Merge git://git.kernel.org/pub/scm/linux/kernel/git/wim/linux-2.6-watchdog
[sfrench/cifs-2.6.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/io.h>
13
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17
18 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
19 #define HPET_SHIFT                      22
20
21 /* FSEC = 10^-15
22    NSEC = 10^-9 */
23 #define FSEC_PER_NSEC                   1000000L
24
25 #define HPET_DEV_USED_BIT               2
26 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID                  0x8
28 #define HPET_DEV_FSB_CAP                0x1000
29 #define HPET_DEV_PERI_CAP               0x2000
30
31 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
32
33 /*
34  * HPET address is set in acpi/boot.c, when an ACPI entry exists
35  */
36 unsigned long                           hpet_address;
37 u8                                      hpet_blockid; /* OS timer block num */
38 u8                                      hpet_msi_disable;
39
40 #ifdef CONFIG_PCI_MSI
41 static unsigned long                    hpet_num_timers;
42 #endif
43 static void __iomem                     *hpet_virt_address;
44
45 struct hpet_dev {
46         struct clock_event_device       evt;
47         unsigned int                    num;
48         int                             cpu;
49         unsigned int                    irq;
50         unsigned int                    flags;
51         char                            name[10];
52 };
53
54 inline unsigned int hpet_readl(unsigned int a)
55 {
56         return readl(hpet_virt_address + a);
57 }
58
59 static inline void hpet_writel(unsigned int d, unsigned int a)
60 {
61         writel(d, hpet_virt_address + a);
62 }
63
64 #ifdef CONFIG_X86_64
65 #include <asm/pgtable.h>
66 #endif
67
68 static inline void hpet_set_mapping(void)
69 {
70         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
71 #ifdef CONFIG_X86_64
72         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
73 #endif
74 }
75
76 static inline void hpet_clear_mapping(void)
77 {
78         iounmap(hpet_virt_address);
79         hpet_virt_address = NULL;
80 }
81
82 /*
83  * HPET command line enable / disable
84  */
85 static int boot_hpet_disable;
86 int hpet_force_user;
87 static int hpet_verbose;
88
89 static int __init hpet_setup(char *str)
90 {
91         if (str) {
92                 if (!strncmp("disable", str, 7))
93                         boot_hpet_disable = 1;
94                 if (!strncmp("force", str, 5))
95                         hpet_force_user = 1;
96                 if (!strncmp("verbose", str, 7))
97                         hpet_verbose = 1;
98         }
99         return 1;
100 }
101 __setup("hpet=", hpet_setup);
102
103 static int __init disable_hpet(char *str)
104 {
105         boot_hpet_disable = 1;
106         return 1;
107 }
108 __setup("nohpet", disable_hpet);
109
110 static inline int is_hpet_capable(void)
111 {
112         return !boot_hpet_disable && hpet_address;
113 }
114
115 /*
116  * HPET timer interrupt enable / disable
117  */
118 static int hpet_legacy_int_enabled;
119
120 /**
121  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
122  */
123 int is_hpet_enabled(void)
124 {
125         return is_hpet_capable() && hpet_legacy_int_enabled;
126 }
127 EXPORT_SYMBOL_GPL(is_hpet_enabled);
128
129 static void _hpet_print_config(const char *function, int line)
130 {
131         u32 i, timers, l, h;
132         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
133         l = hpet_readl(HPET_ID);
134         h = hpet_readl(HPET_PERIOD);
135         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
136         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
137         l = hpet_readl(HPET_CFG);
138         h = hpet_readl(HPET_STATUS);
139         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
140         l = hpet_readl(HPET_COUNTER);
141         h = hpet_readl(HPET_COUNTER+4);
142         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
143
144         for (i = 0; i < timers; i++) {
145                 l = hpet_readl(HPET_Tn_CFG(i));
146                 h = hpet_readl(HPET_Tn_CFG(i)+4);
147                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
148                        i, l, h);
149                 l = hpet_readl(HPET_Tn_CMP(i));
150                 h = hpet_readl(HPET_Tn_CMP(i)+4);
151                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
152                        i, l, h);
153                 l = hpet_readl(HPET_Tn_ROUTE(i));
154                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
155                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
156                        i, l, h);
157         }
158 }
159
160 #define hpet_print_config()                                     \
161 do {                                                            \
162         if (hpet_verbose)                                       \
163                 _hpet_print_config(__FUNCTION__, __LINE__);     \
164 } while (0)
165
166 /*
167  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
168  * timer 0 and timer 1 in case of RTC emulation.
