Merge branch 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorri...
[sfrench/cifs-2.6.git] / arch / x86 / kernel / setup.c
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *
6  *  Memory region support
7  *      David Parsons <orc@pell.chi.il.us>, July-August 1999
8  *
9  *  Added E820 sanitization routine (removes overlapping memory regions);
10  *  Brian Moyle <bmoyle@mvista.com>, February 2001
11  *
12  * Moved CPU detection code to cpu/${cpu}.c
13  *    Patrick Mochel <mochel@osdl.org>, March 2002
14  *
15  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
16  *  Alex Achenbach <xela@slit.de>, December 2002.
17  *
18  */
19
20 /*
21  * This file handles the architecture-dependent parts of initialization
22  */
23
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/memblock.h>
34 #include <linux/seq_file.h>
35 #include <linux/console.h>
36 #include <linux/root_dev.h>
37 #include <linux/highmem.h>
38 #include <linux/export.h>
39 #include <linux/efi.h>
40 #include <linux/init.h>
41 #include <linux/edd.h>
42 #include <linux/iscsi_ibft.h>
43 #include <linux/nodemask.h>
44 #include <linux/kexec.h>
45 #include <linux/dmi.h>
46 #include <linux/pfn.h>
47 #include <linux/pci.h>
48 #include <asm/pci-direct.h>
49 #include <linux/init_ohci1394_dma.h>
50 #include <linux/kvm_para.h>
51 #include <linux/dma-contiguous.h>
52 #include <xen/xen.h>
53 #include <uapi/linux/mount.h>
54
55 #include <linux/errno.h>
56 #include <linux/kernel.h>
57 #include <linux/stddef.h>
58 #include <linux/unistd.h>
59 #include <linux/ptrace.h>
60 #include <linux/user.h>
61 #include <linux/delay.h>
62
63 #include <linux/kallsyms.h>
64 #include <linux/cpufreq.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/ctype.h>
67 #include <linux/uaccess.h>
68
69 #include <linux/percpu.h>
70 #include <linux/crash_dump.h>
71 #include <linux/tboot.h>
72 #include <linux/jiffies.h>
73 #include <linux/mem_encrypt.h>
74
75 #include <linux/usb/xhci-dbgp.h>
76 #include <video/edid.h>
77
78 #include <asm/mtrr.h>
79 #include <asm/apic.h>
80 #include <asm/realmode.h>
81 #include <asm/e820/api.h>
82 #include <asm/mpspec.h>
83 #include <asm/setup.h>
84 #include <asm/efi.h>
85 #include <asm/timer.h>
86 #include <asm/i8259.h>
87 #include <asm/sections.h>
88 #include <asm/io_apic.h>
89 #include <asm/ist.h>
90 #include <asm/setup_arch.h>
91 #include <asm/bios_ebda.h>
92 #include <asm/cacheflush.h>
93 #include <asm/processor.h>
94 #include <asm/bugs.h>
95 #include <asm/kasan.h>
96
97 #include <asm/vsyscall.h>
98 #include <asm/cpu.h>
99 #include <asm/desc.h>
100 #include <asm/dma.h>
101 #include <asm/iommu.h>
102 #include <asm/gart.h>
103 #include <asm/mmu_context.h>
104 #include <asm/proto.h>
105
106 #include <asm/paravirt.h>
107 #include <asm/hypervisor.h>
108 #include <asm/olpc_ofw.h>
109
110 #include <asm/percpu.h>
111 #include <asm/topology.h>
112 #include <asm/apicdef.h>
113 #include <asm/amd_nb.h>
114 #include <asm/mce.h>
115 #include <asm/alternative.h>
116 #include <asm/prom.h>
117 #include <asm/microcode.h>
118 #include <asm/kaslr.h>
119 #include <asm/unwind.h>
120
121 /*
122  * max_low_pfn_mapped: highest direct mapped pfn under 4GB
123  * max_pfn_mapped:     highest direct mapped pfn over 4GB
124  *
125  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
126  * represented by pfn_mapped
127  */
128 unsigned long max_low_pfn_mapped;
129 unsigned long max_pfn_mapped;
130
131 #ifdef CONFIG_DMI
132 RESERVE_BRK(dmi_alloc, 65536);
133 #endif
134
135
136 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
137 unsigned long _brk_end = (unsigned long)__brk_base;
138
139 struct boot_params boot_params;
140
141 /*
142  * Machine setup..
