Merge branch 'timers-for-linus-cleanups' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/io.h>
13
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17
18 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
19 #define HPET_SHIFT                      22
20
21 /* FSEC = 10^-15
22    NSEC = 10^-9 */
23 #define FSEC_PER_NSEC                   1000000L
24
25 #define HPET_DEV_USED_BIT               2
26 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID                  0x8
28 #define HPET_DEV_FSB_CAP                0x1000
29 #define HPET_DEV_PERI_CAP               0x2000
30
31 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
32
33 /*
34  * HPET address is set in acpi/boot.c, when an ACPI entry exists
35  */
36 unsigned long                           hpet_address;
37 u8                                      hpet_blockid; /* OS timer block num */
38 u8                                      hpet_msi_disable;
39
40 #ifdef CONFIG_PCI_MSI
41 static unsigned long                    hpet_num_timers;
42 #endif
43 static void __iomem                     *hpet_virt_address;
44
45 struct hpet_dev {
46         struct clock_event_device       evt;
47         unsigned int                    num;
48         int                             cpu;
49         unsigned int                    irq;
50         unsigned int                    flags;
51         char                            name[10];
52 };
53
54 inline unsigned int hpet_readl(unsigned int a)
55 {
56         return readl(hpet_virt_address + a);
57 }
58
59 static inline void hpet_writel(unsigned int d, unsigned int a)
60 {
61         writel(d, hpet_virt_address + a);
62 }
63
64 #ifdef CONFIG_X86_64
65 #include <asm/pgtable.h>
66 #endif
67
68 static inline void hpet_set_mapping(void)
69 {
70         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
71 #ifdef CONFIG_X86_64
72         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
73 #endif
74 }
75
76 static inline void hpet_clear_mapping(void)
77 {
78         iounmap(hpet_virt_address);
79         hpet_virt_address = NULL;
80 }
81
82 /*
83  * HPET command line enable / disable
84  */
85 static int boot_hpet_disable;
86 int hpet_force_user;
87 static int hpet_verbose;
88
89 static int __init hpet_setup(char *str)
90 {
91         if (str) {
92                 if (!strncmp("disable", str, 7))
93                         boot_hpet_disable = 1;
94                 if (!strncmp("force", str, 5))
95                         hpet_force_user = 1;
96                 if (!strncmp("verbose", str, 7))
97                         hpet_verbose = 1;
98         }
99         return 1;
100 }
101 __setup("hpet=", hpet_setup);
102
103 static int __init disable_hpet(char *str)
104 {
105         boot_hpet_disable = 1;
106         return 1;
107 }
108 __setup("nohpet", disable_hpet);
109
110 static inline int is_hpet_capable(void)
111 {
112         return !boot_hpet_disable && hpet_address;
113 }
114
115 /*
116  * HPET timer interrupt enable / disable
117  */
118 static int hpet_legacy_int_enabled;
119
120 /**
121  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
122  */
123 int is_hpet_enabled(void)
124 {
125         return is_hpet_capable() && hpet_legacy_int_enabled;
126 }
127 EXPORT_SYMBOL_GPL(is_hpet_enabled);
128
129 static void _hpet_print_config(const char *function, int line)
130 {
131         u32 i, timers, l, h;
132         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
133         l = hpet_readl(HPET_ID);
134         h = hpet_readl(HPET_PERIOD);
135         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
136         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
137         l = hpet_readl(HPET_CFG);
138         h = hpet_readl(HPET_STATUS);
139         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
140         l = hpet_readl(HPET_COUNTER);
141         h = hpet_readl(HPET_COUNTER+4);
142         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
143
144         for (i = 0; i < timers; i++) {
145                 l = hpet_readl(HPET_Tn_CFG(i));
146                 h = hpet_readl(HPET_Tn_CFG(i)+4);
147                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
148                        i, l, h);
149                 l = hpet_readl(HPET_Tn_CMP(i));
150                 h = hpet_readl(HPET_Tn_CMP(i)+4);
151                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
152                        i, l, h);
153                 l = hpet_readl(HPET_Tn_ROUTE(i));
154                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
155                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
156                        i, l, h);
157         }
158 }
159
160 #define hpet_print_config()                                     \
161 do {                                                            \
162         if (hpet_verbose)                                       \
163                 _hpet_print_config(__FUNCTION__, __LINE__);     \
164 } while (0)
165
166 /*
167  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
168  * timer 0 and timer 1 in case of RTC emulation.
