Merge branch 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
12
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
16
17 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT                      22
19
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC                   1000000L
23
24 #define HPET_DEV_USED_BIT               2
25 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID                  0x8
27 #define HPET_DEV_FSB_CAP                0x1000
28 #define HPET_DEV_PERI_CAP               0x2000
29
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32 /*
33  * HPET address is set in acpi/boot.c, when an ACPI entry exists
34  */
35 unsigned long                           hpet_address;
36 u8                                      hpet_blockid; /* OS timer block num */
37 u8                                      hpet_msi_disable;
38
39 #ifdef CONFIG_PCI_MSI
40 static unsigned long                    hpet_num_timers;
41 #endif
42 static void __iomem                     *hpet_virt_address;
43
44 struct hpet_dev {
45         struct clock_event_device       evt;
46         unsigned int                    num;
47         int                             cpu;
48         unsigned int                    irq;
49         unsigned int                    flags;
50         char                            name[10];
51 };
52
53 inline unsigned int hpet_readl(unsigned int a)
54 {
55         return readl(hpet_virt_address + a);
56 }
57
58 static inline void hpet_writel(unsigned int d, unsigned int a)
59 {
60         writel(d, hpet_virt_address + a);
61 }
62
63 #ifdef CONFIG_X86_64
64 #include <asm/pgtable.h>
65 #endif
66
67 static inline void hpet_set_mapping(void)
68 {
69         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
70 #ifdef CONFIG_X86_64
71         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
72 #endif
73 }
74
75 static inline void hpet_clear_mapping(void)
76 {
77         iounmap(hpet_virt_address);
78         hpet_virt_address = NULL;
79 }
80
81 /*
82  * HPET command line enable / disable
83  */
84 static int boot_hpet_disable;
85 int hpet_force_user;
86 static int hpet_verbose;
87
88 static int __init hpet_setup(char *str)
89 {
90         if (str) {
91                 if (!strncmp("disable", str, 7))
92                         boot_hpet_disable = 1;
93                 if (!strncmp("force", str, 5))
94                         hpet_force_user = 1;
95                 if (!strncmp("verbose", str, 7))
96                         hpet_verbose = 1;
97         }
98         return 1;
99 }
100 __setup("hpet=", hpet_setup);
101
102 static int __init disable_hpet(char *str)
103 {
104         boot_hpet_disable = 1;
105         return 1;
106 }
107 __setup("nohpet", disable_hpet);
108
109 static inline int is_hpet_capable(void)
110 {
111         return !boot_hpet_disable && hpet_address;
112 }
113
114 /*
115  * HPET timer interrupt enable / disable
116  */
117 static int hpet_legacy_int_enabled;
118
119 /**
120  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
121  */
122 int is_hpet_enabled(void)
123 {
124         return is_hpet_capable() && hpet_legacy_int_enabled;
125 }
126 EXPORT_SYMBOL_GPL(is_hpet_enabled);
127
128 static void _hpet_print_config(const char *function, int line)
129 {
130         u32 i, timers, l, h;
131         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
132         l = hpet_readl(HPET_ID);
133         h = hpet_readl(HPET_PERIOD);
134         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
135         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
136         l = hpet_readl(HPET_CFG);
137         h = hpet_readl(HPET_STATUS);
138         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
139         l = hpet_readl(HPET_COUNTER);
140         h = hpet_readl(HPET_COUNTER+4);
141         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
142
143         for (i = 0; i < timers; i++) {
144                 l = hpet_readl(HPET_Tn_CFG(i));
145                 h = hpet_readl(HPET_Tn_CFG(i)+4);
146                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
147                        i, l, h);
148                 l = hpet_readl(HPET_Tn_CMP(i));
149                 h = hpet_readl(HPET_Tn_CMP(i)+4);
150                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
151                        i, l, h);
152                 l = hpet_readl(HPET_Tn_ROUTE(i));
153                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
154                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
155                        i, l, h);
156         }
157 }
158
159 #define hpet_print_config()                                     \
160 do {                                                            \
161         if (hpet_verbose)                                       \
162                 _hpet_print_config(__FUNCTION__, __LINE__);     \
163 } while (0)
164
165 /*
166  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
167  * timer 0 and timer 1 in case of RTC emulation.
