s_time += (time2 - time1);
652         else
653                 stat->s_requestor--; /* don't count this one */
654         if (completion_status == FLUSH_COMPLETE && try > 1)
655                 stat->s_retriesok++;
656         else if (completion_status == FLUSH_GIVEUP) {
657                 /*
658                  * Cause the caller to do an IPI-style TLB shootdown on
659                  * the target cpu's, all of which are still in the mask.
660                  */
661                 stat->s_giveup++;
662                 return flush_mask;
663         }
664
665         /*
666          * Success, so clear the remote cpu's from the mask so we don't
667          * use the IPI method of shootdown on them.
668          */
669         for_each_cpu(bit, flush_mask) {
670                 uvhub = uv_cpu_to_blade_id(bit);
671                 if (uvhub == this_uvhub)
672                         continue;
673                 cpumask_clear_cpu(bit, flush_mask);
674         }
675         if (!cpumask_empty(flush_mask))
676                 return flush_mask;
677
678         return NULL;
679 }
680
681 /**
682  * uv_flush_tlb_others - globally purge translation cache of a virtual
683  * address or all TLB's
684  * @cpumask: mask of all cpu's in which the address is to be removed
685  * @mm: mm_struct containing virtual address range
686  * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
687  * @cpu: the current cpu
688  *
689  * This is the entry point for initiating any UV global TLB shootdown.
690  *
691  * Purges the translation caches of all specified processors of the given
692  * virtual address, or purges all TLB's on specified processors.
693  *
694  * The caller has derived the cpumask from the mm_struct.  This function
695  * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
696  *
697  * The cpumask is converted into a uvhubmask of the uvhubs containing
698  * those cpus.
699  *
700  * Note that this function should be called with preemption disabled.
701  *
702  * Returns NULL if all remote flushing was done.
703  * Returns pointer to cpumask if some remote flushing remains to be
704  * done.  The returned pointer is valid till preemption is re-enabled.
705  */
706 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
707                                           struct mm_struct *mm,
708                                           unsigned long va, unsigned int cpu)
709 {
710         int remotes;
711         int tcpu;
712         int uvhub;
713         int locals = 0;
714         struct bau_desc *bau_desc;
715         struct cpumask *flush_mask;
716         struct ptc_stats *stat;
717         struct bau_control *bcp;
718
719         if (nobau)
720                 return cpumask;
721
722         bcp = &per_cpu(bau_control, cpu);
723         /*
724          * Each sending cpu has a per-cpu mask which it fills from the caller's
725          * cpu mask.  Only remote cpus are converted to uvhubs and copied.
726          */
727         flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
728         /*
729          * copy cpumask to flush_mask, removing current cpu
730          * (current cpu should already have been flushed by the caller and
731          *  should never be returned if we return flush_mask)
732          */
733         cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
734         if (cpu_isset(cpu, *cpumask))
735                 locals++;  /* current cpu was targeted */
736
737         bau_desc = bcp->descriptor_base;
738         bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu;
739
740         bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
741         remotes = 0;
742         for_each_cpu(tcpu, flush_mask) {
743                 uvhub = uv_cpu_to_blade_id(tcpu);
744                 if (uvhub == bcp->uvhub) {
745                         locals++;
746                         continue;
747                 }
748                 bau_uvhub_set(uvhub, &bau_desc->distribution);
749                 remotes++;
750         }
751         if (remotes == 0) {
752                 /*
753                  * No off_hub flushing; return status for local hub.
754                  * Return the caller's mask if all were local (the current
755                  * cpu may be in that mask).
