Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / arch / x86 / kernel / ldt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
4  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
5  * Copyright (C) 2002 Andi Kleen
6  *
7  * This handles calls from both 32bit and 64bit mode.
8  *
9  * Lock order:
10  *      contex.ldt_usr_sem
11  *        mmap_sem
12  *          context.lock
13  */
14
15 #include <linux/errno.h>
16 #include <linux/gfp.h>
17 #include <linux/sched.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/syscalls.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/uaccess.h>
25
26 #include <asm/ldt.h>
27 #include <asm/tlb.h>
28 #include <asm/desc.h>
29 #include <asm/mmu_context.h>
30 #include <asm/syscalls.h>
31
32 static void refresh_ldt_segments(void)
33 {
34 #ifdef CONFIG_X86_64
35         unsigned short sel;
36
37         /*
38          * Make sure that the cached DS and ES descriptors match the updated
39          * LDT.
40          */
41         savesegment(ds, sel);
42         if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
43                 loadsegment(ds, sel);
44
45         savesegment(es, sel);
46         if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
47                 loadsegment(es, sel);
48 #endif
49 }
50
51 /* context.lock is held by the task which issued the smp function call */
52 static void flush_ldt(void *__mm)
53 {
54         struct mm_struct *mm = __mm;
55
56         if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm)
57                 return;
58
59         load_mm_ldt(mm);
60
61         refresh_ldt_segments();
62 }
63
64 /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
65 static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries)
66 {
67         struct ldt_struct *new_ldt;
68         unsigned int alloc_size;
69
70         if (num_entries > LDT_ENTRIES)
71                 return NULL;
72
73         new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL);
74         if (!new_ldt)
75                 return NULL;
76
77         BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct));
78         alloc_size = num_entries * LDT_ENTRY_SIZE;
79
80         /*
81          * Xen is very picky: it requires a page-aligned LDT that has no
82          * trailing nonzero bytes in any page that contains LDT descriptors.
83          * Keep it simple: zero the whole allocation and never allocate less
84          * than PAGE_SIZE.
85          */
86         if (alloc_size > PAGE_SIZE)
87                 new_ldt->entries = vzalloc(alloc_size);
88         else
89                 new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL);
90
91         if (!new_ldt->entries) {
92                 kfree(new_ldt);
93                 return NULL;
94         }
95
96         /* The new LDT isn't aliased for PTI yet. */
97         new_ldt->slot = -1;
98
99         new_ldt->nr_entries = num_entries;
100         return new_ldt;
101 }
102
103 #ifdef CONFIG_PAGE_TABLE_ISOLATION
104
105 static void do_sanity_check(struct mm_struct *mm,
106                             bool had_kernel_mapping,
107                             bool had_user_mapping)
108 {
109         if (mm->context.ldt) {
110                 /*
111                  * We already had an LDT.  The top-level entry should already
112                  * have been allocated and synchronized with the usermode
113                  * tables.
114                  */
115                 WARN_ON(!had_kernel_mapping);
116                 if (boot_cpu_has(X86_FEATURE_PTI))
117                         WARN_ON(!had_user_mapping);
118         } else {
119                 /*
120                  * This is the first time we're mapping an LDT for this process.
121                  * Sync the pgd to the usermode tables.
