x86: remove all definitions with fastcall
[sfrench/cifs-2.6.git] / arch / x86 / kernel / kprobes_32.c
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *              Probes initial implementation ( includes contributions from
22  *              Rusty Russell).
23  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *              interface to access function arguments.
25  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
26  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
27  *              <prasanna@in.ibm.com> added function-return probes.
28  */
29
30 #include <linux/kprobes.h>
31 #include <linux/ptrace.h>
32 #include <linux/preempt.h>
33 #include <linux/kdebug.h>
34 #include <asm/cacheflush.h>
35 #include <asm/desc.h>
36 #include <asm/uaccess.h>
37 #include <asm/alternative.h>
38
39 void jprobe_return_end(void);
40
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43
44 struct kretprobe_blackpoint kretprobe_blacklist[] = {
45         {"__switch_to", }, /* This function switches only current task, but
46                              doesn't switch kernel stack.*/
47         {NULL, NULL}    /* Terminator */
48 };
49 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
50
51 /* insert a jmp code */
52 static __always_inline void set_jmp_op(void *from, void *to)
53 {
54         struct __arch_jmp_op {
55                 char op;
56                 long raddr;
57         } __attribute__((packed)) *jop;
58         jop = (struct __arch_jmp_op *)from;
59         jop->raddr = (long)(to) - ((long)(from) + 5);
60         jop->op = RELATIVEJUMP_INSTRUCTION;
61 }
62
63 /*
64  * returns non-zero if opcodes can be boosted.
65  */
66 static __always_inline int can_boost(kprobe_opcode_t *opcodes)
67 {
68 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf)                \
69         (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
70           (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
71           (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
72           (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
73          << (row % 32))
74         /*
75          * Undefined/reserved opcodes, conditional jump, Opcode Extension
76          * Groups, and some special opcodes can not be boost.
77          */
78         static const unsigned long twobyte_is_boostable[256 / 32] = {
79                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
80                 /*      -------------------------------         */
81                 W(0x00, 0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0)| /* 00 */
82                 W(0x10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 10 */
83                 W(0x20, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)| /* 20 */
84                 W(0x30, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */
85                 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
86                 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 50 */
87                 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1)| /* 60 */
88                 W(0x70, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */
89                 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 80 */
90                 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 90 */
91                 W(0xa0, 1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1)| /* a0 */
92                 W(0xb0, 1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1), /* b0 */
93                 W(0xc0, 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1)| /* c0 */
94                 W(0xd0, 0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1), /* d0 */
95                 W(0xe0, 0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,1)| /* e0 */
96                 W(0xf0, 0,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0)  /* f0 */
97                 /*      -------------------------------         */
98                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
99         };
100 #undef W
101         kprobe_opcode_t opcode;
102         kprobe_opcode_t *orig_opcodes = opcodes;
103 retry:
104         if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
105                 return 0;
106         opcode = *(opcodes++);
107
108         /* 2nd-byte opcode */
109         if (opcode == 0x0f) {
110                 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
111                         return 0;
112                 return test_bit(*opcodes, twobyte_is_boostable);
113         }
114
115         switch (opcode & 0xf0) {
116         case 0x60:
117                 if (0x63 < opcode && opcode < 0x67)
118                         goto retry; /* prefixes */
119                 /* can't boost Address-size override and bound */
120                 return (opcode != 0x62 && opcode != 0x67);
121         case 0x70:
122                 return 0; /* can't boost conditional jump */
123         case 0xc0:
124                 /* can't boost software-interruptions */
125                 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
126         case 0xd0:
127                 /* can boost AA* and XLAT */
128                 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
129         case 0xe0:
130                 /* can boost in/out and absolute jmps */
131                 return ((opcode & 0x04) || opcode == 0xea);
132         case 0xf0:
133                 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
134                         goto retry; /* lock/rep(ne) prefix */
135                 /* clear and set flags can be boost */
136                 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
137         default:
138                 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
139                         goto retry; /* prefixes */
140                 /* can't boost CS override and call */
141                 return (opcode != 0x2e && opcode != 0x9a);
142         }
143 }
144
145 /*
146  * returns non-zero if opcode modifies the interrupt flag.