143  */
144 static struct resource data_resource = {
145         .name   = "Kernel data",
146         .start  = 0,
147         .end    = 0,
148         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
149 };
150
151 static struct resource code_resource = {
152         .name   = "Kernel code",
153         .start  = 0,
154         .end    = 0,
155         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
156 };
157
158 static struct resource bss_resource = {
159         .name   = "Kernel bss",
160         .start  = 0,
161         .end    = 0,
162         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
163 };
164
165
166 #ifdef CONFIG_X86_32
167 /* cpu data as detected by the assembly code in head_32.S */
168 struct cpuinfo_x86 new_cpu_data;
169
170 /* common cpu data for all cpus */
171 struct cpuinfo_x86 boot_cpu_data __read_mostly;
172 EXPORT_SYMBOL(boot_cpu_data);
173
174 unsigned int def_to_bigsmp;
175
176 /* for MCA, but anyone else can use it if they want */
177 unsigned int machine_id;
178 unsigned int machine_submodel_id;
179 unsigned int BIOS_revision;
180
181 struct apm_info apm_info;
182 EXPORT_SYMBOL(apm_info);
183
184 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
185         defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
186 struct ist_info ist_info;
187 EXPORT_SYMBOL(ist_info);
188 #else
189 struct ist_info ist_info;
190 #endif
191
192 #else
193 struct cpuinfo_x86 boot_cpu_data __read_mostly;
194 EXPORT_SYMBOL(boot_cpu_data);
195 #endif
196
197
198 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
199 __visible unsigned long mmu_cr4_features __ro_after_init;
200 #else
201 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
202 #endif
203
204 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
205 int bootloader_type, bootloader_version;
206
207 /*
208  * Setup options
209  */
210 struct screen_info screen_info;
211 EXPORT_SYMBOL(screen_info);
212 struct edid_info edid_info;
213 EXPORT_SYMBOL_GPL(edid_info);
214
215 extern int root_mountflags;
216
217 unsigned long saved_video_mode;
218
219 #define RAMDISK_IMAGE_START_MASK        0x07FF
220 #define RAMDISK_PROMPT_FLAG             0x8000
221 #define RAMDISK_LOAD_FLAG               0x4000
222
223 static char __initdata command_line[COMMAND_LINE_SIZE];
224 #ifdef CONFIG_CMDLINE_BOOL
225 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
226 #endif
227
228 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
229 struct edd edd;
230 #ifdef CONFIG_EDD_MODULE
231 EXPORT_SYMBOL(edd);
232 #endif
233 /**
234  * copy_edd() - Copy the BIOS EDD information
235  *              from boot_params into a safe place.
236  *
237  */
238 static inline void __init copy_edd(void)
239 {
240      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
241             sizeof(edd.mbr_signature));
242      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
243      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
244      edd.edd_info_nr = boot_params.eddbuf_entries;
245 }
246 #else
247 static inline void __init copy_edd(void)
248 {
249 }
250 #endif
251
252 void * __init extend_brk(size_t size, size_t align)
253 {
254         size_t mask = align - 1;
255         void *ret;
256
257         BUG_ON(_brk_start == 0);
258         BUG_ON(align & mask);
259
260         _brk_end = (_brk_end + mask) & ~mask;
261         BUG_ON((char *)(_brk_end + size) > __brk_limit);
262
263         ret = (void *)_brk_end;
264         _brk_end += size;
265
266         memset(ret, 0, size);
267
268         return ret;
269 }
270
271 #ifdef CONFIG_X86_32
272 static void __init cleanup_highmap(void)
273 {
274 }
275 #endif
276
277 static void __init reserve_brk(void)
278 {
279         if (_brk_end > _brk_start)
280                 memblock_reserve(__pa_symbol(_brk_start),
281                                  _brk_end - _brk_start);
282
283         /* Mark brk area as locked down and no longer taking any
284            new allocations */
285         _brk_start = 0;
286 }
287
288 u64 relocated_ramdisk;
289
290 #ifdef CONFIG_BLK_DEV_INITRD
291
292 static u64 __init get_ramdisk_image(void)
293 {
294         u64 ramdisk_image = boot_params.hdr.ramdisk_image;
295
296         ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
297
298         return ramdisk_image;
299 }
300 static u64 __init get_ramdisk_size(void)
301 {
302         u64 ramdisk_size = boot_params.hdr.ramdisk_size;
303
304         ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
305
306         return ramdisk_size;
307 }
308
309 static void __init relocate_initrd(void)
310 {
311         /* Assume only end is not page aligned */
312         u64 ramdisk_image = get_ramdisk_image();
313         u64 ramdisk_size  = get_ramdisk_size();
314         u64 area_size     = PAGE_ALIGN(ramdisk_size);
315
316         /* We need to move the initrd down into directly mapped mem */
317         relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
318                                                    area_size, PAGE_SIZE);
319
320         if (!relocated_ramdisk)
321                 panic("Cannot find place for new RAMDISK of size %lld\n",
322                       ramdisk_size);
323
324         /* Note: this includes all the mem currently occupied by
325            the initrd, we rely on that fact to keep the data intact. */
326         memblock_reserve(relocated_ramdisk, area_size);
327         initrd_start = relocated_ramdisk + PAGE_OFFSET;
328         initrd_end   = initrd_start + ramdisk_size;
329         printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
330                relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
331