122                  */
123                 WARN_ON(had_kernel_mapping);
124                 if (boot_cpu_has(X86_FEATURE_PTI))
125                         WARN_ON(had_user_mapping);
126         }
127 }
128
129 #ifdef CONFIG_X86_PAE
130
131 static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va)
132 {
133         p4d_t *p4d;
134         pud_t *pud;
135
136         if (pgd->pgd == 0)
137                 return NULL;
138
139         p4d = p4d_offset(pgd, va);
140         if (p4d_none(*p4d))
141                 return NULL;
142
143         pud = pud_offset(p4d, va);
144         if (pud_none(*pud))
145                 return NULL;
146
147         return pmd_offset(pud, va);
148 }
149
150 static void map_ldt_struct_to_user(struct mm_struct *mm)
151 {
152         pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
153         pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
154         pmd_t *k_pmd, *u_pmd;
155
156         k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
157         u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
158
159         if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
160                 set_pmd(u_pmd, *k_pmd);
161 }
162
163 static void sanity_check_ldt_mapping(struct mm_struct *mm)
164 {
165         pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
166         pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
167         bool had_kernel, had_user;
168         pmd_t *k_pmd, *u_pmd;
169
170         k_pmd      = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
171         u_pmd      = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
172         had_kernel = (k_pmd->pmd != 0);
173         had_user   = (u_pmd->pmd != 0);
174
175         do_sanity_check(mm, had_kernel, had_user);
176 }
177
178 #else /* !CONFIG_X86_PAE */
179
180 static void map_ldt_struct_to_user(struct mm_struct *mm)
181 {
182         pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
183
184         if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
185                 set_pgd(kernel_to_user_pgdp(pgd), *pgd);
186 }
187
188 static void sanity_check_ldt_mapping(struct mm_struct *mm)
189 {
190         pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
191         bool had_kernel = (pgd->pgd != 0);
192         bool had_user   = (kernel_to_user_pgdp(pgd)->pgd != 0);
193
194         do_sanity_check(mm, had_kernel, had_user);
195 }
196
197 #endif /* CONFIG_X86_PAE */
198
199 /*
200  * If PTI is enabled, this maps the LDT into the kernelmode and
201  * usermode tables for the given mm.
202  */
203 static int
204 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
205 {
206         unsigned long va;
207         bool is_vmalloc;
208         spinlock_t *ptl;
209         int i, nr_pages;
210
211         if (!boot_cpu_has(X86_FEATURE_PTI))
212                 return 0;
213
214         /*
215          * Any given ldt_struct should have map_ldt_struct() called at most
216          * once.
217          */
218         WARN_ON(ldt->slot != -1);
219
220         /* Check if the current mappings are sane */
221         sanity_check_ldt_mapping(mm);
222
223         is_vmalloc = is_vmalloc_addr(ldt->entries);
224
225         nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
226
227         for (i = 0; i < nr_pages; i++) {
228                 unsigned long offset = i << PAGE_SHIFT;
229                 const void *src = (char *)ldt->entries + offset;
230                 unsigned long pfn;
231                 pgprot_t pte_prot;
232                 pte_t pte, *ptep;
233
234                 va = (unsigned long)ldt_slot_va(slot) + offset;
235                 pfn = is_vmalloc ? vmalloc_to_pfn(src) :
236                         page_to_pfn(virt_to_page(src));
237                 /*
238                  * Treat the PTI LDT range as a *userspace* range.
239                  * get_locked_pte() will allocate all needed pagetables
240                  * and account for them in this mm.
241                  */
242                 ptep = get_locked_pte(mm, va, &ptl);
243                 if (!ptep)
244                         return -ENOMEM;
245                 /*
246                  * Map it RO so the easy to find address is not a primary
247                  * target via some kernel interface which misses a
248                  * permission check.
249                  */
250                 pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL);
251                 /* Filter out unsuppored __PAGE_KERNEL* bits: */
252                 pgprot_val(pte_prot) &= __supported_pte_mask;
253                 pte = pfn_pte(pfn, pte_prot);
254                 set_pte_at(mm, va, ptep, pte);
255                 pte_unmap_unlock(ptep, ptl);
256         }
257
258         /* Propagate LDT mapping to the user page-table */
259         map_ldt_struct_to_user(mm);
260
261         ldt->slot = slot;
262         return 0;
263 }
264
265 static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
266 {
267         unsigned long va;
268         int i, nr_pages;
269
270         if (!ldt)
271                 return;
272
273         /* LDT map/unmap is only required for PTI */