147  */
148 static int __kprobes is_IF_modifier(kprobe_opcode_t opcode)
149 {
150         switch (opcode) {
151         case 0xfa:              /* cli */
152         case 0xfb:              /* sti */
153         case 0xcf:              /* iret/iretd */
154         case 0x9d:              /* popf/popfd */
155                 return 1;
156         }
157         return 0;
158 }
159
160 int __kprobes arch_prepare_kprobe(struct kprobe *p)
161 {
162         /* insn: must be on special executable page on i386. */
163         p->ainsn.insn = get_insn_slot();
164         if (!p->ainsn.insn)
165                 return -ENOMEM;
166
167         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
168         p->opcode = *p->addr;
169         if (can_boost(p->addr)) {
170                 p->ainsn.boostable = 0;
171         } else {
172                 p->ainsn.boostable = -1;
173         }
174         return 0;
175 }
176
177 void __kprobes arch_arm_kprobe(struct kprobe *p)
178 {
179         text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
180 }
181
182 void __kprobes arch_disarm_kprobe(struct kprobe *p)
183 {
184         text_poke(p->addr, &p->opcode, 1);
185 }
186
187 void __kprobes arch_remove_kprobe(struct kprobe *p)
188 {
189         mutex_lock(&kprobe_mutex);
190         free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
191         mutex_unlock(&kprobe_mutex);
192 }
193
194 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
195 {
196         kcb->prev_kprobe.kp = kprobe_running();
197         kcb->prev_kprobe.status = kcb->kprobe_status;
198         kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
199         kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
200 }
201
202 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
203 {
204         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
205         kcb->kprobe_status = kcb->prev_kprobe.status;
206         kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
207         kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
208 }
209
210 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
211                                 struct kprobe_ctlblk *kcb)
212 {
213         __get_cpu_var(current_kprobe) = p;
214         kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
215                 = (regs->flags & (TF_MASK | IF_MASK));
216         if (is_IF_modifier(p->opcode))
217                 kcb->kprobe_saved_eflags &= ~IF_MASK;
218 }
219
220 static __always_inline void clear_btf(void)
221 {
222         if (test_thread_flag(TIF_DEBUGCTLMSR))
223                 wrmsr(MSR_IA32_DEBUGCTLMSR, 0, 0);
224 }
225
226 static __always_inline void restore_btf(void)
227 {
228         if (test_thread_flag(TIF_DEBUGCTLMSR))
229                 wrmsr(MSR_IA32_DEBUGCTLMSR, current->thread.debugctlmsr, 0);
230 }
231
232 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
233 {
234         clear_btf();
235         regs->flags |= TF_MASK;
236         regs->flags &= ~IF_MASK;
237         /*single step inline if the instruction is an int3*/
238         if (p->opcode == BREAKPOINT_INSTRUCTION)
239                 regs->ip = (unsigned long)p->addr;
240         else
241                 regs->ip = (unsigned long)p->ainsn.insn;
242 }
243
244 /* Called with kretprobe_lock held */
245 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
246                                       struct pt_regs *regs)
247 {
248         unsigned long *sara = (unsigned long *)&regs->sp;
249
250         ri->ret_addr = (kprobe_opcode_t *) *sara;
251
252         /* Replace the return addr with trampoline addr */
253         *sara = (unsigned long) &kretprobe_trampoline;
254 }
255
256 /*
257  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
258  * remain disabled thorough out this function.
259  */
260 static int __kprobes kprobe_handler(struct pt_regs *regs)
261 {
262         struct kprobe *p;
263         int ret = 0;
264         kprobe_opcode_t *addr;
265         struct kprobe_ctlblk *kcb;
266
267         addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
268
269         /*
270          * We don't want to be preempted for the entire
271          * duration of kprobe processing
272          */
273         preempt_disable();
274         kcb = get_kprobe_ctlblk();
275
276         /* Check we're not actually recursing */
277         if (kprobe_running()) {
278                 p = get_kprobe(addr);
279                 if (p) {
280                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
281                                 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
282                                 regs->flags &= ~TF_MASK;
283                                 regs->flags |= kcb->kprobe_saved_eflags;
284                                 goto no_kprobe;
285                         }
286                         /* We have reentered the kprobe_handler(), since
287                          * another probe was hit while within the handler.