168  */
169 #ifdef CONFIG_HPET
170
171 static void hpet_reserve_msi_timers(struct hpet_data *hd);
172
173 static void hpet_reserve_platform_timers(unsigned int id)
174 {
175         struct hpet __iomem *hpet = hpet_virt_address;
176         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
177         unsigned int nrtimers, i;
178         struct hpet_data hd;
179
180         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
181
182         memset(&hd, 0, sizeof(hd));
183         hd.hd_phys_address      = hpet_address;
184         hd.hd_address           = hpet;
185         hd.hd_nirqs             = nrtimers;
186         hpet_reserve_timer(&hd, 0);
187
188 #ifdef CONFIG_HPET_EMULATE_RTC
189         hpet_reserve_timer(&hd, 1);
190 #endif
191
192         /*
193          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
194          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
195          * don't bother configuring *any* comparator interrupts.
196          */
197         hd.hd_irq[0] = HPET_LEGACY_8254;
198         hd.hd_irq[1] = HPET_LEGACY_RTC;
199
200         for (i = 2; i < nrtimers; timer++, i++) {
201                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
202                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
203         }
204
205         hpet_reserve_msi_timers(&hd);
206
207         hpet_alloc(&hd);
208
209 }
210 #else
211 static void hpet_reserve_platform_timers(unsigned int id) { }
212 #endif
213
214 /*
215  * Common hpet info
216  */
217 static unsigned long hpet_period;
218
219 static void hpet_legacy_set_mode(enum clock_event_mode mode,
220                           struct clock_event_device *evt);
221 static int hpet_legacy_next_event(unsigned long delta,
222                            struct clock_event_device *evt);
223
224 /*
225  * The hpet clock event device
226  */
227 static struct clock_event_device hpet_clockevent = {
228         .name           = "hpet",
229         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
230         .set_mode       = hpet_legacy_set_mode,
231         .set_next_event = hpet_legacy_next_event,
232         .shift          = 32,
233         .irq            = 0,
234         .rating         = 50,
235 };
236
237 static void hpet_stop_counter(void)
238 {
239         unsigned long cfg = hpet_readl(HPET_CFG);
240         cfg &= ~HPET_CFG_ENABLE;
241         hpet_writel(cfg, HPET_CFG);
242 }
243
244 static void hpet_reset_counter(void)
245 {
246         hpet_writel(0, HPET_COUNTER);
247         hpet_writel(0, HPET_COUNTER + 4);
248 }
249
250 static void hpet_start_counter(void)
251 {
252         unsigned int cfg = hpet_readl(HPET_CFG);
253         cfg |= HPET_CFG_ENABLE;
254         hpet_writel(cfg, HPET_CFG);
255 }
256
257 static void hpet_restart_counter(void)
258 {
259         hpet_stop_counter();
260         hpet_reset_counter();
261         hpet_start_counter();
262 }
263
264 static void hpet_resume_device(void)
265 {
266         force_hpet_resume();
267 }
268
269 static void hpet_resume_counter(void)
270 {
271         hpet_resume_device();
272         hpet_restart_counter();
273 }
274
275 static void hpet_enable_legacy_int(void)
276 {
277         unsigned int cfg = hpet_readl(HPET_CFG);
278
279         cfg |= HPET_CFG_LEGACY;
280         hpet_writel(cfg, HPET_CFG);
281         hpet_legacy_int_enabled = 1;
282 }
283
284 static void hpet_legacy_clockevent_register(void)
285 {
286         /* Start HPET legacy interrupts */
287         hpet_enable_legacy_int();
288
289         /*
290          * The mult factor is defined as (include/linux/clockchips.h)
291          *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
292          * hpet_period is in units of femtoseconds (per cycle), so
293          *  mult/2^shift = cyc/ns = 10^6/hpet_period
294          *  mult = (10^6 * 2^shift)/hpet_period
295          *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
296          */
297         hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
298                                       hpet_period, hpet_clockevent.shift);
299         /* Calculate the min / max delta */
300         hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
301                                                            &hpet_clockevent);
302         /* 5 usec minimum reprogramming delta. */
303         hpet_clockevent.min_delta_ns = 5000;
304
305         /*
306          * Start hpet with the boot cpu mask and make it
307          * global after the IO_APIC has been initialized.