169  */
170 #ifdef CONFIG_HPET
171
172 static void hpet_reserve_msi_timers(struct hpet_data *hd);
173
174 static void hpet_reserve_platform_timers(unsigned int id)
175 {
176         struct hpet __iomem *hpet = hpet_virt_address;
177         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
178         unsigned int nrtimers, i;
179         struct hpet_data hd;
180
181         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
182
183         memset(&hd, 0, sizeof(hd));
184         hd.hd_phys_address      = hpet_address;
185         hd.hd_address           = hpet;
186         hd.hd_nirqs             = nrtimers;
187         hpet_reserve_timer(&hd, 0);
188
189 #ifdef CONFIG_HPET_EMULATE_RTC
190         hpet_reserve_timer(&hd, 1);
191 #endif
192
193         /*
194          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
195          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
196          * don't bother configuring *any* comparator interrupts.
197          */
198         hd.hd_irq[0] = HPET_LEGACY_8254;
199         hd.hd_irq[1] = HPET_LEGACY_RTC;
200
201         for (i = 2; i < nrtimers; timer++, i++) {
202                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
203                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
204         }
205
206         hpet_reserve_msi_timers(&hd);
207
208         hpet_alloc(&hd);
209
210 }
211 #else
212 static void hpet_reserve_platform_timers(unsigned int id) { }
213 #endif
214
215 /*
216  * Common hpet info
217  */
218 static unsigned long hpet_period;
219
220 static void hpet_legacy_set_mode(enum clock_event_mode mode,
221                           struct clock_event_device *evt);
222 static int hpet_legacy_next_event(unsigned long delta,
223                            struct clock_event_device *evt);
224
225 /*
226  * The hpet clock event device
227  */
228 static struct clock_event_device hpet_clockevent = {
229         .name           = "hpet",
230         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
231         .set_mode       = hpet_legacy_set_mode,
232         .set_next_event = hpet_legacy_next_event,
233         .shift          = 32,
234         .irq            = 0,
235         .rating         = 50,
236 };
237
238 static void hpet_stop_counter(void)
239 {
240         unsigned long cfg = hpet_readl(HPET_CFG);
241         cfg &= ~HPET_CFG_ENABLE;
242         hpet_writel(cfg, HPET_CFG);
243 }
244
245 static void hpet_reset_counter(void)
246 {
247         hpet_writel(0, HPET_COUNTER);
248         hpet_writel(0, HPET_COUNTER + 4);
249 }
250
251 static void hpet_start_counter(void)
252 {
253         unsigned int cfg = hpet_readl(HPET_CFG);
254         cfg |= HPET_CFG_ENABLE;
255         hpet_writel(cfg, HPET_CFG);
256 }
257
258 static void hpet_restart_counter(void)
259 {
260         hpet_stop_counter();
261         hpet_reset_counter();
262         hpet_start_counter();
263 }
264
265 static void hpet_resume_device(void)
266 {
267         force_hpet_resume();
268 }
269
270 static void hpet_resume_counter(struct clocksource *cs)
271 {
272         hpet_resume_device();
273         hpet_restart_counter();
274 }
275
276 static void hpet_enable_legacy_int(void)
277 {
278         unsigned int cfg = hpet_readl(HPET_CFG);
279
280         cfg |= HPET_CFG_LEGACY;
281         hpet_writel(cfg, HPET_CFG);
282         hpet_legacy_int_enabled = 1;
283 }
284
285 static void hpet_legacy_clockevent_register(void)
286 {
287         /* Start HPET legacy interrupts */
288         hpet_enable_legacy_int();
289
290         /*
291          * The mult factor is defined as (include/linux/clockchips.h)
292          *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
293          * hpet_period is in units of femtoseconds (per cycle), so
294          *  mult/2^shift = cyc/ns = 10^6/hpet_period
295          *  mult = (10^6 * 2^shift)/hpet_period
296          *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
297          */
298         hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
299                                       hpet_period, hpet_clockevent.shift);
300         /* Calculate the min / max delta */
301         hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
302                                                            &hpet_clockevent);
303         /* 5 usec minimum reprogramming delta. */
304         hpet_clockevent.min_delta_ns = 5000;
305
306         /*
307          * Start hpet with the boot cpu mask and make it
308          * global after the IO_APIC has been initialized.