288                          * We here save the original kprobes variables and
289                          * just single step on the instruction of the new probe
290                          * without calling any user handlers.
291                          */
292                         save_previous_kprobe(kcb);
293                         set_current_kprobe(p, regs, kcb);
294                         kprobes_inc_nmissed_count(p);
295                         prepare_singlestep(p, regs);
296                         kcb->kprobe_status = KPROBE_REENTER;
297                         return 1;
298                 } else {
299                         if (*addr != BREAKPOINT_INSTRUCTION) {
300                         /* The breakpoint instruction was removed by
301                          * another cpu right after we hit, no further
302                          * handling of this interrupt is appropriate
303                          */
304                                 regs->ip -= sizeof(kprobe_opcode_t);
305                                 ret = 1;
306                                 goto no_kprobe;
307                         }
308                         p = __get_cpu_var(current_kprobe);
309                         if (p->break_handler && p->break_handler(p, regs)) {
310                                 goto ss_probe;
311                         }
312                 }
313                 goto no_kprobe;
314         }
315
316         p = get_kprobe(addr);
317         if (!p) {
318                 if (*addr != BREAKPOINT_INSTRUCTION) {
319                         /*
320                          * The breakpoint instruction was removed right
321                          * after we hit it.  Another cpu has removed
322                          * either a probepoint or a debugger breakpoint
323                          * at this address.  In either case, no further
324                          * handling of this interrupt is appropriate.
325                          * Back up over the (now missing) int3 and run
326                          * the original instruction.
327                          */
328                         regs->ip -= sizeof(kprobe_opcode_t);
329                         ret = 1;
330                 }
331                 /* Not one of ours: let kernel handle it */
332                 goto no_kprobe;
333         }
334
335         set_current_kprobe(p, regs, kcb);
336         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
337
338         if (p->pre_handler && p->pre_handler(p, regs))
339                 /* handler has already set things up, so skip ss setup */
340                 return 1;
341
342 ss_probe:
343 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
344         if (p->ainsn.boostable == 1 && !p->post_handler){
345                 /* Boost up -- we can execute copied instructions directly */
346                 reset_current_kprobe();
347                 regs->ip = (unsigned long)p->ainsn.insn;
348                 preempt_enable_no_resched();
349                 return 1;
350         }
351 #endif
352         prepare_singlestep(p, regs);
353         kcb->kprobe_status = KPROBE_HIT_SS;
354         return 1;
355
356 no_kprobe:
357         preempt_enable_no_resched();
358         return ret;
359 }
360
361 /*
362  * For function-return probes, init_kprobes() establishes a probepoint
363  * here. When a retprobed function returns, this probe is hit and
364  * trampoline_probe_handler() runs, calling the kretprobe's handler.