756                  */
757                 if (locals)
758                         return cpumask;
759                 else
760                         return NULL;
761         }
762         stat = &per_cpu(ptcstats, cpu);
763         stat->s_requestor++;
764         stat->s_ntargcpu += remotes;
765         remotes = bau_uvhub_weight(&bau_desc->distribution);
766         stat->s_ntarguvhub += remotes;
767         if (remotes >= 16)
768                 stat->s_ntarguvhub16++;
769         else if (remotes >= 8)
770                 stat->s_ntarguvhub8++;
771         else if (remotes >= 4)
772                 stat->s_ntarguvhub4++;
773         else if (remotes >= 2)
774                 stat->s_ntarguvhub2++;
775         else
776                 stat->s_ntarguvhub1++;
777
778         bau_desc->payload.address = va;
779         bau_desc->payload.sending_cpu = cpu;
780
781         /*
782          * uv_flush_send_and_wait returns null if all cpu's were messaged, or
783          * the adjusted flush_mask if any cpu's were not messaged.
784          */
785         return uv_flush_send_and_wait(bau_desc, flush_mask, bcp);
786 }
787
788 /*
789  * The BAU message interrupt comes here. (registered by set_intr_gate)
790  * See entry_64.S
791  *
792  * We received a broadcast assist message.
793  *
794  * Interrupts are disabled; this interrupt could represent
795  * the receipt of several messages.
796  *
797  * All cores/threads on this hub get this interrupt.
798  * The last one to see it does the software ack.
799  * (the resource will not be freed until noninterruptable cpus see this
800  *  interrupt; hardware may timeout the s/w ack and reply ERROR)
801  */
802 void uv_bau_message_interrupt(struct pt_regs *regs)
803 {
804         int count = 0;
805         cycles_t time_start;
806         struct bau_payload_queue_entry *msg;
807         struct bau_control *bcp;
808         struct ptc_stats *stat;
809         struct msg_desc msgdesc;
810
811         time_start = get_cycles();
812         bcp = &per_cpu(bau_control, smp_processor_id());
813         stat = &per_cpu(ptcstats, smp_processor_id());
814         msgdesc.va_queue_first = bcp->va_queue_first;
815         msgdesc.va_queue_last = bcp->va_queue_last;
816         msg = bcp->bau_msg_head;
817         while (msg->sw_ack_vector) {
818                 count++;
819                 msgdesc.msg_slot = msg - msgdesc.va_queue_first;
820                 msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1;
821                 msgdesc.msg = msg;
822                 uv_bau_process_message(&msgdesc, bcp);
823                 msg++;
824                 if (msg > msgdesc.va_queue_last)
825                         msg = msgdesc.va_queue_first;
826                 bcp->bau_msg_head = msg;
827         }
828         stat->d_time += (get_cycles() - time_start);
829         if (!count)
830                 stat->d_nomsg++;
831         else if (count > 1)
832                 stat->d_multmsg++;
833         ack_APIC_irq();
834 }
835
836 /*
837  * uv_enable_timeouts
838  *
839  * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have
840  * shootdown message timeouts enabled.  The timeout does not cause
841  * an interrupt, but causes an error message to be returned to
842  * the sender.
843  */
844 static void uv_enable_timeouts(void)
845 {
846         int uvhub;
847         int nuvhubs;
848         int pnode;
849         unsigned long mmr_image;
850
851         nuvhubs = uv_num_possible_blades();
852
853         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
854                 if (!uv_blade_nr_possible_cpus(uvhub))
855                         continue;
856
857                 pnode = uv_blade_to_pnode(uvhub);
858                 mmr_image =
859                     uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
860                 /*
861                  * Set the timeout period and then lock it in, in three
862                  * steps; captures and locks in the period.
863                  *
864                  * To program the period, the SOFT_ACK_MODE must be off.
865                  */
866                 mmr_image &= ~((unsigned long)1 <<
867                     UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
868                 uv_write_global_mmr64
869                     (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
870                 /*
871                  * Set the 4-bit period.
872                  */
873                 mmr_image &= ~((unsigned long)0xf <<
874                      UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
875                 mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
876                      UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
877                 uv_write_global_mmr64
878                     (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
879                 /*
880                  * Subsequent reversals of the timebase bit (3) cause an
881                  * immediate timeout of one or all INTD resources as
882                  * indicated in bits 2:0 (7 causes all of them to timeout).