308          */
309         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
310         clockevents_register_device(&hpet_clockevent);
311         global_clock_event = &hpet_clockevent;
312         printk(KERN_DEBUG "hpet clockevent registered\n");
313 }
314
315 static int hpet_setup_msi_irq(unsigned int irq);
316
317 static void hpet_set_mode(enum clock_event_mode mode,
318                           struct clock_event_device *evt, int timer)
319 {
320         unsigned int cfg, cmp, now;
321         uint64_t delta;
322
323         switch (mode) {
324         case CLOCK_EVT_MODE_PERIODIC:
325                 hpet_stop_counter();
326                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
327                 delta >>= evt->shift;
328                 now = hpet_readl(HPET_COUNTER);
329                 cmp = now + (unsigned int) delta;
330                 cfg = hpet_readl(HPET_Tn_CFG(timer));
331                 /* Make sure we use edge triggered interrupts */
332                 cfg &= ~HPET_TN_LEVEL;
333                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
334                        HPET_TN_SETVAL | HPET_TN_32BIT;
335                 hpet_writel(cfg, HPET_Tn_CFG(timer));
336                 hpet_writel(cmp, HPET_Tn_CMP(timer));
337                 udelay(1);
338                 /*
339                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
340                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
341                  * bit is automatically cleared after the first write.
342                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
343                  * Publication # 24674)
344                  */
345                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
346                 hpet_start_counter();
347                 hpet_print_config();
348                 break;
349
350         case CLOCK_EVT_MODE_ONESHOT:
351                 cfg = hpet_readl(HPET_Tn_CFG(timer));
352                 cfg &= ~HPET_TN_PERIODIC;
353                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
354                 hpet_writel(cfg, HPET_Tn_CFG(timer));
355                 break;
356
357         case CLOCK_EVT_MODE_UNUSED:
358         case CLOCK_EVT_MODE_SHUTDOWN:
359                 cfg = hpet_readl(HPET_Tn_CFG(timer));
360                 cfg &= ~HPET_TN_ENABLE;
361                 hpet_writel(cfg, HPET_Tn_CFG(timer));
362                 break;
363
364         case CLOCK_EVT_MODE_RESUME:
365                 if (timer == 0) {
366                         hpet_enable_legacy_int();
367                 } else {
368                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
369                         hpet_setup_msi_irq(hdev->irq);
370                         disable_irq(hdev->irq);
371                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
372                         enable_irq(hdev->irq);
373                 }
374                 hpet_print_config();
375                 break;
376         }
377 }
378
379 static int hpet_next_event(unsigned long delta,
380                            struct clock_event_device *evt, int timer)
381 {
382         u32 cnt;
383
384         cnt = hpet_readl(HPET_COUNTER);
385         cnt += (u32) delta;
386         hpet_writel(cnt, HPET_Tn_CMP(timer));
387
388         /*
389          * We need to read back the CMP register on certain HPET
390          * implementations (ATI chipsets) which seem to delay the
391          * transfer of the compare register into the internal compare
392          * logic. With small deltas this might actually be too late as
393          * the counter could already be higher than the compare value
394          * at that point and we would wait for the next hpet interrupt
395          * forever. We found out that reading the CMP register back
396          * forces the transfer so we can rely on the comparison with
397          * the counter register below. If the read back from the
398          * compare register does not match the value we programmed
399          * then we might have a real hardware problem. We can not do
400          * much about it here, but at least alert the user/admin with
401          * a prominent warning.