365  */
366  void __kprobes kretprobe_trampoline_holder(void)
367  {
368         asm volatile ( ".global kretprobe_trampoline\n"
369                         "kretprobe_trampoline: \n"
370                         "       pushf\n"
371                         /* skip cs, ip, orig_ax */
372                         "       subl $12, %esp\n"
373                         "       pushl %fs\n"
374                         "       pushl %ds\n"
375                         "       pushl %es\n"
376                         "       pushl %eax\n"
377                         "       pushl %ebp\n"
378                         "       pushl %edi\n"
379                         "       pushl %esi\n"
380                         "       pushl %edx\n"
381                         "       pushl %ecx\n"
382                         "       pushl %ebx\n"
383                         "       movl %esp, %eax\n"
384                         "       call trampoline_handler\n"
385                         /* move flags to cs */
386                         "       movl 52(%esp), %edx\n"
387                         "       movl %edx, 48(%esp)\n"
388                         /* save true return address on flags */
389                         "       movl %eax, 52(%esp)\n"
390                         "       popl %ebx\n"
391                         "       popl %ecx\n"
392                         "       popl %edx\n"
393                         "       popl %esi\n"
394                         "       popl %edi\n"
395                         "       popl %ebp\n"
396                         "       popl %eax\n"
397                         /* skip ip, orig_ax, es, ds, fs */
398                         "       addl $20, %esp\n"
399                         "       popf\n"
400                         "       ret\n");
401 }
402
403 /*
404  * Called from kretprobe_trampoline
405  */
406 void *__kprobes trampoline_handler(struct pt_regs *regs)
407 {
408         struct kretprobe_instance *ri = NULL;
409         struct hlist_head *head, empty_rp;
410         struct hlist_node *node, *tmp;
411         unsigned long flags, orig_ret_address = 0;
412         unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
413
414         INIT_HLIST_HEAD(&empty_rp);
415         spin_lock_irqsave(&kretprobe_lock, flags);
416         head = kretprobe_inst_table_head(current);
417         /* fixup registers */
418         regs->cs = __KERNEL_CS | get_kernel_rpl();
419         regs->ip = trampoline_address;
420         regs->orig_ax = 0xffffffff;
421
422         /*
423          * It is possible to have multiple instances associated with a given
424          * task either because an multiple functions in the call path
425          * have a return probe installed on them, and/or more then one return
426          * return probe was registered for a target function.
427          *
428          * We can handle this because:
429          *     - instances are always inserted at the head of the list
430          *     - when multiple return probes are registered for the same
431          *       function, the first instance's ret_addr will point to the
432          *       real return address, and all the rest will point to
433          *       kretprobe_trampoline
434          */
435         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
436                 if (ri->task != current)
437                         /* another task is sharing our hash bucket */
438                         continue;
439
440                 if (ri->rp && ri->rp->handler){
441                         __get_cpu_var(current_kprobe) = &ri->rp->kp;
442                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
443                         ri->rp->handler(ri, regs);
444                         __get_cpu_var(current_kprobe) = NULL;
445                 }
446
447                 orig_ret_address = (unsigned long)ri->ret_addr;
448                 recycle_rp_inst(ri, &empty_rp);
449
450                 if (orig_ret_address != trampoline_address)
451                         /*
452                          * This is the real return address. Any other
453                          * instances associated with this task are for
454                          * other calls deeper on the call stack
455                          */
456                         break;
457         }
458
459         kretprobe_assert(ri, orig_ret_address, trampoline_address);
460         spin_unlock_irqrestore(&kretprobe_lock, flags);
461
462         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
463                 hlist_del(&ri->hlist);
464                 kfree(ri);
465         }
466         return (void*)orig_ret_address;
467 }
468
469 /*
470  * Called after single-stepping.  p->addr is the address of the
471  * instruction whose first byte has been replaced by the "int 3"
472  * instruction.  To avoid the SMP problems that can occur when we
473  * temporarily put back the original opcode to single-step, we
474  * single-stepped a copy of the instruction.  The address of this
475  * copy is p->ainsn.insn.
476  *
477  * This function prepares to return from the post-single-step
478  * interrupt.  We have to fix up the stack as follows:
479  *
480  * 0) Except in the case of absolute or indirect jump or call instructions,
481  * the new ip is relative to the copied instruction.  We need to make
482  * it relative to the original instruction.
483  *
484  * 1) If the single-stepped instruction was pushfl, then the TF and IF
485  * flags are set in the just-pushed flags, and may need to be cleared.
486  *
487  * 2) If the single-stepped instruction was a call, the return address
488  * that is atop the stack is the address following the copied instruction.
489  * We need to make it the address following the original instruction.
490  *
491  * This function also checks instruction size for preparing direct execution.