883                  */
884                 mmr_image |= ((unsigned long)1 <<
885                     UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
886                 uv_write_global_mmr64
887                     (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
888         }
889 }
890
891 static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
892 {
893         if (*offset < num_possible_cpus())
894                 return offset;
895         return NULL;
896 }
897
898 static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
899 {
900         (*offset)++;
901         if (*offset < num_possible_cpus())
902                 return offset;
903         return NULL;
904 }
905
906 static void uv_ptc_seq_stop(struct seq_file *file, void *data)
907 {
908 }
909
910 static inline unsigned long long
911 millisec_2_cycles(unsigned long millisec)
912 {
913         unsigned long ns;
914         unsigned long long cyc;
915
916         ns = millisec * 1000;
917         cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
918         return cyc;
919 }
920
921 /*
922  * Display the statistics thru /proc.
923  * 'data' points to the cpu number
924  */
925 static int uv_ptc_seq_show(struct seq_file *file, void *data)
926 {
927         struct ptc_stats *stat;
928         int cpu;
929
930         cpu = *(loff_t *)data;
931
932         if (!cpu) {
933                 seq_printf(file,
934                         "# cpu sent stime numuvhubs numuvhubs16 numuvhubs8 ");
935                 seq_printf(file,
936                         "numuvhubs4 numuvhubs2 numuvhubs1 numcpus dto ");
937                 seq_printf(file,
938                         "retries rok resetp resett giveup sto bz throt ");
939                 seq_printf(file,
940                         "sw_ack recv rtime all ");
941                 seq_printf(file,
942                         "one mult none retry canc nocan reset rcan\n");
943         }
944         if (cpu < num_possible_cpus() && cpu_online(cpu)) {
945                 stat = &per_cpu(ptcstats, cpu);
946                 /* source side statistics */
947                 seq_printf(file,
948                         "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
949                            cpu, stat->s_requestor, cycles_2_us(stat->s_time),
950                            stat->s_ntarguvhub, stat->s_ntarguvhub16,
951                            stat->s_ntarguvhub8, stat->s_ntarguvhub4,
952                            stat->s_ntarguvhub2, stat->s_ntarguvhub1,
953                            stat->s_ntargcpu, stat->s_dtimeout);
954                 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
955                            stat->s_retry_messages, stat->s_retriesok,
956                            stat->s_resets_plug, stat->s_resets_timeout,
957                            stat->s_giveup, stat->s_stimeout,
958                            stat->s_busy, stat->s_throttles);
959                 /* destination side statistics */
960                 seq_printf(file,
961                            "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
962                            uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
963                                         UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
964                            stat->d_requestee, cycles_2_us(stat->d_time),
965                            stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
966                            stat->d_nomsg, stat->d_retries, stat->d_canceled,
967                            stat->d_nocanceled, stat->d_resets,
968                            stat->d_rcanceled);
969         }
970
971         return 0;
972 }
973
974 /*
975  * -1: resetf the statistics
976  *  0: display meaning of the statistics
977  * >0: maximum concurrent active descriptors per uvhub (throttle)
978  */
979 static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
980                                  size_t count, loff_t *data)
981 {
982         int cpu;
983         long input_arg;
984         char optstr[64];
985         struct ptc_stats *stat;