402          */
403         WARN_ONCE(hpet_readl(HPET_Tn_CMP(timer)) != cnt,
404                   KERN_WARNING "hpet: compare register read back failed.\n");
405
406         return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
407 }
408
409 static void hpet_legacy_set_mode(enum clock_event_mode mode,
410                         struct clock_event_device *evt)
411 {
412         hpet_set_mode(mode, evt, 0);
413 }
414
415 static int hpet_legacy_next_event(unsigned long delta,
416                         struct clock_event_device *evt)
417 {
418         return hpet_next_event(delta, evt, 0);
419 }
420
421 /*
422  * HPET MSI Support
423  */
424 #ifdef CONFIG_PCI_MSI
425
426 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
427 static struct hpet_dev  *hpet_devs;
428
429 void hpet_msi_unmask(unsigned int irq)
430 {
431         struct hpet_dev *hdev = get_irq_data(irq);
432         unsigned int cfg;
433
434         /* unmask it */
435         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
436         cfg |= HPET_TN_FSB;
437         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
438 }
439
440 void hpet_msi_mask(unsigned int irq)
441 {
442         unsigned int cfg;
443         struct hpet_dev *hdev = get_irq_data(irq);
444
445         /* mask it */
446         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
447         cfg &= ~HPET_TN_FSB;
448         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
449 }
450
451 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
452 {
453         struct hpet_dev *hdev = get_irq_data(irq);
454
455         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
456         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
457 }
458
459 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
460 {
461         struct hpet_dev *hdev = get_irq_data(irq);
462
463         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
464         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
465         msg->address_hi = 0;
466 }
467
468 static void hpet_msi_set_mode(enum clock_event_mode mode,
469                                 struct clock_event_device *evt)
470 {
471         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
472         hpet_set_mode(mode, evt, hdev->num);
473 }
474
475 static int hpet_msi_next_event(unsigned long delta,
476                                 struct clock_event_device *evt)
477 {
478         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
479         return hpet_next_event(delta, evt, hdev->num);
480 }
481
482 static int hpet_setup_msi_irq(unsigned int irq)
483 {
484         if (arch_setup_hpet_msi(irq, hpet_blockid)) {
485                 destroy_irq(irq);
486                 return -EINVAL;
487         }
488         return 0;
489 }
490
491 static int hpet_assign_irq(struct hpet_dev *dev)
492 {
493         unsigned int irq;
494
495         irq = create_irq();
496         if (!irq)
497                 return -EINVAL;
498
499         set_irq_data(irq, dev);
500
501         if (hpet_setup_msi_irq(irq))
502                 return -EINVAL;
503
504         dev->irq = irq;
505         return 0;
506 }
507
508 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
509 {
510         struct hpet_dev *dev = (struct hpet_dev *)data;
511         struct clock_event_device *hevt = &dev->evt;
512
513         if (!hevt->event_handler) {
514                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
515                                 dev->num);
516                 return IRQ_HANDLED;
517         }
518
519         hevt->event_handler(hevt);
520         return IRQ_HANDLED;
521 }
522
523 static int hpet_setup_irq(struct hpet_dev *dev)
524 {
525
526         if (request_irq(dev->irq, hpet_interrupt_handler,
527                         IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
528                         dev->name, dev))
529                 return -1;
530
531         disable_irq(dev->irq);
532         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
533         enable_irq(dev->irq);
534
535         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
536                          dev->name, dev->irq);
537
538         return 0;
539 }
540
541 /* This should be called in specific @cpu */
542 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
543 {
544         struct clock_event_device *evt = &hdev->evt;
545         uint64_t hpet_freq;
546
547         WARN_ON(cpu != smp_processor_id());
548         if (!(hdev->flags & HPET_DEV_VALID))
549                 return;
550
551         if (hpet_setup_msi_irq(hdev->irq))
552                 return;
553
554         hdev->cpu = cpu;
555         per_cpu(cpu_hpet_dev, cpu) = hdev;
556         evt->name = hdev->name;
557         hpet_setup_irq(hdev);
558         evt->irq = hdev->irq;
559
560         evt->rating = 110;
561         evt->features = CLOCK_EVT_FEAT_ONESHOT;
562         if (hdev->flags & HPET_DEV_PERI_CAP)
563                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
564
565         evt->set_mode = hpet_msi_set_mode;
566         evt->set_next_event = hpet_msi_next_event;
567         evt->shift = 32;
568
569         /*
570          * The period is a femto seconds value. We need to calculate the
571          * scaled math multiplication factor for nanosecond to hpet tick
572          * conversion.
