Merge branch 'timers-for-linus-hpet' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <trace/events/power.h>
14 #include <linux/hw_breakpoint.h>
15 #include <asm/system.h>
16 #include <asm/apic.h>
17 #include <asm/syscalls.h>
18 #include <asm/idle.h>
19 #include <asm/uaccess.h>
20 #include <asm/i387.h>
21 #include <asm/ds.h>
22 #include <asm/debugreg.h>
23
24 unsigned long idle_halt;
25 EXPORT_SYMBOL(idle_halt);
26 unsigned long idle_nomwait;
27 EXPORT_SYMBOL(idle_nomwait);
28
29 struct kmem_cache *task_xstate_cachep;
30
31 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
32 {
33         *dst = *src;
34         if (src->thread.xstate) {
35                 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
36                                                       GFP_KERNEL);
37                 if (!dst->thread.xstate)
38                         return -ENOMEM;
39                 WARN_ON((unsigned long)dst->thread.xstate & 15);
40                 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
41         }
42         return 0;
43 }
44
45 void free_thread_xstate(struct task_struct *tsk)
46 {
47         if (tsk->thread.xstate) {
48                 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
49                 tsk->thread.xstate = NULL;
50         }
51
52         WARN(tsk->thread.ds_ctx, "leaking DS context\n");
53 }
54
55 void free_thread_info(struct thread_info *ti)
56 {
57         free_thread_xstate(ti->task);
58         free_pages((unsigned long)ti, get_order(THREAD_SIZE));
59 }
60
61 void arch_task_cache_init(void)
62 {
63         task_xstate_cachep =
64                 kmem_cache_create("task_xstate", xstate_size,
65                                   __alignof__(union thread_xstate),
66                                   SLAB_PANIC | SLAB_NOTRACK, NULL);
67 }
68
69 /*
70  * Free current thread data structures etc..
71  */
72 void exit_thread(void)
73 {
74         struct task_struct *me = current;
75         struct thread_struct *t = &me->thread;
76         unsigned long *bp = t->io_bitmap_ptr;
77
78         if (bp) {
79                 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
80
81                 t->io_bitmap_ptr = NULL;
82                 clear_thread_flag(TIF_IO_BITMAP);
83                 /*
84                  * Careful, clear this in the TSS too:
85                  */
86                 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
87                 t->io_bitmap_max = 0;
88                 put_cpu();
89                 kfree(bp);
90         }
91 }
92
93 void flush_thread(void)
94 {
95         struct task_struct *tsk = current;
96
97 #ifdef CONFIG_X86_64
98         if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
99                 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
100                 if (test_tsk_thread_flag(tsk, TIF_IA32)) {
101                         clear_tsk_thread_flag(tsk, TIF_IA32);
102                 } else {
103                         set_tsk_thread_flag(tsk, TIF_IA32);
104                         current_thread_info()->status |= TS_COMPAT;
105                 }
106         }
107 #endif
108
109         flush_ptrace_hw_breakpoint(tsk);
110         memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
111         /*
112          * Forget coprocessor state..
113          */
114         tsk->fpu_counter = 0;
115         clear_fpu(tsk);
116         clear_used_math();
117 }
118
119 static void hard_disable_TSC(void)
120 {
121         write_cr4(read_cr4() | X86_CR4_TSD);
122 }
123
124 void disable_TSC(void)
125 {
126         preempt_disable();
127         if (!test_and_set_thread_flag(TIF_NOTSC))
128                 /*
129                  * Must flip the CPU state synchronously with
130                  * TIF_NOTSC in the current running context.
131                  */
132                 hard_disable_TSC();
133         preempt_enable();
134 }
135
136 static void hard_enable_TSC(void)
137 {
138         write_cr4(read_cr4() & ~X86_CR4_TSD);
139 }
140
141 static void enable_TSC(void)
142 {
143         preempt_disable();
144         if (test_and_clear_thread_flag(TIF_NOTSC))
145                 /*
146                  * Must flip the CPU state synchronously with
147                  * TIF_NOTSC in the current running context.