309          */
310         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
311         clockevents_register_device(&hpet_clockevent);
312         global_clock_event = &hpet_clockevent;
313         printk(KERN_DEBUG "hpet clockevent registered\n");
314 }
315
316 static int hpet_setup_msi_irq(unsigned int irq);
317
318 static void hpet_set_mode(enum clock_event_mode mode,
319                           struct clock_event_device *evt, int timer)
320 {
321         unsigned int cfg, cmp, now;
322         uint64_t delta;
323
324         switch (mode) {
325         case CLOCK_EVT_MODE_PERIODIC:
326                 hpet_stop_counter();
327                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
328                 delta >>= evt->shift;
329                 now = hpet_readl(HPET_COUNTER);
330                 cmp = now + (unsigned int) delta;
331                 cfg = hpet_readl(HPET_Tn_CFG(timer));
332                 /* Make sure we use edge triggered interrupts */
333                 cfg &= ~HPET_TN_LEVEL;
334                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
335                        HPET_TN_SETVAL | HPET_TN_32BIT;
336                 hpet_writel(cfg, HPET_Tn_CFG(timer));
337                 hpet_writel(cmp, HPET_Tn_CMP(timer));
338                 udelay(1);
339                 /*
340                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
341                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
342                  * bit is automatically cleared after the first write.
343                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
344                  * Publication # 24674)
345                  */
346                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
347                 hpet_start_counter();
348                 hpet_print_config();
349                 break;
350
351         case CLOCK_EVT_MODE_ONESHOT:
352                 cfg = hpet_readl(HPET_Tn_CFG(timer));
353                 cfg &= ~HPET_TN_PERIODIC;
354                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
355                 hpet_writel(cfg, HPET_Tn_CFG(timer));
356                 break;
357
358         case CLOCK_EVT_MODE_UNUSED:
359         case CLOCK_EVT_MODE_SHUTDOWN:
360                 cfg = hpet_readl(HPET_Tn_CFG(timer));
361                 cfg &= ~HPET_TN_ENABLE;
362                 hpet_writel(cfg, HPET_Tn_CFG(timer));
363                 break;
364
365         case CLOCK_EVT_MODE_RESUME:
366                 if (timer == 0) {
367                         hpet_enable_legacy_int();
368                 } else {
369                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
370                         hpet_setup_msi_irq(hdev->irq);
371                         disable_irq(hdev->irq);
372                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
373                         enable_irq(hdev->irq);
374                 }
375                 hpet_print_config();
376                 break;
377         }
378 }
379
380 static int hpet_next_event(unsigned long delta,
381                            struct clock_event_device *evt, int timer)
382 {
383         u32 cnt;
384
385         cnt = hpet_readl(HPET_COUNTER);
386         cnt += (u32) delta;
387         hpet_writel(cnt, HPET_Tn_CMP(timer));
388
389         /*
390          * We need to read back the CMP register on certain HPET
391          * implementations (ATI chipsets) which seem to delay the
392          * transfer of the compare register into the internal compare
393          * logic. With small deltas this might actually be too late as
394          * the counter could already be higher than the compare value
395          * at that point and we would wait for the next hpet interrupt
396          * forever. We found out that reading the CMP register back
397          * forces the transfer so we can rely on the comparison with
398          * the counter register below. If the read back from the
399          * compare register does not match the value we programmed
400          * then we might have a real hardware problem. We can not do
401          * much about it here, but at least alert the user/admin with
402          * a prominent warning.