169  */
170 #ifdef CONFIG_HPET
171
172 static void hpet_reserve_msi_timers(struct hpet_data *hd);
173
174 static void hpet_reserve_platform_timers(unsigned int id)
175 {
176         struct hpet __iomem *hpet = hpet_virt_address;
177         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
178         unsigned int nrtimers, i;
179         struct hpet_data hd;
180
181         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
182
183         memset(&hd, 0, sizeof(hd));
184         hd.hd_phys_address      = hpet_address;
185         hd.hd_address           = hpet;
186         hd.hd_nirqs             = nrtimers;
187         hpet_reserve_timer(&hd, 0);
188
189 #ifdef CONFIG_HPET_EMULATE_RTC
190         hpet_reserve_timer(&hd, 1);
191 #endif
192
193         /*
194          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
195          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
196          * don't bother configuring *any* comparator interrupts.
197          */
198         hd.hd_irq[0] = HPET_LEGACY_8254;
199         hd.hd_irq[1] = HPET_LEGACY_RTC;
200
201         for (i = 2; i < nrtimers; timer++, i++) {
202                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
203                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
204         }
205
206         hpet_reserve_msi_timers(&hd);
207
208         hpet_alloc(&hd);
209
210 }
211 #else
212 static void hpet_reserve_platform_timers(unsigned int id) { }
213 #endif
214
215 /*
216  * Common hpet info
217  */
218 static unsigned long hpet_period;
219
220 static void hpet_legacy_set_mode(enum clock_event_mode mode,
221                           struct clock_event_device *evt);
222 static int hpet_legacy_next_event(unsigned long delta,
223                            struct clock_event_device *evt);
224
225 /*
226  * The hpet clock event device
227  */
228 static struct clock_event_device hpet_clockevent = {
229         .name           = "hpet",
230         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
231         .set_mode       = hpet_legacy_set_mode,
232         .set_next_event = hpet_legacy_next_event,
233         .shift          = 32,
234         .irq            = 0,
235         .rating         = 50,
236 };
237
238 static void hpet_stop_counter(void)
239 {
240         unsigned long cfg = hpet_readl(HPET_CFG);
241         cfg &= ~HPET_CFG_ENABLE;
242         hpet_writel(cfg, HPET_CFG);
243 }
244
245 static void hpet_reset_counter(void)
246 {
247         hpet_writel(0, HPET_COUNTER);
248         hpet_writel(0, HPET_COUNTER + 4);
249 }
250
251 static void hpet_start_counter(void)
252 {
253         unsigned int cfg = hpet_readl(HPET_CFG);
254         cfg |= HPET_CFG_ENABLE;
255         hpet_writel(cfg, HPET_CFG);
256 }
257
258 static void hpet_restart_counter(void)
259 {
260         hpet_stop_counter();
261         hpet_reset_counter();
262         hpet_start_counter();
263 }
264
265 static void hpet_resume_device(void)
266 {
267         force_hpet_resume();
268 }
269
270 static void hpet_resume_counter(struct clocksource *cs)
271 {
272         hpet_resume_device();
273         hpet_restart_counter();
274 }
275
276 static void hpet_enable_legacy_int(void)
277 {
278         unsigned int cfg = hpet_readl(HPET_CFG);
279
280         cfg |= HPET_CFG_LEGACY;
281         hpet_writel(cfg, HPET_CFG);
282         hpet_legacy_int_enabled = 1;
283 }
284
285 static void hpet_legacy_clockevent_register(void)
286 {
287         /* Start HPET legacy interrupts */
288         hpet_enable_legacy_int();
289
290         /*
291          * The mult factor is defined as (include/linux/clockchips.h)
292          *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
293          * hpet_period is in units of femtoseconds (per cycle), so
294          *  mult/2^shift = cyc/ns = 10^6/hpet_period
295          *  mult = (10^6 * 2^shift)/hpet_period
296          *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
297          */
298         hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
299                                       hpet_period, hpet_clockevent.shift);
300         /* Calculate the min / max delta */
301         hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
302                                                            &hpet_clockevent);
303         /* 5 usec minimum reprogramming delta. */
304         hpet_clockevent.min_delta_ns = 5000;
305
306         /*
307          * Start hpet with the boot cpu mask and make it
308          * global after the IO_APIC has been initialized.