148                  */
149                 hard_enable_TSC();
150         preempt_enable();
151 }
152
153 int get_tsc_mode(unsigned long adr)
154 {
155         unsigned int val;
156
157         if (test_thread_flag(TIF_NOTSC))
158                 val = PR_TSC_SIGSEGV;
159         else
160                 val = PR_TSC_ENABLE;
161
162         return put_user(val, (unsigned int __user *)adr);
163 }
164
165 int set_tsc_mode(unsigned int val)
166 {
167         if (val == PR_TSC_SIGSEGV)
168                 disable_TSC();
169         else if (val == PR_TSC_ENABLE)
170                 enable_TSC();
171         else
172                 return -EINVAL;
173
174         return 0;
175 }
176
177 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
178                       struct tss_struct *tss)
179 {
180         struct thread_struct *prev, *next;
181
182         prev = &prev_p->thread;
183         next = &next_p->thread;
184
185         if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
186             test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
187                 ds_switch_to(prev_p, next_p);
188         else if (next->debugctlmsr != prev->debugctlmsr)
189                 update_debugctlmsr(next->debugctlmsr);
190
191         if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
192             test_tsk_thread_flag(next_p, TIF_NOTSC)) {
193                 /* prev and next are different */
194                 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
195                         hard_disable_TSC();
196                 else
197                         hard_enable_TSC();
198         }
199
200         if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
201                 /*
202                  * Copy the relevant range of the IO bitmap.
203                  * Normally this is 128 bytes or less:
204                  */
205                 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
206                        max(prev->io_bitmap_max, next->io_bitmap_max));
207         } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
208                 /*
209                  * Clear any possible leftover bits:
210                  */
211                 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
212         }
213         propagate_user_return_notify(prev_p, next_p);
214 }
215
216 int sys_fork(struct pt_regs *regs)
217 {
218         return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
219 }
220
221 /*
222  * This is trivial, and on the face of it looks like it
223  * could equally well be done in user mode.
224  *
225  * Not so, for quite unobvious reasons - register pressure.
226  * In user mode vfork() cannot have a stack frame, and if
227  * done by calling the "clone()" system call directly, you
228  * do not have enough call-clobbered registers to hold all
229  * the information you need.
230  */
231 int sys_vfork(struct pt_regs *regs)
232 {
233         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
234                        NULL, NULL);
235 }
236
237
238 /*
239  * Idle related variables and functions
240  */
241 unsigned long boot_option_idle_override = 0;
242 EXPORT_SYMBOL(boot_option_idle_override);
243
244 /*
245  * Powermanagement idle function, if any..
246  */
247 void (*pm_idle)(void);
248 EXPORT_SYMBOL(pm_idle);
249
250 #ifdef CONFIG_X86_32
251 /*
252  * This halt magic was a workaround for ancient floppy DMA
253  * wreckage. It should be safe to remove.
254  */
255 static int hlt_counter;
256 void disable_hlt(void)
257 {
258         hlt_counter++;
259 }
260 EXPORT_SYMBOL(disable_hlt);
261
262 void enable_hlt(void)
263 {
264         hlt_counter--;
265 }
266 EXPORT_SYMBOL(enable_hlt);
267
268 static inline int hlt_use_halt(void)
269 {
270         return (!hlt_counter && boot_cpu_data.hlt_works_ok);
271 }
272 #else
273 static inline int hlt_use_halt(void)
274 {
275         return 1;
276 }
277 #endif
278
279 /*
280  * We use this if we don't have any better
281  * idle routine..
282  */
283 void default_idle(void)
284 {
285         if (hlt_use_halt()) {
286                 trace_power_start(POWER_CSTATE, 1);
287                 current_thread_info()->status &= ~TS_POLLING;
288                 /*
289                  * TS_POLLING-cleared state must be visible before we
290                  * test NEED_RESCHED:
291                  */
292                 smp_mb();
293
294                 if (!need_resched())
295                         safe_halt();    /* enables interrupts racelessly */
296                 else
297                         local_irq_enable();
298                 current_thread_info()->status |= TS_POLLING;
299         } else {
300                 local_irq_enable();
301                 /* loop is done by the caller */
302                 cpu_relax();
303         }
304 }
305 #ifdef CONFIG_APM_MODULE
306 EXPORT_SYMBOL(default_idle);
307 #endif
308
309 void stop_this_cpu(void *dummy)
310 {
311         local_irq_disable();
312         /*
313          * Remove this CPU:
314          */
315         set_cpu_online(smp_processor_id(), false);
316         disable_local_APIC();
317
318         for (;;) {
319                 if (hlt_works(smp_processor_id()))
320                         halt();
321         }
322 }
323
324 static void do_nothing(void *unused)
325 {
326 }
327
328 /*
329  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
330  * pm_idle and update to new pm_idle value. Required while changing pm_idle
331  * handler on SMP systems.