403          */
404         WARN_ONCE(hpet_readl(HPET_Tn_CMP(timer)) != cnt,
405                   KERN_WARNING "hpet: compare register read back failed.\n");
406
407         return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
408 }
409
410 static void hpet_legacy_set_mode(enum clock_event_mode mode,
411                         struct clock_event_device *evt)
412 {
413         hpet_set_mode(mode, evt, 0);
414 }
415
416 static int hpet_legacy_next_event(unsigned long delta,
417                         struct clock_event_device *evt)
418 {
419         return hpet_next_event(delta, evt, 0);
420 }
421
422 /*
423  * HPET MSI Support
424  */
425 #ifdef CONFIG_PCI_MSI
426
427 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
428 static struct hpet_dev  *hpet_devs;
429
430 void hpet_msi_unmask(unsigned int irq)
431 {
432         struct hpet_dev *hdev = get_irq_data(irq);
433         unsigned int cfg;
434
435         /* unmask it */
436         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
437         cfg |= HPET_TN_FSB;
438         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
439 }
440
441 void hpet_msi_mask(unsigned int irq)
442 {
443         unsigned int cfg;
444         struct hpet_dev *hdev = get_irq_data(irq);
445
446         /* mask it */
447         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
448         cfg &= ~HPET_TN_FSB;
449         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
450 }
451
452 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
453 {
454         struct hpet_dev *hdev = get_irq_data(irq);
455
456         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
457         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
458 }
459
460 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
461 {
462         struct hpet_dev *hdev = get_irq_data(irq);
463
464         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
465         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
466         msg->address_hi = 0;
467 }
468
469 static void hpet_msi_set_mode(enum clock_event_mode mode,
470                                 struct clock_event_device *evt)
471 {
472         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
473         hpet_set_mode(mode, evt, hdev->num);
474 }
475
476 static int hpet_msi_next_event(unsigned long delta,
477                                 struct clock_event_device *evt)
478 {
479         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
480         return hpet_next_event(delta, evt, hdev->num);
481 }
482
483 static int hpet_setup_msi_irq(unsigned int irq)
484 {
485         if (arch_setup_hpet_msi(irq, hpet_blockid)) {
486                 destroy_irq(irq);
487                 return -EINVAL;
488         }
489         return 0;
490 }
491
492 static int hpet_assign_irq(struct hpet_dev *dev)
493 {
494         unsigned int irq;
495
496         irq = create_irq();
497         if (!irq)
498                 return -EINVAL;
499
500         set_irq_data(irq, dev);
501
502         if (hpet_setup_msi_irq(irq))
503                 return -EINVAL;
504
505         dev->irq = irq;
506         return 0;
507 }
508
509 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
510 {
511         struct hpet_dev *dev = (struct hpet_dev *)data;
512         struct clock_event_device *hevt = &dev->evt;
513
514         if (!hevt->event_handler) {
515                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
516                                 dev->num);
517                 return IRQ_HANDLED;
518         }
519
520         hevt->event_handler(hevt);
521         return IRQ_HANDLED;
522 }
523
524 static int hpet_setup_irq(struct hpet_dev *dev)
525 {
526
527         if (request_irq(dev->irq, hpet_interrupt_handler,
528                         IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
529                         dev->name, dev))
530                 return -1;
531
532         disable_irq(dev->irq);
533         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
534         enable_irq(dev->irq);
535
536         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
537                          dev->name, dev->irq);
538
539         return 0;
540 }
541
542 /* This should be called in specific @cpu */
543 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
544 {
545         struct clock_event_device *evt = &hdev->evt;
546         uint64_t hpet_freq;
547
548         WARN_ON(cpu != smp_processor_id());
549         if (!(hdev->flags & HPET_DEV_VALID))
550                 return;
551
552         if (hpet_setup_msi_irq(hdev->irq))
553                 return;
554
555         hdev->cpu = cpu;
556         per_cpu(cpu_hpet_dev, cpu) = hdev;
557         evt->name = hdev->name;
558         hpet_setup_irq(hdev);
559         evt->irq = hdev->irq;
560
561         evt->rating = 110;
562         evt->features = CLOCK_EVT_FEAT_ONESHOT;
563         if (hdev->flags & HPET_DEV_PERI_CAP)
564                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
565
566         evt->set_mode = hpet_msi_set_mode;
567         evt->set_next_event = hpet_msi_next_event;
568         evt->shift = 32;
569
570         /*
571          * The period is a femto seconds value. We need to calculate the
572          * scaled math multiplication factor for nanosecond to hpet tick
573          * conversion.