986         struct bau_control *bcp;
987
988         if (count == 0 || count > sizeof(optstr))
989                 return -EINVAL;
990         if (copy_from_user(optstr, user, count))
991                 return -EFAULT;
992         optstr[count - 1] = '\0';
993         if (strict_strtol(optstr, 10, &input_arg) < 0) {
994                 printk(KERN_DEBUG "%s is invalid\n", optstr);
995                 return -EINVAL;
996         }
997
998         if (input_arg == 0) {
999                 printk(KERN_DEBUG "# cpu:      cpu number\n");
1000                 printk(KERN_DEBUG "Sender statistics:\n");
1001                 printk(KERN_DEBUG
1002                 "sent:     number of shootdown messages sent\n");
1003                 printk(KERN_DEBUG
1004                 "stime:    time spent sending messages\n");
1005                 printk(KERN_DEBUG
1006                 "numuvhubs: number of hubs targeted with shootdown\n");
1007                 printk(KERN_DEBUG
1008                 "numuvhubs16: number times 16 or more hubs targeted\n");
1009                 printk(KERN_DEBUG
1010                 "numuvhubs8: number times 8 or more hubs targeted\n");
1011                 printk(KERN_DEBUG
1012                 "numuvhubs4: number times 4 or more hubs targeted\n");
1013                 printk(KERN_DEBUG
1014                 "numuvhubs2: number times 2 or more hubs targeted\n");
1015                 printk(KERN_DEBUG
1016                 "numuvhubs1: number times 1 hub targeted\n");
1017                 printk(KERN_DEBUG
1018                 "numcpus:  number of cpus targeted with shootdown\n");
1019                 printk(KERN_DEBUG
1020                 "dto:      number of destination timeouts\n");
1021                 printk(KERN_DEBUG
1022                 "retries:  destination timeout retries sent\n");
1023                 printk(KERN_DEBUG
1024                 "rok:   :  destination timeouts successfully retried\n");
1025                 printk(KERN_DEBUG
1026                 "resetp:   ipi-style resource resets for plugs\n");
1027                 printk(KERN_DEBUG
1028                 "resett:   ipi-style resource resets for timeouts\n");
1029                 printk(KERN_DEBUG
1030                 "giveup:   fall-backs to ipi-style shootdowns\n");
1031                 printk(KERN_DEBUG
1032                 "sto:      number of source timeouts\n");
1033                 printk(KERN_DEBUG
1034                 "bz:       number of stay-busy's\n");
1035                 printk(KERN_DEBUG
1036                 "throt:    number times spun in throttle\n");
1037                 printk(KERN_DEBUG "Destination side statistics:\n");
1038                 printk(KERN_DEBUG
1039                 "sw_ack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
1040                 printk(KERN_DEBUG
1041                 "recv:     shootdown messages received\n");
1042                 printk(KERN_DEBUG
1043                 "rtime:    time spent processing messages\n");
1044                 printk(KERN_DEBUG
1045                 "all:      shootdown all-tlb messages\n");
1046                 printk(KERN_DEBUG
1047                 "one:      shootdown one-tlb messages\n");
1048                 printk(KERN_DEBUG
1049                 "mult:     interrupts that found multiple messages\n");
1050                 printk(KERN_DEBUG
1051                 "none:     interrupts that found no messages\n");
1052                 printk(KERN_DEBUG
1053                 "retry:    number of retry messages processed\n");
1054                 printk(KERN_DEBUG
1055                 "canc:     number messages canceled by retries\n");
1056                 printk(KERN_DEBUG
1057                 "nocan:    number retries that found nothing to cancel\n");
1058                 printk(KERN_DEBUG
1059                 "reset:    number of ipi-style reset requests processed\n");
1060                 printk(KERN_DEBUG
1061                 "rcan:     number messages canceled by reset requests\n");
1062         } else if (input_arg == -1) {
1063                 for_each_present_cpu(cpu) {