332  *
333  * Caller must have changed pm_idle to the new value before the call. Old
334  * pm_idle value will not be used by any CPU after the return of this function.
335  */
336 void cpu_idle_wait(void)
337 {
338         smp_mb();
339         /* kick all the CPUs so that they exit out of pm_idle */
340         smp_call_function(do_nothing, NULL, 1);
341 }
342 EXPORT_SYMBOL_GPL(cpu_idle_wait);
343
344 /*
345  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
346  * which can obviate IPI to trigger checking of need_resched.
347  * We execute MONITOR against need_resched and enter optimized wait state
348  * through MWAIT. Whenever someone changes need_resched, we would be woken
349  * up from MWAIT (without an IPI).
350  *
351  * New with Core Duo processors, MWAIT can take some hints based on CPU
352  * capability.
353  */
354 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
355 {
356         trace_power_start(POWER_CSTATE, (ax>>4)+1);
357         if (!need_resched()) {
358                 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
359                         clflush((void *)&current_thread_info()->flags);
360
361                 __monitor((void *)&current_thread_info()->flags, 0, 0);
362                 smp_mb();
363                 if (!need_resched())
364                         __mwait(ax, cx);
365         }
366 }
367
368 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
369 static void mwait_idle(void)
370 {
371         if (!need_resched()) {
372                 trace_power_start(POWER_CSTATE, 1);
373                 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
374                         clflush((void *)&current_thread_info()->flags);
375
376                 __monitor((void *)&current_thread_info()->flags, 0, 0);
377                 smp_mb();
378                 if (!need_resched())
379                         __sti_mwait(0, 0);
380                 else
381                         local_irq_enable();
382         } else
383                 local_irq_enable();
384 }
385
386 /*
387  * On SMP it's slightly faster (but much more power-consuming!)
388  * to poll the ->work.need_resched flag instead of waiting for the
389  * cross-CPU IPI to arrive. Use this option with caution.
390  */
391 static void poll_idle(void)
392 {
393         trace_power_start(POWER_CSTATE, 0);
394         local_irq_enable();
395         while (!need_resched())
396                 cpu_relax();
397         trace_power_end(0);
398 }
399
400 /*
401  * mwait selection logic:
402  *
403  * It depends on the CPU. For AMD CPUs that support MWAIT this is
404  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
405  * then depend on a clock divisor and current Pstate of the core. If
406  * all cores of a processor are in halt state (C1) the processor can
407  * enter the C1E (C1 enhanced) state. If mwait is used this will never
408  * happen.
409  *
410  * idle=mwait overrides this decision and forces the usage of mwait.