332         copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
333
334         printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
335                 " [mem %#010llx-%#010llx]\n",
336                 ramdisk_image, ramdisk_image + ramdisk_size - 1,
337                 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
338 }
339
340 static void __init early_reserve_initrd(void)
341 {
342         /* Assume only end is not page aligned */
343         u64 ramdisk_image = get_ramdisk_image();
344         u64 ramdisk_size  = get_ramdisk_size();
345         u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
346
347         if (!boot_params.hdr.type_of_loader ||
348             !ramdisk_image || !ramdisk_size)
349                 return;         /* No initrd provided by bootloader */
350
351         memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
352 }
353 static void __init reserve_initrd(void)
354 {
355         /* Assume only end is not page aligned */
356         u64 ramdisk_image = get_ramdisk_image();
357         u64 ramdisk_size  = get_ramdisk_size();
358         u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
359         u64 mapped_size;
360
361         if (!boot_params.hdr.type_of_loader ||
362             !ramdisk_image || !ramdisk_size)
363                 return;         /* No initrd provided by bootloader */
364
365         initrd_start = 0;
366
367         mapped_size = memblock_mem_size(max_pfn_mapped);
368         if (ramdisk_size >= (mapped_size>>1))
369                 panic("initrd too large to handle, "
370                        "disabling initrd (%lld needed, %lld available)\n",
371                        ramdisk_size, mapped_size>>1);
372
373         printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
374                         ramdisk_end - 1);
375
376         if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
377                                 PFN_DOWN(ramdisk_end))) {
378                 /* All are mapped, easy case */
379                 initrd_start = ramdisk_image + PAGE_OFFSET;
380                 initrd_end = initrd_start + ramdisk_size;
381                 return;
382         }
383
384         relocate_initrd();
385
386         memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
387 }
388
389 #else
390 static void __init early_reserve_initrd(void)
391 {
392 }
393 static void __init reserve_initrd(void)
394 {
395 }
396 #endif /* CONFIG_BLK_DEV_INITRD */
397
398 static void __init parse_setup_data(void)
399 {
400         struct setup_data *data;
401         u64 pa_data, pa_next;
402
403         pa_data = boot_params.hdr.setup_data;
404         while (pa_data) {
405                 u32 data_len, data_type;
406
407                 data = early_memremap(pa_data, sizeof(*data));
408                 data_len = data->len + sizeof(struct setup_data);
409                 data_type = data->type;
410                 pa_next = data->next;
411                 early_memunmap(data, sizeof(*data));
412
413                 switch (data_type) {
414                 case SETUP_E820_EXT:
415                         e820__memory_setup_extended(pa_data, data_len);
416                         break;
417                 case SETUP_DTB:
418                         add_dtb(pa_data);
419                         break;
420                 case SETUP_EFI:
421                         parse_efi_setup(pa_data, data_len);
422                         break;
423                 default:
424                         break;
425                 }
426                 pa_data = pa_next;
427         }
428 }
429
430 static void __init memblock_x86_reserve_range_setup_data(void)
431 {
432         struct setup_data *data;
433         u64 pa_data;
434
435         pa_data = boot_params.hdr.setup_data;
436         while (pa_data) {
437                 data = early_memremap(pa_data, sizeof(*data));
438                 memblock_reserve(pa_data, sizeof(*data) + data->len);
439                 pa_data = data->next;
440                 early_memunmap(data, sizeof(*data));
441         }
442 }
443
444 /*
445  * --------- Crashkernel reservation ------------------------------
446  */
447
448 #ifdef CONFIG_KEXEC_CORE
449
450 /* 16M alignment for crash kernel regions */
451 #define CRASH_ALIGN             (16 << 20)
452
453 /*
454  * Keep the crash kernel below this limit.  On 32 bits earlier kernels
455  * would limit the kernel to the low 512 MiB due to mapping restrictions.
456  * On 64bit, old kexec-tools need to under 896MiB.
457  */
458 #ifdef CONFIG_X86_32
459 # define CRASH_ADDR_LOW_MAX     (512 << 20)
460 # define CRASH_ADDR_HIGH_MAX    (512 << 20)
461 #else
462 # define CRASH_ADDR_LOW_MAX     (896UL << 20)
463 # define CRASH_ADDR_HIGH_MAX    MAXMEM
464 #endif
465
466 static int __init reserve_crashkernel_low(void)
467 {
468 #ifdef CONFIG_X86_64
469         unsigned long long base, low_base = 0, low_size = 0;
470         unsigned long total_low_mem;
471         int ret;
472
473         total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
474
475         /* crashkernel=Y,low */
476         ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
477         if (ret) {
478                 /*
479                  * two parts from lib/swiotlb.c:
480                  * -swiotlb size: user-specified with swiotlb= or default.
481                  *
482                  * -swiotlb overflow buffer: now hardcoded to 32k. We round it
483                  * to 8M for other buffers that may need to stay low too. Also
484                  * make sure we allocate enough extra low memory so that we
485                  * don't run out of DMA buffers for 32-bit devices.