309          */
310         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
311         clockevents_register_device(&hpet_clockevent);
312         global_clock_event = &hpet_clockevent;
313         printk(KERN_DEBUG "hpet clockevent registered\n");
314 }
315
316 static int hpet_setup_msi_irq(unsigned int irq);
317
318 static void hpet_set_mode(enum clock_event_mode mode,
319                           struct clock_event_device *evt, int timer)
320 {
321         unsigned int cfg, cmp, now;
322         uint64_t delta;
323
324         switch (mode) {
325         case CLOCK_EVT_MODE_PERIODIC:
326                 hpet_stop_counter();
327                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
328                 delta >>= evt->shift;
329                 now = hpet_readl(HPET_COUNTER);
330                 cmp = now + (unsigned int) delta;
331                 cfg = hpet_readl(HPET_Tn_CFG(timer));
332                 /* Make sure we use edge triggered interrupts */
333                 cfg &= ~HPET_TN_LEVEL;
334                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
335                        HPET_TN_SETVAL | HPET_TN_32BIT;
336                 hpet_writel(cfg, HPET_Tn_CFG(timer));
337                 hpet_writel(cmp, HPET_Tn_CMP(timer));
338                 udelay(1);
339                 /*
340                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
341                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
342                  * bit is automatically cleared after the first write.
343                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
344                  * Publication # 24674)
345                  */
346                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
347                 hpet_start_counter();
348                 hpet_print_config();
349                 break;
350
351         case CLOCK_EVT_MODE_ONESHOT:
352                 cfg = hpet_readl(HPET_Tn_CFG(timer));
353                 cfg &= ~HPET_TN_PERIODIC;
354                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
355                 hpet_writel(cfg, HPET_Tn_CFG(timer));
356                 break;
357
358         case CLOCK_EVT_MODE_UNUSED:
359         case CLOCK_EVT_MODE_SHUTDOWN:
360                 cfg = hpet_readl(HPET_Tn_CFG(timer));
361                 cfg &= ~HPET_TN_ENABLE;
362                 hpet_writel(cfg, HPET_Tn_CFG(timer));
363                 break;
364
365         case CLOCK_EVT_MODE_RESUME:
366                 if (timer == 0) {
367                         hpet_enable_legacy_int();
368                 } else {
369                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
370                         hpet_setup_msi_irq(hdev->irq);
371                         disable_irq(hdev->irq);
372                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
373                         enable_irq(hdev->irq);
374                 }
375                 hpet_print_config();
376                 break;
377         }
378 }
379
380 static int hpet_next_event(unsigned long delta,
381                            struct clock_event_device *evt, int timer)
382 {
383         u32 cnt;
384
385         cnt = hpet_readl(HPET_COUNTER);
386         cnt += (u32) delta;
387         hpet_writel(cnt, HPET_Tn_CMP(timer));
388
389         /*
390          * We need to read back the CMP register on certain HPET
391          * implementations (ATI chipsets) which seem to delay the
392          * transfer of the compare register into the internal compare
393          * logic. With small deltas this might actually be too late as
394          * the counter could already be higher than the compare value
395          * at that point and we would wait for the next hpet interrupt
396          * forever. We found out that reading the CMP register back
397          * forces the transfer so we can rely on the comparison with
398          * the counter register below. If the read back from the
399          * compare register does not match the value we programmed
400          * then we might have a real hardware problem. We can not do
401          * much about it here, but at least alert the user/admin with
402          * a prominent warning.
403          * An erratum on some chipsets (ICH9,..), results in comparator read
404          * immediately following a write returning old value. Workaround
405          * for this is to read this value second time, when first
406          * read returns old value.