1064                         stat = &per_cpu(ptcstats, cpu);
1065                         memset(stat, 0, sizeof(struct ptc_stats));
1066                 }
1067         } else {
1068                 uv_bau_max_concurrent = input_arg;
1069                 bcp = &per_cpu(bau_control, smp_processor_id());
1070                 if (uv_bau_max_concurrent < 1 ||
1071                     uv_bau_max_concurrent > bcp->cpus_in_uvhub) {
1072                         printk(KERN_DEBUG
1073                                 "Error: BAU max concurrent %d; %d is invalid\n",
1074                                 bcp->max_concurrent, uv_bau_max_concurrent);
1075                         return -EINVAL;
1076                 }
1077                 printk(KERN_DEBUG "Set BAU max concurrent:%d\n",
1078                        uv_bau_max_concurrent);
1079                 for_each_present_cpu(cpu) {
1080                         bcp = &per_cpu(bau_control, cpu);
1081                         bcp->max_concurrent = uv_bau_max_concurrent;
1082                 }
1083         }
1084
1085         return count;
1086 }
1087
1088 static const struct seq_operations uv_ptc_seq_ops = {
1089         .start          = uv_ptc_seq_start,
1090         .next           = uv_ptc_seq_next,
1091         .stop           = uv_ptc_seq_stop,
1092         .show           = uv_ptc_seq_show
1093 };
1094
1095 static int uv_ptc_proc_open(struct inode *inode, struct file *file)
1096 {
1097         return seq_open(file, &uv_ptc_seq_ops);
1098 }
1099
1100 static const struct file_operations proc_uv_ptc_operations = {
1101         .open           = uv_ptc_proc_open,
1102         .read           = seq_read,
1103         .write          = uv_ptc_proc_write,
1104         .llseek         = seq_lseek,
1105         .release        = seq_release,
1106 };
1107
1108 static int __init uv_ptc_init(void)
1109 {
1110         struct proc_dir_entry *proc_uv_ptc;
1111
1112         if (!is_uv_system())
1113                 return 0;
1114
1115         proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1116                                   &proc_uv_ptc_operations);
1117         if (!proc_uv_ptc) {
1118                 printk(KERN_ERR "unable to create %s proc entry\n",
1119                        UV_PTC_BASENAME);
1120                 return -EINVAL;
1121         }
1122         return 0;
1123 }
1124
1125 /*
1126  * initialize the sending side's sending buffers
1127  */
1128 static void
1129 uv_activation_descriptor_init(int node, int pnode)
1130 {
1131         int i;
1132         int cpu;
1133         unsigned long pa;
1134         unsigned long m;
1135         unsigned long n;
1136         struct bau_desc *bau_desc;
1137         struct bau_desc *bd2;
1138         struct bau_control *bcp;
1139
1140         /*
1141          * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
1142          * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per uvhub
1143          */
1144         bau_desc = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)*
1145                 UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
1146         BUG_ON(!bau_desc);
1147
1148         pa = uv_gpa(bau_desc); /* need the real nasid*/
1149         n = pa >> uv_nshift;
1150         m = pa & uv_mmask;
1151
1152         uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
1153                               (n << UV_DESC_BASE_PNODE_SHIFT | m));
1154
1155         /*
1156          * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
1157          * cpu even though we only use the first one; one descriptor can
1158          * describe a broadcast to 256 uv hubs.
1159          */
1160         for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
1161                 i++, bd2++) {
1162                 memset(bd2, 0, sizeof(struct bau_desc));
1163                 bd2->header.sw_ack_flag = 1;
1164                 /*
1165                  * base_dest_nodeid is the nasid (pnode<<1) of the first uvhub
1166                  * in the partition. The bit map will indicate uvhub numbers,
1167                  * which are 0-N in a partition. Pnodes are unique system-wide.