574          */
575         hpet_freq = 1000000000000000ULL;
576         do_div(hpet_freq, hpet_period);
577         evt->mult = div_sc((unsigned long) hpet_freq,
578                                       NSEC_PER_SEC, evt->shift);
579         /* Calculate the max delta */
580         evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
581         /* 5 usec minimum reprogramming delta. */
582         evt->min_delta_ns = 5000;
583
584         evt->cpumask = cpumask_of(hdev->cpu);
585         clockevents_register_device(evt);
586 }
587
588 #ifdef CONFIG_HPET
589 /* Reserve at least one timer for userspace (/dev/hpet) */
590 #define RESERVE_TIMERS 1
591 #else
592 #define RESERVE_TIMERS 0
593 #endif
594
595 static void hpet_msi_capability_lookup(unsigned int start_timer)
596 {
597         unsigned int id;
598         unsigned int num_timers;
599         unsigned int num_timers_used = 0;
600         int i;
601
602         if (hpet_msi_disable)
603                 return;
604
605         if (boot_cpu_has(X86_FEATURE_ARAT))
606                 return;
607         id = hpet_readl(HPET_ID);
608
609         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
610         num_timers++; /* Value read out starts from 0 */
611         hpet_print_config();
612
613         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
614         if (!hpet_devs)
615                 return;
616
617         hpet_num_timers = num_timers;
618
619         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
620                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
621                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
622
623                 /* Only consider HPET timer with MSI support */
624                 if (!(cfg & HPET_TN_FSB_CAP))
625                         continue;
626
627                 hdev->flags = 0;
628                 if (cfg & HPET_TN_PERIODIC_CAP)
629                         hdev->flags |= HPET_DEV_PERI_CAP;
630                 hdev->num = i;
631
632                 sprintf(hdev->name, "hpet%d", i);
633                 if (hpet_assign_irq(hdev))
634                         continue;
635
636                 hdev->flags |= HPET_DEV_FSB_CAP;
637                 hdev->flags |= HPET_DEV_VALID;
638                 num_timers_used++;
639                 if (num_timers_used == num_possible_cpus())
640                         break;
641         }
642
643         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
644                 num_timers, num_timers_used);
645 }
646
647 #ifdef CONFIG_HPET
648 static void hpet_reserve_msi_timers(struct hpet_data *hd)
649 {
650         int i;
651
652         if (!hpet_devs)
653                 return;
654
655         for (i = 0; i < hpet_num_timers; i++) {
656                 struct hpet_dev *hdev = &hpet_devs[i];
657
658                 if (!(hdev->flags & HPET_DEV_VALID))
659                         continue;
660
661                 hd->hd_irq[hdev->num] = hdev->irq;
662                 hpet_reserve_timer(hd, hdev->num);
663         }
664 }
665 #endif
666
667 static struct hpet_dev *hpet_get_unused_timer(void)
668 {
669         int i;
670
671         if (!hpet_devs)
672                 return NULL;
673
674         for (i = 0; i < hpet_num_timers; i++) {
675                 struct hpet_dev *hdev = &hpet_devs[i];
676
677                 if (!(hdev->flags & HPET_DEV_VALID))
678                         continue;
679                 if (test_and_set_bit(HPET_DEV_USED_BIT,
680                         (unsigned long *)&hdev->flags))
681                         continue;
682                 return hdev;
683         }
684         return NULL;
685 }
686
687 struct hpet_work_struct {
688         struct delayed_work work;
689         struct completion complete;
690 };
691
692 static void hpet_work(struct work_struct *w)
693 {
694         struct hpet_dev *hdev;
695         int cpu = smp_processor_id();
696         struct hpet_work_struct *hpet_work;
697
698         hpet_work = container_of(w, struct hpet_work_struct, work.work);
699
700         hdev = hpet_get_unused_timer();
701         if (hdev)
702                 init_one_hpet_msi_clockevent(hdev, cpu);
703
704         complete(&hpet_work->complete);
705 }
706
707 static int hpet_cpuhp_notify(struct notifier_block *n,
708                 unsigned long action, void *hcpu)
709 {
710         unsigned long cpu = (unsigned long)hcpu;
711         struct hpet_work_struct work;
712         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
713
714         switch (action & 0xf) {
715         case CPU_ONLINE:
716                 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
717                 init_completion(&work.complete);
718                 /* FIXME: add schedule_work_on() */
719                 schedule_delayed_work_on(cpu, &work.work, 0);
720                 wait_for_completion(&work.complete);
721                 destroy_timer_on_stack(&work.work.timer);
722                 break;
723         case CPU_DEAD:
724                 if (hdev) {
725                         free_irq(hdev->irq, hdev);
726                         hdev->flags &= ~HPET_DEV_USED;
727                         per_cpu(cpu_hpet_dev, cpu) = NULL;
728                 }
729                 break;
730         }
731         return NOTIFY_OK;
732 }
733 #else
734
735 static int hpet_setup_msi_irq(unsigned int irq)
736 {