407          */
408         if (unlikely((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt)) {
409                 WARN_ONCE(hpet_readl(HPET_Tn_CMP(timer)) != cnt,
410                   KERN_WARNING "hpet: compare register read back failed.\n");
411         }
412
413         return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
414 }
415
416 static void hpet_legacy_set_mode(enum clock_event_mode mode,
417                         struct clock_event_device *evt)
418 {
419         hpet_set_mode(mode, evt, 0);
420 }
421
422 static int hpet_legacy_next_event(unsigned long delta,
423                         struct clock_event_device *evt)
424 {
425         return hpet_next_event(delta, evt, 0);
426 }
427
428 /*
429  * HPET MSI Support
430  */
431 #ifdef CONFIG_PCI_MSI
432
433 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
434 static struct hpet_dev  *hpet_devs;
435
436 void hpet_msi_unmask(unsigned int irq)
437 {
438         struct hpet_dev *hdev = get_irq_data(irq);
439         unsigned int cfg;
440
441         /* unmask it */
442         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
443         cfg |= HPET_TN_FSB;
444         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
445 }
446
447 void hpet_msi_mask(unsigned int irq)
448 {
449         unsigned int cfg;
450         struct hpet_dev *hdev = get_irq_data(irq);
451
452         /* mask it */
453         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
454         cfg &= ~HPET_TN_FSB;
455         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
456 }
457
458 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
459 {
460         struct hpet_dev *hdev = get_irq_data(irq);
461
462         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
463         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
464 }
465
466 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
467 {
468         struct hpet_dev *hdev = get_irq_data(irq);
469
470         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
471         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
472         msg->address_hi = 0;
473 }
474
475 static void hpet_msi_set_mode(enum clock_event_mode mode,
476                                 struct clock_event_device *evt)
477 {
478         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
479         hpet_set_mode(mode, evt, hdev->num);
480 }
481
482 static int hpet_msi_next_event(unsigned long delta,
483                                 struct clock_event_device *evt)
484 {
485         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
486         return hpet_next_event(delta, evt, hdev->num);
487 }
488
489 static int hpet_setup_msi_irq(unsigned int irq)
490 {
491         if (arch_setup_hpet_msi(irq, hpet_blockid)) {
492                 destroy_irq(irq);
493                 return -EINVAL;
494         }
495         return 0;
496 }
497
498 static int hpet_assign_irq(struct hpet_dev *dev)
499 {
500         unsigned int irq;
501
502         irq = create_irq();
503         if (!irq)
504                 return -EINVAL;
505
506         set_irq_data(irq, dev);
507
508         if (hpet_setup_msi_irq(irq))
509                 return -EINVAL;
510
511         dev->irq = irq;
512         return 0;
513 }
514
515 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
516 {
517         struct hpet_dev *dev = (struct hpet_dev *)data;
518         struct clock_event_device *hevt = &dev->evt;
519
520         if (!hevt->event_handler) {
521                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
522                                 dev->num);
523                 return IRQ_HANDLED;
524         }
525
526         hevt->event_handler(hevt);
527         return IRQ_HANDLED;
528 }
529
530 static int hpet_setup_irq(struct hpet_dev *dev)
531 {
532
533         if (request_irq(dev->irq, hpet_interrupt_handler,
534                         IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
535                         dev->name, dev))
536                 return -1;
537
538         disable_irq(dev->irq);
539         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
540         enable_irq(dev->irq);
541
542         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
543                          dev->name, dev->irq);
544
545         return 0;
546 }
547
548 /* This should be called in specific @cpu */
549 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
550 {
551         struct clock_event_device *evt = &hdev->evt;
552         uint64_t hpet_freq;
553
554         WARN_ON(cpu != smp_processor_id());
555         if (!(hdev->flags & HPET_DEV_VALID))
556                 return;
557
558         if (hpet_setup_msi_irq(hdev->irq))
559                 return;
560
561         hdev->cpu = cpu;
562         per_cpu(cpu_hpet_dev, cpu) = hdev;
563         evt->name = hdev->name;
564         hpet_setup_irq(hdev);
565         evt->irq = hdev->irq;
566
567         evt->rating = 110;
568         evt->features = CLOCK_EVT_FEAT_ONESHOT;
569         if (hdev->flags & HPET_DEV_PERI_CAP)
570                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
571
572         evt->set_mode = hpet_msi_set_mode;
573         evt->set_next_event = hpet_msi_next_event;
574         evt->shift = 32;
575
576         /*
577          * The period is a femto seconds value. We need to calculate the
578          * scaled math multiplication factor for nanosecond to hpet tick
579          * conversion.