573          */
574         hpet_freq = 1000000000000000ULL;
575         do_div(hpet_freq, hpet_period);
576         evt->mult = div_sc((unsigned long) hpet_freq,
577                                       NSEC_PER_SEC, evt->shift);
578         /* Calculate the max delta */
579         evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
580         /* 5 usec minimum reprogramming delta. */
581         evt->min_delta_ns = 5000;
582
583         evt->cpumask = cpumask_of(hdev->cpu);
584         clockevents_register_device(evt);
585 }
586
587 #ifdef CONFIG_HPET
588 /* Reserve at least one timer for userspace (/dev/hpet) */
589 #define RESERVE_TIMERS 1
590 #else
591 #define RESERVE_TIMERS 0
592 #endif
593
594 static void hpet_msi_capability_lookup(unsigned int start_timer)
595 {
596         unsigned int id;
597         unsigned int num_timers;
598         unsigned int num_timers_used = 0;
599         int i;
600
601         if (hpet_msi_disable)
602                 return;
603
604         if (boot_cpu_has(X86_FEATURE_ARAT))
605                 return;
606         id = hpet_readl(HPET_ID);
607
608         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
609         num_timers++; /* Value read out starts from 0 */
610         hpet_print_config();
611
612         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
613         if (!hpet_devs)
614                 return;
615
616         hpet_num_timers = num_timers;
617
618         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
619                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
620                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
621
622                 /* Only consider HPET timer with MSI support */
623                 if (!(cfg & HPET_TN_FSB_CAP))
624                         continue;
625
626                 hdev->flags = 0;
627                 if (cfg & HPET_TN_PERIODIC_CAP)
628                         hdev->flags |= HPET_DEV_PERI_CAP;
629                 hdev->num = i;
630
631                 sprintf(hdev->name, "hpet%d", i);
632                 if (hpet_assign_irq(hdev))
633                         continue;
634
635                 hdev->flags |= HPET_DEV_FSB_CAP;
636                 hdev->flags |= HPET_DEV_VALID;
637                 num_timers_used++;
638                 if (num_timers_used == num_possible_cpus())
639                         break;
640         }
641
642         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
643                 num_timers, num_timers_used);
644 }
645
646 #ifdef CONFIG_HPET
647 static void hpet_reserve_msi_timers(struct hpet_data *hd)
648 {
649         int i;
650
651         if (!hpet_devs)
652                 return;
653
654         for (i = 0; i < hpet_num_timers; i++) {
655                 struct hpet_dev *hdev = &hpet_devs[i];
656
657                 if (!(hdev->flags & HPET_DEV_VALID))
658                         continue;
659
660                 hd->hd_irq[hdev->num] = hdev->irq;
661                 hpet_reserve_timer(hd, hdev->num);
662         }
663 }
664 #endif
665
666 static struct hpet_dev *hpet_get_unused_timer(void)
667 {
668         int i;
669
670         if (!hpet_devs)
671                 return NULL;
672
673         for (i = 0; i < hpet_num_timers; i++) {
674                 struct hpet_dev *hdev = &hpet_devs[i];
675
676                 if (!(hdev->flags & HPET_DEV_VALID))
677                         continue;
678                 if (test_and_set_bit(HPET_DEV_USED_BIT,
679                         (unsigned long *)&hdev->flags))
680                         continue;
681                 return hdev;
682         }
683         return NULL;
684 }
685
686 struct hpet_work_struct {
687         struct delayed_work work;
688         struct completion complete;
689 };
690
691 static void hpet_work(struct work_struct *w)
692 {
693         struct hpet_dev *hdev;
694         int cpu = smp_processor_id();
695         struct hpet_work_struct *hpet_work;
696
697         hpet_work = container_of(w, struct hpet_work_struct, work.work);
698
699         hdev = hpet_get_unused_timer();
700         if (hdev)
701                 init_one_hpet_msi_clockevent(hdev, cpu);
702
703         complete(&hpet_work->complete);
704 }
705
706 static int hpet_cpuhp_notify(struct notifier_block *n,
707                 unsigned long action, void *hcpu)
708 {
709         unsigned long cpu = (unsigned long)hcpu;
710         struct hpet_work_struct work;
711         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
712
713         switch (action & 0xf) {
714         case CPU_ONLINE:
715                 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
716                 init_completion(&work.complete);
717                 /* FIXME: add schedule_work_on() */
718                 schedule_delayed_work_on(cpu, &work.work, 0);
719                 wait_for_completion(&work.complete);
720                 destroy_timer_on_stack(&work.work.timer);
721                 break;
722         case CPU_DEAD:
723                 if (hdev) {
724                         free_irq(hdev->irq, hdev);
725                         hdev->flags &= ~HPET_DEV_USED;
726                         per_cpu(cpu_hpet_dev, cpu) = NULL;
727                 }
728                 break;
729         }
730         return NOTIFY_OK;
731 }
732 #else
733
734 static int hpet_setup_msi_irq(unsigned int irq)
735 {