411  */
412 static int __cpuinitdata force_mwait;
413
414 #define MWAIT_INFO                      0x05
415 #define MWAIT_ECX_EXTENDED_INFO         0x01
416 #define MWAIT_EDX_C1                    0xf0
417
418 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
419 {
420         u32 eax, ebx, ecx, edx;
421
422         if (force_mwait)
423                 return 1;
424
425         if (c->cpuid_level < MWAIT_INFO)
426                 return 0;
427
428         cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
429         /* Check, whether EDX has extended info about MWAIT */
430         if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
431                 return 1;
432
433         /*
434          * edx enumeratios MONITOR/MWAIT extensions. Check, whether
435          * C1  supports MWAIT
436          */
437         return (edx & MWAIT_EDX_C1);
438 }
439
440 /*
441  * Check for AMD CPUs, which have potentially C1E support
442  */
443 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
444 {
445         if (c->x86_vendor != X86_VENDOR_AMD)
446                 return 0;
447
448         if (c->x86 < 0x0F)
449                 return 0;
450
451         /* Family 0x0f models < rev F do not have C1E */
452         if (c->x86 == 0x0f && c->x86_model < 0x40)
453                 return 0;
454
455         return 1;
456 }
457
458 static cpumask_var_t c1e_mask;
459 static int c1e_detected;
460
461 void c1e_remove_cpu(int cpu)
462 {
463         if (c1e_mask != NULL)
464                 cpumask_clear_cpu(cpu, c1e_mask);
465 }
466
467 /*
468  * C1E aware idle routine. We check for C1E active in the interrupt
469  * pending message MSR. If we detect C1E, then we handle it the same
470  * way as C3 power states (local apic timer and TSC stop)
471  */
472 static void c1e_idle(void)
473 {
474         if (need_resched())
475                 return;
476
477         if (!c1e_detected) {
478                 u32 lo, hi;
479
480                 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
481                 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
482                         c1e_detected = 1;
483                         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
484                                 mark_tsc_unstable("TSC halt in AMD C1E");
485                         printk(KERN_INFO "System has AMD C1E enabled\n");
486                         set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
487                 }
488         }
489
490         if (c1e_detected) {
491                 int cpu = smp_processor_id();
492
493                 if (!cpumask_test_cpu(cpu, c1e_mask)) {
494                         cpumask_set_cpu(cpu, c1e_mask);
495                         /*
496                          * Force broadcast so ACPI can not interfere.
497                          */
498                         clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
499                                            &cpu);
500                         printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
501                                cpu);
502                 }
503                 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
504
505                 default_idle();
506
507                 /*
508                  * The switch back from broadcast mode needs to be
509                  * called with interrupts disabled.
510                  */
511                  local_irq_disable();
512                  clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
513                  local_irq_enable();
514         } else
515                 default_idle();
516 }
517
518 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
519 {
520 #ifdef CONFIG_SMP
521         if (pm_idle == poll_idle && smp_num_siblings > 1) {
522                 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
523                         " performance may degrade.\n");
524         }
525 #endif
526         if (pm_idle)
527                 return;
528
529         if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
530                 /*
531                  * One CPU supports mwait => All CPUs supports mwait
532                  */
533                 printk(KERN_INFO "using mwait in idle threads.\n");
534                 pm_idle = mwait_idle;
535         } else if (check_c1e_idle(c)) {
536                 printk(KERN_INFO "using C1E aware idle routine\n");
537                 pm_idle = c1e_idle;
538         } else
539                 pm_idle = default_idle;
540 }
541
542 void __init init_c1e_mask(void)
543 {
544         /* If we're using c1e_idle, we need to allocate c1e_mask. */
545         if (pm_idle == c1e_idle)
546                 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
547 }
548
549 static int __init idle_setup(char *str)
550 {
551         if (!str)
552                 return -EINVAL;
553
554         if (!strcmp(str, "poll")) {
555                 printk("using polling idle threads.\n");
556                 pm_idle = poll_idle;
557         } else if (!strcmp(str, "mwait"))
558                 force_mwait = 1;
559         else if (!strcmp(str, "halt")) {
560                 /*
561                  * When the boot option of idle=halt is added, halt is
562                  * forced to be used for CPU idle. In such case CPU C2/C3
563                  * won't be used again.
564                  * To continue to load the CPU idle driver, don't touch
565                  * the boot_option_idle_override.
566                  */
567                 pm_idle = default_idle;
568                 idle_halt = 1;
569                 return 0;
570         } else if (!strcmp(str, "nomwait")) {
571                 /*
572                  * If the boot option of "idle=nomwait" is added,
573                  * it means that mwait will be disabled for CPU C2/C3
574                  * states. In such case it won't touch the variable
575                  * of boot_option_idle_override.
576                  */
577                 idle_nomwait = 1;
578                 return 0;
579         } else
580                 return -1;
581
582         boot_option_idle_override = 1;
583         return 0;
584 }
585 early_param("idle", idle_setup);
586
587 unsigned long arch_align_stack(unsigned long sp)
588 {
589         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
590                 sp -= get_random_int() % 8192;
591         return sp & ~0xf;
592 }
593
594 unsigned long arch_randomize_brk(struct mm_struct *mm)
595 {
596         unsigned long range_end = mm->brk + 0x02000000;
597         return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
598 }
599