580          */
581         hpet_freq = 1000000000000000ULL;
582         do_div(hpet_freq, hpet_period);
583         evt->mult = div_sc((unsigned long) hpet_freq,
584                                       NSEC_PER_SEC, evt->shift);
585         /* Calculate the max delta */
586         evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
587         /* 5 usec minimum reprogramming delta. */
588         evt->min_delta_ns = 5000;
589
590         evt->cpumask = cpumask_of(hdev->cpu);
591         clockevents_register_device(evt);
592 }
593
594 #ifdef CONFIG_HPET
595 /* Reserve at least one timer for userspace (/dev/hpet) */
596 #define RESERVE_TIMERS 1
597 #else
598 #define RESERVE_TIMERS 0
599 #endif
600
601 static void hpet_msi_capability_lookup(unsigned int start_timer)
602 {
603         unsigned int id;
604         unsigned int num_timers;
605         unsigned int num_timers_used = 0;
606         int i;
607
608         if (hpet_msi_disable)
609                 return;
610
611         if (boot_cpu_has(X86_FEATURE_ARAT))
612                 return;
613         id = hpet_readl(HPET_ID);
614
615         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
616         num_timers++; /* Value read out starts from 0 */
617         hpet_print_config();
618
619         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
620         if (!hpet_devs)
621                 return;
622
623         hpet_num_timers = num_timers;
624
625         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
626                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
627                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
628
629                 /* Only consider HPET timer with MSI support */
630                 if (!(cfg & HPET_TN_FSB_CAP))
631                         continue;
632
633                 hdev->flags = 0;
634                 if (cfg & HPET_TN_PERIODIC_CAP)
635                         hdev->flags |= HPET_DEV_PERI_CAP;
636                 hdev->num = i;
637
638                 sprintf(hdev->name, "hpet%d", i);
639                 if (hpet_assign_irq(hdev))
640                         continue;
641
642                 hdev->flags |= HPET_DEV_FSB_CAP;
643                 hdev->flags |= HPET_DEV_VALID;
644                 num_timers_used++;
645                 if (num_timers_used == num_possible_cpus())
646                         break;
647         }
648
649         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
650                 num_timers, num_timers_used);
651 }
652
653 #ifdef CONFIG_HPET
654 static void hpet_reserve_msi_timers(struct hpet_data *hd)
655 {
656         int i;
657
658         if (!hpet_devs)
659                 return;
660
661         for (i = 0; i < hpet_num_timers; i++) {
662                 struct hpet_dev *hdev = &hpet_devs[i];
663
664                 if (!(hdev->flags & HPET_DEV_VALID))
665                         continue;
666
667                 hd->hd_irq[hdev->num] = hdev->irq;
668                 hpet_reserve_timer(hd, hdev->num);
669         }
670 }
671 #endif
672
673 static struct hpet_dev *hpet_get_unused_timer(void)
674 {
675         int i;
676
677         if (!hpet_devs)
678                 return NULL;
679
680         for (i = 0; i < hpet_num_timers; i++) {
681                 struct hpet_dev *hdev = &hpet_devs[i];
682
683                 if (!(hdev->flags & HPET_DEV_VALID))
684                         continue;
685                 if (test_and_set_bit(HPET_DEV_USED_BIT,
686                         (unsigned long *)&hdev->flags))
687                         continue;
688                 return hdev;
689         }
690         return NULL;
691 }
692
693 struct hpet_work_struct {
694         struct delayed_work work;
695         struct completion complete;
696 };
697
698 static void hpet_work(struct work_struct *w)
699 {
700         struct hpet_dev *hdev;
701         int cpu = smp_processor_id();
702         struct hpet_work_struct *hpet_work;
703
704         hpet_work = container_of(w, struct hpet_work_struct, work.work);
705
706         hdev = hpet_get_unused_timer();
707         if (hdev)
708                 init_one_hpet_msi_clockevent(hdev, cpu);
709
710         complete(&hpet_work->complete);
711 }
712
713 static int hpet_cpuhp_notify(struct notifier_block *n,
714                 unsigned long action, void *hcpu)
715 {
716         unsigned long cpu = (unsigned long)hcpu;
717         struct hpet_work_struct work;
718         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
719
720         switch (action & 0xf) {
721         case CPU_ONLINE:
722                 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
723                 init_completion(&work.complete);
724                 /* FIXME: add schedule_work_on() */
725                 schedule_delayed_work_on(cpu, &work.work, 0);
726                 wait_for_completion(&work.complete);
727                 destroy_timer_on_stack(&work.work.timer);
728                 break;
729         case CPU_DEAD:
730                 if (hdev) {
731                         free_irq(hdev->irq, hdev);
732                         hdev->flags &= ~HPET_DEV_USED;
733                         per_cpu(cpu_hpet_dev, cpu) = NULL;
734                 }
735                 break;
736         }
737         return NOTIFY_OK;
738 }
739 #else
740
741 static int hpet_setup_msi_irq(unsigned int irq)
742 {