736         return 0;
737 }
738 static void hpet_msi_capability_lookup(unsigned int start_timer)
739 {
740         return;
741 }
742
743 #ifdef CONFIG_HPET
744 static void hpet_reserve_msi_timers(struct hpet_data *hd)
745 {
746         return;
747 }
748 #endif
749
750 static int hpet_cpuhp_notify(struct notifier_block *n,
751                 unsigned long action, void *hcpu)
752 {
753         return NOTIFY_OK;
754 }
755
756 #endif
757
758 /*
759  * Clock source related code
760  */
761 static cycle_t read_hpet(struct clocksource *cs)
762 {
763         return (cycle_t)hpet_readl(HPET_COUNTER);
764 }
765
766 #ifdef CONFIG_X86_64
767 static cycle_t __vsyscall_fn vread_hpet(void)
768 {
769         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
770 }
771 #endif
772
773 static struct clocksource clocksource_hpet = {
774         .name           = "hpet",
775         .rating         = 250,
776         .read           = read_hpet,
777         .mask           = HPET_MASK,
778         .shift          = HPET_SHIFT,
779         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
780         .resume         = hpet_resume_counter,
781 #ifdef CONFIG_X86_64
782         .vread          = vread_hpet,
783 #endif
784 };
785
786 static int hpet_clocksource_register(void)
787 {
788         u64 start, now;
789         cycle_t t1;
790
791         /* Start the counter */
792         hpet_restart_counter();
793
794         /* Verify whether hpet counter works */
795         t1 = hpet_readl(HPET_COUNTER);
796         rdtscll(start);
797
798         /*
799          * We don't know the TSC frequency yet, but waiting for
800          * 200000 TSC cycles is safe:
801          * 4 GHz == 50us
802          * 1 GHz == 200us
803          */
804         do {
805                 rep_nop();
806                 rdtscll(now);
807         } while ((now - start) < 200000UL);
808
809         if (t1 == hpet_readl(HPET_COUNTER)) {
810                 printk(KERN_WARNING
811                        "HPET counter not counting. HPET disabled\n");
812                 return -ENODEV;
813         }
814
815         /*
816          * The definition of mult is (include/linux/clocksource.h)
817          * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
818          * so we first need to convert hpet_period to ns/cyc units:
819          *  mult/2^shift = ns/cyc = hpet_period/10^6
820          *  mult = (hpet_period * 2^shift)/10^6
821          *  mult = (hpet_period << shift)/FSEC_PER_NSEC
822          */
823         clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
824
825         clocksource_register(&clocksource_hpet);
826
827         return 0;
828 }
829
830 /**
831  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
832  */
833 int __init hpet_enable(void)
834 {
835         unsigned int id;
836         int i;
837
838         if (!is_hpet_capable())
839                 return 0;
840
841         hpet_set_mapping();
842
843         /*
844          * Read the period and check for a sane value:
845          */
846         hpet_period = hpet_readl(HPET_PERIOD);
847
848         /*
849          * AMD SB700 based systems with spread spectrum enabled use a
850          * SMM based HPET emulation to provide proper frequency
851          * setting. The SMM code is initialized with the first HPET
852          * register access and takes some time to complete. During
853          * this time the config register reads 0xffffffff. We check
854          * for max. 1000 loops whether the config register reads a non
855          * 0xffffffff value to make sure that HPET is up and running
856          * before we go further. A counting loop is safe, as the HPET
857          * access takes thousands of CPU cycles. On non SB700 based
858          * machines this check is only done once and has no side
859          * effects.
860          */
861         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
862                 if (i == 1000) {
863                         printk(KERN_WARNING
864                                "HPET config register value = 0xFFFFFFFF. "
865                                "Disabling HPET\n");
866                         goto out_nohpet;
867                 }
868         }
869
870         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
871                 goto out_nohpet;
872
873         /*
874          * Read the HPET ID register to retrieve the IRQ routing
875          * information and the number of channels
876          */
877         id = hpet_readl(HPET_ID);
878         hpet_print_config();
879
880 #ifdef CONFIG_HPET_EMULATE_RTC
881         /*
882          * The legacy routing mode needs at least two channels, tick timer
883          * and the rtc emulation channel.
884          */
885         if (!(id & HPET_ID_NUMBER))
886                 goto out_nohpet;
887 #endif
888
889         if (hpet_clocksource_register())
890                 goto out_nohpet;
891
892         if (id & HPET_ID_LEGSUP) {
893                 hpet_legacy_clockevent_register();
894                 return 1;
895         }
896         return 0;
897
898 out_nohpet:
899         hpet_clear_mapping();
900         hpet_address = 0;
901         return 0;
902 }
903
904 /*
905  * Needs to be late, as the reserve_timer code calls kalloc !
906  *
907  * Not a problem on i386 as hpet_enable is called from late_time_init,
908  * but on x86_64 it is necessary !