486                  */
487                 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
488         } else {
489                 /* passed with crashkernel=0,low ? */
490                 if (!low_size)
491                         return 0;
492         }
493
494         low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
495         if (!low_base) {
496                 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
497                        (unsigned long)(low_size >> 20));
498                 return -ENOMEM;
499         }
500
501         ret = memblock_reserve(low_base, low_size);
502         if (ret) {
503                 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
504                 return ret;
505         }
506
507         pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
508                 (unsigned long)(low_size >> 20),
509                 (unsigned long)(low_base >> 20),
510                 (unsigned long)(total_low_mem >> 20));
511
512         crashk_low_res.start = low_base;
513         crashk_low_res.end   = low_base + low_size - 1;
514         insert_resource(&iomem_resource, &crashk_low_res);
515 #endif
516         return 0;
517 }
518
519 static void __init reserve_crashkernel(void)
520 {
521         unsigned long long crash_size, crash_base, total_mem;
522         bool high = false;
523         int ret;
524
525         total_mem = memblock_phys_mem_size();
526
527         /* crashkernel=XM */
528         ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
529         if (ret != 0 || crash_size <= 0) {
530                 /* crashkernel=X,high */
531                 ret = parse_crashkernel_high(boot_command_line, total_mem,
532                                              &crash_size, &crash_base);
533                 if (ret != 0 || crash_size <= 0)
534                         return;
535                 high = true;
536         }
537
538         if (xen_pv_domain()) {
539                 pr_info("Ignoring crashkernel for a Xen PV domain\n");
540                 return;
541         }
542
543         /* 0 means: find the address automatically */
544         if (crash_base <= 0) {
545                 /*
546                  * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
547                  * as old kexec-tools loads bzImage below that, unless
548                  * "crashkernel=size[KMG],high" is specified.
549                  */
550                 crash_base = memblock_find_in_range(CRASH_ALIGN,
551                                                     high ? CRASH_ADDR_HIGH_MAX
552                                                          : CRASH_ADDR_LOW_MAX,
553                                                     crash_size, CRASH_ALIGN);
554                 if (!crash_base) {
555                         pr_info("crashkernel reservation failed - No suitable area found.\n");
556                         return;
557                 }
558
559         } else {
560                 unsigned long long start;
561
562                 start = memblock_find_in_range(crash_base,
563                                                crash_base + crash_size,
564                                                crash_size, 1 << 20);
565                 if (start != crash_base) {
566                         pr_info("crashkernel reservation failed - memory is in use.\n");
567                         return;
568                 }
569         }
570         ret = memblock_reserve(crash_base, crash_size);
571         if (ret) {
572                 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
573                 return;
574         }
575
576         if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
577                 memblock_free(crash_base, crash_size);
578                 return;
579         }
580
581         pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
582                 (unsigned long)(crash_size >> 20),
583                 (unsigned long)(crash_base >> 20),
584                 (unsigned long)(total_mem >> 20));
585
586         crashk_res.start = crash_base;
587         crashk_res.end   = crash_base + crash_size - 1;
588         insert_resource(&iomem_resource, &crashk_res);
589 }
590 #else
591 static void __init reserve_crashkernel(void)
592 {
593 }
594 #endif
595
596 static struct resource standard_io_resources[] = {
597         { .name = "dma1", .start = 0x00, .end = 0x1f,
598                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
599         { .name = "pic1", .start = 0x20, .end = 0x21,
600                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
601         { .name = "timer0", .start = 0x40, .end = 0x43,
602                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
603         { .name = "timer1", .start = 0x50, .end = 0x53,
604                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
605         { .name = "keyboard", .start = 0x60, .end = 0x60,
606                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
607         { .name = "keyboard", .start = 0x64, .end = 0x64,
608                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
609         { .name = "dma page reg", .start = 0x80, .end = 0x8f,
610                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
611         { .name = "pic2", .start = 0xa0, .end = 0xa1,
612                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
613         { .name = "dma2", .start = 0xc0, .end = 0xdf,
614                 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
615         { .name = "fpu", .start = 0xf0, .end = 0xff,
616                 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
617 };
618
619 void __init reserve_standard_io_resources(void)
620 {
621         int i;
622
623         /* request I/O space for devices used on all i[345]86 PCs */
624         for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
625                 request_resource(&ioport_resource, &standard_io_resources[i]);
626
627 }
628
629 static __init void reserve_ibft_region(void)
630 {
631         unsigned long addr, size = 0;
632
633         addr = find_ibft_region(&size);
634
635         if (size)
636                 memblock_reserve(addr, size);
637 }
638
639 static bool __init snb_gfx_workaround_needed(void)
640 {
641 #ifdef CONFIG_PCI
642         int i;
643         u16 vendor, devid;
644         static const __initconst u16 snb_ids[] = {
645                 0x0102,
646                 0x0112,
647                 0x0122,
648                 0x0106,
649                 0x0116,
650                 0x0126,
651                 0x010a,
652         };
653
654         /* Assume no if something weird is going on with PCI */
655         if (!early_pci_allowed())
656                 return false;
657
658         vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
659         if (vendor != 0x8086)
660                 return false;
661
662         devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
663         for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
664                 if (devid == snb_ids[i])
665                         return true;
666 #endif
667
668         return false;
669 }
670
671 /*
672  * Sandy Bridge graphics has trouble with certain ranges, exclude
673  * them from allocation.