743         return 0;
744 }
745 static void hpet_msi_capability_lookup(unsigned int start_timer)
746 {
747         return;
748 }
749
750 #ifdef CONFIG_HPET
751 static void hpet_reserve_msi_timers(struct hpet_data *hd)
752 {
753         return;
754 }
755 #endif
756
757 static int hpet_cpuhp_notify(struct notifier_block *n,
758                 unsigned long action, void *hcpu)
759 {
760         return NOTIFY_OK;
761 }
762
763 #endif
764
765 /*
766  * Clock source related code
767  */
768 static cycle_t read_hpet(struct clocksource *cs)
769 {
770         return (cycle_t)hpet_readl(HPET_COUNTER);
771 }
772
773 #ifdef CONFIG_X86_64
774 static cycle_t __vsyscall_fn vread_hpet(void)
775 {
776         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
777 }
778 #endif
779
780 static struct clocksource clocksource_hpet = {
781         .name           = "hpet",
782         .rating         = 250,
783         .read           = read_hpet,
784         .mask           = HPET_MASK,
785         .shift          = HPET_SHIFT,
786         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
787         .resume         = hpet_resume_counter,
788 #ifdef CONFIG_X86_64
789         .vread          = vread_hpet,
790 #endif
791 };
792
793 static int hpet_clocksource_register(void)
794 {
795         u64 start, now;
796         cycle_t t1;
797
798         /* Start the counter */
799         hpet_restart_counter();
800
801         /* Verify whether hpet counter works */
802         t1 = hpet_readl(HPET_COUNTER);
803         rdtscll(start);
804
805         /*
806          * We don't know the TSC frequency yet, but waiting for
807          * 200000 TSC cycles is safe:
808          * 4 GHz == 50us
809          * 1 GHz == 200us
810          */
811         do {
812                 rep_nop();
813                 rdtscll(now);
814         } while ((now - start) < 200000UL);
815
816         if (t1 == hpet_readl(HPET_COUNTER)) {
817                 printk(KERN_WARNING
818                        "HPET counter not counting. HPET disabled\n");
819                 return -ENODEV;
820         }
821
822         /*
823          * The definition of mult is (include/linux/clocksource.h)
824          * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
825          * so we first need to convert hpet_period to ns/cyc units:
826          *  mult/2^shift = ns/cyc = hpet_period/10^6
827          *  mult = (hpet_period * 2^shift)/10^6
828          *  mult = (hpet_period << shift)/FSEC_PER_NSEC
829          */
830         clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
831
832         clocksource_register(&clocksource_hpet);
833
834         return 0;
835 }
836
837 /**
838  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
839  */
840 int __init hpet_enable(void)
841 {
842         unsigned int id;
843         int i;
844
845         if (!is_hpet_capable())
846                 return 0;
847
848         hpet_set_mapping();
849
850         /*
851          * Read the period and check for a sane value:
852          */
853         hpet_period = hpet_readl(HPET_PERIOD);
854
855         /*
856          * AMD SB700 based systems with spread spectrum enabled use a
857          * SMM based HPET emulation to provide proper frequency
858          * setting. The SMM code is initialized with the first HPET
859          * register access and takes some time to complete. During
860          * this time the config register reads 0xffffffff. We check
861          * for max. 1000 loops whether the config register reads a non
862          * 0xffffffff value to make sure that HPET is up and running
863          * before we go further. A counting loop is safe, as the HPET
864          * access takes thousands of CPU cycles. On non SB700 based
865          * machines this check is only done once and has no side
866          * effects.
867          */
868         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
869                 if (i == 1000) {
870                         printk(KERN_WARNING
871                                "HPET config register value = 0xFFFFFFFF. "
872                                "Disabling HPET\n");
873                         goto out_nohpet;
874                 }
875         }
876
877         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
878                 goto out_nohpet;
879
880         /*
881          * Read the HPET ID register to retrieve the IRQ routing
882          * information and the number of channels
883          */
884         id = hpet_readl(HPET_ID);
885         hpet_print_config();
886
887 #ifdef CONFIG_HPET_EMULATE_RTC
888         /*
889          * The legacy routing mode needs at least two channels, tick timer
890          * and the rtc emulation channel.
891          */
892         if (!(id & HPET_ID_NUMBER))
893                 goto out_nohpet;
894 #endif
895
896         if (hpet_clocksource_register())
897                 goto out_nohpet;
898
899         if (id & HPET_ID_LEGSUP) {
900                 hpet_legacy_clockevent_register();
901                 return 1;
902         }
903         return 0;
904
905 out_nohpet:
906         hpet_clear_mapping();
907         hpet_address = 0;
908         return 0;
909 }
910
911 /*
912  * Needs to be late, as the reserve_timer code calls kalloc !
913  *
914  * Not a problem on i386 as hpet_enable is called from late_time_init,
915  * but on x86_64 it is necessary !