909  */
910 static __init int hpet_late_init(void)
911 {
912         int cpu;
913
914         if (boot_hpet_disable)
915                 return -ENODEV;
916
917         if (!hpet_address) {
918                 if (!force_hpet_address)
919                         return -ENODEV;
920
921                 hpet_address = force_hpet_address;
922                 hpet_enable();
923         }
924
925         if (!hpet_virt_address)
926                 return -ENODEV;
927
928         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
929                 hpet_msi_capability_lookup(2);
930         else
931                 hpet_msi_capability_lookup(0);
932
933         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
934         hpet_print_config();
935
936         if (hpet_msi_disable)
937                 return 0;
938
939         if (boot_cpu_has(X86_FEATURE_ARAT))
940                 return 0;
941
942         for_each_online_cpu(cpu) {
943                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
944         }
945
946         /* This notifier should be called after workqueue is ready */
947         hotcpu_notifier(hpet_cpuhp_notify, -20);
948
949         return 0;
950 }
951 fs_initcall(hpet_late_init);
952
953 void hpet_disable(void)
954 {
955         if (is_hpet_capable()) {
956                 unsigned int cfg = hpet_readl(HPET_CFG);
957
958                 if (hpet_legacy_int_enabled) {
959                         cfg &= ~HPET_CFG_LEGACY;
960                         hpet_legacy_int_enabled = 0;
961                 }
962                 cfg &= ~HPET_CFG_ENABLE;
963                 hpet_writel(cfg, HPET_CFG);
964         }
965 }
966
967 #ifdef CONFIG_HPET_EMULATE_RTC
968
969 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
970  * is enabled, we support RTC interrupt functionality in software.
971  * RTC has 3 kinds of interrupts:
972  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
973  *    is updated
974  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
975  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
976  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
977  * (1) and (2) above are implemented using polling at a frequency of
978  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
979  * overhead. (DEFAULT_RTC_INT_FREQ)
980  * For (3), we use interrupts at 64Hz or user specified periodic
981  * frequency, whichever is higher.
982  */
983 #include <linux/mc146818rtc.h>
984 #include <linux/rtc.h>
985 #include <asm/rtc.h>
986
987 #define DEFAULT_RTC_INT_FREQ    64
988 #define DEFAULT_RTC_SHIFT       6
989 #define RTC_NUM_INTS            1
990
991 static unsigned long hpet_rtc_flags;
992 static int hpet_prev_update_sec;
993 static struct rtc_time hpet_alarm_time;
994 static unsigned long hpet_pie_count;
995 static u32 hpet_t1_cmp;
996 static u32 hpet_default_delta;
997 static u32 hpet_pie_delta;
998 static unsigned long hpet_pie_limit;
999
1000 static rtc_irq_handler irq_handler;
1001
1002 /*
1003  * Check that the hpet counter c1 is ahead of the c2
1004  */
1005 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1006 {
1007         return (s32)(c2 - c1) < 0;
1008 }
1009
1010 /*
1011  * Registers a IRQ handler.
1012  */
1013 int hpet_register_irq_handler(rtc_irq_handler handler)
1014 {
1015         if (!is_hpet_enabled())
1016                 return -ENODEV;
1017         if (irq_handler)
1018                 return -EBUSY;
1019
1020         irq_handler = handler;
1021
1022         return 0;
1023 }
1024 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1025
1026 /*
1027  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1028  * and does cleanup.
1029  */
1030 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1031 {
1032         if (!is_hpet_enabled())
1033                 return;
1034
1035         irq_handler = NULL;
1036         hpet_rtc_flags = 0;
1037 }
1038 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1039
1040 /*
1041  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1042  * is not supported by all HPET implementations for timer 1.
1043  *
1044  * hpet_rtc_timer_init() is called when the rtc is initialized.
1045  */
1046 int hpet_rtc_timer_init(void)
1047 {
1048         unsigned int cfg, cnt, delta;
1049         unsigned long flags;
1050
1051         if (!is_hpet_enabled())
1052                 return 0;
1053
1054         if (!hpet_default_delta) {
1055                 uint64_t clc;
1056
1057                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1058                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1059                 hpet_default_delta = clc;
1060         }
1061
1062         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1063                 delta = hpet_default_delta;
1064         else
1065                 delta = hpet_pie_delta;
1066
1067         local_irq_save(flags);
1068
1069         cnt = delta + hpet_readl(HPET_COUNTER);
1070         hpet_writel(cnt, HPET_T1_CMP);
1071         hpet_t1_cmp = cnt;
1072
1073         cfg = hpet_readl(HPET_T1_CFG);
1074         cfg &= ~HPET_TN_PERIODIC;
1075         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1076         hpet_writel(cfg, HPET_T1_CFG);
1077
1078         local_irq_restore(flags);
1079
1080         return 1;
1081 }
1082 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1083
1084 /*
1085  * The functions below are called from rtc driver.