674  */
675 static void __init trim_snb_memory(void)
676 {
677         static const __initconst unsigned long bad_pages[] = {
678                 0x20050000,
679                 0x20110000,
680                 0x20130000,
681                 0x20138000,
682                 0x40004000,
683         };
684         int i;
685
686         if (!snb_gfx_workaround_needed())
687                 return;
688
689         printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
690
691         /*
692          * Reserve all memory below the 1 MB mark that has not
693          * already been reserved.
694          */
695         memblock_reserve(0, 1<<20);
696         
697         for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
698                 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
699                         printk(KERN_WARNING "failed to reserve 0x%08lx\n",
700                                bad_pages[i]);
701         }
702 }
703
704 /*
705  * Here we put platform-specific memory range workarounds, i.e.
706  * memory known to be corrupt or otherwise in need to be reserved on
707  * specific platforms.
708  *
709  * If this gets used more widely it could use a real dispatch mechanism.
710  */
711 static void __init trim_platform_memory_ranges(void)
712 {
713         trim_snb_memory();
714 }
715
716 static void __init trim_bios_range(void)
717 {
718         /*
719          * A special case is the first 4Kb of memory;
720          * This is a BIOS owned area, not kernel ram, but generally
721          * not listed as such in the E820 table.
722          *
723          * This typically reserves additional memory (64KiB by default)
724          * since some BIOSes are known to corrupt low memory.  See the
725          * Kconfig help text for X86_RESERVE_LOW.
726          */
727         e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
728
729         /*
730          * special case: Some BIOSen report the PC BIOS
731          * area (640->1Mb) as ram even though it is not.
732          * take them out.
733          */
734         e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
735
736         e820__update_table(e820_table);
737 }
738
739 /* called before trim_bios_range() to spare extra sanitize */
740 static void __init e820_add_kernel_range(void)
741 {
742         u64 start = __pa_symbol(_text);
743         u64 size = __pa_symbol(_end) - start;
744
745         /*
746          * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
747          * attempt to fix it by adding the range. We may have a confused BIOS,
748          * or the user may have used memmap=exactmap or memmap=xxM$yyM to
749          * exclude kernel range. If we really are running on top non-RAM,
750          * we will crash later anyways.
751          */
752         if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
753                 return;
754
755         pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
756         e820__range_remove(start, size, E820_TYPE_RAM, 0);
757         e820__range_add(start, size, E820_TYPE_RAM);
758 }
759
760 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
761
762 static int __init parse_reservelow(char *p)
763 {
764         unsigned long long size;
765
766         if (!p)
767                 return -EINVAL;
768
769         size = memparse(p, &p);
770
771         if (size < 4096)
772                 size = 4096;
773
774         if (size > 640*1024)
775                 size = 640*1024;
776
777         reserve_low = size;
778
779         return 0;
780 }
781
782 early_param("reservelow", parse_reservelow);
783
784 static void __init trim_low_memory_range(void)
785 {
786         memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
787 }
788         
789 /*
790  * Dump out kernel offset information on panic.
791  */
792 static int
793 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
794 {
795         if (kaslr_enabled()) {
796                 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
797                          kaslr_offset(),
798                          __START_KERNEL,
799                          __START_KERNEL_map,
800                          MODULES_VADDR-1);
801         } else {
802                 pr_emerg("Kernel Offset: disabled\n");
803         }
804
805         return 0;
806 }
807
808 /*
809  * Determine if we were loaded by an EFI loader.  If so, then we have also been
810  * passed the efi memmap, systab, etc., so we should use these data structures
811  * for initialization.  Note, the efi init code path is determined by the
812  * global efi_enabled. This allows the same kernel image to be used on existing
813  * systems (with a traditional BIOS) as well as on EFI systems.
814  */
815 /*
816  * setup_arch - architecture-specific boot-time initializations
817  *
818  * Note: On x86_64, fixmaps are ready for use even before this is called.
819  */
820
821 void __init setup_arch(char **cmdline_p)
822 {
823         memblock_reserve(__pa_symbol(_text),
824                          (unsigned long)__bss_stop - (unsigned long)_text);
825
826         /*
827          * Make sure page 0 is always reserved because on systems with
828          * L1TF its contents can be leaked to user processes.
829          */
830         memblock_reserve(0, PAGE_SIZE);
831
832         early_reserve_initrd();
833
834         /*
835          * At this point everything still needed from the boot loader
836          * or BIOS or kernel text should be early reserved or marked not
837          * RAM in e820. All other memory is free game.