916  */
917 static __init int hpet_late_init(void)
918 {
919         int cpu;
920
921         if (boot_hpet_disable)
922                 return -ENODEV;
923
924         if (!hpet_address) {
925                 if (!force_hpet_address)
926                         return -ENODEV;
927
928                 hpet_address = force_hpet_address;
929                 hpet_enable();
930         }
931
932         if (!hpet_virt_address)
933                 return -ENODEV;
934
935         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
936                 hpet_msi_capability_lookup(2);
937         else
938                 hpet_msi_capability_lookup(0);
939
940         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
941         hpet_print_config();
942
943         if (hpet_msi_disable)
944                 return 0;
945
946         if (boot_cpu_has(X86_FEATURE_ARAT))
947                 return 0;
948
949         for_each_online_cpu(cpu) {
950                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
951         }
952
953         /* This notifier should be called after workqueue is ready */
954         hotcpu_notifier(hpet_cpuhp_notify, -20);
955
956         return 0;
957 }
958 fs_initcall(hpet_late_init);
959
960 void hpet_disable(void)
961 {
962         if (is_hpet_capable()) {
963                 unsigned int cfg = hpet_readl(HPET_CFG);
964
965                 if (hpet_legacy_int_enabled) {
966                         cfg &= ~HPET_CFG_LEGACY;
967                         hpet_legacy_int_enabled = 0;
968                 }
969                 cfg &= ~HPET_CFG_ENABLE;
970                 hpet_writel(cfg, HPET_CFG);
971         }
972 }
973
974 #ifdef CONFIG_HPET_EMULATE_RTC
975
976 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
977  * is enabled, we support RTC interrupt functionality in software.
978  * RTC has 3 kinds of interrupts:
979  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
980  *    is updated
981  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
982  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
983  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
984  * (1) and (2) above are implemented using polling at a frequency of
985  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
986  * overhead. (DEFAULT_RTC_INT_FREQ)
987  * For (3), we use interrupts at 64Hz or user specified periodic
988  * frequency, whichever is higher.
989  */
990 #include <linux/mc146818rtc.h>
991 #include <linux/rtc.h>
992 #include <asm/rtc.h>
993
994 #define DEFAULT_RTC_INT_FREQ    64
995 #define DEFAULT_RTC_SHIFT       6
996 #define RTC_NUM_INTS            1
997
998 static unsigned long hpet_rtc_flags;
999 static int hpet_prev_update_sec;
1000 static struct rtc_time hpet_alarm_time;
1001 static unsigned long hpet_pie_count;
1002 static u32 hpet_t1_cmp;
1003 static u32 hpet_default_delta;
1004 static u32 hpet_pie_delta;
1005 static unsigned long hpet_pie_limit;
1006
1007 static rtc_irq_handler irq_handler;
1008
1009 /*
1010  * Check that the hpet counter c1 is ahead of the c2
1011  */
1012 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1013 {
1014         return (s32)(c2 - c1) < 0;
1015 }
1016
1017 /*
1018  * Registers a IRQ handler.
1019  */
1020 int hpet_register_irq_handler(rtc_irq_handler handler)
1021 {
1022         if (!is_hpet_enabled())
1023                 return -ENODEV;
1024         if (irq_handler)
1025                 return -EBUSY;
1026
1027         irq_handler = handler;
1028
1029         return 0;
1030 }
1031 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1032
1033 /*
1034  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1035  * and does cleanup.
1036  */
1037 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1038 {
1039         if (!is_hpet_enabled())
1040                 return;
1041
1042         irq_handler = NULL;
1043         hpet_rtc_flags = 0;
1044 }
1045 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1046
1047 /*
1048  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1049  * is not supported by all HPET implementations for timer 1.
1050  *
1051  * hpet_rtc_timer_init() is called when the rtc is initialized.
1052  */
1053 int hpet_rtc_timer_init(void)
1054 {
1055         unsigned int cfg, cnt, delta;
1056         unsigned long flags;
1057
1058         if (!is_hpet_enabled())
1059                 return 0;
1060
1061         if (!hpet_default_delta) {
1062                 uint64_t clc;
1063
1064                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1065                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1066                 hpet_default_delta = clc;
1067         }
1068
1069         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1070                 delta = hpet_default_delta;
1071         else
1072                 delta = hpet_pie_delta;
1073
1074         local_irq_save(flags);
1075
1076         cnt = delta + hpet_readl(HPET_COUNTER);
1077         hpet_writel(cnt, HPET_T1_CMP);
1078         hpet_t1_cmp = cnt;
1079
1080         cfg = hpet_readl(HPET_T1_CFG);
1081         cfg &= ~HPET_TN_PERIODIC;
1082         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1083         hpet_writel(cfg, HPET_T1_CFG);
1084
1085         local_irq_restore(flags);
1086
1087         return 1;
1088 }
1089 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1090
1091 /*
1092  * The functions below are called from rtc driver.