274         if (!boot_cpu_has(X86_FEATURE_PTI))
275                 return;
276
277         nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
278
279         for (i = 0; i < nr_pages; i++) {
280                 unsigned long offset = i << PAGE_SHIFT;
281                 spinlock_t *ptl;
282                 pte_t *ptep;
283
284                 va = (unsigned long)ldt_slot_va(ldt->slot) + offset;
285                 ptep = get_locked_pte(mm, va, &ptl);
286                 pte_clear(mm, va, ptep);
287                 pte_unmap_unlock(ptep, ptl);
288         }
289
290         va = (unsigned long)ldt_slot_va(ldt->slot);
291         flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false);
292 }
293
294 #else /* !CONFIG_PAGE_TABLE_ISOLATION */
295
296 static int
297 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
298 {
299         return 0;
300 }
301
302 static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
303 {
304 }
305 #endif /* CONFIG_PAGE_TABLE_ISOLATION */
306
307 static void free_ldt_pgtables(struct mm_struct *mm)
308 {
309 #ifdef CONFIG_PAGE_TABLE_ISOLATION
310         struct mmu_gather tlb;
311         unsigned long start = LDT_BASE_ADDR;
312         unsigned long end = LDT_END_ADDR;
313
314         if (!boot_cpu_has(X86_FEATURE_PTI))
315                 return;
316
317         tlb_gather_mmu(&tlb, mm, start, end);
318         free_pgd_range(&tlb, start, end, start, end);
319         tlb_finish_mmu(&tlb, start, end);
320 #endif
321 }
322
323 /* After calling this, the LDT is immutable. */
324 static void finalize_ldt_struct(struct ldt_struct *ldt)
325 {
326         paravirt_alloc_ldt(ldt->entries, ldt->nr_entries);
327 }
328
329 static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt)
330 {
331         mutex_lock(&mm->context.lock);
332
333         /* Synchronizes with READ_ONCE in load_mm_ldt. */
334         smp_store_release(&mm->context.ldt, ldt);
335
336         /* Activate the LDT for all CPUs using currents mm. */
337         on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true);
338
339         mutex_unlock(&mm->context.lock);
340 }
341
342 static void free_ldt_struct(struct ldt_struct *ldt)
343 {
344         if (likely(!ldt))
345                 return;
346
347         paravirt_free_ldt(ldt->entries, ldt->nr_entries);
348         if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE)
349                 vfree_atomic(ldt->entries);
350         else
351                 free_page((unsigned long)ldt->entries);
352         kfree(ldt);
353 }
354
355 /*
356  * Called on fork from arch_dup_mmap(). Just copy the current LDT state,
357  * the new task is not running, so nothing can be installed.
358  */
359 int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm)
360 {
361         struct ldt_struct *new_ldt;
362         int retval = 0;
363
364         if (!old_mm)
365                 return 0;
366
367         mutex_lock(&old_mm->context.lock);
368         if (!old_mm->context.ldt)
369                 goto out_unlock;
370
371         new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries);
372         if (!new_ldt) {
373                 retval = -ENOMEM;
374                 goto out_unlock;
375         }
376
377         memcpy(new_ldt->entries, old_mm->context.ldt->entries,
378                new_ldt->nr_entries * LDT_ENTRY_SIZE);
379         finalize_ldt_struct(new_ldt);
380
381         retval = map_ldt_struct(mm, new_ldt, 0);
382         if (retval) {
383                 free_ldt_pgtables(mm);
384                 free_ldt_struct(new_ldt);
385                 goto out_unlock;
386         }
387         mm->context.ldt = new_ldt;
388
389 out_unlock:
390         mutex_unlock(&old_mm->context.lock);
391         return retval;
392 }
393
394 /*
395  * No need to lock the MM as we are the last user
396  *
397  * 64bit: Don't touch the LDT register - we're already in the next thread.
398  */
399 void destroy_context_ldt(struct mm_struct *mm)
400 {
401         free_ldt_struct(mm->context.ldt);
402         mm->context.ldt = NULL;
403 }
404
405 void ldt_arch_exit_mmap(struct mm_struct *mm)
406 {
407         free_ldt_pgtables(mm);
408 }
409
410 static int read_ldt(void __user *ptr, unsigned long bytecount)
411 {
412         struct mm_struct *mm = current->mm;
413         unsigned long entries_size;
414         int retval;
415
416         down_read(&mm->context.ldt_usr_sem);
417
418         if (!mm->context.ldt) {
419                 retval = 0;
420                 goto out_unlock;
421         }
422
423         if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES)
424                 bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES;
425
426         entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE;
427         if (entries_size > bytecount)
428                 entries_size = bytecount;
429
430         if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) {
431                 retval = -EFAULT;
432                 goto out_unlock;
433         }
434
435         if (entries_size != bytecount) {
436                 /* Zero-fill the rest and pretend we read bytecount bytes. */
437                 if (clear_user(ptr + entries_size, bytecount - entries_size)) {