838          */
839
840 #ifdef CONFIG_X86_32
841         memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
842
843         /*
844          * copy kernel address range established so far and switch
845          * to the proper swapper page table
846          */
847         clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
848                         initial_page_table + KERNEL_PGD_BOUNDARY,
849                         KERNEL_PGD_PTRS);
850
851         load_cr3(swapper_pg_dir);
852         /*
853          * Note: Quark X1000 CPUs advertise PGE incorrectly and require
854          * a cr3 based tlb flush, so the following __flush_tlb_all()
855          * will not flush anything because the cpu quirk which clears
856          * X86_FEATURE_PGE has not been invoked yet. Though due to the
857          * load_cr3() above the TLB has been flushed already. The
858          * quirk is invoked before subsequent calls to __flush_tlb_all()
859          * so proper operation is guaranteed.
860          */
861         __flush_tlb_all();
862 #else
863         printk(KERN_INFO "Command line: %s\n", boot_command_line);
864         boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
865 #endif
866
867         /*
868          * If we have OLPC OFW, we might end up relocating the fixmap due to
869          * reserve_top(), so do this before touching the ioremap area.
870          */
871         olpc_ofw_detect();
872
873         idt_setup_early_traps();
874         early_cpu_init();
875         arch_init_ideal_nops();
876         jump_label_init();
877         early_ioremap_init();
878
879         setup_olpc_ofw_pgd();
880
881         ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
882         screen_info = boot_params.screen_info;
883         edid_info = boot_params.edid_info;
884 #ifdef CONFIG_X86_32
885         apm_info.bios = boot_params.apm_bios_info;
886         ist_info = boot_params.ist_info;
887 #endif
888         saved_video_mode = boot_params.hdr.vid_mode;
889         bootloader_type = boot_params.hdr.type_of_loader;
890         if ((bootloader_type >> 4) == 0xe) {
891                 bootloader_type &= 0xf;
892                 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
893         }
894         bootloader_version  = bootloader_type & 0xf;
895         bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
896
897 #ifdef CONFIG_BLK_DEV_RAM
898         rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
899         rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
900         rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
901 #endif
902 #ifdef CONFIG_EFI
903         if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
904                      EFI32_LOADER_SIGNATURE, 4)) {
905                 set_bit(EFI_BOOT, &efi.flags);
906         } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
907                      EFI64_LOADER_SIGNATURE, 4)) {
908                 set_bit(EFI_BOOT, &efi.flags);
909                 set_bit(EFI_64BIT, &efi.flags);
910         }
911 #endif
912
913         x86_init.oem.arch_setup();
914
915         iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
916         e820__memory_setup();
917         parse_setup_data();
918
919         copy_edd();
920
921         if (!boot_params.hdr.root_flags)
922                 root_mountflags &= ~MS_RDONLY;
923         init_mm.start_code = (unsigned long) _text;
924         init_mm.end_code = (unsigned long) _etext;
925         init_mm.end_data = (unsigned long) _edata;
926         init_mm.brk = _brk_end;
927
928         mpx_mm_init(&init_mm);
929
930         code_resource.start = __pa_symbol(_text);
931         code_resource.end = __pa_symbol(_etext)-1;
932         data_resource.start = __pa_symbol(_etext);
933         data_resource.end = __pa_symbol(_edata)-1;
934         bss_resource.start = __pa_symbol(__bss_start);
935         bss_resource.end = __pa_symbol(__bss_stop)-1;
936
937 #ifdef CONFIG_CMDLINE_BOOL
938 #ifdef CONFIG_CMDLINE_OVERRIDE
939         strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
940 #else
941         if (builtin_cmdline[0]) {
942                 /* append boot loader cmdline to builtin */
943                 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
944                 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
945                 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
946         }
947 #endif
948 #endif
949
950         strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
951         *cmdline_p = command_line;
952
953         /*
954          * x86_configure_nx() is called before parse_early_param() to detect
955          * whether hardware doesn't support NX (so that the early EHCI debug
956          * console setup can safely call set_fixmap()). It may then be called
957          * again from within noexec_setup() during parsing early parameters
958          * to honor the respective command line option.
959          */
960         x86_configure_nx();
961
962         parse_early_param();
963
964         if (efi_enabled(EFI_BOOT))
965                 efi_memblock_x86_reserve_range();
966 #ifdef CONFIG_MEMORY_HOTPLUG
967         /*
968          * Memory used by the kernel cannot be hot-removed because Linux
969          * cannot migrate the kernel pages. When memory hotplug is
970          * enabled, we should prevent memblock from allocating memory
971          * for the kernel.
972          *
973          * ACPI SRAT records all hotpluggable memory ranges. But before
974          * SRAT is parsed, we don't know about it.
975          *
976          * The kernel image is loaded into memory at very early time. We
977          * cannot prevent this anyway. So on NUMA system, we set any
978          * node the kernel resides in as un-hotpluggable.