1093  * Return 0 if HPET is not being used.
1094  * Otherwise do the necessary changes and return 1.
1095  */
1096 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1097 {
1098         if (!is_hpet_enabled())
1099                 return 0;
1100
1101         hpet_rtc_flags &= ~bit_mask;
1102         return 1;
1103 }
1104 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1105
1106 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1107 {
1108         unsigned long oldbits = hpet_rtc_flags;
1109
1110         if (!is_hpet_enabled())
1111                 return 0;
1112
1113         hpet_rtc_flags |= bit_mask;
1114
1115         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1116                 hpet_prev_update_sec = -1;
1117
1118         if (!oldbits)
1119                 hpet_rtc_timer_init();
1120
1121         return 1;
1122 }
1123 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1124
1125 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1126                         unsigned char sec)
1127 {
1128         if (!is_hpet_enabled())
1129                 return 0;
1130
1131         hpet_alarm_time.tm_hour = hrs;
1132         hpet_alarm_time.tm_min = min;
1133         hpet_alarm_time.tm_sec = sec;
1134
1135         return 1;
1136 }
1137 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1138
1139 int hpet_set_periodic_freq(unsigned long freq)
1140 {
1141         uint64_t clc;
1142
1143         if (!is_hpet_enabled())
1144                 return 0;
1145
1146         if (freq <= DEFAULT_RTC_INT_FREQ)
1147                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1148         else {
1149                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1150                 do_div(clc, freq);
1151                 clc >>= hpet_clockevent.shift;
1152                 hpet_pie_delta = clc;
1153                 hpet_pie_limit = 0;
1154         }
1155         return 1;
1156 }
1157 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1158
1159 int hpet_rtc_dropped_irq(void)
1160 {
1161         return is_hpet_enabled();
1162 }
1163 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1164
1165 static void hpet_rtc_timer_reinit(void)
1166 {
1167         unsigned int cfg, delta;
1168         int lost_ints = -1;
1169
1170         if (unlikely(!hpet_rtc_flags)) {
1171                 cfg = hpet_readl(HPET_T1_CFG);
1172                 cfg &= ~HPET_TN_ENABLE;
1173                 hpet_writel(cfg, HPET_T1_CFG);
1174                 return;
1175         }
1176
1177         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1178                 delta = hpet_default_delta;
1179         else
1180                 delta = hpet_pie_delta;
1181
1182         /*
1183          * Increment the comparator value until we are ahead of the
1184          * current count.
1185          */
1186         do {
1187                 hpet_t1_cmp += delta;
1188                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1189                 lost_ints++;
1190         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1191
1192         if (lost_ints) {
1193                 if (hpet_rtc_flags & RTC_PIE)
1194                         hpet_pie_count += lost_ints;
1195                 if (printk_ratelimit())
1196                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1197                                 lost_ints);
1198         }
1199 }
1200
1201 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1202 {
1203         struct rtc_time curr_time;
1204         unsigned long rtc_int_flag = 0;
1205
1206         hpet_rtc_timer_reinit();
1207         memset(&curr_time, 0, sizeof(struct rtc_time));
1208
1209         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1210                 get_rtc_time(&curr_time);
1211
1212         if (hpet_rtc_flags & RTC_UIE &&
1213             curr_time.tm_sec != hpet_prev_update_sec) {
1214                 if (hpet_prev_update_sec >= 0)
1215                         rtc_int_flag = RTC_UF;
1216                 hpet_prev_update_sec = curr_time.tm_sec;
1217         }
1218
1219         if (hpet_rtc_flags & RTC_PIE &&
1220             ++hpet_pie_count >= hpet_pie_limit) {
1221                 rtc_int_flag |= RTC_PF;
1222                 hpet_pie_count = 0;
1223         }
1224
1225         if (hpet_rtc_flags & RTC_AIE &&
1226             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1227             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1228             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1229                         rtc_int_flag |= RTC_AF;
1230
1231         if (rtc_int_flag) {
1232                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1233                 if (irq_handler)
1234                         irq_handler(rtc_int_flag, dev_id);
1235         }
1236         return IRQ_HANDLED;
1237 }
1238 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1239 #endif