737         return 0;
738 }
739 static void hpet_msi_capability_lookup(unsigned int start_timer)
740 {
741         return;
742 }
743
744 #ifdef CONFIG_HPET
745 static void hpet_reserve_msi_timers(struct hpet_data *hd)
746 {
747         return;
748 }
749 #endif
750
751 static int hpet_cpuhp_notify(struct notifier_block *n,
752                 unsigned long action, void *hcpu)
753 {
754         return NOTIFY_OK;
755 }
756
757 #endif
758
759 /*
760  * Clock source related code
761  */
762 static cycle_t read_hpet(struct clocksource *cs)
763 {
764         return (cycle_t)hpet_readl(HPET_COUNTER);
765 }
766
767 #ifdef CONFIG_X86_64
768 static cycle_t __vsyscall_fn vread_hpet(void)
769 {
770         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
771 }
772 #endif
773
774 static struct clocksource clocksource_hpet = {
775         .name           = "hpet",
776         .rating         = 250,
777         .read           = read_hpet,
778         .mask           = HPET_MASK,
779         .shift          = HPET_SHIFT,
780         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
781         .resume         = hpet_resume_counter,
782 #ifdef CONFIG_X86_64
783         .vread          = vread_hpet,
784 #endif
785 };
786
787 static int hpet_clocksource_register(void)
788 {
789         u64 start, now;
790         cycle_t t1;
791
792         /* Start the counter */
793         hpet_restart_counter();
794
795         /* Verify whether hpet counter works */
796         t1 = hpet_readl(HPET_COUNTER);
797         rdtscll(start);
798
799         /*
800          * We don't know the TSC frequency yet, but waiting for
801          * 200000 TSC cycles is safe:
802          * 4 GHz == 50us
803          * 1 GHz == 200us
804          */
805         do {
806                 rep_nop();
807                 rdtscll(now);
808         } while ((now - start) < 200000UL);
809
810         if (t1 == hpet_readl(HPET_COUNTER)) {
811                 printk(KERN_WARNING
812                        "HPET counter not counting. HPET disabled\n");
813                 return -ENODEV;
814         }
815
816         /*
817          * The definition of mult is (include/linux/clocksource.h)
818          * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
819          * so we first need to convert hpet_period to ns/cyc units:
820          *  mult/2^shift = ns/cyc = hpet_period/10^6
821          *  mult = (hpet_period * 2^shift)/10^6
822          *  mult = (hpet_period << shift)/FSEC_PER_NSEC
823          */
824         clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
825
826         clocksource_register(&clocksource_hpet);
827
828         return 0;
829 }
830
831 /**
832  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
833  */
834 int __init hpet_enable(void)
835 {
836         unsigned int id;
837         int i;
838
839         if (!is_hpet_capable())
840                 return 0;
841
842         hpet_set_mapping();
843
844         /*
845          * Read the period and check for a sane value:
846          */
847         hpet_period = hpet_readl(HPET_PERIOD);
848
849         /*
850          * AMD SB700 based systems with spread spectrum enabled use a
851          * SMM based HPET emulation to provide proper frequency
852          * setting. The SMM code is initialized with the first HPET
853          * register access and takes some time to complete. During
854          * this time the config register reads 0xffffffff. We check
855          * for max. 1000 loops whether the config register reads a non
856          * 0xffffffff value to make sure that HPET is up and running
857          * before we go further. A counting loop is safe, as the HPET
858          * access takes thousands of CPU cycles. On non SB700 based
859          * machines this check is only done once and has no side
860          * effects.
861          */
862         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
863                 if (i == 1000) {
864                         printk(KERN_WARNING
865                                "HPET config register value = 0xFFFFFFFF. "
866                                "Disabling HPET\n");
867                         goto out_nohpet;
868                 }
869         }
870
871         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
872                 goto out_nohpet;
873
874         /*
875          * Read the HPET ID register to retrieve the IRQ routing
876          * information and the number of channels
877          */
878         id = hpet_readl(HPET_ID);
879         hpet_print_config();
880
881 #ifdef CONFIG_HPET_EMULATE_RTC
882         /*
883          * The legacy routing mode needs at least two channels, tick timer
884          * and the rtc emulation channel.
885          */
886         if (!(id & HPET_ID_NUMBER))
887                 goto out_nohpet;
888 #endif
889
890         if (hpet_clocksource_register())
891                 goto out_nohpet;
892
893         if (id & HPET_ID_LEGSUP) {
894                 hpet_legacy_clockevent_register();
895                 return 1;
896         }
897         return 0;
898
899 out_nohpet:
900         hpet_clear_mapping();
901         hpet_address = 0;
902         return 0;
903 }
904
905 /*
906  * Needs to be late, as the reserve_timer code calls kalloc !
907  *
908  * Not a problem on i386 as hpet_enable is called from late_time_init,
909  * but on x86_64 it is necessary !