979          *
980          * Since on modern servers, one node could have double-digit
981          * gigabytes memory, we can assume the memory around the kernel
982          * image is also un-hotpluggable. So before SRAT is parsed, just
983          * allocate memory near the kernel image to try the best to keep
984          * the kernel away from hotpluggable memory.
985          */
986         if (movable_node_is_enabled())
987                 memblock_set_bottom_up(true);
988 #endif
989
990         x86_report_nx();
991
992         /* after early param, so could get panic from serial */
993         memblock_x86_reserve_range_setup_data();
994
995         if (acpi_mps_check()) {
996 #ifdef CONFIG_X86_LOCAL_APIC
997                 disable_apic = 1;
998 #endif
999                 setup_clear_cpu_cap(X86_FEATURE_APIC);
1000         }
1001
1002         e820__reserve_setup_data();
1003         e820__finish_early_params();
1004
1005         if (efi_enabled(EFI_BOOT))
1006                 efi_init();
1007
1008         dmi_scan_machine();
1009         dmi_memdev_walk();
1010         dmi_set_dump_stack_arch_desc();
1011
1012         /*
1013          * VMware detection requires dmi to be available, so this
1014          * needs to be done after dmi_scan_machine(), for the boot CPU.
1015          */
1016         init_hypervisor_platform();
1017
1018         tsc_early_init();
1019         x86_init.resources.probe_roms();
1020
1021         /* after parse_early_param, so could debug it */
1022         insert_resource(&iomem_resource, &code_resource);
1023         insert_resource(&iomem_resource, &data_resource);
1024         insert_resource(&iomem_resource, &bss_resource);
1025
1026         e820_add_kernel_range();
1027         trim_bios_range();
1028 #ifdef CONFIG_X86_32
1029         if (ppro_with_ram_bug()) {
1030                 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1031                                   E820_TYPE_RESERVED);
1032                 e820__update_table(e820_table);
1033                 printk(KERN_INFO "fixed physical RAM map:\n");
1034                 e820__print_table("bad_ppro");
1035         }
1036 #else
1037         early_gart_iommu_check();
1038 #endif
1039
1040         /*
1041          * partially used pages are not usable - thus
1042          * we are rounding upwards:
1043          */
1044         max_pfn = e820__end_of_ram_pfn();
1045
1046         /* update e820 for memory not covered by WB MTRRs */
1047         mtrr_bp_init();
1048         if (mtrr_trim_uncached_memory(max_pfn))
1049                 max_pfn = e820__end_of_ram_pfn();
1050
1051         max_possible_pfn = max_pfn;
1052
1053         /*
1054          * This call is required when the CPU does not support PAT. If
1055          * mtrr_bp_init() invoked it already via pat_init() the call has no
1056          * effect.
1057          */
1058         init_cache_modes();
1059
1060         /*
1061          * Define random base addresses for memory sections after max_pfn is
1062          * defined and before each memory section base is used.
1063          */
1064         kernel_randomize_memory();
1065
1066 #ifdef CONFIG_X86_32
1067         /* max_low_pfn get updated here */
1068         find_low_pfn_range();
1069 #else
1070         check_x2apic();
1071
1072         /* How many end-of-memory variables you have, grandma! */
1073         /* need this before calling reserve_initrd */
1074         if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1075                 max_low_pfn = e820__end_of_low_ram_pfn();
1076         else
1077                 max_low_pfn = max_pfn;
1078
1079         high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1080 #endif
1081
1082         /*
1083          * Find and reserve possible boot-time SMP configuration:
1084          */
1085         find_smp_config();
1086
1087         reserve_ibft_region();
1088
1089         early_alloc_pgt_buf();
1090
1091         /*
1092          * Need to conclude brk, before e820__memblock_setup()
1093          *  it could use memblock_find_in_range, could overlap with
1094          *  brk area.
1095          */
1096         reserve_brk();
1097
1098         cleanup_highmap();
1099
1100         memblock_set_current_limit(ISA_END_ADDRESS);
1101         e820__memblock_setup();
1102
1103         reserve_bios_regions();
1104
1105         if (efi_enabled(EFI_MEMMAP)) {
1106                 efi_fake_memmap();
1107                 efi_find_mirror();
1108                 efi_esrt_init();
1109
1110                 /*
1111                  * The EFI specification says that boot service code won't be
1112                  * called after ExitBootServices(). This is, in fact, a lie.
1113                  */
1114                 efi_reserve_boot_services();
1115         }
1116
1117         /* preallocate 4k for mptable mpc */
1118         e820__memblock_alloc_reserved_mpc_new();
1119
1120 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1121         setup_bios_corruption_check();
1122 #endif
1123
1124 #ifdef CONFIG_X86_32
1125         printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1126                         (max_pfn_mapped<<PAGE_SHIFT) - 1);
1127 #endif
1128
1129         reserve_real_mode();
1130
1131         trim_platform_memory_ranges();
1132         trim_low_memory_range();
1133
1134         init_mem_mapping();
1135
1136         idt_setup_early_pf();
1137
1138         /*
1139          * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1140          * with the current CR4 value.  This may not be necessary, but
1141          * auditing all the early-boot CR4 manipulation would be needed to
1142          * rule it out.