492  */
493 static void __kprobes resume_execution(struct kprobe *p,
494                 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
495 {
496         unsigned long *tos = (unsigned long *)&regs->sp;
497         unsigned long copy_eip = (unsigned long)p->ainsn.insn;
498         unsigned long orig_eip = (unsigned long)p->addr;
499
500         regs->flags &= ~TF_MASK;
501         switch (p->ainsn.insn[0]) {
502         case 0x9c:              /* pushfl */
503                 *tos &= ~(TF_MASK | IF_MASK);
504                 *tos |= kcb->kprobe_old_eflags;
505                 break;
506         case 0xc2:              /* iret/ret/lret */
507         case 0xc3:
508         case 0xca:
509         case 0xcb:
510         case 0xcf:
511         case 0xea:              /* jmp absolute -- ip is correct */
512                 /* ip is already adjusted, no more changes required */
513                 p->ainsn.boostable = 1;
514                 goto no_change;
515         case 0xe8:              /* call relative - Fix return addr */
516                 *tos = orig_eip + (*tos - copy_eip);
517                 break;
518         case 0x9a:              /* call absolute -- same as call absolute, indirect */
519                 *tos = orig_eip + (*tos - copy_eip);
520                 goto no_change;
521         case 0xff:
522                 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
523                         /*
524                          * call absolute, indirect
525                          * Fix return addr; ip is correct.
526                          * But this is not boostable
527                          */
528                         *tos = orig_eip + (*tos - copy_eip);
529                         goto no_change;
530                 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) ||       /* jmp near, absolute indirect */
531                            ((p->ainsn.insn[1] & 0x31) == 0x21)) {       /* jmp far, absolute indirect */
532                         /* ip is correct. And this is boostable */
533                         p->ainsn.boostable = 1;
534                         goto no_change;
535                 }
536         default:
537                 break;
538         }
539
540         if (p->ainsn.boostable == 0) {
541                 if ((regs->ip > copy_eip) &&
542                     (regs->ip - copy_eip) + 5 < MAX_INSN_SIZE) {
543                         /*
544                          * These instructions can be executed directly if it
545                          * jumps back to correct address.
546                          */
547                         set_jmp_op((void *)regs->ip,
548                                    (void *)orig_eip + (regs->ip - copy_eip));
549                         p->ainsn.boostable = 1;
550                 } else {
551                         p->ainsn.boostable = -1;
552                 }
553         }
554
555         regs->ip = orig_eip + (regs->ip - copy_eip);
556
557 no_change:
558         restore_btf();
559
560         return;
561 }
562
563 /*
564  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
565  * remain disabled thoroughout this function.
566  */
567 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
568 {
569         struct kprobe *cur = kprobe_running();
570         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
571
572         if (!cur)
573                 return 0;
574
575         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
576                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
577                 cur->post_handler(cur, regs, 0);
578         }
579
580         resume_execution(cur, regs, kcb);
581         regs->flags |= kcb->kprobe_saved_eflags;
582         trace_hardirqs_fixup_flags(regs->flags);
583
584         /*Restore back the original saved kprobes variables and continue. */
585         if (kcb->kprobe_status == KPROBE_REENTER) {
586                 restore_previous_kprobe(kcb);
587                 goto out;
588         }
589         reset_current_kprobe();
590 out:
591         preempt_enable_no_resched();
592
593         /*
594          * if somebody else is singlestepping across a probe point, flags
595          * will have TF set, in which case, continue the remaining processing
596          * of do_debug, as if this is not a probe hit.
597          */
598         if (regs->flags & TF_MASK)
599                 return 0;
600
601         return 1;
602 }
603
604 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
605 {
606         struct kprobe *cur = kprobe_running();
607         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
608
609         switch(kcb->kprobe_status) {
610         case KPROBE_HIT_SS:
611         case KPROBE_REENTER:
612                 /*
613                  * We are here because the instruction being single
614                  * stepped caused a page fault. We reset the current
615                  * kprobe and the ip points back to the probe address
616                  * and allow the page fault handler to continue as a
617                  * normal page fault.
618                  */
619                 regs->ip = (unsigned long)cur->addr;
620                 regs->flags |= kcb->kprobe_old_eflags;
621                 if (kcb->kprobe_status == KPROBE_REENTER)
622                         restore_previous_kprobe(kcb);
623                 else
624                         reset_current_kprobe();
625                 preempt_enable_no_resched();
626                 break;
627         case KPROBE_HIT_ACTIVE:
628         case KPROBE_HIT_SSDONE:
629                 /*
630                  * We increment the nmissed count for accounting,
631                  * we can also use npre/npostfault count for accouting
632                  * these specific fault cases.