1086  * Return 0 if HPET is not being used.
1087  * Otherwise do the necessary changes and return 1.
1088  */
1089 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1090 {
1091         if (!is_hpet_enabled())
1092                 return 0;
1093
1094         hpet_rtc_flags &= ~bit_mask;
1095         return 1;
1096 }
1097 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1098
1099 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1100 {
1101         unsigned long oldbits = hpet_rtc_flags;
1102
1103         if (!is_hpet_enabled())
1104                 return 0;
1105
1106         hpet_rtc_flags |= bit_mask;
1107
1108         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1109                 hpet_prev_update_sec = -1;
1110
1111         if (!oldbits)
1112                 hpet_rtc_timer_init();
1113
1114         return 1;
1115 }
1116 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1117
1118 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1119                         unsigned char sec)
1120 {
1121         if (!is_hpet_enabled())
1122                 return 0;
1123
1124         hpet_alarm_time.tm_hour = hrs;
1125         hpet_alarm_time.tm_min = min;
1126         hpet_alarm_time.tm_sec = sec;
1127
1128         return 1;
1129 }
1130 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1131
1132 int hpet_set_periodic_freq(unsigned long freq)
1133 {
1134         uint64_t clc;
1135
1136         if (!is_hpet_enabled())
1137                 return 0;
1138
1139         if (freq <= DEFAULT_RTC_INT_FREQ)
1140                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1141         else {
1142                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1143                 do_div(clc, freq);
1144                 clc >>= hpet_clockevent.shift;
1145                 hpet_pie_delta = clc;
1146         }
1147         return 1;
1148 }
1149 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1150
1151 int hpet_rtc_dropped_irq(void)
1152 {
1153         return is_hpet_enabled();
1154 }
1155 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1156
1157 static void hpet_rtc_timer_reinit(void)
1158 {
1159         unsigned int cfg, delta;
1160         int lost_ints = -1;
1161
1162         if (unlikely(!hpet_rtc_flags)) {
1163                 cfg = hpet_readl(HPET_T1_CFG);
1164                 cfg &= ~HPET_TN_ENABLE;
1165                 hpet_writel(cfg, HPET_T1_CFG);
1166                 return;
1167         }
1168
1169         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1170                 delta = hpet_default_delta;
1171         else
1172                 delta = hpet_pie_delta;
1173
1174         /*
1175          * Increment the comparator value until we are ahead of the
1176          * current count.
1177          */
1178         do {
1179                 hpet_t1_cmp += delta;
1180                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1181                 lost_ints++;
1182         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1183
1184         if (lost_ints) {
1185                 if (hpet_rtc_flags & RTC_PIE)
1186                         hpet_pie_count += lost_ints;
1187                 if (printk_ratelimit())
1188                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1189                                 lost_ints);
1190         }
1191 }
1192
1193 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1194 {
1195         struct rtc_time curr_time;
1196         unsigned long rtc_int_flag = 0;
1197
1198         hpet_rtc_timer_reinit();
1199         memset(&curr_time, 0, sizeof(struct rtc_time));
1200
1201         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1202                 get_rtc_time(&curr_time);
1203
1204         if (hpet_rtc_flags & RTC_UIE &&
1205             curr_time.tm_sec != hpet_prev_update_sec) {
1206                 if (hpet_prev_update_sec >= 0)
1207                         rtc_int_flag = RTC_UF;
1208                 hpet_prev_update_sec = curr_time.tm_sec;
1209         }
1210
1211         if (hpet_rtc_flags & RTC_PIE &&
1212             ++hpet_pie_count >= hpet_pie_limit) {
1213                 rtc_int_flag |= RTC_PF;
1214                 hpet_pie_count = 0;
1215         }
1216
1217         if (hpet_rtc_flags & RTC_AIE &&
1218             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1219             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1220             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1221                         rtc_int_flag |= RTC_AF;
1222
1223         if (rtc_int_flag) {
1224                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1225                 if (irq_handler)
1226                         irq_handler(rtc_int_flag, dev_id);
1227         }
1228         return IRQ_HANDLED;
1229 }
1230 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1231 #endif