1143          *
1144          * Mask off features that don't work outside long mode (just
1145          * PCIDE for now).
1146          */
1147         mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1148
1149         memblock_set_current_limit(get_max_mapped());
1150
1151         /*
1152          * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1153          */
1154
1155 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1156         if (init_ohci1394_dma_early)
1157                 init_ohci1394_dma_on_all_controllers();
1158 #endif
1159         /* Allocate bigger log buffer */
1160         setup_log_buf(1);
1161
1162         if (efi_enabled(EFI_BOOT)) {
1163                 switch (boot_params.secure_boot) {
1164                 case efi_secureboot_mode_disabled:
1165                         pr_info("Secure boot disabled\n");
1166                         break;
1167                 case efi_secureboot_mode_enabled:
1168                         pr_info("Secure boot enabled\n");
1169                         break;
1170                 default:
1171                         pr_info("Secure boot could not be determined\n");
1172                         break;
1173                 }
1174         }
1175
1176         reserve_initrd();
1177
1178         acpi_table_upgrade();
1179
1180         vsmp_init();
1181
1182         io_delay_init();
1183
1184         early_platform_quirks();
1185
1186         /*
1187          * Parse the ACPI tables for possible boot-time SMP configuration.
1188          */
1189         acpi_boot_table_init();
1190
1191         early_acpi_boot_init();
1192
1193         initmem_init();
1194         dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1195
1196         /*
1197          * Reserve memory for crash kernel after SRAT is parsed so that it
1198          * won't consume hotpluggable memory.
1199          */
1200         reserve_crashkernel();
1201
1202         memblock_find_dma_reserve();
1203
1204         if (!early_xdbc_setup_hardware())
1205                 early_xdbc_register_console();
1206
1207         x86_init.paging.pagetable_init();
1208
1209         kasan_init();
1210
1211         /*
1212          * Sync back kernel address range.
1213          *
1214          * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1215          * this call?
1216          */
1217         sync_initial_page_table();
1218
1219         tboot_probe();
1220
1221         map_vsyscall();
1222
1223         generic_apic_probe();
1224
1225         early_quirks();
1226
1227         /*
1228          * Read APIC and some other early information from ACPI tables.
1229          */
1230         acpi_boot_init();
1231         sfi_init();
1232         x86_dtb_init();
1233
1234         /*
1235          * get boot-time SMP configuration:
1236          */
1237         get_smp_config();
1238
1239         /*
1240          * Systems w/o ACPI and mptables might not have it mapped the local
1241          * APIC yet, but prefill_possible_map() might need to access it.
1242          */
1243         init_apic_mappings();
1244
1245         prefill_possible_map();
1246
1247         init_cpu_to_node();
1248
1249         io_apic_init_mappings();
1250
1251         x86_init.hyper.guest_late_init();
1252
1253         e820__reserve_resources();
1254         e820__register_nosave_regions(max_pfn);
1255
1256         x86_init.resources.reserve_resources();
1257
1258         e820__setup_pci_gap();
1259
1260 #ifdef CONFIG_VT
1261 #if defined(CONFIG_VGA_CONSOLE)
1262         if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1263                 conswitchp = &vga_con;
1264 #elif defined(CONFIG_DUMMY_CONSOLE)
1265         conswitchp = &dummy_con;
1266 #endif
1267 #endif
1268         x86_init.oem.banner();
1269
1270         x86_init.timers.wallclock_init();
1271
1272         mcheck_init();
1273
1274         register_refined_jiffies(CLOCK_TICK_RATE);
1275
1276 #ifdef CONFIG_EFI
1277         if (efi_enabled(EFI_BOOT))
1278                 efi_apply_memmap_quirks();
1279 #endif
1280
1281         unwind_init();
1282 }
1283
1284 #ifdef CONFIG_X86_32
1285
1286 static struct resource video_ram_resource = {
1287         .name   = "Video RAM area",
1288         .start  = 0xa0000,
1289         .end    = 0xbffff,
1290         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1291 };
1292
1293 void __init i386_reserve_resources(void)
1294 {
1295         request_resource(&iomem_resource, &video_ram_resource);
1296         reserve_standard_io_resources();
1297 }
1298
1299 #endif /* CONFIG_X86_32 */
1300
1301 static struct notifier_block kernel_offset_notifier = {
1302         .notifier_call = dump_kernel_offset
1303 };
1304
1305 static int __init register_kernel_offset_dumper(void)
1306 {
1307         atomic_notifier_chain_register(&panic_notifier_list,
1308                                         &kernel_offset_notifier);
1309         return 0;
1310 }
1311 __initcall(register_kernel_offset_dumper);