910  */
911 static __init int hpet_late_init(void)
912 {
913         int cpu;
914
915         if (boot_hpet_disable)
916                 return -ENODEV;
917
918         if (!hpet_address) {
919                 if (!force_hpet_address)
920                         return -ENODEV;
921
922                 hpet_address = force_hpet_address;
923                 hpet_enable();
924         }
925
926         if (!hpet_virt_address)
927                 return -ENODEV;
928
929         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
930                 hpet_msi_capability_lookup(2);
931         else
932                 hpet_msi_capability_lookup(0);
933
934         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
935         hpet_print_config();
936
937         if (hpet_msi_disable)
938                 return 0;
939
940         if (boot_cpu_has(X86_FEATURE_ARAT))
941                 return 0;
942
943         for_each_online_cpu(cpu) {
944                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
945         }
946
947         /* This notifier should be called after workqueue is ready */
948         hotcpu_notifier(hpet_cpuhp_notify, -20);
949
950         return 0;
951 }
952 fs_initcall(hpet_late_init);
953
954 void hpet_disable(void)
955 {
956         if (is_hpet_capable()) {
957                 unsigned int cfg = hpet_readl(HPET_CFG);
958
959                 if (hpet_legacy_int_enabled) {
960                         cfg &= ~HPET_CFG_LEGACY;
961                         hpet_legacy_int_enabled = 0;
962                 }
963                 cfg &= ~HPET_CFG_ENABLE;
964                 hpet_writel(cfg, HPET_CFG);
965         }
966 }
967
968 #ifdef CONFIG_HPET_EMULATE_RTC
969
970 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
971  * is enabled, we support RTC interrupt functionality in software.
972  * RTC has 3 kinds of interrupts:
973  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
974  *    is updated
975  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
976  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
977  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
978  * (1) and (2) above are implemented using polling at a frequency of
979  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
980  * overhead. (DEFAULT_RTC_INT_FREQ)
981  * For (3), we use interrupts at 64Hz or user specified periodic
982  * frequency, whichever is higher.
983  */
984 #include <linux/mc146818rtc.h>
985 #include <linux/rtc.h>
986 #include <asm/rtc.h>
987
988 #define DEFAULT_RTC_INT_FREQ    64
989 #define DEFAULT_RTC_SHIFT       6
990 #define RTC_NUM_INTS            1
991
992 static unsigned long hpet_rtc_flags;
993 static int hpet_prev_update_sec;
994 static struct rtc_time hpet_alarm_time;
995 static unsigned long hpet_pie_count;
996 static u32 hpet_t1_cmp;
997 static u32 hpet_default_delta;
998 static u32 hpet_pie_delta;
999 static unsigned long hpet_pie_limit;
1000
1001 static rtc_irq_handler irq_handler;
1002
1003 /*
1004  * Check that the hpet counter c1 is ahead of the c2
1005  */
1006 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1007 {
1008         return (s32)(c2 - c1) < 0;
1009 }
1010
1011 /*
1012  * Registers a IRQ handler.
1013  */
1014 int hpet_register_irq_handler(rtc_irq_handler handler)
1015 {
1016         if (!is_hpet_enabled())
1017                 return -ENODEV;
1018         if (irq_handler)
1019                 return -EBUSY;
1020
1021         irq_handler = handler;
1022
1023         return 0;
1024 }
1025 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1026
1027 /*
1028  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1029  * and does cleanup.
1030  */
1031 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1032 {
1033         if (!is_hpet_enabled())
1034                 return;
1035
1036         irq_handler = NULL;
1037         hpet_rtc_flags = 0;
1038 }
1039 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1040
1041 /*
1042  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1043  * is not supported by all HPET implementations for timer 1.
1044  *
1045  * hpet_rtc_timer_init() is called when the rtc is initialized.
1046  */
1047 int hpet_rtc_timer_init(void)
1048 {
1049         unsigned int cfg, cnt, delta;
1050         unsigned long flags;
1051
1052         if (!is_hpet_enabled())
1053                 return 0;
1054
1055         if (!hpet_default_delta) {
1056                 uint64_t clc;
1057
1058                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1059                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1060                 hpet_default_delta = clc;
1061         }
1062
1063         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1064                 delta = hpet_default_delta;
1065         else
1066                 delta = hpet_pie_delta;
1067
1068         local_irq_save(flags);
1069
1070         cnt = delta + hpet_readl(HPET_COUNTER);
1071         hpet_writel(cnt, HPET_T1_CMP);
1072         hpet_t1_cmp = cnt;
1073
1074         cfg = hpet_readl(HPET_T1_CFG);
1075         cfg &= ~HPET_TN_PERIODIC;
1076         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1077         hpet_writel(cfg, HPET_T1_CFG);
1078
1079         local_irq_restore(flags);
1080
1081         return 1;
1082 }
1083 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1084
1085 /*
1086  * The functions below are called from rtc driver.