1168                  */
1169                 bd2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
1170                 bd2->header.dest_subnodeid = 0x10; /* the LB */
1171                 bd2->header.command = UV_NET_ENDPOINT_INTD;
1172                 bd2->header.int_both = 1;
1173                 /*
1174                  * all others need to be set to zero:
1175                  *   fairness chaining multilevel count replied_to
1176                  */
1177         }
1178         for_each_present_cpu(cpu) {
1179                 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1180                         continue;
1181                 bcp = &per_cpu(bau_control, cpu);
1182                 bcp->descriptor_base = bau_desc;
1183         }
1184 }
1185
1186 /*
1187  * initialize the destination side's receiving buffers
1188  * entered for each uvhub in the partition
1189  * - node is first node (kernel memory notion) on the uvhub
1190  * - pnode is the uvhub's physical identifier
1191  */
1192 static void
1193 uv_payload_queue_init(int node, int pnode)
1194 {
1195         int pn;
1196         int cpu;
1197         char *cp;
1198         unsigned long pa;
1199         struct bau_payload_queue_entry *pqp;
1200         struct bau_payload_queue_entry *pqp_malloc;
1201         struct bau_control *bcp;
1202
1203         pqp = (struct bau_payload_queue_entry *) kmalloc_node(
1204                 (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
1205                 GFP_KERNEL, node);
1206         BUG_ON(!pqp);
1207         pqp_malloc = pqp;
1208
1209         cp = (char *)pqp + 31;
1210         pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
1211
1212         for_each_present_cpu(cpu) {
1213                 if (pnode != uv_cpu_to_pnode(cpu))
1214                         continue;
1215                 /* for every cpu on this pnode: */
1216                 bcp = &per_cpu(bau_control, cpu);
1217                 bcp->va_queue_first = pqp;
1218                 bcp->bau_msg_head = pqp;
1219                 bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
1220         }
1221         /*
1222          * need the pnode of where the memory was really allocated
1223          */
1224         pa = uv_gpa(pqp);
1225         pn = pa >> uv_nshift;
1226         uv_write_global_mmr64(pnode,
1227                               UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
1228                               ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
1229                               uv_physnodeaddr(pqp));
1230         uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
1231                               uv_physnodeaddr(pqp));
1232         uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
1233                               (unsigned long)
1234                               uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1)));
1235         /* in effect, all msg_type's are set to MSG_NOOP */
1236         memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
1237 }
1238
1239 /*
1240  * Initialization of each UV hub's structures
1241  */
1242 static void __init uv_init_uvhub(int uvhub, int vector)
1243 {
1244         int node;
1245         int pnode;
1246         unsigned long apicid;
1247
1248         node = uvhub_to_first_node(uvhub);
1249         pnode = uv_blade_to_pnode(uvhub);
1250         uv_activation_descriptor_init(node, pnode);
1251         uv_payload_queue_init(node, pnode);
1252         /*
1253          * the below initialization can't be in firmware because the
1254          * messaging IRQ will be determined by the OS
1255          */
1256         apicid = uvhub_to_first_apicid(uvhub);
1257         uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
1258                                       ((apicid << 32) | vector));
1259 }
1260
1261 /*
1262  * initialize the bau_control structure for each cpu
1263  */
1264 static void uv_init_per_cpu(int nuvhubs)
1265 {
1266         int i, j, k;
1267         int cpu;
1268         int pnode;
1269         int uvhub;
1270         short socket = 0;
1271         struct bau_control *bcp;
1272         struct uvhub_desc *bdp;
1273         struct socket_desc *sdp;
1274         struct bau_control *hmaster = NULL;
1275         struct bau_control *smaster = NULL;
1276         struct socket_desc {
1277                 short num_cpus;
1278                 short cpu_number[16];
1279         };
1280         struct uvhub_desc {
1281                 short num_sockets;
1282                 short num_cpus;
1283                 short uvhub;
1284                 short pnode;
1285                 struct socket_desc socket[2];
1286         };
1287         struct uvhub_desc *uvhub_descs;
1288
1289         uvhub_descs = (struct uvhub_desc *)