438                         retval = -EFAULT;
439                         goto out_unlock;
440                 }
441         }
442         retval = bytecount;
443
444 out_unlock:
445         up_read(&mm->context.ldt_usr_sem);
446         return retval;
447 }
448
449 static int read_default_ldt(void __user *ptr, unsigned long bytecount)
450 {
451         /* CHECKME: Can we use _one_ random number ? */
452 #ifdef CONFIG_X86_32
453         unsigned long size = 5 * sizeof(struct desc_struct);
454 #else
455         unsigned long size = 128;
456 #endif
457         if (bytecount > size)
458                 bytecount = size;
459         if (clear_user(ptr, bytecount))
460                 return -EFAULT;
461         return bytecount;
462 }
463
464 static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode)
465 {
466         struct mm_struct *mm = current->mm;
467         struct ldt_struct *new_ldt, *old_ldt;
468         unsigned int old_nr_entries, new_nr_entries;
469         struct user_desc ldt_info;
470         struct desc_struct ldt;
471         int error;
472
473         error = -EINVAL;
474         if (bytecount != sizeof(ldt_info))
475                 goto out;
476         error = -EFAULT;
477         if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
478                 goto out;
479
480         error = -EINVAL;
481         if (ldt_info.entry_number >= LDT_ENTRIES)
482                 goto out;
483         if (ldt_info.contents == 3) {
484                 if (oldmode)
485                         goto out;
486                 if (ldt_info.seg_not_present == 0)
487                         goto out;
488         }
489
490         if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) ||
491             LDT_empty(&ldt_info)) {
492                 /* The user wants to clear the entry. */
493                 memset(&ldt, 0, sizeof(ldt));
494         } else {
495                 if (!IS_ENABLED(CONFIG_X86_16BIT) && !ldt_info.seg_32bit) {
496                         error = -EINVAL;
497                         goto out;
498                 }
499
500                 fill_ldt(&ldt, &ldt_info);
501                 if (oldmode)
502                         ldt.avl = 0;
503         }
504
505         if (down_write_killable(&mm->context.ldt_usr_sem))
506                 return -EINTR;
507
508         old_ldt       = mm->context.ldt;
509         old_nr_entries = old_ldt ? old_ldt->nr_entries : 0;
510         new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries);
511
512         error = -ENOMEM;
513         new_ldt = alloc_ldt_struct(new_nr_entries);
514         if (!new_ldt)
515                 goto out_unlock;
516
517         if (old_ldt)
518                 memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE);
519
520         new_ldt->entries[ldt_info.entry_number] = ldt;
521         finalize_ldt_struct(new_ldt);
522
523         /*
524          * If we are using PTI, map the new LDT into the userspace pagetables.
525          * If there is already an LDT, use the other slot so that other CPUs
526          * will continue to use the old LDT until install_ldt() switches
527          * them over to the new LDT.
528          */
529         error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0);
530         if (error) {
531                 /*
532                  * This only can fail for the first LDT setup. If an LDT is
533                  * already installed then the PTE page is already
534                  * populated. Mop up a half populated page table.
535                  */
536                 if (!WARN_ON_ONCE(old_ldt))
537                         free_ldt_pgtables(mm);
538                 free_ldt_struct(new_ldt);
539                 goto out_unlock;
540         }
541
542         install_ldt(mm, new_ldt);
543         unmap_ldt_struct(mm, old_ldt);
544         free_ldt_struct(old_ldt);
545         error = 0;
546
547 out_unlock:
548         up_write(&mm->context.ldt_usr_sem);
549 out:
550         return error;
551 }
552
553 SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr ,
554                 unsigned long , bytecount)
555 {
556         int ret = -ENOSYS;
557
558         switch (func) {
559         case 0:
560                 ret = read_ldt(ptr, bytecount);
561                 break;
562         case 1:
563                 ret = write_ldt(ptr, bytecount, 1);
564                 break;
565         case 2:
566                 ret = read_default_ldt(ptr, bytecount);
567                 break;
568         case 0x11:
569                 ret = write_ldt(ptr, bytecount, 0);
570                 break;
571         }
572         /*
573          * The SYSCALL_DEFINE() macros give us an 'unsigned long'
574          * return type, but tht ABI for sys_modify_ldt() expects
575          * 'int'.  This cast gives us an int-sized value in %rax
576          * for the return code.  The 'unsigned' is necessary so
577          * the compiler does not try to sign-extend the negative
578          * return codes into the high half of the register when
579          * taking the value from int->long.
580          */
581         return (unsigned int)ret;
582 }