633                  */
634                 kprobes_inc_nmissed_count(cur);
635
636                 /*
637                  * We come here because instructions in the pre/post
638                  * handler caused the page_fault, this could happen
639                  * if handler tries to access user space by
640                  * copy_from_user(), get_user() etc. Let the
641                  * user-specified handler try to fix it first.
642                  */
643                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
644                         return 1;
645
646                 /*
647                  * In case the user-specified fault handler returned
648                  * zero, try to fix up.
649                  */
650                 if (fixup_exception(regs))
651                         return 1;
652
653                 /*
654                  * fixup_exception() could not handle it,
655                  * Let do_page_fault() fix it.
656                  */
657                 break;
658         default:
659                 break;
660         }
661         return 0;
662 }
663
664 /*
665  * Wrapper routine to for handling exceptions.
666  */
667 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
668                                        unsigned long val, void *data)
669 {
670         struct die_args *args = (struct die_args *)data;
671         int ret = NOTIFY_DONE;
672
673         if (args->regs && user_mode_vm(args->regs))
674                 return ret;
675
676         switch (val) {
677         case DIE_INT3:
678                 if (kprobe_handler(args->regs))
679                         ret = NOTIFY_STOP;
680                 break;
681         case DIE_DEBUG:
682                 if (post_kprobe_handler(args->regs))
683                         ret = NOTIFY_STOP;
684                 break;
685         case DIE_GPF:
686                 /* kprobe_running() needs smp_processor_id() */
687                 preempt_disable();
688                 if (kprobe_running() &&
689                     kprobe_fault_handler(args->regs, args->trapnr))
690                         ret = NOTIFY_STOP;
691                 preempt_enable();
692                 break;
693         default:
694                 break;
695         }
696         return ret;
697 }
698
699 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
700 {
701         struct jprobe *jp = container_of(p, struct jprobe, kp);
702         unsigned long addr;
703         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
704
705         kcb->jprobe_saved_regs = *regs;
706         kcb->jprobe_saved_esp = &regs->sp;
707         addr = (unsigned long)(kcb->jprobe_saved_esp);
708
709         /*
710          * TBD: As Linus pointed out, gcc assumes that the callee
711          * owns the argument space and could overwrite it, e.g.
712          * tailcall optimization. So, to be absolutely safe
713          * we also save and restore enough stack bytes to cover
714          * the argument area.
715          */
716         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
717                         MIN_STACK_SIZE(addr));
718         regs->flags &= ~IF_MASK;
719         trace_hardirqs_off();
720         regs->ip = (unsigned long)(jp->entry);
721         return 1;
722 }
723
724 void __kprobes jprobe_return(void)
725 {
726         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
727
728         asm volatile ("       xchgl   %%ebx,%%esp     \n"
729                       "       int3                      \n"
730                       "       .globl jprobe_return_end  \n"
731                       "       jprobe_return_end:        \n"
732                       "       nop                       \n"::"b"
733                       (kcb->jprobe_saved_esp):"memory");
734 }
735
736 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
737 {
738         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
739         u8 *addr = (u8 *) (regs->ip - 1);
740         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
741         struct jprobe *jp = container_of(p, struct jprobe, kp);
742
743         if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
744                 if (&regs->sp != kcb->jprobe_saved_esp) {
745                         struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
746                         printk("current sp %p does not match saved sp %p\n",
747                                &regs->sp, kcb->jprobe_saved_esp);
748                         printk("Saved registers for jprobe %p\n", jp);
749                         show_registers(saved_regs);
750                         printk("Current registers\n");
751                         show_registers(regs);
752                         BUG();
753                 }
754                 *regs = kcb->jprobe_saved_regs;
755                 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
756                        MIN_STACK_SIZE(stack_addr));
757                 preempt_enable_no_resched();
758                 return 1;
759         }
760         return 0;
761 }
762
763 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
764 {
765         return 0;
766 }
767
768 int __init arch_init_kprobes(void)
769 {
770         return 0;
771 }