1087  * Return 0 if HPET is not being used.
1088  * Otherwise do the necessary changes and return 1.
1089  */
1090 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1091 {
1092         if (!is_hpet_enabled())
1093                 return 0;
1094
1095         hpet_rtc_flags &= ~bit_mask;
1096         return 1;
1097 }
1098 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1099
1100 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1101 {
1102         unsigned long oldbits = hpet_rtc_flags;
1103
1104         if (!is_hpet_enabled())
1105                 return 0;
1106
1107         hpet_rtc_flags |= bit_mask;
1108
1109         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1110                 hpet_prev_update_sec = -1;
1111
1112         if (!oldbits)
1113                 hpet_rtc_timer_init();
1114
1115         return 1;
1116 }
1117 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1118
1119 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1120                         unsigned char sec)
1121 {
1122         if (!is_hpet_enabled())
1123                 return 0;
1124
1125         hpet_alarm_time.tm_hour = hrs;
1126         hpet_alarm_time.tm_min = min;
1127         hpet_alarm_time.tm_sec = sec;
1128
1129         return 1;
1130 }
1131 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1132
1133 int hpet_set_periodic_freq(unsigned long freq)
1134 {
1135         uint64_t clc;
1136
1137         if (!is_hpet_enabled())
1138                 return 0;
1139
1140         if (freq <= DEFAULT_RTC_INT_FREQ)
1141                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1142         else {
1143                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1144                 do_div(clc, freq);
1145                 clc >>= hpet_clockevent.shift;
1146                 hpet_pie_delta = clc;
1147         }
1148         return 1;
1149 }
1150 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1151
1152 int hpet_rtc_dropped_irq(void)
1153 {
1154         return is_hpet_enabled();
1155 }
1156 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1157
1158 static void hpet_rtc_timer_reinit(void)
1159 {
1160         unsigned int cfg, delta;
1161         int lost_ints = -1;
1162
1163         if (unlikely(!hpet_rtc_flags)) {
1164                 cfg = hpet_readl(HPET_T1_CFG);
1165                 cfg &= ~HPET_TN_ENABLE;
1166                 hpet_writel(cfg, HPET_T1_CFG);
1167                 return;
1168         }
1169
1170         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1171                 delta = hpet_default_delta;
1172         else
1173                 delta = hpet_pie_delta;
1174
1175         /*
1176          * Increment the comparator value until we are ahead of the
1177          * current count.
1178          */
1179         do {
1180                 hpet_t1_cmp += delta;
1181                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1182                 lost_ints++;
1183         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1184
1185         if (lost_ints) {
1186                 if (hpet_rtc_flags & RTC_PIE)
1187                         hpet_pie_count += lost_ints;
1188                 if (printk_ratelimit())
1189                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1190                                 lost_ints);
1191         }
1192 }
1193
1194 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1195 {
1196         struct rtc_time curr_time;
1197         unsigned long rtc_int_flag = 0;
1198
1199         hpet_rtc_timer_reinit();
1200         memset(&curr_time, 0, sizeof(struct rtc_time));
1201
1202         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1203                 get_rtc_time(&curr_time);
1204
1205         if (hpet_rtc_flags & RTC_UIE &&
1206             curr_time.tm_sec != hpet_prev_update_sec) {
1207                 if (hpet_prev_update_sec >= 0)
1208                         rtc_int_flag = RTC_UF;
1209                 hpet_prev_update_sec = curr_time.tm_sec;
1210         }
1211
1212         if (hpet_rtc_flags & RTC_PIE &&
1213             ++hpet_pie_count >= hpet_pie_limit) {
1214                 rtc_int_flag |= RTC_PF;
1215                 hpet_pie_count = 0;
1216         }
1217
1218         if (hpet_rtc_flags & RTC_AIE &&
1219             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1220             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1221             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1222                         rtc_int_flag |= RTC_AF;
1223
1224         if (rtc_int_flag) {
1225                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1226                 if (irq_handler)
1227                         irq_handler(rtc_int_flag, dev_id);
1228         }
1229         return IRQ_HANDLED;
1230 }
1231 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1232 #endif