1290                 kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
1291         memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
1292         for_each_present_cpu(cpu) {
1293                 bcp = &per_cpu(bau_control, cpu);
1294                 memset(bcp, 0, sizeof(struct bau_control));
1295                 spin_lock_init(&bcp->masks_lock);
1296                 bcp->max_concurrent = uv_bau_max_concurrent;
1297                 pnode = uv_cpu_hub_info(cpu)->pnode;
1298                 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1299                 bdp = &uvhub_descs[uvhub];
1300                 bdp->num_cpus++;
1301                 bdp->uvhub = uvhub;
1302                 bdp->pnode = pnode;
1303                 /* time interval to catch a hardware stay-busy bug */
1304                 bcp->timeout_interval = millisec_2_cycles(3);
1305                 /* kludge: assume uv_hub.h is constant */
1306                 socket = (cpu_physical_id(cpu)>>5)&1;
1307                 if (socket >= bdp->num_sockets)
1308                         bdp->num_sockets = socket+1;
1309                 sdp = &bdp->socket[socket];
1310                 sdp->cpu_number[sdp->num_cpus] = cpu;
1311                 sdp->num_cpus++;
1312         }
1313         socket = 0;
1314         for_each_possible_blade(uvhub) {
1315                 bdp = &uvhub_descs[uvhub];
1316                 for (i = 0; i < bdp->num_sockets; i++) {
1317                         sdp = &bdp->socket[i];
1318                         for (j = 0; j < sdp->num_cpus; j++) {
1319                                 cpu = sdp->cpu_number[j];
1320                                 bcp = &per_cpu(bau_control, cpu);
1321                                 bcp->cpu = cpu;
1322                                 if (j == 0) {
1323                                         smaster = bcp;
1324                                         if (i == 0)
1325                                                 hmaster = bcp;
1326                                 }
1327                                 bcp->cpus_in_uvhub = bdp->num_cpus;
1328                                 bcp->cpus_in_socket = sdp->num_cpus;
1329                                 bcp->socket_master = smaster;
1330                                 bcp->uvhub_master = hmaster;
1331                                 for (k = 0; k < DEST_Q_SIZE; k++)
1332                                         bcp->socket_acknowledge_count[k] = 0;
1333                                 bcp->uvhub_cpu =
1334                                   uv_cpu_hub_info(cpu)->blade_processor_id;
1335                         }
1336                         socket++;
1337                 }
1338         }
1339         kfree(uvhub_descs);
1340 }
1341
1342 /*
1343  * Initialization of BAU-related structures
1344  */
1345 static int __init uv_bau_init(void)
1346 {
1347         int uvhub;
1348         int pnode;
1349         int nuvhubs;
1350         int cur_cpu;
1351         int vector;
1352         unsigned long mmr;
1353
1354         if (!is_uv_system())
1355                 return 0;
1356
1357         if (nobau)
1358                 return 0;
1359
1360         for_each_possible_cpu(cur_cpu)
1361                 zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
1362                                        GFP_KERNEL, cpu_to_node(cur_cpu));
1363
1364         uv_bau_max_concurrent = MAX_BAU_CONCURRENT;
1365         uv_nshift = uv_hub_info->m_val;
1366         uv_mmask = (1UL << uv_hub_info->m_val) - 1;
1367         nuvhubs = uv_num_possible_blades();
1368
1369         uv_init_per_cpu(nuvhubs);
1370
1371         uv_partition_base_pnode = 0x7fffffff;
1372         for (uvhub = 0; uvhub < nuvhubs; uvhub++)
1373                 if (uv_blade_nr_possible_cpus(uvhub) &&
1374                         (uv_blade_to_pnode(uvhub) < uv_partition_base_pnode))
1375                         uv_partition_base_pnode = uv_blade_to_pnode(uvhub);
1376
1377         vector = UV_BAU_MESSAGE;
1378         for_each_possible_blade(uvhub)
1379                 if (uv_blade_nr_possible_cpus(uvhub))
1380                         uv_init_uvhub(uvhub, vector);
1381
1382         uv_enable_timeouts();
1383         alloc_intr_gate(vector, uv_bau_message_intr1);
1384
1385         for_each_possible_blade(uvhub) {
1386                 pnode = uv_blade_to_pnode(uvhub);
1387                 /* INIT the bau */
1388                 uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_ACTIVATION_CONTROL,
1389                                       ((unsigned long)1 << 63));
1390                 mmr = 1; /* should be 1 to broadcast to both sockets */
1391                 uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST, mmr);
1392         }
1393
1394         return 0;
1395 }
1396 core_initcall(uv_bau_init);
1397 core_initcall(uv_ptc_init);